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Testing separability in multi-dimensional point

processes

Frederic Paik Schoenberg1, University of California, Los Angeles

Abstract

Nonparametric tests for investigating the separability of a multi-dimensional point

process are described and compared. It is shown that a Cramer-von Mises type test

is very powerful at detecting gradual departures from separability, and that a residual

test based on randomly rescaling the process is powerful at detecting non-separable

clustering or inhibition. An application to Los Angeles County wildfire data is given,

in which it is shown that the separability hypothesis is invalidated largely due to

clustering of fires of similar sizes within periods of one to two years.

Key words: point process, separability, non-parametric tests, residual analysis, random time

change, thinning, model evaluation.
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1 Introduction.

Multi-dimensional point process models, such as spatial-temporal point process models, have

been increasingly used in a wide variety of applications to represent observations of discrete

events such as earthquakes, wildfires, sightings of rare species, incidence of epidemics, etc.

(see Ripley 1977, Diggle 1983, Schoenberg et al. 2002, and references therein). The models

commonly in use in such applications almost invariably have a conditional intensity that has

a product form, or that, in the terminology of Cressie (1993), is separable.

The assumption of separability is quite strong: for instance, a separable model for wild-

fires would posit that the ratio of the risk of a location burning to that of another location

burning does not change over time. Despite the importance of this assumption, the sepa-

rability of such processes is rarely rigorously scrutinized. Ogata (1988) and more recently

Schoenberg (2003) used parametric rescaling methods to observe departures from separabil-

ity in the epidemic-type aftershock sequence (ETAS) model for earthquake occurrences, and

separability tests have been constructed for time series and spatial autoregressive processes

(see e.g. Shitan and Brockwell, 1995, and references therein), but if there are other examples

of tests for separability in point processes, they are highly elusive.

The purpose of the present paper is to explore non-parametric methods for testing

whether a multi-dimensional point process is separable. Following a brief review of point

process terminology in Section 2, the problem is defined more precisely in terms of condi-

tional intensities in Section 3. In Section 4, direct methods of testing separability based on

comparing conditional intensity estimates are explored and in Section their performance is

compared under various alternative hypotheses. Section 6 describes a different class of tests,
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based on assessment of the residuals of the point process in the transformed space after

randomly rescaling using the method of Meyer (1971) and its generalizations. These tests

are employed in Section 7 to detect departures from separability in wildfire data from Los

Angeles County, followed by a summary and conclusions in Section 8.

2 Preliminaries.

A point process N is thought of as a random collection of points in some metric space X ,

and is defined mathematically as a σ-finite random measure on X , taking values in the

non-negative integers or infinity. Thus N(B) represents the number of points in a subset

B of X . We consider the case where X is a portion of space-time Rn and that the total

number of observed points N(X ) is finite. We consider the first coordinate of the space to

represent time and refer to the marks, i.e. the other n − 1 coordinates, as spatial, though

in applications they may not represent locations but instead other information about each

point.

Formally, the point process N is considered adapted to some filtered probability space

(Ω,Ft, P ), and the construct basic to point process modeling is the conditional intensity, λ,

which is the unique (up to null sets) F -predictable process such that
∫
[dN(t,x)−λ(t,x)dtdx]

is a martingale. Assuming λ exists, it is typically construed as the limiting expected rate at

which points accumulate at any location (t,x) = (t, x1, ..., xn−1) of space-time, conditional

on the history F−
t , which contains all previous information about the process prior to time t.

As in most applications, we consider here the intensity conditional on one of the parameters,

t. For point processes with simple ground process (i.e. for which with probability one, no two
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points occur at exactly the same time), the conditional intensity λ completely characterizes

the finite-dimensional distributions of the process N ; hence in modeling N it suffices to

prescribe a model for λ. Important examples of point process models include the Poisson

process, for which λ is deterministic, and Hawkes processes (Hawkes, 1971), which have the

characteristic that a point at (t,x) increases the conditional intensity thereafter; Hawkes

processes are described in more detail below. For further introduction to point processes

and conditional intensities, see Jacod (1975), Fishman and Snyder (1976), Cliff and Ord

(1981), Diggle (1983), Daley and Vere-Jones (1988), Karr (1991), Andersen et al. (1993),

Schoenberg et al. (2002a).

3 Separability

Of interest here is to investigate whether the conditional intensity can be expressed as

λ(t, x1, ..., xn−1) = λ1(t)λ2(x1, ..., xn−1), (1)

where λ2 is a fixed non-negative function and λ1 is a non-negative F -predictable process.

If (1) holds we call the process separable. If furthermore the conditional intensity may be

further reduced to the form

λ(t, x1, ..., xn−1) = λ1(t)f1(x1), ..., fn−1(xn−1), (2)

where λ1 is again non-negative and F -predictable and each fi is a fixed non-negative function,

then the process is completely separable. A hypothetical example of complete separability is

given e.g. in Rathbun (1993): in such cases, the parameters governing each of the marginal

processes may be estimated individually.



Schoenberg. Testing point process separability. 5

In most applications, not even the most ambitious modelers would claim that all dimen-

sions, e.g. longitude and latitude, are separable, so complete separability is rarely assumed.

However, separability is nearly always implicitly assumed in models for spatial-temporal and

marked temporal point processes. An important example is the epidemic-type aftershock

sequence (ETAS) model of Ogata (1988), commonly used to model the times and magni-

tudes of earthquake hypocenters. Note that in the ETAS model, although the conditional

intensity of earthquakes at time t depends on the marks of previous earthquakes, the model

is nevertheless separable since the magnitude distribution is not influenced by prior events;

see Schoenberg (2003) for further elaboration.

One non-parametric way to investigate the validity of the null hypothesis (1) is the

following: obtain a non-parametric (e.g. kernel, spline, wavelet) estimate λ̄1 of the temporal

intensity λ1 and another λ̄2 of the spatial intensity λ2 (Vere-Jones, 1992; Brillinger, 1998).

That is, in the case of the univariate and n− 1-variate kernel estimates for example, let

λ̄1(t) =
∫
X

k1(t− u)dN(u, x1, ..., xn−1) (3)

and

λ̄2(x1, ..., xn−1) =
∫
X

kn−1(x1 − y1, ..., xn−1 − yn−1)dN(t, y1, ..., yn−1), (4)

where k1 and kn−1 are one-dimensional and n− 1-dimensional kernel densities, respectively.

Next, find a non-parametric spatial-temporal estimate λ̂ of λ(t, x1, ..., xn−1), e.g. the

kernel estimate

λ̂(t, x1, ..., xn−1) =
∫
X

kn(t− u, x1 − y1, ..., xn−1 − yn−1)dN(u, y1, ..., yn−1), (5)

where kn is an n-dimensional kernel density.
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One may then compare the resulting spatial-temporal intensity estimates λ̂(t, x1, ..., xn−1)

and λ̃(t, x1, ..., xn−1) = λ̄1(t)λ̄2(x1, ..., xn−1)/N(X ). Thus λ̃ is a separable non-parametric

intensity estimate satisfying (1), while λ̂ may be non-separable.

Much has been written about optimally selecting kernel densities and bandwidths and

correcting for edge effects. We refer the reader to Vere-Jones (1992). Of concern in the

present article is not the construction of suitable non-parametric intensity estimates, but

rather how to test for separability after such estimates have been obtained. We note, however,

that for approximating the conditional intensity of a Hawkes process or other clustered

or inhibitory process, it may be desirable to use a one-sided kernel density rather than a

symmetric one. The conditional intensity of a Hawkes process is typically left-continuous

but with a discontinuity at each point of the process, and the same is true of kernel intensity

estimates when a left-continuous kernel density with support on (0,∞) is used.

4 Direct tests of separability.

Under the null hypothesis (1), the two conditional intensity estimates λ̂ and λ̃ should be

similar. One way to compare the two conditional intensity estimates λ̂ and λ̃ is by finding

the minimum or maximum (standardized) absolute difference between the two, that is

S1 = sup{|λ̂(t,x)− λ̃(t,x)|/
√

λ̃(t,x); (t,x) ∈ X} (6)

or

S2 = inf{|λ̂(t,x)− λ̃(t,x)|/
√

λ̃(t,x); (t,x) ∈ X}. (7)
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Other options include the Cramer-von Mises-type statistic

S3 =

T∫
0

∫
x

[λ̂(t,x)− λ̃(t,x)]2dxdt, (8)

or the log-likelihood ratio statistic

S4 =
∫
X

[log{λ̂(t,x)} − log{λ̃(t,x)}]dN −
T∫

0

∫
x

[λ̂(t,x)− λ̃(t,x)]dxdt. (9)

Abnormally large values of any of these test statistics indicates a departure from the separa-

bility hypothesis (1). Still other possibilities are to examine the squared differences between

λ̂ and λ̃ at the points of N , and take their mean S5 or maximum value S6 as a test statis-

tic. Though especially simple to compute, such tests have the obvious deficiency that they

cannot detect differences on portions of X where N has no points.

5 Performance of direct tests.

The performance of the tests of Section 4 may be investigated under various alternatives to

(1). One such alternative is that the interaction between t and x is additive rather than

multiplicative, i.e.

λ(t,x) = λ1(t) + λ2(x), (10)

where λ1 is a predictable non-negative F -adapted process and λ2 is a fixed non-negative

function.

To determine which test statistic seems most sensitive to this type of alternative, many

realizations of point processes in R2
+ were simulated according to (10). For each of the

simulations, kernel estimates λ̂ and λ̃ were generated, and the bootstrap distribution of the
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statistics listed above were obtained. A typical example is shown in Figs. 1-2. In Fig. 1a,

a realization of a Poisson process on the unit square with non-separable, additive intensity

(10) and

λ1(t) = exp(a1 + b1t); λ2(x) = exp(a2 + b2x), (11)

with (a1, a2, b1, b2) = (3, 3, 3, 1), is shown. The model is clearly non-separable, since near

time t = 0, it is much more likely that a point has a large value of x, but near time t = 1, the

distribution of x becomes nearly uniform. Figs. 1b and 1c shows kernel intensity estimates

λ̂ and λ̃ for the simulation in Fig. 1. One sees in Fig. 1c the symmetry of the estimate λ̃; it

is precisely this symmetry that is mandated by the assumption of separability.

Fig. 2 shows the the 6 test statistics, S1 through S6, applied to the simulated points in Fig.

1a, along with the bootstrap distributions of each of the statistics. For instance, in Fig. 2a,

the dark vertical line indicates that for the realization in Fig. 1a, the statistic S1 takes a value

of approximately 16.2, and the histogram shows the distribution of the statistic S1 applied to

10,000 point processes each simulated independently with conditional intensity λ̃ shown in

Fig. 1c. Thus the histogram shows the distribution of S1 under the separability assumption

in (1), and the approximate one-sided p-value indicates the proportion of these simulated

processes for which the statistic S1 is greater than 16.2. Figs. 2b-f show the statistics S2

through S6 applied to the simulated points in Fig. 1, along with their corresponding bootstrap

distributions and p-values. One sees that in this case the statistic S3 is substantially more

sensitive than the others to the departure from separability in the additive model (10).

We analyzed many different non-separable models and in every case the results were

similar to that above: each time, the Cramer-von-Mises type statistics S3 was most powerful
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at detecting non-separability (examples may be seen at www.stat.ucla.edu/∼frederic/sep).

Even for a very highly non-separable model such as

λ(t, x) = 200
(
1{t∈[4,6]} + 1{x≤.3}

)
,

where the change in the distribution of the x-values over time is readily apparent, the test

statistics S1 and S2 did not signal any problems, with bootstrap p-values of 0.6210 and

0.3967, respectively. Similarly, statistics S4, S5 and S6 were not as sensitive to the departure

from separability as the Cramer-von-Mises statistic S3, for which the bootstrap p-value was

0.0003. The results for other non-separable Poisson processes were similar, suggesting that

the statistic S3, which integrates the squared difference between the separable and non-

separable intensity estimates over all times and locations, is a more powerful test statistic

than the others under Poisson alternatives.

Although the test statistic S3 is quite powerful at detecting broad, gradual variations in

the conditional mean of x, it is not exceedingly powerful at detecting non-separability in

the form of clustering or inhibition. For instance, an alternative of interest is that the point

process N is a clustered process, e.g. a Hawkes process (Hawkes, 1971). Such a process in

R2
+ has conditional intensity of the form

λ(t,x) = f(t,x) +
∫
X

g (t− u,d(x,y)) dN(u,y), (12)

where d is a spatial distance function, and f and g are deterministic functions from X and

R2
+, respectively, to R+. The function g is typically required to be zero for t < u, so that

points can influence the rate of accumulation of points at future times but not in the past.

In addition, the requirement that f and g be non-negative is usually made to ensure that λ

is non-negative everywhere, and the integral in the right hand side of (12) is often assumed
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to be less than unity to ensure the stability of the process (Bremaud et al., 2002). It is

important to note that not all clustering is in violation of the separability condition (1). For

instance, many commonly used Hawkes models, such as the ETAS model of Ogata (1988),

exhibit temporal clustering, but the model is still separable provided that despite variations

in the rate of points per unit time, the distribution of the marks remains unchanged. When

temporal and spatial clustering interact, however, then the existence of a point at (t, x) may

change the mark distribution so that in the near future the likelihood of a point having a

mark near x increases, and this violates condition (1).

We applied the statistics listed above to many different Hawkes processes; some results

are shown at www.stat.ucla.edu/∼frederic/sep . In every case S3 was most powerful among

the six statistics listed above. For a Hawkes process on the unit square with conditional

intensity

λ(t, x) = a + b
∑
t′<t

exp{c(t′ − t)− d|x− x′|}, (13)

and with the parameters (a, b, c, d) = (50, 1000, 50, 50) selected so that the clustering is quite

extreme, the distribution of the x-values changes dramatically over time, in violation of (1).

Fig. 3a shows a simulation of such a process. In this case, for an appropriate test statistic

it should be extremely unlikely under the null hypothesis to obtain a value larger than

that observed. However, the statistic S3 was larger in 28 of the 10, 000 simulated separable

processes with conditional intensity λ̃ than for the data in Fig. 3a.

S3 is similarly weak in detecting non-separable inhibition. For example, an inhibitory

analog of (13) is a process with conditional intensity

λ(t, x) =

a− b
∑
t′<t

exp{c(t′ − t)− d|x− x′|}

+

. (14)
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Here a point at (t, x) decreases the conditional intensity nearby, and the positivity restriction

is imposed merely to ensure that the conditional intensity is non-negative. A realization of

the model (14) on the unit square with parameters (a, b, c, d) = (400, 4000, 50, 50) is given

in Fig. 3b; again, the parameters were selected so that the inhibitory nature of the process

could be readily observed. Note that again the process is highly non-separable since the

distribution of x-values changes over time, with x-values near previous x-values that have

occurred recently becoming very unlikely. However, in this case the non-separability is

extremely localized, and statistics such as S3 are ineffective at detecting this type of non-

separability: in fact 6,300 of the 10,000 simulations of separable processes with conditional

intensity λ̃ had S3 statistics larger than that applied to the realization in Fig. 3b, and the

other statistics listed above fared no better. An alternative test that is more sensitive to

non-separable inhibition and clustering is described in Section 6 below.

6 Residual Test of Separability.

An alternative way to test a point process for separability is to inspect the residuals of the

process after rescaling the process to obtain a process which, under the null hypothesis of

separability, should be approximately homogeneous Poisson. The source of the rescaling

method dates back to Meyer (1971) who showed that, for a multivariate point process with

simple ground process, if one transforms each point (t,x) by moving it to (A(t),x), what

results is a sequence of independent Poisson processes of unit rate. Meyer’s theorem has been

generalized by Merzbach and Nualart (1986), Nair (1990), and Schoenberg (1999) to the case

of vertically rescaled spatial point processes in Rn
+. In this vertical rescaling, one focuses
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on one non-temporal coordinate xn−1, and each point (t, x1, x2, ..., xn−2, xn−1) is shifted to(
t, x1, x2, ..., xn−2,

xn−1∫
0

λ(t, x1, x2, ..., xn−2, y)dy

)
. Assuming the original process has simple

ground process, the resulting process is Poisson with unit rate (Schoenberg, 1999).

This method of rescaling may be used in conjunction with non-parametric (e.g. kernel)

intensity estimation to construct a non-parametric test for separability, as follows. Given

a non-parametric separable intensity estimate such as λ̃ described in Section 3, one may

vertically rescale the process, moving each point (t, x1, x2, ..., xn−2, xn−1) tot, x1, x2, ..., xn−2,

xn−1∫
0

λ̃(t, x1, x2, ..., xn−2, y)dy

 .

If the process is indeed separable, then λ̃ should closely approximate λ and thus the rescaled

process should closely resemble a Poisson process of unit rate. One may then apply any of

a multitude of tests to examine whether this is the case. For instance, if one is interested

in detecting clustering, the estimated L-function may be useful (Ripley, 1977; Ripley, 1979;

Diggle 1983; Baddeley et al. 2000). The estimated L-function, which is a normalized version

of K̂(u), the (boundary-corrected) mean number of points within a distance u of any given

point, indicates the amount of clustering or inhibition in the process. Positive and negative

values of L̂(u) indicate more or less clustering, respectively, at scale u than one would expect

of a homogeneous Poisson process. For instance, in R2, using Euclidean distance, L̂(u) is

defined as

L̂(u) =
√

K̂(u)/π − u. (15)

Fig. 3c shows the residuals when this method of vertical rescaling is applied to the

simulated Hawkes process of Fig. 3a. The obvious departures from uniformity in Fig. 3c

indicate departure from separability of the original point process. This is further clarified in



Schoenberg. Testing point process separability. 13

Fig. 3e which shows the estimated L-function for the residual points, after further rescaling

the axes in Fig. 3c so that the scales of t and x are commensurate. The plot of L̂ in Fig.

3e highlights the intense clustering in the rescaled points. The dashed lines in Fig. 3e show

95%-confidence bounds from 10,000 independent simulations of homogeneous processes, each

with the same number of points as the original process of Fig. 3a; for each simulation the

points are distributed uniformly within the irregular boundary of Fig. 3c and the resulting

estimated L-function is obtained. At its peak the estimated L-function shown in Fig. 3e has

an estimated p-value of 0, i.e. not one of the 10,000 simulated homogeneous processes had a

value of L̂(u) exceeding that of the residual process in Fig. 3c, which suggests that the L̂-test

applied to the vertically-rescaled residuals represents a more powerful test for non-separable

clustering compared with S3 or the other tests described in Section 4.

The L̂-function applied to vertically-rescaled residuals is also very powerful at detecting

inhibitory behavior in violation of the separability hypothesis (1). Fig. 3d displays the resid-

uals resulting from vertically rescaling the simulated inhibitory process (14) of Fig. 3b. From

Fig. 3d one may discern that the residual points are less clustered than one would expect

of a homogeneous Poisson process, and this is confirmed in Fig. 3f which shows L̂ applied

to these residual points, along with 95% confidence bounds obtained from 10,000 simulated

homogeneous processes within the boundary of Fig. 3d. In addition to detecting clustering,

the estimated L-function applied to the residuals obtained using the non-parametric sepa-

rable intensity estimate appears to be very sensitive to inhibitory behavior in violation of

assumption (1).
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7 Application: Los Angeles County wildfires.

Wildfires in Los Angeles County, California, are important public safety concerns, often

causing significant ecological upheaval, millions of dollars in property damage, and occa-

sionally loss of human lives (Whelan, 1995; Pyne et al., 1996). The hot, dry climate, the

warm, seasonal Santa Ana winds, and the fact that the predominant vegetation is highly

flammable chaparral combine to make Southern California one of the most fire-prone areas

in the world (Keeley and Keeley, 1988; Yool et al., 1985; Naveh, 1994). Data on wildfires

have been systematically recorded in Los Angeles County since the late 19th century; the

records on fires burning greater than 10 ha are believed to be nearly complete dating back

to about 1950. Fig. 4a shows data on such wildfires, from January 1950 to January 2001,

recorded by the Los Angeles County Fire Department (LACFD) and Los Angeles County

Department of Public Works (LACDPW). Information on numerous covariates for this data

has been recorded and analyzed (see for example Schoenberg et al., 2002b), but for the pur-

pose of this example we focus exclusively on the times and sizes of the wildfires shown in

Fig. 4a. Point process models used to describe such datasets, as well as other forestry data,

are typically separable (Stoyan and Pettinen, 2000), though this assumption is generally not

checked.

Nonseparable and separable kernel intensity estimates of the LACFD data are shown in

Figs. 4b and 4c. Though some clustering appears to be present, no other obvious departures

are immediately observable at a glance from Figs. 4a and 4b: the distribution of wildfire sizes

does not appear to change drastically over time. This is confirmed by Fig. 4d which shows

the statistic S3 applied to the wildfire data, along with the bootstrap distribution of this
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statistic based on resampling 1,000 separable point processes with intensities as in Fig. 4c.

Since S3 is quite powerful at detecting non-separability in the form of broad regions where

the distribution of wildfire sizes changes, the fact that the observed value is not significant

suggests that such departures from separability in this dataset are not excessive.

On the other hand, there does seem to be significant clustering, in violation of the sepa-

rability hypothesis, as demonstrated in Fig. 5. Fig. 5a shows the vertically rescaled residuals,

using the separable conditional intensity estimate λ̃ of Fig. 4c. The estimated L-function of

the rescaled points is shown in Fig. 5b, along with 95%-confidence bounds based on resam-

pling points uniformly distributed within the vertically rescaled boundary. From Fig. 5b one

sees that the clustering in the residuals is highly significant, especially for rescaled distances

of 0.3 to 0.5; these correspond to differences between points in the original dataset in the

range of 1.215 to 2.025 years.

Further inspection of Figs. 4a and 5a can illuminate the main sources of clustering in

the residuals. In vertical rescaling, the y-axis is stretched where λ̃ is large and compressed

where λ̃ is small. Hence clusters of fires for which λ̃ is small, i.e. those of large area and

those occurring in years where fewer fires occurred, are moved even closer together, and a

large fraction of the clustering in the residuals is attributable to such clusters. For instance,

consider the two fires in Fig. 4a occurring in the year 1970 and with areas of 4.3 and 4.6

log km2. In Fig. 4a these two points do not appear particularly close together. However,

fires of that size are rare, so λ̃ is small in that portion of the space. Therefore the residuals

corresponding to these two points are placed very close together: their y-coordinates in Fig.

5a are both approximately 15.0. Similarly, the four points between 1970 and 1971 with
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sizes in the range 2.5 to 3.0 log km2 in Fig. 4a are rescaled in Fig. 5a so that they are highly

clustered, with rescaled y-coordinates between 12.9 and 13.2. Another example is the cluster

of four fires occurring in 1997, of sizes 0.8 to 0.9 log km2. Because 1997 was a year with

relatively few fires, λ̃ is rather low in this year, so these fires are clustered together in the

residual plot of Fig. 5a, with all four residual points having a y-coordinate of very nearly

5.0.

8 Discussion.

While the lack of a very significant gradual change in the wildfire area distribution over time

is not surprising, the significant, non-separable small-scale clustering observed in the Los An-

geles County wildfire dataset may seem curious. Note that most of the fires within any given

year occur at very disparate spatial locations, and the notion that they are causally related

to one another, i.e. that certain fires are causing other fires of similar size to occur shortly

thereafter, seems highly implausible. The clustering may not be attributed to boundary

effects, since the resampled processes used for the confidence bounds in Fig. 5b each consist

of points uniformly distributed over the identical boundary as that of the residual points.

Nor can the apparent non-separability reasonably be attributed to errors or rounding in the

dataset: wildfire areas were recorded by LACFD officials using digitized wildfire maps which

are believed to be accurate to approximately 10-20 meters (Schoenberg et al., 2002b). The

apparent clustering in the dataset also cannot be due to the insuitability of a model, since

the methods used in its detection were non-parametric.

One possible explanation is that the clustering in the wildfire dataset may be partly due to
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climatic and temporal variations. For instance, average temperatures in Los Angeles County

increased quite dramatically throughout the 20th century while precipitation and winds

exhibited significant variations (Moritz, 1997; Keeley and Fotheringham, 2001; Schoenberg et

al., 2002b); fires of certain sizes may be especially likely under particular weather conditions.

Clustering may similarly result from variations in human response or ignition patterns, which

may cause more fires of a given size to occur in some years rather than others (Kauffman,

1993). In addition, clustering of the type observed here may be a natural feature of the mosaic

of fire patterns in Los Angeles County. For instance, in view of the often-noted cyclic or

renewal-type behavior of wildfires due to slow regeneration of fuel in general and chaparral

in particular (Hanes, 1971; Johnson and Gutsell, 1994; Guo and Rundel, 1997), clusters

of fires of similar size that happen to occur at one time may tend to repeat, resulting in

multiple clusters throughout the dataset. However, perhaps the most plausible explanation

is that separability is simply a very strong condition: there are many ways in which the size

distribution can change over time, and hence it should not be surprising to observe some

significant non-separability in a dataset; rather it would be quite surprising if the separability

condition were met. This last conclusion has serious implications for multi-dimensional point

process modeling, in which at present separable models are regularly assumed without testing

whether the assumption of separability appears to be reasonable.

The Cramer-von Mises type statistic S3 and the estimated L-function applied to vertically-

rescaled residuals appear to be quite powerful tests for separability in multi-dimensional point

process models. The statistic S3 seems most sensitive to gradual or global changes in the

distribution of the marks, while the L-function on the residuals appears to capture local



Schoenberg. Testing point process separability. 18

non-separability in the form of clustering and inhibition quite well. The application of sep-

arability tests to other wildfire datasets, in other areas, and to other point process datasets

in general, should be performed in the future.
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Figure Captions

Figure 1: a) Simulated Poisson process with additive, exponential intensity (10-11); b) Non-

separable kernel intensity estimate λ̂; c) Separable intensity estimate λ̃.

Figure 2: Test statistics applied to additive exponential model, along with bootstrap distri-

butions and one-sided p-values.

Figure 3: a) Simulated Hawkes process with conditional intensity (13); b) Simulated in-

hibitory process with conditional intensity (14); c) Vertical rescaling of Hawkes process

using the separable intensity estimate λ̃; d) Vertical rescaling of inhibitory process using

the separable intensity estimate λ̃; e) L-function applied to vertically rescaled residuals of

the Hawkes process; f) L-function applied to vertically rescaled residuals of the inhibitory

process.

Figure 4: a) Times and burn areas greater than 10 ha from January 1950 to January 2001 in

Los Angeles County, from LACFD wildfire data; b) Non-separable kernel intensity estimate

λ̂; c) Separable kernel intensity estimate λ̃; d) S3 applied to LACFD wildfire data, along

with bootstrap distribution from simulations of separable intensity estimate λ̃.

Figure 5: a) Vertical rescaling of LACFD wildfire data using the separable intensity estimate

λ̃; b) L-function applied to vertically rescaled residuals.
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