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Size-dependent lattice symmetry breaking determines the exciton fine
structure of perovskite nanocrystals

Daniel Weinberg,1, 2, a) Yoonjae Park,1, 3 David T. Limmer,1, 3, 4, 5 and Eran Rabani1, 3, 6, b)
1)Department of Chemistry, University of California, Berkeley, California 94720, USA
2)Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
3)Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4)Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
5)Kavli Energy NanoScience Institute, Berkeley, California 94720, USA
6)The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University,
Tel Aviv 69978, Israel

The ordering of optically bright and dark excitonic states in lead-halide perovskite nanocrystals has been a
matter of some debate. It has been proposed that the unusually short radiative lifetimes in these materials is
due to an optically bright excitonic ground state, a unique situation among all nanomaterials. This proposal
was based on the influence of the Rashba effect driven by lattice-induced inversion symmetry breaking. Direct
measurement of the excitonic emission under magnetic fields has shown the signature of a dark ground state,
bringing the role of the Rashba effect into question. Here, we use a fully atomistic theory to model the exciton
fine structure of perovskite nanocrystals accounting for the realistic lattice distortion at the nanoscale. We
calculate optical gaps and exciton fine structure that compare favorably with a wide range of experimental
works. We find a non-monotonic dependence of the exciton fine structure splittings due to a size dependence
structural transition between cubic and orthorhombic phases. In addition, the excitonic ground state is found
to be dark with nearly pure spin triplet character resulting from a small Rashba coupling. We additionally
explore the intertwined effects of lattice distortion and nanocrystal shape on the fine structure splittings,
clarifying observations on poly-disperse nanocrystals.

Lead-halide perovskite nanocrystals (NCs) have at-
tracted significant attention due to their remarkable op-
tical and electronic properties that could lend themselves
to diverse applications.1–3 Perhaps most interestingly,
these materials show remarkably fast radiative lifetimes,
which shorten at low temperatures in contrast to other
nanomaterials4–10. This anomalous temperature depen-
dence of the radiative lifetimes has led to speculation that
these materials could exhibit a reversal of the typical ex-
citon fine structure (FS) measured in all other nanoma-
terials to date5,11,12. Specifically, Becker et al.5 proposed
that the lowest excitonic state is a bright state, i.e that it
has an optically allowed transition to the material ground
state.

If that is the case, at low temperatures the carriers
will preferentially be in the bright, rapidly emissive state
rather than depending on thermal fluctuations to reach
an emissive state. Understanding the excitonic fine struc-
ture in these materials is important to assess their suit-
ability as quantum light sources, which depends in part
on the uniquely fast radiative lifetimes.13–16 The argu-
ment for a bright excitonic ground state was supported
by a detailed analysis of the physics of excitons in per-
ovskite NCs from an effective mass model. We will briefly
revisit this before describing our atomistic approach to
this problem, which can provide a definitive ordering of
bright and dark states in lead-halide perovskite NCs.

In the typical picture, electrons and holes are bound

a)Electronic mail: d weinberg@berkeley.edu
b)Electronic mail: eran.rabani@berkeley.edu

into excitons by their strong Coloumbic attraction form-
ing a hydrogenic series of states that may be modified by
confinement effects of the NC.17 For systems with neg-
ligible spin-orbit coupling, the electron and hole spins
are decoupled from the spatial degrees of freedom and
simple addition of angular momentum describes the re-
sulting triplet and singlet spin functions. The electron-
hole exchange interaction slightly reduces the strength of
exciton binding for excitons with spin-singlet character,
introducing a spin dependence into the exciton FS. No-
tably, for materials like perovskites with significant spin-
orbit coupling, the spatial and spin degrees of freedom
are not separable. Further, it is known that the excited
state properties of the perovskites are sensitive to the
lattice structure, as the charge-lattice coupling in these
materials is significant.18–21

In the specific case of the perovskite materials, the con-
duction band is composed mainly of of Pb-6p orbitals
which are strongly split by spin-orbit coupling. The con-
duction band edge is composed of the the J = 1/2 total
angular momentum subspace formed from the addition
of the spin and the orbital angular momentum. The va-
lence band has s-type symmetry and thus is not split
by spin-orbit coupling.22 In the exciton, this causes the
exchange interaction to split three bright states above
a dark ground state, all with mixed spin-triplet and
spin-singlet character. These bright states each have
dipoles polarized along one of the principal axes, and
for a cubic crystalline structure are perfectly degener-
ate. These three bright states are often referred to as
“bright triplets” due to their total angular momentum
triplet character, however this should not be confused
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FIG. 1. (a) The effects of electron-hole interaction, (b) lat-
tice distortion, and (c) the previously proposed5 role of the
Rashba effect on the exciton FS.

with their spin character.

Any deviation from this cubic structure will result in
splitting among these bright states. Perovskite materi-
als are known to progress through a series of symmetry
lowering phase transitions as temperature is reduced,23,24

and Figure 1(b) illustrates the effect of these distortions
on the exciton FS. A tetragonal distortion caused by rota-
tion of the lead-halide octahedra around the z-axis splits
the z-oriented state higher in energy, but the symmetry
in the x-y plane maintains the degeneracy of those two
states. At lower temperatures, tilting of the octahedra
breaks that symmetry and further splits the bright states
in the x-y plane into two states polarized at 45◦ angle to
the principle axes25. These symmetry lowering splittings
are observed experimentally as a splitting of the excitonic
emission into two or three distinct lines5,7,26, but on their
own they do not lead to a reversal of the bright-dark level
ordering.

The theorized bright ground state may be arrived
at through the influence of the Rashba effect.27 This
additional term in the k · p Hamiltonian comes from
the co-existence of strong spin-orbit coupling and in-
version symmetry breaking. The additional “effective
exchange”5 term only enters the Hamiltonian through
two parameters– a magnitude and direction along which
inversion symmetry is broken. This, by nature, is blind
to the atomistic detail of the symmetry breaking at the
nanoscale, and leaves unknown the exact nature of a NC
structure that would give rise to such a level ordering.

In fact, several recent measurements7,26,28 have de-
tected a signature of a dark ground state several meVs
below the bright states. Under the influence of a external
magnetic field, the Zeeman effect couples dark states to
energetically close bright states, resulting in an emergent
emission line. Under these conditions the dark ground
state can be directly observed. The fine structure split-
tings are instead explained in terms of the interplay of
crystal structure and NC shape anisotropy.26

Various theoretical attempts have been made to pro-
vide additional understanding of atomistic detail of this

effect, as well as provide tools to understand how to dis-
entangle the Rashba effect, the crystal field splitting, and
NC shape anisotropy to determine the level ordering and
splitting in these NCs. Within an effective mass model,
the Rashba splitting as indicated by the energy difference
between Z and X/Y excitons is predicted to increase to
the bulk limit with increasing NC size.12 On the other
hand, the effect of shape anisotropy should be lesser for
larger NCs.29 This does, however, lead to a troubling
question: If the Rashba effect is more pronounced for
larger NCs, but absent in the bulk, where would the tran-
sition to more bulk-like behavior occur? The resolution
of this must come from an atomistic theory that can also
describe how the structure of small NCs may be distorted
and how that of large NCs converges to the bulk limit.
A recent theoretical investigation focusing on methylam-
monium lead iodide considered the effect of methylam-
monium relaxation within a fixed tetragonal lead iodide
framework and found only weak a Rashba effect insuffi-
cient to cause level inversion.30

To fully understand the intertwined roles of the Rashba
effect and lattice symmetry we must consider the full
structure of perovskite NCs in atomistic detail, especially
including the lead halide framework that contributes
most strongly to the valence and conduction band states.
To do this, we use a previously developed atomistic force
field31 to find the lowest energy configuration for a se-
ries of CsPbI3 perovskite NCs shown in Figure 2(a).
The bulk properties of this model have been extensively
validated.32,33 As the measurements of the exctionic FS
occur at cryogenic temperatures, these single minimized
structures accurately represent the atomic configuration
of the NCs in these experiments, and the effects of lattice
dynamics may be ignored. The relaxed structures can
be compared to the bulk cubic and orthorhombic struc-
tures on the basis of the average Pb-I-Pb bond angles.
These are shown in Figure 2 (b) and reveal that these
relaxed structures lie somewhere between the cubic and
orthorhombic structures. The cubic structures have no
octahedral rotation and therefore all bond angles are 180
degrees. For the orthorhombic structures the significant
octahedral rotation leads to an average bond angle of 154
degrees. The smallest relaxed structures take more cu-
bic forms, but the larger ones approach the orthorhombic
configuration which is the stable bulk structure.

To quantify the extent to which the NC relaxation
breaks crystal symmetries we define a lattice anisotropy
parameter. It is defined by taking the average of the
Pb-Pb distances along each of the principal axes, and
then finding the difference between the direction with
the lowest average and the direction with the highest
average. We plot this parameter against NC size in Fig-
ure 2 (c). For the cubic structures this is always zero,
and for the orthorhombic structures the elongated z-
axis gives a small constant anisotropy. The small re-
laxed structures are highly symmetric so this anisotropy
is near zero, but as the size increases beyond 2 nm in
size, octahedral rotations begin to emerge. These are
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FIG. 2. (a) Renderings of 1.9nm, 3.1nm, 4.4nm, and 5.7nm CsPbI3 NC cubes after structural relaxation. Cs atoms are shown
in teal, I atoms in purple and Pb are shown as grey coordination octahedra. (b) The average Pb-I-Pb bond angle and (c) The
extent of lattice anisotropy induced by the relaxation for cubic (blue squares), orthorhombic (green diamonds) and relaxed
(black circles) structures.

not uniform throughout the NC, however, and remain
suppressed at the surface leading to significant lattice
anisotropy. Significant deviation from the cubic crystal
structure is not unexpected, as although cubic phase QDs
have been stabilized at room temperature and somewhat
below,34 the cryogenic temperatures at which the FS
measurements take place should favor the orthorhombic
structure. The size-dependent effect has been observed
experimentally35, and is driven by a competition between
surface energy and bulk phase stability which had been
previously explored using a continuum model36. The pre-
dicted phase crossover around 2.7 nm aligns well with the
region of highest lattice anisotropy. This lends confidence
to our ability to produce an atomistic description of com-
plex structural behavior at the nanoscale. This size de-
pendent effect has not previously been considered in the
context of the exciton FS, and will play a crucial role in
understanding the size dependence of the FS splittings.

Obtaining the exciton FS from these relaxed NC con-
figurations requires an electronic structure method that is
responsive to the atomistic detail of the material. While
these materials are too large for ab-initio theories such
as DFT combined with many-body perturbation tech-
niques, semi-empirical methods are able to access the size
ranges necessary. We employ the semi-empirical pseu-
dopotential method37–40, which assigns each atom in the
NC an effective potential derived from bulk band struc-
tures. These pseudopotentials include both local and
non-local components that capture the effect of spin-orbit
coupling. As our relaxed NCs lie somewhere in between
the cubic and orthorhombic crystal phases, pseudopoten-
tials have been fit to describe the band structures of both

phases individually. The pseudopotentials used in the
NC calculations are linearly interpolated between these,
based on the local NC structure. This way, the electronic
structure is sensitive to local deformations or distortions
in the lattice. The optical absorption spectrum is com-
puted using the Bethe-Salpeter equation (BSE) within
the static screening approximation, which describes the
bound excitonic states in the basis of free electron-hole
pairs.41,42 This approach allows for equal treatment of
the direct and exchange terms in a non-perturbative
manner, and fully takes into account the effects of spin-
orbit coupling. This treatment is essential to determining
the full excitonic spectrum of these NCs and the FS split-
ting. Additional details on the electronic calculations can
be found in the Supporting Information.

We can evaluate the success of this method by com-
paring the computed optical gaps to a wide range of
experimental results. In Fig. 3(a) we show the lowest
excitonic states (dark and bright) of the relaxed NCs
across a range of sizes. The excitation energies for the
cubic and orthorhombic structures are plotted in Figure
S6, and show a strong agreement with experimental PL
measurements34,43,44,46,47. The relaxed structures show
a stronger confinement effect, with the smallest NCs hav-
ing higher excitation energies than the other structures
due to the effects of relaxation on the angles between lead
halide octahedra. The smallest relaxed structures differ
significantly from either the cubic or orthorhombic ge-
ometries, and this forces the electron and hole quasipar-
ticle states further apart in energy, opening the optical
gap. For the larger NCs, the effect is the opposite as the
optical gaps fall somewhat below that of the other struc-
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FIG. 3. (a) The lowest bright (red) and dark (black) excitonic states for relaxed NCs as a function of size along with experimental
data34,43–47. (b) Exciton binding energies for relaxed NCs as a function of size. (c) A level diagram describing the splittings
calculated. (d) Calculated splitting between the bright and dark excitonic states. (e) Splitting among the bright excitonic
states for orthorhombic (top, green diamonds) and relaxed (bottom, black circles) NCs with experimental splittings.10,25,48,49

(f) Electron density plots for the HOMO (bottom) and LUMO (top) states.

tures and experiments. This can be understood through
the simple bonding and anti-bonding picture of the bulk
lead halide perovskites band structure. In the bulk, the
upper valence band consists of antibonding states be-
tween Pb-6s and I-5p orbitals, and the lower conduction
band consists of antibonding states between Pb-6p and
I-5p orbitals, dominated by the Pb-6p orbitals.22,50,51

In the NCs the hole and electron quasi-orbitals (shown
in Figure 3(f)) maintain much of their bulk character.
For the smallest relaxed NCs, the Pb-I bond lengths are
at a maximum, decreasing their antibonding interaction
and lowering the valence band energy. The Pb-Pb dis-
tance is also exceptionally long lessening their interaction
and pushing the conduction band higher in energy. This
distortion changes character once the NCs pass the criti-
cal threshold of 3-4 nm in length where octahedral tilting
brings the Pb atoms closer together, and the decreased
Pb-I-Pb bond angle somewhat lessens the antibonding in-
teraction. This brings the valence band quasiparticle en-
ergies into line with those of the orthorhombic structures,
but the decreased Pb-Pb distances still drive the conduc-
tion band to fall below that of the fully orthorhombic
structures.

While the relaxation has some impact on the overall
excitation energies, Figure 3(d) shows that it has little

to no impact on the splitting between dark and bright
states. For the cubic, orthorhombic and relaxed struc-
tures studied, the ground state exciton remains dark up
to 6nm NCs, and the trend with increasing size shows
that a positive dark-bright splitting is expected for all
sizes of NCs. This is consistent with the recent calcula-
tions by Biffi et al.30 which considered MAPbI3 NC with
atomistic electronic theory while only allowing relaxation
of the MA cations. We find that expanding the relax-
ation to the lead halide octahedral backbone does not
result in a level inversion and does not support a strong
Rashba effect in these materials. If either relaxation,
or the enforcement of an orthorhombic crystal structure
caused a significant Rashba effect, then the dark-bright
splitting would be qualitatively different from that of the
cubic structures which always have inversion symmetry
and thus no Rashba effect.

A deeper understanding of the exciton fine structure
can come from investigating the spin statistics of the
lowest excitonic states. While the total spin Ŝ2

tot =(
Ŝe + Ŝh

)2
need not be a good quantum number, the

expectation value of the total spin will still be indicative
of the degree of spin-singlet versus spin-triplet character.
As shown in Figure S5, the total spin expectation value
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for the dark states is very close to 2, the value for a triplet
state. The bright states have lower total spin, indica-
tive of greater spin-singlet character. The implications
of this can be understood through the expectation values
of the exchange interaction for each of the states. Only
the bright states, with their partial spin-singlet charac-
ter, feel the effects of exchange. This spin structure is
present in all the structures we consider, ensuring a dark
excitonic ground state regardless of structural relaxation.

The crystal structure does, however, have a significant
impact on the splitting among the bright states as seen
in Figure 3(e). The cubic structures are not shown as
the bright levels are always degenerate. Considering the
orthorhombic structures, the bright-bright splitting de-
creases with increasing NC size, contrary to the predic-
tions of a model where the Rashba effect is sufficiently
strong to cause a bright-dark inversion.12 What is ob-
served is consistent with a simple crystal-field splitting
that would approach the bulk at large NC sizes.52,53

The relaxed crystal structures are where we would ex-
pect to see signatures of the Rashba effect emerge if it
was present, as the ions are allowed to relax and could
strongly break inversion symmetry. These signatures are
not present, and the complex behavior that we do see in
the bright-bright splittings is due to the NC size depen-
dent structural transition discussed earlier. The smallest
NCs have more symmetric structures and thus smaller
bright-bright splittings. For the larger NCs the struc-
tures become nearly orthorhombic and thus the splittings
resemble those of the orthorhombic NCs. Both of these
splittings match well to experiments,7,10,25,48,49 although
the lack of data for extremely small NCs make the pre-
dictions of the relaxed structures difficult to verify. Ad-
ditional measurements of the exciton FS in extremely
small perovskite NCs could help resolve questions of the
structure of these smallest clusters.

The polarization dependent emission spectra can also
be calculated from our atomistic theory. These spec-
tra are shown in Figure S7 for NCs of various crystal
structures all with 3.8 nm edge lengths. In agreement
with the effective mass models, we observe only one peak
for the cubic structure, lying around 20 meV above a
dark ground state. For the orthorhombic structure, the
splittings due to lattice distortion are clearly recovered
and the polarization of the lower two excitonic states is
aligned with the orthorhombic crystal axes rather than
the faces of the NC, also in agreement with the effec-
tive mass models.25 The spectra for the relaxed struc-
tures show similarities to the orthorhombic structure,
but the lower two excitonic states are close enough in en-
ergy that they may not be resolvable into separate peaks.
The results for the relaxed structures add the additional
structural complexity not considered in an effective mass
model. Taken as a whole, the results of our model conclu-
sively show that the inversion symmetry breaking in per-
ovskite NCs is not sufficient to produce a bright ground
state.

While it is easy to simulate a perfectly cubic NC, ex-

FIG. 4. The standard deviation of the bright excitonic states
for the cubic (top), orthorhombic (middle) and relaxed (bot-
tom) crystal structures. The sizes of the symbols represent
the sizes of the NCs along the x and y directions. The largest
symbols correspond to N = 6 and the smallest to N = 4.

periments tend to produce a distribution of NCs that
differ from the perfect cubic geometry. This NC shape
anisotropy is also known to impact the excitonic fine
structure and may be implicated in the diversity of fine
structure splittings observed experimentally.26 In Fig-
ure 4 we consider the effect of shape anisotropy on NCs of
cubic, orthorhombic and relaxed crystal structures. We
generated a series of NCs consisting of N ×N × Z lead-
halide octahedra where N = 4, 5, 6 and Z = 3, . . . , 8. We
define the aspect ratio as Z/N and plot the standard de-
viation of the bright states for each of these NCs. For the
NCs with cubic crystal structures the bright-bright split-
ting is zero for cube-shaped crystals, and either adding
or removing layers from such a NCs causes a finite split-
ting. As the axis of shape anisotropy was chosen as the
z-axis, the x- and y-polarized excitons remain degenerate.
For an aspect ratio less than 1 the z-polarized exciton is
split higher in energy. For an aspect ratio greater than 1
the z-polarized exciton is lower in energy than the x- or
y-polarized ones.

The NCs with an orthorhombic crystal structure show
a significant degree of bright-bright splitting at all aspect
ratios, consistent with effective mass theories.25 The re-
laxed structures show a unique behaviour with significant
bright-bright splittings at aspect ratios less than 1, but
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a small and nearly constant splitting for aspect ratios
larger than 1. This behaviour may result from surface
relaxation effects that become more dominant for plate-
like geometries. As single NC measurements remain ex-
tremely challenging, understanding the exact impacts of
NC shape anisotropy is still an experimental challenge.

In conclusion, we calculate the exciton FS for lead-
halide perovskite NCs using a fully atomistic theory to
obtain relaxed NC crystal structures and the electronic
states of these relaxed NCs. The structural relaxation re-
veals in atomistic detail previously predicted structural
transitions, and the electronic theory reproduces experi-
mental optical gaps with excellent agreement. This atom-
istic theory would be able to discern the causes and na-
ture of a Rashba effect caused by collective inversion
symmetry breaking if it was present in these systems.
None of the signatures of a significant Rashba effect are
found in this study. For all NCs studied the excitonic
ground state is optically dark, and we conclude that it
should remain so for all NC sizes. The explanation of
the anomalous temperature dependence of radiative life-
times in perovskite NCs must lie elsewhere and will be a
subject of future investigation.
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linkiewicz, S. Agouram, G. Mı́nguez Espallargas, H. J. Bolink,
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1 Nanocrystal Structures

1.1 Unrelaxed Nanocrystal Structures
The cubic and orthorhombic nanocrystal (NC) structures were generated to correspond with the literature
bulk crystal structures[1]. A large slab of the bulk material was generated and the NC was and cut from
the bulk. The cut was made along the 100 facets of the cubic structures and the 110 and 001 facets in the
orthorhombic structures. The cuts were made to ensure that all lead-iodide octahedra were complete and
the surface termination was only cesium and iodine. The Cs atoms at the corners of the NCs were found to
be particularly unstable when relaxed, so these were removed for all structures. The cubic NCs considered
in Figure 3 are listed in Table S1 and follow the general formula that for a cubic NC with N Pb atoms
along the each axis, there will be (N + 1)3 − 8 Cs atoms, N3 Pb atoms, and 3(N3 + N2) I atoms. The
additional cuboidal NCs considered in Figure 4 have N Pb atoms along the x- and y-axes and Z Pb atoms
along the z-axis. The configurations are listed in Table S2 and follow the general formula that there will be
Z(N + 1)2 − 8 Cs atoms, ZN2 Pb atoms, and 3ZN2 +N2 + 2ZN I atoms.

1.2 Relaxed Nanocrystal Structures
For each size of NC, we take the unrelaxed orthorhombic structure as an initial configuration. However,
since the corresponding structure doesn’t satisfy the condition of charge neutrality, different partial charge is
assigned for surface Cs atoms to stabilize the NC structure and reduce the effect from surface boundaries of
NC. Using the force field parameters adopted from Ref.[2] which are parameterized to reproduce the energy
difference between different crystal structures, the partial charge of surface Cs atoms, qsurf, is defined as

qsurf = −NPb qPb + NI qI + NCs qCs

Nsurf
(1)

where qα is a partial charge of atom α listed in Table S1 and Nα is the number of α atoms in each NC with
α ∈ {Pb, I, Cs}. The subscript surf is used to refer to surface Cs atoms whereas the subscript Cs indicates
the core Cs atoms. With the modified initial configuration, the structure of each NC size is minimized
using conjugate gradient algorithm based on the pairwise interaction uij between atom i and j described by
Lennard-Jones potential with Coulombic interaction

uij(r) =
qiqj

4πε0r
+ 4εij

[(σij
r

)12
−
(σij
r

)6]
, r < rc (2)

where i, j ∈ {Pb, I, Cs, surf}, ε0 is the vacuum electric permittivity, and the cutoff distance rc is set to be
the maximum length of each NC among three different axis times

√
3 to take care of the fact that periodic

boundary condition cannot be applied for NC. Lennard-Jones parameters ε and σ of each atom are listed
in Table S1. Where parameters not listed can be derived using following combining rules εij =

√
εiεj and

σij = (σi + σj)/2. Minimizations are performed using the LAMMPS package [3].
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A DFT structural minimization was also performed on a 1.26 nm NC using the PBE exchange correlation
functional. The electronic calculation used a kinetic energy cutoff of 65 Rydbergs and a charge density cutoff
of 530 Rydbergs. The structure was optimized to a force threshold of less than 10−4 atomic units using
Quantum Espresso[4–6]

2 Single Particle Electronic States

2.1 Pseudopotential Method
The ground state electronic calculations for a single phase were carried out using the semi-empirical pseu-
dopotential method [7–10], which assigns to each atom in the NC an effective potential derived from bulk
band structures. The electronic Hamiltonian is a single electron operator

Ĥ = T̂ +
atoms∑

α

[
V̂ αloc + V̂ αnonloc + V̂ αSO

]
(3)

where T̂ is the kinetic energy operator, V̂ αloc is the local part of the pseudopotential around atom α, V̂ αnonloc
describes angular momentum-dependent corrections to the local pseudopotential around atom α, and V̂ αSO
describes the spin orbit coupling around atom α. The local part of the potential is defined in by a reciprocal
space function

ṽαloc (q) = aα0
q − aα1

aα2 exp (aα3 q
2)− 1

(4)

where q is the reciprocal coordinate, and the parameters aα0 . . . aα3 are fit based on the atom α. The potential
is defined in terms of the position-space counterpart of ṽαloc (q), which we call vαloc (r). The local part of the
potential is given by

V̂ αloc = vαloc (|r̂ −Rα|) (5)

where r̂ is the position operator, Rα is the position of atom α. The angular momentum-dependent part of
the pseudopotential gives a correction to the local part of the pseudopotential for the electrons in p-type
orbitals.

V̂ αnonloc = δvαl=1 (|r̂ −Rα|) P̂αl=1 =
[
aα4 exp

(
− |r̂ −Rα|2

)
+ aα5 exp

(
− (|r̂ −Rα| − ρ)

2
)]
P̂αl=1 (6)

where P̂αl=1 is the projector onto the l = 1 angular momentum subspace around atom α, ρ is a shift of 1.5
Bohr, and the aα4 and aα5 parameters are fit based on atom α. The spin-orbit coupling acts only on the
p-type orbitals as well and has the form

V̂ αSO = vαSO (|r̂ −Rα|) L̂α · ŜP̂αl=1 = aα6 exp

(
− |r̂ −Rα|2

w2

)
L̂α · ŜP̂αl=1 (7)

where L̂α is the vector of electron orbital angular momentum operators around atom α, Ŝ is the vector
of electron spin operators, w is a width of 0.7 Bohr and aα6 is fit based on atom α. The total potential
can be rewritten as three separate, spherically symmetric potentials felt by s-type (along with d-type and
higher angular momentum) orbitals, p 1

2
-type orbitals and p 3

2
-type orbitals. The s-type orbitals feel the local

potential only:
vs (r) = vαloc (r) (8)

The p 1
2
-type orbitals feel a combination of the angular momentum dependent potential and the spin-orbit

potential
vp 1

2

(r) = vαloc (r) + δvαl=1 (r)− vαSO (r) (9)

while the p 3
2
-type orbitals feel a different combination

vp 3
2

(r) = vαloc (r) + δvαl=1 (r) +
1

2
vαSO (r) (10)
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The single particle Hamiltonian was solved via the filter diagonalization method [11, 12] on a real-space
grid with a grid spacing of 0.5 Bohr. This finer grid spacing was used to ensure sufficient convergence of the
non-local parts of the Hamiltonian. The non-local operators were implemented via a modified Kleinman-
Bylander representation[13–15]. On the order of a few hundred states in the energy range near the band gap
were converged.

2.2 Parameterization of Pseudopotentials
The pseudopotential parameters were fit for each atom in a particular crystal structure in order to reproduce
bulk band structures. For the perovskite system we are investigating here, we generated best fit parameter
sets for both the cubic and the orthorhombic crystal structures. The best fit was determined by using the
pseudopotential Hamiltonian within a converged plane-wave basis to generate the bulk band structures of the
respective phases, with care taken to properly describe the non-local and spin-orbit interactions [8, 16–18].
These pseudopotential band structures were then compared to literature GW band structures [1]. In order
to better compare with experimental results, the band gap of the GW calculations for the cubic structure,
which differed significantly from measurements of the bulk band gap, were corrected by a static shift of
the valence band. The GW calculations of the orthorhombic band structure agreed with experiment and
were used without modification. The valence band offsets between the cubic and orthorhombic phase were
calculated from DFT using Quantum Espresso [4, 5].

The seven pseudopotential parameters per atom were fit for each phase using a Monte-Carlo fitting
procedure where the objective function emphasized the closeness of fit around the band gap as well as the
effective mass of the bands at the gaps. The parameter space was extensively searched to find the best
parameters. Initial fitting showed that contribution from the Cs ion was nearly zero, consistent with the
understanding across lead halide perovskite materials that the valence and conduction bands are composed
mainly of lead and halide orbitals [19]. Thus the potential around the Cs atoms was set to zero and the fits
were further refined considering only the lead and iodine parameters.

The results of the fitting are shown in Figure S2. The orthorhombic band structure generated from our
pseudopotentials has a hole effective mass of 0.320 me and an electron effective mass of 0.386 me. The cubic
band structure generated from our pseudopotentials has a hole effective mass of 0.289 me and an electron
effective mass of 0.309 me. These slightly overestimate the masses of the literature structures, leading to
some small additional confinement effects in the NCs.

2.3 Interpolation of Pseudopotentials for Relaxed Structures
For relaxed nanocrystal structures, there is no bulk phase that perfectly matches the nanocrystal structure.
This requires that the pseudopotential around each atom adapt to the local structure. We do this by
linearly interpolating between the pseudopotentials for the cubic and orthorhombic structures. The relaxed
nanocrystal Hamiltonian is then

Ĥ = T̂ +
atoms∑

α

(xα)
[
V̂ α,ortho
loc + V̂ α,ortho

nonloc + V̂ α,ortho
SO

]
+ (1− xα)

[
V̂ α,cubic
loc + V̂ α,cubic

nonloc + V̂ α,cubic
SO

]
(11)

where xα ∈ [0, 1] denotes the extent of orthorhombic distortion. For iodine atoms bonded to two lead atoms
this is determined by the Pb-I-Pb bond angle, θα. For the cubic phase that bond is straight, θ = 180◦

while for the orthorhombic phase there are two bond angles of θα = 150.8◦ and θα = 160.6◦. Thus the
orthorhombic distortion was calculated as

xα =
180− θα

180− 106.6
(12)

where if the angle was less than 106.6 degrees the atom was assigned a fully orthorhombic pseudopotential.
Iodine atoms not bonded to two lead atoms (dangling iodine at the surface) were assigned the cubic pseu-
dopotential. Lead atoms were assigned the average of the distortion parameters of bonded iodine atoms. It
is important to note that for the local part of the pseudopotential, V̂loc, a linear interpolation between the
orthorhombic and cubic operators does not mean a linear interpolation of the parameters listed in Table S4.
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The linear interpolation was deemed reasonable based on the closeness of the pseudopotentials for the
cubic and orthorhombic phases, as shown in Figure S3. To ensure that this interpolation did not cause
significant issues with with electronic structure, band structures were calculated using unit cells with distor-
tions between those of the cubic and orthorhombic structures. The energies of the valence and conduction
band edges from these calculations are shown in Figure S4 as the structure is distorted from the cubic to
the orthorhombic form. Because the orthorhombic structure differs from the cubic structure only by slight
rotations of the lead-iodide octahedra it was simple to construct such structures and calculate their band
structures both using the interpolated pseudopotentials and DFT, again within the Quantum Espresso [4, 5]
package. The DFT results are known to significantly underestimate the band gap of the cubic structure, but
our pseudopotential method, being trained on the corrected band structures, is able to match much better
to experimental results at the end-points. The interpolated pseudopotentials generate non-monotonic trend
in the band gap with overall a slight decrease in the band gap over the sequence of structures from cubic to
orthorhombic, while the DFT shows a monotonic increase. However, the DFT increase seems to stem only
from the previously mentioned underestimation of the band gap in the cubic phase. Without resorting to
extremely computationally costly techniques like GW, we are satisfied that the pseudopotentials are able to
smoothly interpolate between the cubic and orthorhombic phases without issue.

3 Excitonic States
The excitonic states were calculated using the Bethe-Salpeter equation (BSE) within the Tamm-Dancoff
approximation, which writes the excitonic states as linear combinations of non-interacting electron-hole pair
states [20]. The nth excitonic state, |ψn〉, is written as

|ψn〉 =
∑

ai

cna,i |a, i〉 (13)

where the indices a, b, c, . . . refer to electron (unoccupied) states, and the indices i, j, k, . . . refer to hole
(occupied) states, |a, i〉 refers to the non-interacting pair state, and the expansion coefficients, cna,i, are
determined by the eigenvalue equation

(En −∆εa,i) c
n
a,i =

∑

bj

(
Kd
ai;bj +Kx

ai;bj

)
cnb,j (14)

which also determines the energy of the nth excitonic state En. The electron hole interaction kernel, which
describes the binding of the independent electron-hole states into correlated excitonic states, has two parts:
the direct interaction Kd describes the coloumb attraction between the electron-hole pair, while the ex-
change interaction Kx controls the details of the excitonic spectrum, crucially including the singlet triplet
splitting under consideration here. The direct interaction is calculated using a screened coulomb interaction
W (|r − r′|) within a static screening approximation with

Kd
ai;bj = −

ˆ

dxdx′φ∗a (x)φ∗j (x′)W (|r − r′|)φi (x′)φb (x) (15)

The static dielectric constant used in the calculation is ε = 6.1[21]. The exchange interaction is calculated
with the bare coulomb interaction v (|r − r′|) to be

Kx
ai;bj =

ˆ

dxdx′φ∗a (x)φ∗j (x′) v (|r − r′|)φb (x′)φi (x) (16)

The interaction kernel matrices are solved in the basis of band-edge states. The binding energy of the nth
excitonic state, EnB, is calculated as

EnB =
〈
K̂d + K̂x

〉
n

=
∑

abij

(
cna,i
)∗ (

Kd
ai;bj +Kx

ai;bj

)
cnb,j . (17)

Generally 60-80 electron states and a similar number of hole states were selected to form the basis for
solving the BSE, which were sufficient to converge the excitonic fine structure for the low energy states under
consideration here.
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The effect of the exciton spin on the exchange interaction is the key factor in energetically separating
spin singlet and triplet states. The exciton spin operator is the sum of the electron and hole spin operators,

Ŝtot = Ŝe + Ŝh (18)

The total spin of an excitonic state can be calculated as,

〈ψn| Ŝ2
tot |ψn〉 = 〈ψn| Ŝ2

e + Ŝ2
h + 2Ŝe · Ŝh |ψn〉 (19)

=
∑

ai;bj

cnbj (cnai)
∗ 〈a, i|

(
Ŝ2

e+ + Ŝ2
h + 2Ŝe · Ŝh

)
|b, j〉 (20)

=
∑

ai;bj

cnbj (cnai)
∗
(
〈a| Ŝ2

e |b〉 δij + 〈i| Ŝ2
h |j〉 δab + 2 〈a| Ŝe |b〉 · 〈i| Ŝh |j〉

)
(21)

=
∑

ai;bj

cnbj (cnai)
∗
(

3/4δabδij + 3/4δijδab + 2 〈a| Ŝe |b〉 · 〈i| Ŝh |j〉
)

(22)

= 3/2 + 2
∑

ai;bj

cnbj (cnai)
∗ 〈a| Ŝe |b〉 · 〈i| Ŝh |j〉 (23)

Importantly, the spin of the hole states must be treated as that of time-reversed electronic states, meaning
that while the electron spin matrix elements are simply,

〈a| Ŝe |b〉 =
1

2
〈a| σ̂ |b〉 (24)

the hole spin matrix elements are given by

〈i| Ŝh |j〉 =
1

2

[
〈i| Θ̂†

]
σ̂
[
Θ̂ |j〉

]
(25)

= −1

2
〈j| σ̂ |i〉 (26)

where σ̂ is the vector of Pauli spin matrices.
Simulated spectra were calculated from the oscillator strengths of the transition from each excitonic state

to the ground state.
f(x,y,z) (E) =

∑

n

δ (E − En)
∑

ai

cna,i
∣∣〈i| µ̂(x,y,z) |a〉

∣∣2 (27)

where cna,i are the BSE expansion coefficients for electron state |a〉 and hole state |i〉 into excitonic state n
with energy En. The dipole operator µ̂x,y,z is broken down along the three principal axes as shown in color
in Figure S7, and the average of the three polarizations is used for the total spectrum shown as the black
line in Figure S7.
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Configuration N L (nm)
Cs19Pb8I36 2 1.26
Cs56Pb27I108 3 1.89
Cs117Pb64I240 4 2.52
Cs208Pb125I450 5 3.14
Cs335Pb216I756 6 3.77
Cs504Pb343I1176 7 4.40
Cs721Pb512I1728 8 5.03
Cs992Pb729I2430 9 5.66

Table S1: Details of the cubic NC configurations

Configuration N Z L (nm) Lz (nm) aspect ratio
Cs92Pb48I184 4 3 2.52 1.89 0.75
Cs142Pb80I296 4 5 2.52 3.14 1.25
Cs167Pb96I352 4 6 2.52 3.77 1.5
Cs192Pb112I408 4 7 2.52 4.40 1.5
Cs217Pb128I464 4 8 2.52 5.03 2.0
Cs136Pb75I280 5 3 3.14 1.89 0.6
Cs172Pb100I365 5 4 3.14 2.52 0.8
Cs244Pb150I535 5 6 3.14 3.77 1.2
Cs280Pb175I620 5 7 3.14 4.40 1.4
Cs316Pb200I705 5 8 3.14 5.03 1.6
Cs188Pb108I396 6 3 3.77 1.89 0.5
Cs237Pb144I516 6 4 3.77 2.52 0.67
Cs286Pb180I636 6 5 3.77 3.14 0.83
Cs284Pb252I876 6 7 3.77 4.40 1.17
Cs433Pb288I996 6 8 3.77 5.03 1.33

Table S2: Details of the cubiodal NC configuration

Pb I Cs Cs (Surface)
q (e) 0.85 -0.57 0.86 qsurf

σ (Angstrom) 3.210 4.014 3.584 3.584
ε (eV) 0.001086 0.06389 0.07728 0.07728

Table S3: Force field parameters from Ref. [2]

Figure S1: Several sizes of cubic (top) and orthorhombic (bottom) NCs
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Figure S2: The band structures generated by the pseudopotential method (black lines) and the literature
band structures (red points).

Iodine Orthorhombic Cubic
a0 117.89162750 113.75644925
a1 2.12591587 2.14135468
a2 2.91148249 2.84227140
a3 0.58243028 0.56706414
a4 0.16631532 0.04515637
a5 -0.02486412 0.00220169
a6 2.23037552 3.03441874

Lead Orthorhombic Cubic
a0 97.86083166 88.83030750
a1 2.25710305 2.60529157
a2 3.71951773 4.28692327
a3 0.55872538 0.51950186
a4 1.40412238 1.06405744
a5 -0.01566674 -0.00808029
a6 7.94721141 7.78990812

Table S4: Best pseudopotential parameters, in Hartree atomic units.

Figure S3: Pseudopotentials for iodine and lead atoms in the cubic (dotted lines) and orthorhombic (dashed
lines).
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Figure S4: Comparison of DFT (blue) and pseudopotential (red) band edges in bulk structures interpolated
between the cubic and orthorhombic phases.

Figure S5: The total spin expectation value (left) and he exchange energy as a fraction of the total exciton
binding energy (right) for the lowest dark (black) and bright (red) excitonic states as a function of size.
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Figure S6: The lowest bright (red) and dark (black) excitonic states for NCs with orthorhombic and cubic
structures as a function of size along with experimental data [22–26].

NC Size (nm) Excitation Energy (eV) Ref.
6.5 1.849 [22]

6.5± 1.1 1.907 [23]
10.8± 1.5 1.864 [23]

4.70 1.83 [24]
5.38 1.80 [24]
7.33 1.79 [24]
3.4 2.07 [25]
4.5 2.01 [25]
5.0 1.95 [25]
6.8 1.91 [25]
8.0 1.88 [25]
9.0 1.86 [25]

9.0± 1 1.83 [26]

Table S5: Experimentally measured excitation energies

NC Size (nm) Splitting (meV) Ref.
4.9± 0.2 1.61 [27]
5.4± 0.3 1.4 [27]
6.2± 0.3 1.25 [27]
6.7± 0.45 1.20 [27]
7.4± 0.6 0.85 [27]
7.9± 0.7 0.70 [27]

9.3 0.40 [28]
4. 7.5 [29]
6.5 2. [29]
10. 0.40 [30]

Table S6: Experimentally measured bright-bright splittings
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Figure S7: Simulated absorption spectrum for a 3.8 nm NC with various crystal structures with the lowest
excitonic state set to the energy zero. The polarized spectra along the z (green), y (blue) and x (red) are
also shown with and offset for clarity.
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