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Abstract

A genomic approach to studying the evolutionary

consequences of population declines

by

Nedda F. Saremi

Since the release of the human genome sequence in 2003, decreasing costs of DNA

sequencing and advances in laboratory techniques have allowed scientists to study demography,

admixture, and evolution for a growing diversity of taxa beyond humans. The work I present

in this dissertation is part of the continued expansion of genomics. In particular, I present

the assembly and analysis of whole genome data of extant and extinct species to study the

evolutionary processes and consequences of population reduction.

My first chapter looks at the effects of habitat loss in the puma, whose range is the

largest of any felid in the Western Hemisphere. I present a genome assembly of a puma from

the Santa Cruz Mountains, and resequencing data for a panel of pumas from across their current

range. I learn about the genomic health of the species, uncover Central American ancestry in

present-day Florida pumas, and present a new model for the demographic history of the species.

In my second chapter, I present an assembly of the genome of the sole bear species

to inhabit South America, the spectacled bear. The spectacled bear is the closest living relative

to the extinct giant short-faced bears that roamed North America during the last Ice Age. I use

the genome of the spectacled bear as a reference for mapping the genome of the extinct giant

x



short-faced bear, and analyze both genomes to learn their population histories and relationships

to extant ursids.

In my third chapter, I focus on another extinct bear, the California grizzly bear. Hav-

ing gone extinct in the early 1900s due to overhunting, the California grizzly bear is an example

of the detrimental results humans impose on their environment. Using genomic data from two

preserved California grizzly bears, as well as the genomes of several modern brown bears, I

characterize the genetic diversity among extant brown bears and explore the diversity of Cali-

fornia grizzly bears.

Together, the research that comprises my dissertation presents a significant contribu-

tion to the growing body of literature for non-model organisms and provides resources relevant

to the conservation of top predators.
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Introduction

0.1 DNA and genomics

The genome encodes for all the information needed to develop and create a living

organism. By studying the genomic sequence of an organism, we can learn about an organism’s

evolutionary history, providing insight into processes such as admixture, selection, and past

demography.

A key discovery in the field of genomics lay in the advent of DNA sequencing in the

1970s, when Sanger et al. [236] reported the complete 5,375 nucleotide DNA sequence of the

bacteriophage ΦX174. With this discovery and Sanger’s new approach, DNA sequences could

be resolved at a nucleotide resolution within a few hours, with sequence lengths reaching greater

than 500 bases. Sanger sequencing represented the first generation of sequencing technologies,

and is still widely used today for validation and smaller scale projects in the field.

Second generation sequencing, commonly called next-generation sequencing (NGS),

presented a move to a large-scale, massively parallel sequence data output. The key to the

success of NGS was the ability to sequence a multitude of different DNA template strands at

the same time.

1



With the advent of NGS in the early 2000s, the field and study of genomics has

grown at an impressive speed. The continued decrease in sequencing costs [5] has allowed

for the generation of vast amounts of sequence data. In 2005, the first commercially available

sequencer, 454’s GS-20, generated 2.2 billion base pairs of data [233]. Today, one Illumina

NovaSeq run generates up to 3,000 billion base pairs of sequence data, providing nearly 1,000

X coverage of the human genome [2]. Early on, the quick generation of large amounts of

sequence data allowed researchers to assess conservation between long diverged species [42],

within a species [139], and with extinct species [97].

While NGS provides a wealth of DNA sequences, one of its limitations is its sequence

read length (50-150 base pairs). Third generation sequencing, also known as long-read or sin-

gle molecule sequencing, addresses the short read length concern. Typical read lengths for

the two prominent third generation technologies, Pacific Biosciences of California and Oxford

Nanopore Technologies, at the present time average in the thousands of base pairs, while maxi-

mum read lengths have reached upwards of 100,000 base pairs [281]. However, some long read

technologies suffer from error rates as high as 10 to 15%, which require correction. Today, all

three technologies are used, sometimes collectively [131], to provide a well-rounded approach

to genomic research.

Sequenced and assembled genomes allow us to investigate gene function, genomic

variation, diseases, species relatedness, and a growing number of topics that would be largely

impossible without a full genetic blueprint. The genetic blueprint, or genome assembly, rep-

resents the full DNA sequence for a living organism. For humans, this sequence is 3.2 billion

nucleotide bases in length, and represents only one of the two copies of genome found in almost

2



every cell in the body.

The Human Genome Project was launched in 1990 by the National Institute of Health

(NIH) and the Department of Energy (DOE) with the goal of sequencing and mapping the

human genome, model organism genomes, and developing technology to study DNA [193].

By 2001, the International Human Genome Sequencing Consortium (IHGSC) reported on their

initial analysis of the human genome generated by Sanger sequencing [149]. By that point,

scientists had already sequenced the genomes of yeast, Escherichia coli, nematode, fruit fly,

Arabidopsis thaliana, and mouse [93, 26, 45, 10, 276, 42]. In 2003, the IHGSC completed

deciphering the DNA sequence which defined a human being [118]. Four years later, a human

genome sequence from one individual (the Human Genome Project was a composite) had been

completed, again using Sanger technology [155]. Second-generation sequencing methods had

developed enough by 2008 that scientists could assemble a human genome using two different

sequencing platforms. First, using technology created by 454 Life Sciences [297], and followed

shortly by technology from Illumina, Inc [23, 290, 156]. The Human Genome Project propelled

the field of DNA sequencing and genomics (Figure 0.1).
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Figure 0.1: Growth of DNA sequencing measured in the total number of human genomes sequenced

taken from Stephens et al.[265]. Notable milestones for each generation of sequencing technology are shown,

as well as large-scale sequencing projects such as 1000 Genomes Project (a thousand human genomes) [275]

and The Cancer Genome Atlas (TCGA) (several thousand tumor/normal genome pairs [41]). Values beyond

the year 2015 represent projections based on three possible growth curves.

By 2010, the cost of sequencing a genome had decreased almost four orders of mag-

nitude from the year the draft human genome sequence was announced in 2001 [117]. The

decrease in sequencing costs made genome sequencing more widely accessible, and thus sci-

entists sought to generate large catalogues of genomic data to use for research. One of the first

was the 1000 Genomes Project, which sought to detail human genetic variation by sequencing

the genomes of at least 1,000 anonymous participants from different populations [69].

Continued cost reduction also propelled genome assembly of non-human species.

The Genome 10K project was one of the earliest such initiatives, with the proposal to sequence

10,000 species spanning the diversity of extant vertebrates [200]. The work has been so success-
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ful, that subsequent phases widen the span of the species to be sequence. Today the consortium

seeks to assemble reference-grade genomes for all vertebrate species. Success with broader ini-

tiatives has driven projects such as insect 5k (i5k) [230], Bat1K [274], and Bird 10,000 Genomes

(B10K) initiative [303] to highlight focused lineages.

For those interested in better understanding a species, de novo genome assembly is

now the current standard for studying its evolutionary history or genomic health, as my work in

chapters 1 and 2 highlights. However, what can researchers do when the species of interest is

extinct? The answer comes from ancient DNA (aDNA).

0.2 Ancient DNA

Ancient DNA is classified as DNA extracted from the remains of organisms that used

to be living, sometimes tens or hundreds of thousands of years ago. As a result of its age,

aDNA has a number of technical issues which make it more difficult to work with than DNA

from living organisms. First, the DNA obtained from an ancient sample (museum specimen,

archeological remains, etc) is fragmented. The sequence length of an ancient DNA fragment is

very short, usually less than 100 base pairs [30]. Short sequences provide less information than

the longer sequences that are easily obtained from living organisms. Thus, an ancient DNA

sample requires more sequencing to generate the same amount of informative data as from a

modern DNA sample.

Second, aDNA sequences show signs of postmortem degradation (PMD). Hydrolytic

deamination is the one of the most common forms of DNA damage; the residue cytosine being

5



the main target [166]. Cytosine deamination effectively converts a cytosine residue into a uracil

residue. When a deaminated DNA sequence is used as a template for amplification, the cytosine

residues are read as thymine, resulting in a pattern of C to T substitutions [110] that increase

near the 5’ end of the sequence [30]. The 5’ deamination coincides with a complementary G to

A substitution pattern at the 3’ end of the sequence due to repair [187], as seen in Figure 0.2.

Interestingly, the frequency of 5’ deaminations has shown a correlation with sample age, such

that more ancient samples show greater levels of C to T substitutions [129].
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Figure 0.2: A deamination plot showing the postmortem degradation of an ancient pathogen extracted

from bones and teeth [245] generated using mapDamage2 [129]. The four top plots show the according base

frequency outside and in the read (depicted as the gray box). The bottom plots show the specific substitution

at each position from the 5’ end (left) and the 3’ end (right). Colors indicate different substitution types (red:

C to T, blue: G to A, gray: all other substitutions, orange: soft-clipped bases, green: deletions relative to

the reference sequence, and purple: insertions relative to the reference sequence). The prevalence of C to T

substitutions at the 5’ end and G to A substitutions at the 3’ end of sample sequences are used to validate the

presence of authentic ancient DNA in a sample.

The third issue associated with ancient DNA is non-endogenous DNA, or DNA that is

not from the host species. Upon the death of a species, microbes may invade the host organism,

such that upon sequencing, a large portion of the generated data does not originate from the host.
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Greater sequencing would be required to generate the same amount of informative data compare

to a sample with little microbial contamination. Additionally, non-endogenous material may

result from sample processing. Ancient DNA work is performed in a dedicated aDNA facility

separate from modern DNA laboratories observing a number of guidelines to ensure decreased

risk of contamination [204].

Early ancient DNA work was largely limited to mitochondrial DNA, as its high copy

number made retrieval from ancient samples less difficult [99, 104, 64]. Over time, aDNA

was successfully being amplified by PCR in many ancient samples [102, 114, 113], and was

no longer limited to mitochondrial DNA [99]. Yet concerns regarding contamination and re-

producibility, warranted based on prior studies [304], meant much time was spent discussing

standards for aDNA work [292, 104].

The application of shotgun sequencing and NGS for aDNA work brought the field into

a new realm of possibility. Scientists were able to directly sequence aDNA molecules, without

PCR amplification [195]. Soon after, second-generation sequencing was generating millions

of base pairs from aDNA samples [214, 97]. Today, scientists have generated high coverage

nuclear genomes from many ancient species [187, 192, 296].

Research and methods developments have helped minimize the technical issues as-

sociated with aDNA. Limitations in analyzing NGS data from ancient DNA today are mostly

computational; how to classify endogenous DNA and determine authentic nucleotide differ-

ences [218]. Some solutions include using closely related extant species to detect endogenous

reads, and algorithms that account for damage seen in aDNA [244, 91]. I will elaborate on

solutions for overcoming the challenges associated with aDNA in my work in chapters 2 and

8



3.

Regardless of technical and computational advancements, limitations of sample age

still exist for the successful extraction of authentic ancient DNA. The current limits of successful

authentic ancient DNA extraction are set by a sample from roughly 700 thousand years before

present, a horse bone from Yukon, Canada [203]. Thus researchers are limited to samples from

the Pleistocene epoch for DNA insights on the past.

0.3 Genome assembly

Advances in sequencing technologies, and reductions in the cost of sequencing have

meant that genome-scale data is increasingly feasible for researchers (Figure 0.3). While data

generation methods such as Restriction site Associated DNA-Sequencing (RAD-Seq), amplicon

sequencing, or transcriptome sequencing can be used without a reference genome, a complete

genome sequence is considered a benchmark for genomic research. Full genome sequences, as

well as high quality annotations of the sequence, have the ability to reveal population histories

[163], admixture events [189], and lineage-specific adaptations [221].
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Figure 0.3: Yearly growth of submissions of Whole Genome Sequencing (WGS) projects to the NCBI

database [1]. Submissions may not represent unique species.

0.3.1 Developments in de novo genome assembly

A de novo genome assembly is the generation of long contiguous DNA sequences

from shorter DNA sequences without the use of any reference sequence. Early genome se-

quencing projects such as the human genome began by generating a map of the genome. A

physical map containing several thousand sequence-tagged sites (STSs) known distances apart

was proposed [201]. Short single-copy STSs could be easily amplified using Polymerase Chain

Reaction (PCR) to determine proximity between fragmented regions of the genome [116]. A

map served as a guide for the locations of genomic fragments of the genome that would be
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sequenced. The genomic fragments themselves were initially inserted into artificial chromo-

somes, such as Bacterial Artificial Chromosomes (BACs) or Yeast Artificial Chromosomes

(YACs), which allowed for stable storage and easy cloning of the DNA fragment [250, 191].

This technique was termed hierarchical shotgun assembly due to the tiling of overlapping BAC

clones which are sequenced as a single compartment and then merged with other compartment

sequences [295].

Whole-genome shotgun (WGS) assembly is a less labor and time intensive process.

The genome is fragmented and then sequenced, typically using paired-end technology to capture

linkage information of known sizes. Then the entire genome is assembled into contiguous

sequences of bases, contigs. There are risks associated with the WGS assembly approach, as

the sheer amount of sequence information makes for computational challenges. Yet the shift

from Sanger to NGS quickened the data generation process and increased the data volume,

though with a reduction in read lengths.

While the lower cost of NGS data generation made it possible to sequence at high

depth of coverage, assembling genomes remained a challenged. Changes in data coverage

across the genome or a lack of overlapping reads in the shotgun data resulted in fragmented

genome assemblies. Though NGS made high coverage data generation more accessible, it also

meant a reduction in read lengths. Biological challenges, such as polyploidy, heterozygosity or

repeat sequences, could not be overcome solely with greater shotgun sequencing.

Scaffolding was one method to improve the fragmented shotgun assemblies of shorter

second generation reads. Some techniques included mate-pair sequencing and proximity liga-

tion data. Mate-pair sequencing began with fragmenting the genome into long DNA of known
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lengths (1-10 kilobases). Sequencing the end of the DNA fragments generates reads a known

distance apart in the genome. If the mate-pair reads existed on two non connected contigs,

mate-pair information could join them together into one scaffold, a known distance apart us-

ing a string of uninformative Ns, known as a gap. Proximity ligation uses long range contact

information of chromosomes to detail interactions at a variety of distances [84, 220]. Models

of contact frequency based on genomic distance are turn sequencing information into another

means for scaffolding assembly contigs. Scaffolding methods such as these improved assembly

quality such that shotgun de novo assemblies could generate scaffolds the size of chromosomes

[32].

The implementation of scaffolding techniques improved the contiguity of genome

assemblies, but did not fully overcome the problem of gaps. The initial chimpanzee genome

assembly contained more than 6% of its sequence in gaps [294]. Gaps result from biological

challenges, or limitations in the data or techniques used to generate an assembly. The advent

of long read lengths in third generation sequencing has been the recent means of genome qual-

ity improvement. Long read lengths help overcome one of the biggest challenges in genome

assembly, repeats. Repeat regions compose roughly 60% of vertebrate genomes [60]. The abil-

ity to generate sequencing reads which span the length of repeat or a gap in a scaffold results

in a marked improvement in genome quality [76]. Continued improvement in the error rate

of long-read sequencing methods has meant greater use of this technology for genome assem-

bly. Researchers are even able to generate genome assemblies constructed predominantly or

only from long-reads [94, 124]. Combining sequencing technologies has allowed researchers

to obtain almost chromosome-level assemblies without physical mapping techniques [172].
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0.3.2 Reference-guided genome assembly

While a de novo genome assembly represents the reference-free generation of the

nucleotides sequence encoding an organism, a reference-guided genome assembly makes use

of a genome from a closely related species onto which ancient DNA reads are mapped [215].

This direct comparison has meant the ability to assess divergence times [194], selection [123],

or past population dynamics [66].

0.3.3 Paleogenomes

Though the cost of high-throughput sequencing has reduced, it is still prohibitively

expensive to generate all the sequencing data needed for a de novo genome assembly. For an-

cient samples, the problem is exacerbated by low levels of endogenous DNA and short fragment

lengths (40-170bp [238]).

However, due to advances in the extraction of ancient DNA and NGS technologies,

scientists have been able to generate genomes of extinct species, paleogenomes. De novo assem-

blies of ancient DNA have been accomplished for pathogens, aided by their small genome size

[29, 280]. For mammalian genomes, the vast amount of sequencing needed to generate a high

coverage ancient dataset would mean destructive sampling. High coverage ancient genomes

(20X), mapped to a closely related reference genome, soon after became reality [225]. High

coverage ancient genomes enabled new analyses like genotyping and past demography that pre-

viously were impractical due to DNA damage signals obscuring real DNA sequence. Modern

aDNA studies, using high coverage ancient datasets, have been able to uncover ancient species

[187], the history of domestication [54], and the history of species [80]. Continued progress in
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aDNA computational methods and laboratory techniques means a greater ability to understand

evolution.

0.4 Conclusion

In the work described to follow, I present de novo genome assemblies for two megafau-

nal species, the puma and the spectacled bear, generated from second and third generation

sequencing data. The puma represents a species whose North American range experienced sig-

nificant habitat loss in the past 100 years, largely the result of humans. Prior research on the

genetic effects of habitat loss and fragmentation on pumas were limited to mitochondrial and

microsatellite data. Using a genome assembly generated from a puma from the Santa Cruz

mountains, I learn about the genomic health of the species, uncover a Central American puma

ancestry in the Florida pumas, and create a new model for the past demography of the species.

This chapter was published in Nature Communications in October of 2019, for which I served

as co-first author.

The second genome assembly I present here is for the spectacled bear, the only re-

maining member of the tremarctine bears. In the Pleistocene, up to seven tremarctine bear

species roamed North and South America. Initially representing some of the largest land mam-

mals at the time, the family increasingly became smaller over time, likely as a means to survive

with decreasing prey availability and increasing competition for food by other large carnivores.

The genome of the extant spectacled bear served as the reference used to study on of the extinct

tremarctine bears, the giant short-faced bear. Using a high coverage paleogenome of the giant
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short-faced bear, I assess its relationship to the spectacled bear and uncover traits that may have

led to its demise during the late Pleistocene extinctions. This work is currently in preparation

for submission.

My third chapter covers another bear species, the brown bear. The range of brown

bear is the largest of any extant bear species. North American brown bears, also known as

grizzly bears, are endangered today due mainly to depredation by humans. Their range once

extended from Alaska to Mexico and from the Great Plains to California, where they were

known as the California grizzly bearthe iconic symbol of the state. Very little is known about

the California golden bear, including its specific adaptations and habits or its evolutionary re-

lationships to other grizzly bears. Working with collaborators at the Museum of Vertebrate

Biology (MVZ) at UC Berkeley, the California Academy of Sciences (CAS), and the the La

Brea Tar Pits, I generated low coverage (5X) nuclear genomic data from two of the last Cali-

fornia golden bears, one of whom served as the model for the bear on the California state flag.

I perform population genomic analyses to answer questions about the history and uniqueness

of the extinct California golden bear and its evolutionary relationships to modern brown bears.

This work is also currently in preparation for submission.
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1.1 Abstract

Pumas are the most widely distributed felid in the Western Hemisphere. Increasingly,

however, human persecution and habitat loss are isolating puma populations. To explore the

genomic consequences of this isolation, we assemble a draft puma genome and a geographically

broad panel of resequenced individuals. We estimate that the lineage leading to present-day

North American pumas diverged from South American lineages 300 to 100 thousand years ago.

We find signatures of close inbreeding in geographically isolated North American populations,

but also that tracts of homozygosity are rarely shared among these populations, suggesting

that assisted gene flow would restore local genetic diversity. The genome of a Florida panther

descended from translocated Central American individuals has long tracts of homozygosity

despite recent outbreeding. This suggests that while translocations may introduce diversity,

sustaining diversity in small and isolated populations will require either repeated translocations

or restoration of landscape connectivity. Our approach provides a framework for genome-wide

analyses that can be applied to the management of similarly small and isolated populations.

1.2 Background

The ancestors of the puma, Puma concolor, also known as the mountain lion or

cougar, colonized North America approximately 6 million years ago (mya) [283, 175, 127].

Although their Pliocene fossil record is sparse and felid fossil assignments have been difficult,

previous mitochondrial analyses suggested that the ancestral puma lineage diverged from the

extinct North American cheetah-like cat Miracinonyx around 3.2 mya [17]. The geographic ori-
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gin of P. concolor remains contested, however. At sites across North America, the oldest puma

fossils date to the Rancholabrean land mammal age [21], roughly 200 thousand years ago (kya)

[87]. Analyses of mitochondrial and microsatellite data, however, estimated that the common

ancestor of North American pumas lived within the last 20,000 years [50, 178] and that the

genetic diversity of all modern pumas traces to eastern South America [50]. The combination

of genetic and fossil data were interpreted as reflecting a North American origin of the puma

lineage followed by local extinction in North America during the late Pleistocene and subse-

quent recolonization from South America as the climate warmed after the last ice age [50, 178].

Recently, however, an unequivocal puma fossil was discovered in Argentina that dates to 1.2 to

0.8 mya [40]. This discovery pushes back the age of the puma lineage by more than 500,000

years, and suggests that the ancestor of all living pumas may have evolved in South America

rather than North America. Today, pumas are among the most widely-distributed mammals in

the Western hemisphere, ranging from Canada’s Yukon to the southern tip of South America

shown in Figure 1.1 [196, 119]. During the 19th and 20th centuries, bounty hunting reduced,

and in some cases extirpated, puma populations across North America [267], restricting them

to the North American West and the southern tip of Florida. By the middle of the 20th cen-

tury, hunting quotas and some outright bans [82] allowed puma populations to increase and

recolonize parts of their former range. Although some puma populations today are large and

well-connected [112], others are small and fragmented (e.g. Santa Ana, CA [285], Santa Mon-

ica Mountains, CA [228], and/or critically endangered (e.g. Florida [128]). Many populations

are experiencing increased isolation with the expansion of highways, residential developments,

and agriculture [285, 228]. The consequences of geographic isolation on puma genetic diver-
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sity and fitness have been well documented, particularly in Florida, where they are a federally

protected subspecies commonly called the Florida panther. By the 1990s, the canonical Florida

panther population in Big Cypress National Preserve was suffering from reproductive failure

and phenotypic defects associated with inbreeding [128, 18]. To rescue the Florida panthers

from extinction, eight female pumas from Texas were released in South Florida in 1995, of

which five successfully produced offspring. By 2008, the occurrence of phenotypic defects

had significantly declined, survival measures had improved, and the population size increased

almost threefold [128, 202]. All Florida panthers genotyped since 2012 show ancestry that

includes admixture with the introduced lineages [284].

20



Figure 1.1: Puma range past and present. The current range of pumas (hashed) compared to their historic

range (blue). Circles denote the geographic coordinates of the puma populations sampled in this study. Panels

show zoom-ins of puma habitat distribution (dark gray) within the known range of the species in the contiguous

United States as predicted by the USGS [269]. Current range data is from the IUCN Red List of Threatened

Species [119]. Historic range data is approximated based on prior reports [196, 82].

Florida panthers in Everglades National Park are partially isolated from the core

canonical population that persisted in Big Cypress National Preserve by a semipermeable bar-

rier associated with hydrologic fluctuations of the Everglades. Intriguingly, during the 1990s,

the Everglades panthers did not show the same high incidence of inbreeding-associated phe-

notypes as in the Big Cypress population. The absence of observed phenotypic defects in the

Everglades population may be attributable to the release of captive-bred Florida panthers with
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mixed Central American ancestry into Everglades National Park during the 1950s and 1960s.

The introduced individuals’ancestry was unclear at the time of release, although it was known

that the captive population had greater reproductive success than wild Florida panthers [197].

The admixed ancestry of the Everglades population and potential explanation for the reproduc-

tive success of the captive population was later discovered through genotyping [198]. Genetics

has a long history as a tool in wildlife conservation [86]. In traditional conservation genetics,

researchers sequence a small number of genetic markers across a large sampling of the species

of interest. Advances in sequencing technologies have made it possible to sequence whole

genomes of non-model organisms, including species of conservation concern. While the cost of

sequencing continues to decrease, sequencing whole genomes will undoubtedly remain more

costly than sequencing only a handful of genetic loci. This presents a choice: whole genome

data sets exchange spatial resolution for finer-scale genomic resolution, allowing researchers

to test different hypotheses. Each whole genome contains a multitude of largely-independent

genealogies, that provides increased power to infer past events [115, 241]. In particular, the

dense haplotype information provided by whole genomes is necessary to examine the very

short timescales relevant to conservation efforts [133, 207]. Here, we reconstruct the last two

million years of puma demographic history by generating and analyzing a draft genome from

an individual sampled in the Santa Cruz Mountains (California, USA), along with nine rese-

quenced genomes from pumas from North and South America. We confirm the recent maternal

ancestry of North American pumas and describe genomic diversity in the sampled populations.

We use shared tracts of homozygosity to predict the effectiveness of assisted gene flow in restor-

ing lost genetic diversity. Finally, we analyze the genome of a Florida panther with admixed
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ancestry that was collected 30 years after the first release of Central American admixed pumas

into the Everglades. This genome allows us to assess the long-term efficacy of inter-population

admixture as a means to rescue small and isolated populations from the deleterious effects of

inbreeding.

1.3 Results

1.3.1 Genome assembly and variant calling

We assembled a de novo nuclear genome for a wild male puma (SC36) from the Santa

Cruz Mountains using a combination of shotgun Illumina (47X coverage), long-range linking

Illumina, and Oxford Nanopore Technology (ONT) (1.2X coverage) [125] data (see Methods).

Our PumCon1.0 assembly has a BUSCO [252] score of 93.0%, a scaffold N50 of 100 Mb, and

87.6% of the genome represented on 26 autosomal scaffolds, each larger than 20 Mb (Tables

1.1, 1.2). Although our ONT coverage was only 1.2X, the use of these data for gap-filling re-

covered an additional 5.74% of the genome sequence, which we error-corrected by re-mapping

the Illumina reads (Table 1.1). We obtained high-coverage (27X-55X) whole-genome rese-

quencing data from nine additional pumas from locations in North and South America (Figure

1.1 and Table 1.3), and aligned the data to our reference assembly (PumCon1.0) for variant

calling. We produced three final call sets: the first containing 8 million variable sites using

the 10 pumas, the second decreased to 166,037 variable sites after filtering the first call set for

linkage disequilibrium (LD), and the final call set containing 557,741 SNPs after LD filtering

using the 10 pumas and the African cheetah (see Methods).
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1.3.2 Demographic history

We reconstructed puma demographic history using both mitochondrial and nuclear

genomes. Analyses of mitochondrial DNA estimate the most recent common maternal ancestor

of all sampled pumas∼300 kya (Figure 1.2A). North American mitochondrial haplotypes clus-

ter together, sharing an inferred common maternal ancestor 31-11 kya. The North American

mitochondrial clade excludes the Florida Everglades puma (EVG21), which has a mitochon-

drial ancestry that is distinct from the rest of North America, consistent with the reported mixed

ancestry of this individual [128]. The nuclear genomic data revealed a similar demographic his-

tory to that inferred from the mitochondrial data, and allowed us to estimate changes in effective

population size over time. Pairwise sequentially Markovian coalescent (PSMC) modeling of the

nuclear genomic data suggested that two puma lineages, one represented by the two Brazilian

individuals and the other represented by all individuals sampled in North America, diverged

by 300-100 kya (Figure 1.2B and Figure 1.9), similar to the age of the oldest puma fossils

in North America. Populations on both continents were largest around 130 kya, during the

warmest part of Marine Isotope Stage (MIS) 5, and then declined throughout the colder MIS

4-2, with populations reaching their current small sizes by the peak of the last ice age 25-20 kya.

Our North American pumas show a continued increase in effective population size between 500

and 200 kya, whereas the effective population size of the Brazil pumas stabilized. This increase

may reflect an increase in numbers during colonization of unoccupied habitats in Central and

North America, but may also be attributable to PSMC modeling overestimating effective popu-

lation size when a species has divided into subpopulations [179]. To test whether this observed
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peak was the result of population structure, we modeled pseudo-diploid individuals using the

X chromosomes of our male pumas (see Methods). We found evidence of a cessation of gene

flow between all Brazil-North America pseudo-diploid male puma pairs by at least 100 kya, as

shown by the sharp increase in the inferred effective population size (Ne), signifying no coa-

lescent events occurred more recently than the estimated divergence time (Figure 1.11). The

divergence dates obtained from the pseudo-diploid X chromosome PSMC analysis overlapped

the time at which North and South American inferred Ne began to differ in the autosomal PSMC

model. Thus, structure alone was not the reason behind the observed increase in Ne during this

time. The spike in effective population size observed for EVG21 probably does not reflect the

coalescent process within a single population, but is instead consistent with mixed ancestry

comprised of two divergent lineages [35].
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Figure 1.2: Demographic history of pumas. A) Mitochondrial maximum likelihood phylogeny of the

ten pumas in this study plus an additional puma from Big Cypress (KP202261.1) and the African cheetah

(KP202271.1) as the outgroup. We calculated divergence times by determining the number of pairwise di-

vergences between sequences and used a mitochondrial divergence rate of 1.15%bp per Myr [170, 50]. We

estimate a common maternal ancestor of these pumas 278,000 ± 5,639 years ago (star; 100% bootstrap sup-

port), divergence between North American and South American mitochondrial lineages 201,000± 1,952 years

ago (pentagon; 63% bootstrap support), and a common maternal ancestor of North American pumas 21,000

± 10,412 years ago (circle; 100% bootstrap support). B) Inferred changes in effective population size (Ne)

over time using the pairwise sequentially Markovian coalescent (PSMC) model [163] for the ten pumas. We

assume a generation time of 5 years and a per generation mutation rate of 0.5e-8 [43] per bp per generation.

The PSMC plot for EVG21 shows a sharp increase in inferred Ne that is probably attributable to its hybrid

ancestry [35].
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1.3.3 Population structure

We used the nuclear genomic data to characterize genetic structure among puma pop-

ulations (Figure 1.3). We performed principal component analysis (PCA) of 166,037 LD-

filtered SNPs and found evidence of a geographic pattern (Figure 1.3A). The first two axes of

the PCA, which explain 52% of the genetic variance, separated North and South America and

revealed a gradient of relatedness from east to west across North America. The Everglades puma

(EVG21) fell between the Big Cypress and Brazil populations, consistent with this individual's

known history of admixture. Pumas sampled from the same population clustered together. We

estimated a consensus nuclear phylogeny from 557,741 SNPs from the LD-filtered data set that

included ten pumas and the African cheetah. This analysis found further evidence of structure,

with the highest likelihood tree including a single migration event from a South (or Central)

American lineage into the Everglades lineage (Figure 1.3B and Figures 1.12, 1.13). Finally,

our cluster assignment tests based on the puma only LD-filtered SNPs also partitioned the data

geographically, first separating out the two California populations at K=2, and then the Florida

and Brazil populations at K=3 (Figure 1.3C and Figure 1.14). Notably, EVG21 shares ancestry

with both Florida and Brazil at all K values (Figure 1.15). We note that the discrete populations

identified in these analyses could simply reflect the spatial sampling of our data set. Spatially

structured sampling can cause analyses to report distinct populations even when no discrete

population structure exists [246]. This artifact is particularly likely to occur when geographi-

cally widespread samples are taken from well connected species where limited dispersal results

in the accumulation of local genetic variants, resulting in genetic isolation by distance [300].
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However, the observed geographic structure could also be the result of discrete genetic structure

due to population isolation. Some puma populations have experienced persecution and degra-

dation of their habitat, resulting in limited gene flow between populations [78, 227, 182, 128].

These isolated populations would show increased divergence over time, resulting in geographic

structure.
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Figure 1.3: Stratification of pumas based on geographic population. A) Principal component analysis

[208] of 166,037 sites separates the sampled pumas based on population. The first component primarily sepa-

rates South and North American pumas, while the second component distinguishes the variation within North

America. All California pumas (Santa Cruz and Santa Monica) cluster closely. B) TreeMix [213] analysis,

using the African cheetah as the outgroup, indicates the best tree separates pumas based on population and in-

cludes one migration event (weight = 0.453911) from the branch of South American diversity into the admixed

Everglades puma (EVG21). C) The mean of 10 permuted matrices of STRUCTURE [81] analysis for each of

K=2 through 4, performed using CLUMPP [126]. Both delta K and L(K) values indicated that K=3 was the

best K (Supplementary Figure 9) [79].
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1.3.4 Heterozygosity and inbreeding

To examine the extent of inbreeding in our puma samples, we estimated for each

individual the average genome-wide heterozygosity and identified runs of homozygosity (ROH)

across the 26 largest autosomal scaffolds (Figure 1.4, see Methods). We focused our analyses

on ROH >2 Mb, as we were able to call these longer tracts with high confidence. Although

genetic drift is a dominant evolutionary force in small populations, the strong correlation among

linked sites that is characteristic of ROH >2 Mb requires close inbreeding, and would not be

observed due to genetic drift alone [37, 210]. The distribution of ROH across the genome

varied among scaffolds and individuals (Figure 1.4A and Supplementary Figure 12), as did

average genome-wide heterozygosity and proportion of the genome in ROH (Figure 1.4B).

The two pumas from Brazil were the least inbred, with the highest heterozygosity and smallest

proportions of their genomes in ROH. Conversely, the Big Cypress Florida panthers sampled

prior to the 1995 genetic rescue were the most inbred, with the lowest heterozygosity and the

largest proportions of their genomes in ROH, consistent with the phenotypic defects recorded

in these individuals [128]. The other North American pumas fell between these two extremes.

Of the two individuals from the Santa Monica Mountains, SMM12 appeared to be less inbred

than SMM22, with higher heterozygosity and a lower proportion of its genome in ROH. This

is consistent with their origins, as genetic analysis suggests that SMM22 was likely born in the

small and more isolated Santa Monica Mountains population south of US 101 freeway, whereas

SMM12 was first observed in the larger and more connected population north of US 101 and

dispersed into the Santa Monica Mountains as a subadult [228].
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Figure 1.4: Heterozygosity and Runs of Homozygosity. A) Sliding window heterozygosity (black dots)

and called ROH (colored boxes) across a single scaffold for three pumas from three different populations (Big

Cypress, Yellowstone, and Brazil). Plots for all pumas are provided as Supplementary Figure 11. B) Average

genome-wide heterozygosity versus the proportion of the genome in ROH for the ten pumas sequenced. C)

Distribution of lengths of ROH. The length in Mb is indicated, as is the associated expected number of gener-

ations since the individual ’s maternal and paternal lineages shared a common ancestor. D) Heat map showing

the percent of the genomes that are in ROH that are shared IBD between pairs of pumas.

EVG21, the admixed Florida panther from the Everglades population, was an outlier

in the general correlation between heterozygosity and proportion of the genome in ROH. The

proportion of EVG21’s genome in ROH was high relative to the expectation based on its aver-

age genome-wide heterozygosity. This is consistent with both ancestral admixture resulting in
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a more diverse genetic background and close inbreeding leading to long tracts of homozygosity

(Supplementary Figure 13). To better explore inbreeding history, we examined the distribution

of ROH tract lengths in each puma. We correlated those lengths with the expected number of

generations since the individual’s maternal and paternal lineages shared a common ancestor us-

ing an estimated average recombination rate from the domestic cat of 1.1 cM per Mb [67] and

the equation g = 100/(2 r L), where g is the time in generations, r is the recombination rate,

and L is the length of the ROH tract in Mb [133, 277] (Figure 1.4C, see Methods). Long ROH

(>15.2 Mb) occur due to close inbreeding (a common ancestor <3 generations ago). Short ROH

(<5.7 Mb) occur due to shared ancestors further back in time (>8 generations ago). All North

American pumas sampled had a large number of short ROH, indicating that these populations

were small in the recent past (8-23 generations ago). The puma from Yellowstone had mostly

short ROH and a small number of intermediate and long ROH, consistent with a population

that was small in the recent past, but that does not suffer from a considerable amount of close

inbreeding in recent generations. The pumas from the Santa Cruz and Santa Monica Mountains

had patterns similar to the Yellowstone puma, except they had additional long ROH, suggesting

that these populations are experiencing close inbreeding. The Big Cypress panthers each had

many long ROH, which we estimated to reflect shared ancestors within the last three genera-

tions. The admixed Everglades panther, EVG21, had a small number of short ROH, similar to

the Brazilian pumas, but had mostly long ROH, similar to the more inbred Florida individuals.

This combination can be attributed to EVG21’s complex history of admixture and inbreeding.

EVG21 has historic admixture, and is the offspring of an inbreeding event- the sire of EVG21

was also EVG21’s half brother [128] (Figure 1.8). The peak of the ROH length distribution for
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EVG21 occurs at 5.7-9.1 Mb, indicating that EVG21’s maternal and paternal lineages shared a

common ancestor as far back as 5-8 generations, shortly after the admixture event that occurred

6-9 generations prior [128]. Although the sampled North American pumas all have long ROH,

these tracts were generally not identical by descent (IBD) between individuals (Figure 1.4D).

Long ROH that are also shared IBD between individuals are concerning because they repre-

sent regions of the genome with no genetic diversity in the four haplotypes analyzed. Of the

pumas sequenced, only the two individuals from Big Cypress (CYP47 and CYP51) shared a

considerable proportion (36%) of their genomes in ROH that are IBD between two individuals.

The pumas from the Santa Cruz Mountains (SC29 and SC36) shared 12% of their genomes in

IBD ROH, whereas the pumas that originate from different areas in and near the Santa Monica

Mountains (SMM12 and SMM22) shared only 4%. Individuals from the Santa Cruz and Santa

Monica Mountains shared between 3% and 5%. While most sampled North American popula-

tions show signs of close inbreeding, different populations are fixed for different variants and

considerable genetic variation still exists when considering the species as a whole.

1.4 Discussion

We present a draft assembly of a puma genome, which we use to reconstruct the de-

mographic history of the species and measure genome-wide heterozygosity and ROH, the latter

of which is less practical with lower-quality or reference-guided genome assemblies. Our as-

sembly strategy combined short-read Illumina data with long-read data from ONT to generate a

scaffold N50 of 100 Mb, making this one of the most contiguous wild felid genomes assembled
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to date.

Our analyses of ten complete puma genomes revealed the dynamic history of a once

widespread species whose population size is now reduced across much of its range. We showed

that extant North American pumas are descended from a population that dispersed northward

from South America by at least 200 kya, consistent with the age of the oldest puma fossils in

North America. Previously, the incomplete fossil record paired with divergence estimates based

on rapidly evolving microsatellites and partial mitochondrial genomes led to the hypothesis of

a North American origin of the species, followed by a late Pleistocene local extinction in North

America and then a recolonization from South America within the last 20,000 years [50, 178].

Our results using complete nuclear and mitochondrial genomes are consistent with previous ge-

netic analyses in that we show that North American pumas represent a subset of puma genetic

diversity. However, the nuclear genomic data suggest that the lineage leading to North Amer-

ican pumas diverged from South American pumas ∼300-100 kya, considerably older than the

20 kya inferred previously. While we are unable to exclude the possibility of a local late Pleis-

tocene extinction in North America followed by a recolonization from an unsampled lineage

elsewhere in South or Central America, we argue that this nuclear genomic data in combination

with a recently identified puma fossil in South America that dates to 1.2-0.8 mya [40] supports

a simpler demographic hypothesis in which the puma lineage originates in South America, dis-

perses into North America by 300-100 kya and persists there to the present day. We note that

new fossils or genomic data from late Pleistocene aged pumas or pumas from other locations in

South and Central America will be necessary to test this demographic hypothesis.

If true, the new model for puma demographic history means that pumas would have
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been present in North America for at least one complete glacial/interglacial cycle, indicating that

pumas were capable of surviving in a broad range of habitats and environments. This hypothesis

is supported by data from living pumas, which, despite a preference in North America for

mountainous habitats, are also known to occupy grassland habitats in South America, such as

Patagonia [267]. Differences in habitat selection between the two continents probably reflect

a long history of competition with a diverse carnivore guild on both continents. For example,

jaguars are better adapted than pumas to living in habitats that flood periodically [240], and

predation by wolves in North America probably precludes pumas living in open habitat without

escape terrain [73].

Intriguingly, North American pumas share a common maternal ancestor around the

peak cold period of the last ice age,∼20 kya. This period is associated with a reduction of avail-

able habitat across the continental United States, as the coalesced Laurentide and Cordilleran

glaciers covered much of present-day Canada and the Upper Midwestern United States [70].

Forests would have been reduced significantly at that time, as would available habitat for the

smaller prey preferred by pumas, providing a potential mechanism for a reduction in puma

population size around that time.

The recent history of pumas is marked by human persecution and encroachment on

their habitat, resulting in small and isolated populations that are susceptible to loss of genetic

diversity and predisposed to inbreeding. Over many generations, without the input of novel

variation from migrants, isolated populations can accumulate local genetic variation while los-

ing overall genetic diversity. Loss of genetic diversity may be a common situation for top

predators, as their population densities are usually low and successful migrants are infrequent.
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Consequently, even moderate levels of fragmentation will affect their genomic diversity. While

pumas in South America currently experience less habitat degradation than pumas in North

America, pumas in South America will likely face further habitat loss and fragmentation as

rapid human population growth and land development continues on the continent [112]. The

result may be small, isolated populations in South America similar to those currently seen in

North America. Thus conservation efforts and findings taken from isolated populations in North

America may need be applied in the future to other parts of the puma range.

In North America, pumas were hunted extensively, resulting in low population den-

sities in many areas of their range [267]. Hunting was so severe until regulations were put in

place during the mid 20th century that pumas likely experienced a population bottleneck. All

North American pumas sampled in this study exhibit short ROH that date to approximately the

early 20th century, indicative of small effective population sizes during the time when hunting

was severe.

In many areas of North America, including California and Florida, large-scale hunting

was followed by shrinking habitat availability, resulting in small, isolated populations [228, 291,

270]. Our sampling focused on populations in North America that are known to be isolated and,

as such, our results highlight the genomic consequences of this isolation- reduced diversity and

signatures of close inbreeding. Pumas in the isolated populations of Big Cypress (CYP), Santa

Monica Mountains (SMM), and Santa Cruz Mountains (SC) all have many ROH of all length

categories, indicating ongoing inbreeding as a result of continued small population sizes. In

contrast, the Yellowstone individual had a similar number of short ROH to these more isolated

populations, but fewer long ROH. This pattern is consistent with the known history of hunting
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and habitat availability in the Yellowstone area: Pumas in the Yellowstone area were hunted to

low densities into the mid 20th century [267], but today Yellowstone National Park is a large

protected area surrounded by wildlands. This connectivity between the Park and wildlands

facilitated the recovery and maintenance of genetic diversity in the local puma population once

hunting pressures were reduced.

Florida panthers are among the most well-studied populations of pumas, especially

with regard to the phenotypic manifestations of isolation and inbreeding. The 1995 introduction

of pumas from Texas, the most geographically proximate population to the Florida panthers, is

widely regarded as a successful genetic rescue via translocation. However, Florida panther

genetic diversity in the Everglades population had been bolstered several decades earlier, when

seven individuals were released into Everglades National Park from a captive breeding facility

where pumas from Central America had been included in the breeding population. One Florida

panther that we sequenced, EVG21, is admixed, having both Floridian and Central American

ancestry. Her genome is a combination of regions with comparatively high heterozygosity,

similar to that observed in the Brazilian pumas, and long ROH, similar to the highly inbred

Florida panthers. The distribution of the lengths of ROH suggest that her maternal and paternal

lineages shared a common ancestor that lived shortly after the release of the admixed pumas

into the Everglades population. This suggests that the genomic consequences of inbreeding

happen quickly, with much of the gains from the genetic rescue being quickly erased. EVG21’s

genome provides evidence that when the population is small, it is likely that an individual’s

parental lineages will share a very recent common ancestor, even after genetic rescue through

admixture (Supplementary Figure 13). Thus, a consistent effort is required to maintain the
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benefits of translocation.

In many areas of the current puma range, human land use has reduced the connectivity

that is critical to recovery and maintenance of healthy populations. Despite these barriers, gene

flow among neighboring populations can be facilitated by enhancing landscape connectivity

through coordinated land use planning and by adding bridges or underpasses across freeways

[101]. Although pumas are capable of traveling long distances, large roads are a major barrier

to their movement [285, 20]. A model of population dynamics in the Santa Monica Mountains

that incorporated landscape connectivity and its effects on genetic diversity predicted a high

probability of extinction (99.7%) within 50 years after survival rates first began to decrease due

to inbreeding, unless connectivity was increased [22]. Our genomic analyses of the samples

from the Santa Monica Mountains also support the effectiveness of population connectivity. The

two pumas sequenced from the region (SMM12 and SMM22) both currently reside in the small

subpopulation south of US 101 freeway. However SMM12 migrated into the subpopulation

from north of US 101 [228], a larger area that shows greater connectivity to surrounding regions.

Migrations between these two areas are now rare, but the two subpopulations were probably part

of a larger panmictic population prior to the existence of US 101. The genomic analysis of ROH

highlighted that SMM22 had an increased number of large ROH relative to SMM12, consistent

with SMM22 originating in a population that is smaller and more isolated. The examination of

IBD ROH between SMM12 and SMM22 showed that only 4% of their genomes are in ROH

that are IBD between the two individuals. In contrast, individuals that originated from the same

population have a much larger proportion of their genomes in IBD ROH (e.g. 12% for SC29 and

SC36). This indicates that while inbreeding has reduced diversity in a considerable proportion
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of the genomes of individuals within small populations, these low diversity regions are generally

not shared between populations. Thus, reconnecting the populations on either side of US 101,

as currently proposed via a wildlife crossing over the freeway [229], would help restore the lost

genetic diversity.

Genome-scale data sets have the potential to inform conservation planning. Our re-

sults highlight how whole genome data can provide new insights when compared to traditional

conservation genetic techniques. For instance, measures of average heterozygosity are the most

commonly used metrics to characterize the genetic health of a species, as estimates are relatively

simple to generate and are easily comparable among organisms. However, average heterozy-

gosity provides only a narrow insight into the health and genetic potential of a species [231].

While in some species average genome-wide heterozygosity is highly correlated with the level

of inbreeding estimated using ROH [133], in systems with admixture, average heterozygosity

estimates can be deceptive, as demonstrated with our admixed Everglades puma (EVG21). The

heterozygosity of EVG21 is almost as high as the Brazilian pumas, but EVG21 has a large

portion of her genome in ROH. We would infer two very different genetic conditions when

considering each metric separately, and thus both heterozygosity and proportion of the genome

in ROH should be considered in assessing genomic health. Finally, knowledge of shared ROH,

an analysis which can only be done with very high density markers across the genome, is crit-

ical when designing mitigation plans, as this analysis predicts whether enhancing connectivity

would restore lost genetic diversity and helps identify potential candidates for translocation.

In this context, this study can serve as a template for future conservation genomic research

targeting species living in small, isolated populations.
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1.5 Methods

1.5.1 SC36 Sequencing Data

1.5.1.1 Sampling

We captured and drew blood from a wild, male puma (SC36) who lived in the Santa

Cruz Mountains in California, USA in accordance with guidelines and regulations of local gov-

erning bodies. Capturing, handling, and sampling protocols for SC36 were captured by methods

detailed previously [299] and approved by the Institutional Animal Care and Use Committee

(IACUC) at the University of California, Santa Cruz (protocol #Wilmc1101) and granted by the

California Department of Fish and Game.

1.5.1.2 Illumina libraries

We performed two DNA extractions using the Qiagen DNeasy Blood & Tissue kit fol-

lowing the manufacturer's protocol for non —nucleated erythrocytes using 100 µL of blood. We

made four indexed Illumina libraries from these two extractions, following the Meyer Kircher

protocol [186], targeting insert sizes of 350bp and 550bp. We created a third DNA extraction

for SC36 using the Qiagen Blood and Cell Culture Mini Kit using 500 µL of blood, following

the manufacturer's protocol up until the spooling step. The DNA was not concentrated enough

to precipitate, so instead we centrifuged the sample, washed it with cold 70% EtOH, and further

centrifuged it. We removed the supernatant and air dried the pellet. We resuspended the pellet

in 50 µL of TE buffer at 55°C for 2 hours. We prepared four indexed Illumina libraries from

this extraction following the Meyer Kircher protocol [186], targeting an insert size of 330bp.
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We sent out the eight paired-end shotgun libraries for sequencing at UC Berkeley

Vincent J. Coates Genomics Sequencing Laboratory on an Illumina HiSeq 2500 (2x150bp,

2x100bp), at UC Santa Cruz Ancient and Degraded Processing Center on an Illumina MiSeq (v3

chemistry, 2x300bp), and at UC San Diego Institute for Genomic Medicine Genomics Center

on an Illumina HiSeq 2500 (2x100bp).

1.5.1.3 CHiCago library

We extracted additional DNA from the SC36 blood samples using the Qiagen Blood

and Cell Midi Kit (catalog no. 13343). We quantified DNA using a Qubit fluorometer. We

assembled 1µg of in vitro chromatin using the Active Motif In Vitro Chromatin Assembly kit,

according to the manufacturer’s instructions. We crosslinked the chromatin in 1% formaldehyde

for 15 minutes at room temperature, and quenched with 2.5M Glycine. We immobilized chro-

matin on SPRI beads at a SPRI-lysate ratio of 2:1 [62], and washed with 10mM Tris and 50mM

NaCl to remove non-histone-associated DNA. We resuspended the bead and chromatin mixture

in 49.5µL 1X NEBuffer 2, and digested with 5 units of DpnII enzyme for one hour at 37°C in

a thermal-mixer. After digesting, we concentrated the beads and washed twice with the wash

buffer. We resuspended the sample in a 50µL reaction containing dA-dT-and dGTP, biotinylated

dCTP, and Klenow. We performed end-labeling at 25°C for 30 minutes, after which we washed

the sample twice with the wash buffer. The sample was ligated overnight in a 250 µL reaction

containing 1X NEB T4 ligase buffer, 0.1mg/ml BSA, 0.25% Triton X-100, and 50 units T4

DNA ligase. After ligation, we added 2.5µL 10mM dNTPs and 5.5 units T4 DNA polymerase

to remove unligated biotin-dCTP. After concentrating the sample and removing the ligation

41



buffer, the crosslinks were reversed and the sample was deproteinated in 50 µL cross-link re-

versal buffer (50mM Tris pH=8.0, 1% SDS, 0.25mM CaCl2, and 0.5 mg per mL Proteinase

K). We incubated the sample at 55°C to digest the histones, then increased the temperature to

68°C to reverse crosslinks. We then separated the sample from the beads and purified on fresh

SPRI beads at a ratio of 2:1 [220]. DNA recovery was quantified with a Qubit fluorometer. We

prepared 400ng of sample for sequencing using the NEB Ultra library preparation kit according

to the manufacturer’s instructions, with one exception: prior to the indexing PCR, the sample

was enriched by pulldown on 30µL Invitrogen C1 Streptavidin beads, then washed to remove

non-biotinylated DNA fragments. The washes were as follows: 1 wash with lithium wash buffer

(1M LiCl, 0.5mM EDTA, 0.05% Tween-20), followed by 2 washes with sodium wash buffer

(1M NaCl, 0.5mM EDTA, 0.05% Tween-20), and 2 washes with TE-Tween. We sent the library

for sequencing at the UC San Diego Institute for Genomic Medicine Genomics Center on an

Illumina HiSeq 2500 [23] (2x125bp reads).

1.5.1.4 Hi-C library

We generated a Hi-C library for SC36 by centrifuging 1mL of blood stored in EDTA

at 2500 rcf for 5 minutes to pellet and washing with 1mL PBST, then resuspending in 100ul

PBST. We crosslinked the cells with 1% final concentration formaldehyde for 15 minutes at

room temperature and quenched the reaction with 2.8 µL 2.5M Glycine, and pelleted to ex-

change the buffer. We incubated the cells in 500µL lysis buffer (10mM HEPES pH-8.0, 10mM

NaCl, 0.2% IGEPAL CA-630, and 1X Protease inhibitors solution (Roche)), and then lysed

them further with the addition of 0.5mm garnet beads (MoBio PowerMax beads) by adding 100
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µL of beads and vortexing the tube on its side for 1 minute at max speed. We decanted the

lysate, and then purified the chromatin by centrifuging at 2500 rcf for 5 minutes, followed by

3 washes with 200µL wash buffer (10mM Tris ph=7.5, 50mM NaCl, 0.1% Tween-20) before

resuspension in 55 µL wash buffer with 1µL 2% SDS, followed by incubation at 37C for 20

minutes [165]. We made two technical replicates with 1µg of chromatin per replicate, as deter-

mined by Qubit fluorometry. We immobilized chromatin on SPRI beads at a SPRI-lysate ration

of 2:117, then washed with 10mM Tris, 50mM NaCl to remove non-histone-associated DNA.

We resuspended the bead/chromatin mixture in 49.5µL 1X NEBuffer 2, and digested with 5

units of DpnII enzyme for one hour at 37°C in a thermal-mixer. After digesting, we concen-

trated the beads and washed them twice with the wash buffer. We resuspended the sample in

a 50µL reaction containing dA-dT-and dGTP, biotinylated dCTP, and Klenow. We performed

end-labeling at 25°C for 30 minutes, then washed the sample twice with the wash buffer. We

ligated the sample overnight in a 200µL reaction containing 1X NEB T4 ligase buffer, 0.1mg

per ml BSA, 0.25% Triton X-100, 1mM DTT, and 50 units T4 DNA ligase. After concentrating

the sample and removing the ligation buffer, we reversed the crosslinks and deproteinated the

sample in 50µL cross-link reversal buffer (50mM Tris pH=8.0, 1% SDS, 0.25mM CaCl2, and

0.5 mg per mL Proteinase K). We incubated the sample at 55°C to digest the histones, then

increased the temperature to 68 °C to reverse the crosslinks. After cross-link reversal, we sepa-

rated the sample from the beads and purified on fresh SPRI beads at a ratio of 2:1 [220]. DNA

recovery was quantified by Qubit fluorometer. We prepared the sample for sequencing using

the NEB Ultra library preparation kit according to the manufacturer’s instructions, with one

exception: prior to indexing PCR, the sample was enriched by pulldown on 30µL Invitrogen C1
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Streptavidin beads, then washed to remove non-biotinylated DNA fragments as follows: 1 wash

with lithium wash buffer (1M LiCl, 0.5mM EDTA, 0.05% Tween-20), followed by 2 washes

with sodium wash buffer (1M NaCl, 0.5mM EDTA, 0.05% Tween-20), followed by 2 washes

with TE-Tween. We sent the library for sequencing at UC San Diego Institute for Genomic

Medicine Genomics Center on a HiSeq 4000 [23] (2x75bp).

1.5.1.5 Oxford Nanopore libraries

We extracted genomic DNA from a whole blood sample from SC36 with the Qiagen

Blood and Cell Culture Mini Kit, using 750 µL of starting material. We followed the protocol

exactly, up until the spooling step. The DNA was not concentrated enough to precipitate, so

we instead centrifuged the sample at 5000g for 15 minutes, washed it with cold 70% EtOH,

and centrifuged it again at 5000g for 10 minutes. We removed the supernatant and air-dried

the pellet. We resuspended the pellet in 50 µL of TE buffer on a shaker at 22°C overnight. We

quantified DNA with a Qubit 2.0 dsDNA HS kit at 71.5 ng per µL (3.58 µg total). We verified

the DNA size distribution with a pulse-field gel using a 0.75% agarose TAE gel, run at 75V for

16 hours, with the preset 5-150 kb program on the Pippin Pulse power Supply (version 1.3.2),

and estimated the DNA fragments to range in size from 20-25 kb in length.

We performed both a Rapid and a 1D2 Sequencing run (Oxford Nanopore, SQK-

RAD002 and SQK-LSK308). For the Rapid library preparation, we used an input of 200 ng of

DNA, as recommended by the manufacturer. We first treated the high molecular weight DNA

with 2.5 µL of fragment repair mix and incubated for 1 minute at 30°C, followed by 1 minute

at 75°C. We ligated the repaired DNA with Rapid Adapters using Blunt/TA Ligase (NEB). We
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quantified the Rapid libraries using a Qubit prior to sequencing. The Rapid sequencing libraries

were run on an R9.5 flow cell using the NC 48hr Sequencing FLO-MIN107 SQK RAD002

protocol. For the 1D2 libraries, we used the recommended 1 µg of high molecular weight

DNA. We end-repaired and A-tailed the DNA using NEBNext UltraII End-Repair/dA-tailing

mix (NEB). We cleaned up the end-repair product using AMPure XP beads and then lig-

ated 1D2 adapters using Blunt/TA Ligase (NEB). We performed a subsequent ligation to add

the Barcoded Adapter mix (BAM) using Blunt/TA Ligase (NEB). We quantified the 1D2 li-

braries using a Qubit prior to sequencing. The 1D2 libraries were run on an R9.5 flow cell us-

ing the NC 48hr Sequencing FLO-MIN107 SQK LSK308 protocol. We base called all Fast5

raw reads generated from both sequencing runs using the latest Albacore software (Oxford

Nanopore proprietary) (version 2.0.2).

1.5.2 Nuclear genome assembly

We removed adapters from the eight Illumina libraries for SC36 with SeqPrep2, using

the default parameters except for increasing the quality score cutoff to 15 (-q 15) and reducing

the minimum length of trimmed reads to 25 bp (-L 25) [262]. We used Trimmomatic [27]

(version 0.33) to 1) remove additional Meyer Kircher IS3 adapters [186] using a seed mismatch

of 2 and a simple clip threshold reduced to 5 for the shorter adapter sequence, 2) quality end trim

using minimum qualities of 2 or 5 for leading and trailing ends of reads, respectively, 3) window

quality trim, using a window size of 4 and a minimum quality of 15, and 4) remove reads shorter

than 50 bp. We determined the expected genome assembly size by creating a histogram of kmer

counts for k=45 with Jellyfish [173](version 2.2.10), that we visualized with GenomeScope
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[287] to obtain a genome length estimate of 2.257Gb, that we used for calculating NG50 (Table

1.1). We used this processed shotgun data to assemble a de novo genome using the Meraculous-

2D Genome Assembler [39](version 2.2.4), with diploid mode set to 1 and a kmer size of 45.

The contig N50 of the shotgun assembly was 17.6 kb and the scaffold N50 was 36.6 kb. We

had approximately 47X coverage of the genome from the eight Illumina shotgun libraries.

We scaffolded the Meraculous assembled genome using HiRise [220] (version 2.1.1)

run in serial mode using the default parameters with the Chicago and Hi-C libraries as input. The

resulting scaffold N50 was 103.8 Mb. We further visualized the HiC assembly using HiGlass

[136] after filtering for duplicates and valid Hi-C reads with pairtools [3] (Figure 1.5).

Given that the puma used for the SC36 shotgun assembly was a male, we had dif-

ficulty in assembling the X and Y chromosomes with Meraculous run in diploid mode 1. We

identified potential X and Y scaffolds in the SC36 HiRise assembly by using Exonerate [254]

(version 2.2.0) to align to known domestic cat X and Y chromosome genes [209]. We iden-

tified two scaffolds (scaffolds 2173 and 1964) which had numerous X chromosome mapping

genes, and validated these scaffolds as being X chromosome scaffolds based on coverage of the

Illumina shotgun data for SC36. We removed both scaffolds from the HiRise assembly. We

identified one scaffold that confidently mapped exclusively to a Y chromosome gene, but were

unable to validate it based on coverage, so we did not remove it from our HiRise assembly.

To generate an assembly for the X chromosome, we used shotgun data generated from

a female puma from the Santa Monica Mountains, SMM13 (Section Additional Puma Sequenc-

ing Data), using Meraculous [39] (version 2.2.4) in diploid mode 1 and a kmer size of 45. We

determined sex chromosome scaffolds in the SMM13 genome assembly using Exonerate [254]
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(version 2.2.0) by identifying scaffolds that align to known domestic cat X genes [209]. We

identified three large scaffolds in this way, and validated them based on coverage for both SC36

and SMM13 using bedtools [222] (version 2.25.0) (Figure 1.6). For SMM13, we found that

these scaffolds had approximately the same coverage as the average genome-wide coverage.

For SC36, we found these scaffolds had roughly half coverage of the average genome cover-

age. We added these three X chromosome scaffolds (scaffolds X1, X2, and X3) to the HiRise

assembly for SC36.

We performed gap filling on the HiRise scaffolded assembly using Oxford Nanopore

Technologies (ONT) long reads with the tool PBJelly, part of the PBSuite [77] (version 15.8.24).

PBJelly also resolved the sizes of the gaps introduced by HiRise. We used Porechop [234]

(version 0.2.3) to adapter trim the ONT reads. The resulting reads provided 1.2 fold coverage

of the genome. We set PBJelly to correct only intrascaffold gaps, and used the default minimum

of 1 read spanning a gap. We reduced the number of gaps (represented in the assembly as a

series of Ns) in the genome from 258,836 to 207,433 and reduced the total number of Ns in the

genome from 154,284,192 to 132,359,239. Although our coverage from ONT was only 1.2X,

the addition of these data to fill gaps between Hi-C linked scaffolds recovered over 140Mbp of

sequence.

We used the genome improvement tool Pilon [289] (version 1.22) to correct sequence

errors in the gaps that were filled with the high-error ONT data. We first aligned the Illumina

shotgun data back to the PBJelly genome using bwa mem [159] (version 0.7.7) and marked

duplicates with Picard toolkit MarkDuplicates [4] (version 1.114). We then ran Pilon with the

alignment file as the “ - - frags ” input, the PBJelly genome as the genome file, specified the
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genome as diploid, and used the default setting to fix all types of changes. We ran two iterations

of alignment and consensus sequence calling.

We assessed this final version of the genome (PumCon1.0) by alignment to the do-

mestic cat genome (GCA 000181335.4) using SyMap2 [257] (version 4.2) using the BLAT

default alignment and synteny parameters, but with Min Dots set to 10, and Top N set to 1 (Fig-

ure 1.7). We also used the genome assessment tool BUSCO [252] (version 2.0.1) to evaluate

genome completeness based on a set of conserved single-copy orthologous genes (human gene

set; n=4104). In the PumCon1.0 genome, 93.0% of these genes are complete and present in a

single copy only (Table 1.2). The number of Illumina shotgun reads mapping to each version

of the genome was calculated using the command “samtools view -q 30 -c” (Table 1.1).

The final genome assembly was 2,432,985,507 bp in length and had an N50 of 100.53

Mb, with 178,994 gaps and 114,069,924 Ns. Ninety percent of the PumCon1.0 assembly is

represented by 28 scaffolds, two of which are X related (scaffold X1 and scaffold X2). Thus

87.6% of the genome is represented on 26 autosomal scaffolds, each larger than 20 Mb.

1.5.3 Genome annotation

1.5.3.1 RNA-Seq library

We used a Trizol RNA extraction to obtain total RNA from whole blood collected

from a wild puma (SC85) from the Santa Cruz Mountains. We removed unwanted globin

mRNA by performing the GLOBINclear protocol (Thermo Fisher). For cDNA synthesis, we

used 20 ng of input RNA, a reverse transcriptase (Clonetech), a SmartSeq2 template-switch

oligo [212], and an Oligo-dT primer to enrich for poly-A+ RNA. We performed reverse tran-
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scription at 42°C for 1 hour. We treated the cDNA product with 1 µL of 1:10 dilution of RNase

A (Thermo Fisher) and Lambda Exonuclease (NEB) and incubated at 37 °C for 30 minutes. We

amplified the cDNA for 18 cycles using KAPA Hifi Hotstart 2X readymix (KAPABiosystems)

with an ISPCR primer [212]. We tagmented the amplified cDNA at 55°C for 7 minutes in a

20 µL reaction using a Tn5 enzyme to generate the RNA –Seq libraries. The Tn5 enzyme was

loaded with custom oligos Tn5ME-A/R and Tn5ME-B/R75. We amplified the tagmented prod-

ucts for 13 cycles using KAPA Hifi (KAPA Biosystems) with Nextera primers. The amplified

RNA-Seq library was size-selected targeting 300-800 bp using a 2% agarose E-gel (Thermo

Fisher). The RNA-Seq library was then quantified using a Qubit and the size distribution was

verified using an Agilent 2100 Bioanalyzer. We sent the RNA-Seq library for sequencing on a

HiSeq 4000 at UC San Diego Institute for Genomic Medicine Genomics Center (2x100bp).

1.5.3.2 Annotation

The PumCon1.0 genome was annotated by NCBI according to the NCBI Eukary-

otic Genome Annotation Pipeline [85] using our cDNA data and a publicly available dataset

generated from a wild puma from Arizona (SAMN02885420, SRX633288).

1.5.4 Additional puma sequencing data

1.5.4.1 Sampling

We sampled 11 pumas for this study. Ten of these, including the individual used for

the genome assembly (SC36), were used in a panel for analysis of demographic history and

population structure. One was used to assemble the X chromosome. The nine additional pumas
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that formed our panel were: an additional puma from the Santa Cruz Mountains (SC29), a puma

from Yellowstone National Park (YNP198), two pumas from the Big Cypress National Preserve

that were members of the canonical (pre-Texas admixture) Florida panther population (CYP47,

CYP51), one puma from population that lived in the Everglades National Park in Florida that

was the admixed descendent of a canonical Florida panther and a puma of Central American

ancestry that was released into the Everglades decades prior to the Texas panther introduction

(EVG21) [197], two pumas from the Santa Monica Mountains in Southern California (SMM12,

SMM22), and two pumas from eastern Brazil (BR406, BR338). We also obtained a sample

from a female puma from the Santa Monica Mountains for the purpose of assembling an X

chromosome (SMM13) (Table 1.3).

The Yellowstone puma was captured using specially-trained hounds, immobilized us-

ing a syringe dart (ketamine/medetomidine drug combination), and blood was obtained with

aseptic techniques. Approval for Yellowstone sampling was granted by the National Park Ser-

vice IACUC (#IMR YELL Stahler Cougar 2015.A3). Capturing, handling and sampling of

pumas from the Santa Cruz pumas were captured by methods detailed in prior work [299]

and approved by the IACUC at UCSC (protocol #Wilmc1101) and granted by the California

Department of Fish and Wildlife. Permission of approval to capture and handle pumas from

the Santa Monica Mountains pumas were obtained from the National Park Service IACUC

(PWR SAMO Riley.Sikich MtnLion 2017) and the California Department of Fish and Wildlife

[228]. Capture and sampling of Florida panthers were made possible by a cooperative agree-

ment between the Florida Fish and Wildlife Conservation Commission and the US Fish and

Wildlife Service (TE01553-3 and TC146761-1) [128]. Brazilian samples were collected by cer-

50



tified veterinarians following federal legislation and animal welfare guidelines. Sample BR406

was collected under federal permit SISBIO 40079-2, and sample BR338 was provided by the

Centro de Educaao Profissional (CENAP) Instituto Chico Mendes de Conservao da Biodiversi-

dade (ICMBio) national carnivoran sample repository, having been used in a previous study of

puma population genetics [178].

1.5.4.2 Illumina libraries

We aimed for high coverage (∼ 30X), whole genome sequencing data for the ten

pumas. We extracted DNA from blood samples using the Qiagen DNeasy Blood & Tissue kit

using the same method as used for SC36. We prepared indexed Illumina libraries following

the Meyer Kircher protocol [186]. We verified DNA concentrations and 350-bp insert sizes by

running the libraries on an Agilent 2200 TapeStation system.

We sent samples for sequencing at the National Genomics Infrastructure of SciLife in

Stockholm, Sweden on an Illumina HiSeq XTen, Laboratòrio de Biotecnologia Animal at the

Universidade de Såo Paulo in Brazil on an Illumina HiSeq 1500, and UC San Diego Institute

for Genomic Medicine Genomics Center on an Illumina HiSeq 4000 [23]. We also downloaded

shotgun sequencing data for the African cheetah [65] (SRR2737512-SRR2737518) to use as the

outgroup for our analyses. We selected cheetah data with an insert size of 170 bp and obtained

a final coverage of 34X when mapped to PumCon1.0.
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1.5.5 Variant calling and filtering

Prior to alignment of resequencing reads, we added the mitochondrial genome se-

quence for SC36 (Section Mitochondrial Genome Assemblies and Phylogeny) as a scaffold

(scaffold Mt) to the final nuclear sequence. Due to the high number of nuclear mitochondrial

DNA segments (NUMTs) in felids [171], we sought to decrease erroneous mismappings of true

mitochondrial DNA in the Illumina data to the NUMTs.

We removed adapters from all puma resequencing data and cheetah SRA data us-

ing SeqPrep2 [262], discarding reads shorter than 25 bp in length. We then aligned reads to

the PumCon1.0 genome, including the mitochondrial scaffold, using bwa mem [161] (version

0.7.12). We filtered alignments using samtools [158] (version 1.2.1) to keep alignments with

a map quality score greater than or equal to 30, remove secondary alignments, and keep reads

where both reads in the read pair mapped. Within each library, we removed duplicate sequences

due to PCR amplification using samtools rmdup [158] (version 0.1.18). Realignment around in-

sertions and deletions was performed using GATK Realigner Target Creator and Indel Realign-

ment [180] (version 3.5.0). We called variants in each sample using GATK HaplotypeCaller

[180] (version 3.7.0), with a minimum base quality score of 18, and emitting all sites, including

invariant positions.

We generated three sets of genotypes: two sets consisted of the ten pumas (LD filtered

and nonLD filtered) and another set of the ten pumas plus the cheetah for use as the outgroup.

For the puma only data set, we joint genotyped all ten puma samples using GATK Genotype-

GVCFs [180] (version 3.7.0), including non-variant sites. For the data set including the African
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cheetah, we again used GATK GenotypeGVCFs to perform joint genotyping for all 11 samples,

but emitted only variant sites. For all variant files, we masked or removed sites that were not

biallelic SNPs. We then filtered biallelic SNPs based on a number of parameters. We determined

filtering thresholds by visualizing parameter distributions. We used GATK VariantFiltration and

SelectVariants [180] to filter strand odds ratio (SOR ≥ 3.0), Fisher strand bias (FS > 60.00),

quality by depth (QD < 2.00), mapping quality (MQ < 40.00 and MQRankSum < -10.00), read

position ( -8.00 < ReadPosRankSum > -8.00), and excess heterozygosity in accordance with

Hardy-Weinberg equilibrium to remove potentially paralogous genomic regions (ExcessHet >

10.0). We used GATK VariantFiltration and SelectVariants [180] to remove variants above a

cumulative depth threshold (DP > 1500 for the puma only variant file, DP > 1650 for the puma

and cheetah variant file). We then used vcftools [55] (version 0.1.12b) to remove singleton vari-

ants where only one individual carried one copy of a different allele (- -mac 2), sites where any

individual had a depth less than 10 (- -minDP 10.0), and sites where any of the ten pumas did

not have a base called (- -max-missing-count 0) We only used autosomal scaffolds for further

analyses, removing mitochondrial and X chromosome related scaffolds (scaffold Mt, X1, X2,

X3, 869, 1862). Scaffolds 869 and 1862 were removed due to syntenic mappings with the X

chromosome of FelisCatus9.0 in SyMap [257]. For the LD filtered variant files, we performed

LD filtering using PLINK [38] (version 1.90b4.4) with the command “- -indep-pairwise 100 10

0.2”.

The non-LD filtered puma only variant file contained 8,212,535 SNPs. The final

LD-filtered puma only variant file contained 166,037 SNPs. The puma and cheetah variant LD-

filtered variant file contained 557,741 SNPs. The larger number of variants in the puma and
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cheetah file is due to the high numbers of sites where the cheetah carries two of the alternate

allele, while all pumas carry the reference allele.

Using the non-LD filtered SNP calls from the puma only data set, we generated a

fasta file for each sample using GATK FastaAlternateReferenceMaker [180] (version 3.7.0),

with heterozygous positions represented by IUPAC codes. Failed SNP sites (see filters above)

and failed individual genotypes (RGQ<20, depth<10) were masked to Ns using the maskfasta

function in bedtools [222].

1.5.6 Mitochondrial genome assemblies and phylogeny

We used Unicycler [298] (version 0.4.4) in hybrid assembly mode to assemble an

initial mitochondrial sequence for SC36. To decrease our initial input dataset, we first identified

mitochondrial mapping reads. To do this, we mapped adapter-trimmed Illumina and ONT reads

from SC36 to a publicly available puma reference mitochondrial sequence (KP202261.1) [157]

using bwa mem [159] (version 0.7.12) and bwa mem ont2d, respectively. We took the reads in

the Illumina and ONT alignment files that mapped to the reference mitochondrial sequence and

converted them into fastq format using bedtools [222] bamToFastq (version 2.25.0). We used

both the Illumina and ONT mitochondrial-mapped readsets as input into Unicycler as long reads

using the flag “l” and unpaired reads using the flag“-”, respectively. The assembly created with

Unicycler was 17,065 bp in length, circular, and had a depth of 490X. To validate this assembly,

we used the Unicycler output as the reference sequence in an assembly using mapping iterative

assembler (mia) [98] (version 1.0) using roughly 20 million randomly selected adapter-trimmed

Illumina shotgun reads (mia flags: -i -c -C -F -k 13). The resulting mia assembly was identical
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in sequence to the inputted Unicycler assembly, and thus was used as the final mitochondrial

sequence for SC36.

We used adapter-trimmed Illumina shotgun data to assemble the mitochondrial genome

sequences of the remaining nine pumas with mia, using the SC36 mitochondrial sequence as

the reference. The coverages of these mitochondrial assemblies ranged from 35X to 138X.

For each of the nine assemblies, we filtered using a consensus threshold of 90% and required

10X coverage per site. Any sites which did not meet these requirements was changed to an

'N', resulting in between 2 and 86 Ns per assembly. We removed two repetitive sequences lo-

cated in the control region, RS2 (sites 16,511-16,861) and RS3 (sites 279-657), from each of

the mitochondrial sequences. These regions are known to have highly variable numbers of re-

peats [122, 170, 253, 199], and were difficult to accurately resolve using short read data. We

annotated the mitochondrial genomes using MITOS [24].

We ran PartitionFinder [150] (version 1.1.1) and jModelTest2 [56] (version 2.1.6) to

determine the partitions and best substitution model. Due to the small number of substitutions

seen in the pumas, PartitionFinder suggested a single mitochondrial partition. jModelTest2

recommended a GTR+GAMMA substitution model for tree building. We used muscle [71]

(version 3.8.31) to align our ten assembled puma mitochondrial genomes, the publicly available

puma reference mitochondrial sequence (KP202261.1), and a cheetah mitochondrial sequence

(KP202271.1) as the outgroup. We used RAxML [263] (version 8.2.4) to produce a maximum

likelihood phylogeny, with a GTR+GAMMA evolutionary model, running one hundred boot-

strap replicates. We also ran tree inference including the RS2 and/or RS3 repetitive regions, and

saw little change in the bootstrap support values and no change to the topology of the tree.
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We estimated divergence times between South and North American pumas using a

prior composite estimate of the feline mitochondrial divergence rate of 1.15%bp/Myr [170, 50].

Branch lengths were taken from a phylogeny that did not include RS2 or RS3, and were used to

calculate divergence dates using the formula σ= 2λT , where σ is percent divergence between a

pair of sequences, λ is the rate of mitochondrial divergence, and T is time [170].

1.5.7 Demographic History

We used the pairwise sequentially Markovian coalescent (PSMC) model [163] to es-

timate the historical effective population sizes of puma populations. Of note to our sampled

population histories, is that the Brazil pumas used in this analysis originate from eastern South

America, which prior work has shown is the centrum of present-day puma diversity [50], and

likely represents the most ancestral puma lineage. The input was a realigned alignment file

of 26 autosomal scaffolds larger than 20 Mb, excluding sex chromosome associated scaffolds

(Section: Variant calling and filtering). We filtered the alignment file for each puma to include

sites which had between one third and twice the average coverage for that puma. We used a

generation time of 5 years and a mutation rate of 0.5e-8 per bp per generation, based on previ-

ous estimates of the feline mutation rate [43]. We performed one hundred replicate bootstraps

for each individual per the software instructions (Figure 1.9).

We also ran the PSMC tool on regions of the alignment file which were identified as

outbred based on our ROH hidden Markov model (Section Runs of Homozygosity). We masked

regions of homozygosity for each of the pumas, and re-ran the PSMC analysis to compare the

demographic estimates. We saw no considerable difference between the two sets of results
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(Figure 1.10).

We investigated the divergence time between our male pumas by running PSMC mod-

eling of pseudo-diploid sequences using pairs of haploid male X chromosomes to avoid the

need to phase the data. In this way, we can approximate the population split time between

two populations, as the y-axis in the PSMC plot can be thought of as the inverse of the rate of

coalescence at a time along the x-axis [179]. We used an alignment file containing the three

largest X scaffolds (scaffold X1, scaffold X2, and scaffold X3), for a total of ∼103 Mbp of

the X chromosome sequence for analysis. We filtered the input to only include sites which had

up to the average coverage of the genome for each puma. We created a pseudohaploid fasta

by randomly selecting a single high quality base using samtools (mpileup -Q 40 -q 30) [159]

and pu2fa (https://github.com/Paleogenomics/Chrom-Compare). We combined the pseudohap-

loid fasta file of each male North American puma with that of either of the two male Brazilian

pumas, and ran PSMC as above (Figure 1.11). To account for the lower mutation rate on the

X than the autosomes, we used a formula [163] to convert the autosomal mutation rate into the

X mutation rate, using a male to female mutation ratio of 1.4 from the domestic cat [239]. This

gives us a per generation mutation rate for the X chromosome of 0.472e-8 per bp per generation,

using a generation time of 5 years.

1.5.8 Population structure

We used SmartPCA from the EIGENSOFT [208] (version 6.1.4) package to run prin-

cipal component analysis on the LD-filtered variant file for the ten pumas, which consisted of

166,037 SNPs. We converted the variant file into eigenstrat format using PGDSpider2 [168]
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(version 2.1.0.0) for input into SmartPCA.

We constructed a tree to show population splits using Treemix [213], both with and

without the admixed sample EVG21. We used the LD-filtered variant file with the ten pumas and

the cheetah as input, which consisted of 557,74 SNPs, and ran Treemix by grouping 5,000 SNPs

into one window (k). For the dataset including EVG21, the tree with the highest log likelihood

predicted one migration, and explained 99.91% of the variation. In the dataset without EVG21,

the best model predicted no migrations and explained 99.91% of the variation.

We used the software STRUCTURE [81] (version 2.3.4) to infer the population struc-

ture of the pumas. We converted the LD filtered variant file with 10 pumas and 166,037

SNPs into the input format using PGDSpider2 [168] (version 2.1.0.0). We ran 10 replicates

of STRUCTURE for values from one to ten for the number of populations (K), using an ad-

mixture model with a degree of admixture (alpha) value of 1 for each K, 10,000 burns ins, and

running 10,000 MCMC repetitions. We used the software CLUster Matching and Permutation

Program (CLUMPP) [126] (version 1.1.2) under the greedy algorithm to align the ten replicates

for each K into one representative mean output matrix for plotting (Figure 1.15). We identified

the best K based on mean likelihood L(K) and delta K values [79]. For our dataset, K=3 had

the largest delta K value, and showed a break in slope for mean L(K) as well (Figure 1.14).

Although our analyses indicate that K=3 best explains our panel, due to our sampling scheme,

we are unable to determine the true number of clusters for the species overall. We do note that

all population level analyses performed indicate that our samples are best described by three

clusters.
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1.5.9 Genome-wide heterozygosity estimates

We calculated the average coverage of each puma using samtools depth on the re-

aligned alignment file, removing scaffolds for the mitochondria and X chromosome (scaffolds

Mt, X1, X2, X3, 869, 1862). We calculated genome-wide heterozygosity by generating a pileup

file from map quality and base quality filtered alignment files using samtools [158] (version

1.3.1) (mpileup -q 30 -Q 30) at all sites in the genome with exactly the average coverage depth

for that individual. We created a histogram by binning the sites based on the number of reads

representing the reference allele. We visually classified which bins were designated as ho-

mozygous or heterozygous. We calculated the genome-wide heterozygosity by summing all

heterozygous bins and dividing by the total number of genome-wide sites used in the analysis.

Additionally, we examined sliding window heterozygosity using custom script that

counts heterozygous positions in the IUPAC coded fasta files. We estimated average heterozy-

gosity in 100-kb windows and used the outputted counts of the number of heterozygous posi-

tions and the number of positions with a genotype call to obtain another estimate of average

genome-wide heterozygosity (Table 1.4). The slightly higher values observed for the IUPAC

estimates could be due to the pileup method being a more conservative method for calling a

site heterozygous than GATK FastaAlternateReferenceMaker, which was used with the IUPAC

method. Lastly, we calculated genome heterozygosity in a non-reference based method so as to

prevent any effects of genome quality on the estimations (Table 1.4). We used adapter-trimmed

shotgun data for each of the ten pumas to obtain kmer frequency distributions for k=21 for

each puma using Jellyfish [173] (version 2.2.10) and visualized the results using GenomeScope
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[287].

1.5.10 Runs of homozygosity

We used a hidden Markov model (HMM) to identify ROH by identifying transitions

between inbred and outbred regions of the genome [48]. We first estimated HMM model pa-

rameters from the data (Table 1.5). For each of the eight male pumas, we used the sample’s

heterozygosity estimate from the two large X scaffolds as an estimate of the genotyping error

rate. For the two female pumas, we used the estimate from another sample that was geograph-

ically close by and had similar sequencing coverage. For each sample, we then estimated the

rate of heterozygosity in outbred regions by visually selecting clearly outbred regions and de-

termining the mean heterozygosity across those regions. We determined a single transition rate

parameter (t=1e-50) by running different transition parameters and visually inspecting the re-

sults. We used these parameters and the filtered fasta files with IUPAC codes as input into the

ROH HMM program. For downstream analyses, we used only the 26 largest autosomal scaf-

folds and discarded ROH less than 2 Mb. We converted the ROH tract lengths to generations

using an estimated average recombination rate from the domestic cat of 1.1 cM per Mb [67] and

the equation g = 100/(2r L), where g is the time in generations, r is the recombination rate, and

L is the length of the ROH tract in Mb [133].

We also used the sliding window approach in PLINK [219] (version 1.90b4.4) to iden-

tify ROH for comparison with our ROH HMM. We used the non-LD filtered puma variant file

as input. We relaxed the parameters (–homozyg-window-het 20 –homozyg-window-missing 20

–homozyg-window-threshold 0.02 –homozyg-het 750 –homozyg-kb 500) to prevent sequenc-
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ing errors from breaking up homozygous tracts. Even with relaxed parameters, PLINK still

tended to break up long tracts (Figure 1.18). Since accurate estimates of tract lengths were key

to our inbreeding analysis, we used the ROH called by the our ROH HMM program for further

analyses.

The low frequency of short ROH observed in the genome of the admixed Everglades

panther (EVG21) relative to the other Florida panthers led us to believe that admixture in previ-

ous generations had prevented the formation of short ROH because an individual can not have

a shared maternal and paternal ancestor that dates to before the admixture event. To test our

hypothesis, we used Ancestry HMM [47, 183] to classify tracts of ancestry in the IUPAC coded

fasta file of EVG21 into three types: pure Central/South American ancestry, pure Floridian

ancestry, and mixed Central/South American and Floridian ancestry. We used the two Brazil

samples (BR338 and BR406) as proxies for Central/South American ancestry, and the two Big

Cypress samples (CYP47 and CYP51) as proxies for Floridian ancestry. Because small sample

sizes preclude accurate estimates of LD and because the program is sensitive to sites in strong

LD, we pruned all ancestry informative markers within 250 kb of another site. The genome of

EVG21 was comprised of 21.98% Central/South American ancestry, 28.24% Floridian ances-

try, and 49.58% mixed ancestry based on the HMM (Figure 1.19). Using ROH greater than 2

Mb that we identified with the ROH HMM, we classified each ROH as one of the three ancestry

types. We did this by using the intersect function in bedtools [222](version 2.25.0) with the

parameters '-e -f 0.90 'such that 90% of any ROH identified was only one ancestry type. The

results of this analysis classified all ROH as either pure Florida or pure Central/South American

ancestry. We saw no ROH that were classified as being of mixed ancestry. Thus, admixture ef-
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fectively prevents the formation of mixed ancestry ROH (Figures 1.19, 1.20). ROH comprised

76% of the Central/South American ancestry regions of the genome, 63% of the Floridian an-

cestry regions of the genome, and 0% of the mixed ancestry regions of the genome. We tested

for significant differences in the number of ROH identified per ancestry type using an exact test

of the ratio in a Poisson distribution. We found that significantly more ROH were of Floridian

ancestry relative to mixed ancestry (p=7.276e-12), and significantly more ROH were of Cen-

tral/South American ancestry than of mixed ancestry (p=1.526e-05). Additionally, significantly

more ROH were of Floridian ancestry than Central/South American ancestry (p=0.006456).

The identification of a greater number of ROH of Floridian ancestry, especially ROH of shorter

length (Figure 1.20), is consistent with the longer history of sustained inbreeding in the Florid-

ian population.

We next estimated the proportion of the ROH that are shared between pairs of pumas.

First, we used the intersect function in bedtools [222] to find genomic regions where ROH

overlap between pairs of samples. Then we used a custom script to generate a hybrid diploid

fasta file from the IUPAC coded fasta files for each pair of samples. The script first makes a

pseudo-haploidized sequence for each sample by randomly selecting one of the two bases at

heterozygous sites. The script then uses a pair of pseudo-haploidized sequences to generate

a hybrid diploid fasta file by using IUPAC codes to represent differing bases between the two

samples, while shared bases between the two samples are represented by the base itself. We

ran the ROH HMM program on the generated fasta file, using the same transition rate parame-

ter as above (t=1e-50) and the outbred heterozygosity rate and genotyping error rate averaged

across all ten pumas (h=0.00135, e=0.0000765). These ROH indicate where two individuals
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share regions of the genome IBD. To determine if ROH that overlap between two samples were

also IBD, we used the intersect function in bedtools [222] (version 2.25.0) to find the intersec-

tion between the ROH that overlap between the two samples and the ROH generated from the

hybrid diploid fasta file. Finally, from these outputs, for each pair of pumas we calculated the

proportion of the genome that occurs in ROH that are IBD 1.6.
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1.6 Supplementary figures and tables

Figure 1.5: Linkage map of the HiRise genome assembly for SC36. The x and y axes mark the mapping

positions of the first and second read in a read pair of the Hi-C library, respectively. Mapping results are binned

by genomic regions and each bin is colored according to the number of read pairs within the bin. Scaffolds

less than 20 Mb in length are not shown.
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Figure 1.6: Autosomal to X chromosome coverage ratio. Density coverage plots for the three X chromosome

scaffolds (top) obtained from the SMM13 genome assembly and an autosomal scaffold (bottom left) from the

SC36 genome assembly. Coverage is shown for SC36 (male) and SMM13 (female) mapped to four scaffolds.

For all X chromosome scaffolds, SC36 shows half the autosomal scaffold coverage. The trimodal distribution

for SC36 on scaffold X3 is due to the homology of pseuodoautosomal region 1 between X and Y chromosomes

resulting in twice the coverage for that region of the X in the male. Coverage across scaffold X3 for SC36

shows a doubling in average coverage at approximately the beginning of the pseudoautosomal region 1 (bottom

right).
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Figure 1.7: Synteny between the puma and domestic cat genomes. Alignment of syntenic regions of the

Felis catus genome version 9.0 (domestic cat, gray) with our PumCon1.0 assembly (black) using SyMap2

[257].
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Figure 1.8: Pedigree of EVG21. Pedigree of the inbred and admixed Florida panther sequenced from Ever-

glades National Park [128]. All panthers in the pedigree are of Everglades ancestry. The Central American

admixture into this population occurred approximately 6-9 generations prior to these individuals [128]. Note:

EVG21 is referred to as FP021 in the original dataset [128].
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Figure 1.9: Bootstrap replicate PSMC plots for ten pumas. We ran one hundred bootstrap replicates for

each of the pumas using the PSMC model [163]. We used a generation time of 5 years, and a mutation rate of

0.5e-8 [43] per bp per generation.
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Figure 1.10: PSMC plots for outbred (non-ROH) regions and entire genomes for the ten pumas. We see

no substantial differences between the models [163]. We used a generation time of 5 years, and a mutation rate

of 0.5e-8 [43] per bp per generation.
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Figure 1.11: Pseudo-diploid PSMC plots for X chromosomes of male pumas. We investigated the di-

vergence time between our pumas by running PSMC modelling on pseudo-diploid sequences from pairs of

haploid male X chromosomes. We see a sharp rise in the inferred Ne, and thus an approximate divergence

time between 250-100 kya for every North American male when paired with a Brazil puma (either BR338 or

BR406). The Brazil-Brazil pseudo-diploid pair had the most recent divergence time, roughly 100-90 kya. Thus

the observed rise in effective population size observed in our autosomal PSMC model is not solely the result

of population structure in pumas. We used a generation time of 5 years, a male to female mutation ratio of 1.4

[239], and a mutation rate of 0.472e-8 per bp per generation.
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Figure 1.12: TreeMix residual fit of the model. TreeMix [213] run on the LD filtered variant file containing

ten pumas and the African cheetah, including one migration, and grouped SNPs together in windows of 5,000

SNPs (k). The model explained 99.91% of the variation.
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Figure 1.13: TreeMix without EVG21. The result of TreeMix [213] with the highest likelihood when run

on the LD filtered puma and cheetah variant file with EVG21 removed, including no migrations, and grouped

SNPs together in windows of 5,000 SNPs (k). The model explained 99.91% of the variation.

72



mean L(K)

K

1 2 3 4 5 6 7 8 9 10

-4e6

-3e6

-2e6

-1e6

0

ΔK =m|L″(K)|/s[L(K)]

K

0

50

100

150

2 3 4 5 6 7 8 9

Figure 1.14: Selection of best K in STRUCTURE. We identified K=3 as best for our panel using L(K) (top)

and delta K (bottom)[79]. The top panel shows the mean likelihood (L(K)) and standard deviation from the

10 replicates per K value, which plateaued at K=3. The bottom panel shows that the rate of change in the log

probability of data between successive K values (delta K) is highest at K=3.
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Figure 1.15: STRUCTURE plots for K=2 through K=10. The mean of 10 permuted matrices of STRUC-

TURE [81] analysis for each of K=2 through K=10, performed using CLUMPP [126]. Both delta K and mean

L(K) values indicated that K=3 was the best K for our panel (Figure 1.14) [79].

74



chromhet$win

he
te

ro
zy

go
si

ty

0.
00

1
0.

00
5

●●●
●●●●●●●

●●
●
●
●●●●

●●●●●●
●
●●●●

●
●
●●●●●●●●●●

●

●●●●●●●
●
●
●●
●
●●●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●●

●

●●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●●

●

●

●●

●●

●

●

●

●●

●
●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●

●●

●
●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●●

●

●
●

●

●

●
●●

●●●
●
●

●●

●
●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●●

●

●

●

●
●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●
●

●
●
●●●●●●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●
●
●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●●
●

●
●●

●●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●●
●
●
●
●●
●
●●●●●●●

●

●●●
●●●●●

●●●
●●●●●

●
●●
●●
●●●
●
●●●●●

●●●●●●
●●
●●
●●●●●●●●

●●●
●
●●

●●●
●

●●
●
●●●●●●

●●●●

●
●
●
●
●●●●●●

●
●●●●●

●
●●
●●●
●
●●●●●●●●●●●●●●●●●●●●

●
●●
●●●●●●●●●●

●●●●●●●
●
●
●●●●●

●

●
●
●
●●●●

●
●●
●
●

●●●
●
●
●
●●
●
●

●
●●
●
●●●●

●●●
●●●●

●
●
●●●●●●●●●●●

●
●
●
●●●
●●●●

●
●●●●●

●●
●
●●
●●
●●●
●●●●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●
●●●●●●●

●●

●
●
●

●

●

BR338

chromhet$win

he
te

ro
zy

go
si

ty

0.
00

1
0.

00
5

●

●

●

●●

●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●
●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●●
●
●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●●

●●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●●
●

●

●

●
●

●●

●
●

●●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●
●
●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●

●●●●●●●●
●

●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●●

●
●
●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●
●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●
●

●●

●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●

●
●●●●●●●●●

●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

BR406

chromhet$win

he
te

ro
zy

go
si

ty

0.
00

1
0.

00
5

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●
●
●●
●●●
●●

●

●●●●●
●●●
●●●●●

●●●
●●●●●●●

●
●●●●●●●

●●●●●●●●●●●
●
●●●●●

●

●
●

●
●●
●
●
●
●●●●●●●●●●●●

●●●●●
●
●
●
●●●●●●●●●●

●
●●●●●

●
●●●●●●●●●●●●●

●
●●●
●●
●

●

●

●
●●●●

●●●●
●●●
●
●

●

●●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●
●

●
●
●

●

●●●●

●

●●●●●●●●
●
●●●●●

●
●●●●

●●●●
●

●
●
●●●●

●
●●●●

●●●●●

●
●●●
●●●●●●

●●●●●
●
●●●●●●●

●

●
●

●●
●●
●●●●●●●

●
●●●●●●

●
●●
●●●●

●
●●●
●
●●●
●
●●

●
●●●
●
●
●
●

●

●●●
●
●●●●●●

●
●
●
●
●●●
●
●●●
●●●●●●●●●

●
●●●●●●●●

●●●●●●●●
●●●
●
●●●●●●●●

●●●●

●

●●
●●●●●

●
●●●●●●●●●

●
●●●●●

●
●●●●●●●●●●

●
●●●
●●
●●●●●

●
●●●●

●●
●●●
●●●●

●●●
●●●●

●●●
●●●●●●●●●

●
●●
●●●●●●

●
●●
●●●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●
●
●●
●
●●●●

●●●●●●●
●
●●
●
●
●●●●

●●
●●

●

●●●●●●●●
●
●●
●
●
●
●●●●●●

●●

●

●●
●●●●

●●●●●●●●●●●
●●●●

●
●●●
●
●
●●●
●

●●●
●●●●●●●

●●●
●●

●
●
●

●

●●●●●●●●●
●
●●●●●●●

●●
●●
●
●●●●

●●●●●●●
●
●●
●
●●
●
●
●
●●●●

●
●●●●●●●●●●

●
●

●●●
●●●●●●●●

●●
●●
●●●
●●
●
●
●●●●

●
●

●

●

●●●●●●●●
●
●
●●●●

●●●●●●●
●
●
●●●●

●
●●
●
●●●●●●●●●●●●●●●●●●●●

●
●
●
●●

●
●
●●●●

●
●
●
●
●
●●●●●●●

●●●●●●
●●●●●●●

●●

●
●
●●●●

●
●●●●●●●●

●
●

●●

●

●
●
●●●

●

●●
●●
●
●
●●
●●●
●●●
●●●
●●
●
●●●
●
●●●●

●
●●●●●

●
●●
●●
●●●
●
●

●
●
●●●●●

●●●●
●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●

●●●●
●●●●●●

●
●●
●●
●●●●●●●

●●●●
●
●●●●●●

●●●●●●●●
●●●●●●●●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

●●●

●

●

●
●

●

●
●
●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●●

●●●

●

●

●

●

●

●
●●●●●●●●●

●

●

●●●

●●●

●
●●
●●●
●
●
●
●●●●●

●●●●●

●

●
●●●●●

●●
●●
●
●
●●●●●●●●●●●

●●●●●

●

●●●●●●●●
●●
●●●●

●●●
●

●●
●●●●●●●●

●●
●●●●

●●●●
●●
●●●
●●●
●
●
●●●
●●●●●●●●

●
●●●●

●●

●●
●
●●●●●●●●

●●●●●●●●
●
●●●
●
●●●●

●●●●
●
●●●
●
●●●●●●●

●●

●●
●●●●●●●●●●

●●●●
●●●

●
●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●●●
●●●●●

●●●●●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

EVG21

chromhet$win

he
te

ro
zy

go
si

ty

0.
00

1
0.

00
5

●●●●
●●
●●●●

●
●●
●
●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●

●
●

●●●●●
●
●●●
●
●●
●
●●●●●●

●
●●
●●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●

●
●●●●●●●●●●●●●●●●●

●●●●●●
●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●
●●●●

●●
●●●●

●●●●
●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●
●
●●●●

●
●●●●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●
●
●

●

●
●

●●

●
●●●●

●●●
●
●
●
●
●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●
●
●●●●●

●
●●●●●●

●
●●●●●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●
●●●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●

●
●●●●●●●●●●●●●●

●
●●●●●●●●●●

●
●●●●●●●●●●●●

●
●●●●●●●

●
●●●●●●●●

●●●●
●
●●●●●●●●●●●●●

●
●●●
●
●●●●●●

●●●●●●●●●●●●●●

●
●●
●●●●

●
●●●●

●
●●●●●●●●

●●●●●●●●●●

●
●●●●●●●●●●

●
●
●
●
●●●●●●●●●●●●●

●●●●●
●
●●●●

●
●
●●●●●●●●●●●●●●

●●●●
●●
●●●
●
●●●●●●

●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●
●
●
●
●●●●●●●●●●●●

●

●●●●●●●●●●
●●●●

●●●●
●●●
●
●●
●
●●●●

●

●●●●●●●
●●
●●●●●

●●●
●
●●●●●●●●●●●●●●●●

●

●●●
●
●●●●●●●●●●●●

●
●
●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●
●●●●●●●●●●●●

●
●●●●●

●
●●●
●
●
●
●●●●●●

●●●●●●●●●●

●

●

●

●

●

●●
●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●

●

●●●●●●●
●
●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●
●●●●●●●●●●●●

●
●●●●●●

●
●●●●●

●●●●●
●●●●

●
●●●
●
●●●●●●●●●●●●

●
●●●●●●

●●
●●●●●●●●●●●●

●
●●●●●●

●
●

●

●●●●●●●●●●●●●●●●●
●
●●●●●

●
●
●●●●●●●●●●●

●●
●●●●●●●●●

●●
●
●●●
●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●
●●

●

●

●

●●

●

●

●●
●

●
●

●●●●●●●●●
●
●
●
●●
●
●●
●
●●●●●●

●
●

●
●●●●●

●
●●●
●●●●●

●

●●●
●●●●●●●●●●

●●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●
●

●
●●●●

●

●●●●●
●●
●●●
●
●●●●●●●●

●
●●●●●

●
●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●
●●
●●
●●●●

●
●●●●

●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●
●
●●●●●●●●●●●●●

●●●●●●●●●
●

●
●

●

●

●●●
●

●

●

●●●●●●●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●●●●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●
●●●●●●

●
●●●●●●●●●●

●
●●●●●●

●
●●
●●●
●
●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●

●

●

●●●●●●●●●
●●●●●●●●

●●●●●
●
●●●●●

●
●●●●●●●●●●●●●

●
●
●●●●●●●●

●●●
●

●●●●●
●●●●●●●●●

●●●●●●
●●●●

●
●
●●
●
●●●●●●●●●●

●
●●●●

●●●●●

●

●●●●●●●●●●
●
●●●●●●●●●

●
●●
●
●●●●●●●●

●●●●
●●●●●

●
●●●
●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●
●●●●●●●

●●●●

●

●●
●●●●●●●●●●●●●●●

●
●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●●●●●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●●
●

●
●●●
●
●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●●
●
●●●●●●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●

●
●●●
●
●
●
●●●
●●●●●●

●
●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●●

●
●●●
●
●●●
●●●
●
●●●
●●
●●
●
●●
●●●
●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●

●
●●●●●

●

●●
●
●●●●

●●●●
●
●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●
●●
●●●●●●●

●
●●●●●●●●●●●●●

●●●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●

●
●

●
●

●

●●

●

●

●

CYP47

chromhet$win

he
te

ro
zy

go
si

ty

0.
00

1
0.

00
5

●●●●
●
●
●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●
●●●●

●●
●●●

●

●●●●●●●●●
●●●●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●●

●
●●
●●
●

●

●

●

●
●●●●●●●●●●●●●

●

●●

●

●

●

●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●●

●

●

●

●
●●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●●
●●●●●

●

●●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●●●●●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●●●●●●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●●●●

●

●

●

●

●●

●

●

●

●●

●
●
●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●●●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●●

●

●

●●

●

●

●

●

●●●●
●●●●●●●

●
●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●

●
●●●●●●

●●●●
●
●●
●
●●●●●●●●

●●
●●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●
●●

●

●

●

●

●

●●●●
●
●●

●

●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●
●●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●●●
●●●●●●●●●

●
●●●●

●
●●●●

●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●

●
●●●●

●
●●●●●

●
●●●●●

●
●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●

●
●●
●
●●

●

●●●
●
●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●
●
●
●

●
●

●

●●

●●

●

●

●

●

●●

●

●

●●●●

●

●

●

●●●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●●●

●

●

●

●

●
●

●

●

●

●
●●●●●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●●

●

●

●
●●

●
●

●
●●●●●●●

●●

●

●●●
●
●●●●●●●●

●

●
●

●●●●
●●
●
●●●
●●●●●●●●●

●●
●●●●●●●

●●●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●

●
●●●●●

●
●●●●●●●

●
●
●
●●●●●

●
●●●●●●●●●●●●●●●

●
●●
●
●
●
●
●
●●●
●●
●
●

●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●

●●●●●
●
●●●●

●
●
●
●●●●●●●●

●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●●
●●●●●●●●●

●
●
●●●●●●●●●●●

●
●●●●●

●
●●●●●●●●●●●●●●●

●●●●●
●
●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●
●●
●●
●●●●

●●●●●●●
●
●●●●●●●●●●

●●●●●●●●
●●
●●
●
●
●●

●

●●●●●●
●●●●●●

●
●
●●●●●●●●●●●●●●●●

●●

●

●
●
●

●

●●

●

●

●

●●●●
●●
●
●●●●●●

●

●●●●●●●●●●●●●●●●
●
●●●●●●

●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●●●●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●●●●●●●●●●

●
●●●●●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●
●●●
●●
●●●
●●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●●●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●●
●
●

●

●

●

●

●

●

●
●
●
●●●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●
●

●

●
●
●
●
●
●●
●●●●

●
●●●●●●●

●
●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●●●●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●●
●

●
●●
●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●
●●●●●●

●

●
●
●●●●●●●●●●●●●●

●
●●●●●●

●
●●●●●

●
●●
●
●●●●

●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●
●●●●

●
●●●
●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●

●
●
●●
●●●●●●●●●

●
●●●
●●●●●●●

●
●●●●●●●

●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●

●●●●●●●
●
●●●●●●●

●
●●
●
●
●●
●
●●●●●

●
●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●
●●
●●●
●
●●●●

●
●●

●

●

●

●

●

●●

●

●
●
●●
●
●
●●●
●
●●●●●●●●●●●

●
●●●
●
●●●

●

●

CYP51

chromhet$win

he
te

ro
zy

go
si

ty

0.
00

1
0.

00
5

●●●

●

●

●

●●●
●
●●●
●
●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●●●●●●●●●●●●
●●●●●●

●
●●

●

●

●

●●●●●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●

●
●●●●●●●●●●●●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●

●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●

●●
●
●●●●●●●

●●●

●

●●●●●

●●

●

●

●

●

●

●

●

●●●●

●

●●●●●●●
●●●●●●●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●●
●●
●

●

●●●
●●●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●

●

●

●

●

●
●

●●●●●●●
●
●●●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●
●
●●●●

●

●●●●●●
●
●●●●●●●

●
●●●●

●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●
●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●

●●

●

●

●●●●●●

●

●

●

●●●

●

●

●●

●

●
●

●

●
●
●●

●

●
●●●

●

●

●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●●●●●●
●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●

●
●
●●
●
●●●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●

●

●

●

●

●

●

●

●

●

●
●●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●
●
●●●●

●
●●●●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●●

●

●●●●●●●●●●●●●
●
●●●

●

●
●

●

●

●

●●

●

●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●●
●●●

●

●

●

●●●●●●
●
●●●●●●●●●●●●

●
●●
●
●●●●

●
●

●

●●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●

●
●

●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●
●●●●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●
●●●●

●●●
●
●●●●●●

●
●●●●●●●●●●●●●●●

●
●
●
●●●●

●●●●●●●●●●●
●
●●●●●●●●

●●●●●●●●●●●●●

●

●

●

●

●
●

●

●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●●
●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●●

●

●

●

●

●
●●
●●●●●●●●●

●

●

●●

●

●

●

●

●
●
●

●●

●
●

●

●

●●

●

●

●

●

●●●●●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●
●
●●●●●●●●●

●

●

●

●

●
●

●

●●●●●●●●●●

●

●

●●

●●

●

●

●●●
●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●
●
●●●
●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●
●
●●●
●
●
●
●●●●●●●●●●●●●●

●

●

●●
●
●●●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●●●

SC29

chromhet$win

he
te

ro
zy

go
si

ty

0.
00

1
0.

00
5

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●

●

●

●●●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●●●●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●●

●●●●

●

●
●

●
●

●●●●●●●●●
●

●
●
●

●

●●●●●

●●

●

●
●

●●
●●●●●

●

●

●●●●●
●
●●●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●●●

●
●●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●

●

●●●
●

●

●●●●●●●●●●●●●●●

●

●

●●
●●

●

●
●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●
●

●

●●●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●●●●●

●

●

●
●

●

●

●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●●
●

●

●●●●●
●
●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●
●

●

●●●

●●

●●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●
●
●●●●●●●●●

●
●
●
●●●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●●●●

●●
●

●

●

●

●

●

●●●●●●

●

●●●

●

●

●

●●

●

●

●●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●
●●●●

●
●

●

●

●

●

●

●
●

●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●●●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●

●

●
●

●

●

●

●●●●

●

●

●
●●●●●●●●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●

●

●

●●

●●

●

●

●
●

●

●

●
●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●
●●●●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●●●
●●●●

●

●

●

●●●●

●

●

●

●
●

●

●

●

SC36

chromhet$win

he
te

ro
zy

go
si

ty

0.
00

1
0.

00
5

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●●●
●●●
●
●●●●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●●

●

●

●
●

●

●

●●●●

●

●
●

●●●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●
●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●●●
●

●

●●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●
●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●●

●●

●●●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●
●

●

●●●●●●●●●
●
●
●
●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●●●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●
●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●●●●
●●●●●

●
●●●●●●●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●●●●●●

●

●

●

●

●●

●●

●

●

●
●●
●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●
●●●●

●

●

●
●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●
●●●●●●

●●●●●●●

●
●●●●

●
●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●

●
●
●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●

●●●●●●●●●●●●●●●
●
●
●●●●●●●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●

●
●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●
●
●
●●●●●

●
●●●●●●

●
●●●●●●●●●●

●●●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●●●●

●

●●●●●
●
●●●●●●●●

●
●●●
●
●
●
●●●●●●●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●

●●●

●●●

●

●

●

●
●

●

●

●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●

●

●●●●
●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●●●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●

●

●
●●●●●●

●
●

●
●●●●●

●
●●●●●

●

●

●

●●

●

●

●

●

●

●
●●
●
●●●●●●●

●

●

●

●

●

●

●

●

●

●
●●●●

●●

●

●

●

●

●

●

●

●●

●
●●●●●

●●●●
●
●●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●●●●●●●●

●

●
●

●●●
●

●

●
●●●
●●

●●

●

●

●

●

●●
●
●●●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●●●●
●
●●●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●
●
●●●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●
●●●●●

●

●

●

●

●●
●

●

●

●

●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●
●●
●

●

●

●

●

●

●●●●●
●
●

●

●

●

●

●

●

●

●

●

●●
●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●
●
●
●
●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●
●●●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●●
●
●●●●●●●●●●●●●●●

●●
●●●●●●●●●

●

●
●

●●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●
●●●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●
●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●●

●
●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●

●

●

SMM12

chromhet$win

he
te

ro
zy

go
si

ty

0.
00

1
0.

00
5

●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●
●●●●●●●●

●●●●●●

●

●●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●
●
●
●
●
●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●●●●
●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●
●

●
●●

●

●

●

●

●●●●●
●
●●
●
●●●●

●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●
●
●●●

●

●

●

●
●
●●●●

●
●
●●●
●●●●

●

●

●

●●●●●
●
●
●●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●
●
●●●●●●●●●●●●●

●
●●
●●

●

●●●●●●

●

●●●●●
●
●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●

●●●
●●●●●●

●
●●●●●●●

●
●●●●●●●●

●
●●●●●●

●●●●●●●●●●●●

●
●
●●●
●
●●●●●●●

●●
●●●●●

●
●

●●●●
●
●
●
●

●
●●●●●●●●●

●●●●●
●
●●●●●●●

●●
●●●●●●

●
●●●●●●●●●●

●●●●●●●●●●
●
●●●●●●●●●●

●
●

●

●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●

●
●●●●●●

●

●●●●●●●
●
●●●●●

●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●

●
●●●●●●●●

●
●●●
●
●●
●
●●
●
●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●
●●●
●
●
●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●
●
●●
●

●

●
●

●

●●

●

●
●

●
●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●
●
●
●

●●●●
●
●
●●
●●●●

●

●

●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●

●●
●●●

●

●

●
●

●●

●●

●

●

●

●

●

●●

●●

●

●

●

●●

●
●

●
●

●

●●

●

●

●
●

●●
●
●●

●

●

●

●
●

●

●

●

●●●

●

●●

●

●●●
●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●
●
●●●

●

●

●

●

●

●

●●●●●●
●
●

●●
●
●●●

●

●●●

●

●
●

●

●●●

●●

●
●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●
●

●

●
●●

●
●
●●●●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●
●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●
●
●●●
●
●●●●●●●●●●●●●

●
●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●●
●
●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●
●●●●●

●
●●●●●

●●
●●●●

●●●
●
●●●●●●●●

●
●●●●

●●●●●●●●
●●
●
●
●●●●

●●●●●●●●●●
●
●●●●

●
●
●●●
●
●●●●●●●●●●●●●●

●
●
●●●●●●●●

●●●●●
●
●●●●●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●
●

●

●

●

●

●

●

●

●

●

●

●●
●●●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●●●●

●

●

●

●

●●●●●
●
●
●
●●

●

●

●

●●●●●●●●
●
●●
●
●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●

●

●●

●

●
●

●

●

●

●

●●
●

●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●
●●●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●●●●●

●

●
●

●
●

●

●●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●
●
●●●●●●●●

●
●●●
●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●●
●●●●●●

●
●●●●●●●●●●●●●●●●

●●●●●●●●
●
●●●●●●●●●

●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●

●
●●●
●
●●●

●

●

SMM22

chromhet$win

he
te

ro
zy

go
si

ty

0.
00

1
0.

00
5

●●●●

●
●
●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●●
●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●●●●

●●●●●
●
●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●
●

●●
●
●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●●●●●●●●●

●

●

●

●●

●

●

●●
●

●

●

●

●●
●●
●●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●●

●

●●

●

●

●
●●

●

●

●

●

●●●●●●

●

●

●

●

●

●
●
●

●

●
●●●

●

●●

●●

●

●

●

●

●

●

●●●

●

●●
●●

●

●

●

●●

●●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●
●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●●

●
●
●●●●●●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●
●
●●●●●●●●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●●●
●●
●●

●

●

●

●
●
●●●●●

●

●●

●

●
●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●●●●●●●●
●●●●●●

●

●

●
●

●

●

●

●●●

●

●

●●

●
●

●

●●

●

●

●

●

●●●●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●
●●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●●●●●

●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●
●
●

●●

●

●●

●

●
●

●

●

●

●

●

●●●●

●●

●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●●●●

●●

●
●●

●

●●●
●●

●

●
●●

●●

●

●
●
●●
●●

●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●●●●●

●●

●

●

●

●
●

●●

●

●
●
●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●
●
●
●
●●●●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●

●●

●

●

●
●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●●●●
●●

●

●
●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●●●●●●●●
●

●

●

●●
●
●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●
●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●●

●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●
●

●●

●

●●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●●●
●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●●●●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●●
●
●●●●

●●●
●●
●●●

●
●
●
●

●

●

●

●

●

●
●

●

●

●●
●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●

●

●

●

●●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●●●●●

●

●
●
●
●●●●

●●
●●●
●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●
●●●●●●

●
●●●
●●●●

●
●

YNP198

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

scaffold_416 (bp)

Figure 1.16: ROH for all ten pumas as called by our ROH HMM. Black dots represent average heterozy-

gosity in 100 kb windows; colored regions represent blocks called as ROH. Scaffold 416 represents the largest

scaffold in the genome assembly at 236.8 Mb.
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EVG21

FP14

FP25

Florida Central America

Figure 1.17: Hypothetical pedigree for EVG21. Hypothetical pedigree showing how EVG21 could have both

historical admixture and be the offspring of an inbreeding event. Early generations show separate Florida and

Central American populations, which come together through admixture. The ancestral Floridian population

was small and experienced considerable inbreeding. The ancestral Central American population would have

been much larger and therefore experienced little inbreeding. Later generations show multiple inbreeding

loops, where an individual 's maternal and paternal ancestries trace back to a recent shared ancestor. Regions

of the genome that are of mixed ancestry do not trace back to prior to the admixture event.
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Figure 1.18: ROH calls using two different methods. Top panel for each sample shows heterozygosity

in 100 kbp windows. Bottom panels for each sample shows colored boxes indicating ROH called using our

ROH HMM (top), and PLINK (bottom). PLINK tended to break up long tracts of ROH. Given that we were

interested in the distribution of ROH lengths, we decided to use our HMM for ROH calls for further analyses.
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Figure 1.19: Proportion of ancestry and ROH in genome of EVG21. The proportion of the genome clas-

sified as each of three ancestry types (pure Central/South American, pure Floridian, and mixed CentralSouth

American and Floridian) by Ancestry HMM [47, 183]. The genome of EVG21 is comprised of 21.98% Cen-

tral/South American ancestry, 28.24% Floridian ancestry, and 49.58% mixed ancestry based on the HMM. For

all ROH greater than 2 Mb, we determined the ancestry type as classified by the HMM. While we observed no

ROH greater than 2 Mb in length in mixed ancestry regions for EVG21, we find numerous ROH greater than 2

Mb for both pure CentralSouth American ancestry and pure Floridian ancestry.
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Complete BUSCOs 3832 (93.4%)

Complete and single-copy BUSCOs 3815 (93.0%)

Complete and duplicated BUSCOs 17 (0.4%)

Fragmented BUSCOs 141 (3.4%)

Missing BUSCOs 131 (3.2%

Table 1.2: Benchmarking Universal Single-Copy Orthologs (BUSCO) gene completeness score. The

results of running BUSCO [252] on the PumCon1.0 genome using the human gene set (n=4104).
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Sample
Genotyping

error rate

Outbred

Heterozygosity

BR338 0.000146 0.0019

BR406 0.000054 0.0018

EVG21 0.000071 0.0019

CYP47 0.000078 0.0011

CYP51 0.000071 0.0010

YNP198 0.000087 0.0012

SMM12 0.000027 0.0010

SMM22 0.000078 0.0012

SC29 0.000078 0.0012

SC36 0.000027 0.0010

Table 1.5: ROH HMM parameters. Parameters used an input into the HMM ROH script for each puma.
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2.1 Abstract

The spectacled bear is the sole extant member of the Tremarctine subfamily, and the

only extant ursid species to inhabit South America. The tremarctine bears were some of the

largest terrestrial carnivores, but only one species survived into the Holocene. Here, we assem-

ble a nuclear genome for a captive female spectacled bear, and use the assembly to generate a

genome for an extinct tremarctine bear, the giant-short faced bear. The spectacled bear and the

giant short-faced bear both share a long history of small population size. Yet the dietary spe-

cialization and large mass of the giant short-faced bear likely made it vulnerable to extinction,

while the hypocarnivorous spectacled bear survived the end Pleistocene extinctions.

2.2 Background

2.2.1 South American tremarctine bears

The sole remaining member of the Tremarctinae subfamily, Tremarctos ornatus, is

commonly known as the spectacled bear. Today the only extant bear species to live in South

America (Figure 2.1) [181], fossils for the ancestor of the spectacled bear are restricted to

North America [278]. The dispersal of species between North and South America, termed

the Great American Biotic Interchange (GABI), spurred migration into new ranges [57]. The

first tremarctine bears presumably arrived in South America during the height of the migration

period when the Panamanian isthmus land bridge first connected the two Americas roughly 2.5

million years ago (Mya) [174].

The first South American tremarctine bears were of the genus Arctotherium. Arc-
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totherium species faced a scarcity of competing terrestrial carnivores in South America right

after their continental arrival [258]. Early South American Arctotherium species were large in

size. Fossils indicate Arctotherium angustidens, the oldest of the genus, to represent the largest

bear ever recorded, making it one of the dominant carnivores on the continent [258]. However,

over time, Arctotherium species became progressively smaller as the size of carnivore guild on

the South American continent increased [83].

While a number of other tremarctine bears were present in South America during

the Pleistocene based on the fossil record [258, 278], remains for the presumed ancestor of

the spectacled bear, Tremarctos floridanus, have only been found in North America [278]. At

present, the oldest specimen uncovered for the spectacled bear dates to six thousand years old

[266]. The absence of the spectacled bear in the fossil record of either American continent

during the Pleistocene suggests that this species diverged from its ancestor T. floridanus recently

[259], though the timing of its migration from North to South American remains unclear.

The timing of the spectacled bear’s arrival to South American had major implications

for its diet. The spectacled bear arrived in South America when a plethora of rival large carni-

vores had already claimed dominance in the environment [258]. The abundance of competitors

likely drove the spectacled bear into the overwhelmingly plant-based diet they maintain today.
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0 500 1000km

spectacledbearrange

Legend

Figure 2.1: The current range of the spectacled bear. The spectacled bear is the only bear to inhabit the

South American continent. Spectacled bears occupy a variety of ecosystems in South America along the

Tropical Andes, but are mostly found in Tropical moist forests and Tropical high-altitude grasslands [89].

Spectacled bears require access to forested areas for survival [206]. Current range data is from the IUCN Red

List of Threatened Species [120].

As the closest living outgroup species to the Ursidae family, the spectacled bear repre-

sents a sister taxon to all ursines. Yet there is surprisingly little genomic data for the spectacled

bear, given the wealth of research on many bear species. To date, two mid coverage genomic

datasets (10X) of captive spectacled bears have been generated [144], but the lack of a reference

genome meant analyses were performed using a reference species that diverged 11 Mya.
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2.2.2 A North American tremarctine species: the giant short-faced bear

The giant short-faced bear, Arctodus simus, is estimated to have lived in North Amer-

ica as early as the Pleistocene, roughly 2.58 Mya [243]. Scientists have learned much about the

giant short-faced bear due to its extensive North American fossil record (Figure 2.2) [181]. Yet

by the end of the Pleistocene epoch ∼11,700 years ago, the bear went extinct during a large

megafaunal global extinction event [138].

Arctodus	sample	dates
0.25-1.8MYA
0.011-0.25MYA
UNKNOWN

Legend

Figure 2.2: The distribution and age of giant-short faced bear fossil ages. Coordinate data downloaded

from FAUNMAP [96].

The cause of these global extinctions, bar Africa, is complex [138]. It’s believed that

the overwhelming extinction of large mammals can be explained by the coinciding expansion of

modern humans and rapid climate change. Possibly, the lethal combination of hunting with the
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alteration of landscapes and range due to human expansion combined with a changing climate

were what made the role of humans so key to extinction [138].

The giant short-faced bear would have been an intimidatingly large carnivore for early

humans to come across in North America. The species was one of the largest bear species to

have existed, standing at almost ten feet on its back legs [44]. During the Pleistocene epoch,

three large bear species, representing some of the largest terrestrial mammalian carnivores,

thrived: 1) Arctotherium angustidens in South America, 2) the cave bear, (Ursus spelaeus, in

Europe, and 3) the giant-short faced bear in North America [258].

Mitchell et al investigated the similarities between two of the largest tremarctine

bears: the giant short-faced bear and a South American short-faced bear, an Arctotherium

species from Chile [190]. Phylogenetic analysis of a mitochondrial sequence from an Arc-

totherium species grouped Arctotherium with the spectacled bear, not the North American gi-

ant short-faced bear (Figure 2.3) [190]. Although morphologically the giant short-faced bear

and Arctotherium are more similar, Arctotherium is more closely related to the only remaining

tremarctine bear, the spectacled bear [190]. Presumably, the environment drove the morpholog-

ical convergence of Arctotherium and the giant short-faced bear. Given that both Arctotherium

and the giant short-faced bear lived in settings dominated by herbivores, both species adapted

to fit a scavenger niche to survive.
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Figure 2.3: The relationships and temporal ranges of the tremarctine bears estimated from mitochon-

drial genomes for Arctodus, Arctotherium, and the spectacled bear (Tremarctos ornatus). Red denotes

South American fossil distribution, and blue denotes North American fossil distribution. The extant species is

denoted with an asterisk. Borophagus, Agriotherium, and Chapalmalania were carnivores in North and South

America that went extinct by the end of the Pliocene. Plionarctos is the oldest known tremarctine genus [273].

Taken from Mitchell et al., 2016 [190].

Given the important role large carnivores play in their ecosystems, there has been

much scientific research on determining the dietary behavior of the giant short-faced bear [44,

83, 260] (Figure 2.4). Prior belief held that the giant short-faced bear lived on a diet composed

of largely meat, making it a hypercarnivore [145]. However, some claimed that the giant short-

faced bear was mainly herbivorous, based on its morphological similarity to its closest living

relative, the spectacled bear [75].
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Figure 2.4: The competing theories on the dietary habits of the giant short-faced bear. Reconstruction of

the giant short-faced bear based on a skull specimen. A) The skeletal reconstruction of the species. B) The

giant short-faced bear as a predator as stated by Kurtèn [146]. C) The giant short-faced bear as a scavenger

[177]. D) The giant short-faced bear as a herbivore as claimed by Emslie and Czaplewski [75]. Drawings by

Oscar San-Isidro. Image taken from [83].

During the late Pleistocene, the giant short-faced bear and brown co-existed in North

America. Both species were top predators in the region, and comparing the diets of the bears

could show how the predators co-existed across their range during the late Pleistocene. Though

isotopic measures do have some limitations, the method can be used to determine relative food

sources for extinct and extant animals [63]. To address the question of diet, Matheus used

isotopic analysis of 13C and 15N to predict the diet of fossil giant short-faced bears. Levels of

15N for all giant-short faced bears sampled in Alaska and Yukon showed that they were highly

carnivorous [177]. Meanwhile, isotopic nitrogen measures for contemporaneous brown bears

show a greater range of diets, with a terrestrial vegetation component and a marine carnivore

component.
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13C is useful for indicating carbon fixation pathways in the ecosystem’s primary pro-

ducers, and thus can help determine the types of prey being eaten by secondary consumers

[177]. 13C levels for giant short-faced bears revealed a diet composed of terrestrial herbivores

[177]. Contemporaneous brown bears show significant variation in the amount of salmon and

vegetation in an individual’s diet [177]. Comparing the diets of the contemporaneous giant

short-faced bear and the brown bear suggest little direct competition for food, meaning that the

brown bear’s invasion of North America was not the cause of the extinction of the giant short-

faced bear. Later work has shown that brown bears likely filled the niche voided by the extinct

giant short-faced bear in Beringia from 21kya to 10kya, as indicated by enriched 15N values

representative of carnivorous animals [16].

Combining the isotopic evidence with the morphology of the giant short-faced bear,

Matheus hypothesized that the species was a scavenger of widely dispersed large mammal car-

casses, requiring a large body mass for both highly efficient locomotion and intimidating other

large carnivores [177]. As a scavenger in North America, the giant short-faced bear's large size

would have scared off competing large felids, such as the saber-toothed cat [282], and other

predators from their kills. The giant short-faced bear coincided with an explosion in ice age

megafauna, including ground sloths, camels and mammoths [282]. The mass extinctions at the

end of the Pleistocene would have depleted much of the large prey, thus the niche of the giant

short-faced bear would have also disappeared, claims Matheus [177].

The range of the giant short-faced bear and the brown bear in North America over-

lapped during the Pleistocene epoch [177, 153, 16]. While Matheus showed that competition

for food between the two species did not result in the demise of the giant short-faced bear
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[177], the two species may have interbred. Reproductive isolation among bear species is not

complete, even though some species diverged from their common ancestor several million years

ago [144, 147]. A nuclear genome for the extinct giant short-faced bear enables us to determine

if admixture within the ursid lineages extends further than within the ursine bears.

While population expansion in a species can be explained by adaptations or surround-

ing ecology, understanding the decline of a previously successful species thousands of years

later is more arduous. Since data quality of ancient DNA limits our ability to produce a de novo

assembly for extinct species, using a genome sequence for the closest living species allows us to

learn about the population history and selective forces acting on giant-short faced bears to gain

insight into possible causes behind its extinction. It is helpful to use a closely related species

as a reference genome to obtain greater successful mappings and higher quality scores for an

ancient dataset. The spectacled bear and the giant short-faced bear are believed to have diverged

around 5.66 Mya [142], and thus as the sole remaining tremarctine species, the spectacled bear

serves as the reference genome for this subfamily.

Here, we assemble, annotate, and analyze nuclear genomes from two bear species,

the spectacled bear, Tremarctos ornatus, and the extinct giant short-faced bear, Arctodus simus.

We use these data to infer the timing of divergence among these and other bears, reconstruct

the demographic histories of these two species, and test for archaic admixture between the giant

short-faced bear and brown bears in the late Pleistocene in Beringia.
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2.3 Methods

2.3.1 DNA extraction and genome resequencing

2.3.1.1 Spectacled bear data generation

2.3.1.2 Short-read library

We obtained a sample from the Frozen Zoo of a frozen fibroblast cell line of a captive

female spectacled bear, Mischief. We performed one DNA extraction using the Qiagen DNeasy

Blood & Tissue kit following the manufacturer's protocol for non-nucleated erythrocytes. We

made one indexed Illumina library, following the Meyer Kircher protocol [186], targeting an

insert size of 330bp. The DNA was not concentrated enough to precipitate, so instead we

centrifuged the sample, washed it with cold 70% EtOH, and further centrifuged it. We removed

the supernatant and air dried the pellet. We resuspended the pellet in 50 µL of TE buffer at 55°C

for 2 hours. We sent out the paired-end shotgun library for sequencing at UC Berkeley Vincent

J. Coates Genomics Sequencing Laboratory on an Illumina HiSeq 2500 (2x100bp) [23].

2.3.1.3 CHiCago library

We extracted additional DNA from the spectacled bear cell line using the Qiagen

Blood and Cell Midi Kit (catalog no. 13343). We quantified DNA using a Qubit fluorometer.

We assembled 1µg of in vitro chromatin using the Active Motif In Vitro Chromatin Assembly

kit, according to the manufacturer’s instructions. We crosslinked the chromatin in 1% formalde-

hyde for 15 minutes at room temperature, and quenched with 2.5M Glycine. We immobilized

chromatin on SPRI beads at a SPRI-lysate ratio of 2:1 [62], and washed with 10mM Tris and
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50mM NaCl to remove non-histone-associated DNA. We resuspended the bead and chromatin

mixture in 49.5µL 1X NEBuffer 2, and digested with 5 units of DpnII enzyme for one hour at

37°C in a thermal-mixer. After digesting, we concentrated the beads and washed twice with

the wash buffer. We resuspended the sample in a 50µL reaction containing dATP, dTTP, dGTP,

biotinylated dCTP, and Klenow. We performed end-labeling at 25°C for 30 minutes, after which

we washed the sample twice with the wash buffer. The sample was ligated overnight in a 250µL

reaction containing 1X NEB T4 ligase buffer, 0.1mg/ml BSA, 0.25% Triton X-100, and 50

units T4 DNA ligase. After ligation, we added 2.5µL 10mM dNTPs and 5.5 units T4 DNA

polymerase to remove unligated biotin-dCTP. After concentrating the sample and removing

the ligation buffer, the crosslinks were reversed and the sample was deproteinated in 50 µL

cross-link reversal buffer (50mM Tris pH=8.0, 1% SDS, 0.25mM CaCl2, and 0.5 mg per mL

Proteinase K). We incubated the sample at 55°C to digest the histones, then increased the tem-

perature to 68°C to reverse crosslinks. We then separated the sample from the beads and purified

on fresh SPRI beads at a ratio of 2:1 [220]. DNA recovery was quantified with a Qubit fluo-

rometer. We prepared 400ng of sample for sequencing using the NEB Ultra library preparation

kit according to the manufacturer’s instructions, with one exception: prior to the indexing PCR,

the sample was enriched by pulldown on 30µL Invitrogen C1 Streptavidin beads, then washed

to remove non-biotinylated DNA fragments. The washes were as follows: 1 wash with lithium

wash buffer (1M LiCl, 0.5mM EDTA, 0.05% Tween-20), followed by 2 washes with sodium

wash buffer (1M NaCl, 0.5mM EDTA, 0.05% Tween-20), and 2 washes with TE-Tween. We

sent the library for sequencing at the UC San Diego Institute for Genomic Medicine Genomics

Center on an Illumina HiSeq 2500 (2x125bp reads) [23].
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2.3.1.4 Oxford Nanopore library

We extracted genomic DNA from the spectacled bear cell line sample with the Qiagen

Blood and Cell Culture Mini Kit, using 750µL of starting material. We followed the protocol

exactly, up until the spooling step. The DNA was not concentrated enough to precipitate, so

we instead centrifuged the sample at 5000g for 15 minutes, washed it with cold 70% EtOH,

and centrifuged it again at 5000g for 10 minutes. We removed the supernatant and air-dried

the pellet. We resuspended the pellet in 50µL of TE buffer on a shaker at 22°C overnight. We

quantified DNA with a Qubit 2.0 dsDNA HS kit at 71.5 ng per µL (3.58 µg total). We verified

the DNA size distribution with a pulse-field gel using a 0.75% agarose TAE gel, run at 75V for

16 hours, with the preset 5-150 kb program on the Pippin Pulse power Supply (version 1.3.2),

and estimated the DNA fragments to average roughly 23 kb in length.

We performed a Rapid Sequencing run (Oxford Nanopore, SQK-RAD004). For the

Rapid library preparation, we used an input of 200ng of DNA, as recommended by the manu-

facturer. We first treated the high molecular weight DNA with 2.5µL of fragment repair mix and

incubated for 1 minute at 30°C, followed by 1 minute at 80°C. We ligated the repaired DNA

with Rapid Adapters using Blunt/TA Ligase (NEB). We quantified the Rapid libraries using a

Qubit prior to sequencing. The Rapid sequencing library was run on an R9.5 flow cell using the

NC 48hr Sequencing FLO-MIN107 SQK RAD004 protocol. We base called Fast5 raw reads

generated from the sequencing run using the latest Albacore software (Oxford Nanopore pro-

prietary).
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2.3.1.5 RNA-Seq Illumina library

We followed the NEBNext Poly(A) mRNA magnetic isolation protocol to make a

cDNA library from fibroblast cells from Mischief. We assessed the RNA-Seq library size distri-

bution using an Agilent 2100 Bioanalyzer. We sent the RNA-Seq library for sequencing at the

UC Berkeley Vincent J. Coates Genomics Sequencing Laboratory on an Illumina HiSeq 2000

(2x75bp).

2.3.1.6 Oxford Nanopore RNA library

We generated a long-read RNA library for the spectacled bear, extracting genomic

DNA from the spectacled bear cell line sample with the Qiagen Blood and Cell Culture Mini

Kit. For one library, we followed the protocol for the 1D2 genomic DNA sequence for the

ONT using SQK-LSK308. The Rapid sequencing library was run on an R9.5 flow cell us-

ing the NC 48hr Sequencing FLO-MIN107 SQK LSK308 protocol. We base called Fast5 raw

reads generated from the sequencing run using the latest Albacore software (Oxford Nanopore

proprietary).

2.3.1.7 Giant short-faced bear data generation and radiocarbon dating

We obtained three bone samples from the Yukon Government: YG 76.4, YG 24.1, and

YG 546.562, all identified as Arctodus simus. YG 76.4 was a radius bone obtained from Hester

Creek in Yukon, Canada. YG24.1 was a petrous bone found in Ophir Creek near Dawson Creek

in Yukon, Canada. YG 546.562 was a right femur found in Canyon Creek, Yukon Canada.

We subsampled the two of the three fossil bone specimens with a handheld rotating cutting
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tool and submitted these to the Keck Carbon Cycle AMS facility at the University of California,

Irvine (UCIAMS) and Lawrence Livermore Laboratory for radiocarbon dating. At each facility,

collagen was extracted using a modified version of the Longin [31] method with ultrafiltration

collagen pretreatment [19]. We calibrated radiocarbon dates to calendar years using OxCal

(version 4.3) [224] using the atmospheric radiocarbon curve [226] (Table 2.1).

Sample name Museum ID Sample location Radiocarbon date Calendar age Radiocarbon accession
Hester YG 76.4 Hester Creek, Yukon 26,520 ± 110 29,070 to 28,631calBC CAMS-166313
Ophir YG 24.1 Ophir Creek, Yukon 20,250 ± 110 22,693 to 22,037 calBC Beta-79852

Canyon YG 546.562 Canyon Creek, Yukon 27,850 ± 220 30,403 to 29,242 calBC UCIAMS 186671

Table 2.1: Sample details for giant short-faced bear samples used in this study. Sample names, locations,

and radiocarbon dates for the samples we present in this study.

All work was performed in a dedicated ancient DNA facility at UC Santa Cruz, fol-

lowing standard clean room criteria [46]. For Ophir, we received powdered petrosal bone which

we extracted following the Dabney protocol [51]. For Hester, we sampled the bone, and reduced

to powder using a Mixer Mill MM 400 (Retsch). We collected 100 mg for DNA extraction for

both samples. Bone powder was incubated for 24 hours at 37°C in an extraction buffer opti-

mized from bone (0.45M EDTA, 0.25mg/mL Proteinase K). DNA was isolated using the silica

column based Dabney method [51] with a final elution of 50µL buffer EBT (10mM Tris, 0.05%

Tween-20).

We made four DNA libraries for Ophir and one library for Hester following the Meyer

Kircher protocol [186], except for reducing the input volume of template to 20 µL and follow-

ing the Pennsylvania State University library protocol [286]. All libraries underwent indexing

PCR after which their concentrations were estimated using quantitative PCR. We pooled and

sequenced all libraries for these two samples at the UC San Francisco Center for Advanced
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Technology on an Illumina HiSeq 2500 (2x50bp).

The Canyon sample was crushed and reduced to powder using a Mixer Mill MM

400 (Retsch). We collected 50-115 mg for DNA extraction. Prior to extraction, a bleach pre-

treatment was performed as outlined in prior work [235]. Bone powder was incubated for 24

hours at 37°C in an extraction buffer optimized from bone (0.45M EDTA, 0.25mg/mL Pro-

teinase K). DNA was isolated using the silica column based method outlined in [51] with a final

elution of 50µL buffer EBT (10mM Tris, 0.05% Tween-20).

We prepared single-stranded libraries using an ancient DNA optimized version [132]

of the method outlined in [279] for DNA extracts. Single-stranded libraries were indexed and

amplified in 100µL reactions containing 48µL pre-amplified library, 50µL AmpliTaq Gold 360

Master Mix, 1µM i7 indexing primer, and 1µM i5 indexing primer. Libraries were amplified in

a Bio-Rad T100 thermocycler using the following conditions: 95°C for 10m, followed by 15

cycles of 95°C for 30s, 60°C for 30s, and 72°C for 60s, followed by 72°C for 7m. Post-amplified

libraries were purified using a 1.2X SPRI clean. All post-amplified and cleaned libraries were

quantified using a Qubit 4 (Invitrogen) and the Qubit 1X dsDNA HS assay kit (Invitrogen).

Finally, all post-amplified libraries were visualized on a TapeStation 2200 (Agilent) using a

D1000 High Sensitivity Assay (Agilent). Single-stranded libraries were pooled and sequenced

at UC San Francisco Center for Advanced Technology on a NovaSeq S4 (2x100bp).

101



2.3.2 Genome assemblies and annotation

2.3.2.1 de novo nuclear genome assembly of the spectacled bear

We removed adapters from the shotgun Illumina library for Mischief with SeqPrep2,

using the default parameters except for increasing the quality score cutoff to 15 (-q 15) and

reducing the minimum length of trimmed reads to 25 bp (-L 25) [262]. We used Trimmomatic

[27] to 1) remove additional Meyer Kircher IS3 adapters [186] using a seed mismatch of 2 and

a simple clip threshold reduced to 5 for the shorter adapter sequence, 2) quality end trim using

minimum qualities of 2 or 5 for leading and trailing ends of reads, respectively, 3) window

quality trim, using a window size of 4 and a minimum quality of 15, and 4) remove reads

shorter than 50 bp. We used this processed shotgun data to assemble a de novo genome using

the Meraculous-2D Genome Assembler [39], with diploid mode set to 1 and a kmer size of 51.

The contig N50 of the shotgun assembly was 20.1 kb and the scaffold N50 was 26.2 kb. We

had approximately 64X coverage of the genome from the one Illumina shotgun library.

We scaffolded the Meraculous assembled genome using HiRise [220], run in Chicago

mode using the default parameters with the Chicago library as input. The resulting scaffold

N50 was 20.96 Mb. We performed gap filling on the HiRise scaffolded assembly using Oxford

Nanopore Technologies (ONT) long reads with the tool PBJelly, part of the PBSuite [77]. We set

PBJelly to correct only intrascaffold gaps, and used the default minimum of 1 read spanning a

gap. PBJelly also resolved the sizes of the gaps introduced by HiRise. We used Porechop [234]

to adapter trim the ONT reads. The resulting reads provided 1.6X coverage of the genome. We

reduced the number of gaps (represented in the assembly as a series of Ns) in the genome from
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171,229 to 162,727 and reduced the total number of Ns in the genome from 131,322,142 to

125,562,584.

We used the genome improvement tool Pilon [289] to correct sequence errors in the

gaps that were filled with the high-error ONT data. We first aligned the Illumina shotgun data

back to the PBJelly genome using bwa mem [159] and marked duplicates with Picard toolkit

MarkDuplicates [4]. We then ran Pilon with the alignment file as the “– frags” input, the PBJelly

genome as the genome file, specified the genome as diploid, and used the default setting to fix

all types of changes. We ran two iterations of alignment and consensus sequence calling.

We used the genome assessment tool BUSCO [252] to evaluate genome completeness

based on a set of conserved single-copy orthologous genes (human gene set; n=4104). In the

TreOrn1.0 genome, 93.5% of these genes are complete and present only in single copy. The

final genome assembly was 2,232,736,973 bp in length and had an N50 of 21.11 Mb, with

151,338 gaps and 123,688,823 Ns. Scaffold larger than 1Mb constitute roughly 85% of the

spectacled bear genome.

2.3.2.2 Evidence-driven spectacled bear genome annotation

The TreOrn1.0 genome was run through RepeatScout [216] to identify repeat family

sequences based on high-frequency repetitive kmers. The result of RepeatScout was used an

input into the genome masking tool Repeat Masker [256]. The resulting repeat-masked fasta file

would be used as the reference to map RNA sequencing data, as well as input for the annotation

tool Augustus in gene feature file (gff) [264].

Short-read Illumina RNA data was adapter trimmed using SeqPrep2 using the default
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parameters except for increasing the quality score cutoff to 15 (-q 15) and reducing the minimum

length of trimmed reads to 30 bp (-L 30) [262]. Adapter-trimmed reads were aligned to the the

repeat-masked TreOrn1.0 genome using TopHat2 [137]. The alignment file was filtered using

bam2hints from the Augustus toolkit [264] to only include intronic regions when converted to

gff to be used as a hint for annotation [264]. Adapter-trimmed ONT RNA reads were mapped to

the repeat-masked TreOrn1.0 genome using gmap [301], keeping only alignments with maximal

scores. Alignments were converted into hints for input into Augustus using blat2hints.psl [264].

Publicly available proteins from the polar bear [169] were download from gigadb and mapped

to the masked TreOrn1.0 genome using Exonerate [255] and converted into hints using the

’exonerate2hints’ perl script from Augustus [264]. Hints from repeat masking, long read data,

short-read data, and polar bear proteins were incorporated into one file for input as hints into

Augustus.

Evidence-guided annotation of the spectacled bear genome was performed using the

annotation tool Augustus [264], using the human as the species, allowing alternatives from

evidence, hinted splice sites, untranslated regions, no in frame stop codons, and a complete gene

model. Augustus predicted a total of 19,289 genes in the spectacled bear. The output gff file

was converted into amino acid sequences using the getAnnoFasta.pl script from Augustus [264].

Predicted proteins were run through blastp [12] using the Swiss-Prot database downloaded on

May 2019 [7]. Hits were filtered such that only the three best hits were returned, requiring all

hits to have at least an e-value cutoff of 0.00001. Hits were filtered such that the hit with the

highest bit score was kept for each predicted protein sequence. We used the UniProt website

[7] to convert the Swiss-Prot IDs of the hits into gene names and GO terms for each hit. The
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number of annotated predicted proteins was 15,504. We subclassified the annotated genes into

the three GO domains, biological process, molecular function and cellular component, to see

the distribution of GO names per category visualized using Blast2GO [95] (Figure 2.5).

GO Distribution by Level
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Figure 2.5: Twenty most common GO term names for each GO category based on the annotated sequences

from the spectacled bear visualized using Blast2GO [95].

2.3.2.3 Modern samples nuclear data processing

We downloaded two publicly available shotgun datasets of roughly 10X nuclear cov-

erage for two captive spectacled bears, Chaparri and Nobody [144] (Tables 2.5). We also

downloaded shotgun datasets for six brown bears, two polar bears, and one giant panda (Tables

2.5, 2.6). We removed adapters using SeqPrep2, using the default parameters except for in-

creasing the quality score cutoff to 15 (-q 15) [262] and mapped reads to the TreOrn1.0 genome

using the bwa mem algorithm [159], filtering for map quality of 30, removing alignments that

are not primary, or have an unmapped mate. We removed PCR duplicates using samtools rmdup
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[158]. We performed realignment around insertions and deletions was performed using GATK

Realigner Target Creator and Indel Realignment [180].

We adapter trimmed reads using SeqPrep2, using the default parameters except for

increasing the quality score cutoff to 15 (-q 15) [262] for all three spectacled bears, Chaparri,

Nobody and Mischief. We mapped reads to the TreOrn1.0 genome using the bwa mem algo-

rithm [159], filtering for map quality of 30, removing alignments that are not primary, or have

an unmapped mate. We removed PCR duplicates using samtools rmdup [158]. The average

nuclear coverage for Mischief was 45.97X, for Chaparri was 11.12X, and 10.81X for Nobody.

Realignment around insertions and deletions was performed using GATK Realigner Target Cre-

ator and Indel Realignment [180].

We assess the level of genetic variation in three bear species by creating pseudohap-

loid fastas for each of the six samples (PB12, PB42, OFS01, SJS01, Mischief, Nobody). We

used the realigned alignment file as input, and randomly selected a single high quality base us-

ing ANGSD makeFasta 1 to generate pseudohaploid fasta files [141]. We measured the number

of pairwise differences in non-overlapping 100kb windows between each pair of bear species.

We plotted the number of pairwise differences per 100,000 sites which existed between each

pair of bears (Figure 2.14).
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2.3.2.4 Ancient samples nuclear data processing

We adapter trimmed and merged reads using SeqPrep2, using the default parameters

except for increasing the quality score cutoff to 15 (-q 15) and the overlap for merging (-o 20

for Ophir and Hester, -o 15 for Canyon) [262]. For Ophir and Hester, we used Trimmomatic

[27] to 1) remove additional Meyer Kircher IS3 adapters from the merged reads [186] using a

seed mismatch of 2 and a simple clip threshold reduced to 4 for the shorter adapter sequence,

2) quality end trim using minimum qualities of 2 or 5 for leading and trailing ends of reads,

respectively, 3) window quality trim, using a window size of 4 and a minimum quality of 15,

and 4) remove reads shorter than 25 bp (Table 2.3.

To prevent any non-authentic ancient DNA from being included in further analyses,

we aligned only the merged reads to the TreOrn1.0 genome sequence using bwa aln [162] using

ancient DNA parameters (-l 1024 -n 0.01 -o 2). We filtered such that all alignments had map

quality of at least 30 and all alignments were primary. We removed PCR duplicates using

samtools rmdup [158]. We sought to prevent any spurious mismappings that may occur due

to the short read length of aDNA by removing reads shorter than 35bp. We chose 35bp as our

threshold due to prior work which has shown that this fragment length considerably decreased

the number of microbial alignments to the genome [185, 59]. We also lost only 1X genome

coverage for our high coverage giant short-faced bear by filtering reads of less than 35bp in

length compared to 25bp in length, and thus used the more conservative threshold for further

analyses (Figure 2.3).
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Sample name 25bp Nuclear genome coverage 25bp read count 35bp Nuclear genome coverage 35bp read count
Canyon 27.20 X 839,492,728 26.01 X 758,541,872
Hester 2.07 X 72,239,835 1.82 X 50,492,295
Ophir 1.89 X 63,330,908 1.66 X 43,107,072

Table 2.3: Effects of read length filtering in coverage for aDNA samples. Read counts were generated

using ’samtools view -c’.
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We realigned around insertions and deletions using GATK Realigner Target Creator

and Indel Realignment [180]. We used mapDamage2 to assess the 5’ and 3’ deamination char-

acteristic of ancient DNA to determine the validity of the data (Figure 2.6) [130]. All giant

short-faced bear samples showed damage characteristic of ancient DNA.
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Figure 2.6: DNA fragmentation profiles show the base composition of the first/last 10 read positions and within

the 10 genomic positions preceding and following read ends. Nucleotide mis-incorporation profiles provide C

to T (red), G to A (blue) and other (grey) occurrences of mutations relative to the occurrence of the reference

nucleotide along the first/last 10 read positions. We observe elevated levels of nucleotide mis-incorporations

and a damage profile that is characteristic of ancient DNA for Hester, Ophir, and Canyon samples. We observe

only damage associated with aDNA on the original template strand for the Canyon sample as a result of the

single-stranded Santa Cruz method [132].
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2.3.2.5 Mitochondrial genome assemblies of ursids

We used Unicycler [298] in hybrid assembly mode to assemble a mitochondrial se-

quence for Mischief the spectacled bear. To decrease our initial input dataset, we first identi-

fied mitochondrial mapping reads. To do this, we mapped adapter-trimmed Illumina and ONT

reads from Mischief to a publicly available spectacled bear reference mitochondrial sequence

(FM177764.1) [142] using bwa mem [159] and Minimap2 [160], respectively. We took the

reads in the Illumina and ONT alignment files that mapped to the reference mitochondrial se-

quence and converted them into fastq format using bedtools bamToFastq [222]. We used both

the Illumina and ONT mitochondrial-mapped readsets as input into Unicycler as long reads us-

ing the flag “l” and unpaired reads using the flag“-”, respectively. The assembly created with

Unicycler was 16,722 bp in length and circular. To validate this assembly, we used the Unicy-

cler output as the reference sequence in an assembly using mapping iterative assembler (mia)

[98] using roughly 24 million randomly selected adapter-trimmed Illumina shotgun reads (mia

flags: -i -c -C -U -F -k 13). We noticed a slight dip in coverage in Hyper Variable Region (HVR)

2, a region of the mitochondria which is known to have a highly variable number of repeats. We

assessed this region by eye to look for inaccuracies in the alignment of reads over this segment

of the mitochondria. To fix the dip in coverage in this repeat region, we manually removed one

of the 17 bp repeats using Jalview [293]. We checked this edited assembly by using the se-

quence as the reference for mia [98], again using roughly 24 million adapter-trimmed Illumina

shotgun reads. We observed no changes in sequence in the outputted assembly, and no longer

observed a dip in coverage across HVR2. Thus we used this sequence as the final mitochondrial
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genome for Mischief.

We aligned 10 million randomly selected adapter-trimmed reads for Nobody and Cha-

parri to the Mischief spectacled bear mitochondrial assembly using mia (mia flags: -i -c -C -U -F

-k 13) [98]. The coverage of the Nobody assembly was 31.55X and the Chaparri mitochondrial

assembly coverage was 29.43X.

Shotgun reads for Hester, Ophir and Canyon were adapter trimmed using SeqPrep2,

using the default parameters except for increasing the quality score cutoff to 15 (-q 15), merging

reads with an overlap of 20bp (-o 20), and reducing the minimum length of trimmed reads to

25 bp (-L 25) [262]. We used the merged reads as input into the mitochondrial assembler

mia [98], with the publicly available Arctodus simus mitochondrial genome as the reference

(NC011116.1) [142], and an ancient DNA substitution matrix. The assembly coverage for

Hester was 19.22X, Ophir was 66.12X, and the assembly coverage for Canyon was 44.88X.

We downloaded a publicly available dataset of roughly 1 million filtered, de-multiplexed,

and collapsed Illumina MiSeq reads from an mitochondrial enriched Arctotherium genomic li-

brary [190]. We assembled a mitochondrial sequence with the Arctotherium dataset using the

publicly available spectacled bear (FM177764.1) [142] mitochondrial sequence as the reference

for a mia assembly [98], using an ancient DNA substitution matrix to account for deamination.

The final assembly for Arctotherium had 126X mitochondrial coverage.

We filtered the seven assemblies using a consensus threshold of 66% and 3X coverage

per site. Any site which did not meet these requirements was changed to an 'N'.

We dowloaded publicly available mitochondrial sequences for a sun bear, sloth bear,

cave bear, Asiatic black bear, giant panda, brown bear, polar bear, spectacled bear, ABC is-
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land brown bear, and American black bear for the construction of a mitochondrial phylogeny

(FM177765.1, FM177763.1, FM177760.1, FM177759.1, EF212882.1, EU497665.1, GU573490.1,

FM177764.1, JX196368.1, AF303109.1, respectively) [142] [211] [28] [167] [189] [61].

2.3.3 Phylogenetics of ursids

2.3.3.1 Mitochondrial phylogeny of ursids

We used clustal omega [251] to align the bear mitochondrial genomes. Using Geneious

[135], we partitioned the alignment into six datasets: free sites, control region, rRNA, tRNA,

1st and 2nd coding positions, 3rd coding positions based on annotations from the Asiatic black

bear (FM177759.1), polar bear (GU573490.1), and spectacled bear (FM177764.1). We ran Par-

titionFinder [150] to determine the partitions and best substitution model, with branch lengths

unlinked using the Bayesian Information Criterion. PartitionFinder separated the data into three

mitochondrial partitions; 1) control region (Hasegawa-Kishino-Yano + gamma), 2) free sites,

rRNA, tRNA ,1st and 2nd coding positions (general time reversible + gamma + invariable sites),

and 3) 3rd codon positions (general time reversible + gamma + invariable sites).

We performed Maximum likelihood (ML) and Bayesian phylogenetic analyses using

the partitioning specified above. We used RAxML [263] to produce a ML phylogeny, running

one hundred bootstrap replicates. We created a phylogeny using a Bayesian approach using

MrBayes [232] with the same partitioning as above. We ran four chains (one hot, three cold)

for 10 million generations, with trees and model parameters sampled every 1,000 generations,

with the first 25% discarded as burn-in.
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2.3.3.2 Nuclear divergence times of ursids

We used ProteinOrtho [151] to generate a set of single copy orthologs 1:1 using the

codon sequences of two bear species, giant panda and polar bear. We removed orthologs shorter

than 300bp in length to generate a set of 14,332 orthologs. We mapped data for eight extant

bear species and the giant short-faced bear to the identified orthologs using bwa mem [159]

(Table 2.4). For the giant short-face bear, we used ancient DNA parameters (bwa aln -l 1024

-n 0.01 -o 2) [162]. We filtered to keep all primary alignments with a map quality of at least 30.

We removed PCR duplicates using samtools rmdup [158]. We realigned around insertions and

deletions using GATK Realigner Target Creator and Indel Realignment [180]. We combined all

realigned bam files for the nine bears and called variants using freebayes requiring a minimum

mapping quality of 25, a minimum allele fraction of 0.3, minimum alternate count of 4 and

minimum coverage of 4 [90]. We removed indels and created fasta files from the vcf for each

species using vcf-consensus [55]. We filtered to keep sequences that maintained codon integrity,

keeping 13,713 sequences. We extracted only four fold degenerate sites, for a total of 3,415,480

bp of sequence. We aligned the fasta sequences for the nine bears using mafft [134] and used

this as input for MCMCTree [302]. We ran MCMCTree with one fossil constraint and one tip

date for the giant short-faced bear using the HKY model, running for 10 million generations

with the first 5 million generations discarded as burn in. We checked for convergence of the

posterior estimates using Tracer [223]. We repeated the analysis again to validate results.
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Bear species SRA/ERR Study
American black bear SRR7813600-1 [261]

Asiatic black bear ERR946787 [144]

brown bear
SRR935590,

SRR935593-4,
SRR935626

[169]

giant panda

SRR019741-50,
SRR019778-84,
SRR019835-9,
SRR019843,

SRR019845-8,
SRR019851-5,

SRR019857-62, S
RR019871-3,
SRR019875-8

[164]

giant short-faced bear tbc this study
polar bear SRR942293 [169]
sloth bear ERR946786 [144]

spectacled bear tbc this study
sun bear ERR946784 [144]

Table 2.4: Bears used for nuclear divergence time estimation. Species, read data, and study details for the

eight extant bears and one extinct bear species used to construct a nuclear phylogeny with MCMCTree [302].

2.3.4 Demographics of the spectacled bear and the giant short-faced bear

2.3.4.1 Modeling the population history of tremarctine bears

We used the pairwise sequentially Markovian coalescent (PSMC) model [163] to es-

timate the historical effective population size of the spectacled bear. The input was a realigned

alignment file, where scaffolds less than 1Mb in length were removed. For each bear we used

sites between one third and twice the average coverage for that bear. We used a generation time

of 6 years and a mutation rate of 0.6e-8 per bp per generation, based on previous estimates of

the ursid mutation rate [144]. Due to the lower coverage of the two captive spectacled bears,

Chaparri and Nobody, compared to Mischief we downsampled the alignment file for Mischief

to observe the effects of coverage on the PSMC model. We downsampled to approximately the

same coverage as Chaparri and Nobody ‘samtools view -s 0.23’ [158]. We observe that lower
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coverage (10-11X) alters the PSMC model, especially at the oldest time points, and thus is not

an accurate representation of the demographic history of the spectacled bear. We also performed

one hundred replicate bootstraps for each individual per the software instructions.

With our high coverage dataset for Canyon, the giant short-faced bear, we were able

to use the PSMC model [163] to estimate its historical effective population size. The input

was a realigned alignment file mapped to the spectacled bear genome, where scaffolds less than

1Mb in length were removed. We used sites between one third and twice the average coverage.

We used a generation time of 6 years and a mutation rate of 0.6e-8 per bp per generation,

based on previous estimates of the ursid mutation rate [144]. To account for the age of our

ancient sample, we rescaled the x axis, by adding the calibrated age (29,242 calBC) to the

scaled time points, thus pushing back the start of the PSMC model to 29,242ya. Given that

the most recent time points in the PSMC model (typically younger than 10ky) are less accurate

[163], we ignore demographic estimates younger than 40kya in the plot. We also performed ten

bootstrap replicates, scaling each by the sample age per the software instructions [163].

2.3.4.2 Pairwise diversity of bears

We assess the level of genetic variation in three bear species (polar bear, brown bear,

and spectacled bear) by creating pseudohaploid fastas for each of the six samples (PB12, PB42,

OFS01, SJS01, Mischief, and Nobody). We used the realigned alignment file as input, and

randomly selected a single high quality base using ANGSD ‘makeFasta 1’ to generate pseudo-

haploid fasta files [141]. We measured the number of pairwise differences in non-overlapping

100kb windows between each pair of bear species. We plotted the number of pairwise differ-
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ences per 100,000 sites which existed between each pair of bears.
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2.3.4.3 Mappability masks for spectacled bear genome

We generated mappability masks for each scaffold in the spectacled bear genome

to identify regions on which short reads can uniquely map. We used seqbility on the adapter

trimmed data for Mischief using kmers of 35bp and a stringency of 0.90 to generate the mask

files as described in prior work [217].

2.3.4.4 Archaic admixture between brown bears and giant short-faced bears

We used the D statistic to look for evidence of archaic admixture between the giant

short-faced bear and the brown bear due to their range overlap in the late Pleistocene in Beringia.

In addition to the alignment file we had created previously for the our high coverage giant short-

faced bear Canyon, we included alignment files for six brown bears and a giant panda (Table

2.6). From the alignment files, we generated pseudohaploid fasta files for all eight bears using

ANGSD ’-dofasta 1 -minMapQ 30 -minQ 30’ to randomly select a base for each scaffold larger

than 1Mb [141]. We compared every pair of brown bears, using the giant short-face bear as the

introgressor and the giant panda as the outgroup, with quad-aln-report from ChromCompare [6]

to generate counts of ABBA and BABA sites in non overlapping 100kb windows, masking CpG

sites, and looking only at transversions. We calculated the D-statistic using quad dstat wt jk

from ChromCompare [6], as well as the weighted block jackknife to estimate standard error

and significance. No brown bear showed signs of archiac admixture with the giant short-faced

bear based on this analysis.
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2.4 Results

2.4.1 Genome assemblies and annotation

2.4.1.1 de novo genome assembly of spectacled bear

We assembled a nuclear genome for the spectacled bear using a combination of short-

read Illumina data, proximity ligation Hi-C data, and long read ONT data (Table 2.7). The

scaffold N50 of the TreOrn1.0 is 21.11 Mb and a BUSCO score of 93.5% [252] (Table 2.8).

This genome represents the only nuclear assembly for a tremarctine bear.
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Complete BUSCOs 3839 (93.5%)

Complete and single-copy BUSCOs 3826 (93.2%)

Complete and duplicated BUSCOs 13 (0.3%)

Fragmented BUSCOs 122 (3.0%)

Missing BUSCOs 143 (3.5%

Table 2.8: Benchmarking Universal Single-Copy Orthologs (BUSCO) gene completeness score. The

results of running BUSCO [252] on the TreOrn1.0 genome using the human gene set (n=4,104).

2.4.1.2 Evidence driven annotation of spectacled bear genome

We also generated a two types of RNA sequencing data; long transcript cDNA reads

using long-read technology with ONT and traditional cDNA sequencing to generate short-reads.

We performed an ab initio genome annotation using Augustus [264], predicting a set of 19,289

genes. From the predicted genes, we were able to annotate 15,504.

2.4.1.3 Modern samples nuclear data processing

We had three nuclear datasets for spectacled bears, two publicly downloaded (Cha-

parri and Nobody) [144] and our high coverage dataset (Mischief). We also downloaded shot-

gun datasets for six brown bears, two polar bears, one giant panda, one American black bear,

one Asiatic black bear, one sloth bear, and one sun bear (Tables 2.4, 2.5, 2.6). We removed

adapters [262] and mapped reads to the TreOrn1.0 genome using the bwa mem algorithm [159],

filtering for map quality of 30, removing alignments that are not primary, or have an unmapped

mate. We removed PCR duplicates using samtools rmdup [158] and performed realignment
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around insertions and deletions was performed using GATK Realigner Target Creator and Indel

Realignment [180]. The average nuclear coverage for Mischief was 45.97X, for Chaparri was

11.12X, and 10.81X for Nobody.

2.4.1.4 Ancient samples nuclear data processing

We obtained three bone samples from the Yukon government identified as giant short-

faced bears (Table 2.1) from the late Pleistocene (27-20 kya). The sample locations are shown

relative to other identified giant short-faced bear remains (Figure 2.7). We aligned adapter

trimmed and merged shotgun data from our three giant short-faced bear samples to the Tre-

Orn1.0 genome using bwa aln, using parameters optimized for ancient DNA [162]. We filtered

all alignments for quality, unique mapping, duplicates, and reads shorter than 35bp. The average

nuclear coverage for Canyon was 26.01X, for Hester was 1.82X, and 1.66X for Ophir.
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Legend

Figure 2.7: The distribution and age of giant-short faced bear fossil ages. Samples used in this study

shown orange. Coordinate data downloaded from FAUNMAP [96]. Blue depicts the peak extent of the ice

sheets during the Last Glacial Maximum 21,000 years ago downloaded from PaleoMaps [72].

2.4.1.5 Mitochondrial genome assemblies for ursids

We assembled a mitochondrial genome for Mischief the spectacled bear with Unicy-

cler [298] in hybrid mode, incorporating long read and short read data. We edited the sequence

in the Hyper Variable Region 2 (HVR2) based on coverage across the region, and confirmed

our results by running a reference based mitochondrial assembler (mia) [98]. We observed no

changes in sequence in the outputted assembly, and no longer observed a dip in coverage across

HVR2. Thus we used this sequence as the final mitochondrial genome for Mischief. We gen-

erated mitochondrial assemblies for Nobody and Chaparri using our Mischief sequence as the
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reference with mia [98]. We assembled mitochondrial sequences for Hester, Ophir and Canyon

using shotgun data, with mia [98], and ancient DNA substitution matrix, and the Arctodus simus

mitochondrial genome as the reference (NC011116.1) [142].

We downloaded a publicly available dataset of mitochondrial enriched Arctotherium

reads [190], which we assembled with mia [98] using the publicly available spectacled bear

(FM177764.1) [142] mitochondrial sequence, using an ancient DNA substitution matrix to ac-

count for deamination. We also dowloaded publicly available mitochondrial sequences for a

sun bear, sloth bear, cave bear, Asiatic black bear, giant panda, brown bear, polar bear, specta-

cled bear, ABC island brown bear, and American black bear to represent the diversity of ursid

species.

2.4.2 Phylogenetics of ursids

2.4.3 Mitochondrial phylogeny of ursids

We constructed a maximum likelihood and a Bayesian mitochondrial phylogeny for

all eight extant bear species, in addition to three extinct bear species: the cave bear, Arc-

totherium, and the giant short-faced bear (Figure 2.8 ). We observe that Arctotherium clusters

with to the spectacled bears, not the giant short-faced bears, confirmation of results of prior

research [190]. This clustering indicates that the large size of the Arctotherium and giant short-

faced bear lineages was the result of convergent evolution, not shared evolution.
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Figure 2.8: Mitochondrial phylogeny of eight extant bear species and three extinct bear species. Phy-

logeny constructed using relaxed filters (3X, 66% consensus) on assembled mitochondria using both Maxi-

mum Likelihood (ML) and Bayesian methods [263]. Bootstrap support values for ML are based on running

one hundred bootstrap replicates, where only values below 96 are reported in red. All posterior support values

are greater than 0.99, and not reported. The Arctotherium mitochondrial sequences cluster together and fall

sister to the spectacled bear clade, and not the giant short-faced bear, as presumed based on morphology.

2.4.4 Nuclear divergence time of ursids

Using our high coverage giant short-faced bear and spectacled bear, we sought to

date the divergence time of the spectacled bear and the giant-short faced bear. We identified a

set of single copy orthologous coding sequences based on the annotations of the giant panda

and polar bear. We identified 13,713 genes in this manner, and generated fasta sequences for
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each of the eight extant bear species and the giant short-faced bear (Table 2.4) using only the

four fold degenerate codon positions, for at total of 3,415,480 bases. We estimated divergence

times among the bear species using MCMCTree [302] under an independent clock model with

one fossil calibration and one tip date for the giant short-faced bear (Figure 2.9). We found

that the giant short-faced bear and spectacled bear diverged roughly 5.5 million years ago. The

tremactine bears diverged from the ursine bears roughly 13.4 million years ago.
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Figure 2.9: Phylogenetic tree and divergence times of eight extant bear species and the extinct giant

short-faced bear. The phylogeny and divergence time estimation was based on four fold degenerate sites

across 13,713 single copy orthologs. Time was calibrated at the root and based on the sample age of the

giant short-faced bear. The giant panda served as the outgroup. Branch lengths represent time before present

(million years ago (Mya)). The mean age of each node is shown, with 95% credibility intervals in parentheses

and depicted as purple bars around each node.

2.4.5 Demographics of the spectacled bear and giant short-faced bear

2.4.5.1 Modeling the population history of tremarctine bears

Using the TreOrn1.0 genome, we sought to model the population history of the spec-

tacled bear. We ran the pairwise sequentially Markovian coalescent (PSMC) model [163] for
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three spectacled bears, as well as a downsampled version of our high coverage spectacled bear to

roughly the same coverage as Nobody and Chaparri (∼10X) (Figure 2.10). We also performed

one hundred replicate bootstraps for each individual per the software instructions (Figure 2.11).

We observe that the three mid coverage samples (Downsampled Mischief, Nobody, and Cha-

parri) underestimate the effective population size for the oldest timepoints in the PSMC model

compared to the non-downsampled dataset for Mischief. PSMC is recommended to be run on

samples with at least 20X coverage. The lower coverage samples do not recover all of the het-

erozygous sites across the genome due to their lack of sampling depth. For the regions that are

used to infer the oldest coalescent events in the PSMC model, we observe smaller estimated

effective population sizes in the lower coverage samples due to this lack of depth.
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Figure 2.10: The demographic history of the spectacled bear. The inferred changes in effective population

size (Ne) over time using the PSMC model [163] for three spectacled bears, Mischief (the reference genome

sample, 46X), Nobody, and Chaparri. We also modeled the effective population size for a subsampled Mis-

chief (10X), such that it had roughly the same coverage as Nobody (10X) and Chaparri (11X). We assume a

generation time of 6 years and a per generation mutation rate of 0.6e-8 [144] per bp per generation. We note

that the lower coverage samples show a different history than the high coverage bear. PSMC is recommended

to to be run on samples with coverage greater than 20X.

The history of the spectacled bear is one of a decreasing population size. The demo-

graphic history of the spectacled bear as inferred by the PSMC model, indicates that the species

was most successful roughly 450 kya, during the end of a glacial period, where the species had

its peak effective population size. After which, the spectacled bear undergoes a steady decline

in effective population size in response to the continued drastic climatic fluctuations during the

middle Pleistocene. By the peak warm temperatures of the last interglacial maximum ∼130

kya, the spectacled bear population had significantly shrunk in size, as their preferred forest

habitat shrunk in size [111]. The final decrease in effective population size at the end of the
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Pleistocene epoch, 30-10 kya coincides with the late Pleistocene extinctions.
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Figure 2.11: Bootstrap replicate PSMC plots for three spectacled bears, Mischief (the reference genome

sample, 46X), Nobody, and Chaparri. We ran one hundred bootstrap replicates for each spectacled bear. We

also modeled the effective population size for a subsampled Mischief dataset, such that it had roughly the same

coverage as Nobody (10X) and Chaparri (11X). We assume a generation time of 6 years and a per generation

mutation rate of 0.6e-8 [144] per bp per generation.

We used the high coverage genome of the giant short-faced bear to model its past ef-

fective population size. Using the spectacled bear genome as the reference, we ran the (PSMC)

model [163] for the our high coverage giant short-faced bear, Canyon (Figure 2.12), rescaling

to account for the age of the sample. We also ran ten bootstrap replicates where we rescaled to

account for sample age (Figure 2.13).
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Figure 2.12: The demographic history of the giant short-faced bear. We inferred changes in effective

population size (Ne) over time using the PSMC model [163]. We assume a generation time of 6 years and a

per generation mutation rate of 0.6e-8 [144] per bp per generation. To account for the age of our sample, we

rescaled the time axis. The most recent time points in the PSMC model, which are known to be less accurate,

are thus the same timepoints which show a significant spike in Ne estimates, and can be ignored.

The demographic history of the giant short-faced bear based on the PSMC model

shows a species with a long history at a small effective population size. Steady declines in

effective population size throughout most of its history were followed by a slight rise in numbers

roughly 60kya. By 48kya, the start of main isotopic stage 3 interstadial (MIS 3), changes in the

climate in Yukon resulted in the expansion of forests, a habitat that would have been poorly

suited for the scavenging giant short-faced bear. Continued regional warming from 39-34kya

meant an increase in forest cover [13]. By which time, many of the herbivorous megafauna prey

of the giant short-faced bear were experiencing population declines, which would have been a

main contribution behind the local extinction of the giant short-faced bear in Beringia by 22kya.
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Figure 2.13: Bootstrap replicates of the demographic history of the giant short-faced bear. We ran ten

bootstrap replicates of the inferred changes in effective population size (Ne) over time using the PSMC model

[163], rescaling to account for the age of the sample (29,242 calBP). We assume a generation time of 6 years

and a per generation mutation rate of 0.6e-8 [144] per bp per generation. We observe very few differences in

the PSMC model between bootstrap replicates.

2.4.5.2 Pairwise diversity of bears

We used datasets for two captive spectacled bears, Chaparri and Mischief, as well

as two brown bears and two polar bears to compare levels of pairwise diversity among bear

species. We adapter trimmed reads for the two spectacled bears, two brown bears, and two

polar bears using SeqPrep2 [262], and mapped filtered reads to the TreOrn1.0 genome using

bwa [159]. We performed realignments around insertions and deletions using GATK Realigner

Target Creator and Indel Realignment [180]. We restricted further analyses to scaffolds larger

than 1Mbp in size.

We generated pseudohaploid fasta sequences by randomly selecting a base at each
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position for each of the three pairs of bear species. We then measured the number of pairwise

differences in non-overlapping 100kb windows for each bear species (Figure 2.14). We observe

that spectacled bears have very low levels of genetic variation, on the same order as polar bears,

albeit with a slightly wider distribution. In comparison, brown bears have a broader distribution

of pairwise differences, and thus greater genetic variation within the species.

To assess individual levels of diversity we estimated the genome wide heterozygosity

of our high coverage spectacled bear, Mischief. The spectacled bear carries roughly 3 heterozy-

gous sites per 10,000 base pairs, on the same order of magnitude as the inbred Florida panthers

[237] (Table 2.9). The heterozygosity levels of the spectacled bear are as low as those of a

well-known inbred and small population of pumas, indicating the long history of population

size decline has reduced the diversity of the spectacled bears to an alarmingly low degree.

Sample name Species Nuclear genome coverage Heterozygosity
Mischief T. ornatus 45X 0.000262
Chaparri T. ornatus 11X 0.000273
Nobody T. ornatus 10X 0.000289
Canyon A. simus 26X 0.000150

Table 2.9: Genome-wide heterozygosity for Tremarctine bears in our study. The nuclear heterozygosity

values for the three spectacled bears and one high coverage giant short-faced bear used in this study calculated

using the pileup method described previously [237].
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Figure 2.14: Number of pairwise differences per 100,000 bases measured in 100kb windows between

three pairs of bear species. We see that the level of genetic diversity is very low for spectacled bears, similar

to that observed for polar bears.

Our PSMC results for the recent history of the spectacled bear show a similar trend to

the genome wide heterozygosity measures for our three spectacled bears. All three spectacled

bears have low levels of genome wide heterozygosity, on the order of 3 heterozygous sites per

10,000 sites. The dramatic decrease in effective population size of the spectacled bear has thus

resulted in a species with very little genetic diversity.
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2.4.5.3 Archaic admixture between brown bears and giant short-faced bears

Based on the known overlap in time and range between giant short-faced bears and

brown bears, we looked for signals of archaic admixture between the species (Table 2.6). We

generated pseudohaploid fasta sequences for brown bears, giant short-faced bears, and the giant

panda, using the spectacled bear genome as the reference. In our species tree, bear 1 and bear 2

were brown bears, bear 3 was the introgressing giant short-faced bear, and bear 4 was the giant

panda, which served as the outgroup. We used the D-statistic to look for any incongruencies in

the species tree in shared derived alleles between the giant short-faced bear and one of the brown

bears. The D-statistic only considers sites where one of the brown bears and the giant short-

faced bear carry the derived allele while the panda and the other brown bear carry the ancestral

allele. We looked only at transversions to exclude any effects of ancient DNA damage.

We observe no signs of an excess of shared derived alleles between the giant short-

faced bear and any brown bear (Figures 2.15, 2.16). The estimated divergence time for the

giant short-faced bear and the ursine bears determined from MCMCTree of roughly 13 million

years is likely to exclude the ability for these two species to produce fertile offspring. Thus the

genome of the giant short-faced bear does not live on in extant brown bears.
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Figure 2.15: D-statistic analysis to look for signs of shared ancestry between the giant short-faced bear

and the brown bear. Bear 1 is identified at the top of each panel, and comparison with a different bear

2 is shown along the x-axis colored by bear 2. Positive D-statistic scores indicate bear 1 has greater allele

sharing with the polar bear than bear 2. Negative D-statistic scores indicate bear 2 has greater allele sharing

with polar bears than bear 1. Significance was determined based on weighted block jackknife calculations for

non overlapping 100kb windows (Figure 2.16). Bear 2 names depict the clade of each brown bear, where

naTHREEA refers to a North American Clade 3A bear and euTHREEA refers to a European Clade 3A bear.

GSFB refers to the giant short-faced bear. Details on the bears used for this analysis are provided in Table 2.6.
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Figure 2.16: Z-scores for the D-statistic analysis looking for signs of shared ancestry between the giant

short-faced bear and the brown bear. Z-scores were calculated from the standard error estimation determined

by the weighted block jackknife of non-overlapping 100kb windows. Bear 1 is identified at the top of each

panel, and comparison with a different bear 2 is shown along the x-axis colored by bear 2. Positive D-statistic

scores indicate bear 1 has greater allele sharing with the polar bear than bear 2. Negative D-statistic scores

indicate bear 2 has greater allele sharing with polar bears than bear 1. Scores of above 1.96 or below -1.96

indicate significant associated D-statistic values (Figure 2.15).

2.5 Discussion and next steps

We present a genome assembly for the spectacled bear, the sole surviving bear of the

tremactine bears. We also generate three genomes for an extinct tremarctine bear, the giant

short-faced bear, using the spectacled bear as the reference. The tremarctine genome means a
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better reference genome for analysis for other ancient tremarctine bear samples, as opposed to

the polar bear genome which had been used previously [144]. A new reference genome for a

tremarctine bear species provides a closer related species to which ancient DNA from the family

can be mapped, which given the rapid advancements in ancient DNA recovery, is particularly

important to recover more information from sequencing [92, 88]. Continued improvement of

DNA retrieval from ancient samples means having a reference genome for the last extant mem-

ber of the tremarctines will allow for greater data retrieval than with a distant reference genome.

Reference bias is a known problem in mapping and downstream analyses, especially in ancient

samples [100], and thus having a genome assembly for the tremarctine lineage will minimize

these effects for other tremarctine samples.

A reference genome and high-coverage shotgun dataset for the only extant subfamily

previously without a nuclear genome will also allow for more in-depth studies of intra-familial

diversity. Most ursid studies use the giant panda genome as the outgroup to ursine bears. How-

ever, the giant panda is more than 16.2 million years diverged from these species, while the

spectacled bear is 5.5 million years diverged [147]. A more closely related outgroup will allow

for greater assessment of ursine specialization, and possibly uncover more gene flow events

within the ursine lineage.

Using high coverage genomes, we modeled demographic history of the spectacled

bear and the giant short-faced bear, two species characterized by steadily declining popula-

tions. Today, spectacled bears are seen at a range of altitudes, though they prefer the higher

mountainous cloud forests. Thus, the disappearance of forests during the middle Pleistocene

considerably impacted their range and population size during the middle and late Pleistocene.
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In more recent times, the preferred forest ecosystem of the spectacled bear would have likely

afforded it protection from early human settlers, allowing it to survive to present day, though

their habitat is currently at risk due to mining, farming, illegal killing, and climate change.

The tremarctine bears, bar the spectacled bear, were unable to survive into the Holocene.

Early bear migrants into South America during GABI were able to take advantage of the initially

slim competition and plentiful prey. The tremarctine bears of South America, Arctotherium

spp., sustained five species on the continent throughout the Pleistocene, including the largest

bear species recorded. While all five Arctotherium species were extirpated by the end of the

Pleistocene, the lineage evolved to become increasingly smaller and more omnivorous, which

allowed it to survive in South America with ever increasing competition for prey from other

large carnivores [258].

The carnivorous niche of the giant short-faced bear in North America, made it highly

susceptible to the end Pleistocene loss of megafauna. However, in comparison to Arctotherium

sp., the giant short-faced bear went extinct only at the very end of the Pleistocene, implying a

different set of pressures for large bears in South America compared to North America. While

the giant short-faced bear is thought to capable of omnivory and diet shift based on cranial

structure [83], it was likely not adept to such a significant niche shift, especially given the

energy costs of such a large animal.

The giant short-faced bear highly specialized for its carnivorous niche, its large size

and craniodental anatomy as evidence, but this specialization also made it susceptible to changes

in its environment [282]. The mass extinctions during the end Pleistocene would have dra-

matically reduced the availability of large prey for the giant short-faced bear. Competition
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from brown bears was not the primary reason for the demise of the giant short-faced bear,

though brown bears did inhabit the giant short-faced bear’s dietary niche after their extinction

in Beringia [177]. In addition, to its inability to hibernate in comparison to the co-occurring

brown bears [177], the giant short-faced bear was better suited to the open woodlands of the

earlier Pleistocene, where it could use its size to forage or scavenge; the closed forests of the

late Pleistocene would have hampered its feeding behavior. By the peak of the last glacial max-

imum roughly 21,000 years ago, giant short-faced bears had disappeared from the Yukon area.

The youngest sample from the region being our Ophir sample, dated to 22,693 calBC 2.1.

The giant short-faced bears showed declines in population size similar to other megafauna

in Beringia at the time [16, 52, 248, 53]. As a next step, we aim to investigate whether any lin-

eage specific adaptations better suited the spectacled bear to surviving into the Holocene than

the giant short-faced bear. Or was sheer size to blame for the demise of the giant short-faced

bear?

While our giant short-faced bear samples represent the Beringian population, south

of the Cordilleran and Laurentide Ice sheets, giant short-faced bears survived until the late

Pleistocene, the youngest specimen uncovered being roughly 11 kya [242]. Data from a high

quality sample from the lower contiguous 48 states could uncover distinguishing traits of giant

short-faced bear populations, such as diet north and south of the ice. Future samples may shed

some light on how the bears in lower North America survived for another ten thousand years.
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3.1 Abstract

North American brown bears, also known as grizzly bears, are endangered today due

mainly to depredation by humans. Their range once extended from Alaska to Mexico and from

the Great Plains to California, where they were known as the California golden bearthe iconic

symbol of the state. Very little is known about the California grizzly bear, including its evolu-

tionary relationships to other grizzly bears. Today, the human relationship with large predators

has changed, as we increasingly recognize the role of predators in maintaining biodiverse and

stable ecosystems. Working with collaborators at the Museum of Vertebrate Biology (MVZ)

at UC Berkeley, the California Academy of Sciences (CAS), and the University of California

Santa Barbara we generated low coverage (5X) nuclear genomic data from two of the last Cali-

fornia grizzly bears, one of whom served as the model for the bear on the California state flag.

By performing population genomics analyses we can answer questions about the history and

uniqueness of the extinct California golden bear and its relationship to modern brown bears.

3.2 Background

3.2.1 Brown bears

The brown bear is one of the most widely distributed terrestrial mammals, encom-

passing the Holarctic. The range of the brown bear is the largest range of any bear species
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(Figure 3.1. Its wide distribution has meant that it has been well studied, especially in regards

to brown bear phylogeography [106, 58]. Due to variation in color and morphology, brown

bears have been divided into as many as 90 subspecies in North American alone, a case of

taxonomic over-splitting [184].

Figure 3.1: The geographical ranges of all eight extant bears. Extant range data is from the IUCN Red List

of Threatened Species [119]. Base map from Natural Earth.

Today, complete mitochondrial DNA analysis of brown bears divides the bears into

six major clades [108] (Figure 3.2). The major brown bear matrilineal clades show strong

phylogeography. Two clades subdivide Europe and Asia, clade 1 in Western Europe and clade

3 in Eastern Europe and the Middle East [271]. These two clades show a geography that can be

explained by the European paleoclimate, where clades existed in southern local ice age refugia,

and expanded north after glacial periods [107].
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Figure 3.2: The current (dark red) and past (light red) global ranges of brown bears. Geographical

distributions of brown bear clades. Brown bears have been divided into six major clades based on mitochondrial

genomes. The distribution of these clades shows the strong geographic pattern of variation. Figure taken from

[58].

Two less well-studied clades, 5 and 6, are endemic to Southern Asia. Complete mi-

togenomes only exist from brown bears from Tibetan Plateau and the Himalayas to represent

these two clades [108, 148]. Clade 5 was discovered in the Tibetan Plateau and sits basal to

other Eastern brown bear lineages [108]. Meanwhile, a complete mitochondrial clade 6 se-

quences falls basal to all other brown bear clades [148]. These basal lineages indicate a species

origin in Asia, however greater sampling in the region is needed to confirm such.

In North America, strong phylogeography defines the distribution of brown bears on

the continent [288]. Three clades constitute the diversity of North American brown bears based

on mitochondria, clades 2, 3 and 4. While all three of these clades were present in Beringia

North American at least 35,000 years ago (35 kya), some subclades have been replaced and oth-

ers have migrated [16]. The North American clade which has made its way south from Beringia

is clade 4. Clade 4 currently inhabits the contiguous United States and southern Canada. How-

ever, clade 4 bears were present in Beringia prior, with the oldest sample in North America thus
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far for this clade dated to 36,000 years old from Eastern Beringia [16]. Clade 4 brown bears

did make it south of the Laurentide and Cordilleran ice sheets prior to their coalescence into

one during the Last Glacial Maximum (LGM). A fossil specimen belonging to the clade from

Edmonton, Canada dated to 26 kya confirmed such [176].

North of the ice sheets in North America, local extinctions and postglacial migrations

of brown bears have resulted in a largely allopatric distribution of bears. Samples belonging to

subclade 3c brown bears have been dated to older than 50,000 years in the interior region of

Alaska [16]. No brown bear fossils dated to between 35-21 kya have thus far been found in

Eastern Beringia [16]. Presumably, local brown bear extinctions gave way to new colonization,

such that by the peak of the LGM 21 kya, a new subclade, clade 3b, entered the continent by

way of the Bering land bridge [16]. By 13 kya, retreat of the ice sheets enabled clade 3b bears

to expand further east into Alaska and Canada [16]. Meanwhile, clade 3a brown bears managed

to cross the Bering land bridge from Eurasia before its disappearance 11 kya [74]. Today, clade

3a inhabits western Alaska [16].

3.2.2 Polar bears

The history of clade 2 bears pertains to two bear species, the brown bear and the polar

bear. Mitochondrial analysis has shown that brown bears are paraphyletic to polar bears [49];

polar bear mitochondria fall within the diversity of brown bear mitochondria. Based on their

mitochondria, brown bears from subclade 2a are more closely related to polar bears, subclade

2b, than other brown bears. While these two species are estimated to have diverged from one

another roughly half million years ago [103, 169], subsequent admixture events commonly
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occurred when paleoclimatic conditions resulted in range overlaps [33, 34].

The brown bears to which the mitochondria of modern polar bears is most closely

related are those found in the Admiralty, Baranof and Chicagof (ABC) islands of southeastern

Alaska [249]. Nuclear genomes showed that while all North American brown bears carry 3 to

8 percent polar bear ancestry, ABC island bears have the highest levels of polar bear ancestry

of all modern brown bears [33, 36, 169]. The model to explain polar bear ancestry in present

day ABC island bears proposes that during a glacial period, the ice sheets extended southward.

Polar bears would have populated the glaciated coast for easy food access. Upon retreat of the

ice sheets, polar bears were stranded on the islands [33]. The area became suitable habitat for

brown bears, who are known to migrate between the mainland and nearby islands [205]. The

predominantly male migrations from the mainland meant heightened levels of polar bear ances-

try were retained on the X chromosome compared to the autosomes, and explains the shared

matrilieanage between ABC island brown bears and polar bears [33, 36]. It seems that island

population conversion was not an isolated event between brown and polar bears, as ancient

brown bears from Ireland and Kunashir have also been found to have polar bear ancestry [34].

Thus glacial refugia and retreat have played an important role in the history of brown bears.

3.2.3 California grizzly bears

Globally, brown bears have undergone a significant reduction in range since the 19th

century [247] (Figure 3.3). Brown bears in North America, known as grizzly bears, have

undergone a population reduction in the lower 48 states in the US and Mexico to less than 1

percent of their original size since the early 19th century [247]. At present, grizzly bears are
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found in Alaska, western Canada and in the states of Wyoming, Montana, Idaho and Washington

[247].

historic	range
current	range

Legend

Figure 3.3: Historical versus current range of grizzly bears. Current range in light brown, historic range in

striped brown. Data obtained from IUCN Red List of Threatened Species [119]. Base map from Natural Earth.

The California grizzly bear is an extinct population of brown bears that inhabited Cal-

ifornia. The last individuals of this population are believed to have died around 100 years ago,

largely due to over hunting by humans. Monarch, one the last California grizzly bears, was cap-

tured in Ventura County, Southern California in 1911 as part of a publicity stunt. Monarch lived

the rest of its life in captivity in zoos, with its remains preserved at both California Academy

of Sciences and the Museum of Vertebrate Zoology at UC Berkeley after its death. In addition

to Monarch, we sampled the remains of another California grizzly bear. Our second California

grizzly came from Monterey, California from 1871 from the collection at La Brea Tar Pits and
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Museum.

Clade 4 grizzly bears would have been an isolated population for some time during

the Last Glacial Maximum. After making their way south by at least 26 kya, based on fossil

identified in Edmonton, Canada, clade 4 brown bears would have been isolated from northern

brown bear populations. Other grizzly bears in North America were restricted to north of the

ice sheets until at least 13 kya when the Cordilleran and Laurentide ice sheets melted and the

ice-free corridor opened [105]. However, recent research confirms a viable pathway into the

lower 48 through southeastern Alaska after 17 kya [154]. The possibility of coastal migrations

along Western North America may have allowed brown bears from Alaska entry into California.

Fossil remains have played an important role in brown bear research. Ancient brown

bear analysis have uncovered patterns of migrations [16, 176], as well as archaic admixture

events with both polar bears and cave bears [34, 14]. Here, we generate and analyze the first

nuclear genomic scale data from California grizzly bears. We use fossil remains from two Cal-

ifornia grizzly bears to study their relation to modern brown bears and highlight the importance

of museum specimens in revealing population histories.

3.3 Methods

3.3.1 Sampling and data generation of bear DNA

3.3.1.1 Ancient California grizzly bears

We generated resequencing data from two ancient California grizzly bear samples,

Monarch and Monterey. For Monarch, we obtained bone and foot pad samples from Monarchs
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remains, which are preserved at the Museum of Vertebrate Biology (MVZ) at UC Berkeley and

the California Academy of Sciences (CAS), respectively. We initially gathered seven different

sample types to perform an initial assessment of fragment length, endogenous content, and the

the proportion of unique reads. All work was performed in a dedicated ancient DNA facility at

UC Santa Cruz, following standard clean room criteria [46].

DNA was extracted and isolated from three bone fragments, two toepad samples, hair,

and skin using methods optimized for the recovery of degraded DNA. For bone fragments, 100-

120mg of each bone fragment was powdered using a Mixer Mill MM 400 (Retsch). Following

powdering, a bleach pre-treatment was performed as outlined in [235] on one powder sample

(JK378). Next, the bone powder was incubated for 24 hours at 37 °C in an extraction buffer

optimized from bone (0.45M EDTA, 0.25mg/mL Proteinase K). Non-bone samples were incu-

bated overnight at 55 °C in a hair/tissue optimized extraction buffer (1mL of 2% SDS, 10mM

Tris, 2.5mM EDTA, 10mM NaCl, 5mM CaCl2, 40mM DTT, and 0.2mg/mL Proteinase K).

Finally, DNA was isolated using the silica column based method outlined in [51] with a final

elution of 50 µL buffer EBT (10mM Tris, 0.05% Tween-20).

Double-stranded DNA library preparation was performed using the method outlined

in [186] for all extracts. Double-stranded libraries were indexed and amplified in 50 µL re-

actions containing 10 µL pre-amplified library, 1x AmpliTaq Gold Buffer, 2.5mM MgCl2,

0.25mM dNTPs, 0.4 µM i7 indexing primer, 0.4 µM i5 indexing primer, and 0.04 U/ µL Am-

pliTaq Gold Hot Start Polymerase. Libraries were amplified in a Bio-Rad T100 thermocycler

using the following conditions: 94 °C for 10m, followed by 25 cycles of 94 °C for 30s, 60

°C for 30s, and 72 °C for 40s, followed by 72 °C for 7m. Post-amplified libraries were puri-
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fied using a 1.5X SPRI clean. All post-amplified and cleaned libraries were quantified using a

Qubit 4 (Invitrogen) and the Qubit 1X dsDNA HS assay kit (Invitrogen). Finally, libraries were

visualized on a TapeStation 2200 (Agilent) using a D1000 High Sensitivity Assay (Agilent).

Libraries were pooled and sequenced on a MiSeq at UC Santa Cruz (2x75bp). Foot pad and

hair samples returned low endogenous DNA levels, and thus we focused on long bone samples

for following work (Table 3.1).

Lab ID Accession ID Sample type Mean Fragment
Length (bp)

Endogenous
content (%)

JK269 CAS001 Toe pad 1 38.36 30.85
JK329 CAS001 hair 56.31 0.69
JK330 CAS001 Toe pad 2 45.01 6.41
JK331 CAS001 skin 49.30 0.18
JK321 CAS001 Femur 55.66 23.38
JK322 MVZ 24537 Occipital 52.98 4.02
JK323 MVZ 24537 Tarsal 55.81 14.78
JK378 bleach MVZ 24537 Femur 54.57 64.45

Table 3.1: Quality assessment of initial samples for Monarch. Sample ID, sample type, mean fragment

length, and endogenous content for seven initial samples, and one replicate treated with bleach. Long bone

samples, particularly in conjunction with bleach pre-treatment generated the highest quality libraries. Reads

were mapped to the polar near genome (GCA 000687225.1)

We sampled two additional long bone samples from Monarch’s remains at the Mu-

seum of Vertebrate Zoology to generate three extracts. DNA was extracted and isolated from

three long bone fragments using methods optimized for the recovery of degraded DNA. First,

100-120mg of each bone fragment was powdered using a Mixer Mill MM 400 (Retsch). Fol-

lowing powdering, a bleach pre-treatment was performed as outlined in [235] on all powder

samples. Next, the bone powder was incubated for 24 hours at 37 °C in an extraction buffer

optimized from bone (0.45M EDTA, 0.25mg/mL Proteinase K). DNA was isolated using the

silica column based method outlined in [51] with a final elution of 50µL buffer EBT (10mM
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Tris, 0.05% Tween-20).

Double-stranded DNA library preparation was performed using the method outlined

in [186] for all extracts. Double-stranded libraries were indexed and amplified in 50 µL re-

actions containing 10 µL pre-amplified library, 1x AmpliTaq Gold Buffer, 2.5mM MgCl2,

0.25mM dNTPs, 0.4 µM i7 indexing primer, 0.4 µM i5 indexing primer, and 0.04 U/ µL Am-

pliTaq Gold Hot Start Polymerase. Libraries were amplified in a Bio-Rad T100 thermocycler

using the following conditions: 94C for 10m, followed by 25 cycles of 94 °C for 30s, 60 °C for

30s, and 72 °C for 40s, followed by 72 °C for 7m. Post-amplified libraries were purified using

a 1.5X SPRI clean.

Single-stranded library preparation was performed using an ancient DNA optimized

version [132] of the method outlined in [279] for DNA extracts from two long bones. Single-

stranded libraries were indexed and amplified in 100 µL reactions containing 48 µL pre-amplified

library, 50 µL AmpliTaq Gold 360 Master Mix, 1 µM i7 indexing primer, and 1 µM i5 indexing

primer. Libraries were amplified in a Bio-Rad T100 thermocycler using the following condi-

tions: 95C for 10m, followed by 15 cycles of 9 °5C for 30s, 60 °C for 30s, and 72 °C for 60s,

followed by 72 °C for 7m. Post-amplified libraries were purified using a 1.2X SPRI clean.

All post-amplified and cleaned libraries were quantified using a Qubit 4 (Invitrogen)

and the Qubit 1X dsDNA HS assay kit (Invitrogen). Finally, all post-amplified libraries were

visualized on a TapeStation 2200 (Agilent) using a D1000 High Sensitivity Assay (Agilent).

Double-stranded libraries were pooled and sequenced at UC San Francisco Center for Advanced

Technology on a NovaSeq S4 (2x100bp). Single-stranded libraries were pooled and sequenced

at Fulgent Genetics on an Illumina HiSeq 4000 (2x150bp).
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3.3.1.2 Mitochondrial enrichment of a California grizzly bear

A hybridization enrichment was performed on the library JK321 using probes for

the complete brown bear mitochondria (NC 003427.1) and the MyBaits v3 protocol (Arbor

Biosciences). The library molecules were allowed to hybridize for 36 hours at 65C. Following

the MyBaits v3 protocol, the enriched library was amplified in a 50 µL reaction containing 15

µL enriched library, 1X KAPA HiFi HotStart ReadyMix, 0.5 µM forward primer, and 0.5 µM

reverse primer. The enriched library was amplified in a Bio-Rad T100 thermocycler using the

following conditions: 98 °C for 2m, followed by 30 cycles of 98 °C for 20s, 60 °C for 30s, and

72 °C for 60s, followed by 72 °C for 5m. The post-amplified enriched library was purified using

a 1.5X SPRI clean. The library was sequenced on a MiSeq at UC Santa Cruz (2x75bp).

We obtained five samples identified as California grizzly bears from the La Brea Tar

Pits and Museum (Table 3.2). We sampled each, and reduced them to powder using a Mikrodis-

membrator. We collected 50-115 mg for DNA extraction. Prior to extraction, we incubated the

bone powder at room temperature in a 0.5% bleach solution, and washed each sample three

times in 1 mL of molecular grade water, to remove contaminants and increase endogenous

yield [140]. We performed DNA extraction following the Dabney protocol [51], with in-house

modifications by J. Kapp. We converted the resulting DNA extracts into single-stranded ge-

nomic sequencing libraries following the Santa Cruz protocol [132]. We estimated the number

of cycles to amplify each library via quantatative PCR. We cleaned each amplified library with a

1.2X SPRI solution, and quantified DNA concentration using a high sensitivity Qubit Fluorom-

eter 4 and an Agilent 5200 Fragment Analyzer. We pooled the resulting libraries and performed

154



preliminary sequencing on a MiSeq at UC Santa Cruz (2x75bp) to assess library quality.

Of the five samples, only one had an endogenous content high enough (LaBrea YPM

MAM 7043) to allow for generation of high coverage nuclear dataset (Table 3.2). Using the

already made extract, we generated eleven more libraries following the Santa Cruz protocol

[132]. We again estimated the number of cycles to amplify each library via quantatative PCR,

and cleaned each amplified library with a 1.2X SPRI solution. We quantified DNA concen-

tration using a high sensitivity Qubit Fluorometer 4 and an Agilent 5200 Fragment Analyzer.

We pooled the twelve libraries and sequenced them on an Illumina HiSeq 4000 (2x150bp) at

Fulgent Genetics.

Lab ID Accession ID Locality Sample type Sample age Endogenous
content

SC19KLM001 LaBrea YPM MAM 7036 Alameda county skull 1871 AD 0.14%
SC19KLM002 LaBrea YPM MAM 7043 Monterey county skull 1871 AD 42.20%
SC19KLM003 LaBrea YPM MAM 7044 Monterey county skull 1871 AD 0.09%
SC19KLM004 LaBrea LACM 31148 Sacramento county pelvis and sacrum 1177 ybp 0.05%
SC19KLM005 LaBrea CALPOLY M 595 San Luis Obispo county skull 276 ybp 0.03%

Table 3.2: Quality assessment of additional ancient brown bear samples. Sample IDs, locality, type, age,

and endogenous content for five brown bear samples. We generated additional libraries for only sample LaBrea

YPM MAM 7043 based on initial sequencing results. Note: ’ybp’ denotes years before present.

3.3.1.3 Modern bears

Whole blood was collected from an adolescent North American male brown bear

(Dodge) Ursus arctos in captivity at Washington State University with approval by the Wash-

ington State University Institutional Animal Care and Use Commission (IUCAC) (Protocol

#03875 and #04922). Following storage at -80C in an EDTA vacutainer for several days, ge-

nomic DNA was extracted from five milliliters of whole blood using a Blood and Cell Culture
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DNA Midi Kit (Qiagen catalog no. 13343) following the manufacturers recommended proto-

col. The resulting high molecular weight DNA was serially diluted based on Qubit dsDNA HS

assay readings (Invitrogen Q32851) before input to the Chromium Genome Library Kit and Gel

Bead Kit v2 (10X Genomics catalog no. PN-120258). The library produced following 10X

Genomics protocol (Manual CG00043 Rev A) was assessed via Qubit assay and TapeStation

D1000 screen tape (Agilent catalog no. 5067-5582) before sequencing at Fulgent Genetics on

an Illumina HiSeq X Ten (2x150bp).

We also downloaded publicly available data for thirteen brown bears, 2 polar bears

and one American black bear (Table 3.3).
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Sample name Species location sex brown bear
clade

mitochondrial
coverage

nuclear
coverage ID Study

Monarch U. arctos Ventura, California, USA male 4 424 5.44 tbc this study
Monterey U. arctos Monterey, California, USA male 4 64 5.18 tbc this study

Dodge U. arctos unknown, lower 48 USA male 4 34 23.75 tbc this study

Montana U. arctos Glacier Park, Montana,USA male 4 58 20.25

SRR935609,
SRR935616-7,
SRR941811,
SRR941814

[169]

KenaiAK U. arctos Kenai Peninsula, AK, USA female 3a 81 31.21 SRR518712-3 [189]
DenaliAK U. arctos Denali Natl Park, AK, USA female 3a 470 16.46 SRR830337 [33]

EAK U. arctos unknown, Eastern AK, USA male 3b 30 16.00 SRR7758718 [272]

Finland U. arctos Ruokolahti, Finland female 3a 363 24.71

SRR935592,
SRR935595,
SRR935624,
SRR935628

[169]

NSweden U. arctos Slaka, Jokkmokk, Sweden female 3a 274 16.65
SRR935591,
SRR935625,
SRR935627

[169]

SSweden U. arctos Furudal, Sweden female 1 274 27.21
SRR935590,

SRR935593-4,
SRR935626

[169]

Adm2 U. arctos Admiralty Island, AK, USA female 2b 35 49.48 SRR518710-1 [189]

ABC06 U. arctos Admiralty Island, AK, USA female 2b 43 23.44

SRR935601,
SRR935608,
SRR935615,
SRR935619,
SRR941810,
SRR941813

[169]

Bar U. arctos Baranof Island, AK, USA male 2b 36 29.57 SRR518717 [189]

ABC01 U. arctos Baranof Island, AK, USA male 2b 98 23.77

SRR935596,
SRR935603,
SRR935610,
SRR935618,
SRR941809,
SRR941812

[169]

ABC04 U. arctos Chichagof Island, AK, USA male 2b 74 11.85

SRR935599,
SRR935606,
SRR935613,
SRR935622,
SRR935630

[169]

ABC05 U. arctos Chichagof Island, AK, USA female 2b 172 26.31

SRR935600,
SRR935607,
SRR935614,
SRR935623,
SRR941808

[169]

PB12 U. maritimus Iskanten, West Greenland female 2a 156 28.45 SRR942293 [169]
PB42 U. maritimus Melville Bugt, Greenland male 2a 185 22.65 SRR942281-2 [169]
Uam U. americanus Maine, USA male NA NA 37.13 SRR7813600-1 [261]

Table 3.3: Sample details for bears used in this study. Sample names, species, locations, and coverage

details for the samples used for nuclear analyses.

157



3.3.2 Updated Polar bear reference genome

3.3.2.1 Genome polishing and scaffolding

We generated a high quality reference genome for sample D24101 (female polar bear

from Southeast Greenland) using whole-genome shotgun, Hi-C, and Oxford Nanopore Tech-

nologies (ONT) libraries. Methods are detailed in the forthcoming paper [268]. Briefly, we

updated the previously published polar bear reference genome assembly (GCA 000687225.1)

[169] to more closely resemble our Southeast Greenland individual by first performing Pilon

polishing. We mapped shotgun data from our female polar bear to the original polar bear

reference using bwa mem [159], with default parameters except marking shorter split hits as

secondary (-M flag), marking duplicates using the MarkDuplicates module of Picard [4]. We

input these alignments Pilon using the –frags flag and run in diploid mode [289]. We scaf-

folded the preliminary assembly using a Hi-C library from the blood sample for D24101 using

the ”hic scaffold” module in HiRise [220]. Gaps generated from scaffolding were filled using

ONT data and PBJelly [77], running with flags for no between-scaffold gap-filling and only one

read required to fill a gap. We error corrected the gap filled assembly using three successive

rounds of Pilon polishing [289], and removed scaffolds short than 1 kbp. The final assembly is

2,330,490,886 bases in length and has a scaffold N50 of 72,237,886.

3.3.2.2 Identification X and Y scaffolds

We sought to identify the scaffolds that represented the sex chromosomes in our up-

dated polar bear genome assembly. The data used to generate the original polar bear assembly
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was from a male, however our shotgun, Hi-C, and long-read datasets were constructed from a

female polar bear. Therefore, we expected that little to no scaffolding of the Y chromosome

associated scaffolds would have occurred due to our processing.

We identified candidate X and Y scaffolds by alignment to the domestic dog and origi-

nal polar bear genome assemblies (GCA 000002285.2, GCA 000687225.1) [109, 169] detailed

in [268].

We aligned the polar bear assembly to the dog X chromosome from CanFam3.1

(NC 006621.3) using SatsumaSynteny2 from Satsuma2 with a minimum alignment length of

1000 [8]. We identified twenty scaffolds in this manner. We visualized syntenic hits between

the dog X chromosome and the polar bear genome assembly using Circos [143].

To filter the twenty scaffolds identified based on synteny with the dog X chromosome,

we gathered information on the scaffolds from the old polar bear assembly (GCF 000687225.1)

which had been assigned as X chromosome. Prior research had constructed a list of twelve scaf-

folds in the previous polar bear assembly which were identified as the X chromosome through

mapping of dog X chromosome genes and validation by coverage [33]. These identified scaf-

folds totaled to roughly 75Mb of X chromosome sequence [33]. We extracted the twelve pre-

viously identified X chromosome scaffolds and used SatsumaSynteny2 from Satsuma2 using a

minimum alignment length of 500 to align them with the new polar bear genome to identify

the results of scaffolding the genome [8]. We identified three scaffolds from the new polar

bear assembly based on synteny to the old polar bear assembly X chromosome scaffolds. Only

one of these three scaffolds overlapped with the scaffolds that were syntenic with the dog X

chromosome.
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We identified the regions of the new X chromosome assembly that were identified as

X chromosome in the prior polar bear genome (Figure 3.4). Roughly 52 Mbp of sequence was

newly identified as X chromosome in the new polar bear genome assembly.

Figure 3.4: Old polar bear genome X chromosome identified scaffolds mapped to new polar bear genome

largest X scaffold (X1). Synteny was performed with SynMap2 [257] and visualized using circos [143]. We

assembled approximately 52 Mbp of newly identified X chromosome in the new polar bear genome.

We sought to validate the X chromosome scaffolds and distinguish them from Y chro-

mosome scaffolds. First, based on identification of the Y chromosome scaffolds in our new

polar bear assembly. Due to the Hi-C library being from a female polar bear, we expected vir-
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tually no scaffolding of Y chromosome scaffolds. Using SatsumaSynteny2 [8] with a minimum

alignment length of 500, we aligned twenty Y chromosome scaffolds from the old polar bear

genome identified in prior work [25] to the new polar genome. We identified twenty scaffolds

in our new polar bear genome that had one to one synteny with the old polar bear Y scaffolds,

two of which were also identified when we mapped the old polar bear X scaffolds to the new

polar bear genome.

For each identified X and Y candidate scaffold, we examined the female to male ratio

of average scaffold coverage based on three previously published brown bears SRR5878341

(Female), SRR5878353 (Male), SRR5878360 (Male). We removed adapters from the brown

bears using SeqPrep2 using the default parameters except for increasing the quality score cutoff

to 15 (-q 15) [262]. We mapped reads to the new polar bear genome using bwa mem [159],

filtering for map quality of 30. We confirmed X scaffolds as those with a ratio > 1.7, and Y

scaffolds as those with a ratio < 0.3.

3.3.3 Sample processing

3.3.3.1 Modern bears processing

We adapter trimmed reads for the modern bears using SeqPrep2 using the default

parameters except for increasing the quality score cutoff to 15 (-q 15) [262]. Two bears were

sequenced using 10X technology (Dodge, EAK) which required the removal of barcodes and

primers using proc10xGenomics.py using the default settings [9]. We mapped reads to the new

polar bear genome using bwa mem [159], filtering for map quality of 30, removing alignments

that are not primary, or have an unmapped mate. We removed PCR duplicates using samtools
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rmdup [158]. Realignment around insertions and deletions was performed using GATK Re-

aligner Target Creator and Indel Realignment [180].

3.3.3.2 Ancient bears processing

For libraries constructed using the single stranded Santa Cruz protocol, we first mapped

reads to the PhiX genome using bwa mem [159] using default parameters. We removed any

reads that mapped to PhiX. Next, we adapter trimmed and merged reads from our two ancient

brown bear datasets using SeqPrep2, using the default parameters except for increasing the

quality score cutoff to 15 (-q 15), decreasing the minimum read length to 25bp, and the overlap

for merging (-o 15) [262]. To prevent any non-authentic ancient DNA from being included in

further analyses, we aligned only the merged reads to the polar bear genome sequence using

bwa aln [162] using ancient DNA parameters (-l 1024 -n 0.01 -o 2). We filtered such that all

alignments had map quality of at least 30 and all alignments were primary. We removed PCR

duplicates using samtools rmdup [158]. We sought to prevent any spurious mismappings that

may occur due to the short read length of aDNA by removing reads shorter than 35bp. We chose

35bp as our threshold due to prior work which has shown that this fragment length considerably

decreased the number of microbial alignments to the genome [185, 59].

We realigned around insertions and deletions using GATK Realigner Target Creator

and Indel Realignment [180]. We used mapDamage2 [130] to assess the 5’ and 3’ deamination

characteristic of ancient DNA to determine the authenticity of the data (Figures 3.5, 3.6). Both

California grizzly bear samples showed damage characteristic of ancient DNA.
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Figure 3.5: DNA fragmentation and nucleotide mis-incorporation profiles for Monterey sample as de-

scribed by mapDamage2 [130]. DNA fragmentation profiles show the base composition of the first and last

10 read positions and within the 10 genomic positions preceding and following read ends. Nucleotide mis-

incorporation profiles provide C to T (red), G to A (blue) and other (grey) occurrences of mutations relative

to the occurrence of the reference nucleotide along the first/last 10 read positions. We observe elevated levels

of nucleotide mis-incorporations and a damage profile that is characteristic of ancient DNA for Monterey one

only the original template strand as a result of the single-stranded Santa Cruz method [132].
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Figure 3.6: DNA fragmentation and nucleotide mis-incorporation profiles for three Monarch libraries

as described by mapDamage2 [130]. DNA fragmentation profiles show the base composition of the first and

last 10 read positions and within the 10 genomic positions preceding and following read ends. Nucleotide mis-

incorporation profiles provide C to T (red), G to A (blue) and other (grey) occurrences of mutations relative

to the occurrence of the reference nucleotide along the first/last 10 read positions. We observe elevated levels

of nucleotide mis-incorporations and a damage profile that is characteristic of ancient DNA for Monarch.

The Monarch library generated using the single-stranded Santa Cruz method [132] shows damage only on the

original template read, where as libraries generated following the Dabney protocol show damage on both reads.
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3.3.4 Population structure in brown bears

3.3.4.1 Matrilineal phylogeography in brown bears

We randomly selected at least 10 million adapter-trimmed reads for each of our sam-

ples (Table 3.3), and constructed a mitochondrial sequence using mia (mia flags: -i -c -C -U

-F -k 13) [98] with EU4976651 as the reference. For Monarch, we had previously generated

a mitochondrial enrichment dataset, and therefore used these reads for assembly of the mito-

chondria. For ancient samples, we used an ancient DNA substitution matrix to account for

deamination in mia (-s). Coverage for the mitochondrial assemblies are listed in Table ( 3.3.

We filtered assemblies using a consensus threshold of 66% and 3 X coverage per site for our

relaxed filter, and a consensus threshold of 90% and 10 X coverage per site for our strict filter.

Any site which did not meet these requirements was changed to an 'N'.

In addition to our assembled sequences, we downloaded mitochondrial sequences

for one polar bear (NC 003428), one American black bear (AF303109), and ten brown bears

(MG066705, AF303110, GU573491, AP012578, AP012585, AP012592, AP102581, AP012559,

AP012563, AP012572). We included the mitochondrial sequence we used as a reference

(EU4976651) in our mitochondrial dataset as well. We generated a strict and relaxed filtered

alignment by aligning the respective sequences using clustal omega [251]. Using Geneious

[135], we partitioned the alignment into six datasets: free sites, control region, rRNA, tRNA,

1st and 2nd coding positions, and 3rd coding positions based on mitochondrial annotations from

the brown bear (AF303110, AP012592, MG593966), American black bear (JX196366), Asi-

atic black bear (FM177759), polar bear (GU573490), and spectacled bear (FM177764). We
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ran PartitionFinder [150] to determine the partitions and best substitution model, with branch

lengths unlinked using the Bayesian Information Criterion. PartitionFinder separated the re-

lax filtered data into three mitochondrial partitions: 1) control region (Kimura two parameter

+ gamma), 2) 3rd codon positions (Hasegawa-Kishino-Yano + gamma), 3) free sites, rRNA,

tRNA,1st and 2nd coding positions (Hasegawa-Kishino-Yano + gamma + invariable sites). The

strict filtered dataset was partitioned into two mitochondrial partitions: 1) control region and

3rd codon positions (Hasegawa-Kishino-Yano + gamma), 2) free sites, rRNA, tRNA ,1st and

2nd coding positions (Hasegawa-Kishino-Yano + gamma + invariable sites). We performed

Maximum likelihood (ML) and Bayesian phylogenetic analyses for both datasets using the par-

titioning specified above. We used RAxML-NG [263] to produce ML phylogenies, running one

hundred bootstrap replicates. We also created phylogenies using a Bayesian approach using Mr-

Bayes [232] using the same partitioning as above. We ran four chains (one hot, three cold) for

10 million generations, with trees and model parameters sampled every 1,000 generations, with

the first 25% discarded as burn-in. Both datasets and methods showed identical tree topologies.

3.3.4.2 Population structure in the nuclear genome of brown bears

To identify regions on which short reads can uniquely map in the new polar bear

genome, we generated a mappability mask for the genome. We used seqbility (version 20091110)

on the adapter trimmed data for our polar bear, using kmers of 35 bp, and a stringency of 0.90

to generate the mask file as detailed in prior work [217].

We generated a variant file using ANGSD with the command ”angsd -snp pval 1e-6

-minMapQ 25 -minQ 25 -skipTriallelic 1 -uniqueOnly 1 -minMaf 0.01 -dobcf 1 -gl 1 -dopost
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1 -domajorminor 1 -domaf 1 -dogeno 1 -docounts 1 -rmTrans 1” [141] for all nineteen bears

on 37 autosomal scaffolds larger than 1 Mb. We used on transversions to avoid the effects of

ancient DNA damage. We kept only sites that were identified as uniquely mappable using the

mappability mask we generated for the polar bear genome.

We used 6,777,432 transversions as input into SmartPCA from the EIGENSOFT

package [208] to perform principal components analysis on nineteen bears encompassing three

species. We saw strong separation between each species along both principal components. We

also subset the data to include only North American brown bears and repeated the principal

components analysis with EIGENSOFT SmartPCA [208], again using 6,777,432 SNPs.

We generated a maximum likelihood phylogeny using our whole genome SNP data

with SNPhylo [152]. Using 6.78 million transversions as input, the program generated a max-

imum likelihood tree, using 100 bootstrap replicates, with the American black bear as the out-

group.

3.3.5 Polar bear ancestry in brown bears

We used the D-statistic to look for admixture between polar bears and brown bears.

From the alignment files, we generated pseudohaploid fasta files for all bears using ANGSD ’-

dofasta 1 -minMapQ 30 -minQ 30 -setMaxDepthInd’ to randomly select a base for each scaffold

larger than 1Mb [141], using the 95th percentile of coverage as the maximum depth cutoff. We

determined the 95th percentile separately for autosomes and scaffold X1. We compared every

pair of brown bears, using the polar bear as the introgressor and the American black bear as

the outgroup, with quad-aln-report from ChromCompare [6] to generate counts of ABBA and
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BABA sites in non overlapping windows of 500kb, masking CpG sites, and looking only at

transversions. We restricted all D-statistic analyses to only sites identified in the mappability

file to minimize mismappings due to short fragment lengths of ancient DNA. We calculated

the D-statistic using quad dstat wt jk from ChromCompare [6], as well as the weighted block

jackknife to estimate standard error and significance. We used both PB12 and PB42 as the

introgressing bear, testing all possible brown bear pairs. Results using either polar bear showed

the same trends. We used only the PB42 polar bear for plotting.

To generate a X chromosome to autosome D-statistic ratio for pairs of brown bears,

we also calculated the D-statistic for the largest autosomal scaffold, scaffold 1 (107Mb) to

be able to make comparisons based on looking at a similar size portion of the genome. We

followed the same methods as detailed above to calculate the D-statistic for pairs of brown

bears, using PB42 as the introgressing species, and Uam as the outgroup on non overlapping

500kb windows on scaffold 1. We selected only one brown bear to represent each clade or

island (SSweden for clade 1, ABC04 for Chichagof, Bar for Baranof, Adm2 for Admiralty,

EAK for clade 3b, DenaliAK for clade 3a, Montana for modern clade 4, Monterey for ancient

clade 4). We generated a X to autosome ratio by plotting the X D-statistic for a pair of brown

bears and the autosomal D-statistic for the same pair of brown bears.

We next used the f̂ statistic to quantify the relative polar bear ancestry identified in

each brown bear for sex chromosomes and autosomes. We used three scripts [121] to calculate

the amount of polar bear ancestry in each brown bear in our panel. We used ’F hat tv’ to

calculate the f̂ statistic in non overlapping 500kb windows in both autosomes and scaffold X1,

using PB12 and PB42 as members of the introgressing species, SSweden as the least admixed
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brown bear, and Uam as the outgroup. We used the script ’fhat parser’ to obtain f̂ statistic

values for each North American brown bear. To obtain standard error estimates, we ran the

script ’weighted block jackknife fhat’ using a block size of 500kb.

3.3.6 Male-specific relationships among bears

We generated pseudohaploid fasta files for the 19 scaffolds identified as belonging to

the Y chromosome for our ten male bears. We used Consensify to generate consensus sequences

for each Y scaffold [15], using the 95th percentile of coverage as the maximum depth, and map

and base quality thresholds of 30. We constructed a distance matrix using the ’ape’ package in

R, and generated a neighbor joining tree for the ten bears from the distance matrix.

3.4 Results

3.4.1 Matrilineal phylogeography in brown bears

A mitochondrial phylogeny for brown bears using the American black bear as the out-

group depicts the strong matrilineal phylogeography. Both California grizzly bears fall within

the diversity of the clade 4 bears (Figures 3.7, 3.8). Our modern clade 4 bear, Dodge, also

clusters with the lower 48 brown bears. Brown bears show strong structure based on the mito-

chondrial genome, whereby individuals of the same clade share closer ancestry with one another

than with other groups of brown bears. Migration and isolation alone were not responsible for

the level of differences seen between brown bear clade. The strong mitochondrial structure

suggests of a deep history of monophyletic brown bear clades which went on to migrate and
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occupy new ranges across the globe.

Figure 3.7: Relaxed mitochondrial phylogeny of six clades of brown bears. Detailed information on the

bears used to construct this tree provided in Table 3.3. The phylogeny generated using relaxed filtering

parameters (3X, 66% consensus) on the assembled mitochondrial sequences using both Maximum likelihood

(ML) and Bayesian methods using three partitions [263, 232]. Bootstrap support values for ML tree of less

than 96 reported in red, and posterior support values of less than 0.95 from the Bayesian tree are reported in

green. Both trees show the same topology.
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Figure 3.8: Strict mitochondrial phylogeny of six clades of brown bears. Detailed information on the bears

used to construct this tree provided in Table 3.3. The phylogeny generated using strict filtering parameters

(10X, 90% consensus) on the assembled mitochondrial sequences using both Maximum likelihood (ML) and

Bayesian methods using two partitions [263, 232]. Bootstrap support values for ML tree of less than 96

reported in red, and posterior support values of less than 0.95 from the Bayesian tree are reported in green.

Both trees show the same topology.

3.4.2 Population structure in the nuclear genome of brown bears

We used a set of 6.78 million transversions to perform a principal component analysis

(PCA), both with and without the American black bear and polar bear samples. Our larger panel

separates the three species (American black bear, polar bear, and brown bear) on both principal

components 1 (PC1) and 2 (PC2) (Figure 3.9). PC1 explains 33.73% of the genetic variation,

largely separating the American black bear from polar bears and brown bears. PC2 explains
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roughly half the amount of genetic variations, but separates polar bears from brown bears and

the American black bear. We see very clear separation on both PCs for each species.

Figure 3.9: Principal component analysis for all bears in our panel using SmartPCA [208]. The first

component separates the American black bear from the other bears, and the second component separates the

polar bear.

Repeating the PCA using only the North American brown bears, allows for distinc-

tions within brown bears (Figures 3.10, 3.11). The first three principal components describe

18.35%, 13.83%, and 10.51% of the total genetic variation, respectively. PC1 separates the

both the clade 4 brown bears and the Baranof/Chichagof ABC bears from the mainland grizzly

bears. The Baranof and Chichagof islands are the two furthest from the mainland, and based on

prior work, are known to have the highest levels of polar bear ancestry of all North American

grizzly bears [33, 36]. In comparison, huge recent reductions in range and numbers for clade 4

brown bears could mean that this population has experienced genetic drift, making them appear

more divergent from other brown bears. PC2 and PC3 both tease apart the bears based on geog-
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raphy, distinguishing between the western and eastern Alaskan brown bears, and the Admiralty

and Baranof/Chichagof bears. Brown bears are highly philopatric, therefore populations retain

much of their geographic structure at the nuclear level, as we see in the PCA.

Figure 3.10: Principal component analysis (PC1 and PC2) for grizzly bears in our panel. PC1 separates

clade 4 and Baranof/Chichagof bears from the other bears, and PC2 distinguishes the remaining bears based

on geography.
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Figure 3.11: Principal component analysis (PC1 and PC3) for grizzly bears in our panel. PC1 separates

clade 4 and Baranof/Chichagof bears from the other bears. PC3 distinguishes Admiralty island and clade 3b.

A maximum likelihood phylogeny constructed using 6.78 million transversions re-

capitulates the geographic clustering of brown bear in our panel (Figure 3.12). Bears group

geographically; European brown bears, North American clade 3a bears, clade 4 bears, clade 3b,

Admiralty bears, and Baranof/Chichagof bears cluster separately. Alaskan mainland bears of

clade 3a appear the least similar to other North American brown bears. This clade is the most

recent to have entered North America, sometime before the Bering land bridge disappeared

11kya. Clade 3a is also the most widely distributed, however in Alaska it remains restricted to

the western region of the state.
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Figure 3.12: Bear SNP tree using 6.78 million transversions. [119].

3.4.3 Polar bear ancestry in brown bears

To detect admixture between polar bears and brown bears in our panel, we used the

D-statistic. We used the American black bear to represent the ancestral allele (outgroup), po-
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lar bears as the derived allele (introgressor), and every pair of possible brown bears from our

sixteen bears to quantify relative levels of polar bear ancestry in brown bears (Figure 3.13).

For the 37 scaffolds larger than 1 Mb in length, we observe that the ABC island brown bears

share the greatest amount of alleles with polar bears compared to other brown bears sampled.

All comparisons between an ABC island brown bear and a non-ABC island brown bear have

significant Z-scores (Figure 3.14). A D-statistic value with a Z-score between 1.96 and -1.96 is

not considered significant. Thus, ABC island bears share significantly more ancestry with polar

bears than non-ABC island bears on the autosomes. Comparisons between the ABC islands

validate a known trend; that the islands furthest from the mainland (Chichagof and Baranof)

share a greater number of derived alleles with polar bears compared to bears from Admiralty

island, the island nearest the mainland. The distance from the mainland made it more difficult

for mainland brown bears to migrate to the Chichagof and Baranof islands. Therefore these

bears retained higher levels polar bear ancestry, as seen in the higher numbers of shared alle-

les for polar bears and Chichagof/Baranof brown bears. Our clade 3b bear, EAK, displays the

highest rate of shared derived alleles with polar bears of any non-ABC island bear. This clade is

closest geographically to the ABC islands, and may even be source population of brown bears

that colonized the ABC islands after the LGM. Thus migrations between the mainland clade 3b

bears and the ABC islands would have been commonplace, and polar bear ancestry would have

accumulated in the nearby mainland brown bears subsequent to admixture on the ABC islands.
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Figure 3.13: Admixture between polar bears and brown bears on the autosomes. Using the D-statistic,

we looked for evidence of allele sharing between brown bears and polar bears on the 37 autosomal scaffolds

larger than 1 Mb. Bear 1 is identified at the top of each panel, and comparison with a different bear 2 is shown

along the x-axis colored by bear 2. Positive D-statistic scores indicate bear 1 has greater allele sharing with the

polar bear than bear 2. Negative D-statistic scores indicate bear 2 has greater allele sharing with polar bears

than bear 1. Significance was determined based on weighted block jackknife calculations for non overlapping

500kb windows (Figure 3.14). Bears from Chichagof Island show the highest levels of polar bear ancestry

on the X scaffold relative to all other brown bears included this study. The island is the furthest from the

mainland, and thus likely received fewer migrations than Admiralty and Baranof islands, which are both closer

to the mainland.
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Figure 3.14: Significance scores for admixture between polar bears and brown bears on the autosomes.

Using the D-statistic, we looked for evidence of allele sharing between brown bears and polar bears on the

37 autosomal scaffolds larger than 1 Mb. Bear 1 is identified at the top of each panel, and with comparison

with a different bear 2 shown on the x-axis colored by bear 2. We used the weighted block jackknife on non

overlapping 500kb windows to calculate Z score using the standard error estimation, shown here. Z scores

greater than between 1.96 and -1.96 indicate significant amounts of allele sharing between one of the brown

bears and the polar bear. Positive Z scores indicate bear 1 has greater allele sharing with the polar bear than

bear 2. Negative Z scores indicate bear 2 has greater allele sharing with polar bears than bear 1.

We next quantified the amount of allele sharing between brown bears and polar bears

on the X chromosome. As admixture on the ABC islands was sex biased, we expect to see

greater amounts of allele sharing between ABC island bears and polar bears on the X chro-

mosome than we do on the autosomes. Our results show that the ABC island bears have the

greatest amount of allele sharing with polar bears relative to non-ABC bears, the Chichagof and
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Baranof islands being the greatest (Figures 3.15, 3.16). Within ABC island comparisons only

show a significant amount of allele sharing with polar bears when comparing the Chichagof

and Admiralty islands, where Chichagof bears have a significant amount more shared alleles

with polar bears than Admiralty bears. Comparisons between Chichagof and Baranof islands

and Baranof and Admiralty islands do not show significant levels of alleles sharing with polar

bears for the Chichagof and Baranof bears, respectively. All non-ABC island bears have non

significant levels of allele sharing with polar bears, with the exception of EAK, whose popula-

tion is closest to the ABC islands. In both the autosomal and X chromosomes we see greater

levels of allele sharing between our eastern Alaskan bear and polar bears than other non-ABC

island brown bears. The vicinity of this population to the polar bear source population on the

ABC islands facilitated more admixture events between eastern Alaska mainland bears and the

islands off the coast. The higher level of allele sharing on the X chromosome for EAK and polar

bears compared to non-ABC island bears likely results from dispersal of the ABC island bears

to the nearby mainland. All other non-ABC island brown bears have minimal allele sharing

with polar bears compared to other non-ABC island brown bears.
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Figure 3.15: Admixture between polar bears and brown bears on the X scaffold. Using the D-statistic,

we looked for evidence of allele sharing between brown bears and polar bears on the X scaffold. Bear one is

identified at the top of each panel, and each bear two comparison is shown along the x-axis colored by bear

two. Brown bear populations which show greater allele sharing with the polar bear on the X scaffold have

positive D-statistic values. Significance was determined based on weighted block jackknife calculations for

non overlapping 500kb windows (Figure 3.16). Bears from Chichagof Island show the highest levels of polar

bear ancestry on the X scaffold relative to all other brown bears included this study. The island is the furthest

from the mainland, and thus likely received fewer male brown bear migrations than Admiralty and Baranof

islands, which are both closer to the mainland.
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Figure 3.16: Significance scores for admixture between polar bears and brown bears on the X scaffold.

Using the D-statistic, we looked for evidence of allele sharing between brown bears and polar bears on the

X scaffold. Bear one is identified at the top of each panel, and each bear two comparison is shown along

the x-axis colored by bear two. We used the weighted block jackknife on non overlapping 500kb windows to

calculate Z score using the standard error estimation, shown here. Z scores greater than between 1.96 and -1.96

indicate significantly greater amounts of allele sharing between one of the brown bears and the polar bear.

We assess the relative levels of polar bear ancestry on the autosomes and X scaffold

by looking at the ratio for the D-statistic of the X to autosomal chromosomes. We see evidence

of sex-biased polar bear ancestry in ABC island bears based on the X to autosome D-statistic

ratio (Figure 3.17). The sex-biased polar bear ancestry is most dramatic in Admiralty island

samples. These bears exhibit high (5:1 to 4:1) ratios of ancestry on their X chromosome relative

to autosomes. This trend is the result of the heavily male-biased brown bear admixture with

polar bears on the ABC island nearest the mainland, Admiralty island. Conversely, mainland
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brown bears exhibit bias towards ancestry on the autosome relative to the X chromosome.

Figure 3.17: X chromosome to autosome D-statistic ratio for brown bears. We compare the X chromosome

to autosome D-statistic values for each possible pair of brown bears. Values in the figure are only those where

the bear listed first has greater allele sharing with polar bears than the second brown bear in the pair. We used

only scaffold 1 as the autosomal D-statistic value so as to compare scaffolds of similar size (scaffold 1 is 107

Mbp, scaffold X1 is 125 Mbp). Admiralty island brown bears have higher levels of allele sharing with polar

bears on the X chromosome than the autosome. This effect is due to the greater number of migrations from

mainland male brown bears onto Admiralty island compared islands further from the mainland (Baranof and

Chichagof). We used one bear to represent each island or clade for this analysis (SSweden for clade 1, ABC04

for Chichagof, Bar for Baranof, Adm2 for Admiralty, EAK for clade 3b, DenaliAK for clade 3a, Montana for

modern clade 4, Monterey for ancient clade 4).

We quantified the amount of polar bear ancestry in our brown bear panel using the f̂
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statistic for the autosomes and X chromosome (Table 3.4). The ABC islands brown bears have

the highest proportion of polar bear ancestry on the autosomes or X chromosome of any brown

bear. Specifically, the Chichagof island bears have the highest polar bear ancestry proportions

as measured by the f̂ statistic. Brown bears from Baranof island have the next highest levels of

polar bear ancestry on both autosomes and the X chromosomes, followed by Admiralty islands.

North American brown bears have between 3 to 10% polar bear ancestry on their autosomes.

The f̂ statistic is considered to be a conservative minimum of ancestry estimates [68], thus the

true polar bear ancestry levels in the North American brown bears are higher. Polar bear an-

cestry estimates for brown bears on the X chomosome show a drastic difference between the

ABC island and non-ABC island brown bears. ABC island bears show the same trend as on

the autosomes, Chichagof island bears having the highest proportion of polar bear ancestry, fol-

lowed by Baranof and Admiralty islands. Mainland brown bears migrated onto the ABC islands

and mated with polar bears, slowly dissipating the polar bear ancestry in the local island bears.

Islands closer to the mainland (Admiralty) had greater numbers of migrations, and therefore

showed greater X bias in polar bear ancestry. Non-ABC island bears have considerably lower

levels of polar bear ancestry on the X chromosome, only 1 to 3%. Male migrants from the

ABC islands to the mainland would carry less polar bear ancestry each generation, and thus

mainland populations would receive progressively less polar bear ancestry over time on the X

chromosome.
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Sample name location sex brown bear
clade

autosomes
f̂ (SE)

X chrom
f̂ (SE)

ABC04 Chichagof Island, AK, USA male 2b 9.40% (0.42%) 9.08%(2.06%)
ABC05 Chichagof Island, AK, USA female 2b 8.53% (0.44%) 7.92%(2.01%)

Bar Baranof Island, AK, USA male 2b 7.82% (0.41%) 5.91%(2.12%)
ABC01 Baranof Island, AK, USA male 2b 8.30%(0.41%) 6.20%(2.04%)
ABC06 Admiralty Island, AK, USA female 2b 6.36%(0.38%) 5.28%(1.62%)
Adm2 Admiralty Island, AK, USA female 2b 5.67%(0.39%) 5.06%(1.90%)
EAK unknown, Eastern AK, USA male 3b 5.60%(0.35%) 2.80%(1.35%)

Monterey Monterey, California, USA male 4 4.99%(0.37%) 2.24%(1.26%)
Monarch Ventura, California, USA male 4 4.50%(0.38%) 1.17%(1.32%)
Montana Glacier Park, Montana,USA male 4 4.15%(0.38%) 1.55%(1.33%)
Dodge unknown, lower 48, USA male 4 3.80%(0.37%) 0.92%(1.40%)

DenaliAK Denali Natl Park, AK, USA female 3a 3.37%(0.31%) 0.13%(1.21%)
KenaiAK Kenai Peninsula, AK, USA female 3a 2.98%(0.31%) 1.15%(1.04%)

Table 3.4: Proportion of polar bear ancestry measured using the f̂ statistic for autosomes and X chro-

mosome for North American brown bears. Standard error in parentheses calculated on non-overlapping

500kb windows. ABC island bears have the highest proportion of polar bear ancestry on autosomes and X

chromosome. Non-ABC islands bears have lower proportions of polar bear ancestry on the X chromosomes

than autosomes. We used brown bear SSweden as the unadmixed bear, polar bears PB12 and PB42 were used

as the other source population, and the American black bear served as the outgroup.

3.4.4 Male-specific relationships among bears

While the X scaffold shows strong geographical trends in the levels of polar bear

ancestry in brown bears, the Y chromosome does not. As the Y chromosome does not undergo

recombination, we could not use the D-statistic to look for evidence of allele sharing between

polar bears and brown bears. To assess the relatedness of brown bears and polar bears on the

Y, we generated a neighbor joining tree for the ten male bears in our panel (Figure 3.18).

The Y chromosome phylogeny is monophyletic for brown bears in respect to polar bears and

American black bears. We also do not see the strong phylogeography evident in mitochondrial

and nuclear DNA in the Y chromosome of brown bears. The longer branch length for Monarch

is presumed to be due to higher levels of ancient DNA damage. The consensus method of
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pseudohaploidization removes most of the effects of DNA deamination in the final fasta file.

3.0E-4

Dodge

Bar

EAK

Montana

PB42

ABC04

Monterey
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Monarch

Uam

Figure 3.18: Neighbor joining tree of 19 Y scaffolds. Haploid fasta sequences for the 19 Y scaffolds were

generated using Consensify to minimize the effects of aDNA [15] using the 95th percentile of coverage as the

maximum coverage cutoff, and map and base quality thresholds of at least 30. The Y phylogeny distinguishes

the three bear species, American black bear, polar bear and brown bear. ABC island brown bears cluster with

brown bears, not polar bears.

3.5 Discussion and next steps

The brown bear has been well studied as a species that has been shaped by its envi-

ronment. Throughout the Pleistocene, cycles of glaciation forced populations to find refugium.

After the ice melted, brown bears colonized new ranges [107], or ranges left unoccupied due to
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local population extinctions [16].

Our work recapitulates prior research which uncovered male biased brown bear gene

flow from the mainland onto the ABC islands [33, 36]. Stranded off the coast after the ice sheets

retreated, polar bears on the ABC islands were visited by male brown bears from the nearby

mainland. Over time, the polar bear ancestry on the ABC islands decreased, and the population

was converted into brown bears that retained some polar bear ancestry. In our analysis, we

found the greatest proportion of X chromosome to autosome polar bear ancestry on brown bears

from the Admiralty islands. The proximity of Admiralty island to the mainland meant a higher

number of male brown bear migrants mating with the local polar bears. In comparison, Baranof

and Chichagof islands, island more distant from the mainland, have a smaller proportion of

X chromosome to autosome polar bear ancestry in comparison to Admiralty bears. Thus the

legacy of male biased gene flow is seen today in the genomes of the ABC island brown bears.

In the past two hundred years, humans have shaped the history of the brown bear, by

reducing both their range and numbers. North American brown bears, also known as grizzly

bears, are endangered today, having survived extinction in isolated reserves and parks in Alaska,

and the northwest [188]. Their range, however, once extended from Alaska to Mexico and

from the Great Plains to California, where they were known as the California grizzly bearthe

iconic symbol of the state. While historical records show that the California grizzly bear was

once abundant, and in fact a major predator during the Gold Rush Era, it became extinct in

the early 1900s, thanks mainly to a concerted depredation effort by humans. Today, the human

relationship with large predators has changed, as we increasingly recognize the role of predators

in maintaining biodiverse and stable ecosystems.
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Brown bear ancient DNA has revealed past migrations, extinctions, and the diversity

of the species [153, 16]. Here, we used two museum samples from California grizzly bears to

assess the relationship of this extinct population to extant brown bears. Both mitochondrial and

nuclear analyses place the extinct California brown bear with our other clade 4 brown bears.

California grizzly bears carry at least 4-5% polar bear ancestry in their genome, the result of

migrations off the ABC islands onto the North American mainland. Interestingly, clade 4 brown

bears harbor greater levels of polar bear ancestry than the clade 3a brown bears of Western

Alaska. This suggests migrations between ABC island brown bears and brown bears in the

contiguous US and southwestern Canada were frequent. A coastal migration route would have

been viable after 17,000 years ago, allowing brown bears a path south before the ice sheets

melted [154]. Nuclear genomic data from brown bear fossils from the Pacific northwest and

Southeastern Alaska could confirm coastal migrations of North American brown bears after

the Last Glacial Maximum. Museum collections continue to be a unique source of genetic

information, and our ability to now generate whole genome data enable us to form a fuller

picture of paleoecology and past biodiversity of species.
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Chapter 4

Conclusion

For my dissertation, I presented de novo genome assemblies for two megafauna, the

puma and the spectacled bear, generated from second and third generation sequencing data.

Using this genome assembly, I learned about the diversity of the species, a Central Ameri-

can admixture event in Florida pumas, and provided an example of the short-lived benefits

to translocations. This genome allows researchers to learn more about the effects of habitat

fragmentation on pumas across their range at a genome scale, and has the potential to aid in

conservation management.This chapter was published in Nature Communications in October

of 2019, for which I served as co-first author.

Next, I presented the genome assembly of the spectacled bear, the last of the tremarc-

tine bears. The spectacled bear is the closest living relative to the extinct giant short-faced bears

that roamed North America during the last Ice Age. I constructed a genome for the giant-short

faced bear using the spectacled bear genome as the reference. I was able to uncover the de-

mographic histories of both species, and explore their relationships to other extant bears. I am
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working with collaborators on an expansion of this project to prepare the work presented in this

chapter for submission.

In my third chapter, I generated genomes for two extinct California grizzly bears, the

symbol of the state. Using population level genomic analyses, I determined that the California

grizzly bears I performed population level analyses to assess the relationship of extant brown

bears to the extinct California population. I used an updated genome assembly of the polar bear

for this work, in which I helped identify sex chromosome scaffolds in the genome. This work

is also currently in preparation for submission.

In addition to the work described above, I have also co-authored published research on

horses and fruit flies. I assembled a mitochondrial genome for Twilight, a female Thoroughbred

horse used to construct the EquCab3 reference genome [131]. My contribution to fruit fly

research entailed scaffolding the de novo assembly for a single outbred fruit fly to construct a

chromosome-scale assembly [11].

Together, I have contributed to the field with the addition of at least three genome

assemblies, and new reference-guided genomes for a number of extinct species. These genome-

scale data sets add to the growing field of work conserving top predators, and have the potential

to inform conservation management.
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ous alignments for the analysis of ultra-short ancient DNA sequences. BMC Biology,
16(1):121, October 2018.

[60] A. P. Jason de Koning, Wanjun Gu, Todd A. Castoe, Mark A. Batzer, and David D.
Pollock. Repetitive Elements May Comprise Over Two-Thirds of the Human Genome.
PLOS Genetics, 7(12):e1002384, December 2011.

[61] Isabelle Delisle and Curtis Strobeck. Conserved Primers for Rapid Sequencing of the
Complete Mitochondrial Genome from Carnivores, Applied to Three Species of Bears.
Molecular Biology and Evolution, 19(3):357–361, March 2002.

[62] Xinxian Deng, Wenxiu Ma, Vijay Ramani, Andrew Hill, Fan Yang, Ferhat Ay, Joel B.
Berletch, Carl Anthony Blau, Jay Shendure, Zhijun Duan, William S. Noble, and Chris-
tine M. Disteche. Bipartite structure of the inactive mouse X chromosome. Genome
Biology, 16(1):152, August 2015.

[63] Michael J Deniro and Samuel Epstein. Influence of diet on the distribution of nitrogen
isotopes in animals. Geochimica et Cosmochimica Acta, 45(3):341–351, March 1981.

[64] Clio Der Sarkissian, Morten E. Allentoft, Marı́a C. Ávila-Arcos, Ross Barnett, Paula F.
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Homa Fathi, Sabine Felkel, Carlos Fernández-Rodrı́guez, Esteban Garcı́a-Viñas, Mietje
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Nagaraj, Marı́a José Nueda, Montserrat Robles, Manuel Talón, Joaquı́n Dopazo, and Ana
Conesa. High-throughput functional annotation and data mining with the Blast2GO suite.
Nucleic Acids Research, 36(10):3420–3435, June 2008.

[96] R.W. Graham and Jr. E.L. Lundelius. Faunmap ii: New data for north america with
a temporal extension for the blancan, irvingtonian and early rancholabrean. https:
//ucmp.berkeley.edu/faunmap/index.html, 2010. data retrieved from FAUNMAP
II Database, version 1.0.

[97] Richard E. Green, Johannes Krause, Susan E. Ptak, Adrian W. Briggs, Michael T. Ro-
nan, Jan F. Simons, Lei Du, Michael Egholm, Jonathan M. Rothberg, Maja Paunovic,
and Svante Pääbo. Analysis of one million base pairs of Neanderthal DNA. Nature,
444(7117):330–336, November 2006.

[98] Richard E Green, Anna-Sapfo Malaspinas, Johannes Krause, Adrian W Briggs, Philip
L F Johnson, Caroline Uhler, Matthias Meyer, Jeffrey M Good, Tomislav Maricic, Udo
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