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Abstract

Motivation: Multi-trait analyses using public summary statistics from genome-wide association

studies (GWASs) are becoming increasingly popular. A constraint of multi-trait methods is that

they require complete summary data for all traits. Although methods for the imputation of sum-

mary statistics exist, they lack precision for genetic variants with small effect size. This is benign for

univariate analyses where only variants with large effect size are selected a posteriori. However, it

can lead to strong p-value inflation in multi-trait testing. Here we present a new approach that im-

prove the existing imputation methods and reach a precision suitable for multi-trait analyses.

Results: We fine-tuned parameters to obtain a very high accuracy imputation from summary statis-

tics. We demonstrate this accuracy for variants of all effect sizes on real data of 28 GWAS. We

implemented the resulting methodology in a python package specially designed to efficiently im-

pute multiple GWAS in parallel.

Availability and implementation: The python package is available at: https://gitlab.pasteur.fr/statis

tical-genetics/raiss, its accompanying documentation is accessible here http://statistical-genetics.

pages.pasteur.fr/raiss/.

Contact: hanna.julienne@pasteur.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

By solving practical and ethical challenges, public summary

statistics has become a gold entry point for the study of complex

traits (Pasaniuc and Price, 2017). In the past years, multi-trait

methods using summary statistics have attracted much scientific

attention and yields many applications including, e.g. multi-trait

testing (Liu and Lin, 2018; Turley et al., 2018) or correction

for pleiotropy in mendelian randomization (Verbanck et al.,

2018). Most multi-trait methods are only applicable to single nu-

cleotide polymorphisms (SNPs) with complete data for the traits

of interest, and imputation of missing statistics is mandatory

in many real data analyses. However, in the multi-traits context,

imputation must reach a very high level of accuracy, even SNPs

with moderate effect sizes, to avoid false association signal.

Existing solutions do not achieve this level of accuracy (see

Supplementary Fig. S1). The imputation must also be time efficient

so computation does not become a bottleneck in pre-processing

many traits.

We improved an existing imputation solution (Pasaniuc et al.,

2014) on two key points to make it suitable for multi-trait applica-

tions: (i) we optimize a hyper-parameters through a systematic space

search. (ii) We designed the python package RAISS (Robust and

Accurate imputation from Summary Statistics) so multiple traits can

be imputed in parallel.
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2 Materials and methods

2.1 Statistical model
The statistical model used in RAISS is similar to the one described in

(Lee et al., 2013). Summary statistics are given as Z-scores. The

model assumes that the Z-scores are under the null hypothesis but is

robust to realistic violations of this assumption (see Supplementary

Material). The idea behind summary statistics imputation is to lever-

age linkage disequilibrium (LD) to compute Z-scores of missing

SNPs from neighboring observed SNPs:

EðzijztÞ ¼ Ri;t R�1
t;t zt

where zi is the vector of missing SNPs, zt is the vector of observed

SNPs and R is LD matrix between SNPs. The conditional variance

of zi is estimated as:

VarðzijztÞ ¼ Ri;i � Ri;tR
�1
t;t Rt;i

It follows that the variance of a missing SNPs j explained by

observed SNPs equals R2
jR2j ¼ 1� VarðzjjztÞ. We use the standar-

dized conditional expectation of zj as its estimator:

ẑ j ¼ Eðzj ztj Þ=
ffiffiffiffiffiffiffi
R2

j

q

Details on the derivation are provided in Supplementary Material

along simulation results showing the robustness of this estimator in

the presence of causal SNPs (Supplementary Fig S3 and S4).

2.2 Ensuring correct inversion of Rt;t

Neighboring SNPs are highly correlated variables which makes the

inversion of Rt;t prone to numerical instabilities. We invert Rt;t with

the Moore-Penrose pseudo inverse. To ensure numerical stability,

we applied a very stringent pruning of small eigen-values—i.e. eigen

values below a given threshold are set to zero in the computation of

Rt;t pseudo inverse We will denote this threshold rcond in this art-

icle (as its corresponding parameter in the scipy.linalg.pinv

function).

2.3 RAISS pipeline and computation time optimization
2.3.1 Pre-computation of LD

We derived LD using individuals of European ancestry from the

1000 genome panel (Abecasis et al., 2012) (see RAISS documenta-

tion). To avoid repeated estimation of LD when imputing statistics

for multiple genome-wide association study (GWAS), RAISS pre-

computes pairwise LD between SNPs present in the reference panel

(see Supplementary Material and Supplementary Figs S5 and S6).

The execution times of 483 various imputation tasks are reported in

Supplementary Table S3. On Chromosome 1, the imputation took

on average 2 h and never exceeded 5 h 30 min.

2.3.2 Command line tool for chromosome imputation

The simplest access to the imputation function in RAISS is the shell

command raiss (accessible in a terminal after installing the package).

This command imputes the summary statistics for one trait and

one chromosome and filter the results according to the R2 value (see

Supplementary Fig. S5 and RAISS documentation).

3 Results

We tested RAISS performances using the following procedure. For a

chromosome and a trait: (i) remove randomly 5000 SNPs in the

Z-score file, (ii) impute these 5000 SNPs, (iii) set imputation

hyper-parameters and (iv) compute the correlation between the real

Z-scores and the imputed Z-scores.

3.1 Effect of hyper-parameters
We ran the above validation procedure on Chromosome 22 for

a height GWAS (Wood et al., 2014). We varied the stringency in

pruning small eigen-value from 10e-15 (default value in scipy) to

0.1, and the imputation R2 filtering threshold from 0.1 to 0.9.

The pruning threshold for small eigen-value turns out to be the

most important hyper-parameter to ensure a good correspondence

between observed and imputed Z-scores. The imputation quality

concomitantly increases with the threshold to reach a high correl-

ation of 0.96 (see Fig. 1). A more complete discussion about the

setting of the rcond parameter is available in Supplementary Figure

S2. Filtering imputed SNPs by their R2 improves only slightly the

imputation accuracy. Moreover, if the R2 threshold is set too high

most of the imputed SNP would be filtered (see Supplementary Fig.

S7 and Supplementary Material).

3.2 Performance on a large panel of traits
To further assess the relevance of the hyper-parameters defined

using the height GWAS data (rcond ¼ 0.1 and R2 > 0.6), we applied

the final procedure for the analysis of 28 GWAS (see Supplementary

Table S1). The correlation between real and imputed Z-scores varied

from 0.9 to 0.97 (see Supplementary Table S2) dramatically increas-

ing performances as compared with existing approach. We used

imputed summary statistics from RAISS as input for a multivariate

test method currently available at http://jass.pasteur.fr/index.html

and we did not observe any P-value inflation as measured by the

genomic control coefficient (see Supplementary Fig. S8).

4 Conclusion

We implemented an efficient tool allowing for the imputation of

multiple summary statistics in parallel. We demonstrate a greatly

improved accuracy for small size-effect variants in the real data ana-

lysis of 28 GWAS. Thus, the RAISS package has an appropriate level

of confidence that makes it suited for the imputation of summary

statistic for various multi-trait analyses.
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Fig. 1. Imputation performance measured on real data (height GWAS). The

x-axis shows the measured SNP z-scores and the y-axis shows the imputed

z-scores for the same SNPs (the imputation was performed with the plotted

SNPs masked). The color scale shows the variance explained by the imput-

ation model (R2) for each SNPs. Only SNPs with a R2 above 0.8 are repre-

sented. Each panel corresponds to a different rcond parameter which

determines the eigen vector used to perform the LD matrix inversion (see

Section 2.2)
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