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Abstract 
 
Recent evidence suggests that language processing is well-adapted to noise in the input 
(e.g., spelling or speech errors, misreading or mishearing) and that comprehenders readily 
correct the input via rational inference over possible intended sentences given probable 
noise corruptions. In the current study, we probed the processing of noisy linguistic input, 
asking whether well-studied ERP components may serve as useful indices of this 
inferential process. In particular, we examined sentences where semantic violations could 
be attributed to noise—for example, in “The storyteller could turn any incident into an 
amusing antidote”, where the implausible word “antidote” is orthographically and 
phonologically close to the intended “anecdote”. We found that the processing of such 
sentences—where the probability that the message was corrupted by noise exceeds the 
probability that it was produced intentionally and perceived accurately—was associated 
with a reduced (less negative) N400 effect and an increased P600 effect, compared to 
semantic violations which are unlikely to be attributed to noise (“The storyteller could 
turn any incident into an amusing hearse”). Further, the magnitudes of these ERP effects 
were correlated with the probability that the comprehender retrieved a plausible 
alternative. This work thus adds to the growing body of literature that suggests that many 
aspects of language processing are optimized for dealing with noise in the input, and 
opens the door to electrophysiologic investigations of the computations that support the 
processing of imperfect input. 
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Communication between biological agents and/or artificial systems involves the 
transmission of a signal over a channel, in the course of which the signal may get 
corrupted by noise (Shannon, 1948). Because the input to the human comprehension 
system often contains errors (e.g., Bond, 1999; Bortfeld et al., 2001; Ferreira & Patson, 
2007; Fromkin, 1971), examination of language processing through a noisy-channel lens 
can yield critical insights about human language comprehension mechanisms (Levy, 
2008). 
 
Noise in the linguistic input can result from a) production errors (speech errors, 
typographical errors, etc.), and b) perception errors (due to sub-optimal listening/viewing 
conditions, noise in the environment, etc.). The fact that communication typically 
proceeds smoothly suggests that comprehension mechanisms are well-adapted to this 
noise. A rational comprehender’s guess of what was intended in a noise-corrupted 
linguistic exchange can be expressed as the probability of the speaker’s intended 
sentence, si, given the perceptual input, sp: P(si | sp). By Bayes’ rule, this value is 
proportional to the product of the prior (what is likely to be communicated), P(si), and the 
likelihood that a noise process would generate sp from si, P(sp | si) (e.g., Gibson et al., 
2013). 
 
Prior behavioral studies using offline comprehension questions to probe interpretation 
suggest that readers often take the meaning of a sentence to differ from that of the literal 
string when the literal compositional meaning of the string has low prior probability, P(si) 
(Christianson et al., 2001; Ferreira, 2003), and/or the potential noise corruption that might 
have generated that string has high probability, P(sp | si) (Gibson et al., 2013; Poppels & 
Levy, 2016). For example, readers often infer that the meaning of the sentence “The 
mother gave the candle the daughter” corresponds to a more plausible alternative (e.g., 
“The mother gave the candle to the daughter”). According to the noisy-channel account, 
P(si = “The mother gave the candle the daughter”) is low whereas P(si = “The mother 
gave the candle to the daughter”) is higher, and the probability that the more plausible 
sentence was intended by the producer but corrupted (e.g., by the deletion of “to”) into 
the implausible version that was perceived, P(sp = “The mother gave the candle the 
daughter”| si = “The mother gave the candle to the daughter”), is relatively high. As a 
result, P(si = “The mother gave the candle to the daughter” | sp = “The mother gave the 
candle the daughter”) is higher than P(si = “The mother gave the candle the daughter” | sp 
= “The mother gave the candle the daughter”) and readers interpret the sentence 
accordingly. Further, readers maintain uncertainty about the preceding input as they 
process a sentence and can revise their initial parse in real time, as needed. For example, 
in an eye-tracking study, Levy et al. (2009) showed that, when a later portion of a 
sentence (e.g., “The coach smiled at the player tossed the ball”) renders P(si) low, readers 
look back to previous locations in the sentence (e.g., “at”) which are probable loci of 
noise corruptions (e.g., because P(“at” | “as”) is high). 
 
Thus, according to the noisy-channel framework, comprehenders consider a range of 
alternatives, in proportion to their probability, as a sentence unfolds. Capturing the full 
distribution of reader/listener expectations is crucial for future progress in developing a 
noisy-channel model that quantitatively predicts human language comprehension. 



 4 

However, behavioral measures such as reading time and comprehension accuracy may 
lack the sensitivity to reveal this fine-grained, rapidly changing probabilistic signal. 
 
In the present work, we take a first step towards probing how noisy-channel inference 
unfolds in the moment of processing by leveraging the temporal resolution of the 
electroencephalogram (EEG) signal. Two event-related potential (ERP) components have 
been consistently linked to sentence comprehension in electrophysiological investigations 
of language processing: the N400 and the P600. In what follows, we briefly review 
current and former accounts of these components with an eye towards their interpretation 
in light of a noisy-channel lens on human communication. We then propose, and provide 
empirical evidence, that the relative magnitudes of the N400 and P600 may constitute 
useful indices of the relative probabilities of literal interpretation versus noisy-channel 
correction of the input. 
 
ERP signatures of language processing 
 
The N400—a negativity peaking 400ms after word onset—is hypothesized to index the 
ease of accessing the semantic representation of a word given the preceding input (e.g., 
after “I take my coffee with cream and...”, “dog” elicits a more negative deflection than 
“sugar”; Kutas & Hillyard, 1984; Kutas & Federmeier, 2011). Recent computational 
models construe the N400 as indexing the lexico-semantic prediction error or the update 
in network activation elicited by a word as it is integrated into the preceding context (e.g., 
Fitz & Chang, 2019; Rabovsky et al., 2018; see also Cheyette & Plaut, 2017 for a model 
of the timecourse of the N400). Consistent with a noisy-channel view of language 
processing, the N400 is reduced when an incongruous completion is orthographically 
related to a plausible continuation, such that a plausible noise corruption might be 
inferred (e.g., “Before lunch he has to deposit his paycheck at the bark [vs. bank]”; 
Laszlo & Federmeier, 2009; Ito et al., 2016). 
 
The P600—a positivity most pronounced 600-900ms after word onset—is less well 
understood. It was originally hypothesized to reflect syntactic integration difficulty (e.g., 
after “Every Monday he...”, “mow” elicits a larger positivity than “mows”; Osterhout & 
Holcomb, 1992; Friederici, 1995; Hagoort et al., 1993). However, this interpretation has 
faced numerous challenges. First, a number of non-syntactic manipulations elicit a P600 
(e.g., spelling errors - "fone" instead of "phone"; Münte, Heinze, Matzke, Wieringa, & 
Johannes, 1998; van de Meerendonk, Indefrey, Chwilla, & Kolk, 2011; Vissers, Chwilla, 
& Kolk, 2006). Second, sentences like “The hearty meal was devouring…” elicit a P600 
in spite of being syntactically well-formed (e.g., Kim & Osterhout, 2005; Kuperberg, 
2007; Kuperberg et al., 2003; van Herten et al., 2005). According to traditional 
interpretations of these components, because these sentences are semantically anomalous, 
an N400 should ensue in place of these “semantic P600’s” (Brouwer et al., 2012). 
 
Consequently, alternative accounts of the P600 have been put forward in the literature. 
Some appeal to parallel streams of (syntactic and semantic) processing in constructing the 
representation for an input string (e.g., Kim & Sikos, 2011; Kos et al., 2010; Kuperberg, 
2007). Others argue that, given its scalp distribution and tight time-locking to responses, 
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the P600 belongs to the P300 family of domain-general components (Coulson et al., 
1998; Sassenhagen et al., 2014; Sassenhagen & Fiebach, 2019; for a review, see Leckey 
& Federmeier, 2019), which are thought to index the process of updating one’s model of 
the world when one encounters low-probability (“oddball”) events (Donchin, 1981; 
Sutton et al., 1965). Consistent with a connection to the P300, Kolk and colleagues 
proposed an account of the P600 as indexing our continuous monitoring of the linguistic 
(or other) input for possible errors (Kolk et al., 2003; Kolk & Chwilla, 2007; van de 
Meerendonk et al., 2011; Vissers et al., 2006). Recent computational accounts take 
different approaches: Brouwer et al. (2017) propose a single-stream model of N400 and 
P600 effects, and argue that the P600 indexes semantic integration1 into the unfolding 
utterance, and Fitz and Chang (2019) model the P600 as the prediction error at the 
sequencing layer of a neural network. 
 
An ERP signature of noisy-channel inference 
 
Building on the general error-monitoring idea (van de Meerendonk et al., 2011), we 
propose that the relative magnitudes of the N400 and P600 may provide a useful index 
of rational inference in the noisy-channel framework of sentence comprehension. 
When the input is anomalous but unlikely to have been an error, a large N400 ensues and 
no P600 is typically observed. In contrast, if the input is anomalous but can be explained 
by a plausible noise process, readers infer that a more probable intended sentence was 
corrupted, and a P600 ensues while the N400 is reduced. We do not here aim to provide a 
mechanistic account of either component (but see discussion); instead, we aim to relate 
well-known patterns in the EEG signal to a computational-level account of sentence 
comprehension (Gibson et al., 2013; Levy, 2008) in order to illuminate the noisy-channel 
inference process. 
 
More precisely, Equation 1 describes the proposed relationship between the N400 and 
P600 effects and noisy-channel inference. Given (i) a preceding sentence context C and 
its most probable parse2; (ii) an expected completion word, wexpected; (iii) the incoming 
(target) word: wreceived; and (iv) sexpected and sreceived —the sentences that correspond to 
connecting wexpected and wreceived to C  respectively, there is a smaller (less negative) N400 
and larger (more positive) P600 effect whenever P(si=sreceived | sp=sreceived) is lower than 
P(si=sexpected | sp=sreceived): 
 
!400	%&'	(600	 ∝ 	!"#!$	#"#$"%&"'&#$$#("%"!)"')!(#!$	#("%"!)"'|#$$#("%"!)"')

=	!"#$$#("%"!)"'&#!$	#"#$"%&"')!(#!$	#"#$"%&"')!"#$$#("%"!)"'&#!$	#("%"!)"')!(#!$	#("%"!)"')
    (1) 

 

 
1 Note that this is conceptually similar to the N400 in Rabovsky et al.’s model and is somewhat at odds 
with many classic findings (outside of the “semantic P600” cases) showing that semantic integration 
difficulty leads primarily to negativity in the N400 time window and not positivity in the P600 time 
window. In fact, recent large-scale investigations observe negative voltages in the P600 time window for 
highly semantically implausible continuations (Fleur et al., 2020; Nieuwland et al., 2020). 
2 For the current purposes, we set aside the possibility of multiple parallel parses of the preceding context, 
C, and how their relative probabilities can be re-weighted given new input but see Levy et al. (2009) for 
discussion. 
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For example, when C = “The storyteller could turn any incident into an amusing…”, 
wexpected may be “anecdote.” If  wreceived = “antidote”, P(si = sexpected) is higher than P(si = 
sreceived) and the probability of a noise corruption (e.g., a typographical error) transforming 
“anecdote” into “antidote” P(sp = sreceived | si = sexpected) is relatively high (see Figure 1). As 
a result, P(si=sexpected | sp=sreceived) is higher than P(si=sreceived | sp=sreceived). If  wreceived = 
“hearse”, P(si = sexpected) is higher than P(si = sreceived) but the probability of a noise 
corruption transforming “anecdote” into “hearse” P(sp = sreceived | si = sexpected) is much 
lower than the probability of no corruption occurring, P(sp = sreceived | si = sreceived). As a 
result, P(si=sexpected | sp=sreceived) is lower than P(si=sreceived | sp=sreceived). According to 
Equation 1, both the N400 and P600 amplitudes will be more positive when wreceived = 
“antidote” compared to when wreceived = “hearse” (see Figure 1 for additional examples). 
 
Several previously observed empirical phenomena in the ERP literature can be 
reinterpreted through the lens of noisy-channel comprehension. The following non-
exhaustive list of findings lends further support to the proposal that the relative 
component magnitudes reflect the probability of a noisy-channel inference: 
 

1) Number, gender, and case agreement errors elicit no N400 effect (or a much 
smaller N400 relative to those elicited by semantically incongruous words; 
Guajardo & Wicha, 2014; Wicha et al., 2004) but a robust P600 effect, because a 
close alternative exists in these cases, which the comprehender can correct to. For 
example, the probability of the meaning/structure resulting from completing 
“Every Monday he…” with “mow”, P(si=“Every Monday he mow”), is low, 
whereas P(si=“Every Monday he mows”) is relatively high. Critically, the 
probability of a noise process changing “mows” to “mow,” P(sp=“Every Monday 
he mow”|si=“Every Monday he mows”), is relatively high; “mow” involves only 
a single character/morpheme deletion from “mows”. 

2) “Semantic P600s” exist when a close alternative exists that the producer plausibly 
intended. For example, P(si=“ The hearty meal was devouring…”),  is low, while 
P(si=“ The hearty meal was devoured…”) is relatively high, and critically P(sp= 
“The hearty meal was devouring…” | si= “The hearty meal was devoured…”) is 
high. 

3) Semantic violations that have been typically found in the literature elicit a large 
N400 effect and little to no P600 effect3 because the prior probability of the 
received sentence (or word given the preceding sentence context) is low (e.g., 
P(sp= “I take my coffee with cream and dog” is low) but noise corruption is 
implausible (e.g., P( sp= “I take my coffee with cream and dog” | si = “ I take my 
coffee with cream and sugar”) is low). 

 
3 In some studies, a P600 is reported after an N400 for canonical semantic violations (see Brouwer, Fitz, & 
Hoeks, 2012; Van Petten & Luka, 2012). It is noteworthy that this is more likely to occur when an 
unnatural secondary task (e.g., acceptability judgments) is included. Kolk et al. (2003) directly compared 
judgment and naturalistic comprehension tasks and found a P600 in the semantic violation cases only for 
the former. When the task is to find errors, participants plausibly assume an increased likelihood of errors 
across the board. Other aspects of the task, e.g., the proportion of errors in the fillers or the proportion of 
incongruous sentences in the environment, also affect the prior and likelihood and, therefore, the 
probability of the N400 and P600 on the current account (e.g., Delaney-Busch et al., 2019; but see 
Nieuwland, 2020). We return to this issue in the discussion. 
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4) Semantic violations which involve words that are orthographically close to a 
highly plausible completion elicit smaller N400 effects (compared to words that 
are incongruous and not orthographically close to congruous word), which are 
followed by P600 effects. In such cases, the probability of the received sentence 
(e.g., P(sp= “Before lunch he has to deposit his paycheck at the bark” ) ) is low, 
but a noise corruption (e.g., that a typographical error caused “n” to be replaced 
by “r”) is plausible (e.g., P(sp= “Before lunch he has to deposit his paycheck at the 
bark” | si= “Before lunch he has to deposit his paycheck at the bank” ) is high). 

5) Further, semantic violations involving words that are orthographically close to a 
more plausible alternative elicit smaller N400 and larger P600 effects when the 
cloze probability of the most likely completion is higher (Ito et al., 2016, 2017). 
All else being equal, P(si= “…bank” | sp= “…bark”) is higher when the prior 
probability of the most likely completion, P(si= “...bank” ) is higher. 

6) Similarly, spelling errors which create pseudo-words (e.g., “pank”) that are close 
to a plausible word elicit no N400 effect and a larger P600 effect (compared to 
real words that are incongruous, such as “bark”). In these cases, a noise corruption 
(e.g., that a typo caused “b” to be replaced by “p”) is also plausible but the prior 
probability of the pseudo-word, P(si= “...pank” ), is very low. Therefore the 
likelihood of the noisy-channel inference is even higher. 

7) Syntactic errors in “Jabberwocky” sentences, i.e., sentences that include function 
words/morphemes but cannot be interpreted with respect to world knowledge lead 
to reduced or no P600 effects (Münte et al., 1997; Yamada & Neville, 2007). In 
such cases, it is difficult to infer plausibly intended meanings because the 
materials are, by design, devoid of meaning. 

8) Finally, a P600 has been observed in studies with semantic violations in extended 
discourse contexts. For example, in a study by Nieuwland and Van Berkum 
(2005), participants read a story (e.g., about a tourist and his suitcase; both entities 
were mentioned several times). In critical sentences like “Next, the woman told 
the tourist/suitcase…”, a P600 was observed for “suitcase” (not an N400, as in a 
null context), plausibly because a word substitution error, when both lexical 
entries are highly probable in the discourse, is a probable production error. 
Similarly, code switches, which are probable in bilingual speech, elicit a P600 
(Moreno et al., 2002). 

 
Here, we directly evaluate whether the ERP components track noisy-channel inferences 
by measuring the probability that a close alternative would be inferred for each target 
word. We first replicate several existing effects using an experimental design with four 
conditions (Figure 1): (1) a control condition with no violations, (2) a condition with a 
canonical semantic violation, (3) a condition with a canonical syntactic violation (number 
agreement error), and critically, (4) a condition where the target word is semantically 
inappropriate but orthographically and phonologically close (e.g., in terms of Levenshtein 
distance) to a semantically plausible neighbor. Behavioral norming indicates that the 
proximity of such a neighbor makes the plausibly intended word recoverable. As a result, 
the critical condition is expected to elicit a noisy-channel inference and, by hypothesis, a 
P600 (similar to the syntactic condition and in contrast to the semantic condition). We 
then look at the relationship between the probability of a noisy-channel inference 



 8 

(determined behaviorally on an independent set of participants) and the magnitude of the 
N400 and P600 effects. The noisy-channel framework predicts that words that are more 
likely to be interpreted as a close alternative will elicit a smaller N400 and larger P600 
effect. 
 

 
Figure 1. Example materials and predictions for N400 and P600 ERP effects according 
to the noisy-channel framework for human sentence comprehension. 
 
 

Methods 
 
Participants  
 
Twenty-nine right-handed native English speakers participated in the ERP experiment, 24 
of whom were included in the final analysis (10 males; age 18-40 years). Participants 
were recruited from the MIT Brain and Cognitive Sciences subject pool and the 
Wellesley College student community. Informed consent was obtained in accordance 
with the MIT Committee on the Use of Humans as Experimental Subjects. Participants 
were compensated with cash for their participation. Five subjects were excluded from 
final analysis due to an excessive number of artifacts in the EEG signal. An additional 
475 participants were recruited for behavioral tasks on Amazon’s Mechanical Turk. Data 
from 32 of those participants were excluded before analysis because they did not meet 
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inclusion criteria (located in the US, self-reported native English speaker, answered at 
least 75% of fillers correctly, provided responses on at least 90% of trials). 
 
 
Materials & Behavioral Norming 
 
160 ten-word-long sentences were constructed (with four conditions each, as described 
above; Figure 1) and distributed across four presentation lists following a Latin Square 
design, so that each list contained only one version of an item (and 40 trials per 
condition). The target word (always a noun) was the last word in the sentence. The target 
words in the semantic violation and critical conditions were target words in the control 
condition for other items (e.g., “hearse” in the example above was the target word in the 
control condition of another item); the target words were thus identical across these 
conditions (and only differed in the number feature between these conditions and the 
syntactic violation condition). In addition, 320 10-word-long filler items were 
constructed. These contained no semantic or syntactic violations. 
 
Experimental materials were evaluated for cloze probability of the final word, 
acceptability, perceived likelihood of the error, and recoverability of the intended word, 
each on an independent set of participants to ensure that a) the target words were judged 
less likely to be errors in the semantic violation condition than in the critical and syntactic 
violation conditions, and b) the intended words were more recoverable in the critical and 
syntactic violation conditions than in the semantic violation condition. 
 
In the cloze task, participants were presented with each item with the last word missing 
and asked to complete it. The final words of experimental items in the control condition 
had a mean cloze probability of 0.40 (± 0.31 SD), suggesting that the sentence contexts 
were effective in setting up expectations for a particular word but were not overly 
constraining. 
 
The results of the remaining norming tasks are summarized in Table 1 and the full set of 
materials is available at 
https://osf.io/vcsfb/?view_only=ba0079719cfa4118be5cc99714135acf. In the 
acceptability task, participants were asked to judge a sentence for how natural it sounds 
on a 7-point scale. To assess participants’ perceived likelihood of the error in different 
conditions, we had participants first read the control (no violation) condition and answer 
a yes/no question about it. They were then asked the following question, “How likely 
would it be for someone to produce the following speech error for the last word, when 
they intended the above sentence?” Participants judged this likelihood on a 7-point scale.  
Finally, to assess how recoverable the intended word was in different conditions, we 
presented participants with a complete sentence in all but the control condition and the 
following instructions, “The final word in each of the following sentences is wrong: 
someone typed the wrong word. Please type in a different word, the one that was 
probably intended.” 
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 Control Syntactic 
error 

Semantic 
error 

Recoverable 
semantic error 
(with a 
plausible 
neighbor) 

Acceptability 
rating (N=102) 

6.0 (0.7) 3.9 (0.7) 2.3 (0.6) 2.9 (0.8) 

Error likelihood 
rating (N=106) 

N/A 4.4 (0.4) 1.2 (0.1) 3.3 (0.7) 

Error 
recoverability 
rating (N=235) 

N/A 0.92 (0.11) 0.38 (0.28) 0.84 (0.17) 

Table 1. Results of the norming studies. The acceptability and error likelihood ratings are 
on a 7-point scale.  The error recoverability is a proportion (i.e., the number of times the 
sentences were completed with the final word from the control condition out of the total 
number sentence completions). Standard deviations over items are given in parentheses. 
 
 
EEG recording  
 
EEG was recorded from 32 scalp sites (10-20 system positioning), a vertical eye channel 
for detecting blinks, a horizontal eye channel to monitor for saccades, and two additional 
electrodes affixed to the skin above the mastoid bone. EEG was acquired with the Active 
Two Biosemi system using active Ag-AgCl electrodes mounted on an elastic cap 
(Electro-Cap Inc.). All channels were referenced offline to an average of the mastoids. 
The EEG was recorded at 512 Hz sampling rate and filtered offline (bandpass 0.1-40 Hz). 
Trials with blinks, eye movements, muscle artifact, and skin potentials were rejected 
prior to averaging and analysis. An average of 15.6% of trials were rejected per 
participant (range: min = 0.6%, max = 26.3%). 
 
Procedure  
 
Participants were tested individually in a sound-attenuated booth where stimuli were 
presented on a computer monitor. Stimuli appeared in the center of the screen word-by-
word, time-locked to the vertical refresh rate of the monitor (75 Hz). The sentences were 
displayed word-by-word in white on a black background. Each trial began with a pre-trial 
fixation (1,000 ms), followed by 500 ms of a blank screen. Then, the sentence was 
presented for 5,800 ms (400 ms per word and 100 ms ISI, with an ISI of 900 ms after the 
last word). The order of trials was randomized separately for each participant. Each list 
was pseudo-randomly divided into ten “runs”, in order to give participants breaks as 
needed.  Each run contained 4 trials of each condition and 32 fillers. 
 
To ensure that participants read the sentences for meaning, yes/no comprehension 
questions appeared after 60 of the 480 trials (experimental and filler), constrained such 
that there were no more than three consecutive trials with a question, and no more than 
20 consecutive trials without a question. The correct answer was “yes” half of the time. 
Comprehension questions were displayed all at once (for 3,500 ms + 100 ISI) in aqua on 
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a black background, and participants responded “yes” or “no” by pressing buttons on a 
gamepad. At the beginning of the experiment, participants were shown a set of 12 
practice items to familiarize them with the procedure. The experiment took ~1 hour. 
 
Analysis  
 
Eight centro-parietal electrode sites (C3, Cz, C4, CP1, CP2, P3, Pz, and P4) were 
included in the analysis. These sites reflect the typical distribution of N400 and P600 
effects reported in the literature (Kutas & Federmeier, 2011; Tanner, 2019)4. ERP signals 
were time-locked to the onset of the sentence-final (target) word and individual trial 
epochs from 100 ms prior to the onset of this stimulus until 1,000 ms after onset were 
extracted. The time window from -100 ms to word onset was used as the pre-stimulus 
baseline. Mean amplitude measurements were computed in two time windows – 300-500 
ms and 600-800 ms – to quantify the N400 and P600 components, respectively. Time 
windows were chosen to match standard time windows used in the literature (Gouvea et 
al., 2010; Kutas & Federmeier, 2011) and to be equal in duration with a 100 ms gap in 
between to reduce dependence between the windows. 
 
For each of the two time windows of interest (300-500 ms and 600-800 ms), the mean 
amplitude was entered as the dependent variable in a linear mixed-effects regression 
model, with condition (control, semantic violation, syntactic violation, recoverable) as a 
dummy-coded fixed effect (with control as the reference level). The models included 
random intercepts for participants, items, and electrodes, and random condition slopes for 
each grouping variable. Analyses were performed using the “brms” package for Bayesian 
regression modeling in R (Bürkner, 2017), which interfaces with the Stan probabilistic 
programming language (Carpenter et al., 2017). Moderately regularizing priors were 
chosen based on prior literature. In particular, a normal distribution with mean 0 and 
standard deviation 2.5 was chosen for the beta coefficients based on the reasoning that 
most ERP effects fall between +/- 5µV. Sampling for all models was done with four 
chains for 2,000 iterations (1,000 for warmup). R-hat values were 1.00 for all parameters 
in all models reported. Data and analysis code are available at 
https://osf.io/vcsfb/?view_only=ba0079719cfa4118be5cc99714135acf. 
 
 

Results 
 
Participants mostly answered the comprehension questions accurately (mean = 0.88, 
bootstrapped 95% confidence interval = [0.85, 0.91]), which suggests that they were 
engaged in the task. 
 
N400 and P600 components.  
 

 
4 Visual inspection of Appendix Figure A1 indicates that both the N400 and P600 were indeed centro-
parietally distributed, consistent with the literature. Crucially, the later positivity was not larger anteriorly, 
which would suggest a qualitatively different component (see Van Petten & Luka, 2012). 
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The average timecourse by condition of the ERP amplitude for the eight electrodes 
included in the analysis is shown in Figure 2a. As expected, and replicating many 
previous studies, in the N400 window, the ERP amplitude decreased by -4.09 µV (95% 
Credible Interval (CI) = [-5.06, -3.02]) in the semantic condition relative to the control 
condition. The amplitude was also somewhat more negative (Estimate = -1.37, 95% CI =  
[-2.51, -0.17]) in the recoverable condition relative to the control condition but more 
positive than in the semantic condition (Estimate = -2.73, 95% CI =  [-3.88, -1.53]). An 
N400 effect is expected for the recoverable condition target word because it is not 
strongly facilitated by the semantic context, unlike the control condition target word. The 
N400 effect in the syntactic condition was not different from the control condition 
(Estimate = -0.48, 95% CI = [-1.66, 0.72]). 
 
In the P600 window, the ERP amplitude did not differ between the control condition and 
the semantic condition (Estimate = -0.85, 95% CI =  [-2.08, 0.35]). However, P600 
amplitude was more positive both in the syntactic (Estimate = 2.10, 95% CI =  [0.91, 
3.22]) and in the recoverable condition (Estimate = 1.34, 95% CI =  [0.11, 2.52]). In other 
words, as predicted by the noisy-channel inference account, the critical recoverable 
condition, where the target word was semantically inappropriate but phonologically and 
orthographically close to a plausible neighbor, elicited a P600 effect, similar to the 
syntactic condition. See Figures 2b and 2c for summaries and Table 2 for full model 
estimates.
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Figure 2. a. Timecourse of grand average ERP for each condition from eight centro-
parietal channels used in the analysis (see Appendix A for all channels). The x-axis 
shows time from the onset of the presentation of the critical word, and the y-axis shows 
voltage (negative plotted down), as compared to the mean voltage of the baseline 100 ms 
pre-stimulus interval. Ribbons indicate bootstrapped 95% confidence intervals over the 
channel means. The two gray rectangles in each plot indicate the time windows of 
interest: 300-500ms (N400 window) and 600-800ms (P600 window). b-c. Mean 
amplitudes of (b) the N400 and (c) P600 components. Light blue points represent 
individual participant means and the black horizontal bar represents the overall mean for 
each condition. Densities and point intervals represent the distribution of fitted 
conditional means from Bayesian linear mixed-effects model posteriors. Dashed 
horizontal line indicates the mean amplitude in the control condition. 
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Intercept 
3.19 2.22 – 4.17 3.76 2.59 – 4.94 

Semantic -4.11 -5.06 – -3.02 -0.85 -2.08 – 0.35 
Recoverable -1.36 -2.51 – -0.17 1.35 0.11 – 2.52 
Syntactic -0.48 -1.66 – 0.72 2.11 0.91 – 3.22 

Random Effects Variances 

σ2 
67.98 84.09 

Electrode (n=8) 0.34  0.94  
Item (n=160) 16.81  12.31  
Subject (n=24) 3.06  3.83  
Electrode:Semantic 0.10  0.10  
Electrode:Recoverable 0.05  0.05  
Electrode:Syntactic 0.10  0.11  
Item:Semantic 20.93  22.98  
Item:Recoverable 25.01  28.67  
Item:Syntactic 22.88  21.50  
Subject:Semantic 3.29  6.76  
Subject:Recoverable 4.71  5.52  
Subject:Syntactic 5.23  4.90  
ICC: 0.22, Observations: 25928 

Table 2. Summary of estimates from Bayesian mixed-effects regression models 
predicting N400 and P600 amplitudes by condition (formula: Amplitude ~ 
condition +(1+condition|subject)+ (1+condition|item) + 
(1+condition|electrode) ). 
 
Magnitude of N400 and P600 and recoverability of the plausible alternative. 
 
To further explore these effects, we assessed whether the magnitudes of the N400 and 
P600 are linearly related to the recoverability of the word. We computed two measures of 
recoverability. The first is the Levenshtein distance between each target word (e.g., 
antidote) and its control condition counterpart (e.g., anecdote). Levenshtein distance was 
computed using the adist() function in R. The second measure was taken from the 
norming data (summary available at 
https://osf.io/vcsfb/?view_only=ba0079719cfa4118be5cc99714135acf): the percentage of 
correct guesses about which word was intended. The relationships between the magnitude 
of the ERP effects for an item (averaging over participants and electrodes and subtracting 
the amplitude for the control condition from the amplitudes in the other three conditions 
within each time window) and the two measures of recoverability are shown in Figure 3. 
Five simple linear regression models were fitted using brms (Table 3), with the same 
priors as in the above models where applicable (see further analysis details at 
https://osf.io/vcsfb/?view_only=ba0079719cfa4118be5cc99714135acf). Items which 
were less likely to elicit successful recovery of the control version had a larger 
Levenshtein distance from their control version (Estimate = -6.93, 95% CI = [-7.54, -
6.34]), confirming the validity of operationalizing recoverability as Levenshtein distance 
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from the nearest neighbor. Items for which participants were more likely to recover the 
control word elicited smaller N400 effects (Estimate = 3.15, 95% CI = [1.67, 4.65]) and 
larger P600 effects (Estimate = 3.29, 95% CI = [1.76, 4.85]). Similarly, items with a 
larger Levenshtein distance from their control elicited larger N400 effects (Estimate = -
0.52, 95% CI = [-0.68,-0.37]) and smaller P600 effects (Estimate = -0.42, 95% CI = [-
0.58,-0.26]). Note that these bivariate relationships are somewhat expected given that the 
3 conditions were designed to be differentially recoverable. Models which include 
condition as an additional covariate indicate that these two predictors (condition and 
Levenshtein distance or Percent recovered) explain largely redundant variance (i.e., 
neither predictor is estimated to have a non-zero independent contribution). 
 

 
Figure 3. Relationships between the average N400 (unfilled points) and P600 effect 
(filled points) for each item in each experimental condition (after subtraction of 
corresponding amplitude in the Control condition) and two measures of recoverability: 
Percent of correctly recovered completions (a) and Levenshtein distance (b). Gray solid 
lines represent 50 fitted regression lines (randomly sampled from model posteriors) from 
models predicting either the size of the N400 effect or the P600 effect (separately) from 
percent recovered (a) and Levenshtein distance (b). 
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  Levenshtein Distance N400 P600 

Predictors Estimates CI (95%) Estimates CI (95%) Estimates CI (95%) 

Intercept 8.90 8.44 – 9.37 -4.50 
-5.63 –  

-3.34 
-1.42 

-2.61 –  

-0.19 

Percent 
recovered 

-6.93 
-7.54 –  

-6.34 
3.14 1.67 – 4.65 3.31 1.76 – 4.85 

       
 

N400 P600 
  

Predictors Estimates CI (95%) Estimates CI (95%) 
  

Intercept -0.17 
-0.95 – 

 0.60 
2.60 1.80 – 3.42 

  

Levenshtein 
Distance 

-0.52 
-0.68 –  

-0.37 
-0.42 

-0.58 –  

-0.26 

  

Table 3. Bivariate Bayesian linear regressions relating average recoverability of each 
target word to average ERP effects in both N400 and P600 time windows. Observations = 
480. 
 

Discussion  
 
We observed a reduced (more positive) N400 effect and a P600 effect when participants 
read sentences where the target word was semantically inappropriate but had a close 
orthographic and phonological neighbor, allowing for the possibility that the received 
message was corrupted by noise (replicating Ito et al., 2016; Laszlo & Federmeier, 2009). 
The intended (plausible) word was thus recoverable, and comprehenders could ‘correct’ 
the signal. This effect was similar to that observed for the canonical syntactic violation 
condition. A large N400 and no P600 were observed for the canonical semantic violation, 
where the intended meaning could not be recovered. Further, the amplitudes of the N400 
and P600 effects were linearly related to the likelihood of recovering the plausible 
alternative. Thus, the reduced N400 (relative to the semantic condition) and large P600 
plausibly index the presence of a noisy-channel inference. Although we cannot rule out 
the possibility that readers are simultaneously attempting to correct the preceding 
sentence context which they hold in memory (Futrell et al., 2020; Levy et al., 2009), 
these data suggest that readers can also correct a word to a more plausible alternative as 
its semantic representation is being accessed. 
 
Though similar in spirit, the predictions of the noisy-channel account can be dissociated 
from those of a purely error-monitoring based account (van de Meerendonk et al., 2011). 
For instance, it is typically assumed, on an error-monitoring view, that the larger the 
error, the more likely it is that a P600 effect will be observed. Holding other probabilities 
constant, the noisy-channel account would predict the opposite pattern, as larger noise 
corruptions are less plausible: an insertion of one letter is a more plausible typographical 
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error than an insertion of five letters. Whereas the latter may be easier to detect as an 
error, the former is more likely to lead to recovery of the intended word. Indeed, the 
relationship between recoverability and ERP effects points to a process that goes beyond 
the “mere” detection of errors. However, a more fine-grained investigation of this 
relationship, in which both prior probabilities and error probabilities are carefully 
controlled and parametrically manipulated, will be needed in order to conclusively 
distinguish between the error-monitoring and the noisy-channel inference accounts. 
 
The noisy-channel framework, as a computational-level account, concerns the probability 
of an intended sentence given the perceived form, no matter how the most likely 
representation for an input string might have been computed. Recent implemented 
models of the N400 and P600 (e.g., Brouwer et al., 2017; Fitz & Chang, 2019; Rabovsky, 
2020; Rabovsky et al., 2018) have focused on addressing how the comprehension 
mechanisms compute sentence meanings or learn their relative probabilities. Both levels 
of analysis are important for making progress on understanding language processing, and 
to the extent that they generate accurate predictions regarding the probability of perceived 
sentences and their alternatives, the existing mechanistic models may be compatible with 
the noisy-channel framework. In fact, several connectionist models of the N400 make the 
same (partial) predictions as the current proposal in that they capture the absence or 
reduction of an N400 effect when an anomalous word is orthographically close to a 
plausible word relative to when an anomalous word has no plausible neighbors (Laszlo & 
Plaut, 2012; Rabovsky et al., 2018). Among models that explicitly include a P600 
component, neither addresses this particular case. Brouwer et al. focus on semantic P600 
effects, whereas Fitz and Chang focus on morpho-syntactic errors only. It is beyond the 
scope of the current paper to determine whether either or both of these models can be 
straightforwardly extended to account for the effects explored here. 
 
Underlying mechanisms 
 
The current proposal does not aim to provide a mechanistic model of how the N400 and 
P600 are generated but rather build a bridge between the growing noisy-channel sentence 
comprehension literature and the psycholinguistic ERP literature. As a result, we do not 
make strong claims regarding the underlying processes that may give rise to the observed 
ERP patterns. For example, despite the fact that we discuss two components with 
different timecourses, we do not know whether computing the plausibility of a noise 
corruption is part of the same process underlying the semantic update that takes place 
when a new word is encountered or whether the P600 reflects a later, attention-
demanding reanalysis (see Rabovsky & McClelland, 2020). Similarly, the current data do 
not address whether the correlation between the P600 effect and the probability of noise 
inference only holds for sentences in which readers explicitly noticed the error and chose 
to interpret the sentence as the more plausible alternative5. In a recent study, Qian, 
Garnsey, and Christianson (2018) found that the magnitude of the P600 effect to an 

 
5 In the present experiment, though a few critical sentences were followed by comprehension questions, 
they were not always directly aimed at determining whether the reader had made a noisy-channel inference 
and they were too few in number to conduct any meaningful analyses. 
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ambiguous verb6 in a garden-path sentence (e.g., While the man hunted the deer ran into 
the woods) was not related to accuracy on the subsequent comprehension question (e.g., 
Did the man hunt the deer?) (see also Sanford et al., 2009). However, these garden-path 
sentences are particularly complex and infrequent, so extending this work to the stimuli 
used in the present paradigm may yield different results. 
 
Limitations 
 
Further work is needed to determine whether there exist examples of N400 and P600 
effects which cannot be readily tied to a noisy-channel inference process. Though it is 
beyond the scope of this paper to review the entirety of the N400 and P600 literatures, we 
discuss several such examples here and speculate about the ways in which they may be 
interpreted within the current framework. As mentioned above, “canonical” N400 effects 
are sometimes followed by P600s (Van Petten & Luka, 2012). The addition of an explicit 
task (e.g., grammaticality judgment) may provide a partial explanation (e.g., Osterhout & 
Mobley, 1995) – the task may increase the expected likelihood of noise across the board, 
which increases the rate of noisy-channel inference (Gibson et al., 2013). More 
importantly, for a word that is low probability in context it will often be possible to treat 
it as either a faithfully represented word that is unexpected, leading to an N400, or a 
corrupted version of an expected word, leading to a P600-like response. As noted by Van 
Petten and Luka7, the majority of semantic violation tasks were not designed with noise-
correction (or reanalysis) questions in mind and thus are unlikely to have thoroughly 
controlled how likely the materials are to have been corrected to an alternative. In the 
current dataset, where we have carefully chosen the semantic violations to not be the 
plausible outcome of a noise corruption, there is no hint of a P600 effect in the semantic 
violation condition. A re-analysis of existing datasets showing biphasic N400/P600 
responses with this variable (plausibility of a noisy-channel inference) in mind may be a 
fruitful avenue for future progress on this topic. Further, different participants may have 
different relative weightings of the two options (literal interpretation or noisy-channel 
inference) given their own idiosyncratic language experience, so a blended response 
could reflect averaging across participants or, more intriguingly, high uncertainty within 
the same individual. 
 
In addition, pragmatic processing has been linked to P600 effects (see Hoeks & Brouwer, 
2014 for a review), for example in experiments looking at comprehension of figurative 
language (Regel et al., 2011) and jokes (Du et al., 2013). It is possible that jokes, for 
instance, violate the reader’s expectation (i.e., their literal meaning has lower prior 
probability) and lead them to consider the alternative that would have been said, if the 

 
6 Levy (2008) proposed that readers may infer that “it” was deleted during transmission and interpret the 
sentence as a more (syntactically) plausible alternative (e.g., While the man hunted it the deer ran into the 
woods). 
7 “Assuming a continuity between the parietal post-N400 positivity and the semantic P600 implies that the 
parietal PNP also reflects attempted re-analysis or checking of bad sentences. This process may be only 
variably invoked by incongruent sentence completions depending on a host of difficult-to-quantify factors: 
the exact construction of incongruent sentences by different experimenters (i.e., whether there is any hint 
that a sentence could be re-interpreted in a way that makes sense) and/or the verbal abilities or motivation 
of individual subjects.”  
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sentence were meant to be serious. We leave it to future work to investigate this 
intriguing speculation. Critically, this puzzle doesn’t undermine the utility of the P600 as 
an index of noisy-channel correction in future experiments, provided experimenters 
carefully control pragmatics in their materials. 
 
Future directions 
 
The focus of this paper has been on the probability of noise corruptions at the 
orthographic/phonological level within a word during reading, but we expect that the 
same principles would apply more generally: a P600 is predicted to ensue (on average) 
whenever the probability that some portion of the linguistic input was corrupted by noise 
exceeds the probability that it was transmitted faithfully (according to Equation 1). Thus, 
ERP evidence could be brought to bear on a variety of timely questions in sentence 
processing. For example, offline responses indicate that readers commonly draw noisy-
channel inferences when reading sentences such as, “The mother gave the candle the 
daughter.” Yet it is unknown at what point this inference takes place—in the moment of 
first-pass processing, or during reanalysis, or only after reading the comprehension 
question—or what kind of noise corruption readers assume (e.g., an exchange of “candle” 
and “daughter,” or a deletion of “to”). ERPs recorded during word-by-word sentence 
reading have the potential to shed light on these questions (e.g., if the noise inference 
process takes place in real time and readers assume a “to” deletion, then a P600 effect 
would be expected on the third “the”) as well as other questions related to the reader’s (or 
listener’s) implicit model of the noise which have been left open by the use of behavioral 
methods. 
 
A key prediction of the noisy-channel proposal is that the N400 and P600 should be 
modulated by the distribution of errors in the input because a rational comprehender will 
tune their noise model to the observed distribution of errors in the environment (Gibson 
et al., 2013; Ryskin et al., 2018). Indeed, increasing the number of sentences that contain 
syntactic violations leads to a reduction of the P600 magnitude (Coulson et al., 1998; 
Hahne & Friederici, 1999). Similarly, Hanulíková et al. (2012) showed reduced P600s to 
syntactic errors in foreign-accented speech, where an agreement error is more expected 
(compared to native-sounding speech), suggesting that listeners take speaker-specific 
information into account, in addition to the overall proportion of errors in the input (see 
also Gibson et al., 2017). Moreover, Zhou, Garnsey, and Christianson (2019) replicated 
Hanulíková et al.’s finding and additionally showed that the P600 reduction was absent 
for pronoun errors, which are less common than subject-verb agreement errors in the 
speech of the population in question, namely native Chinese, L2 English speakers. This 
finding is consistent with the fact that listeners not only adapt the overall rate of errors in 
their noise model to the particular speaker-context (e.g., high error-rate vs. low error-
rate), but also tune their model of the noise to reflect the relative probabilities of different 
errors in a context-specific way (e.g., speaker A and B make errors at the same rate 
overall but A makes mostly deletion errors whereas B makes mostly insertion errors; 
Ryskin et al., 2018). We speculate that these noise models are likely continuously 
updated based on experience with the environment such that listeners bring a set of 
expectations about the noise model to the lab and then update it throughout the 



 20 

experiment (similar to current views of how syntactic processing reflects both lifelong 
and recent language statistics via the same mechanism, e.g., Chang et al., 2012; Fine et 
al., 2013; Ryskin et al., 2017). Future work is needed to provide a systematic test of the 
quantity and nature of input that will shift the noise model and what consequence this 
will have for the N400 and the P600. 
 
 
Conclusion 
 
To conclude, the relative magnitudes of the N400 and P600 ERP components seem to be 
well approximated by the probability of the comprehender inferring that the input has 
been corrupted by noise (e.g., perceptual or production error) during transmission. This 
work contributes to a growing literature suggesting that the human language system is 
well-adapted to potential corruption of the linguistic signal. Though we can only 
speculate about the underlying mechanisms and future studies are needed to generalize 
this proposal to a wider set of scenarios, the P600 effect is promising as a signal of noisy-
channel error correction taking place in real-time. The current framework is particularly 
useful in that it allows predictions to be generated for any arbitrary set of sentences for 
which it is possible to estimate relative prior probabilities and noise likelihoods and it 
opens the door to electrophysiological investigations of the comprehender’s implicit 
noise model.  
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Appendix 
 
Figure A1.  Grand average ERPs for each condition at every recorded electrode. The x-axis shows time from the onset of the 
presentation of the final word, and the y-axis shows loess-smoothed (span=0.2) voltage (negative plotted down), as compared to the 
mean voltage of the baseline 100 ms pre-stimulus interval. (The subset of channels used in the statistical analyses is indicated by the 
gray labels and the two gray rectangles in each plot indicate the time windows of interest: 300-500ms and 600-800ms.) 
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