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Abstract: We present a proof-of-principle study about the use of a sensor for the 

nondestructive monitoring of strength development in hydrating concrete. The 

nondestructive evaluation technique is based on the propagation of highly nonlinear 

solitary waves (HNSWs), which are non-dispersive mechanical waves that can form and 

travel in highly nonlinear systems, such as one-dimensional particle chains. A built-in 

transducer is adopted to excite and detect the HNSWs. The waves are partially reflected at the 

transducer/concrete interface and partially transmitted into the concrete. The time-of-flight and 

the amplitude of the waves reflected at the interface are measured and analyzed with respect to 

the hydration time, and correlated to the initial and final set times established by the 

penetration test (ASTM C 403). The results show that certain features of the HNSWs 

change as the concrete curing progresses indicating that it has the potential of being an 

efficient, cost-effective tool for monitoring strengths/stiffness development. 
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1. Introduction 

The chemical reaction between water and the cement is referred to as hydration. The mixture 

progressively develops as the hydration process continues and eventually initial set is achieved. The 

initial set is the time between the first contact of water with the cement grains and the time at which 

workability is lost. Final set is the time required for the fresh concrete transform from plastic into a 

rigid state. The initial and final set times are established in accordance with ASTM C403 [1] and 

correlate to the time when the mortar can resist the penetration of multi-sectional metal needles with 

applied pressure levels of 3.4 and 24.6 MPa, respectively. These pressures characterize the resistance 

of a mortar sample, obtained through wet sieving of the concrete mixture, against the penetration. 

At final set, measurable mechanical properties start to develop in concrete and continue to grow 

progressively. Knowing the rate of strength development at early ages is critical in establishing the 

timeframe for construction-related activities, such as when to saw joints or to open the roadway to 

traffic for a newly-placed concrete pavement. Concrete samples are cast so that strength testing can be 

performed to determine when sufficient strength has been achieved to open the roadway to traffic [2]. 

The use of a nondestructive test method for estimating the strength would eliminate the need for 

making and testing the concrete samples and would allow for frequent monitoring without concern for 

the amount of strength samples available. Special care is also needed when defining the window for 

sawing the joints for a jointed plain concrete pavements (JPCPs). While late sawing of the joints late 

can result in uncontrolled cracking of the concrete requiring expensive repairs, sawing too early can 

result in excessive spalling making it difficult to keep the joint well sealed.  

Since the hydration is an exothermic reaction, the concrete mixture has a specific heat signature. 

One approach commonly employed for monitoring strength gain in the concrete is to monitor the 

temperature of the concrete as a function of time. The maturity of the concrete can then be estimated 

by integrating the area between the temperature-time curve and a datum. Maturity-strength 

relationships can then be established for a specific mixture so that the strength of the mix can be 

estimated by monitoring the heat of the mixture as is hydrated. Unfortunately, the maturity-strength 

relationship is very specific to the concrete mixture proportions for which it was developed. It is no 

longer representative if the concrete mixture proportions or the source of the constituents within the 

mixture are varied. The disadvantage of this method is that preliminary testing must be performed to 

establish this maturity-strength relationship. Also, the relationship must be re-established if at any time 

the source or quantity of a particular constituent in the concrete mixture is changed. For these reasons, 

direct but simple nondestructive measurements are needed to monitor the development of the 

mechanical properties in newly-placed concrete pavements. However, nondestructive measurements 

can be also utilized to: determine the ultimate strength of concrete or its elastic modulus; establish the 

time when forms can be removed; decide when prestress can be added to bridges; advance a segmental 

bridge construction. 
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Nondestructive evaluation (NDE) techniques have been widely adopted over the past two decades 

for monitoring the development of strength in fresh concrete. Most of these techniques are based on 

the measurement of the velocity of linear bulk ultrasonic waves propagating through a concrete 

sample. Traditionally, commercial transducers are used to generate longitudinal [3–11], or both 

longitudinal and shear waves [12]. Parameters such as wave speed and attenuation are measured and 

empirically correlated to the material properties. This approach is usually referred to as the ultrasonic 

pulse velocity (UPV) method. To obtain an acceptable signal-to-noise ratio, longitudinal wave 

transducers cannot be used to generate transverse waves and vice versa. Thus, in order to use both 

shear and longitudinal waves; at least four transducers are required. If the access to the back wall of the 

sample is impractical, the wave reflection method can be adopted. In this approach, the amplitude of 

the shear waves [12–19] or the longitudinal waves [20,21], or both [22] at an interface between a 

buffer material, typically a steel plate, and the concrete is monitored over time. The amount of wave 

reflection depends on the reflection coefficient, which in turn is a function of the acoustical properties 

of the materials that form the interface [12]. The use of bulk waves is schematized in Figure 1.  

Figure 1a shows the through-transmission scheme where two longitudinal or shear transducers are used 

to transmit and receive bulk waves. Drawbacks of this scheme are: (1) four transducers are necessary 

to exploit both modes; (2) the access to the back-wall is needed and this is not always possible; (3) the 

exact distance between the transducers pair must be known to accurately measure the wave speed 

exactly; (4) the contact conditions between the transducers and the concrete surface must be kept 

constant to avoid any mislead assessment of the amplitude. Figure 1b schematizes the pulse-echo 

configuration where either one longitudinal or one shear transducer is used in dual-mode; i.e., as both 

transmitter and receiver. As the wave speed in the buffer material is constant irrespective of the 

concrete age; only one wave parameter (the amplitude) can be exploited unless two transducers  

(one S- and one L-) are used. 

Figure 1. (a) Through-transmission; (b) Pulse-echo configuration. 

 
Besides the use of bulk waves, other NDE technologies proposed to observe the growth of 

mechanical properties in concrete are based on guided ultrasonic waves [23], surface wave [24,25], 

fiber optics [26] and acoustic emission [27]. Boulay et al. [28] compared some static and ultrasonic 

methods aimed at measuring changes in the stiffness of concrete at early age. The static approaches 
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were based on classical loadings in hardened concrete and in cycling loadings using two different 

machines; the nondestructive methods were based on the natural resonant frequency of a composite 

beam, ultrasonic measurements using classical equipment, and ultrasonic measurements using sensors 

embedded in the test samples. 

In this paper we present the proof-of-principle of a novel NDE paradigm to monitor the strength 

development of hydrating concrete. The method is based on the use of a transducer described for the 

first time in [29] able to generate and detect highly nonlinear solitary waves (HNSWs) that are 

nondispersive mechanical waves that can form and travel in highly nonlinear systems, such as a 

closely packed chain of elastically interacting particles, also called granular crystals [30–32]. The most 

common way to induce solitary waves is by impacting the first particle of the chain with a striker. The 

impact velocity and the mass of the striker determine the characteristics of the traveling HNSWs in 

terms of number of forming pulses, pulses speed, amplitude, and duration. In this study an 

actuator/sensing system, hereafter indicated as the HNSW transducer, was used to generate solitary 

waves and detect their reflection at the transducer/concrete interface. 

The interaction of the HNSWs with linear systems was studied earlier [33–38]. Manciu and Sen [33] 

investigated the wave reflections from rigid wall boundaries. Falcon et al. [34] studied the 

fragmentation of a chain of particles when impacting a fixed wall. Job et al. [35] evaluated the 

collision of a single solitary wave with elastic walls with various hardnesses. Yang et al. [36] studied 

in detail the interaction of HNSWs with uniform and composite elastic media. It was shown that the 

formation and propagation of reflected HNSWs are highly dependent on the elastic modulus and 

geometry of the adjacent medium. Ni et al. [37] analyzed experimentally the interaction of HNSWs 

with a cement paste employing the same transducer used in the present study. The results were then 

compared with those obtained using a numerical model developed to simulate the interaction between 

the HNSWs and the underlying system. Finally, Cai et al. [38] reported on the interaction of HNSWs 

with slender beams. 

With respect to previous works on stress waves for the NDE of concrete, the differences of the 

proposed approach are: (1) it exploits the propagation of HNSWs in granular systems; (2) it employs a 

cost-effective actuator/sensor in a combined form; (3) it measures several waves’ parameters (time of 

flight, speed and amplitude of one or two waves) that can be eventually used to correlate few concrete 

variables; (4) it does not require, unlike UPV method, the exact knowledge of the distance between a 

transmitter and a receiver and does not require the access to the sample back-wall. The proposed 

HNSW-based method may resemble the Schmidt hammer, which can be used to estimate the hardness 

and strength of concrete [39] and rock [40]. The Schmidt hammer is a spring-driven steel hammer that 

hits the specimen with a defined energy. Part of the impact energy is absorbed by the plastic 

deformation of the specimen and transmitted to the specimen, and the remaining impact energy is 

rebounded. The rebound distance is dependent on the hardness of the specimen and the conditions of 

the surface. The harder is the surface, the shorter is the penetration time or depth, hence the higher is 

the rebound. Based on the knowledge available in the open literature, there are several differences 

between the Schmidt hammer and the proposed HNSW-based method that can be summarized as 

follows: the Schmidt hammer can be only used to test hardened material, but the HNSW approach can 

be applied also onto fresh concrete; only one parameter, the rebound value, is used in the Schmidt 

hammer test, while multiple HNSWs features can, in principle, be exploited to assess the condition of 
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the underlying material; the reliability and repeatability of the Schmidt hammer are not guaranteed 

especially when the elastic modulus of the sample is low [40] while recent studies [32,37,41] have 

shown that HNSWs pulses can be generated with high confidence of repeatability; the Schmidt 

hammer may induce plastic deformation or microcracks to the specimen, while the HNSW approach is 

purely nondestructive as there is not mechanical impact on the material under testing. Finally, it is 

worth noting the following differences between the present paper and ref. [37]. In this study: (1) we 

monitored a concrete instead of plaster cement; the two materials are quite different in terms of 

composition, curing time, and engineering applications; (2) we tested a standard concrete cylinder 

instead of a cup filled with plaster which is almost one order of magnitude smaller; (3) we utilized a 

transducer automatically governed by means of a National Instruments PXI running under LabView.  

A user friendly interface was created such that the whole experiment could be conducted without the 

presence of the operator. In [37] instead, the transducer was manually driven and the time signals were 

digitized by means of an oscilloscope; each measurement required the action of the operator; (4) we 

compared the results of the HNSW-based method to the results of the standard ASTM C403.  

Figure 2. General scheme of structural assessment by means of HNSWs. 

 
The paper is organized as follows. Next section describes the underlying basis of HNSWs following 

the analytical formulation adopted in [37,42]. The overall methodology for the NDE of concrete is also 

described. Then, the experimental results are presented. Finally the conclusions section summarizes the 

findings and it highlights the future studies that should be carried out to fully prove the effectiveness of 

the proposed NDE methodology. 
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2. Background 

Figure 2 illustrates the general principles of the proposed NDE technique. A HNSW-based 

transducer, here schematized with a chain of spherical particles, is in contact with fresh concrete. A 

thin (<1 mm thick) aluminum sheet may be placed in between the transducer and the concrete to 

prevent the penetration of the bottom sphere into the fresh concrete. The impact of a striker, made of a 

particle of equal size and mass of the other particles composing the chain, generates a single pulse that 

propagates through the chain. 

In general, in a chain of spherical particle the interaction between two adjacent beads is governed 

by the Hertz’s law [43,44]: 

2/3AF   (1)

which establishes a relationship between the compression force F of granules and the closest approach 

of particle centers. In Equation (1) the coefficient A is given by: 

 213 


aE
A  (2)

where a is the diameter of the beads, and ν and E are the Poisson’s ratio and Young’s modulus of the 

material constituting the particles, respectively. 

The combination of the nonlinear interaction (Equation (1)) and a zero tensile strength in the chain 

of spheres leads to the formation and propagation of compact solitary waves [44]. When the 

wavelength is much larger than the particles’ diameter, the speed of the solitary waves VS depends on 

the maximum dynamic strain ξm [44] which, in turn, is related to the maximum force Fm between the 

particles in the discrete chain [32]. When the chain of beads is under a static pre-compression force F0, 

the initial strain of the system is referred to as ξ0. It should be noted that in configurations like the one 

shown in Figure 2, the pre-compression is given by the self-weight of the chain. The speed of the 

solitary wave Vs has a nonlinear dependence on the normalized maximum strain ξr = ξm/ξ0, or on the 

normalized force fr = Fm/F0, expressed by the following equation [32]: 
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where c0 is the wave speed in the chain initially compressed with a force F0 in the limit 1rf , and ρ is 

the density of the material. When fr (or ξr ) is very large, Equation (3) becomes: 
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which represents the speed of a solitary wave in a “sonic vacuum”. The shape of a solitary wave with a 

speed Vs in a “sonic vacuum” can be closely approximated by [44]:  
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where: 
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E

c  (6)

and x is the coordinate along the wave propagation direction.  

In this study, the underlying research hypothesis is that the changes of the mechanical properties of 

concrete during hydration, alter the contact stiffness of the chain/material interface. This alteration is 

sensed by the HNSW transducer by monitoring certain features of the solitary waves. In the proposed 

NDE approach we monitor the waves reflected from the transducer/cement interface using 

instrumented particles, herein indicated as sensor beads, inserted in the chain. The characteristics of the 

reflected pulses in terms of their amplitude, time-of-flight (TOF), and speed are correlated to the 

progression of the hydration process. When a single pulse reaches the interface with the material to be 

tested, the pulse is partially reflected. When the pulse interacts with a “soft” medium, secondary 

reflected solitary waves (SSW) form in the granular crystal, in addition to the primary reflected 

solitary waves (PSW) [34,36,37,40]. In this study, we hypothesize that these reflected waves are 

strongly influenced by the concrete mechanical properties, and in particular, they can identify the 

initial and final set of the mixture. We characterize the wave reflection properties measuring the TOF, 

the amplitude of the primary reflected solitary wave (ARP), and the amplitude of the secondary 

reflected solitary wave (ARS). Here, the TOF denotes the transit time at a given sensor bead in the 

granular crystal between the incident and the reflected waves. We define the ARP as the ratios of the 

PSW amplitude divided by the incident solitary wave amplitude and the ARS as the ratio between the 

SSW amplitude and the incident wave amplitude. 

In order to generate and detect the HNSWs a cost-effective transducer recently developed [29] was 

used. The transducer is schematized in Figure 3 and it consisted of a polytetrafluoroethylene (PTFE) 

tube with an inner diameter of 4.8 mm, filled with –20 type-302 stainless steel beads. The diameter and 

the mass of each sphere were 4.76 mm and 0.45 g, respectively. Two piezo-gages made from lead 

zirconate titanate were embedded inside two of the steel particles. Each piezo-gauge was equipped 

with nickel-plated electrodes and custom micro-miniature wiring. The sensor beads were positioned 

along the chain at the 11th and 16th position from the top. The striker was a low-carbon steel bead 

with a diameter of 4.76 mm and mass of 0.45 g. The transducer’s ability to generate repeatable solitary 

pulses was originally presented in [28] and proven in later studies [37,41].  

The low-carbon steel was chosen in order to ease the movement of the striker by means of an 

electromagnet which, in turn, was controlled by a National Instrument–PXI unit running in LabView. 

The position of the sensor beads in the chain takes into account a few factors. First, the 

consolidation of the HNSWs is complete approximately few beads away from the location of the 

impact. Second, the sensor bead cannot be located too close to the end of the chain otherwise we 

would measure the interference of the reflected and incident solitary waves. Third, the distance 

between two sensor beads should be as large as possible to minimize the relative error associated with 

the measurement of the spatial distance between the sensors. However, this distance must be kept 

reasonable to avoid using an unpractical long transducer. 
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Figure 3. Schematic of the HNSW-transducer used in the study (dimensions are  

expressed in mm). 

 
3. Experimental Test 

To prove the feasibility of the proposed NDE method, an experiment was performed in the 

laboratory on a 15.24 cm by 30.5 cm cylindrical concrete specimen. The mixture for the concrete is 

summarized in Table 1. The water/cement ratio was equal to 0.42 and the 28 day compressive strength 

was 27.1 MPa. This value was determined by averaging the results from three cylinders. The concrete 

cylinder was cast at 8:30 a.m. in the laboratory. 

Table 1. Summary of the PCC mixture design used for the test. 

Materials Batch Weight (kg/m3) 

Cement (Type I)  345 
Fly Ash (Class C) 12 

Water  145 
Fine aggregate 744 

Coarse aggregate (#57 Gravel) 1008 

The concrete was mixed at a batch plant approximately seven miles away from the laboratory. The 

time water contacted the cement was estimated to be around 8:00 a.m. Therefore, one half-hour was 

added to the duration of the test to account for the travel time from the batch plant to the laboratory. A 

40 × 40 × 0.254 mm aluminum sheet and the actuator were placed on top of the specimen five minutes 

after casting the specimen. A photo of the setup is shown in Figure 4. 
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The experiment began at 10:05 AM, immediately after placing the transducer above the sample. Ten 

measurements were taken every 15 min for a duration of ten hours. The initial and final set times were 

established by performing the ASTM C 403 on mortar wet sieved from the concrete sample. 

Figure 5 shows the temporal force profiles computed at both sensor particles, when an incident 

solitary wave interacted with concrete at five different instances. The profiles associated with the two 

sensor beads and displayed in Figure 5a,b, respectively, are purposely presented with a time offset of 

30 min with respect to each other, to demonstrate that both sensors were equally efficient across the 

whole experiment. The signals obtained for each run are shifted vertically for better comparisons. 

Three pulses are visible for each instance. The first pulse represents the incoming solitary wave 

arriving at the sensor bead, while the second and third pulses are the PSW and SSW, respectively. It is 

noticeable that the TOFs of both the SSWs and PSWs are strongly dependent on the sample’s age. As 

the hydration progresses, the sample’s stiffness increases and the TOF of the SSWs and PSWs decreases. 

Moreover, the amplitude of the PSW increases and the TOF of the PSW decreases. 

Figure 4. Photo of the experimental setup. Top left: close-up view of the switch circuit. 

 
In order to quantify the effect of aging on some characteristics of the solitary waves, Figures 6–8 

are reported. Figure 6 shows the measured TOFs of both the SSW (green crosses) and the PSW (blue 

circles) as a function of the hydration time. Each data point in the figure indicates the mean value of 

the ten experimental measurements, and the vertical error bars represent the 95.5% confidence interval. 

Figures 6a refers to the measurement associated with the 11th particle whereas Figure 6b refers to the 

bottom sensor site, i.e., the sensor bead closer to the chain/concrete interface. In both figures, the small 

value of the standard deviation demonstrates the capability of the transducer to generate repeatable 

pulses. The penetration resistance as established by the ASTM C 403 is superimposed. The slope of 

the TOF curves indicates the presence of a two-stage behavior. In the first stage, lasting about  

300 min, the TOF values of both the PSW and SSW show a rapid drop. Although the transition 

between the two stages is close to the time of initial set established with the penetration test, there is 

not a perfect agreement between the novel and the conventional methodology. It is believed that the 

sieving process used to extract the mortar sample from the concrete for the penetration test, has 

different local characteristics with respect to the concrete sample monitored with the solitary waves 

and therefore some degree of discrepancy should be expected.  
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It should be also mentioned that the penetration test measures the penetration resistance and defines 

the initial and final set using two arbitrarily-chosen values, but the HNSW-based method measures the 

“effective” stiffness of the concrete sample at least in the local region underneath the transducer. 

Figure 5. Force profile of the HNSWs waveforms recorded at different ages of concrete. 

Measurements taken at the (a) 11th bead and (b) 16th bead. 

 

 

After 300 min, the decrease in the TOF continues with a considerably different rate (more gradual) 

until the end of the experiment. Around 485 min (8 h 5 min) there is a slight decrease in the gradient 

which could be associated with the time of final set, 460 min (7 h 40 min), determined by the 

penetration test. However this second slope change is not as visible as the first one and additional 

experiments are necessary to demonstrate if the TOF can be used to identify the final set.  

Figure 7a shows the wave speed of the incident solitary wave (green crosses) and of the PSW (blue 

circles) as a function of the concrete age. The speed is calculated by dividing the distance of the sensor 

beads by the measured time of arrival at these sensor beads. Similar to the TOF, the speed of the PSW 

increases 17% over the first 300 min and remain constant thereafter. As expected, the speed of the 

incident wave velocity remains constant throughout the experiment. The small scatter in the speed of 

the incident wave can be attributed to the energy of the striker at the moment of the impact with the 

chain [32], determined by the friction with the inner tube. Variation in energy results in different 

momentum transferred to the chain which, in turn, affects the amplitude and speed of the generated 

solitary waves [29–32]. 
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In order to minimize any effect associated with the variation of the incident wave speed, the speed 

of the primary reflected wave was normalized with respect to the speed of the incident wave. The 

results are presented in Figure 7b. The normalized speed increases by approximately 30% over the first 

300 min and then remains constant as the hydration progresses. 

Figure 6. TOF of the PSW (TOFP) and SSW (TOFS) measured from the (a) 11th and  

(b) 16th bead in the HNSW transducer and penetration resistance as a function of time. 

 

 

By comparing Figure 7 with Figure 6, it was observed that the wave velocity becomes saturated 

after 5 h, while the TOF is still sensitive to material hardening. This is due to the separate effect that 

aging concrete has on the contact time between the bottom particle of the chain and the interface, and 

on the repulsive force that determines the speed of the reflected waves. In fact, the TOF measured at a 

certain sensor particle consists of three components. The first is the travelling time of the incident 

wave between the sensor bead used for the measurement and the interface. This time depends on the 

impact energy of the striker and on the gravitational precompression. Thus, this travelling time is 

expected to be constant irrespective of the concrete’s age. The second component of the TOF accounts 

for the contact time between the last bead and the testing material. This contact time is strongly 

affected by the stiffness of the material.  
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Figure 7. (a) Experimental results of wave speed of incident HNSW and PSW; (b) The 

ratio of the wave speed of PSWto that of incident HNSW. 

 

 

As the concrete gains strength, the contact time decreases. Based upon the values shown in  

Figures 6 and 7, it can be demonstrated that this second part of the TOF accounts for more than 50% of 

the TOF measured by the sensor bead when the concrete is fresh. Finally, the last part accounted in the 

TOF is the travelling time of the reflected pulse from the interface to the sensor bead. This travelling 

time is dependent on the particles pre-compression and the repulsory force generated at the interface. 

As the concrete gains strength, the reflected PSW and SSW are expected to increase their velocity and 

therefore the associated TOF is expected to diminish.  

In order to quantify the effect of concrete age on the pulse amplitude, Figure 8 is presented.  

Figure 8a,b shows the ARP and the ARS as a function of the cement age as measured by the top and 

bottom sensor particle, respectively. While the amplitude ratio of the primary wave increases with 

concrete age (green cross marker), the ARS exhibits a relatively complex and inconclusive behavior 

(blue circles). By comparing the results shown in Figure 8 with the resistant pressure shown in  

Figure 6, it is worth noting that the amplitude of the primary reflected wave has a three-fold increase 

within the first 300 min and then it flattens when the initial set occurred. As such, the amplitude of the 

primary reflected wave might also be used to determine the initial set of concrete. More tests are 

necessary to validate such evidence. 
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Figure 8. Experimental results of amplitude ratio of PSW (ARP) and SSW (ARS) as a 

function of time measured from the (a) 11th and (b) 16th bead in the HNSW transducer. 

 

 

4. Discussion and Conclusions 

This article shows the working principles of a transducer able to generate and detect highly 

nonlinear solitary waves (HNSWs) and applied to monitor the hydration of fresh concrete. The 

transducer consists of a chain of spherical particles with instrumented beads, while an electromagnet is 

used for the generation and detection of the HNSWs. This transducer is used in a preliminary study 

aimed at developing a novel nondestructive testing method to estimate the initial and final set of fresh 

concrete and the temporal strength/stiffness development of the concrete. To prove the feasibility of 

the methodology, the transducer was used to monitor one concrete sample during hydration. It was 

found that a single pulse perpendicularly incident to the actuator/cement interface induces two 

reflected pulses, namely the primary solitary wave (PSW) and the secondary solitary wave (SSW). The 

amplitudes and the time-of-flight (TOF) of these two reflected waves are found to be strongly 

dependent on the stiffness of the sample. The trend of the HNSWs characteristics are compared with 

the penetration resistance obtained from the ASTM C 403 performed on mortar samples sieved from 

the concrete mixture. As the concrete became stiffer, the TOF of both the PSW and SSW decreased 

continuously. Two transition points were observed in the trend for the TOF with time. These points 

approximately corresponded to the times of initial and final set established using the ASTM C403 test. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11 12

A
m

pl
it

ud
e 

ra
ti

o

Time (hour)

(a)

 ARP

 ARS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10 11 12

A
m

pl
it

ud
e 

ra
ti

o

Time (hour)

(b)

 ARP

 ARS



Sensors 2014, 14 12581 

 

 

Although the results are encouraging, more experiments are necessary to generalize the proposed 

methodology and to determine the relationship between HNSW parameters and the mechanical 

properties of material, which can then be related to penetration resistance from ASTM C403. First of 

all, the repeatability must be investigated by testing several samples of the same concrete batch and 

concrete samples with different water/cement ratios. Then, the effect of the spherical particles’ size 

and material on the determination of the concrete properties should be studied to evaluate any effect on 

the prediction of the initial and final set. For instance, by enlarging the particles size the spatial 

wavelength increases, and the wave speed and amplitude decrease. By augmenting either the mass of 

the striker or the precompression force, both the amplitude and the wave speed increase. Future studies 

may also focus on finding the optimal design of the non-linear medium to maximize the sensitivity of 

the proposed technology to the changes of the concrete mechanical characteristics. This study would 

determine, for example, if these transducer parameters affect the set time determined using the HNSW 

device. Finally, a comparative study between the HNSW-based technology and current methodologies, 

such as those based on the use of bulk waves and the Schmidt hammer, should be carried out to 

quantify advantages and limitations of the proposed technique. 

If the results found in this study are confirmed by the comprehensive studies summarized above, the 

novel nondestructive approach and the transducer described could provide some advantages over other 

conventional nondestructive testing methods based on linear ultrasonic bulk waves. In fact, the present 

approach uses only one transducer (instead of at least two) and does not require accessibility to the 

back-wall. With respect to the wave reflection method, where only the reflection coefficient is affected 

by the cement age, the present approach can virtually exploit three parameters: (1) the TOF of the 

primary reflected waves, (2) the TOF of the secondary reflected waves, and (3) the amplitude of the 

reflected waves. Moreover the HNSW-based method does not require the use of electronics for the 

generation of high-voltage input signals, contrary to piezoelectric transducers. It is acknowledged that 

the method presented in this paper implies that hydration is uniform in the whole material, by 

providing “effective” materials properties near the surface. If the hydration conditions are such that the 

mechanical properties of the material in the near field, i.e., close to the actuator, are significantly 

different than in the far field, the HNSWs-based features may not be representative of the whole 

structure. Compared to the Schmidt hammer, which performs under a similar principle, the HNSW 

approach is nondestructive and robust in terms of pulse repeatability. Furthermore, the HNSW 

approach has more features to exploit and can be used to estimate “soft” materials such as fresh 

concrete. Overall, the preliminary results discussed show that the proposed technique has promising 

potential in characterizing the time-dependent strength-development of concrete. In the experiment 

conducted in this study a thin aluminum sheet was located between the chain of particles and the 

concrete, to prevent the free falling of the granules into the fresh concrete. Future studies should 

consider the effect of the sheet thickness on the repeatability and effectiveness of the proposed 

methodology. Alternatively the tube containing the particles can be tapered at the bottom in order to 

guarantee the contact of the last particle of the chain and the concrete without the free fall of the 

granules inside the fresh concrete. Future studies may consider particles of larger diameter or 

magnetostrictive sensors or piezo cylinders [45] for the measurement of the solitary waves.  
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