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Abstract: In recent years, neoadjuvant treatment trials have shown that breast cancer subtypes
identified on the basis of genomic and/or molecular signatures exhibit different response rates and
recurrence outcomes, with the implication that subtype-specific treatment approaches are needed.
Estrogen receptor-positive (ER+) breast cancers present a unique set of challenges for determining
optimal neoadjuvant treatment approaches. There is increased recognition that not all ER+ breast
cancers benefit from chemotherapy, and that there may be a subset of ER+ breast cancers that can be
treated effectively using endocrine therapies alone. With this uncertainty, there is a need to improve
the assessment and to optimize the treatment of ER+ breast cancers. While pathology-based markers
offer a snapshot of tumor response to neoadjuvant therapy, non-invasive imaging of the ER disease in
response to treatment would provide broader insights into tumor heterogeneity, ER biology, and the
timing of surrogate endpoint measurements. In this review, we provide an overview of the current
landscape of breast imaging in neoadjuvant studies and highlight the technological advances in
each imaging modality. We then further examine some potential imaging markers for neoadjuvant
treatment response in ER+ breast cancers.

Keywords: breast cancer; estrogen receptor (ER); neoadjuvant therapy; mammography; MRI; PET;
quantitative imaging; ultrasound; X-ray

1. Introduction

Gene expression profiling has given us a better understanding of breast cancer as a heterogeneous
disease and led to the identification of distinct molecular subtypes [1,2]. The major intrinsic subtypes,
classified as luminal A, luminal B, basal-like, and human epidermal growth factor receptor 2
(HER2)-enriched, reflect the heterogeneity within breast cancer, with each subtype having a unique
biology, prognosis, and response to treatment [3–7]. Luminal breast cancers comprise >70% of all
breast cancers [8]. A large majority of luminal breast cancers are estrogen receptor-positive (ER+).
While patients with ER+ tumors have lower recurrence rates within the first five years compared to
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other subtypes, their risk persists over decades, with >50% of recurrences occurring after five years,
and are responsible for the majority of breast-cancer related deaths [9,10]. While endocrine treatments
using tamoxifen and aromatase inhibitors (AIs) are generally found to be effective in ER+ breast
cancers, recurrent tumors are often resistant or become resistant to these treatments. Therefore, there
is a clear unmet clinical need to develop new tools to improve the assessment and to optimize the
treatment of ER+ breast cancers.

Clinical studies [11,12] have shown similar results in disease-free and overall survival in breast
cancer patients treated with neoadjuvant chemotherapy (NAC) vs. those with adjuvant chemotherapy.
These findings have shifted breast cancer management to greater use of NAC in patients with
high likelihood of response to chemotherapy. NAC has several clinical benefits. It enables tumor
downstaging for breast conservation surgery, provides in vivo information about the primary tumor to
inform therapeutic efficacy, and importantly, it provides predictive information about the benefit of
adjuvant therapy [13]. Pathologic complete response (pCR) to NAC (eradication of invasive disease
in the breast and lymph nodes after NAC) also serves as a surrogate endpoint, providing important
prognostic information [14–16] for treatment intervention and accelerating new drug development.

Recently, neoadjuvant endocrine therapy (NET) trials have emerged as platforms to identify new
therapeutic approaches for ER+ breast cancers [17–20]. While pCR has been adopted as a short-term
endpoint in NAC trials for its use in accelerated drug approval [21], its effectiveness as a surrogate of
long-term outcome in NET trials is less compelling [22]. The main challenge is that ER+ cancers have a
low rate of pCR, and non-pCR does not infer poor outcomes. In fact, many ER+ patients failing to
achieve short-term pCR achieve excellent long-term outcomes with adjuvant endocrine therapy [19].

Residual cancer burden (RCB) index [23] is another pathological measure based on tumor size,
tumor cellularity, and nodal status. It is increasingly being used to measure NAC response [24–27].
However, the adoption of RCB in NET studies suffers from similar challenges as in pCR. In the NeoPAL
study [28], RCB was the primary endpoint to assess the efficacy of combining letrozole with palbociclib
(LETPAL) vs. standard chemotherapy in 106 ER+ breast cancer patients. Of the 52 patients in the
LETPAL arm, only 4 (7.7%) achieved RCB 0/I after 28 daily regimens. Although the NeoPAL trial did
not meet the accrual goal, the slow response and low RCB 0/I rate were demonstrated in this study.

The proliferation antigen Ki-67 is highly expressed in all cell cycles phases except for G0 [29]. It has
been proposed as a measure to assess the potential efficacy of endocrine treatments in NET trials [10].
The collective evidence from the P024 [30], IMPACT [31], and ACOSOG Z1031 (Alliance) [32] trials
showed that treatment-induced reduction in Ki-67 level in post-menopausal ER+ breast cancer patients
is associated with disease-free (DFS) and relapse-free survival (RFS). However, some tumors present
a paradoxical increase in Ki-67 value from baseline despite the initial on-treatment reduction [33].
Other caveats include analytical consistency, intra- and inter-reader reproducibility, and scoring
approaches. An international Ki-67 in Breast Cancer Working Group was formed to address some
of these problems. Analyses of 30 cases of ER+ breast cancer performed by 14 laboratories from
6 countries using 7 different scanners and 10 software were reported in 2019 [34]. By adopting an
automated machine-based scoring method, the intraclass correlation coefficient for automated average
Ki-67 was 0.83 and for maximum Ki-67 was 0.63. Results from this group indicated that the maximum
Ki-67 score is suboptimal for consistent measurement of proliferation. While the automated average
Ki-67 scoring shows promise in reproducibility, optimal timing for when to obtain the on-treatment
Ki-67 value still needs to be determined. Importantly, the use of Ki-67 also needs to be demonstrated
in premenopausal patients for future clinical validations.

A multivariate analysis of Ki-67, tumor size, nodal involvement, and ER status in the P024 study
had led to the development of the preoperative endocrine prognostic index (PEPI) scoring system [35].
The PEPI score weighs these independent predictors, based on their hazard ratio of relapse risk.
The end result is that a PEPI score of 0 at surgery translates to a low relapse risk, and further adjuvant
chemotherapy would be unnecessary. A PEPI score of 4+, on the other hand, indicates a higher risk of
early relapse that warrants triaging patients to adjuvant chemotherapy. While the PEPI scoring system
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shows promise in predicting high and low relapse risks, further study is needed to clearly define the
“cut-off” of intermediate relapse risk and how to manage patients with intermediate scores of PEPI
1–3. Other limitations include: (1) sampling error due to intra-tumoral heterogeneity; (2) timing of the
“on-treatment” Ki-67 measurement and (3) usefulness of Ki-67 in treatment-induced apoptosis [19].

Collectively, the aforementioned pathological-based surrogate endpoints, obtained at surgery,
offer a snapshot of tumor response to neoadjuvant treatment. To gain broader insights into tumor
heterogeneity, ER biology, and the timing of surrogate endpoint measurement, non-invasive monitoring
of the disease in response to treatment would be extremely valuable. Indeed, imaging has been an
integral part of neoadjuvant studies [36]. Mammography, ultrasound, magnetic resonance imaging
(MRI), and positron emission tomography combined with computed tomography (PET-CT) are all
essential to the detection, staging, and monitoring of breast cancer. In this review, we summarize the
current landscape of breast imaging in neoadjuvant studies and highlight the technological advances
in each modality. We then further examine some potential imaging markers for neoadjuvant treatment
response in ER+ breast cancers.

2. Imaging of Neoadjuvant Treatment Response in Breast Cancers

In the NAC setting, quantitative imaging plays a vital role in assessing the response of the intact
primary tumor to targeted systemic therapies. Treatment-induced change in the primary tumor may
serve as a surrogate marker for the effect of therapy, providing valuable information on drug efficacy
for subsequent clinical decision making. In the NET setting, however, there is no consensus on the
best imaging method to use for assessing response. Most of the NET studies are limited to tumor size
measurements based on clinical exam, mammogram or ultrasound [37]. A review of more advanced
quantitative imaging tools used in the NAC setting may provide insights into potentially more accurate
markers for ER+ tumor response to NET.

2.1. Mammography

Screening mammography (MG) is a low-energy (26–34 kVp) X-ray imaging technique that is
used in asymptomatic women for detecting microcalcifications, masses, architectural distortion and
asymmetries that may reflect breast cancer. Diagnostic mammography is often used to assess findings
from screening mammography, and in patients with symptoms or signs such as palpable mass, skin
thickening or nipple discharge. Evaluation is enhanced by noting change in appearance compared
to previous mammograms. Mammography together with breast ultrasound (US) has been used to
measure residual tumor burden during neoadjuvant therapy. While the resolution of some baseline
mammographic features such as microcalcifications and spiculation of masses are associated with
response [38], the use of mammography may be of limited value during neoadjuvant therapy due to
variable accuracy and sensitivity to changes in residual tumor burden [39].

Several studies have shown that the extent of tumor size reduction by mammography correlates
poorly to pathologic tumor size and pCR. In a study of 130 patients receiving NAC, there was a stronger
correlation between pathologic tumor size and MRI tumor volume (r = 0.55) than that compared to
mammographic extent of microcalcifications (r = −0.12) [40]. Interestingly, in the ER- population (N = 67),
MRI and mammography performed similarly (MRI, r = 0.39 vs. MG, r = 0.36, p = 0.84), while MRI
enhancement had higher correlation to pathologic tumor size than mammography in ER+ patients
(N = 67; MRI, r = 0.55 vs. MG, r = 0.19, p = 0.02). Other studies also found no statistically significant
correlation between the measure of calcifications extent and pCR (p = 0.06) or MRI enhancement (p = 0.12),
although the presence of microcalcifications at post-treatment was used to identify candidates for
breast-conserving surgery [41].

Given the very high resolution of mammography, microcalcifications are best seen with this
imaging technique. Calcifications may be driven by the presence of necrotic tissue within a malignant
mass or may reflect necrosis or other processes within ductal carcinoma in situ (DCIS). While an increase
in malignant-appearing calcifications associated with known DCIS may signify disease progression,
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studies have shown that residual mammographic microcalcifications following treatment may not
always be associated with active malignant disease [42,43]. With this uncertainty, the handling of residual
post-treatment mammographic microcalcifications remains controversial. Moreover, the likelihood
of malignancy in residual calcifications may be subtype-specific. In particular, malignant residual
calcifications are more likely found in ER+ patients [42] and are linked to poor response in luminal
disease with DCIS [44,45]. Therefore, breast cancer subtype must be considered when mammography
is used to monitor response to neoadjuvant therapy.

For many years, mammography has been performed utilizing X-ray beam projections resulting
in 2D images, which are subject to potential tumor masking by dense breast tissue. Digital breast
tomosynthesis (DBT) is a newer type of mammography that collects image data at multiple projection
angles while the breast is compressed in standard planes. The resulting reconstructed image is a
3D compressed breast volume [46]. The volume may also be viewed as a series of individual slices,
which enhances lesion boundaries and retains morphological information of masses, thus improving
visualization in dense tissue and differentiation between benign and malignant processes [47].
Compared to 2D mammography, DBT showed a more accurate estimation of tumor size, especially
those with diameters < 2 cm and in dense breasts [48] (Figure 1). In a study of 51 patients undergoing
NAC, tumor size and prediction of pCR were compared among 2D mammography (MG), DBT,
ultrasound (US), and MRI. While MRI-measured tumor size had the highest correlation with pathologic
tumor size (intraclass correlation coefficients (ICC): MRI = 0.83; MG = 0.56; DBT = 0.63 and US = 0.55),
both MRI and DBT were predictive of pCR, more so than mammography and US (area under the
receiver operating characteristic curve (AUC): MRI = 0.92; DBT = 0.84; MG = 0.72; US = 0.75) [49,50].
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limitations. Given the need of iodine-based contrast agents for the exam, there is a risk of adverse 
reactions in some patients. False positives in dealing with fibroadenomas, hamartomas, intra-
mammary nodes, and fat necrosis have significantly reduced the specificity of this method as a 

Mammography DBT Contrast-enhanced MRI 

Figure 1. An invasive ductal carcinoma (IDC) presenting as palpable lump, best seen on tomosynthesis
slices of DBT (left), with asymmetry and architectural distortion. The heterogeneously dense breast
tissue obscures the finding on the 2D mammographic image (center). Ultrasound (not shown)
demonstrated a hypoechoic lesion and was redemonstrated by contrast-enhanced MRI with an
irregular mass measured at 1.2 × 1.1 × 1.4 cm (right).

In recent years, the development and clinical implementation of contrast-enhanced spectral
mammography (CESM) have shown considerable promise in therapy monitoring. CESM combines
iodine-based intravenous contrast agents with dual-energy (low at 24–35 kVp and high 40–47 kVp) [51]
image acquisition to capture morphologic and microvessel density (MVD) features of the breast [52].
The resulting dual-energy recombined image has high sensitivity for detecting lesions in dense breasts
that are otherwise occult on conventional mammography [53] (Figure 2) [54]. More recent studies
of CESM in monitoring breast cancer treatment response have shown that CESM measured tumor
size at pre- and during treatment time points is highly correlated to MRI [55,56] with comparable
sensitivity and specificity to predict treatment response. However, CESM is not without limitations.
Given the need of iodine-based contrast agents for the exam, there is a risk of adverse reactions in
some patients. False positives in dealing with fibroadenomas, hamartomas, intra-mammary nodes,
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and fat necrosis have significantly reduced the specificity of this method as a primary technique for
breast cancer. Since CESM and DBT are promising mammographic techniques that may potentially
add values to treatment monitoring, studies in large patient populations will be important to validate
the initial findings and to stratify imaging phenotypes by subtype.
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Figure 2. An example of a mammographically occult mass in a dense breast (a) on the low-energy
image but is demonstrated on the dual-energy recombined contrast-enhanced image (b) (CESM).

2.2. Ultrasound

Compared to mammography, ultrasound-measured breast tumor size showed higher correlation
to pathologic tumor size (r = 0.68 (US) vs. r = 0.44 (MG)) [57]. In a retrospective cohort of 196 patients,
US was able to estimate post-treatment residual tumor size more accurately than mammography
(59.6% (US) vs. 31.7% (MG), p < 0.001) [58]. In the prediction of pCR, however, there was no statistically
significant difference in specificity and sensitivity between the two modalities with the AUC of
0.741 (US) vs. 0.784 (MG).

Interestingly, studies have shown similar subtype-driven effects in ultrasound as in mammography.
In a study of 159 patients, the percent change in US-measured tumor size at mid-treatment was linearly
associated with the RCB index score in triple-negative (TN) and hormonal positive (HR+; ER or
progesterone (PR) receptor positive or both) subtypes, but not in HER2+ tumors [59]. US imaging
features such as the absence of posterior acoustic shadowing and spiculation were significant predictors
of pCR in HER2+ tumors [38]. On the other hand, no feature was found to associate with response in
the TN subtype, and the presence of posterior shadowing was associated with HR+/HER2− breast
cancers [60]. However, axillary lymph node characterization, which is most accurately managed by
ultrasound [36], is largely independent of subtype. While there remains an association between RCB
and the number of axillary lymph nodes with residual disease, there is no significant effect (p > 0.05) of
subtype on this association [59]. Indeed, the sensitivity, specificity, and positive predictive value (PPV)
for lymph node detection were found to be independent of subtype, although the negative predictive
value (NPV) was highest for TN and lowest for HER2+ cancers [61].

As with mammography, there has been a recent push in the development and deployment of
contrast-enhanced ultrasound (CEUS) for imaging lesion vascularity. A meta-analysis of nine studies
involving 424 patients [62,63] showed that CEUS had pooled sensitivity of 87% and specificity of 84%,
which is comparable to dynamic contrast-enhanced (DCE) MRI and PET using [18F]fluorodeoxyglucose
([18F]FDG) [64]. However, publication bias, pooled data, and small sample sizes of comparative
studies may overestimate the diagnostic accuracy of CEUS. Nonetheless, CEUS may hold promise
as an emerging imaging technique, and further investigations of its accuracy by subtype would be
of interest.
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Tissue remodeling from cell migration to cell alignment and collagen crosslinking are steps that
lead to stiffening of the extracellular matrix (ECM) in tumorigenesis [65]. Shear-wave elastography
(SWE) estimates tissue stiffness via a mechanical pulse generated by the ultrasound transducer [66].
Pre- and post-treatment stiffness has been correlated to RCB and residual tumor burden, independent
of subtype [67,68]. However, more studies are required for establishing SWE in clinical care.

2.3. Magnetic Resonance Imaging

MRI is considered an accurate method to assess treatment response in breast cancer [69].
Contrast-enhanced MR imaging (CE-MRI) is the most common MRI technique for functional assessment
of breast tissue. It involves serial image acquisition at time points before and after the administration
of gadolinium contrast agent. CE-MRI derived tumor volume [70,71], tumor size [72,73], and
pharmacokinetic (PK) parameters [74–77], including volume transfer constant (Ktrans), exchange rate
constant (kep), extravascular extracellular space volume (ve), and early contrast uptake, are increasingly
used to assess response to NAC.

2.3.1. Tumor Volume

When examining the accuracy of CE-MRI quantitative measurements for prediction of pCR to
NAC in breast cancer, tumor volume showed the highest sensitivity/specificity compared to tumor
size and PK parameters [78]. Indeed, functional tumor volume (FTV) [79], computed by summing
all voxels above the percent enhancement (PE) and signal-enhancement-ratio (SER) thresholds, was
predictive of response during NAC in the American College of Radiology Imaging Network (ACRIN)
6657/I-SPY 1 TRIAL [80,81] (Figure 3). In this study of 216 patients, the pre-/post-treatment FTV ratio
was more predictive of pCR early in the treatment (AUC = 0.70) than the longest diameter (AUC = 0.64),
SER (AUC = 0.57), and clinical exam (AUC = 0.56). Reduction in FTV reflects the angiogenic changes
that may precede size reduction, demonstrating a clear advantage as a marker for tumor response to
guide earlier treatment invention for better clinical outcomes.
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Figure 3. An example of using MRI functional tumor volume (FTV) to monitor a breast cancer patient
during neoadjuvant chemotherapy. Shown here are maximum intensity projection images (top row)
and corresponding FTV maps (bottom row) for a patient with an excellent clinical response. From left
to right, FTV measurements were 48.5, 35.4, 5.6, and 0 cm3 at baseline, early treatment, inter-regimen,
and pre-surgery time points, respectively.

Prediction of pCR by FTV can be further improved by adjusting the PE and SER thresholds
according to the breast cancer subtype [82]. In a subset of 116 patients from the ACRIN 6657/I-SPY
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1 TRIAL [83], the estimated AUC in the HR+/HER2− group at mid-treatment was improved from
0.70 to 0.90 when the PE threshold was increased from 70% to 130%. Likewise, the pCR prediction
in the HER2+ and TN groups also improved when the PE/SER thresholds were adjusted upward.
These findings highlight the heterogeneity of breast cancer, requiring not only personalized treatment,
but also optimized subtype-specific imaging parameters to accurately assess treatment response.

2.3.2. Pharmacokinetic Parameters

In addition to tumor volume, PK parameters may reveal tumor vascular response to therapeutic
effects [84]. From a collection of studies with small cohorts [76,84–91], reduction in Ktrans and kep values
after NAC is generally found in responders, whereas non-responders showed minimal reduction, or, in
some cases, an increase in Ktrans and kep. In a more recent meta-analysis of 14 quantitative MRI studies of
breast tumor response to NAC [92], three studies [85,86,89] with PK measurements were extracted with
the combined sensitivity and specificity at 84.1% and 81.3%, respectively. These initial results suggest
that Ktrans and kep representing perfusion and vascular permeability may be important parameters in
identifying responders from non-responders. While the PK parameters are investigational and the
sample size of all these studies are too small for subtype analyses, the initial findings are nonetheless
promising for further investigations.

2.3.3. Background Parenchymal Enhancement

Contrast enhancement in the breast parenchyma, termed background parenchymal enhancement
(BPE), is a phenomenon observed on breast MRI, in which normal breast tissue shows enhancement in
various patterns from the uptake of contrast agent. The BPE level is influenced by endogenous sex
hormones and varies throughout the menstrual cycle in premenopausal women [93–95]. While the exact
biological mechanism of BPE is unknown, histopathologic exams of the contralateral fibroglandular
tissues from prophylactic mastectomy in 80 premenopausal women found a strong correlation between
BPE and microvessel density (MVD), endothelial density (CD34), glandular concentration, and vascular
endothelial growth factor (VEGF) [96]. This study, though preliminary, suggests that women with high
BPE may have higher epithelial density and greater glandular structure that may contribute to breast
cancer risk [97].

In current clinical practice, BPE is determined by qualitative visual assessment and is reported
as minimal, mild, moderate, or marked, as seen on early post-contrast images in accordance with
the American College of Radiology’s Breast Imaging Reporting and Data System (BI-RADS) [98,99]
(Figure 4). Quantitative approaches based on percent enhancement (PE) within the region or volume
of interest in 2D or 3D have also been used to describe BPE. A recent review of BPE on breast MRI
by Liao et al. has summarized the variation of imaging protocol and the different approaches of BPE
quantification [100]. Without the consensus of optimal timing for measurements and no standardization
of BPE calculations, it is difficult to implement quantitative BPE to clinical practice.

Since the initial report linking BPE to the risk of breast cancer diagnosis [101], many subsequent
studies have demonstrated that treatment-induced changes of BPE in the ipsilateral or contralateral
breast may also serve as a predictor of tumor response [100]. In the NAC setting, post-treatment
reduction of BPE from baseline was associated with tumor response or pCR [102–105]. However, for
ER+/HER2− breast cancer patients undergoing endocrine therapy, an increase in post-treatment BPE
was associated with low PEPI score [106], and those with low baseline BPE (minimal/mild) were found
to have better response [107]. These initial results underscore the impact of systemic therapy on the
breast tissue vascularity and the influence of exogenous ER modulators on the BPE level in response to
treatment. The collective evidence so far points to the potential use of BPE as a biomarker for risk and
response assessment for breast cancers, including the ER+/HER2− subtype.
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2.3.4. Apparent Diffusion Coefficient

Diffusion-weighted imaging (DWI) is another promising MRI technique for assessing tumor
functionality in breast cancer. DWI measures the thermal motion of water molecules, resulting in
an estimation of the apparent diffusion coefficient (ADC). In tissue environments, the ADC value
will be high (1.6–2.0 × 10−3 mm2/s) when water mobility is unrestricted, but it will be reduced
(0.87–1.36× 10−3 mm2/s) [108] when water mobility is restricted in a cell rich environment [109–111]. This
insight has led to the use of ADC to describe the intrinsic characteristics of the tumor microenvironment,
tortuosity, and cellularity. In breast cancer, based on a meta-analysis of five studies with 402 patients,
ADC was moderately correlated to cellularity, suggesting that other cellular features involving the
ECM, nucleic areas, stroma, parenchyma, tissue density, and cell membrane integrity may play a role
in restricting water mobility in the tumor microenvironment [112]. Nevertheless, the increase in ADC
is strongly associated with pCR following NAC [113–118] and may precede changes in tumor size
measured by DCE-MRI [84,119,120].

In a recent prospective multicenter study of 272 patients (ACRIN 6698) [121], the increase in
tumor ADC values (∆ADC) were predictive of pCR at mid-treatment (AUC = 0.60; p = 0.017) and
post-treatment (AUC = 0.61; p = 0.013) time points [121]. The subsequent analysis by subtype showed that
∆ADC was predictive of HR+/HER2− (N = 99; AUC = 0.76; p < 0.001) and TN tumors (N = 77; AUC = 0.75;
p < 0.001) at mid-treatment, but not in HR+/HER2+ or HR−/HER2+ tumors. An example of a patient
with HR+/HER2− disease being monitored by DWI is shown in Figure 5 [121]. Similar findings from a
retrospective study of 225 patients also showed an improved pCR prediction in HR+/HER2− tumors
when ∆ADC was adopted (N = 143; AUC = 0.787; p = 0.007) vs. Response Evaluation Criteria in Solid
Tumor (RECIST) (AUC = 0.693; p = 0.067) [122]. When ∆ADC was combined with RECIST as predictors,
further improvement in the prediction was observed in all subtypes. The additive value of ∆ADC as a
covariate with the FTV metric was observed in the I-SPY 2 TRIAL with a subset of 354 patients [123].
Interestingly, while prediction improvements were found by adding ∆ADCs to the optimized FTV
model at mid-treatment or post-NAC for HR+/HER2+ and TN tumors, significant improvement in
predicting the HR+/HER2− subtype was found by combining pre-treatment ADC with the optimized
FTV model. Given the limited benefit of chemotherapy demonstrated in the HR+/HER2− group,
the use of pre-treatment ADC as a predictor would be valuable to stratify more effective treatment
before the start of NAC for this breast cancer subtype.
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Figure 5. An example of an HR+/HER2− breast cancer patient who had neoadjuvant chemotherapy
being monitored by MRI. The serial apparent diffusion coefficient (ADC) maps, obtained from
diffusion-weighted (DW) MRI (b = 800 mm2/s), show an increase in value with treatment. Compared
to baseline, ∆ADC = +9.5% at early treatment; +14% at inter-regimen and +29% at pre-surgery.

2.3.5. Magnetic Resonance Spectroscopy

1H-magnetic resonance spectroscopy (MRS) of total choline expression in breast lesions may be
used to identify response to NAC. Metabolism and synthesis of choline-containing (tCho) compounds
are increased in breast lesions, due to their role in the generation of lipid membranes and cell
proliferation [124]. pCR and long-term recurrence-free survival have been linked to the reduction in
tCho measured by single-voxel MRS for patients receiving NAC [125]. However, although estrogen
receptor-α (ERα) may be implicated in choline metabolism [126], there is minimal evidence suggesting
differentiation of tCho levels by subtype [127]. Nevertheless, additional research with larger cohorts
undergoing neoadjuvant therapy with multi-voxel spectroscopy is required for assessing the utility of
MRS in identifying therapy response.

In summary, technological development in breast MRI has not only improved data acquisition and
image quality, but it has also yielded important volumetric (FTV), enhancement (BPE), and diffusion
(ADC) markers for response to NAC. Further analyses by subtype have provided insights into their
potential use to assess ER+ breast cancers. Given that DWI can be added to the existing DCE-MRI
sequence with little time and cost penalty, evaluation of tumor ADC along with FTV and BPE can
be easily implemented. As discussed, the sensitivity of BPE to endogenous hormone or exogenous
ER modulators makes it a promising marker for ER+ breast cancer. Further studies to improve
intra- and inter-reader variability, protocol standardization, quality assurance and control (QA/QC),
and consensus of quantification methods are all necessary to translate qualitative and/or quantitative
BPE as a marker for ER+ breast cancer.

2.4. Positron Emission Tomography

Positron emission tomography (PET) is a nuclear imaging technique that detects signals from two
photons at 511 keV, emitted in the opposite direction from the annihilation of a positron and an electron.
When the two photons are detected in coincidence, the event’s origin can be determined along the
image line of response between the detector pair [128]. Technological advances in positron detection
and clinical PET system designs had sparked innovation in radiochemistry to produce biologically
relevant molecules for PET imaging, offering unique metabolic and biochemical information of human
diseases. Indeed, since the first 30 compounds labeled with 15O, 11C, 15N, and 18F published in
1980 [129], there are now over 600 compounds at various stages of research and five approved by the
FDA for human use [130].

2.4.1. [18F]fluorodeoxyglucose

[18F]fluorodeoxyglucose ([18F]FDG) PET is the workhorse of functional imaging of cancer in
clinical care today. It is used extensively for diagnosis, staging, and therapy monitoring. Similar



Cancers 2020, 12, 1511 10 of 24

to the glucose molecule, [18F]FDG is actively transported into metabolically active cells by glucose
transporters and phosphorylated by hexokinase as the first step toward glycolysis. However, unlike
glucose, instead of entering the glycolytic pathway for energy production, [18F]FDG is metabolically
trapped in the cells as [18F]FDG-6-phosphate [131]. [18F]FDG is particularly sensitive to cancer cells
that demonstrate an increased level of glucose transporters and hexokinase and its uptake is an imaging
biomarker for all types of cancers including breast. In assessing pCR in breast cancer patients receiving
NAC, several clinical studies show the value of [18F]FDG PET in the prediction of pathological response
with relatively high sensitivity, NPV, and diagnostic accuracy [132]. In a meta-analysis of 19 studies
consisting of 920 patients [133], [18F]FDG PET had the pooled sensitivity of 84%, specificity of 66%, PPV
of 50%, NPV of 91%, diagnostic odds ratio (DOR) of 11.90, and AUC of 0.843. In a subgroup analysis
focusing on timing and reduction rate cutoff, [18F]FDG PET at early post-treatment time points (after
the first or second cycle) with a reduction of maximum standardized uptake values (∆SUVmax) between
55–65% were found to further improve the accuracy and correlation with pathological response. Given
the relatively high sensitivity and NPV of [18F]FDG PET, an unfavorable result early during the NAC
may signal the low likelihood of pathological response and the consideration of treatment redirection.
However, owing to the relatively low specificity and PPV, favorable scans from [18F]FDG PET need
to be interpreted with caution. Based on Dose-Schwarz’s work on assessing residual tumors using
different imaging modalities [134], MRI demonstrated the highest specificity, while [18F]FDG PET had
the highest sensitivity. Therefore, the use of [18F]FDG PET may complement MRI in the prediction of
response to NAC and to facilitate treatment intervention to improve clinical outcomes.

In addition to SUVmax as a metric used in [18F]FDG PET, other measurements such as mean
uptake (SUVmean), peak uptake (SUVpeak) [135], total lesion glycolysis (TLG), metabolic tumor volume
(MTV) [136], and tumor blood flow [137,138] were also represented in the literature. Importantly,
the most recent PET Response Criteria for Solid Tumors (PERCIST) recommends the use of SUVpeak

normalized to the liver SUVmean [139], termed SULpeak, to reduce the influence of operator- and
acquisition-driven noise in the SUVmax and SUVmean measurements.

The use of [18F]FDG PET SUVmax or SULpeak to stratify response in ER+/HER2− breast cancer is
met with challenges. First, pre-treatment [18F]FDG uptake for this group is low (usually SUVmax < 5),
making quantification of post-treatment change difficult [132]. Second, ER+/HER2− tumors have
variable chemosensitivity and rarely achieve pCR in the NAC setting [140–142]. Finally, SUV prediction
of response is more accurate at early time points during NAC, but ER+/HER2− tumors are slow to
respond. Given these challenges, there is a clinical need to investigate more accurate predictors for
this subgroup. In a prospective NAC study of 64 ER+/HER2− patients, Groheux et al. examined the
value of different [18F]FDG PET measurements for prediction of early response [143]. Their findings
indicated that ∆TLG, which accounts for SUVmean and MTV, was more predictive than ∆SUVmax (AUC
of 0.81 vs. 0.73), demonstrating that more studies are needed to explore alternative markers to better
describe the ER+/HER2− subtype.

2.4.2. [18F]fluoroestradiol

[18F]fluoroestradiol ([18F]FES) is a radiotracer that has been developed for PET imaging of ER
status [144,145]. As an analog of estradiol, [18F]FES binds to ERα and serves as a surrogate marker
for ERα expression [146]. Earlier clinical studies show that [18F]FES tumor uptake correlates with the
level of ERα expression in biopsy samples by immunohistochemistry [147] and predicts the likelihood
of response to endocrine treatment [148–150]. [18F]FES can detect ER+ breast cancers with high
sensitivity (84%) and specificity (98%) [151]. At baseline, using an SUV cutoff ≥ 2.0, [18F]FES has
been shown to correlate with salvage endocrine therapy response with a PPV of 50–79% and NPV of
81–88% [146,148,152,153]. When a lower cutoff was used, no patients with a baseline [18F]FES SUV < 1.5
had response to salvage endocrine treatment [150]. These findings underscore the value of baseline
[18F]FES to determine treatment for ER+ breast cancer patients according to their predicted endocrine
treatment responsiveness.
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While the predominant usage of [18F]FES PET was to evaluate metastatic breast cancer with salvage
endocrine therapy, there is a small number of studies using [18F]FES PET to image the primary breast
tumor in the neoadjuvant therapy paradigm [154,155] (Figure 6). In a small 18-patient cohort receiving
NAC, baseline [18F]FES and [18F]FDG uptake was correlated to histopathologic response [155,156].
This study suggested [18F]FES and [18F]FDG provided similar information in ER+ patients receiving
NAC. In another recent study, [18F]FES PET was used to evaluate neoadjuvant treatment response
in post-menopausal ER+ breast cancer patients randomized to the NAC vs. the NET arm of the
NEOCENT trial (N = 26) [157]. An important finding from this study was that patients who were
[18F]FES-negative or -low (SUV cutoff < 7.3) at baseline achieve a higher rate of pCR in the NAC arm
compared to [18F]FES-avid patients. None of the [18F]FES-negative and -low patients responded to
NET. While all the patients in this study were ER+, some patients were [18F]FES-negative, indicating
the existence of non-functional ER that may be resistant to endocrine treatment. Adequately powered
prospective studies in a larger number of ER+ patients are needed to further establish the role of
[18F]FES-PET in evaluating response to NET [158].
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2.4.3. Other Radiotracers

Other radiotracers that have been tested in locally advanced breast cancer include
18F-fluorothymidine ([18F]FLT), [11C]choline, and [68Ga]-labeled fibroblast activation protein inhibitors
([68Ga]FAPI). Like [18F]FES, these molecules target complementary pathways or biomarkers, potentially
serving as an in vivo assay and indicator of response to specific therapeutic agents. [18F]FLT signal
is correlated to the proliferation marker Ki-67 [159]. [18F]FLT uptake and irreversible retention are
mediated by its phosphorylation of thymidine kinase-1, which is especially overexpressed in cells in the
S-phase. Relative and absolute [18F]FLT SUVmax was only weakly predictive of pCR (AUC = 0.68) in the
ACRIN 6688 trial [160]. Post-treatment [18F]FLT ∆SUVmax correlated to Ki-67 more strongly (r = 0.67,
p < 0.0001) than baseline and absolute SUVmax (r = 0.29, p = 0.04). The weak association between
pCR and [18F]FLT may be partially driven by the variable chemotherapy regimens and heterogeneous
patient population underpinning the NAC trial. Separately, [18F]FLT SUVmax and uptake rate were
found to correlate with Ki-67 in ER+ patients receiving NET [161] and NAC [162], although there was
no predictive value associated to either baseline SUVmax or ∆SUVmax for stratifying response.
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Lipid synthesis can be imaged by PET using [11C]choline. 11C-choline SUVmax is correlated to
cell proliferation measured by [18F]FLT (r = 0.83, p < 0.001) [163]. There have also been preliminary
studies associating [11C]choline uptake to response to trastuzumab in a small population (N = 21) of
HER2+ [164] and tumor aggressiveness in ER+ patients (N = 32) [165]. These results are promising and
warrant testing in larger cohorts receiving NAC and NET, although the use of [11C] may be detrimental
to widespread acceptance due to the 20 min half-life and limited availability of on-site cyclotrons
outside research institutions.

Cancer-associated fibroblasts (CAFs) are found abundantly in the tumor stroma. They produce
growth factors and cytokines to support tumor growth [166], while enabling ECM remodeling to
facilitate invasion [167,168] and creating collagen barriers against drug infiltration [169,170]. CAFs are an
important source of estrogen, with high expression and activity of cancer-associated aromatase [171,172]
in ER+ breast cancers. They provide nutrients for epithelial cancer cell mitochondrial activity to
induce endocrine treatment resistance [173]. One distinct characteristic of CAFs is the overexpression
of fibroblast activation protein-α (FAP). FAP is a type II integral membrane serine protease of the
prolyl oligopeptidase family [174,175] that is highly upregulated in almost all carcinomas with low to
undetectable expression in most normal tissue [176]. Based on the design of a FAP inhibitor (FAPI) [177],
a collection of quinoline-based molecules labeled with [68Ga] have been tested for PET imaging in
animals and humans [178]. In a study of 80 patients with 28 different tumors, the uptake of [68Ga]FAPI
in breast cancer is among the highest with SUVmax > 12 (SUVmax, blood = 1.5) and tumor-to-background
ratio > 6 [179]. Because of this high tumor-to-background ratio, more accurate tumor delineation is
expected. Furthermore, because FAPI targets the stromal volume rather than cancer cells, imaging of
FAP expression in the tumor may be more sensitive than traditional metabolic imaging of cancer cells
with [18F]FDG [180]. These exciting new findings point to a new direction of “stroma-centric” targeting
strategy in a genetically stable microenvironment that is relatively insensitive to tumor heterogeneity.
Further clinical testing of [68Ga]FAPI in the detection and treatment monitoring of breast cancers,
especially the ER+ subtype, is eagerly awaited.

So far, collective evidence suggests that functional imaging with PET offers unique information
on breast tumor biology, growth, invasion, and drug resistance. [18F]FES PET could be a valuable
tool to interrogate ER directly. [18F]FLT can be used in NET trials to optimize the timing for Ki67
measurements. With CAFs being a vital source of estrogen with high expression of cancer-associated
aromatase, [68Ga]FAPI may present a new direction to assess ER+ tumors and their response to NET.
Most of the radiotracers are used in breast imaging of small cohorts. However, [18F]FES has recently
gained regulatory approval for clinical use in France and in the U.S. With this exciting development,
more extensive studies are anticipated to pave the qualification of [18F]FES as a biomarker for ER+

breast cancer.

3. Conclusions

In this review article, we surveyed the current landscape of imaging techniques for assessing
breast tumor response to neoadjuvant treatment. We highlighted some promising imaging markers for
ER+ breast cancers. Given that each imaging modality has limitations in sensitivity and specificity,
multiparametric (e.g., FTV/BPE/ADC) and multimodality (e.g., MRI/PET) approaches will likely be
employed to improve the characterization of ER+ breast cancers and the prediction of response to
NAC or NET. Imaging studies correlating histopathologic biomarkers such as (but is not limited to) ER
status, Ki67, and PEPI score will provide valuable insight into breast tumor biology and ultimately
allow for the use of imaging as a non-invasive in vivo assay for ER+ breast cancer characterization.

Recent advances in the radiomics-based analysis have demonstrated the power of transforming
imaging data into multi-dimensional mineable radiomic features [181,182] that are relatable to gene
expression patterns [183–185]. Machine-learning methods can be used to select radiomic features and
build predictive models for clinical outcomes [186,187]. With the advances in high-resolution breast
imaging techniques [188–191], detailed radiologic information along with consequential molecular
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signatures can be extracted, correlated, trained, and learned, yielding models with significant predictive
and prognostic power [183,192–194]. Deep-learning [195] of mammographic images has been
increasingly used to aid breast cancer detection [196], prediction of breast cancer risks [197,198],
and identification of significant microcalcifications evaluation [199]. These new computational
techniques will likely be applied to other breast imaging techniques and will play a major role in future
breast cancer detection, diagnosis, and prediction of treatment outcomes.
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