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EPIGRAPH

We can only see a short distance ahead,
but we can see plenty there that needs to be done.

—Alan Turing
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ABSTRACT OF THE DISSERTATION

Algorithms for Statistical and Interactive Learning Tasks

by

Christopher Tosh

Doctor of Philosophy in Computer Science

University of California San Diego, 2018

Professor Sanjoy Dasgupta, Chair

In the first part of this thesis, we examine the computational complexity of three

fundamental statistical tasks: maximum likelihood estimation, maximum a posteriori

estimation, and approximate posterior sampling. We show that maximum likelihood

estimation for mixtures of spherical Gaussians is NP-hard. We also demonstrate that, in

many instances, hardness of maximum likelihood estimation implies hardness of maximum

a posteriori estimation and approximate posterior sampling.

In the second part of this thesis, we explore the behavior of a common sampling

algorithm known as the Gibbs sampler. We show that in the context of Bayesian Gaussian

mixture models, this algorithm converges very slowly, even when the data looks as though

xii



it were generated by the model. We also demonstrate that when a particular variant of

the Gibbs sampler is used in the context of a class of bipartite graphical models, called

Restricted Boltzmann Machines, it can be guaranteed to converge quickly under certain

conditions.

In the third part of this thesis, we consider learning problems in which the learner

is allowed to solicit interaction from a user. In the context of classification, we present an

efficient active learning algorithm whose performance is guaranteed to be competitive with

that of any active learning algorithm for the particular instance under consideration. We

also introduce a generic framework, termed interactive structure learning, for interactively

learning complex structures over data, and we present a simple and effective algorithm

that enjoys nice statistical properties in this setting.
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Chapter 1

Introduction

Recent years have witnessed an explosion of models and applications emanating

from the machine learning community. With each new model come new algorithmic

questions: How hard is the model to fit in general? Under what assumptions do standard

algorithms succeed? Can we utilize outside help to improve our fitting procedures? In this

thesis, we explore each of these questions in depth.

1.1 The computational complexity of statistical

tasks

When faced with a computational problem, one of the most basic algorithmic

questions that arises is an existential one: ‘do there exist efficient algorithms for this

problem?’ Positive answers are often quite straightforward and usually come in the form

of an efficient algorithm. Negative answers, also known as hardness results, are often only

conditionally negative, meaning the existence of efficient algorithms for this problem would

imply some event that many computer scientists think unlikely.

The argument behind a negative answer generally comes in the form of an efficient

algorithm, known as a reduction, that transforms an instance of a problem believed to be

hard into an instance of the problem under consideration such that the resulting answer

can be easily translated to an answer of the original problem. Perhaps the most famous
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group of problems that are used as the starting points of reductions is the class of NP-hard

problems, due to the fact that they are widely believed to not admit efficient algorithms.

In this thesis, we will be mainly be concerned with reductions and hardness results

for three computational tasks that arise in probabilistic modeling: maximum likelihood

(ML) estimation of the model given data, maximum a posteriori (MAP) estimation when

a prior distribution over models has been specified, and (approximate) sampling of the

posterior distribution over models.

1.1.1 ML estimation

Consider, as a running example, the problem of fitting a mixture of spherical

Gaussians to data. In this setting, we have a collection of data x1, . . . , xn ∈ Rd that we

model as having been generated from a mixture of k normal populations. That is, they

are each independently and identically distributed (i.i.d.) according to

π1N(µ1, σ
2
1) + · · ·+ πkN(µk, σ

2
k)

where N(µ, σ2) is the multivariate spherical Gaussian distribution with density

N(x;µ, σ2) =

(
1

2πσ2

)d/2
e−
‖x−µ‖2

2σ2 .

Given a data set, how do we go about recovering the relevant parameters, i.e. the µ’s, π’s,

and σ’s (which we will conveniently package up into a single vector as (µ,π,σ))?

One approach to this problem, known as the maximum likelihood approach, is to

search for the parameters that make the data most probable. Formally, these are the

parameters which maximize the likelihood, or equivalently the log-likelihood, of the data.
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In the case of our mixture of Gaussians, the log-likelihood function is given by

LL(µ,π,σ) =
n∑
i=1

log

(
k∑
j=1

πj N(xi;µj, σ
2
j )

)
.

The parameter set that maximizes the log-likelihood is called the maximum likeli-

hood estimate, or ML estimate, and enjoys nice statistical properties [87, 57]. Though

ML estimation assumes that the data is generated according to the probabilistic model in

question, it is ultimately an optimization problem and, therefore, is well-defined for data

sets that may not obey the distributional assumptions of the model. We will be interested

in understanding the complexity of this optimization problem for specific probabilistic

models, in particular for mixtures of spherical Gaussians and topic models.

1.1.2 MAP estimation and posterior sampling

The Bayesian approach to probabilistic modeling allows users to incorporate prior

knowledge of the underlying parameters into the modeling process in the form of a

distribution, called the prior distribution or sometimes simply the prior. That is, the

unknown parameters are modeled as random variables whose a priori distribution is known.

Bayes’ rule tells us that we can simply multiply the prior distribution with the likelihood

of the data to recover the posterior distribution of the parameters (up to a normalization

constant). In the case of our mixtures of Gaussians model, if we say the prior distribution

over our parameters follows a known density q(µ,π,σ), then the posterior distribution

takes the following form.

Pr(µ,π,σ |x1, . . . , xn) ∝ q(µ,π,σ)
n∏
i=1

∑
j=1

πj N(xi;µj, σ
2
j ).

There are two tasks that immediately arise here: finding the parameters which

maximize the posterior density, known as maximum a posteriori (or MAP) estimation,
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and sampling, perhaps only approximately, from the posterior distribution. The first of

these, MAP estimation, may be seen as a natural Bayesian counterpart to ML estimation.

The latter, posterior sampling, can be used to estimate various posterior probabilities and

expectations of interest via Monte Carlo methods [42].

On the surface, both MAP estimation and posterior sampling seem at least some-

what related to ML estimation, since all three involve the likelihood of the data under the

model. However, it is also true that without any restrictions on the prior, the posterior

distribution may be concentrated on arbitrary points, meaning that the MAP estimate

and samples from the posterior can differ significantly from the ML estimate. Such priors,

however, are almost never used in practice.

In this thesis, we delve into the computational relationship of these problems. In

particular, we explore cases where hardness of ML estimation for a particular probabilistic

model implies hardness of the corresponding MAP estimation and approximate posterior

sampling problems under commonly used priors.

1.2 Markov chains and mixing rates

As mentioned above, sampling from distributions is an important algorithmic

primitive. It has found use not only in Bayesian statistics but also in theoretical computer

science, statistical physics, and mathematical finance, among others. The widespread

use of sampling algorithms is due, in part, to Monte Carlo methods, which utilize such

samplers to approximate complicated integrals.

One classical way to sample from complicated distributions is via Markov chains.

Formally, a Markov chain is a stochastic process (Xt)
∞
t=0 that satisfies the Markov property :

Pr(Xt+1 ∈ A |Xt, . . . , X0) = Pr(Xt+1 ∈ A |Xt).

Informally, the Markov property asserts that given the value of Xt, the distribution of
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Xt+1 is independent of all previous values X0, . . . , Xt−1.

A fundamental result of Markov chain theory says that if a Markov chain satisfies

certain properties, then it converges to a unique distribution, called its stationary distribu-

tion, regardless of its initial state [66, Theorem 4.9]. This powerful theorem tells us that if

we can design a Markov chain with the appropriate stationary distribution, then it will

eventually start producing samples from that distribution.

Convergence, however, is only guaranteed in the limit, meaning that for any

particular finite time, our Markov chain may not actually be distributed according to

the stationary distribution. Thus, we settle for approximation and instead hope that if

we run our Markov chain for long enough, its distribution will be close to the stationary

distribution. The rate at which this approximate convergence occurs is known as the

mixing rate, and it is a central object of study in the theory of Markov chains.

In Part II, we investigate the mixing rates of commonly used Markov chains in

particular cases of interest.

1.3 Interactive learning

In Part III, we shift our attention to settings in which a learner incorporates

interaction into its fitting procedure. Such interactive learning settings come in a variety

flavors that can roughly be characterized by the sources of interaction and whether or not

the learner drives the interaction. In this thesis, we will focus on two settings in which a

learner solicits relatively simple feedback from an intelligent user.

1.3.1 Active learning

In many situations where a classifier is to be learned, there is an abundance of

unlabeled data, but labels are expensive to obtain. This occurs in wide variety of settings,

including computer vision, bioinformatics, and natural language processing, where data

collection and storage costs have decreased in recent years, but acquiring labels still requires
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humans to inspect the data points or experiments to be conducted. The pool-based active

learning model is motivated by such scenarios.

In this model, a learning algorithm is presented with a large collection, or pool,

of unlabeled examples, and adaptively queries certain data points for their labels. The

hope is that by focusing on informative data points, an active learner can find a low error

hypothesis with fewer labels than a passive learner that relies on labels provided at random.

To see the potential savings of such a scheme, we turn to an example.

Example: Thresholds

Consider the task of learning a one-dimensional threshold. In this setting, our data

points x1, . . . , xn are i.i.d. draws from some distribution D over the real line R and their

labels y1, . . . , yn take values in {−1,+1}. There is some threshold t∗ ∈ R that induces

these labels, i.e.

yi =


+1 if xi ≥ t∗

−1 if xi < t∗
(1.1)

Our goal in this setting is to find a threshold t ∈ R that will have low error relative to t∗:

err(t) = Prx∼D(1[x ≥ t∗] 6= 1[x ≥ t])

where 1[·] is the indicator function that is 1 if the condition holds true and 0 otherwise.

If we are presented with all the labels y1, . . . , yn, then we know that with high

probability, any threshold consistent with these labels will have error bounded by O(1/n).

Something stronger actually holds here: to find a threshold with error ε, it is necessary

and sufficient for a passive learner to receive O(1/ε) labels.

It turns out that an active learning algorithm can get away with fewer labels in this

setting. To see why, note that if we have the label of yi, equation (1.1) can be reversed to
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tell us something about t∗:

t∗ ≤ xi if yi = +1

t∗ > xi if yi = −1

In particular, if yi is +1, we know that yj = +1 for all xj ≥ xi; and if yi is −1,

we know that yj = −1 for all xj ≤ xi. An active learner can use binary search to exploit

this structure and recover all n labels after O(log n) queries. Thus, with O(1/ε) unlabeled

data points and O(log 1/ε) labels, an active learner can find a classifier with error ε. With

respect to the number of labels required, this is an exponential improvement over the

passive learner!

As encouraging as our threshold example is, we cannot hope to always do exponen-

tially better than the passive learner, even in the noiseless and realizable setting [31]. A

more realistic goal is to construct an active learner whose performance is comparable to

the best active learning algorithm for the scenario under consideration. We will see that

under certain assumptions this is not only theoretically possible, but there is a simple and

efficient algorithm that achieves this.

1.3.2 Interactive structure learning

Consider the problem of fitting a structure, such as a flat clustering or a hierarchy,

to some particular data set. There are many ways to do this, but they typically involve

two discrete steps. The first step is to construct a cost function, define a probabilistic

model, or derive a posterior distribution over structures, and the second is to optimize the

cost function, fit the model, or sample from the posterior.

There have been many advances in recent years for doing these tasks with no

supervision, but it is rarely the case that the structures produced by such procedures

perfectly align with what a user expects or has in mind. There are a many reasons why
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Figure 1.1. An ambiguous data set with two valid clusterings.

such deficiencies arise. Here we highlight three important ones.

• Computational reasons. It may be that optimizing the cost function or sampling

from the posterior is difficult in general, and the only available algorithms find crude

approximations of the optimum.

• Modeling issues. The data may not exactly match the assumptions of the model a

user has in mind. For example, a user might try to fit a mixture of Gaussians to

data that was generated by a mixture of distributions with heavier tails.

• Ambiguous data. Complex data can be organized in a multitude of reasonable ways,

particularly in high-dimensions, but a user may only really be satisfied with some

small subset of these. Consider the two clusterings of the same toy data set in

Figure 1.1. Both could conceivably be considered legitimate ways to cluster the

data set, but if a user only views one as correct, how is an unsupervised method to

choose?

Interactive structure learning addresses such situations by allowing users to itera-

tively provide feedback on small subsets of a potential structure. As in the active learning

scenario, learners in this setting pose queries to a user. But interactive structure learning

differs from, or rather generalizes, active learning in two key ways.

• Mini-structures as queries. In the traditional active learning setting, a learner asks

questions of the form ‘what is the label of this specific point?’ In interactive structure
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learning, questions are of the form ‘does this structure on these k points look correct?’

In soliciting feedback on several points at once, this type of query provides context

to a user, and may result in higher quality feedback.

• Partial correction feedback. In active learning, a user provides a single label for the

point that was queried. In interactive structure learning, a user corrects or confirms

some aspect of the structure that was presented. For example, if a user is presented

with a clustering of ten points, they may respond with ‘no, those two points should

not be in the same cluster’ or ‘yes, those four points definitely should be clustered

together.’

These changes allow for natural feedback in a wide variety of structure learning

tasks, but they also present challenges not present in the traditional active learning setting:

When queries are no longer single points but rather entire structures, how do we measure

the information content of a query? In allowing users to only provide partial feedback on

structures, how can we guarantee consistency? Can we construct generic algorithms that

operate in any interactive structure learning environment? In this thesis, we tackle each

of these questions.

1.4 Summary of results

In Part I, we will be concerned with the computational complexity of various

statistical tasks. In particular, Chapter 2 demonstrates that estimating the maximum

likelihood solution for a mixture of spherical Gaussians is NP-hard, and Chapter 3 gives

generic reductions from maximum likelihood estimation to two canonical Bayesian tasks:

maximum a posteriori estimation and approximate posterior sampling. Taken together,

these two chapters show that approximate sampling from the posterior of a Bayesian

mixture of Gaussians model is NP-hard in general.

In Part II, we will investigate the mixing rates of a specific Markov chain, known as
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the Gibbs sampler, in two distinct contexts. In Chapter 5, we look at the Gibbs sampler

in the Bayesian mixture of Gaussians setting and show that its mixing rate can be quite

slow, even when the data is well-modeled by a mixture of Gaussians. In Chapter 6, we

demonstrate that when a particular variant of the Gibbs sampler is used in the context of

a class of bipartite graphical models, called Restricted Boltzmann Machines (RBMs), its

mixing rate can be guaranteed to be fast in certain instances. Chapter 6 also provides

lower bounds for the same chain in other instances.

In Part III, we present some interactive learning algorithms. In Chapter 7, we give

an efficient active learning algorithm whose label complexity is close to the best achievable

by any active learning algorithm in the noiseless and realizable setting. In Chapter 8, we

present the interactive structure learning framework, and provide a simple, efficient, and

generic algorithm. We show that it enjoys nice theoretical guarantees, even in the presence

of noise, and performs well empirically.
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Part I

Computational complexity of

statistical tasks
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Chapter 2

Maximum likelihood estimation is
NP-hard for mixtures of spherical
Gaussians

In this chapter, we investigate the computational complexity of fitting a particular

probabilistic model, mixtures of spherical Gaussians. In particular, we will show that

finding the parameters which approximately maximize the log-likelihood is an NP-hard

problem.

2.1 Mixtures of Gaussians

A spherical Gaussian in Rd is a distribution specified by its mean µ ∈ Rd and

variance σ2 > 0, with density

N(x;µ, σ2) =

(
1

2πσ2

)d/2
exp

(
−‖x− µ‖

2

2σ2

)
.

(The standard notation for this Gaussian is N(µ, σ2Id), but we will drop the identity

matrix as a shorthand.)

When data arise from several sources, or form several clusters, it is common to

model each source or cluster by a spherical Gaussian. If there are k sources, the resulting
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overall distribution is a mixture of k Gaussians,

π1N(µ1, σ
2
1) + π2N(µ2, σ

2
2) + · · ·+ πkN(µk, σ

2
k),

where µi ∈ Rd and σ2
i are the mean and variance of the ith component, and πi is the

fraction of the distribution that arises from this component. In what follows, we will often

package the parameters together as π = (π1, . . . , πk), µ = (µ1, . . . , µk), σ = (σ1, . . . , σk).

A standard statistical task is to fit a mixture of k Gaussians to a given data set.

There are many approaches to doing so, but a common formulation is as an optimization

problem [38], where given data points x1, . . . , xn ∈ Rd, the goal is to find the parameters

(π,µ,σ) that maximize the log-likelihood

LL(π,µ,σ) =
n∑
i=1

ln

(
k∑
j=1

πjN(xi;µj, σ
2
j )

)
. (2.1)

In this chapter, we establish the computational hardness of this estimation problem. This

is in contrast to recent positive results [17, 72, 56, 52] that provide efficient algorithms

when the input data is in fact generated from a Gaussian mixture.

2.1.1 Gaussians with the same variance

We start with the simplest subcase, where the variances of the components are

constrained to be the same.

mixtures of spherical Gaussians with same variance: mog-sv
Input: Points x1, . . . , xn ∈ Rd; positive integer k; unary parameter b.
Output: A mixture of k spherical Gaussians with the same variance, (π,µ, σ),
whose log-likelihood

LL(π,µ, σ) =
n∑
i=1

ln

(
k∑
j=1

πjN(xi;µj, σ
2)

)
.

is within an additive factor 1/b of optimal.
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The input parameter b specifies the desired precision of the solution.

mog-sv is similar to the k-means clustering problem, which is NP-hard [2].

k-means
Input: Points x1, . . . , xn ∈ Rd; positive integer k.
Output: A collection of k “centers” µ = (µ1, . . . , µk) in Rd that minimize
the cost function

Φ(µ) =
n∑
i=1

min
1≤j≤k

‖xi − µj‖2.

The biggest difference between the two problems is that k-means assigns each data point

xi to a single center µj (a “hard” clustering), while the mixture of Gaussians effectively

spreads it out over all the centers (a “soft” clustering). Earlier work [5] has established

that a “hard clustering” version of the mixture of Gaussians problem is NP-hard. Here we

consider the more standard formulation, and show that it is hard even when k = 2.

Theorem 2.1. mog-sv is NP-hard on instances with k = 2.

The proof follows from the observation that an additive approximation to the best

mog-sv solution yields a multiplicative approximation to the best k-means solution:

Lemma 2.2. Fix any data set x1, . . . , xn ∈ Rd and any positive integer k. Let LLOPT

denote the log-likelihood of the optimal solution to mog-sv, and ΦOPT the lowest achievable

k-means cost. For any parameters (π,µ, σ), we have

ln
Φ(µ)

ΦOPT

≤ 4 ln k

d
+

2

nd
(LLOPT − LL(π,µ, σ)) .

The first term on the right-hand side comes from the discrepancy between hard

and soft clustering. It can be made negligible by increasing the dimension, for instance by

padding each point with extra zero-valued coordinates.

Lemma 2.2 can also be combined with a recent hardness of approximation result

for k-means [9] to show that, if k is allowed to be large, mog-sv cannot be approximated

within an additive factor of o(nd).

14



Theorem 2.3. There is a family of mog-sv instances with the following properties:

• An instance with n points has dimension O(n).

• Each point is {0, 1}-valued and has O(1) nonzero coordinates.

• k = Θ(n).

For some absolute constant co, it is NP-hard to approximate mog-sv on such instances

within an additive factor of codn.

The specific form of this result (additive versus multiplicative approximation,

importance of interpoint distances) is motivated by the unusual properties of the log-

likelihood objective. To begin with, consider the problem of fitting a single Gaussian to

a data set X ⊂ Rd of size n. A quick calculation shows that the log-likelihood (of the

maximum likelihood estimate) is

dn

2
ln

d

2πe
− dn

2
ln radius(X ), where radius(X ) =

1

|X |
∑
x∈X

‖x−mean(X )‖2.

Depending on the scale of the data, this log-likelihood could be positive, negative, or zero.

When fitting a mixture of k Gaussians, the log-likelihood has a term of this sort for each

cluster, plus an additional term of size ±n ln k due to the mixing weights. For the kind of

instance described in the theorem, any cluster with at least two points has radius Θ(1) and

thus the log-likelihoods of all reasonable mixture models lie in an interval of size O(dn).

The proofs of these results appear in Section 2.2.

2.1.2 Gaussians with differing variances

When the different Gaussian components are allowed to have different variances,

and k > 1, the maximum-likelihood solution is always degenerate. This is because it is

possible to make the log-likelihood go to infinity by centering one of the Gaussians at a
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single data point and letting its variance go to zero. Thus, in order for the problem to

be well-defined, an additional constraint must be introduced. One option is to force all

variances to be non-negligible.

mixtures of spherical Gaussians with constrained variances:
mog
Input: Points x1, . . . , xn ∈ Rd; positive integer k; value σo > 0; unary
integer b.
Output: A mixture of k spherical Gaussians (π,µ,σ) whose log-likelihood
is within an additive factor 1/b of optimal, subject to the constraint
σ1, . . . , σk ≥ σo.

This problem is slightly further from k-means, but remains intractable.

Theorem 2.4. mog is NP-hard on instances with k = 2.

The proof appears in Section 2.3.

2.2 Mixtures of spherical Gaussians with the same

variance

2.2.1 Induced partitions

We start with a basic relation between hard and soft clustering that applies to

arbitrary mixture models, not just those with Gaussian components of the same variance.

Although a mixture model represents a soft clustering, it also induces a natural

hard partition. For data set X and mixture of Gaussians (π,µ,σ), this hard partition

has clusters

Xj =

{
x ∈ X : j = argmax

`
π`N(x;µ`, σ

2
` )

}
(2.2)

(breaking ties arbitrarily). The log-likelihood of a mixture is easily bounded in terms of

the likelihood of the corresponding hard partition.

Lemma 2.5. Pick any mixture (π,µ,σ) and data set X = {x1, . . . , xn}.

16



(a) For any partition (X ′1, . . . ,X ′k) of X , we have

LL(π,µ,σ) ≥
k∑
j=1

∑
x∈X ′j

ln(πjN(x;µj, σ
2
j )).

(b) For the partition (X1, . . . ,Xk) induced by (π,µ,σ), as in Eq (2.2), we have

LL(π,µ,σ) ≤ n ln k +
k∑
j=1

∑
x∈Xj

ln(πjN(x;µj, σ
2
j )).

Proof. Recall from (2.1) that the contribution of each data point xi to LL(π,µ,σ) is

ln

(
k∑
j=1

πjN(xi;µj, σ
2
j )

)
.

For xi ∈ X ′j , we can lower-bound this contribution by ln(πjN(xi;µj, σ
2
j )). Similarly, if

xi ∈ Xj , then we can upper-bound the contribution by ln(kπjN(xi;µj, σ
2
j )), by the manner

in which the hard partition (X1, . . . ,Xk) is defined.

2.2.2 Proof of Lemma 2.2

As in the statement of Lemma 2.2, fix data x1, . . . , xn ∈ Rd, and define LLOPT to

be the log-likelihood of the optimal solution of mog-sv. Let ΦOPT be the optimal k-means

cost.

Pick any parameters (π,µ, σ), and let (X1, . . . ,Xk) be the induced hard partition

of the data set, as per Eq (2.2). From Lemma 2.5,

LL(π,µ, σ) ≤ n ln k +
k∑
j=1

∑
x∈Xj

(
ln πj +

d

2
ln

(
1

2πσ2

)
− ‖x− µj‖

2

2σ2

)

≤ n ln k +
nd

2
ln

(
1

2πσ2

)
− 1

2σ2

k∑
j=1

∑
x∈Xj

‖x− µj‖2
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≤ n ln k +
nd

2
ln

(
1

2πσ2

)
− Φ(µ)

2σ2

≤ n ln k +
nd

2
ln

(
nd

2πΦ(µ)

)
− nd

2
,

where the last inequality comes from solving for the optimal value of σ2 (namely, Φ(µ)/nd)

in the preceding line.

Suppose the optimal k-means solution is realized by centers µ∗ = (µ∗1, . . . , µ
∗
k). Let

π∗1 = · · · = π∗k = 1/k and σ∗2 = Φ(µ∗)/nd. To bound the log-likelihood of the mixture

model (π∗,µ∗, σ∗), we look at the hard partition that it induces, (X ∗1 , . . . ,X ∗k ), and notice

that X ∗j consists of points whose closest center is µ∗j . We then apply Lemma 2.5 to get

LL(π∗,µ∗, σ∗) ≥
k∑
j=1

∑
x∈X ∗j

(
ln π∗j +

d

2
ln

(
1

2πσ∗2

)
−
‖x− µ∗j‖2

2σ∗2

)

= −n ln k +
nd

2
ln

(
1

2πσ∗2

)
− 1

2σ∗2

k∑
j=1

∑
x∈X ∗j

‖x− µ∗j‖2

= −n ln k +
nd

2
ln

(
1

2πσ∗2

)
− 1

2σ∗2
Φ(µ∗)

= −n ln k +
nd

2
ln

(
nd

2πΦ(µ∗)

)
− nd

2
,

where the last equality comes from substituting in the value of σ∗2. Combining our bounds

for the two mixtures, we get

LLOPT − LL(π,µ, σ) ≥ LL(π∗,µ∗, σ∗)− LL(π,µ, σ)

≥ nd

2
ln

(
Φ(µ)

Φ(µ∗)

)
− 2n ln k.

Rearranging terms yields the lemma statement.
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2.2.3 Proof of Theorem 2.1

With Lemma 2.2 in place, a reduction from k-means to mog-sv is almost immediate.

There are various hardness results available for k-means [2, 32, 71, 9]; of these, we use [2]

as a starting point.

Theorem 2.6 ([2]). There exists a family of k-means instances with the following proper-

ties, for some low-order polynomials α(·) and β(·):

• For an instance containing n points, each point has dimension at most α(n), with

individual coordinates taking values in {−1, 0, 1}.

• It is NP-hard to approximate the best k-means solution, with k = 2, within a factor

of 1 + 1/β(n).

To prove Theorem 2.1, we reduce the problem of finding a (1+1/β(n))-approximate

k-means solution to mog-sv. Given an instance x1, . . . , xn of k-means:

• Pad each point with additional zero-valued coordinates until the dimension d exceeds

16β(n) ln k. This has no effect on interpoint distances or on the optimal k-means

cost.

• Solve mog-sv for these modified points, with precision parameter b = 1. This

yields (π,µ, σ) such that LLOPT − LL(π,µ, σ) ≤ 1, where LLOPT is the optimal

log-likelihood. It follows from Lemma 2.2 that

ln
Φ(µ)

ΦOPT

≤ 4 ln k

d
+

2

nd
≤ 1

2β(n)
,

whereupon Φ(µ) ≤ ΦOPT (1 + 1/β(n)).

2.2.4 Proof of Theorem 2.3

A recent hardness of approximation result for k-means shows the following.
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Theorem 2.7 ([9]). There is a family of k-means instances with the following properties:

• An instance with n points has dimension at most n, points that are {0, 1}-valued (and

have at most two non-zero coordinates), and a target number of clusters k = Ω(n).

• It is NP-hard to approximate the optimal k-means solution within a factor c, for

some absolute constant c > 1.

Pick any co < (1/2) ln c. To see that it is hard to approximate mog-sv within

an additive factor cond, we reduce from k-means as follows. Start with an instance

x1, . . . , xn ∈ Rd of the type described in Theorem 2.7. Then:

• If necessary, pad points with zero-valued coordinates to bring the dimension up to

d ≥ 4 ln k

(ln c)− 2co
.

• Obtain an approximate solution (π,µ, σ) to mog-sv on these points such that

LLOPT − LL(π,µ, σ) ≤ cond.

• Return the centers µ.

By Lemma 2.2, we have

ln
Φ(µ)

ΦOPT

≤ 4 ln k

d
+

2

nd
cond ≤ ln c,

so that µ is a c-approximate solution to the k-means instance.

2.3 The general case

We now consider the case where the variances are allowed to differ but are uniformly

lower bounded. Specifically, a mixture model (π,µ,σ) is admissible if all σj ≥ σo, where

σo is supplied as part of the input.
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The basic reduction still applies, with an additional device to force all variances to

be close to the lower bound—and therefore approximately equal.

2.3.1 Controlling the variances

Lemma 2.8. Fix any data set X = {x1, . . . xn} in Rd, and let D = maxi 6=i′ ‖xi − xi′‖

denote its diameter. Pick any ∆, δ > 0. If the dimension d satisfies

d ≥ 4

δ

(
nD2

2σ2
o

+ n ln k + ∆

)
, (2.3)

then any admissible mixture (π,µ,σ) within an additive factor ∆ of optimal (that is,

LL(π,µ,σ) ≥ LLOPT −∆) has the following property: in the associated hard partition

(X1, . . . ,Xk), any nonempty cluster Xj has σ2
j ≤ σ2

o(1 + δ).

Proof. Pick any admissible mixture (π,µ,σ) that is within ∆ of optimal, and let (X1, . . . ,Xk)

be the associated hard partition. Let µ̃j denote the cluster means:

µ̃j =
1

|Xj|
∑
x∈Xj

x.

Using Lemma 2.5, we can compare the log-likelihood of (π,µ,σ) to that of the adjusted

parameters (π, µ̃, σ̃), where each σ̃j = σo.

LL(π, µ̃, σ̃)− LL(π,µ,σ)

≥
k∑
j=1

∑
x∈Xj

(
ln(πjN(x; µ̃j, σ

2
o))− ln(πjN(x;µj, σ

2
j ))
)
− n ln k

=
k∑
j=1

∑
x∈Xj

(
d

2
ln

1

2πσ2
o

− ‖x− µ̃j‖
2

2σ2
o

− d

2
ln

1

2πσ2
j

+
‖x− µj‖2

2σ2
j

)
− n ln k

=
k∑
j=1

d|Xj|
2

ln
σ2
j

σ2
o

+
∑
x∈Xj

(
‖x− µj‖2

2σ2
j

− ‖x− µ̃j‖
2

2σ2
o

)− n ln k
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≥
k∑
j=1

d|Xj|
2

ln
σ2
j

σ2
o

+

(
1

2σ2
j

− 1

2σ2
o

)∑
x∈Xj

‖x− µ̃j‖2

− n ln k

≥
k∑
j=1

|Xj|
(
d ln

σj
σo
− D2

2σ2
o

)
− n ln k ≥ d ln

maxj:Xj 6=∅ σj

σo
− nD2

2σ2
o

− n ln k.

In the second-last line, we have exploited the fact that µ̃j is the mean of cluster Xj , so that∑
x∈Xj ‖x− µ̃j‖

2 ≤
∑

x∈Xj ‖x− µj‖
2, and for the last line we have used ‖x− µ̃j‖ ≤ D.

The difference above is at most ∆, and thus for each nonempty cluster Xj,

d ln
σj
σo
− nD2

2σ2
o

− n ln k ≤ ∆,

whereupon σ2
j ≤ σ2

o(1 + δ) given the bound (2.3) on the dimension d.

This observation allows us to prove following analog of Lemma 2.2.

Lemma 2.9. Following the terminology of Lemma 2.8, pick δ,∆ > 0 and suppose that

the dimension satisfies (2.3). Pick any admissible mixture (π,µ,σ) whose log-likelihood is

within an additive factor ∆ of the optimal. Then

Φ(µ) ≤ (1 + δ)
(
2σ2

o(∆ + 2n ln k) + ΦOPT

)
.

Proof. Let (X1, . . . ,Xk) be the hard partition of the data set induced by (π,µ,σ). By

Lemma 2.8, we know that for any nonempty cluster Xj , the variance σ2
j is at most (1+δ)σ2

o .

Thus, using Lemma 2.5, we have

LL(π,µ,σ) ≤ n ln k +
k∑
j=1

∑
x∈Xj

(
lnπj +

d

2
ln

1

2πσ2
j

− ‖x− µj‖
2

2σ2
j

)

≤ n ln k +
k∑
j=1

 |Xj|d
2

ln
1

2πσ2
j

− 1

2σ2
j

∑
x∈Xj

‖x− µj‖2
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≤ n ln k +
nd

2
ln

1

2πσ2
o

− 1

2(1 + δ)σ2
0

k∑
j=1

∑
x∈Xj

‖x− µj‖2

≤ n ln k +
nd

2
ln

(
1

2πσ2
o

)
− Φ(µ)

2(1 + δ)σ2
o

Let µ∗1, . . . , µ
∗
k be an optimal k-means solution and let (X ∗1 , . . . ,X ∗k ) be the hard

partition of the data set induced by the mixture model (π∗,µ∗,σ∗) where π∗j = 1/k and

σ∗j = σo for all j. Again using Lemma 2.5,

LL(π∗,µ∗,σ∗) ≥
k∑
j=1

∑
x∈X ∗j

(
lnπ∗j +

d

2
ln

1

2πσ∗j
2 −
‖x− µ∗j‖2

2σ∗j
2

)

= −n ln k +
nd

2
ln

(
1

2πσ2
o

)
− Φ(µ∗)

2σ2
o

Then by the near-optimality of (π,µ,σ), we have

∆ ≥ LLOPT − LL(π,µ,σ)

≥ LL(π∗,µ∗,σ∗)− LL(π,µ,σ)

≥
(
−n ln k +

nd

2
ln

1

2πσ2
o

− Φ(µ∗)

2σ2
o

)
−
(
n ln k +

nd

2
ln

(
1

2πσ2
o

)
− Φ(µ)

2(1 + δ)σ2
0

)
=

Φ(µ)

2(1 + δ)σ2
o

− ΦOPT

2σ2
o

− 2n ln k

Rearranging gives the theorem statement.

2.3.2 Proof of Theorem 2.4

Once again we reduce from k-means, using the hardness result of [2], summarized

in Theorem 2.6. Recall that the family of instances for which k-means was shown to be

hard has k = 2, d = poly(n), and points with {−1, 0, 1}-valued coordinates.

Starting with such an instance x1, . . . , xn ∈ Rd, we show how mog can be used to

find an (1 + 1/β(n))-approximate solution to k-means.
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• Let D denote the diameter of the points; it is polynomial in n.

• Set δ = 1/(5β(n)) and

σ2
o =

δ

2(1 + 2n ln k)
.

• Pad the points with zero-valued coordinates to bring the dimension up to at least

d =
4

δ

(
nD2

2σ2
o

+ n ln k + 1

)
.

• Invoke mog on these modified points, with target precision b = 1 and variance

lower bound σ2
o . This returns a mixture (π,µ,σ) whose log-likelihood is at least

LLOPT − 1, subject to the variance constraint.

• Return centers µ.

Lemma 2.9, with ∆ = 1, asserts that

Φ(µ) ≤ (1 + δ)(2σ2
o(1 + 2n ln k) + ΦOPT ) ≤ (1 + δ)(δ + ΦOPT ) ≤ (1 + 5δ)ΦOPT ,

which is at most (1 + 1/β(n))ΦOPT . For the last inequality, we have used the fact that

ΦOPT ≥ 1/2 since all interpoint distances are ≥ 1.

Chapter 2 contains material that has been submitted for publication as it may appear

in Journal of Machine Learning Research. C. Tosh and S. Dasgupta. The dissertation

author was the primary investigator.
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Chapter 3

The relative complexity of maximum
likelihood estimation, MAP estima-
tion, and approximate posterior sam-
pling

We saw in the previous chapter that finding the maximum likelihood estimate

of a particular probabilistic model is an NP-hard problem. In this chapter, we look at

what such types of results imply in a Bayesian context. In particular, we will show that

when our models are well-behaved, certain Bayesian computational tasks are no easier

computationally than maximum likelihood estimation.

3.1 Canonical learning tasks

When learning a probabilistic model, there are three computational tasks that

commonly arise: maximum likelihood (ML) estimation of the model given data, maximum

a posteriori (MAP) estimation when a prior distribution over models has been specified,

and (approximate) sampling of the posterior distribution over models. We are interested

in the relative computational complexity of these three tasks: what does the hardness—or

tractability—of one imply about the others?

At a high level, MAP estimation is rather like ML estimation, with the added

complication of the prior—and the two are known to converge to the same limit with
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infinite data, under certain conditions. Thus one would intuitively expect the MAP

problem to be at least as hard as the ML problem.

The situation of approximately sampling is not as immediately clear. Sampling

is known to be as hard as optimization for various statistical physics models with a

“temperature” parameter: this temperature can be adjusted so that a sampler is essentially

forced to return optimal or near-optimal solutions. In the usual setting of probabilistic

learning, however, there is no such temperature knob. Nonetheless, there are other ways

to produce a similar effect, and thus one would again expect, intuitively, that approximate

sampling is no easier than ML estimation.

In this work, we make these intuitions precise. Considering probabilistic models in

broad generality, we give simple conditions under which approximate MAP estimation

and approximate posterior sampling can be shown to be at least as hard as approximate

ML estimation. A key challenge here is formalizing issues of numerical precision.

We then illustrate these general reductions in two cases of interest. Starting from

hardness results for maximum-likelihood estimation of Gaussian mixture models, which

we demonstrated in Chapter 2, and topic models [4], we show how in both settings, the

hardness extends also to MAP estimation and approximate sampling.

3.1.1 Numerical precision

When discussing standard combinatorial optimization problems such as set cover

or maximum cut, the first step is to consider the exact version of the problem and, when

that proves intractable, to consider approximate solutions. For such problems, the exact

solution lies in a discrete space and is of polynomial size, but is difficult to find.

By contrast, many of the problems that we have in mind—such as estimation of

Gaussian mixture models or of topic distributions—take solutions in continuous spaces.

The exact optimal solutions may therefore not have compact representations. The following

lemma illustrates how this can happen even for extremely simple models.
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Lemma 3.1. When fitting a mixture model 1
2
N(−µ, 1) + 1

2
N(µ, 1) to the data set of three

points {−2, 0, 2}, the maximum-likelihood choice of µ is irrational.

Proof. Writing out the log-likelihood function,

ln p(−2, 0, 2 |µ) = ln

(
1

2
√

2π
e−µ

2/2 +
1

2
√

2π
e−µ

2/2

)
+ 2 ln

(
1

2
√

2π
e−(2−µ)2/2 +

1

2
√

2π
e−(2+µ)2/2

)
= −2 ln(2

√
2π)− 4− 3µ2

2
+ 2 ln

(
e2µ + e−2µ

)
.

Taking derivatives of the log-likelihood equation with respect to µ,

d

dµ
ln p(−2, 0, 2 |µ) = −3µ+ 4 tanh(2µ).

This has two non-negative roots, one of which is zero. Evaluating the second derivative at

zero, we have

d2

d2µ
ln p(−2, 0, 2 |µ)|µ=0 = 8sech2(0)− 3 = 5.

Thus zero is a local minimum. Because −3µ+ 4 tanh(2µ) tends to −∞ as µ goes to ∞,

we can conclude that the other nonnegative root is the maximum likelihood estimate.

Expanding the tanh, we see that this root satisfies (3µ− 4)e2µ + (3µ+ 4)e−2µ = 0. By the

Lindemann-Weierstrass theorem [12, chapter 1], the ML estimate must be irrational.

Thus, exact solutions are ruled out from the very beginning, and we are forced to

restrict ourselves to approximate versions of ML and MAP estimation. In particular, we

need to characterize the quality of polynomial-sized solutions.

The case of sampling is even more challenging, since we cannot hope to sample

exactly from continuous domains. The usual distance metric between the target distribution

µ over a space Θ and the distribution ν from which samples are actually drawn is total
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variation distance:

dTV (µ, ν) = sup
measurable A⊂Θ

|µ(A)− ν(A)|.

For instance, this is the standard metric for assessing the convergence rates of Markov

chains. In cases where µ has continuous support, ν must still be discrete because samples

must be bounded in size, and thus this distance will be identically 1.

To overcome this, we introduce a generalization of total variation distance that

takes the supremum over a subfamily of measurable sets that captures Θ at a certain

granularity. We show how to construct suitable such families from ε-covers of Θ; our

construction may be useful in other contexts.

3.1.2 Overview of results

In Section 3.3, we show that under conditions on the prior, there is a generic

polynomial-time reduction from ML estimation to MAP estimation.

In Section 3.4, we define a notion of approximate posterior sampling that makes

sense in continuous domains and we then give a generic reduction from ML estimation to

this problem, again under conditions on the prior.

Sections 3.3 and 3.4 extend the hardness of many important ML estimation problems

to their Bayesian counterparts provided that the prior meets certain mild conditions. In

these cases, we cannot hope for efficient MAP estimation algorithms or rapidly mixing

Markov chains unless the data is specially constrained or NP = RP .

Throughout our exposition, topic modeling serves as a running example. In

particular, we extend a hardness result [4] for ML estimation of topic models to the

corresponding Bayesian estimation problems. In Section 3.5, we do this also for the

problem of estimating mixtures of Gaussians.
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3.1.3 Methodology

Our goal is to reduce arbitrary maximum-likelihood (ML) estimation problems to

their Bayesian counterparts. Without any particular knowledge about the specific model

under consideration, we opt for the simplest type of reduction: duplication.

Let P = {p(· | θ) : θ ∈ Θ} be a family of parameterized probability densities and

let a q0 be a prior density over Θ. Consider a data sequence X = (x1, . . . , xn) and suppose

that we replicate this sequence k times, i.e. we make k copies X(i) = (x1, . . . , xn). Now

what does the posterior distribution look like, given X(1), . . . , X(k)? It is of the form

1

Z
q(θ)p(X(1), . . . , X(k) | θ) =

1

Z
q(θ)

k∏
i=1

p(X(i) | θ) =
1

Z
q(θ) (p(x1, . . . , xn | θ))k .

Here Z is the normalizing constant to make the density integrate to one. By simply

replicating the data, we get an exponential increase on the weight of the likelihood function

over the prior distribution. Thus, our general strategy will be to replicate the data until the

posterior distribution is suitably concentrated around the maximum likelihood estimate.

The success of this approach ultimately hinges on the relationship of the prior

distribution and the maximum likelihood estimate. If the prior distribution has very low

density, say double-exponentially small, on parameters that are close to the maximum

likelihood estimate, then to get large enough posterior weight on these parameters requires

us to duplicate the data a very large number of times, certainly more than polynomial.

On the other hand, many prior distributions, especially those over unbounded parameter

spaces, do put very small weight on some parameters. Thus our data duplication technique

ought to fail for instances where the maximum likelihood estimate lies in some small prior

density region. How do we get around this?

The key observation is that many hardness reductions to ML estimations problems

do not produce arbitrary instances. Indeed, these reductions often create instances with a
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large degree of regularity. And in many of these cases, the maximum likelihood solutions

to these highly regular instances are themselves well-structured and, as a consequence,

often have non-negligible weight, or are near other solutions with non-negligible weight,

under many commonly-considered prior distributions. The upshot, then, is that if we

restrict ourselves to reducing from instances that are known to be hard, then in many

cases we can avoid the only obstacle to our duplication technique.

3.1.4 Related work, including connection with statistical
literature

Of the computational tasks discussed in this work, ML estimation has seen the

lion’s share of hardness results [24, 49]. This is possibly because ML estimation does not

have the additional complication of a prior distribution and can be easier to work with

than MAP estimation and sampling.

In the computational literature, several algorithmic connections have been made

between sampling and optimization. In [63], it was shown that simulated annealing, a

technique that involves approximately sampling from a sequence of distributions, can be

used for certain convex optimization problems. In [21], Langevin dynamics, a technique

in which Gaussian noise is added to each step of gradient descent, was used to sample

efficiently from log-concave distributions. What these, and other, works demonstrate is

that certain optimization algorithms can be turned into sampling algorithms, and vice

versa. What is lacking, however, is a generic reduction between these two tasks.

In the statistical literature, there are many results to the effect that, under suitable

conditions, when data are sampled from some model in Θ, the maximum likelihood

estimate in Θ asymptotically converges to this same model, and the posterior distribution

asymptotically concentrates around it. Examples include the classical work of Le Cam [23].

Our hardness results are in a different setting—the data are arbitrary—but interestingly,

require similar conditions on the prior. This is because our duplication technique gives
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the problem a statistical aspect: the final replicated data look rather like multiple draws

from an underlying distribution supported on the initial data points.

3.2 Preliminaries and definitions

Let X be any data space. A parameterized probability model on X is a pair (p,Θ),

where p(· | θ) is a probability density over X for all θ ∈ Θ. We will be working with i.i.d.

probability models, where for any sequence X = (x1, . . . , xn) ∈ X n and any θ ∈ Θ,

p(X | θ) = p(x1, . . . , xn | θ) = p(x1 | θ) · · · p(xn | θ).

If we couple our probability model with a prior probability measure ν0 over Θ, then

the resulting triple (ν0, p,Θ) is a Bayesian parameterized probability model. Let q0 be a

probability density corresponding to measure ν0. The posterior density after observing X

is then written as qX(θ) ∝ q0(θ)p(X | θ) and we denote the corresponding measure as νX .

This notation conceals problem size: in reality, each input instance has some

dimension m (the vocabulary size for documents, for instance) and requires parameters of

corresponding dimensionality, in some Θm ⊂ Θ. We will suppress this dependence except

where needed.

3.2.1 Maximum likelihood estimation

We formally define the maximum likelihood estimation problem as follows.

maximum likelihood estimation: mle-(p,Θ)
Input: A sequence of points X ∈ X n and an accuracy parameter b in unary.
Output: A parameter θ ∈ Θ satisfying

log p(X | θ) ≥ sup
θ′∈Θ

log p(X | θ′)− 1/b.

It might also be reasonable to ask for precision 1/2b. We adopt this particular formulation

because it yields stronger hardness results.
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3.2.2 Topic modeling

We will consider as a running example the problem of topic modeling. We follow the

model of [4] where there is an unknown V ×K topic matrix Ψ such that each column Ψ(i) is

a distribution over a dictionary [V ], and there is a collection of D unknown, stochastically-

generated distributions θ(1), . . . , θ(D) over the topics [K]. The standard choice of prior

on θ(1), . . . , θ(D) is a symmetric Dirichlet(α) distribution. The generative process for a

document d with words w
(d)
1 , w

(d)
2 , . . . is

θ(d) ∼ Dirichlet(α), zi | θ(d) ∼ Categorical(θ(d)), w
(d)
i | zi,Ψ(zi) ∼ Categorical(Ψ(zi))

We observe the bags of words X = [X(1)| · · · |X(D)] where X
(d)
i = |{j : w

(d)
j = i}|. Since

each document is generated independently and θ(1), . . . , θ(D) are assumed to be generated

i.i.d., the likelihood of the corpus under a topic matrix Ψ is

p(X |Ψ) =
D∏
d=1

Eθ(d)
[
p
(
X |Ψ, θ(d)

)]
=

D∏
d=1

Eθ(d)

 V∏
i=1

(
K∑
k=1

Ψ
(k)
i θ

(d)
k

)X
(d)
i


How many bits does it take to approximate the maximum-likelihood Ψ? In the appendix,

we show that for any discrete distribution p = (p1, . . . , p`) and any ε > 0, there is a rounded

distribution p̂ that uses dlog2(`/ε)e bits per entry and has p̂i ≥ pi(1− ε). By applying this

construction to each individual topic distribution, we get the following.

Lemma 3.2. Consider any V ×K topic distribution matrix Ψ. For any ε > 0 and any

integer m, there is a topic matrix Ψ̂ that uses dlog2(mV/ε)e bits per entry, such that

log p(x|Ψ)− log p(x|Ψ̂) ≤ ε for all documents x of ≤ m words.

Thus there exists a polynomially-sized solution to the problem of approximating

the ML estimate of the topic modeling problem with a Dirichlet(α) prior on Θ, which we

will refer to as tm-mle(α). Arora et al. [4] demonstrated that tm-mle(α) is NP-hard for
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α = 1. Their proof method works for any α > 0; for completeness we present the following

generalization of their result in the appendix.

Theorem 3.3. [Implicit in [4]] We say a topic matrix Ψ is c-smooth for c > 0 if

mini maxj Ψ
(j)
i ≥ c. Given α > 0, tm-mle(α) is NP-hard when K = 2, all the documents

are restricted to have 2 words, and ΨML is guaranteed to be (1/V )-smooth.

The result given in the appendix is slightly more general in that it applies to all

symmetric priors and not just the Dirichlet. However, to keep our examples concrete we

will only refer to the NP-hardness of tm-mle(α). Given this result, what can we say

about the complexity of MAP estimation and sampling for topic modeling?

3.3 MAP estimation is as hard as ML estimation

In this section we give a generic reduction from ML estimation to MAP estimation.

For a fixed data space X , let (p,Θ) be a parameterized probability model and let ν0 be a

prior probability measure with an associated density q0. Recall that we use the notation

qX to denote the posterior density given data X. We define the MAP estimation problem

as follows.

maximum a posterior estimation: map-(p, q0,Θ)
Input: A sequence of points X ∈ X n and accuracy parameter b in unary.
Output: A parameter θ ∈ Θ satisfying

log qX(θ) ≥ sup
θ′∈Θ

log qX(θ′)− 1/b.

For any instance X = (x1, . . . , xn) ∈ X n, let Z = (X(1), . . . , X(k)) be a sequence consisting

of k copies of X. The lemma below relates the MAP estimate for Z to the ML estimate

for X.

Lemma 3.4. Pick any δ > 0 and any θ ∈ Θ within δ of the optimal MAP solution for Z,
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that is,

log qZ(θ) ≥ sup
θ′∈Θ

log qZ(θ′)− δ.

Then the log-likelihood of any θ′ ∈ Θ can exceed that of θ by at most

log p(X|θ′)− log p(X|θ) ≤ 1

k
(δ + log q0(θ)− log q0(θ′)) .

Lemma 3.4 is a promising start to a reduction from ML estimation to MAP

estimation, but it requires the prior density q(·) to be bounded above and below, which is

often not the case. Recall our example of topic modeling, where we are given a matrix

bag of words X ∈ ZV×K and the ML goal is to find the topic matrix Ψ ∈ RV×K which

maximizes the objective

log p(X |Ψ) =
D∑
d=1

logEθ(d)

 V∏
i=1

(
K∑
k=1

Ψ
(k)
i θ

(d)
k

)X
(d)
i


where θ(d) ∼Dirichlet(α). A common choice of prior for Ψ is to assume that the columns

of Ψ are drawn i.i.d. from a symmetric Dirichlet(β) distribution. If we let q denote the

density for the Dirichlet(β) distribution, then this prior density on Ψ can be written as

q0(Ψ) = q(Ψ(1)) q(Ψ(2)) · · · q(Ψ(K)).

We call the problem of maximizing the resulting posterior tm-map(α,β). For β < 1, the

density q is not bounded from above, and tm-map(α,β) is consequently not well-defined:

infinite a-posteriori scores can be achieved. Hence we will focus on the case β ≥ 1. Here,

however, q approaches 0 on the boundary of the simplex, which is problematic for the

reduction because the ML solutions ΨML of Theorem 3.3 contain topic distributions that

are arbitrarily close to this boundary. Thus Lemma 3.4 cannot be straightforwardly
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applied using θ′ = ΨML. Instead, we need to ensure that, for any data set, there is some

intermediate Ψ that is far enough from the boundary to have non-negligible probability

mass under q0 but has high enough likelihood to be considered a good estimate of ΨML.

In summary, we want to guarantee that there are good ML estimates with non-

negligible weight under the prior density. The following two sections will help us formalize

these notions.

3.3.1 Admissible distances

Given a likelihood function p, we define the log-likelihood distance between θ1, θ2 ∈ Θ

as

dp(θ1, θ2) = sup
x∈X
| log p(x | θ1)− log p(x | θ2)|.

Note that for any data sequence X ∈ X n, we have

dp,X(θ1, θ2) := | log p(X | θ1)− log p(X | θ2)| ≤ n dp(θ1, θ2).

In our setting, where we are concerned with how close parameters are in terms of

their log-likelihood, dp is a natural distance to consider. However, it is often difficult to

work with this distance directly. Indeed, when analyzing the behavior of a prior density

over certain neighborhoods of a parameter space, there is often a much more convenient

distance, such as an `p distance. In short, we need a way to relate log-likelihood distances

to other parameter space distances that might be easier to work with.

Definition 3.5. Given λ ≥ 1 and S ⊂ Θ, we say a distance d(·, ·) is (λ, S)-admissible if

dp(θ1, θ2) ≤ λd(θ1, θ2) for all θ1, θ2 ∈ S such that d(θ1, θ2) < 1/λ. We call a λ satisfying

this relationship an admissibility constant.

Returning to our topic model example, define the max-norm distance between two
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topic matrices as

‖Ψ− Φ‖max = max
i,j
|Ψ(j)

i − Φ
(j)
i |

Then the following lemma demonstrates that max-norm distance is admissible over the set

of smooth topic matrices, where smoothness was defined in Theorem 3.3.

Lemma 3.6. Let c,m > 0 and suppose that Ψ and Φ are V ×K c-smooth topic matrices

such that ‖Ψ − Φ‖max ≤ min(c/m, 1/2). If α0 =
∑
αi, then for any document x with

length bounded by m,

|log p(x |Ψ)− log p(x |Φ)| ≤ ‖Ψ−Φ‖max

(
2m

c
+ max

(
1,

(
α0 +m

K

)K)
Kα0+2m−1/2

cm

)
.

It is important to point out that although our discussion of topic modeling has

assumed a symmetric Dirichlet distribution, the above lemma holds for non-symmetric

Dirichlet distributions as well. Additionally, for the instances produced in Theorem 3.8,

K = n = 2 and c = 1/V ; thus the parenthesized term is polynomial in V .

Finally, for θ ∈ Θ and ε > 0, define the ball around θ of radius ε with respect to

distance d as the set Bd(θ, ε) = {θ′ ∈ Θ : d(θ, θ′) < ε}.

3.3.2 Promise problems

When constructing polynomial time reductions from a language L to a language

L′, the typical approach is to demonstrate the existence of a polynomial-time computable

function f : Σ∗ → Σ∗ such that x ∈ L if and only if f(x) ∈ L′. However, it is often the

case that reductions only demonstrate the hardness of certain well-behaved subsets of

languages. Such subsets are captured in the notion of promise problems. Given a function

Π : Σ∗ → {0, 1}, known as the promise, and a language L ⊂ Σ∗, the promise problem Π-L

is the problem of determining if x ∈ L given input instances with Π(x) = 1.
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3.3.3 The reduction

To turn Lemma 3.4 into a generic reduction, we need to assert that for any valid

data sequence X and any ε > 0, there is θε whose log-likelihood is within ε of θML such

that q0(θε) is bounded below from zero. Such a condition on θML is implicitly a restriction

on valid inputs X and therefore can be phrased as a promise.

Theorem 3.7. Let m be any measure of the size of an input instance, and λ(m) any

function of this size. Let S ⊂ Θ be some subset of parameters, and d be a (λ(m), S)-

admissible distance function. Suppose q0 satisfies two properties:

(i) it is bounded above by 2poly(λ(m)) and

(ii) given ε > 0 and θ ∈ S, there exists θε ∈ Bd(θ, ε) ∩ S such that log q0(θε) ≥

− poly(λ(m), 1/ε).

If Π is the promise that θML ∈ S, then Π-mle-(p,Θ) ≤P map-(p, q0,Θ), where the

reduction is polynomial in the input length and λ(m).

Proof. Let X = (x1, . . . , xn) and b = 1b be the input to mle-(p,Θ) and let Z denote the

sequence consisting of k copies of X. Our input to map-(p, q0,Θ) will be the data sequence

Z and the accuracy parameter b. Suppose that the output of this call is θ. L

Let ε = 1/(2bnλ(m)) and take θε to be the point satisfying θε ∈ S ∩Bd(θML, ε) and

q0(θε) ≥ 2− poly(λ(m),1/ε) whose existence is guaranteed by assumption (ii). By Lemma 3.4,

∣∣∣∣log
p(X | θML)

p(X | θ)

∣∣∣∣ ≤ | log p(X | θML)− log p(X | θε)|+ | log p(X | θε)− log p(X | θ)|

≤ n · dp(θML, θε) + | log p(X | θε)− log p(X | θ)|

≤ λ(m)n · d(θML, θε) +
1

k

(
1

b
+ log

q0(θ)

q0(θε)

)
≤ λ(m)nε+

1

k

(
1

b
+ log

2poly(λ(m))

2− poly(λ(m),1/ε)

)
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≤ λ(m)nε+
1

k

(
1

b
+ poly(λ(m), 1/ε)

)
.

By taking k to be a large enough polynomial in b, λ(m), and n, we can guarantee that θ

is within 1/b of the ML solution.

Returning to topic modeling, let Π denote the promise that the data sequence

has only 2 words per document and the ML solution is 1/V -smooth. From Theorem 3.3,

Π-tm-mle(α) is NP-hard for any fixed α > 0.

Now take C to be the admissibility constant from Lemma 3.6 with c = 1/V ,

n = K = 2. In the appendix, we show that when the prior qo is Dirichlet(β) with β ≥ 1,

then for any ε > 0 and any input instance, there exists a 1/V -smooth Ψε that is within

ε of ΨML in max-norm distance and satisfies log q0(Ψε) ≥ − poly(C, 1/ε). Theorem 3.7

immediately gives us the following.

Theorem 3.8. For any fixed α > 0 and β ≥ 1, tm-map(α, β) is NP-hard.

3.4 Approximate sampling is as hard as ML estima-

tion

We now turn to giving a generic reduction from ML estimation to posterior sampling.

As pointed out in Section 3.1, total variation distance might not be a suitable metric

for approximate sampling in continuous domains. Thus we begin with a carefully chosen

notion of approximate sampling. Afterwards, we give a reduction from ML estimation to

approximate sampling and demonstrate how it applies to topic modeling.
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Figure 3.1. Rounding our samples produces a gridding of Θ. The resulting distribution
is indistinguishable from the original distribution with respect to any union of grid boxes.

3.4.1 Notions of approximate sampling

Given measures µ and ν over a set Θ and a collection B of measurable subsets of

Θ, define the B-variation distance as

dB(µ, ν) = sup
B∈B
|µ(B)− ν(B)|.

When B is the collection of all measurable subsets, this is total variation distance. For

smaller collections, dB may differ significantly from dTV but is still a pseudometric.

What are minimal requirements on B to ensure that dB is a meaningful probability

distance? Suppose that Θ is equipped with a pseudometric d(·, ·); and, to avoid pathologies,

assume (Θ, d) is separable (has a countable dense subset). Define Bd(θ, r) = {θ′ ∈ Θ :

d(θ, θ′) < r}. For ε > 0 and c ≥ 1, we say that a collection B is (d, c, ε)-fine if for every

point θ ∈ Θ there exists a B ∈ B such that Bd(θ, ε) ⊂ B ⊂ Bd(θ, cε). Intuitively, B

captures the space Θ at a resolution of roughly ε.

For total variation distance, the supremum is taken over all measurable sets, which

are closed under countable union and intersection. Likewise, we say B is a standard

collection if it is closed under countable union. Note that if we have a (d, c, ε)-fine

collection and consider its closure under countable union, the result remains (d, c, ε)-fine.

To understand the effect of choosing a family of sets B, consider a simple example:

suppose we sample from some distribution µ over Θ and then round the sample to r bits

of precision. What is a suitable family B? One option, illustrated in Figure 3.1, is to grid

Θ with boxes of width O(2−r), and let B be all unions of such boxes.
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The following theorem generalizes this intuition and demonstrates the existence

of standard (d, c, ε)-fine collections as well as the existence of perfect discretizations of

arbitrary distributions.

Theorem 3.9. Let ν be a distribution over a space Θ equipped with a pseudometric d(·, ·).

For ε > 0, suppose Θ̂ is a countable ε-cover of Θ with respect to d. Then there exists a

standard collection B of measurable subsets and a discrete measure ν̂ over Θ̂ such that

(i) B is (d, c, ε)-fine for c = 3,

(ii) dB(ν̂, ν) = 0, and

(iii) for any discrete distribution µ̂ over Θ̂, dB(µ̂, ν) = dTV (µ̂, ν̂).

Proof. For every θ̂ ∈ Θ̂, define the inner Voronoi cell of θ̂ to be

Ci(θ̂) := {θ : d(θ, θ̂) < d(θ, θ̄) ∀θ̄ ∈ Θ̂ \ {θ̂}}.

The Voronoi cell C(θ̂) consists of Ci(θ̂) as well as part of its boundary. To ensure that

these cells are disjoint and cover all of Θ, we can order Θ̂ and adopt the convention that

the boundary occurring among any Voronoi cells belongs to the cell whose center comes

earliest in the ordering.

Define B to be the union-closure of the set of Voronoi cells:

B =
{
∪θ̂∈IC(θ̂) : I ⊂ Θ̂

}
.

By the countability of Θ̂ we have that B is closed under countable union. To see that B is

(d, c, ε)-fine we need to show that for every θ ∈ Θ, there exists a B ∈ B such that

Bd(θ, ε) ⊂ B ⊂ Bd(θ, 3ε).
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Let B be the union of Voronoi cells that intersect Bd(θ, ε). The first set inclusion follows

immediately. To see the second set inclusion, note that because Θ̂ is an ε-covering,

C(θ̂) ⊂ Bd(θ̂, ε). If C(θ̂) ∩ Bd(θ, ε) 6= ∅, then we have d(θ̂, θ) ≤ 2ε. This implies that

C(θ̂) ⊂ Bd(θ, 3ε). Thus, the union of such sets must also be contained in Bd(θ, 3ε).

Now let ν̂ denote the discrete distribution over Θ̂ such that ν̂(θ̂) = ν(C(θ̂)). Then

any B ∈ B is the countable union of such sets, so we have ν̂(B) = ν(B), which implies

dB(ν̂, ν) = 0.

Now consider µ̂ to be any other discrete distribution over Θ̂. For any δ > 0, there

is some Aδ ⊂ Θ̂ that achieves

|µ̂(Aδ)− ν̂(Aδ)| ≥ dTV (µ̂, ν̂)− δ.

If B = ∪θ̂∈AδC(θ̂), then

dTV (µ̂, ν̂) ≤ |µ̂(A)− ν̂(A)|+ δ = |µ̂(B)− ν(B)|+ δ ≤ dB(µ̂, ν) + δ.

But because dB is a pseudometric, we have

dB(µ̂, ν) ≤ dB(µ̂, ν̂) + dB(ν̂, ν) = dB(µ̂, ν̂) = dTV (µ̂, ν̂).

Since our choice of δ > 0 was arbitrary, we can conclude dTV (µ̂, ν̂) = dB(µ̂, ν).

Since c takes a constant value in Theorem 3.9, we will say a collection is (d, ε)-fine

if it is (d, c, ε)-fine for some constant c. With these notions in hand, we are ready to give

the definition of the approximate sampling problem.

approximate posterior sampling: approx-sampling-(p, ν0,Θ)-d
Input: A sequence of points X = (x1, . . . , xn) ∈ X n, accuracy parameter b
in unary.
Output: A parameter θ ∈ Θ satisfying θ ∼ ν such that dB(ν, νX) ≤ 1/b
where B is a standard (d, 1/b)-fine collection.
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When can we guarantee that a θ from the above problem will be polynomially

sized? If we take Θ̂ to be a 1/b-covering of Θ, then Theorem 3.9 guarantees the existence

of a (d, 1/b)-fine collection B and discrete distribution ν over Θ̂ such that dB(ν, νX) = 0.

In the case where Θ is a bounded subset of Rm and d is an `p norm, for example, every

element of Θ̂ can be written using a polynomial number of bits. Thus, every draw from ν

will be polynomially sized.

3.4.2 The reduction

Recall the definition of dp,X as dp,X(θ1, θ2) = | log p(X|θ1) − log p(X|θ2)| for a

data sequence X ∈ X n and θ1, θ2 ∈ Θ. The following lemma tells us the rate at which the

posterior of a duplicated data sequence concentrates around the ML solution.

Lemma 3.10. Take any ε, δ > 0 and X ∈ X n. If Z is the sequence created by duplicating

X k times for

k ≥ 2

ε

(
log

(
1

δ
− 1

)
+ log

(
1− ν0(Bdp,X (θML, ε))

ν0(Bdp,X (θML, ε/2))

))

then νZ(Bdp,X (θML, ε)) ≥ 1− δ.

With this in hand, we can state the main theorem of the section. We need to make

similar considerations with respect to distances and promises that we did in Section 3.3.

Theorem 3.11. Let m be any measure of the size of an input instance, and let λ(m) be

any function of this size. Let d be a distance function and S ⊂ S ′ ⊂ Θ be subsets satisfying

(i) if θ ∈ S then Bd(θ, 1/λ(m)) ⊂ S ′ and

(ii) d is (λ(m), S ′)-admissible.

If Π is the promise that Bdp(θML, 1/λ(m)) ⊂ S and ν0(Bd(θML, ε)) ≥ 2− poly(λ(m),1/ε)

for all ε > 0, then Π-mle-(p,Θ) ≤P approx-sampling-(p,Θ, ν0)-d under randomized

reductions which are polynomial in the input size and λ(m).
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Proof. Let X = (x1, . . . , xn) ∈ X n and b be input to Π-mle-(p,Θ) and let δ > 0. If Π is

not true, then we can return anything and terminate.

Otherwise, let ε > 0 and take Bε = {θ : | log p(X|θ) − log p(X|θML)| < ε}. By

Lemma 3.10, we can duplicate the data

k(ε, δ) =
2

ε
log

(
1

δ
− 1

)
− log ν0

(
Bd

(
θML,

ε

2nλ(m)

))

times to ensure νZ(Bdp,X (θML, ε)) ≥ 1− δ for Z = (X(1), . . . , X(k(ε,δ))).

If our accuracy parameter given to approx-sampling-(p,Θ, ν0)-d is b′, the collec-

tion B our approximate distribution is measured against is a standard (d, c, 1/b′)-fine collec-

tion. Thus, for every θ ∈ Θ, there exists a Bθ ∈ B such that Bd(θ, 1/b
′) ⊂ Bθ ⊂ Bd(θ, c/b

′).

Since B is standard, we also have the set

B =
⋃

θ∈Bdp,X (θML,ε)

Bθ

is in B. Therefore, if ν̂ satisfies dB(ν̂, νZ) ≤ δ, then

ν̂(B) ≥ ν(B)− δ ≥ 1− 2δ.

From this we know if θ ∼ ν̂, then θ ∈ B with probability 1− 2δ. Let us condition on this

occurring. Then there exists θ′ ∈ Bdp,X (θML, ε) such that d(θ, θ′) ≤ c/b′. For ε < 1
nλ(m)

and b′ ≥ c/ε, we have θ′ ∈ S and θ ∈ S ′ and

∣∣∣∣log
p(X|θ)
p(X|θML)

∣∣∣∣ = | log p(X|θ)− log p(X|θ′)|+ | log p(X|θ′)− log p(X|θML)|

≤ ndp(θ, θ
′) + | log p(X|θ′)− log p(X|θML)|

≤ nλ(m)d(θ, θ′) + | log p(X|θ′)− log p(X|θML)|

≤ ε(nλ(m) + 1)
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By taking ε = 1/(nλ(m) + 1), k = k(ε, δ), and b′ = cb/ε, then we know that if

our input to approx-sampling-(p,Θ, ν0)-d is the data sequence Z = (X(1), . . . , X(k))

and the accuracy parameter b′, then with probability at least 1 − 2δ the draw from

approx-sampling-(p,Θ, ν0)-d is within 1/b of θML.

To see how this applies to our topic modeling scenario, recall that our posterior

was formed by considering the likelihood in tm-mle(α) and placing a Dirichlet(β) prior

on each of the columns of Ψ. We call the problem of sampling from this distribution

tm-approx-sampling(α, β).

Notice that Theorem 3.11 only requires a lower bound on the probability of

neighborhoods of ML solutions and not any type of upper bound as in Theorem 3.7.

Therefore, we do not need to place the same lower bound on β as in the MAP estimation

reduction. In particular, we prove the following in the appendix.

Theorem 3.12. For any fixed α, β > 0, tm-approx-sampling(α, β) is NP-hard.

3.5 Application: mixtures of Gaussians

Recall the maximum likelihood estimation problem for mixtures of k spherical

Gaussians introduced in Chapter 2.

MLE for mixtures of k spherical Gaussians with same variance:
mle-mog-sv(k)
Input: Points x1, . . . , xn ∈ Rd; unary parameter b.
Output: A mixture of k spherical Gaussians with the same variance, (π,µ, σ),
whose log-likelihood

LL(π,µ, σ) =
n∑
i=1

log

(
k∑
j=1

πjN(xi;µj, σ
2)

)
.

is within an additive factor 1/b of optimal.

As we saw, this problem is NP-hard.
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We now turn to the corresponding Bayesian problems for mixtures of Gaussians.

We will consider common conjugate priors on our mixing weights, means, and variance.

In particular, we will place a symmetric Dirichlet(γ) prior on the mixing weights and a

Normal-Inverse-Gamma(α, β, µ0, n0) prior on the means and variance, wherein the variance

σ2 is first drawn from an inverse gamma distribution – IG(α, β) – and the means are

drawn i.i.d. from a normal distribution – N(µ0, σ
2/n0Id). The full generative process can

be spelled out as follows.

(π1, . . . , πk) ∼ Dir(γ) µj |σ2 ∼ N(µ0, σ
2/n0Id)

σ2 ∼ IG(α, β) xi|µ,π, σ2 ∼
k∑
i=1

πiN(µi, σ
2Id)

For a fixed set of hyper-parameters ω = (α, β, γ, µ0, n0), let us call the correspond-

ing MAP estimation problem map-mogs(k, ω) and the approximate sampling problem

approx-sampling-mogs(k, ω). We will show that both of these problems are hard when

k = 2.

As in the topic modeling setting, we cannot simply start with a reduction from

mle-mogs-sv(k). We will need a well-behaved promise problem version of this problem.

Theorem 3.13. Let Π be the promise that there exists a low-order polynomial ρ(·, ·, ·) such

that if θML = (µ∗,π∗, σ∗) is an optimal maximum likelihood solution and θ = (µ,π, σ)

satisfies dp(θML, θ) < 1, then

(i) ‖µj‖ ≤ ρ(n, d, k) for all j,

(ii) σ2 ≥ 1/ρ(n, d, k),

(iii) πj > 0 for all j, and

(iv) π∗j ≥ 1/ρ(n, d, k) for all j.

Then Π-mle-mogs-sv(k) is NP-hard for k ≥ 2.
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The proof of Theorem 3.13 is done in the exact same way as the proofs in Chapter 2

and is deferred to the appendix.

As before, we also need a suitable distance to dominate likelihood distance. We will

consider the following distance between two parameters θ = (µ,π, σ) and θ̂ = (µ̂, π̂, σ̂):

d(θ, θ̂) = max
{
‖µi − µ̂i‖2, | log πi − log π̂i|, |σ2 − σ̂2|

}
.

The following lemma, whose proof appears in the appendix, shows that this distance does

indeed dominate likelihood distance for well-behaved parameters.

Lemma 3.14. Let θ = (µ,π, σ) and θ̂ = (µ̂, π̂, σ̂) be two parameter vectors satisfying

πj, π̂j > 0 for all j. Then dp(θ, θ̂) ≤ d(θ, θ̂) poly(1/σ2
i , 1/σ̂

2
i , ‖µi‖2, ‖µ̂i‖2).

Next, we give bounds on the prior density.

Lemma 3.15. Let q and ν be the prior density and measure, respectively, for the Bayesian

mixture of two spherical Gaussians generative model with parameters α, β, γ, µ0, n0. For

any θ = (µ,π, σ) and any ε > 0, we have

log q(θ) ≥ − poly(1/πi, 1/σ, |µi‖, d, n0, α, β, γ, ‖µ0‖)

and

log ν(Bd(θ, ε) ≥ − poly(1/πi, 1/σ, |µi‖, d, 1/ε, n0, α, β, γ, ‖µ0‖).

Further, if γ ≥ 1, we have

log q(θ) ≤ poly(d, n0, α, β, γ, ‖µ0‖).

The proof of Lemma 3.15, which is deferred to the appendix, boils down to simply

separately bounding the Dirichlet and Normal-Inverse-Gamma distributions.
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Given the above, we are now ready to show that MAP estimation and approximate

posterior sampling are NP-hard in this setting. We start with MAP estimation.

Theorem 3.16. Let ω = (α, β, γ, µ0, n0) for α, β, n0 > 0, γ ≥ 1, and µ0 ∈ Rd. Then

map-mogs(2, ω) is NP-hard.

Proof. We will reduce from Π-mle-mogs-sv(2). Let q denote the prior density and let

S = {(µ,π, σ) : σ2 ≥ 1/ρ(n, d, k),max
i
‖µi‖2 ≤ ρ(n, d, k),min

i
πi > 1/ρ(n, d, k)}.

Then we have the following.

(i) log q(θ) ≤ poly(d, n0, α, β, γ, ‖µ0‖) for any parameter θ ∈ Θ (Lemma 3.15).

(ii) log q(θ) ≥ − poly(n, d, n0, α, β, γ, ‖µ0‖) for any parameter θ ∈ S (Lemma 3.15).

(iii) d is (poly(n, d), S)-admissible (Lemma 3.14).

(iv) Π guarantees that θML ∈ S.

Given the above, Theorem 3.7 implies that map-mogs(2, ω) is NP-hard.

We now turn to showing that approximate posterior sampling.

Theorem 3.17. Let ω = (α, β, γ, µ0, n0) for α, β, γ, n0 > 0 and µ0 ∈ Rd. Then approx-

sampling-mogs(2, ω) is NP-hard.

Proof. We again reduce from Π-mle-mogs-sv(k) for k = 2. Since k is a constant, we may

take the polynomial ρ from Theorem 3.13 to only have two free arguments. In order to

apply Theorem 3.11, let ρ(·, ·) be the polynomial from Theorem 3.13 and let

S = {(µ,π, σ) : σ2 ≥ 1/ρ(n, d),max
i
‖µi‖2 ≤ ρ(n, d),min

i
πi > 0}

S ′ = {(µ,π, σ) : σ2 ≥ 1/2ρ(n, d),max
i
‖µi‖2 ≤ 2ρ(n, d),min

i
πi > 0}
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S∗ = {(µ,π, σ) : σ2 ≥ 1/ρ(n, d),max
i
‖µi‖2 ≤ ρ(n, d),min

i
πi > 1/ρ(n, d)}

Then we have the following.

(i) If θ ∈ S then Bd(θ, 1/2ρ(n, d)) ⊂ S ′ (definition of distance d).

(ii) d is (poly(n, d), S ′)-admissible (Lemma 3.14).

(iii) Π guarantees that Bdp(θML, 1) ⊂ S and θML ∈ S∗.

(iv) From (iii), log ν0(Bd(θML, ε)) ≥ − poly(n, d, 1/ε) for all ε > 0 (Lemma 3.15).

Putting the above together, Theorem 3.11 implies that approx-sampling-mogs(2, ω) is

NP-hard.

Chapter 3 contains material that is currently being prepared for submission for

publication of the material. C. Tosh and S. Dasgupta. The dissertation author was the

primary investigator.
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Part II

Markov chains and mixing rates
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Chapter 4

Markov chain preliminaries

4.1 A sampling problem

Consider the Bayesian approach to statistical modeling. We have some prior

distribution q over a space of parameters Θ, and there is some unobserved random variable

θ drawn according to Q. We then observe data points x1, . . . , xn distributed independently

and identically according to a distribution parameterized by θ: Pθ. Given this setup, the

posterior distribution is given by

Qn(θ) := Pr(θ |x1, . . . , xn) =
Pr(θ)Pr(x1, . . . , xn | θ)

Pr(x1, . . . , xn)
=

1

Z
Q(θ)

n∏
i=1

Pθ(xi)

where Z is a normalizing constant that makes the distribution integrate to 1.

The posterior distribution is a central focus of Bayesian statistics, and many statis-

tical inference tasks are done by computing expectations with respect to it. Unfortunately,

the normalizing constant Z is difficult to compute in general [22], which makes working

directly with the posterior difficult.

To circumvent this difficulty, practitioners often resort to Monte Carlo methods [42].

To illustrate these approaches, suppose that our goal is to compute the expected value of

f : Θ→ R under the posterior distribution. That is, we wish to compute Eθ∼Qn [f(θ)].

If we can draw samples θ1, . . . , θm from some distribution Q̂n which is close to Qn,
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then we can approximate the desired expectation via the empirical average

1

m
(f(θ1) + · · ·+ f(θm)).

Thus, the problem of approximately computing expectations can be reduced to an approx-

imate sampling problem. This leads us to the obvious question: how do we approximately

sample from an intractable distribution?

4.2 Markov chains and mixing rates

A Markov chain is a stochastic process (X0)∞t=0 taking values in some state space

Ω and satisfying the relation

Pr(Xt+1 ∈ A |X0, X1, . . . , Xt) = Pr(Xt+1 ∈ A |Xt).

To simplify our setting, we will assume that the space Ω is large but finite. Under this

assumption, we can consider the transition probabilities as a matrix indexed by the

elements of Ω such that

Q(x, y) = Pr(Xt+1 = y |Xt = x).

Using this notation, it is not difficult to see that the k-fold product Qk represents the

k-step transition probabilities

Qk(x, y) = Pr(Xt+k = y |Xt = x).
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Suppose that π is a probability vector indexed by the elements of Ω. The distribution of

Xt, given that X0 ∼ π can be succinctly written as

Pr(Xt = x |X0 ∼ π) = πQt.

A distribution π is a stationary distribution of Q if π = πQ. To check that a distribution π

is stationary with respect to Q, it is sufficient, but not necessary, to establish reversibility :

π(x)Q(x, y) = π(y)Q(y, x)

for all x, y ∈ Ω. To see this, suppose this condition holds, then

(πQ)(x) =
∑
y∈Ω

π(y)Q(y, x) =
∑
y∈Ω

π(x)Q(x, y) = π(x)

where the last equality follows from the fact that
∑

yQ(x, y) = 1.

We say Q is irreducible if, for all x, y ∈ Ω, there exists an integer t > 0 such that

Qt(x, y) > 0. It is aperiodic if gcd({t : Qt(x, y) > 0}) = 1.

Given the above, the following is a fundamental result of Markov chain theory. It

can be found for example, in [66].

Theorem 4.1 (Theorem 4.9 of [66]). Suppose (Xt)
∞
t=0 is a Markov chain with irreducible

and aperiodic transition matrix Q. Then

(i) Q has a unique stationary distribution π and

(ii) the distribution of Xt converges to π, regardless of initial distribution.

Theorem 4.1 is the basis of Markov chain Monte Carlo (MCMC) methods, a

Monte Carlo technique in which samples are drawn from a Markov chain whose stationary

distribution is the desired distribution.
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Unfortunately, the convergence result of Theorem 4.1 only holds in the limit. Thus,

to get practical guarantees, we need a notion of distribution approximation. A common

choice of distribution distance in the Markov chain literature is total variation distance:

given two probability measures µ, ν over Ω, their total variation distance is

‖µ− ν‖TV := sup
A⊂Ω
|µ(A)− ν(A)| =

1

2

∑
ω∈Ω

|µ(ω)− ν(ω)|

where the supremum is taken over all measurable subsets of Ω. Total variation distance is

a very powerful notion of distance, as we have the relationship

‖µ− ν‖TV =
1

2
sup

f :Ω→[−1,1]

Eω∼µ[f(ω)]− Eω∼ν [f(ω)].

where the supremum is taken over all measurable functions. Thus, when our ultimate goal

is to compute estimates of expectations, total variation is a natural distance to consider.

The mixing rate of a Markov chain Q with unique stationary distribution π is the

function τ : (0, 1)→ N satisfying

τ(ε) := min

{
t : max

x∈Ω
‖Qt(x, ·)− π‖TV < ε

}
.

The mixing rate is then roughly the number of steps needed before samples from a Markov

chain look as though they are distributed according to the stationary distribution, up to

tolerance ε. The quantity τmix = τ(1/4) is sometimes also referred to as the mixing rate.

4.3 The Gibbs sampler

How do we construct Markov chains with a desired stationary distribution? There

are several generic techniques to address this question. Of these, Gibbs sampling [43] is

one of the most enduring and popular.
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Initialize X0 ∈ Ωn

For t = 1, 2, . . .:

• Pick a coordinate i

• Sample x ∼ Pi(· |Xt−1(−i))

• Set Xt(−i) = Xt−1(−i) and Xt(i) = x

Figure 4.1. The generic Gibbs sampling algorithm.

Suppose our state space can be written as an n-fold product Ωn and our desired

stationary distribution can be written as the joint distribution P (x1, . . . , xn) for x ∈

Ωn. Moreover, suppose that it is possible to sample from the coordinate conditional

distributions:

Pi(xi |x−i) = Pi(xi |x1, . . . , xi−1, xi+1, . . . , xn)

where the notation x−i denotes x with the i-th coordinate position removed. The Gibbs

sampler, displayed in Figure 4.1, is a Markov chain whose transitions are governed by

these coordinate conditional distributions.

Once the coordinate conditional distributions are fixed, the only the specification

that needs to be made for the Gibbs sampler is the way the next coordinate is chosen. Two

common variations are random scan, in which the next coordinate is chosen uniformly at

random, and systematic scan, in which the coordinates are cycled through in a deterministic

ordering.

Regardless of which ordering is chosen, the distribution of the Gibbs sampler is

guaranteed to converge to P (·) so long as the coordinate distributions Pi(xi |x−i) are

lower-bounded everywhere. To see this, suppose for simplicity that we are using the

random scan Gibbs sampler. First notice that Pi(xi |x−i) being lower-bounded everywhere

implies that the Gibbs sampler is irreducible and aperiodic. Then see that the Gibbs
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sampler is reversible with respect to P (·), since for x, y ∈ Ωn differing at a single position i

P (x)Pr(Xt+1 = y |Xt = x) = P (x)Pr(choose coordinate i)Pi(yi |x−i)

= Pi(xi |x−i)P (x−i)Pr(choose coordinate i)Pi(yi |x−i)

= P (y)Pr(choose coordinate i)Pi(xi |x−i)

= P (y)Pr(Xt+1 = x |Xt = y)

Moreover, for x, y ∈ Ωn differing at more than a single position,

P (x)Pr(Xt+1 = y |Xt = x) = 0 = P (y)Pr(Xt+1 = x |Xt = y).

Thus, the Gibbs sampler is reversible with respect to P (·). By reversibility and Theorem 4.1,

the Gibbs sampler converges in distribution to P (·).

For many distributions that arise in Bayesian statistics, it is easy to sample from

the coordinate conditional distributions, making the Gibbs sampler relatively easy to

implement. However, as we shall see, the mixing rate of the Gibbs sampler depends heavily

on the particular distribution under consideration. Thus, despite its appealing simplicity,

the Gibbs sampler may not always give us accurate samples within a reasonable running

time.

4.4 Bounding the mixing rate

In this thesis, we will be concerned with bounding mixing rates. Here, we examine

two mathematical tools for doing so.
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4.4.1 Lower bounds via conductance

Let Q be a Markov chain over a state space Ω with stationary distribution π, the

conductance of S ⊂ Ω is

Φ(S) :=
1

π(S)

∑
x∈S,y∈Sc

π(x)Q(x, y)

and the conductance of Q, denoted by Φ∗, is the minimum conductance of any set S with

π(S) ≤ 1/2. Intuitively, conductance measures how easily a Markov chain can transition

out of low probability subsets of the state space. Thus, we might expect that a Markov

chain with low conductance should take longer to mix.

This intuition is made precise by the following theorem, which relates the mixing

rate and conductance of a Markov chain and has appeared in several forms throughout the

Markov chain literature, see for example [82, 40]. We state here the form presented in [66].

Theorem 4.2 (Theorem 7.8 of [66]). For any aperiodic, irreducible Markov chain with

conductance Φ∗,

τmix ≥
1

4Φ∗
.

Because Φ∗ is the set corresponding to the minimum conductance, Theorem 4.2

implies that any set S satisfying π(S) ≤ 1/2 provides the lower bound

τmix ≥
1

4Φ(S)
.

4.4.2 Upper bounds via coupling

Let µ and ν be probability measures over Ω. A pair of random variables (X, Y ) is

a coupling of µ and ν if

Pr(X ∈ A) = µ(A)
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Pr(Y ∈ B) = ν(B)

for all measurable sets A and B.

Couplings are convenient probabilistic tools for bounding distances between mea-

sures. The following lemma, whose proof can be found in [1], tells us that not only does

any coupling provide an upper bound on the total variation distance between measures

but also that there exists a coupling that achieves this bound.

Lemma 4.3 (Lemma 3.6 of [1]). Let µ and ν be probability measures.

(a) For any coupling (X, Y ) of µ and ν, ‖µ− ν‖TV ≤ Pr(X 6= Y ).

(b) There exists a coupling (X, Y ) satisfying ‖µ− ν‖TV = Pr(X 6= Y ).

It can be quite cumbersome to work with couplings involving entire stochastic

processes. It is often more convenient to restrict our attention to the class of Markovian

couplings. A Markovian coupling of a Markov chain over Ω with transition matrix Q is a

Markov chain (Xt, Yt) over Ω× Ω whose transitions satisfy

Pr(Xt+1 = x′ |Xt = x, Yt = y) = Q(x, x′),

Pr(Yt+1 = y′ |Xt = x, Yt = y) = Q(y, y′).

The following lemma relates Markovian couplings to mixing times. It dates back at

least to Aldous [1] and can be found in the form we present, for example, in [60].

Lemma 4.4 (Lemma 4.1 of [60]). Let (Xt, Yt) be a Markovian coupling for Markov chain

Zt such that there exists a function τcouple : (0, 1)→ N satisfying

Pr(Xτcouple(ε) 6= Yτcouple(ε) |X0 = x, Y0 = y) ≤ ε

for all x, y ∈ Ω and ε > 0. Then the mixing rate for Zt satisfies τ(ε) ≤ τcouple(ε).
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Thus, to find an upper bound on the mixing rate of a Markov chain, it suffices to

construct an appropriate Markovian coupling.
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Chapter 5

Lower bounds on the Gibbs sampler
over mixtures of Gaussians

We saw in Chapter 3 that approximately sampling from the posterior distribution

of a Bayesian Gaussian mixture model is NP-hard. Thus, for general data sets, we cannot

hope for efficient algorithms for this problem. However, these results do not tell us anything

about the complexity of this problem when our data is well-behaved.

In this chapter, we investigate a commonly used algorithm, the Gibbs sampler, for

approximately sampling from the posterior of a Bayesian Gaussian mixture model. We

will see that the Gibbs sampler can take a very long time to converge, even when the data

looks as though it were actually generated by the model.

5.1 Mixture models and Gibbs sampling

Although our results for the Gibbs sampler will pertain specifically to mixtures of

Gaussians, it will be instructive to first look at a broader class of mixture models: mixtures

of exponential families of distributions.

5.1.1 The generative model

For a mixture model of k components, we assume that our mixing weights

(w1, . . . , wk) are drawn from a symmetric k-dimensional Dirichlet distribution with a
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single parameter α > 0. This is a distribution over the k-simplex,

∆k =

{
(w1, . . . , wk) ∈ Rk

∣∣∣∣ k∑
i=1

wi = 1, wi ≥ 0 for all i

}
,

and has probability density function

Dα(w1, · · · , wk) =
Γ(kα)

Γ(α)k

k∏
i=1

wα−1
i .

Here, Γ(·) is the gamma function. The parameters θi ∈ Θ are i.i.d. draws from the prior

distribution parameterized by some vector β ∈ Rs. Call this distribution Q(β) and its

probability density function Qβ : Θ → R. The label, or assignment, zi for each data

point is drawn from k-dimensional categorical distribution Categorical(w1, . . . , wk) which

gives probability mass wi to item i. Finally, the point xi is drawn from the distribution

parameterized by θzi . Call this P(θzi) and its probability density function Pθzi . The

generative process can be summarized as the following.

(w1, . . . , wk) ∼ Dirichlet(α, . . . , α)

θ1, . . . , θk ∼ Q(β)

zi ∼ Categorical(w1, . . . , wk)

xi ∼ P(θzi)

(5.1)

Suppose that we produce a sequence x = (x1, . . . , xn) from the above generative process.

Then the joint distribution of all quantities is given as

Pr(x, z, θ, w) =
Γ(kα)

Γ(α)k

k∏
j=1

wα−1
j Qβ(θj)

n∏
i=1

(wziPθzi (xi)).

We denote by Cj(z) the set of indices i for which zi = j and by n(z) the vector

whose jth element is |Cj(z)|. Here we think about Cj(z) as being the jth ‘cluster.’
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Initialize z1, . . . , zn ∈ {1, . . . , k}

For t = 1, 2, . . .:

• Choose i u.a.r. from {1, . . . , n}

• Update zi according to Pr(zi = j | z−i, x1, . . . , xn)

Figure 5.1. The collapsed Gibbs sampler.

For a subset S of {1, . . . , n}, we let Pθ(S) denote the probability of S under the

specific model θ ∈ Θ:

Pθ(S) :=
∏
i∈S

Pθ(xi)

and let q(S) denote the probability of S given θ ∼ Q(β):

q(S) :=

∫
Θ

Qβ(θ)Pθ(S) dθ.

In this chapter, we are interested in the posterior probability of a labeling z given

a data sequence x:

Pr(z|x) ∝
k∏
j=1

(
Γ(nj(z) + α)

Γ(α)
q(Cj(z))

)
. (5.2)

Denote Pr(z|x) by π(z). Even when q is computable in closed form, there are no

known exact methods for computing the normalizing factor of π. Thus, we turn to a

Markov chain which has π as its stationary distribution.

5.1.2 The collapsed Gibbs sampler

The collapsed Gibbs sampler, shown in Figure 5.1, is a Markov chain designed to

sample from π(z) = Pr(z|x). As discussed in Chapter 4, this Markov chain does indeed

converge to π. However, to efficiently implement the collapsed Gibbs sampler, we still

need to compute Pr(zi = j | z−i, x). To this end, let S be a subset of indices, i be an
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index, and define

∆(S, i) :=
q(S ∪ {i})
q(S \ {i})

.

With this notation, we can state the following lemma.

Lemma 5.1. Pr(zi = j | z−i, x) is proportional to (α + nj(z−i))∆(Cj(z), i).

The proof of Lemma 5.1 is deferred to the appendix.

5.2 Markov chains and equivalence classes

Identifiability makes it difficult to analyze the mixing time of P . If σ is a permutation

over {1, . . . , k}, then z and σ(z) = (σ(z1), . . . , σ(zn)) contain the same information for

most applications. In general, we are only really interested in the clustering of the points,

not the specific number assigned to each cluster. However, the collapsed Gibbs sampler

views z and σ(z) as separate states. Thus, mixing results proved over the labeling space

may not hold true for the space we care about. We will now see how to factor out this

extraneous information by a suitable projection.

5.2.1 Equivalence classes of Markov chains

Consider the following setting: we have a state space Ω and an equivalence relation

∼ on Ω. Let (Xt)
∞
t=1 be a Markov chain and consider the sequence over the equivalence

classes ([Xt])
∞
t=1. Under what conditions is this a Markov chain? The following lemma,

which may be found in [66], answers this question.

Lemma 5.2 (Lemma 2.5 of [66]). Let (Xi)
∞
i=1 be a Markov chain with state space Ω and

transition matrix P and let ∼ be an equivalence relation over Ω with equivalence classes

Ω] = {[x] : x ∈ Ω}. Assume P satisfies P (x, [y]) = P (x′, [y]) for all x ∼ x′, where

P (x, [y]) :=
∑

y′∼y P (x, y). Then ([Xi])
∞
i=1 is a Markov chain with state space Ω] and

transition function P ]([x], [y]) = P (x, [y]).
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Initialize a clustering C ∈ Ω≤k(n)

For t = 1, 2, . . .:

• Choose i u.a.r. from {1, . . . , n}

• Move i to S ∈ C with probability proportional to (α+|S\{i}|)∆(S, i)

• Move i to own set with probability proportional to (k−|C|)·α·q({i})1

Figure 5.2. The projected Gibbs sampler.

The following lemma establishes the form of the stationary distribution for P ].

Lemma 5.3. Let P , P ], Ω, Ω], and ∼ be as in Lemma 5.2. If P is reversible with respect

to π, then P ] is reversible with respect to π]([x]) = π([x]) :=
∑

x′∼x π(x).

Proof. Let x, y ∈ Ω be given.

π]([x])P ]([x], [y]) = π([x])P ]([x], [y]) =
∑

x′∼x,y′∼y

π(x′)P (x′, y′)

=
∑

x′∼x,y′∼y

π(y′)P (y′, x′) = π([y])P ]([y], [x]) = π]([y])P ]([y], [x]).

5.2.2 Induced clusterings

Consider the equivalence relation ∼ over labelings such that z ∼ z′ if there exists a

permutation σ s.t. σ(z) = z′. Let P denote the Gibbs sampler from Figure 5.1. What

does the corresponding Markov chain over the equivalence classes, P ], look like?

Equation (5.2) tells us that z′, z′′ ∈ [z] have the same probability mass under π.

Thus, one way to describe P ] is that if the current state is [z], it chooses any labeling

z′ ∈ [z], moves to a neighboring labeling z′′ according to P , and sets the new state to be

[z′′].

1This is ambiguous if i is already its own cluster. In this case, the probability we keep i as its own set
is proportional to (k − |C|+ 1) · α · q({i}).
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While this is a concise way of describing P ], it offers little intuition on what the

state space looks like. An alternative view is to consider the following notion of clustering.

Given an index set S, a t-partition or t-clustering of S, is a set of t nonempty, disjoint

subsets whose union is S. Now define Ωt(n) to be the set of all t-partitions of {1, · · · , n}

and Ω≤k(n) = Ω1(n) ∪ . . . ∪ Ωk(n). The following lemma, whose proof appears in the

appendix, establishes an alternate form of the projected Gibbs sampler and its stationary

distribution.

Lemma 5.4. The state space Ω≤k(n) is isomorphic to the set of equivalence classes

induced by ∼ over {1, . . . , k}n, Ω]. Furthermore, the projected Gibbs sampler specified in

Figure 5.2 is the exactly the chain induced by taking the equivalence classes of the states of

the collapsed Gibbs sampler. Finally, projected Gibbs sampler is reversible with respect to

π[(C) ∝ 1

(k − |C|)!
∏
S∈C

Γ(|S|+ α)

Γ(α)
q(S).

The 1/(k − |C|)! term appears because C has k!/(k − |C|)! counterparts in the

labeling space. The upshot of Lemma 5.4 is that P ] and P [ are the same Markov chain.

5.3 Mixtures of Gaussians

We are particularly interested in mixtures of d-dimensional spherical Gaussians

with known variance σ2. A commonly used prior for this situation is the d-dimensional

spherical Gaussian, due to conjugacy. Thus, we will focus on the following generative

process.

(w1, . . . , wk) ∼ Dirichlet(α, . . . , α)

µ1, . . . , µk ∼ N(µ0, σ
2
0Id)

zi ∼ Categorical(w1, . . . , wk)

xi ∼ N(µzi , σ
2Id)

(5.3)

64



The following lemma seen, for example, in [73] establishes the conjugacy of the

prior and posterior in (5.3) and gives an explicit form for the posterior.

Lemma 5.5 (Chapter 4 [73]). Suppose P(θ) is a family of spherical Gaussians with fixed

variance σ2 and mean θ, and our prior on θ is another spherical Gaussian with mean

µ0 and variance σ2
0. If we observe data y = (y1, . . . , yn) and let S = {1, . . . , n}, then our

posterior is also a spherical Gaussian with mean µS and variance σ2
S where

µS = µ0 ·
σ2

σ2 + σ2
0|S|

+ µ(S) · σ2
0|S|

σ2 + σ2
0|S|

σ2
S = σ2

0 ·
σ2

σ2 + σ2
0|S|

where µ(S) = 1
|S|
∑

i∈S yi is the mean of y. Note that σS only depends on the cardinality

of S. Further, if σ2
0 ≥ σ2, the second equality immediate implies σ2

S ∈
[

σ2

|S|+1
, σ

2

|S|

]
.

Recall that for a set of indices S, q(S) is the expected probability of S under

θ ∼ Q(β). In the case of Gaussians, we can work out q in closed form.

Lemma 5.6. Let σ2, µ0, σ
2
0, Qβ, Pθ, x be as given above. Then for any set of indices

S ⊂ {1, . . . , n}, we have q(S) = L(S)R(S) where L(S) is the probability assigned to S by

the max-likelihood model,

L(S) =

(
1

2πσ2

)|S|d/2
exp

(
− 1

2σ2

∑
i∈S

‖xi − µ(S)‖2

)
,

and R(S) penalizes how far µ(S) is from µ0:

R(S) =

(
σ2

σ2 + |S|σ2
0

)d/2
exp

(
−|S|‖µ0 − µ(S)‖2

2(σ2 + |S|σ2
0)

)
.

Lemma 5.6, whose proof appears in the appendix, also gives us a nice expression

for ∆(·, ·), which is one of the factors in the transition probabilities from Lemma 5.1.
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Lemma 5.7. Let x be as above and let S ⊂ {1, . . . , n} and i ∈ {1, . . . , n} \ S, then

∆(S, i) =

(
1

2π(σ2 + σ2
S)

)d/2
exp

(
−1

2
· ‖xi − µS‖

2

σ2 + σ2
S

)
.

And if i ∈ S, then letting S ′ = S \ {i},

∆(S, i) =

(
1

2π(σ2 + σ2
S′)

)d/2
exp

(
−1

2
· ‖xi − µS

′‖2

σ2 + σ2
S′

)
.

Proof. Note that our function q is actually dependent on the prior β = (µ0, σ
2
0). So for

the rest of the proof, let us denote qγ as the function q with prior γ, similarly for Qγ.

Let β ◦ S denote the posterior parameters of observing data S with prior β. That is

β ◦ S = (µS, σ
2
S) where µS and σ2

S were defined in Lemma 5.5. Then we claim that for

i 6∈ S, ∆(S, i) = qβ◦S({i}). To see why this is, note that by Bayes’ rule

Qβ(θ)Pθ(S)∫
Θ
Qβ(θ′)Pθ′(S)dθ′

= Qβ◦S(θ).

Thus, we can see

∆(S, i) =
qβ(S ∪ {i})
qβ(S)

=

∫
Θ
Qβ(θ)Pθ(S)Pθ({i})dθ∫

Θ
Qβ(θ′)Pθ′(S)dθ′

=

∫
Θ

Qβ◦S(θ)Pθ({i})dθ = qβ◦S({i}).

Applying Lemma 5.6 completes the proof of the first claim. To prove the second claim, we

can apply the first claim to the following identity:

∆(S, i) =
q(S)

q(S \ {i})
=
q(S ′ ∪ {i})
q(S ′)

= ∆(S ′, i).

In the Bayesian setting, we typically set σ2
0 to be large, allowing flexibility in the

placement of means. To enforce this, we will require that σ0 ≥ σ. Additionally, µ0 is
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typically set to be the origin, giving us the simplified form of µS:

µS = µ(S) · σ2
0|S|

σ2 + σ2
0|S|

.

5.4 Lower bounds on the mixing rate

We analyze the mixing time of the projected Gibbs sampler for two cases. In the

first case, the number of Gaussians is misspecified. Even though we cannot expect the

Gibbs sampler to recover the correct Gaussians in this case, it still makes sense to consider

the samples generated by the Markov chain and evaluate how quickly these approach the

stationary distribution. The lower bound we achieve is exponential in the ratio of the

intercluster distances and the variance. It is worth noting that the larger this ratio is, the

more well-separated the clusters are.

The second case is the more natural case where the number of Gaussians is correctly

specified. We show the mixing time of the Gibbs sampler in this case is lower bounded by

the minimum of two quantities, an exponential term much like the first case and a term of

the form nΩ(α) where α is the sparsity parameter of the Dirichlet prior.

5.4.1 Misspecified number of clusters

In our misspecified setting, we consider a sequence of points corresponding to 6

spherical clusters, T1, . . . , T6, of n points each with diameter δr whose means are located

at the vertices of a triangular prism whose edge lengths are identically r. Let Sk denote

the indices of the points in cluster Tk and let our state space be Ω = Ω≤3 (6n). Figure 5.3

displays our point configuration XM .

The following is our main result for the misspecified setting.

Theorem 5.8. Let 0 < δ ≤ 1/32, α > 0, 0 < σ ≤ σ0, and k = 3. Then there is a constant

n0 = Ω(max{α, σ2, d}) s.t. for n ≥ n0 the mixing rate of the projected Gibbs sampler with
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Figure 5.3. The sequence of points XM in R3.

parameters α, σ, σ0, and k over Ω is bounded below as τmix ≥ 1
24
· e

r2

8σ2 .

The full proof of Theorem 5.8 appears in the appendix, but we sketch its proof

here.

The proof uses a conductance argument. Let A = S3 ∪ . . . ∪ S6, and consider

the singleton set V whose only element is the partition C = {S1, S2, A}. Because of the

symmetric nature of Ω, we have that π(V ) ≤ 1/2.

Note two properties of C. First, the number of points in each cluster of C is within

a constant fraction of any other cluster of C. Second, all the points in a cluster of C are

closer to that cluster’s mean than to any other cluster’s mean by a constant fraction.

To bound the conductance of V , we bound the probability that we transition out

of V . This can happen in one of three ways: we can move an index in A to one of S1 or

S2, we can move an index in S1 or S2 to A, or we can move an index between S1 and S2.

Recalling the transition probabilities from Figure 5.2 and the form of ∆(·, ·) from

Lemma 5.7, we can see the likelihood of moving a point i in a cluster S in C to another

cluster T in C is roughly of the following form.

Pr(move i to T ) =
(α + |T |)∆(T, i)∑

T ′∈C(α + |T ′ \ {i}|)∆(T ′, i)

≤ (α + |T |)∆(T, i)

(α + |S \ {i}|)∆(S, i)
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≈
(

α + |T |
α + |S \ {i}|

)(
σ2 + σ2

S\{i}

σ2 + σ2
T

)d/2

· exp

(
‖xi − µ(S)‖2

σ2
− ‖xi − µ(T )‖2

σ2

)

In our setup, the sizes of S and T are within a constant fraction of each other,

which implies by Lemma 5.5 that the first two terms in the last line approach constants as

the number of points grows. Since all the points are closer to their own cluster’s mean

than to any other cluster’s mean by a constant fraction, the last term in the above is

exponential in −r2/σ2. Theorem 5.8 follows by applying Theorem 4.2.

5.4.2 Correctly specified number of clusters

In our correctly specified setting, we consider a sequence of points corresponding

to 3 spherical clusters, T1, T2, and T3, of n points each with diameter δr whose means are

located at the vertices of an equilateral triangle of edge length r and centered about the

origin. Figure 5.4 displays our point configuration XG in R2.

Figure 5.4. Left : The sequence of points XG in R2. Right : Typical clustering in V .

Letting Ω = Ω≤3(3n) be our state space, we have the following result about the

mixing time of P over Ω.

Theorem 5.9. For δ < 1
4

(√
7
3
− 3

2

)
, α ≥ 1, 0 < σ ≤ σ0, and k = 3, there exists

n0 = Ω(max{α, σ2, d}) such that n ≥ n0 implies that the mixing rate of the projected Gibbs
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sampler with parameters α, σ, σ0, and k over Ω is bounded below as

τmix ≥
1

8
min

1

6
e

(
r2

96σ2

)
,
nα−d/2

(
σ
σ0

)d
exp

(
α−α2

n

)
23(α−1/2)Γ(α) exp

(
r2

σ2
0

)
 .

To establish this result, we consider the partitions V ⊂ Ω such that S1 and S2 are

clustered together and their cluster contains no indices from S3. A typical element of V is

shown in Figure 5.4. Because of the symmetric nature of Ω, we know π(V ) ≤ 1/2. Thus

we can use the conductance of V to bound the mixing time.

Ideally, we would like to give a conductance-based argument similar to our misspec-

ified setting. However, there is a special case to consider. V contains a special clustering

where there are two clusters: C := {S1 ∪ S2, S3}. The probability of transitioning from

C to a clustering in V c cannot be bounded from above in the same manner as before

since we can choose a point in S1 ∪ S2 and make it a singleton cluster with relatively high

probability. Thus, to analyze Φ(V ), we will consider V as the disjoint union of two sets

A = {C} and B = V \ A. Then by the definition of conductance,

Φ(V ) ≤ π(A)

π(V )
+

1

π(V )

∑
x∈B,y∈V c

π(x)P (x, y). (5.4)

The following two lemmas bound each term on the right separately.

Lemma 5.10. For n ≥ 2 and α ≥ 1,

π(A)

π(V )
≤

23(α−1/2)Γ(α) exp
(
α2−α
n

+ r2

σ2
0

)
σd0

σdnα−d/2
.

Lemma 5.11. For δ ≤ 1
4

(√
7
3
− 3

2

)
, there exists an n0 = Ω(max{α, σ2, d}) s.t. for

n ≥ n0,

1

π(V )

∑
x∈B,y∈V c

π(x)P (x, y) ≤ 6 exp

(
− r2

96σ2

)
.
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Theorem 5.9 follows from (5.4) and Lemmas 5.10 and 5.11.

5.5 Simulations

We ran simulations of the Gibbs sampler in this setting to evaluate whether or not

the bottlenecks presented above actually prevent the Gibbs sampler from finding high

probability regions. For each simulation, we generated a point sequence by taking k = 10

draws from a d-dimensional spherical Gaussian N (0, σ2
0Id) to get means µ1, . . . , µ10. For

each mean µi, we took n = 50 draws from N(µi, σ
2Id) with σ = 0.5.

The Gibbs sampler requires parameters k, α, σ2, σ2
0 and an initial clustering. For

each set of simulations, we used the same k, σ2, and σ2
0 that generated the point sequence

over which the sampler was run. We then fixed an α and performed 10 separate runs

with different initial clusterings of the points. To generate our initial configurations, we

randomly chose k centers and clustered the points together that were closest to a particular

center. Each run of the Gibbs sampler was done for 106 steps, and we plotted at each step

the log of the relative probability of the current state C.

Figure 5.5. The dashed line represents the log-proportional probability of the generating
clustering. Left : d = 10, α = 0.5, σ0 = 0.5. Center : d = 3, α = 1.5, σ0 = 10.0. Right :
d = 3, α = 1.5, σ0 = 1000.0

In Figure 5.5, we can see the importance of the ratio σ2
0/σ

2. We see that when

all else is held constant, a higher value for σ2
0/σ

2 will result in slower convergence times.

Additionally, we also see that when α and σ2
0/σ

2 are small, the Gibbs sampler will converge
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to a high probability state.

Figure 5.6. Left : d = 10, α = 1.0, σ0 = 5.0. Right : d = 10, α = 0.5, σ0 = 5.0

In Figure 5.6, we can see the importance of α. There are many more phase changes

when the value of α is lower. This is possibly due to the observation in Lemma 5.10 that

the relative probability mass of an empty clustering is larger when α is smaller. This

makes it possible for the Gibbs sampler to create empty clusters more often and thus to

make more phase transitions.

Finally, Figure 5.7 gives us an idea of what these phase transitions look like. The

confusion matrices compare a clustering of the Gibbs sampler at a particular time to the

generating clustering.

Figure 5.7. The confusion matrices of a run before and after a phase transition.

Chapter 5 contains material as it appears in “Lower bounds for the Gibbs sampler

over mixtures of Gaussians.” C. Tosh and S. Dasgupta. In International Conference of

Machine Learning 2014. The dissertation author was the primary investigator.
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Chapter 6

Mixing rates for the alternating Gibbs
sampler over Restricted Boltzmann
Machines

We saw in Chapter 5 that, in the context of a Bayesian Gaussian mixture model,

the Gibbs sampler can mix very slowly, even in a setting where the data looks as though

it were generated by the model under consideration. In this chapter, we will investigate a

variant of the Gibbs sampler, known as the alternating Gibbs sampler, in the context of a

family of graphical models. We will see that in some cases, the alternating Gibbs sampler

will mix rapidly, while in others, it can take an exponential amount of time to mix.

6.1 Markov Random Fields

Markov Random Fields (MRFs) are a popular class of graphical models which

have found uses from image restoration [43], to modeling in statistical physics [58, 77], to

pretraining deep neural networks [54, 18]. Formally, a Markov Random Field consists of

an underlying graph G = (V,E) and a set of random variables X = (Xv)v∈V indexed by

the vertices V satisfying

P
(
Xv |XV \{v}

)
= P

(
Xv |XN(v)

)
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where N(v) is the set of vertices adjacent to v in G.

A fundamental problem in the setting of MRFs is to sample from the joint distri-

bution P (X). When the state space of X is finite and each state has positive probability,

the Hammersley-Clifford theorem [50, 19] tells us that we can decompose the probability

density function as

P (X = x) =
1

Z

∏
c∈cl(G)

ψc(xc)

where cl(G) is the set of maximal cliques of G, ψc(·) are positive functions, and Z is the

normalizing constant to make the density sum to one. In general, computing Z is a hard

problem [22], which makes exactly sampling from P (X) challenging. The solution to this

problem is to approximately sample from P (X).

In the case of MRFs, the Gibbs sampler maintains a current state (Xv = xv)v∈V ,

and it takes a single step by choosing an index v ∈ V and updating the value of Xv

according to the conditional distribution P (Xv |XN(v) = xN(v)). If we can efficiently

sample from these conditional distributions then each step of the Gibbs sampler is also

efficient. For many MRFs of interest, this is indeed the case.

In some cases, it is possible to efficiently sample more than a single random variable

at a time. Consider an MRF whose underlying graph is k-colorable, i.e. there is a partition

B1, . . . , Bk of V such that for all i ∈ {1, . . . , k} and all u, v ∈ Bi, the edge (u, v) does not

appear in the graph. Then conditioning on V \ Bi, the elements of Bi are independent

and the joint conditional distribution factorizes:

P (XBi |XV \Bi) =
∏
v∈Bi

P (Xv |XN(v)).

If we can efficiently sample from the individual conditional distributions then we can also

do so for these joint conditional distributions. Moreover, we can modify the Gibbs sampler

so that at each step it updates an entire block Bi, and it will still converge to the correct

74



distribution. This Markov chain is the alternating Gibbs sampler.

6.1.1 Restricted Boltzmann Machines

An important special case of a Markov Random Field is the Restricted Boltzmann

Machine (RBM). The underlying graph of an RBM is a fully connected bipartite graph

with visible nodes v = (v1, . . . , vn) and hidden nodes h = (h1, . . . , hn). A configuration

x = (x(h), x(v)) is an assignment of each node to a value in {0, 1}. The energy of a

configuration x is

E(x) = −
n∑
i=1

aix(vi)−
m∑
j=1

bjx(hj)−
∑
i,j

x(vi)Wijx(hj)

where the ai’s and bj’s are biases and the Wij’s are interaction strengths or weights.

This induces the Gibbs distribution over configurations: for a random configuration X,

P (X = x) = 1
Z
e−E(x), where Z is the normalizing constant to make the distribution

integrate to one. Because the underlying graph is bipartite, the conditional distribution of

a visible node vi is

P (X(vi) = 1 |x(N(vi))) = P (X(vi) = 1 |x(h)) = σ

(
ai +

m∑
j=1

Wijx(hj)

)

where σ(t) = 1/(1 + e−t) is the logistic sigmoid function. Similarly, the conditional

distribution of a hidden node hj is

P (X(hj) = 1 |x(v)) = σ

(
bj +

n∑
i=1

Wijx(vi)

)
.

Because these conditional distributions are easy to sample, the Gibbs sampler can be

implemented efficiently.

Alternating Gibbs sampling is particularly simple in the case of RBMs. Since

RBMs are built on bipartite graphs, the alternating Gibbs sampler first independently
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Figure 6.1. The structure of a Restricted Boltzmann Machine.

samples all of the hidden nodes conditioned on the visible nodes and then independently

samples all of the visible nodes conditioned on the hidden nodes. Further, this simplicity

is not restricted to RBMs themselves; it only requires that the MRF in question have an

underlying graph that is bipartite.

In this chapter, we consider the mixing rates for the alternating Gibbs sampler for

a wide variety of bipartite MRFs.

6.2 Preliminaries and notation

A bivariate function d(·, ·) is a semimetric over a space X if it satisfies all the

properties of a metric except for the triangle inequality, i.e. non-negativity, identity iff

equality, and symmetry. Any metric is trivially a semimetric. In addition, distances such

as `2
2-distance are also semimetrics.

Given a matrix A ∈ Rn×m and positive reals p, q > 0, the Lp,q-norm of A is defined

as

‖A‖p,q =

 m∑
j=1

[
n∑
i=1

|Aij|p
]q/p1/q

.

We will utilize several special cases of the Lp,q-norm:

‖A‖F = ‖A‖2,2 =

√√√√ m∑
j=1

n∑
i=1

A2
ij (Frobenius norm)

‖A‖1 = ‖A‖1,∞ = max
1≤j≤m

n∑
i=1

|Aij| (L1-norm)
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‖A‖max = ‖A‖∞,∞ = max
i,j
|Aij| (max-norm)

6.3 The discrete case

Suppose that we have two vectors of nodes: visible nodes v = (v1, . . . , vn) and

hidden nodes h = (h1, . . . , hm). Let X be some finite space, and let Ωv denote the set of

configurations x which assign to each visible node a value in X . We can also define Ωh

to be the same except for hidden nodes and Ω = Ωv × Ωh to be the configurations which

assign to every node a value in X .

For x ∈ Ωh, let P (v)(· |x(h)) denote the conditional distribution of the visible nodes

given an assignment to the hidden nodes. We can symmetrically define P (h)(· |x(v)). For

two configurations x, y ∈ Ω, let dv(x, y) denote a semimetric over the assignments to the

visible nodes. Similarly, let dh(x, y) denote a semimetric over the hidden nodes. Define

γ(min)
v = min

x 6=y
dv(x, y) and γ(max)

v = max
x 6=y

dv(x, y).

Similarly, define γ
(min)
h and γ

(max)
h as the corresponding extremal hidden distances.

The alternating Gibbs sampler is the Markov chain (Xt)
∞
t=0 taking values in Ω, which

starts at some initial configuration X0 = x0, and performs the following for t = 1, 2, . . .

• Draw Xt(h) ∼ P (h)(· |Xt−1(v))

• Draw Xt(v) ∼ P (v)(· |Xt(h))

We say that the distribution P (v) is c-contractive if for any assignments x, y ∈ Ω there

exists a coupling (X, Y ) of P (v)(· |x(h)) and P (v)(· | y(h)) satisfying

E [dv(X, Y )] ≤ c dh(x, y).
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Contractivity for P (h) is defined symmetrically. With these notions in hand, we are ready

to state our first theorem.

Theorem 6.1. Let c1, c2 ≥ 0 such that c1c2 < 1, P (v) is c1-contractive, and P (h) is

c2-contractive. Then the mixing rate of the Gibbs sampler is bounded as

τ(ε) ≤ 1 +
1

log(1/c1c2)
log

(
C

ε

)

where C = min

(
γ
(max)
v

γ
(min)
v

,
γ
(max)
h

γ
(min)
h

, c2γ
(max)
v

γ
(min)
h

)
.

Proof. We will prove τ(ε) ≤ 1+ 1
log(1/c1c2)

log
(
γ
(max)
v

εγ
(min)
v

)
. The other inequalities are left to the

appendix. Our strategy is to glue together the two contractive couplings for the conditional

distributions in order to make a Markovian coupling for the Gibbs sampler. Formally, if we

are at time step t, then we will first sample (Xt+1(h), Yt+1(h)) according to the c1-contractive

coupling of P (h)(· |Xt(v)) and P (h)(· |Yt(v)). Then we will sample (Xt+1(v), Yt+1(v))

according to the c2-contractive coupling of P (v)(· |Xt+1(h)) and P (v)(· |Yt+1(h)). By

construction, this is a valid Markovian coupling for the alternating Gibbs sampler. For

t ≥ 1 and any initial distribution of X0 and Y0, we have

Pr(Xt 6= Yt) ≤ Pr(dv(Xt−1, Yt−1) ≥ γ(min)
v ).

By Markov’s inequality and the law of total expectation, we have

Pr(dv(Xt−1, Yt−1) ≥ γ(min)
v ) ≤ E[dv(Xt−1, Yt−1)]

γ
(min)
v

≤ (c1c2)t−1E[dv(X0, Y0)]

γ
(min)
v

≤ (c1c2)t−1γ
(max)
v

γ
(min)
v

For t ≥ 1 + 1
log(1/c1c2)

log
(
γ
(max)
v

εγ
(min)
v

)
, the above is less than ε. Applying Lemma 4.4 completes
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the proof.

6.3.1 Restricted Boltzmann Machines

Returning to the case of RBMs, recall that configurations are {0, 1}-valued vectors

and the conditional distributions are product distributions whose components are of the

form

P
(v)
RBM(X(vi) = 1 |x(h)) = σ

(
ai +

m∑
j=1

Wijx(hj)

)

P
(h)
RBM(X(hj) = 1 |x(v)) = σ

(
bj +

n∑
i=1

Wijx(vi)

)

where σ(t) = 1/(1 + exp(−t)) is the logistic sigmoid, and a ∈ Rn, b ∈ Rm, and W ∈ Rn×m

are parameters of the model. We will use Hamming distance as our semimetric for both

hidden and visible distances, i.e.

dv(x, y) = |{i : x(vi) 6= y(vi)}| and

dh(x, y) = |{j : x(hj) 6= y(hj)}|

The following lemma, which is proven in the appendix, establishes the contractivity of the

RBM conditional distributions with respect to Hamming distance.

Lemma 6.2. P
(v)
RBM and P

(h)
RBM are ‖W‖1

2
- and ‖WT ‖1

2
-contractive, respectively.

Combining this with the simple observations that γ
(min)
v = γ

(min)
h = 1, γ

(max)
v = n,

and γ
(max)
h = m we have the following corollary of Theorem 6.1.

Corollary 6.3. The mixing rate for the alternating Gibbs sampler over an RBM whose

weight matrix W satisfies ‖W‖1‖W T‖1 < 4 is upper bounded as

τ(ε) ≤ 1

log(4)− log(‖W‖1‖W T‖1)
log

(
min(n,m)

ε

)
.
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Figure 6.2. Unrolling a DBM. Left : the standard stacked view of a DBM. Right : unrolling
a DBM into a bipartite graph.

6.3.2 Deep Boltzmann Machines

A natural way to generalize an RBM is to consider several stacked layers of nodes

v(1), . . . , v(K) of sizes n1, . . . , nK with interaction matrices W (i) ∈ Rni×ni+1 connecting

them. This MRF is known as a Deep Boltzmann Machine (DBM) [79]. Figure 6.2 gives

two visualizations of a 4-layer DBM.

As one can see from the ‘unrolled’ view in Figure 6.2, DBMs are also bipartite

MRFs. Indeed, they are a special case of RBMs in which the visible nodes correspond

to the odd layer nodes and the hidden nodes correspond to the even layer nodes and the

weight matrix is given by

W :=



W (1) 0 0

W (2)T W (3) 0

0 W (4)T W (5)

0 0
. . .


Thus the alternating Gibbs sampler can be applied to DBMs where we sample

first the even layers and then the odd layers. Corollary 6.3 then immediately implies the

following.

Corollary 6.4. Let W (1), . . . ,W (K) be the weight matrices of a DBM and let W be defined

as above. Then if ‖W‖1‖W T‖1 < 4 the mixing rate of the alternating Gibbs sampler is
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bounded above as

τ(ε) ≤ 1

log(4)− log(‖W‖1‖W T‖1)
log

(
min(n,m)

ε

)
.

where n = n1 +n3 + · · · is the total number of nodes in the odd layers and m = n2 +n4 + · · ·

is the total number of nodes in the even layers.

The matrix W is far more structured in the setting of DBMs than in the setting of

general RBMs, with most of its entries take the value 0. For example, if K = 2M , then

‖W‖1 = max
1≤k≤M

max
t∈n2k

n2k−1∑
i=1

|W (2k−1)
it |+

n2k∑
j=1

|W (2k)
tj |

‖W T‖1 = max
0≤k≤M

max
t∈n2k+1

n2k∑
i=1

|W (2k)
it |+

n2k+1∑
j=1

|W (2k+1)
tj |

where W (0) and W (2M+1) are taken to be zero matrices of the appropriate dimensions.

Thus ‖W‖1‖W T‖1 < 4 is a much less restrictive requirement in the case of DBMs than it

is for general RBMs.

6.3.3 Softmax RBMs

Another way to generalize RBMs is to replace the binary logistic sigmoid units with

K-ary softmax units. In this setting, the n visible units take values in [K] = {1, . . . , K}

and the m hidden units take values in {0, 1}. Further, there are K weight matrices

W (1), . . . ,W (K), K visible bias vectors a(1), . . . , a(K), and a hidden bias vector b. Given

x ∈ Ω, the conditional distribution of a hidden node hj is

P
(h)
S (X(hj) = 1 |x(v)) = σ

(
bj +

∑
i,k

W
(k)
ij 1[x(vi) = k]

)
.
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For a visible node vi, the conditional distribution is

P
(v)
S (X(vi) = k |x(h)) =

ea
(k)
i +

∑
j x(hj)W

(k)
ij∑K

k′=1 e
a
(k′)
i +

∑
j x(hj)W

(k′)
ij

.

Finally, the full conditional distributions of the hidden and visible nodes are simply the

product distributions. Define W ∈ Rn×m as the matrix with entries

Wij = max
k,k′

∣∣∣W (k)
ij −W

(k′)
ij

∣∣∣ .
Because there is no a priori relationship between the values in [K] or in {0, 1}, we will again

use Hamming distance for both visible and hidden distances. The following lemma, which

is proven in the appendix, establishes the contractivity of our conditional distributions.

Lemma 6.5. P
(h)
S and P

(v)
S are 1

2
‖W T‖1- and 1

2

(
K
2

)
‖W‖1-contractive, respectively.

We then have the following corollary.

Corollary 6.6. The mixing rate for the Gibbs sampler over a softmax RBM whose matrices

satisfies
(
K
2

)
‖W‖1‖W T‖1 < 4 is upper bounded as

τ(ε) ≤ 1

log(4)− log
((
K
2

)
‖W‖1‖W T‖1

) log

(
min(n,m)

ε

)
.

In the case where K = 2, the Softmax RBM is the original RBM in disguise.

Identifying the state 1 with 0 and the state 2 with 1, taking W = W (2) − W (1), and

taking a = a(2) − a(1) gives us the RBM conditional distributions. Thus, Corollary 6.6 is a

generalization of Corollary 6.3.

6.4 The general case

We now turn our attention to a more general setting. Suppose that our vectors v

and h take values in spaces Ωv and Ωh equipped with semimetrics dv(·, ·) and dh(·, ·) that
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do not have a minimum distance for distinct elements, i.e.

inf
x 6=y

dv(x, y) = 0 = inf
x 6=y

dh(x, y).

In this case, we cannot hope to apply Theorem 6.1 even if we could bound the

diameter of Ωv and Ωh. Contractivity of the conditional distributions alone is not sufficient

to guarantee rapid convergence in total variation distance. To guarantee rapid mixing, we

will require another property of one of our conditional distributions. For convenience, we

will use the visible conditional distribution.

Definition 6.7. We say that P (v) is (ε, δ,M)-gamble admissible if for any x, y ∈ Ω, there

exists a coupling (X, Y ) of P (v)(· |x(h)) and P (v)(· | y(h)) such that

(i) Pr(X 6= Y | dh (x, y) ≤ ε) ≤ δ.

(ii) E [dv(X, Y ) | dh (x, y) ≤ ε,X(v) 6= Y (v)] ≤M .

(iii) Pr(X 6= Y |x(h) = y(h)) = 0.

We call a coupling (X, Y ) that satisfies conditions (i)-(iii) a (ε, δ,M)-gamble coupling.

In contrast with the contractive couplings given in Section 6.3, a gamble coupling aims to

set X = Y instead of simply shrinking dv(X, Y ). In particular, if dh (x, y) is small enough

(less than ε), then condition (i) guarantees that X = Y with probability at least 1 − δ.

On the other hand, in the event that X 6= Y , condition (ii) guarantees that the expected

distance between X and Y is not too large. Finally, condition (iii) guarantees that if

P (v)(· |x(h)) = P (v)(· | y(h)), then X and Y will be the same with probability one.

The following lemma says that if both conditional distributions are contractive and

one is gamble admissible, then these couplings can be interleaved in such a way to produce

a Markovian coupling whose time to couple is small.
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Lemma 6.8. Let c1, c2, ε0, δ0,M > 0 such that c1c2 < 1, P (h) is c1-contractive, P (v) is c2-

contractive and (ε0, δ0,M)-gamble admissible. There exists a Markovian coupling (Xt, Yt)

such that if E[dv(X0, Y0)] ≤M , then for any δ > 0, if

t ≥ log(2/δ)

log(1/c1c2) log(1/δ0)
log

(
2c1M

δε0
· log(2/δ)

log(1/δ0)

)

we have Pr(Xt(v) 6= Yt(v)) ≤ δ.

The strategy for proving Lemma 6.8 is to use our contractive coupling until

dh(Xs, Ys) ≤ ε0 and then apply our gamble coupling. We will succeed with probability

1 − δ0, but even if we fail we are no worse off than when we started in expectation.

Therefore, we can repeat this process until we achieve convergence, roughly log(1/δ)
log(1/δ0)

times.

The full proof appears in the appendix.

Unfortunately, we can not simply use Lemma 6.8 along with Lemma 4.4 to get

upper bounds on the mixing rate due to the unbounded nature of our state space. That is,

so long as our conditional distributions have contractivity greater than 0, for any T ∈ N

and δ ∈ (0, 1), there may exist an initial pair of states x, y such that Pr(XT 6= YT |X0 =

x, Y0 = y) > 1− δ under the coupling (Xt, Yt) in Lemma 6.8.

Therefore, to get bounds on the rate of convergence, we assume that the initial

state of the alternating Gibbs sampler is close enough to a random state drawn from

the stationary distribution in expectation. When this assumption is made, the following

theorem tells us how quickly we converge to the stationary distribution.

Theorem 6.9. Let c1, c2, ε0, δ0, M , P (h), and P (v) satisfy the conditions of Lemma 6.8.

If Xt is the Gibbs sampler whose initial state X0 satifies E[dv(X0, Y )] ≤ M where Y is

drawn independently from the stationary distribution π, then for δ > 0 and any t satisfying

t ≥ 1 +
log(2/δ)

log(1/c1c2) log(1/δ0)
log

(
2c1M

δε0
· log(2/δ)

log(1/δ0)

)
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we have ‖Xt − π‖TV ≤ δ.

Proof. Let (Xs, Ys) be the Markovian coupling from Lemma 6.8. Say Y0 ∼ π independently

from X0, then Y0, Y1, . . . ∼ π. Further, if at time S ≥ 0 we have XS(v) = YS(v), then for

any time s ≥ S + 1 we have Xs = Ys. Therefore for t satisfying our lower bound and for

any measurable subset A ⊂ Ω,

Pr(Xt ∈ A) ≥ Pr(Xt = Yt, Yt ∈ A)

≥ 1− (Pr(Xt 6= Yt) + Pr(Yt 6∈ A))

≥ Pr(Yt ∈ A)− Pr(Xt−1(v) 6= Yt−1(v))

≥ π(A)− δ.

Where we used Lemma 6.8 to bound Pr(Xt−1(v) 6= Yt−1(v)). Since the above holds for

any measurable subset A, we can conclude ‖Xt − π‖TV ≤ δ.

6.4.1 Gaussian RBMs

We now turn our attention to two special cases of continuous-valued RBMs:

Gaussian-Gaussian RBMs and Gaussian-NReLU RBMs. In both cases, our configurations

take values in R.

For the Gaussian-Gaussian RBM, we have a weight matrix W ∈ Rn×m, bias

vectors a ∈ Rn and b ∈ Rm, variance vectors σ2 ∈ Rn and s2 ∈ Rm, and the conditional

distributions are all independent normal:

P
(v)
GG(X(vi) |x(h)) = N

(
ai +

m∑
j=1

Wij x(hj), σ
2
i

)

P
(h)
GG(X(hj) |x(v)) = N

(
bj +

n∑
i=1

Wij x(vi), s
2
j

)

For the Gaussian-NReLU RBM, the parameters W , a, and σ2, and the conditional
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distribution for the visible nodes P
(v)
GN are the same as in the Gaussian-Gaussian RBM.

However, the hidden conditional distribution P
(h)
GN has changed so that allX(hj) are indepen-

dently distributed according to the noisy rectified linear distributionR(
∑n

i=1 Wij x(vi)) [74],

where if Z ∼ N(z, σ(z)), then max(0, Z) is distributed according to R(z).

For both cases, the visible and hidden semimetrics that we will use will be `2
2-

distance, i.e.

dv(x, y) =
n∑
i=1

(x(vi)− y(vi))
2

for configurations x, y. Similarly for dh(x, y). The following lemma, whose proof appears

in the appendix, establishes contractivity and gamble-admissibility for the conditional

distributions we have defined.

Lemma 6.10. The following holds.

(a) P
(v)
GG, P

(h)
GG, P

(v)
GN are ‖W‖2

F -contractive.

(b) P
(h)
GN is 5

4
‖W‖2

F -contractive.

(c) P
(v)
GG and P

(v)
GN are (ε0, δ0,M)-gamble admissible for ε0 = 1

4‖(W/σ)T ‖22,1
, δ0 = 1/4, and

M = 4‖σ‖2
2 +

√
2

π

∥∥(Wσ)T
∥∥

2,1

‖(W/σ)T‖2,1

+

(
‖W‖F

2‖(W/σ)T‖2,1

)2

where W/σ and Wσ denote n×m matrices whose entries are Wij/σi and Wijσi, respectively

Lemma 6.10 and Theorem 6.9 imply the following corollary on the mixing rate

for the alternating Gibbs sampler over Gaussian-Gaussian RBMs and Gaussian-NReLU

RBMs.

Corollary 6.11. Let M be the quantity given in Lemma 6.10. Let Xt denote the Gibbs

sampler for the Gaussian-Gaussian RBM with stationary distribution πX and Yt denote

the Gibbs sampler for the Gaussian-NReLU RBM with stationary distribution πY . If there
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exists M∗ > 0 such that

max (EX∼πX [dv(X0, X)] ,EY∼πY [dv(Y0, Y )] ,M) ≤ M∗,

then for δ > 0 and

C =
M∗‖(W/σ)T‖2

2,1‖W‖2
F log(2

δ
)

δ log(4)
,

(a) if ‖W‖F ≤ 1 and

t ≥ 1 +
log(2/δ) log (8C)

log
(

1
‖W‖4F

)
log(4)

,

then ‖Xt − πX‖TV ≤ δ, and

(b) if ‖W‖4
F ≤ 4/5 and

t ≥ 1 +
log(2/δ) log (10C)

log
(

4
5‖W‖4F

)
log(4)

,

then ‖Yt − πY ‖TV ≤ δ.

6.5 Lower bounds

We now turn our attention towards providing lower bounds for the mixing rate of

the alternating Gibbs sampler. Our approach utilizes the method of conductance, the same

technique that was applied in Chapter 5 to provide lower bounds on the Gibbs sampler

for Bayesian Gaussian mixture models.

Our first lower bound is for the case of RBMs.

Theorem 6.12. Pick any T > 0 and n,m ∈ N even positive integers. Then there is a

weight matrix W ∈ Rn×m satisfying

‖W‖max ≤
2

min(n,m)
ln (4T (n+m))
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such that the Gibbs sampler over the RBM with zero bias and weight matrix W has mixing

rate bounded as τmix ≥ T .

The proof of Theorem 6.12 appears in the appendix, but we present the main idea

here. We construct a weight matrix W such that the energy function associated with

W has two antipodal global minima. Because there are two minima, the singleton set

consisting of one minima has probability mass less than 1/2 under the Gibbs distribution.

Escaping from one of these minima is a very unlikely event, implying that the conductance

is small and therefore the mixing rate is large.

Our second lower bound is for the case of Gaussian-Gaussian RBMs. The state

space of a Gaussian-Gaussian RBM is unbounded, but any implementation of the Gibbs

sampler is necessarily in a bounded state space. Therefore, lower bounds that exploit the

unbounded nature of the state space may not be particularly meaningful. To compensate

for this, we work with a restricted version of the alternating Gibbs sampler. Given B > 0,

consider the following B-thresholded alternating Gibbs sampler (Yt)
∞
t=0. At time step t, it

performs the following.

1. For each hidden node hj, draw Xt(hj) ∼ N(bj +
∑n

i=1 Wij Yt−1(vi), s
2
j). Set Yt(hj)

to be the closest point in [−B,B] to Xt(hj).

2. For each hidden node hj, draw Xt(vi) ∼ N(ai +
∑m

j=1 Wij Yt(hj), σ
2
i ). Set Yt(vi) to

be the closest point in [−B,B] to Xt(vi).

The following theorem, whose proof appears in the appendix, gives a lower bound

on the mixing rate for this restricted Markov chain.

Theorem 6.13. Let T,B > 0 and n,m ∈ N be even positive integers. Then there exists

weight matrix W ∈ Rn×m s.t.

‖W‖max ≤
1

min(n,m)

(
1 +

1

B

√
8 log(4T max(n,m))

)

88



such that the B-truncated chain of the Gibbs sampler for the Gaussian-Gaussian RBM

with no biases and unit variances mixes in time τmix ≥ T .

In the case where n = m, the restriction on W translates to a 1 + 1
B

√
8 log(4Tn)

upper bound on the Frobenius norm of W . This implies that for any ε, T > 0, there exists

a B > 0 and a weight matrix W such that ‖W‖F ≤ 1 + ε, but the alternating Gibbs

sampler mixes in time bounded below by T . In this sense, the condition on the Frobenius

norm of W given in Corollary 6.11(a) is tight for establishing finite convergence rates on

the alternating Gibbs sampler over Gaussian-Gaussian RBMs.

6.6 Complexity of RBMs

The results in the previous sections give conditions under which a particular algo-

rithm, the alternating Gibbs sampler, can efficiently sample from the Gibbs distributions

of RBMs and several of its variants. It is natural to ask how much better can we hope to

do with either a better analysis of the Gibbs sampler or a different algorithm altogether.

The complexity of approximately sampling from a distribution is often closely

tied to the complexity of approximately computing its normalizing constant or partition

function [62, 69]. Therefore, to help understand the complexity of sampling from the

Gibbs distribution over RBMs, we will focus on the complexity of computing approximate

solutions to the following problem.

Restricted Boltzmann Machine partition: #RBM
Input: Parameters W ∈ Rn×m, a ∈ Rn, and b ∈ Rm.
Output: The partition function

Z =
∑

x : (v,h)→{0,1}n+m
ea

T x(v)+bT x(h)+x(v)TWx(h).

In the complexity literature, there are three well-documented categories that an

approximate counting problem can be placed in. The first category consists of problems

for which we have an efficient algorithm to approximately count or compute a partition
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function. The second category consists of problems for which an efficient approximate

counting algorithm would imply the equivalence of two complexity classes widely viewed

to be distinct, such as P and NP . Finally, problems in the third category do not belong

to either of the above categories but often are placed in well-defined classes of possibly

intermediate computational complexity. As we shall see, #RBM exhibits flavors of all

three of these categories.

When all weights are positive and all biases are consistent, there is an efficient

algorithm to approximate #RBM [61]. Moreover, we can combine our results from

Section 6.3 with annealing techniques [83] to get an efficient algorithm for the general case

when ‖W‖1‖W T‖1 < 4. Putting this all together, we have the following result which place

certain instances of #RBM into the first category.

Theorem 6.14. ([61], this chapter, [83]) #RBM admits an efficient algorithm in both of

the following cases.

(i) ∀ (i, j) ∈ [n]× [m], Wij ≥ 0 and sign(ai) = sign(bj).

(ii) ‖W‖1‖W T‖1 < 4.

On the other hand, [69] showed that when the max-norm of the weight matrix

grows quickly enough, #RBM falls into the second category.

Theorem 6.15 (Long and Servedio [69]). There is a universal constant α > 0 such that

if P 6= NP , then there is no polynomial-time algorithm such that given an n× n matrix

W such that ‖W‖max ≤ ψ(n) = ω(n)1, the algorithm approximates #RBM with weight

matrix W and no bias to within a multiplicative factor of eαψ(n).

Finally, [45] showed that when the weights are constrained to be positive but the

biases may be arbitrary, #RBM falls into the third category. Formally, they showed that

1Two functions f(n), g(n) satisfy the relationship g(n) = ω(f(n)) if limn→∞
g(n)
f(n) =∞.
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it belongs to a class of problems introduced by [39] that are approximation-preserving

interreducible2 with the problem of counting independent sets in bipartite graphs (#BIS).

Theorem 6.16. ([45]) #BIS ≡AP #RBM when Wij ≥ 0 and ‖W‖1‖W T‖1 = Ω(n2).

Theorems 6.15 and 6.16 both imply that for large values of ‖W‖1‖W T‖1, it seems

unlikely that we will be able to sample from the Gibbs distribution over RBMs, even when

all the weights are constrained to be positive. On the other hand, Theorem 6.14 gives

hope that there are cases when we can succeed. However, there are large gaps in the cases

that we know can be efficiently solved and those in which we believe that they cannot.

Closing these gaps remains an interesting direction for future research.

6.7 Related work

There has been some recent work on proving mixing rates for the Gibbs sampler

on a wide range of models. Notably, [68, 37, 47] gave upper bounds for the mixing rate

for the single-site update Gibbs sampler over a wide class of models which include certain

discrete-valued MRFs.

[37, 47] both introduced quantities for the models that they consider for which the

mixing rate of the Gibbs sampler is polynomial in the size of the model and exponential in

these special quantities. More closely related to this chapter, [68, 47] also showed that if

the model meets a certain ‘bounded influence’ criterion, then the single-site update Gibbs

sampler mixes in time O(n log n).

There has also been some recent work on single-site Gibbs sampling in general

state spaces. Notably, [88] gave general convergence rates for the single-site update Gibbs

sampler on general state spaces.

In this chapter, we also gave general convergence results in both discrete and

continuous spaces, but for the alternating Gibbs sampler as opposed to the single-site

2For a precise definition of approximation-preserving reducibility, see [39].
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update Gibbs sampler. We applied these results to a variety of models closely related to

the standard RBM, such as the Gaussian-NReLU RBM, for which mixing rate bounds

were previously unknown.

Chapter 6 contains material as it appears in “Mixing Rates for the alternating

Gibbs sampler over Restricted Boltzmann Machines and friends.” C. Tosh. In Interna-

tional Conference of Machine Learning 2016. The dissertation author was the primary

investigator.
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Part III

Interactive learning
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Chapter 7

Diameter-based active learning

In the remainder of this thesis, we turn our focus to learning situations in which a

learning algorithm is allowed to solicit interaction from a user. In this chapter, we examine

a classical interactive learning setting, known as active learning, and present an algorithm

with useful theoretical guarantees.

7.1 Active learning

In many situations where a classifier is to be learned, it is easy to collect unlabeled

data but costly to obtain labels. This has motivated the pool-based active learning model,

in which a learner has access to a collection of unlabeled data points and is allowed to

ask for individual labels in an adaptive manner. The hope is that choosing these queries

intelligently will rapidly yield a low-error classifier, much more quickly than with random

querying. A central focus of active learning is developing efficient querying strategies and

understanding their label complexity.

Over the past decade or two, there has been substantial progress in developing

such rigorously-justified active learning schemes for general concept classes. For the most

part, these schemes can be described as mellow: rather than focusing upon maximally

informative points, they query any point whose label cannot reasonably be inferred from

the information received so far. It is of interest to develop more aggressive strategies with
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better label complexity.

An exception to this general trend is the aggressive strategy of [31], whose label

complexity is known to be optimal in its dependence on a key parameter called the splitting

index. However, this strategy has been primarily of theoretical interest because it is difficult

to implement algorithmically. In this paper, we introduce a variant of the methodology

that yields efficient algorithms. We show that it admits roughly the same label complexity

bounds as well as having promising experimental performance.

As with the original splitting index result, we operate in the realizable setting,

where data can be perfectly classified by some function h∗ in the hypothesis class H. At

any given time during the active learning process, the remaining candidates—that is, the

elements of H consistent with the data so far—are called the version space. The goal of

aggressive active learners is typically to pick queries that are likely to shrink this version

space rapidly. But what is the right notion of size? Dasgupta [31] pointed out that the

diameter of the version space is what matters, where the distance between two classifiers is

taken to be the fraction of points on which they make different predictions. Unfortunately,

the diameter is a difficult measure to work with because it cannot, in general, be decreased

at a steady rate. Thus the earlier work used a procedure that has quantifiable label

complexity but is not conducive to implementation.

We take a fresh perspective on this earlier result. We start by suggesting an alterna-

tive, but closely related, notion of the size of a version space: the average pairwise distance

between hypotheses in the version space, with respect to some underlying probability

distribution π on H. This distribution π can be arbitrary—that is, there is no requirement

that the target h∗ is chosen from it—but should be chosen so that it is easy to sample from.

When H consists of linear separators, for instance, a good choice would be a log-concave

density, such as a Gaussian.

At any given time, the next query x is chosen roughly as follows:
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• Sample a collection of classifiers h1, h2, . . . , hm from π restricted to the current version

space V .

• Compute the distances between them; this can be done using just the unlabeled

points.

• Any candidate query x partitions the classifiers {hi} into two groups: those that

assign it a + label (call these V +
x ) and those that assign it a − label (call these V −x ).

Estimate the average-diameter after labeling x by the sum of the distances between

classifiers hi within V +
x , or those within V −x , whichever is larger.

• Out of the pool of unlabeled data, pick the x for which this diameter-estimate is

smallest.

This is repeated until the version space has small enough average diameter that a random

sample from it is very likely to have error less than a user-specified threshold ε. We show

how all these steps can be achieved efficiently, as long as there is a sampler for π.

Dasgupta [31] pointed out that the label complexity of active learning depends on

the underlying distribution, the amount of unlabeled data (since more data means greater

potential for highly-informative points), and also the target classifier h∗. That paper

identifies a parameter called the splitting index ρ that captures the relevant geometry, and

gives upper bounds on label complexity that are proportional to 1/ρ, as well as showing

that this dependence is inevitable. For our modified notion of diameter, a different averaged

splitting index is needed. However, we show that it can be bounded by the original splitting

index, with an extra multiplicative factor of log(1/ε); thus all previously-obtained label

complexity results translate immediately for our new algorithm.

7.2 Related work

The theory of active learning has developed along several fronts.
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One of these is nonparametric active learning, where the learner starts with a pool

of unlabeled points, adaptively queries a few of them, and then fills in the remaining

labels. The goal is to do this with as few errors as possible. (In particular, the learner

does not return a classifier from some predefined parametrized class.) One scheme begins

by building a neighborhood graph on the unlabeled data, and propagating queried labels

along the edges of this graph [90, 26, 29]. Another starts with a hierarchical clustering

of the data and moves down the tree, sampling at random until it finds clusters that are

relatively pure in their labels [33]. The label complexity of such methods have typically

be given in terms of smoothness properties of the underlying data distribution [25, 64].

Another line of work has focused on active learning of linear separators, by querying

points close to the current guess at the decision boundary [15, 35, 16]. Such algorithms

are close in spirit to those used in practice, but their analysis to date has required fairly

strong assumptions to the effect that the underlying distribution on the unlabeled points

is logconcave. Interestingly, regret guarantees for online algorithms of this sort can be

shown under far weaker conditions [27].

The third category of results, to which this chapter belongs, considers active learning

strategies for general concept classes H. Some of these schemes [28, 34, 20, 13, 89] are

fairly mellow in the sense described earlier, using generalization bounds to gauge which

labels can be inferred from those obtained so far. The label complexity of these methods

can be bounded in terms of a quantity known as the disagreement coefficient [51]. In the

realizable case, the canonical such algorithm is that of [28], henceforth referred to as CAL.

Other methods use a prior distribution π over the hypothesis class, sometimes assuming

that the target classifier is a random draw from this prior. These methods typically aim

to shrink the mass of the version space under π, either greedily and explicitly [30, 48, 46]

or implicitly [41]. Perhaps the most widely-used of these methods is the latter, query-by-

committee, henceforth QBC. As mentioned earlier, shrinking π-mass is not an optimal

strategy if low misclassification error is the ultimate goal. In particular, what matters is
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not the prior mass of the remaining version space, but rather how different these candidate

classifiers are from each other. This motivates using the diameter of the version space as a

yardstick, which was first proposed in [31] and is taken up again here.

7.3 Preliminaries

Consider a binary hypothesis class H, a data space X , and a distribution D over

X . For mathematical convenience, we will restrict ourselves to finite hypothesis classes.

(We can do this without loss of generality when H has finite VC dimension, since we only

use the predictions of hypotheses on a pool of unlabeled points; however, we do not spell

out the details of this reduction here.) The hypothesis distance induced by D over H is

the pseudometric

d(h, h′) := Prx∼D(h(x) 6= h′(x)).

Given a point x ∈ X and a subset V ⊂ H, denote V +
x = {h ∈ V : h(x) = 1} and

V −x = V \ V +
x . Given a sequence of data points x1, . . . , xn and a target hypothesis h∗,

the induced version space is the set of hypotheses that are consistent with the target

hypotheses on the sequence, i.e.

{h ∈ H : h(xi) = h∗(xi) for all i = 1, . . . , n}.

7.3.1 Diameter and the Splitting Index

The diameter of a set of hypotheses V ⊂ H is the maximal distance between any

two hypotheses in V , i.e.

diam(V ) := max
h,h′∈V

d(h, h′).

Without any prior information, any hypothesis in the version space could be the target.

Thus the worst case error of any hypothesis in the version space is the diameter of the

version space. The splitting index roughly characterizes the number of queries required for
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an active learning algorithm to reduce the diameter of the version space below ε.

While reducing the diameter of a version space V ⊂ H, we will sometimes identify

pairs of hypotheses h, h′ ∈ V that are far apart and therefore need to be separated. We

will refer to {h, h′} as an edge. Given a set of edges E = {{h1, h
′
1}, . . . , {hn, h′n}} ⊂

(H
2

)
,

we say a data point x ρ-splits E if querying x separates at least a ρ fraction of the pairs,

that is, if

max
{∣∣E+

x |, |E−x
∣∣} ≤ (1− ρ)|E|

where E+
x = E ∩

(H+
x

2

)
and similarly for E−x . When attempting to get accuracy ε > 0, we

need to only eliminate edge of length greater than ε. Define

Eε = {{h, h′} ∈ E : d(h, h′) > ε}.

The splitting index of a set V ⊂ H is a tuple (ρ, ε, τ) such that Prx∼D(x ρ-splits Eε) ≥ τ

for all finite edge-sets E ⊂
(
V
2

)
.

The following theorem, due to Dasgupta [31], bounds the sample complexity of

active learning in terms of the splitting index. The Õ notation hides polylogarithmic

factors in d, ρ, τ , log 1/ε, and the failure probability δ.

Theorem 7.1 (Dasgupta 2005). Suppose H is a hypothesis class with splitting index

(ρ, ε, τ). Then to learn a hypothesis with error ε,

(a) any active learning algorithm with ≤ 1/τ unlabeled samples must request at least 1/ρ

labels, and

(b) there is an active learning algorithm that draws Õ(d/(ρτ) log2(1/ε)) unlabeled data

points and requests Õ((d/ρ) log2(1/ε)) labels when H has VC-dimension d.

Unfortunately, the only known algorithm satisfying (b) above is intractable for all

but the simplest hypothesis classes: it constructs an ε-covering of the hypothesis space
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and queries points which whittle away at the diameter of this covering. To overcome this

intractability, we consider a slightly more benign setting in which we have a samplable

prior distribution π over our hypothesis space H.

7.3.2 An Average Notion of Diameter

With a prior distribution, it makes sense to shift away from the worst-case to the

average-case. We define the average diameter of a subset V ⊂ H as the expected distance

between two hypotheses in V randomly drawn from π, i.e.

Φ(V ) := Eh,h′∼π|V [d(h, h′)]

where π|V is the conditional distribution induced by restricting π to V , that is, π|V (h) =

π(h)/π(V ) for h ∈ V .

Intuitively, a version space with very small average diameter ought to put high

weight on hypotheses that are close to the true hypothesis. Indeed, given a version space

V with h∗ ∈ V , the following lemma shows that if Φ(V ) is small enough, then a low error

hypothesis can be found by two popular heuristics: random sampling and MAP estimation.

Lemma 7.2. Suppose V ⊂ H contains h∗. Pick ε > 0.

(a) (Random sampling) If Φ(V ) ≤ ε π|V (h∗) then Eh∼π|V [d(h∗, h)] ≤ ε.

(b) (MAP estimation) Write pmap = maxh∈V π|V (h). Pick 0 < α < pmap. If

Φ(V ) ≤ 2ε (min{π|V (h∗), pmap − α})2 ,

then d(h∗, h) ≤ ε for any h with π|V (h) ≥ pmap − α.
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Proof. Part (a) follows from

Φ(V ) = Eh,h′∼π|V [d(h, h′)] ≥ π|V (h∗)Eh∼π|V [d(h∗, h)].

For (b), take δ = min(π|V (h∗), pmap − α) and define Vπ,δ = {h ∈ V : π|V (h) ≥ δ}. Note

that Vπ,δ contains h∗ as well as any h ∈ V with π|V (h) ≥ pmap − α.

We claim diam(Vπ,δ) is at most ε. Suppose not. Then there exist h1, h2 ∈ Vπ,δ

satisfying d(h1, h2) > ε, implying

Φ(V ) = Eh,h′∼π|V [d(h, h′)] ≥ 2 · π|V (h1) · π|V (h2) · d(h1, h2) > 2δ2ε.

But this contradicts our assumption on Φ(V ). Since both h, h∗ ∈ Vπ,δ, we have (b).

7.3.3 An Average Notion of Splitting

We now turn to defining an average notion of splitting. A data point x ρ-average

splits V if

max

{
π(V +

x )2

π(V )2
Φ(V +

x ),
π(V −x )2

π(V )2
Φ(V −x )

}
≤ (1− ρ)Φ(V ).

And we say a set S ⊂ H has average splitting index (ρ, ε, τ) if for any subset V ⊂ S such

that Φ(V ) > ε,

Prx∼D (x ρ-average splits V ) ≥ τ.

Intuitively, average splitting refers to the ability to significantly decrease the potential

function

π(V )2Φ(V ) = Eh,h′∼π[1(h, h′ ∈ V ) d(h, h′)]

with a single query.

While this potential function may seem strange at first glance, it is closely related
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to the original splitting index. The following lemma, whose proof is deferred to Section 7.5,

shows the splitting index bounds the average splitting index for any hypothesis class.

Lemma 7.3. Let π be a probability measure over a hypothesis class H. If H has splitting

index (ρ, ε, τ), then it has average splitting index ( ρ
4dlog(1/ε)e , 2ε, τ).

Dasgupta [31] derived the splitting indices for several hypothesis classes, including

intervals and homogeneous linear separators. Lemma 7.3 implies average splitting indices

within a log(1/ε) factor in these settings.

Moreover, given access to samples from π|V , we can easily estimate the quan-

tities appearing in the definition of average splitting. For an edge sequence E =

({h1, h
′
1}, . . . , {hn, h′n}), define

ψ(E) :=
n∑
i=1

d(hi, h
′
i).

When hi, h
′
i are i.i.d. draws from π|V for all i = 1, . . . , n, which we denote E ∼ (π|V )2×n,

the random variables ψ(E), ψ(E−x ), and ψ(E+
x ) are unbiased estimators of the quantities

appearing in the definition of average splitting.

Lemma 7.4. Given E ∼ (π|V )2×n, we have

• E
[

1
n
ψ(E)

]
= Φ(V ) and

• E
[

1
n
ψ(E+

x )
]

= π(V +
x )2

π(V )2
Φ(V +

x ) for any x ∈ X . Similarly for E−x and V −x .

Proof. From definitions and linearity of expectations, it is easy to observe E[ψ(E)] =

nΦ(V ). By the independence of hi, h
′
i, we additionally have

E
[

1

n
ψ(E+

x )

]
=

1

n
E

 ∑
{hi,h′i}∈E

+
x

d(hi, h
′
i)


=

1

n
E

 ∑
{hi,h′i}∈E

1[hi ∈ V +
x ] 1[h′i ∈ V +

x ] d(hi, h
′
i)
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=
1

n

∑
{hi,h′i}∈E

(
π(V +

x )

π(V )

)2

E
[
d(hi, h

′
i) |hi, h′i ∈ V +

x

]
=

(
π(V +

x )

π(V )

)2

Φ(V +
x ).

While it is tempting to define average splitting in terms of the average diameter as

max{Φ(V +
x ),Φ(V −x )} ≤ (1− ρ)Φ(V ).

However, this definition does not satisfy a nice relationship with the splitting index. Indeed,

there exist hypothesis classes V for which there are many points which 1/4-split E for any

E ⊂
(
V
2

)
but for which every x ∈ X satisfies

max{Φ(V +
x ),Φ(V −x )} ≈ Φ(V ).

This observation is formally proven in the appendix.

7.4 An Average Splitting Index Algorithm

Suppose we are given a version space V with average splitting index (ρ, ε, τ). If

we draw Õ(1/τ) points from the data distribution then, with high probability, one of

these will ρ-average split V . Querying that point will result in a version space V ′ with

significantly smaller potential π(V ′)2Φ(V ′).

If we knew the value ρ a priori, then Lemma 7.4 combined with standard concen-

tration bounds [55, 3] would give us a relatively straightforward procedure to find a good

query point:

• Draw E ′ ∼ (π|V )2×M and compute the empirical estimate Φ̂(V ) = 1
M
ψ(E ′).

• Draw E ∼ (π|V )2×N for N depending on ρ and Φ̂.

103



Version space V , prior π, data x = (x1, . . . , xm)

Set ρ̂1 = 1/2

For t = 1, 2, . . .:

• Draw E ′ ∼ (π|V )2×mt and compute Φ̂t = 1
mt
ψ(E ′)

• Draw E ∼ (π|V )2×nt

• If ∃xi s.t. 1
nt

max
{
ψ(E+

xi
), ψ(E−xi)

}
≤ (1 − ρ̂t)Φ̂t, then halt and

return xi

• Otherwise, let ρ̂t+1 = ρ̂t/2

Figure 7.1. Select algorithm.

• For suitable M and N , it will be the case that with high probability, for some x,

1

N
max

{
ψ(E+

x ), ψ(E−x )
}
≈ (1− ρ)Φ̂.

Querying that point will decrease the potential.

However, we typically would not know the average splitting index ahead of time.

Moreover, it is possible that the average splitting index may change from one version space

to the next. In the next section, we describe a query selection procedure that adapts to

the splittability of the current version space.

7.4.1 Finding a Good Query Point

select, displayed in Figure 7.1, is our query selection procedure. It takes as input

a sequence of data points x1, . . . , xm, at least one of which ρ-average splits the current

version space, and with high probability finds a data point that ρ/8-average splits the

version space.

select proceeds by positing an optimistic estimate of ρ, which we denote ρ̂t, and
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successively halving it until we are confident that we have found a point that ρ̂t-average

splits the version space. In order for this algorithm to succeed, we need to choose nt and

mt such that with high probability (1) Φ̂t is an accurate estimate of Φ(V ) and (2) our

halting condition will be true if ρ̂t is within a constant factor of ρ and false otherwise. The

following lemma, whose proof is in the appendix, provides such choices for nt and mt.

Lemma 7.5. Let ρ, ε, δ0 > 0 be given. Suppose that version space V satisfies Φ(V ) > ε.

In select, fix a round t and data point x ∈ X that exactly ρ-average splits V (that is,

max{π|V (V +
x )2Φ(V +

x ), π|V (V −x )2Φ(V −x )} = (1− ρ)Φ(V )). If

mt ≥
48

ρ̂2
t ε

log
4

δ0

and nt ≥ max

{
32

ρ̂2
t Φ̂t

,
40

Φ̂2
t

}
log

4

δ0

then with probability 1− δ0,

(a) Φ̂t ≥ (1− ρ̂t/4)Φ(V );

(b) if ρ ≤ ρ̂t/2, then 1
nt

max {ψ(E+
x ), ψ(E−x )} > (1− ρ̂t)Φ̂t; and

(c) if ρ ≥ 2ρ̂t, then 1
nt

max {ψ(E+
x ), ψ(E−x )} ≤ (1− ρ̂t)Φ̂t.

Given the above lemma, we can establish a bound on the number of rounds and

the total number of hypotheses select needs to find a data point that ρ/8-average splits

the version space.

Theorem 7.6. Suppose that select is called with a version space V with Φ(V ) ≥ ε

and a collection of points x1, . . . , xm such that at least one of xi ρ-average splits V . If

δ0 ≤ δ/(2m(2 + log(1/ρ))), then with probability at least 1 − δ, select returns a point

xi that (ρ/8)-average splits V , finishing in less than dlog(1/ρ)e+ 1 rounds and sampling

O
((

1
ερ2

+ log(1/ρ)
Φ(V )2

)
log 1

δ0

)
hypotheses in total.

Before we prove Theorem 7.6, two observations are in order.
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First, it is possible to modify select to find a point xi that (cρ)-average splits

V for any constant c < 1 while only having to draw O(1) more hypotheses in total. By

halving ρ̂t at each step, we immediately give up a factor of two in our approximation.

This can be made smaller by taking narrower steps. Additionally, with a constant factor

increase in mt and nt, the approximation ratios in Lemma 7.5 can be set to any constant.

Second, though it appears that select requires us to know ρ in order to calculate

δ0, a crude lower bound on ρ suffices. Such a bound can often be found in terms of ε. This

is because any version space is (ε/2, ε, ε/2)-splittable [31, Lemma 1]. By Lemma 7.3, so

long as τ is less than ε/4, we can substitute ε
8dlog(2/ε)e for ρ in when we compute δ0.

Proof of Theorem 7.6. Let T := dlog(1/ρ)e+ 1. By Lemma 7.5, we know that for rounds

t = 1, . . . , T , we don’t return any point which does worse than ρ̂t/2-average splits V with

probability 1− δ/2. Moreover, in the T -th round, it will be the case that ρ/4 ≤ ρ̂T ≤ ρ/2,

and therefore, with probability 1− δ/2, we will select a point which does no worse than

ρ̂T/2-average split V , which in turn does no worse than ρ/8-average split V .

Note that we draw mt + nt hypotheses at each round. By Lemma 7.5, for each

round Φ̂t ≥ 3Φ(V )/4 ≥ 3ε/4. Thus

# of hypotheses drawn =
T∑
t=1

(
48

ρ̂2
t ε

+
32

ρ̂2
t Φ̂t

+
40

Φ̂2
t

)
log

4

δ0

≤
T∑
t=1

(
96

ερ̂2
t

+
72

Φ(V )2

)
log

4

δ0

Given ρ̂t = 1/2t and T ≤ 2 + log 1/ρ, we have

T∑
t=1

1

ρ̂2
t

=
T∑
t=1

22t =
4

3
(22T − 1) ≤ 4

3
24+2 log 1/ρ ≤ 22

ρ2
.

Plugging in δ0 ≤ δ
2m(2+log(1/ρ))

, we recover the theorem statement.
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Prior distribution π over hypothesis class H

Initial version space: V = H

While 1
n
ψ(E) ≥ 3ε

4
for E ∼ (π|V )2×n:

• Draw m data points x = (x1, . . . , xm)

• Query point xi = select(V,x) and set V to be consistent with the
result

Return last version space V in the form of the queried points
(x1, h

∗(x1)), . . . , (xK , h
∗(xK))

Figure 7.2. DBAL algorithm.

7.4.2 Active Learning Strategy

Using the select procedure as a subroutine, Algorithm ??, henceforth DBAL for

Diameter-based Active Learning, is our active learning strategy. Given a hypothesis class

with average splitting index (ρ, ε/2, τ), DBAL queries data points provided by select

until it is confident Φ(V ) < ε.

Denote by Vt the version space in the t-th round of DBAL. The following lemma,

which is proven in the appendix, demonstrates that the halting condition (that is, ψ(E) <

3εn/4, where E consists of n pairs sampled from (π|V )2) guarantees that with high

probability DBAL stops when Φ(Vt) is small.

Lemma 7.7. The following holds for DBAL:

(a) Suppose that for all t = 1, 2, . . . , K that Φ(Vt) > ε. Then the probability that the

termination condition is ever true for any of those rounds is bounded above by

K exp
(
− εn

32

)
.

(b) Suppose that for some t = 1, 2, . . . , K that Φ(Vt) ≤ ε/2. Then the probability that the

termination condition is not true in that round is bounded above by K exp
(
− εn

48

)
.
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Given the guarantees on the select procedure in Theorem 7.6 and on the termi-

nation condition provided by Lemma 7.7, we get the following theorem.

Theorem 7.8. Suppose that H has average splitting index (ρ, ε/2, τ). Then DBAL returns

a version space V satisfying Φ(V ) ≤ ε with probability at least 1 − δ while using the

following resources:

(a) K ≤ 8
ρ

(
log 2

ε
+ 2 log 1

π(h∗)

)
rounds, with one label per round,

(b) m ≤ 1
τ

log 2K
δ

unlabeled data points sampled per round, and

(c) n ≤ O
((

1
ερ2

+ log(1/ρ)
ε2

) (
log mK

δ
+ log log 1

ε

))
hypotheses sampled per round.

Proof. From definition of the average splitting index, if we draw m = 1
τ

log 2K
δ

unlabeled

points per round, then with probability 1− δ/2, each of the first K rounds will have at

least one data point that ρ-average splits the current version space. In each such round, if

the version space has average diameter at least ε/2, then with probability 1− δ/4 select

will return a data point that ρ/8-average splits the current version space while sampling

no more than n = O
((

1
ερ2

+ 1
ε2

log 1
ρ

)
log

mK log 1
ε

δ

)
hypotheses per round by Theorem 7.6.

By Lemma 7.7, if the termination check uses n′ = O
(

1
ε

log 1
δ

)
hypotheses per round,

then with probability 1− δ/4 in the first K rounds the termination condition will never be

true when the current version space has average diameter greater than ε and will certainly

be true if the current version space has diameter less than ε/2.

Thus it suffices to bound the number of rounds in which we can ρ/8-average split

the version space before encountering a version space with average diameter ε/2.

Since the version space is always consistent with the true hypothesis h∗, we will

always have π(Vt) ≥ π(h∗). After K = 8
ρ

(
log 2

ε
+ 2 log 1

π(h∗)

)
rounds of ρ/8-average

splitting, we have

π(h∗)2Φ(VK) ≤ π(VK)2Φ(VK) ≤
(

1− ρ

8

)K
π(V0)2Φ(V0) ≤ π(h∗)2ε

2
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Where we have used the fact that π(V )2Φ(V ) ≤ 1 for any set V ⊂ H. Thus in the first K

rounds, we must terminate with a version space with average diameter less than ε.

7.5 Proof of Lemma 7.3

In this section, we give the proof of the following relationship between the original

splitting index and our average splitting index.

Lemma 7.3. Let π be a probability measure over a hypothesis class H. If H has splitting

index (ρ, ε, τ), then it has average splitting index ( ρ
4dlog(1/ε)e , 2ε, τ).

The first step in proving Lemma 7.3 is to relate the splitting index to our estimator

ψ(·). Intuitively, splittability says that for any set of large edges there are many data

points which remove a significant fraction of them. One may suspect this should imply

that if a set of edges is large on average, then there should be many data points which

remove a significant fraction of their weight. The following lemma confirms this suspicion.

Lemma 7.9. Suppose that V ⊂ H has splitting index (ρ, ε, τ ), and say E is a sequence of

n hypothesis pairs from V satisfying ψ(E) > 2nε. If x ∼ D, then

max
{
ψ(E+

x ), ψ(E−x )
}
≤
(

1− ρ

4dlog(1/ε)e

)
ψ(E)

with probability at least τ .

Proof. Consider partitioning E as

E0 = {{h, h′} ∈ E : d(h, h′) < ε} and

Ek = {{h, h′} ∈ E : d(h, h′) ∈ [2k−1ε, 2kε)

for k = 1, . . . , K with K = dlog 1
ε
e. Then E0, . . . , EK are all disjoint and their union is E.

Define E1:K = ∪Kk=1Ek.
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We first claim that ψ(E1:K) > ψ(E0). This follows from the observation that

because ψ(E) ≥ 2nε and each edge in E0 has length less than ε, we must have

ψ(E1:K) = ψ(E)− ψ(E0) > 2nε− nε > ψ(E0).

Next, observe that because each edge {h, h′} ∈ Ek with k ≥ 1 satisfies d(h, h′) ∈ [2k−1ε, 2kε),

we have

ψ(E1:K) =
K∑
k=1

∑
{h,h′}∈Ek

d(h, h′) ≤
K∑
k=1

2kε|Ek|.

Since there are only K summands on the right, at least one of these must be larger than

ψ(E1:K)/K. Let k denote that index and let x be a point which ρ-splits Ek. Then we have

ψ((E1:K)+
x ) ≤ ψ(E1:K)− ψ(Ek \ (Ek)

+
x )

≤ ψ(E1:K)− ρ2k−1ε|Ek|

≤
(

1− ρ

2K

)
ψ(E1:K).

Since ψ(E1:K) ≥ ψ(E0) and ψ(E) = ψ(E1:K) + ψ(E0), we have

ψ(E+
x ) ≤ ψ(E0) +

(
1− ρ

2K

)
ψ(E1:K) ≤

(
1− ρ

4K

)
ψ(E).

Symmetric arguments show the same holds for E−x . By the definition of splitting, the

probability of drawing a point x which ρ-splits Ek is at least τ , giving us the lemma.

With Lemma 7.9 in hand, we are now ready to prove Lemma 7.3.

Proof of Lemma 7.3. Let V ⊂ H such that Φ(V ) > 2ε. Suppose that we draw n edges E

i.i.d. from π|V and draw a data point x ∼ D. Then Hoeffding’s inequality [55], combined

with Lemma 7.4, tells us that there exist sequences εn, δn ↘ 0 such that with probability
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at least 1− 3δn, the following hold simultaneously:

• Φ(V )− εn ≤ 1
n
ψ(E) ≤ Φ(V ) + εn,

• 1
n
ψ(E+

x ) ≥ π(V +
x )2

π(V )2
Φ(V +

x )− εn, and

• 1
n
ψ(E−x ) ≥ π(V −x )2

π(V )2
Φ(V −x )− εn.

For εn small enough, we have that Φ(V )− εn > 2ε. Combining the above with Lemma 7.9,

we have with probability at least τ − 3δn,

max

{
π(V +

x )2

π(V )2
Φ(V +

x ),
π(V −x )2

π(V )2
Φ(V −x )

}
− εn ≤

1

n
max{ψ(E+

x ), ψ(E−x )}

≤
(

1− ρ

4dlog(1/ε)e

)
ψ(E)

n

≤
(

1− ρ

4dlog(1/ε)e

)
(Φ(V ) + εn).

By taking n→∞, we have εn, δn ↘ 0, giving us the lemma.

7.6 Simulations

We compared DBAL against the baseline passive learner as well as two other

generic active learning strategies: CAL and QBC. CAL proceeds by randomly sampling

a data point and querying it if its label cannot be inferred from previously queried data

points. QBC uses a prior distribution π and maintains a version space V . Given a

randomly sampled data point x, QBC samples two hypotheses h, h′ ∼ π|V and queries x if

h(x) 6= h′(x).

We tested on two hypothesis classes: homogeneous, or through-the-origin, linear

separators and k-sparse monotone disjunctions. In each of our simulations, we drew our

target h∗ from the prior distribution. After each query, we estimated the average diameter

of the version space. We repeated each simulation several times and plotted the average

performance of each algorithm.
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Figure 7.3. Simulation results on homogeneous linear separators. Left : d = 10. Middle:
d = 25. Right : d = 50.

Homogeneous linear separators

The class of d-dimensional homogeneous linear separators can be identified with

elements of the d-dimensional unit sphere. That is, a hypothesis h ∈ Sd−1 acts on a data

point x ∈ Rd via the sign of their inner product:

h(x) := sign(〈h, x〉).

In our simulations, both the prior distribution and the data distribution are uniform over

the unit sphere. Although there is no known method to exactly sample uniformly from

the version space, Gilad-Bachrach et al. [44] demonstrated that samples generated by

the hit-and-run Markov chain work well in practice. We adopted this approach for our

sampling tasks.

Figure 7.3 shows the results of our simulations on homogeneous linear separators.

Sparse monotone disjunctions

A k-sparse monotone disjunction is a disjunction of k positive literals. Given a

Boolean vector x ∈ {0, 1}n, a monotone disjunction h classifies x as positive if and only if

xi = 1 for some positive literal i in h.
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Figure 7.4. Simulation results on k-sparse monotone disjunctions. In all cases k = 4.
Top left : d = 75, p = 0.25. Top right : d = 75, p = 0.5. Bottom left : d = 100, p = 0.25.
Bottom right : d = 100, p = 0.5.

In our simulations, each data point is a vector whose coordinates are i.i.d. Bernoulli

random variables with parameter p. The prior distribution is uniform over all k-sparse

monotone disjunctions. When k is constant, it is possible to sample from the prior

restricted to the version space in expected polynomial time using rejection sampling.

The results of our simulations on k-sparse monotone disjunctions are in Figure 7.4.

Chapter 7 contains material as it appears in “Diameter-based active learning.”

C. Tosh and S. Dasgupta. In International Conference of Machine Learning 2017. The

dissertation author was the primary investigator.
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Chapter 8

Structural query-by-committee

Chapter 7 presented an algorithm for the active learning setting in which the goal

was to learn a low error classifier. In this chapter, we consider a broader interactive learning

setting in which the goal is to find a generic structure, such as a clustering or hierarchy.

We will see that this setting generalizes a variety of interactive learning scenarios.

8.1 Introduction

We introduce interactive structure learning, an abstract problem that encompasses

many interactive learning tasks that have traditionally been studied in isolation, including

active learning of binary classifiers, interactive clustering, interactive embedding, and

active learning of structured output predictors. These problems include variants of both

supervised and unsupervised tasks, and allow many different types of feedback, from binary

labels to must-link/cannot-link constraints to similarity assessments to structured outputs.

Despite these surface differences, they conform to a common template that allows them to

be fruitfully unified.

In interactive structure learning, there is a space of items X—for instance, an input

space on which a classifier is to be learned, or points to cluster, or points to embed in a

metric space—and the goal is to learn a structure on X , chosen from a family G. This set

G could consist, for example, of all linear classifiers on X , or all hierarchical clusterings of
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X , or all knowledge graphs on X . There is a target structure g∗ ∈ G and the hope is to

get close to this target. This is achieved by combining a loss function or prior on G with

interactive feedback from an expert.

We allow this interaction to be fairly general. In most interactive learning work,

the dominant paradigm has been question-answering: the learner asks a question (like

“what is the label of this point x?”) and the expert provides the answer. We allow a more

flexible protocol in which the learner provides a constant-sized snapshot of its current

structure and asks whether it is correct (“does the clustering, restricted to these ten points,

look right?”). If the snapshot is correct, the expert accepts it; otherwise, the expert fixes

some part of it. This type of feedback, first studied in generality in [36], can be called

partial correction. It is a strict generalization of question-answering, and as we explain in

more detail below, it allows more intuitive interactions in many scenarios.

8.2 Interactive structure learning

The space of possible interactive learning schemes is large and mostly unexplored.

We can get a sense of its diversity from a few examples. In active learning [80], for instance,

the goal is to learn a classifier starting from a pool of unlabeled data. The machine

adaptively decides which points it wants labeled, and an expert answers these queries as

they arise. By focusing on informative points, the machine can often learn a good classifier

using far fewer labels than would be needed in a passive setting.

Sometimes, the labels are complex structured objects, such as parse trees for

sentences or segmentations of images. In such cases, providing an entire label is time-

consuming, and it is easier if the machine simply suggests a label (such as a tree) and lets

the expert either accept it or correct some particularly glaring fault in it. We can think of

this as interaction with partial correction. It is more general than the question-answering

usually assumed in active learning, and more convenient in many settings.
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Interaction can also be used to augment unsupervised learning. Despite great

improvements in algorithms for clustering, topic modeling, and so on, the outputs of these

procedures are rarely perfectly aligned with the user’s needs. Complex high-dimensional

data can be organized in many different ways: should a collection of animals be clustered

according to the Linnaean taxonomy, or their preferred habitats, or how cute they are?

These alternatives are all legitimate, and it is impossible for an unsupervised method to

magically guess what the user wants. But a modest amount of interaction can potentially

overcome this problem of underspecification. For instance, the user can iteratively provide

must-link and cannot-link constraints [86] to edit a flat clustering, or triplet constraints

to edit a hierarchy [85].

These are just a few examples of the many types of interactive learning that have

been investigated. The underlying tasks encompass problems of both supervised and

unsupervised learning. The types of feedback range from triplets to partial labels to

connectivity constraints. The querying strategies are also rich in variety. Our first goal

is to provide a unifying framework in which this profusion of learning problems can be

treated.

8.2.1 The space of structures

Let X be a set of data points. This could be a pool of unlabeled data to be used

for active learning, or a set of points to be clustered, or an instance space on which a

metric will be learned, or items on which a knowledge graph is to be constructed.

We wish to learn a structure on X , chosen from a class G. This could, for instance,

be the set of all labelings of X consistent with a function class F of classifiers (binary,

multiclass, or with complex structured labels), or the set of all partitions of X , or the

set of all metrics on X . Of these structures, there is some target g∗ ∈ G that we wish to

attain.

Although interaction will help choose a structure, it is unreasonable to expect that
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interaction alone could be an adequate basis for this choice. For instance, pinpointing a

particular clustering over n points requires Ω(n) must-link/cannot-link constraints, which

is an excessive amount of interaction when n is large.

To bridge this gap, we need a prior or a loss function over structures. For instance,

if G consists of flat k-clusterings, then we may prefer clusterings with low k-means cost. If

G consists of linear separators, then we may prefer functions with small norm ‖g‖. In the

absence of interaction, the machine would simply pick the structure that optimizes the

prior or cost function. In this paper, we assume that this preference is encoded as a prior

distribution π over G.

We emphasize that although we have adopted a Bayesian formulation, there is no

assumption that the target structure g∗ is actually drawn from the prior.

8.2.2 Feedback

We consider schemes in which each individual round of interaction is not expected

to take too long. This means, for instance, that the expert cannot be shown an entire

clustering, of unrestricted size, and asked to comment upon it. Instead, he or she can only

be given a small snapshot of the clustering, such as its restriction to 10 elements. The

feedback on this snapshot will be either be to accept it, or to provide some constraint that

fixes part of it.

In order for this approach to work, it is essential that structures be locally checkable:

that is, g corresponds to the target g∗ if and only if every snapshot of g is satisfactory.

When g is a clustering, for instance, the snapshots could be restrictions of g to

subsets S ⊆ X of some fixed size s. Technically, it is enough to take s = 2, which

corresponds to asking the user questions of the form ‘Do you agree with having zebra

and giraffe in the same cluster?” From the viewpoint of human-computer interaction,

it might be preferable to use larger subsets (like s = 5 or s = 10), with questions such

as “Do you agree with the clustering {zebra, giraffe, dolphin}, {whale, seal}?” Larger
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substructures provide more context and are more likely to contain glaring faults that

the user can easily fix (dolphin and whale must go together). In general, we can only

expect the user to provide partial feedback in these cases, rather than fully correcting the

substructure.

We now formalize the notion of a snapshot.

8.2.3 Snapshots

Perhaps the simplest type of snapshot of a structure g is the restriction of g to a

small number of points. We start by discussing this case, and later present a more general

definition.

Projections

For any g ∈ G and any subset S ⊆ X of size s = O(1), let g|S be a suitable notion

of the restriction of g to S, which we will sometimes call the projection of g onto S. For

instance:

• G is a set of classifiers on X .

Then we can take s = 1. For any point x ∈ X , we let g|x be (x, g(x)).

• G is a set of partitions (flat clusterings) of X .

For a set S ⊆ X of size s ≥ 2, let g|S be the induced partition on just the points S.

• G is a set of hierarchical clusterings of X .

For any s ≥ 3, and any set S ⊆ X of size s, let g|S be the restriction of the

hierarchical clustering g to just the points S, that is, the induced hierarchy on s

leaves.

• G is a set of metrics on X .
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For any s ≥ 2 and any set S ⊆ X of size s, let g|S denote the s × s matrix of

distances between points in S according to metric g.

As discussed earlier, from a human-computer interaction point of view, it will often be

helpful to pick projections of size larger than the minimal possible s. For clusterings,

for instance, any s ≥ 2 satisfies local checkability, but human feedback might be more

effective when s = 10 than when s = 2. Thus, in general, the queries made to the expert

will consist of snapshots (projections of size s = 10, say) that can in turn be decomposed

further into atomic units (projections of size 2).

Atomic decompositions of structures

Now we generalize the notion of projection to other types of snapshots and their

atomic units.

We will take a functional view of the space of structures G, in which each structure

g is specified by its “answers” to a set of atomic questions A. For instance, if G is the set

of partitions of X , then we can take A =
(X

2

)
, with

g({x, x′}) =

 1 if g places x, x′ in the same cluster

0 otherwise

The queries made during interaction can, in general, be composed of multiple

atomic units, and feedback will be received on at least one of these atoms. Formally, let Q

be the space of queries. In the partitioning example, this might be
(X

10

)
. The relationship

between Q and A is captured by the following requirements:

• Each q ∈ Q can be decomposed as a set of atomic questions A(q) ⊆ A. In the

partitioning example, A(q) is the set of all pairs in q.

• We will overload notation and write g(q) = {(a, g(a)) : a ∈ A(q)}.
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• The user accepts g(q) if and only if g satisfactorily answers every atomic question in

q, that is, if and only if g(a) = g∗(a) for all a ∈ A(q).

To illustrate this notation, we briefly turn to the example of hierarchical clustering.

Example: hierarchical clustering

Suppose G is the space of hierarchical clusterings of X and the user has in mind a

target hierarchy g∗.

A projection g|S, the restriction of hierarchy g to leaves S, is correct if and only if

it agrees exactly with g∗|S. We can define the atomic questions to be projections of size 3,

that is, A =
(X

3

)
, and view any hierarchy g as a function:

g : A → {rooted trees with three leaves}.

Note that the hierarchy is fully specified by this function (to make this precise, we need to

also fix some canonical ordering of the data points.) The right-hand set can be thought of

as a set of possible labels, so that the learning problem resembles multiclass classification.

There are four possible rooted trees with leaves 1, 2, 3 and thus four labels:

1 2 3 1 2 3 1 3 2 2 3 1

The queries made by the machine can consist of larger projections, Q =
(X
s

)
for

s ≥ 3. Each such query q decomposes naturally into its constituent atomic questions:

A(q) = {a ∈ A : a ⊆ q}. For instance, if s = 6 then |A(q)| =
(

6
3

)
= 20.

8.2.4 Summary of framework

To summarize, interactive structure learning has two key components:

• A reduction to multiclass classifier learning.
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We view each structure g ∈ G as a function on atomic questions A. Thus, learning a

good structure is equivalent to picking one whose labels g(a) are correct.

• Feedback by partial correction.

For practical reasons we consider broad queries, from a set Q, where each query

can be decomposed into atomic questions, allowing for partial corrections. This

decomposition is given by the function A : Q → 2A.

The reduction to multiclass classification immediately suggests algorithms that

can be used in the interactive setting. We are particular interested in adaptive querying,

with the aim of finding a good structure with minimal interaction. Of the many schemes

available for binary classifiers, one that appears to work well in practice and has good

statistical properties is query-by-committee [81, 41]. It is thus a natural candidate to

generalize to the broader problem of structure learning.

8.3 Structural QBC

Query-by-committee, as originally analyzed in [41], is an active learning algorithm

for binary classification in the noiseless setting. It uses a prior probability distribution π

over its classifiers and keeps track of the current version space, i.e. the classifiers consistent

with the labeled data seen so far. At any given time, the next query is chosen as follows:

• Repeat:

– Pick x ∈ X at random (e.g. from a pool of unlabeled data)

– Pick classifiers h, h′ at random from π restricted to the current version space

– If h(x) 6= h′(x): halt and take x as the point to query

In our setting, the feedback at time t is the answer yt to some atomic question at ∈ A, and

we can define the resulting version space to be {g ∈ G : g(at′) = yt′ for all t′ ≤ t}. The
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Prior π over candidate structures G
Distribution ν over query space Q
Initial prior distribution over G: π0 = π

For t = 1, 2, . . .:

• Draw gt ∼ πt−1

• Repeat until the next query qt ∈ Q has been chosen:

– Draw q ∼ ν and g, g′ ∼ πt−1

– With probability d(g, g′; q): take qt = q

• Show user qt and gt(qt)

• Expert corrects or confirms one or more atoms in qt by providing
pairs (at, yt)

• Update posterior: πt(g) ∝ πt−1(g) exp(−β · 1(g(at) 6= yt))

(do this for each feedback pair)

Figure 8.1. Structural QBC for 0− 1 loss.

immediate generalization of QBC would involve picking a query q ∈ Q at random, and

then choosing it if g, g′ sampled from π restricted to our version space happen to disagree

on it. But this is unlikely to work well, because the answers to queries are no longer binary

labels but mini-structures. As a result, g, g′ are likely to disagree on minor details even

when the version space is quite small, leading to excessive querying. To address this, we

will use a more refined notion of the difference between g(q) and g′(q):

d(g, g′; q) =
1

|A(q)|
∑
a∈A(q)

1[g(a) 6= g′(a)].

In words, this is the fraction of atomic subquestions of q on which g and g′ disagree. It

is a value between 0 and 1, where higher values mean that g(q) differs significantly from

g′(q). Then we will query q with probability d(g, g′; q).
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8.3.1 Accommodating noisy feedback

We are interested in the noisy setting, where the user’s feedback may occasionally

be inconsistent with the target structure. In this case, the notion of a version space is less

clear-cut. Our proposed modification is very simple: the feedback at time t, say (at, yt),

causes the posterior to be updated as follows:

πt(g) ∝ πt−1(g) exp(−β · 1[g(at) 6= yt]). (8.1)

Here β > 0 is a constant that controls how aggressively errors are punished. In the noiseless

setting, we can take β =∞ and recover the original QBC update. Even with noise, however,

we will demonstrate that this posterior update enjoys convergence guarantees. The full

algorithm is shown in Figure 8.1.

8.3.2 Uncertainty and informative queries

What kinds of queries will structural QBC make? To answer this, we first quantify

the uncertainty in the current posterior about a particular query or atom. For a ∈ A and

q ∈ Q and any distribution π, write

u(a; π) = Prg,g′∼π(g(a) 6= g′(a))

u(q; π) = Eg,g′∼π[d(g, g′; q)] = Ea∼unif(A(q))[u(a; π)],

where unif denotes the uniform distribution. These uncertainty values lie in the range

[0, 1].

The probability that a particular query q ∈ Q is chosen in round t by structural

QBC is proportional to ν(q)u(q; πt−1). Thus, queries with higher uncertainty under the

current posterior are more likely to be chosen. As the following lemma demonstrates,

getting feedback on uncertain atoms leads to the elimination, or down-weighting in the
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case of noisy feedback, of many structures inconsistent with g∗.

Lemma 8.1. Let π be a distribution over G. For any a ∈ A and any answer y to a,

π({g : g(a) 6= y}) ≥ 1

2
u(a; π).

Proof. Suppose the possible answers to a are y1, y2, . . ., and that these have probabilities

p1 ≥ p2 ≥ · · · respectively under π. That is pi = π({g : g(a) = yi}). Then

u(a; π) = 1−
∑
i

p2
i .

Note that π({g : g(a) 6= y}) is smallest when y = y1. Thus, we have

1− π({g : g(a) 6= y}) ≤ p1 ≤
√

1− u(a; π) ≤ 1− 1

2
u(a; π),

Rearranging gives us the lemma.

This gives some intuition for the query selection criterion of structural QBC, and

will later be used in the proof of consistency.

8.3.3 General loss functions

The update rule for structural QBC, equation (8.1), results in a posterior of the

form πt(g) ∝ π(g) exp(−β ·#(mistakes made by g)), which can in general be difficult to

sample from. To address this, we consider a broader class of updates,

πt(g) ∝ πt−1(g) exp(−β · `(g(at), yt)), (8.2)

where `(·, ·) is a general loss function. In the special case where G consists of linear

functions and ` is convex, the resulting posterior is a log-concave distribution, which allows
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for efficient sampling [70]. We will show that this update also enjoys nice theoretical

properties, albeit under different noise conditions.

Prior π over candidate structures G
Distribution ν over query space Q
Initial prior distribution over G: π0 = π

For t = 1, 2, . . .:

• Draw gt ∼ πt−1

• Repeat until the next query qt ∈ Q has been chosen:

– Draw q ∼ ν and g, g′ ∼ πt−1

– With probability d2(g, g′; q): take qt = q

• Show user qt and gt(qt)

• Expert corrects or confirms one or more atoms in qt by providing
pairs (at, yt)

• Update posterior: πt(g) ∝ πt−1(g) exp(−β · `(g(at), yt))

(do this for each feedback pair)

Figure 8.2. Structural QBC for general loss functions.

To formally specify the setting, let Y be the space of answers to atomic questions

A, and suppose that structures in G generate values in some possibly different prediction

space Z ⊆ Rd. That is, we view each g ∈ G as a function g : A → Z, and any output

z ∈ Z gets translated to some prediction in Y . The loss associated with predicting z when

the actual answer is y is denoted `(z, y). Here are some examples:

• 0− 1 loss. Z = Y and `(z, y) = 1(y 6= z).

• Logistic loss. Y = {−1, 1}, Z = [−B,B] for B > 0, and `(z, y) = ln(1 + e−yz).

• Squared loss. Y = {−1, 1}, Z = [−B,B], and `(z, y) = (y − z)2.
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When moving from a discrete to a continuous prediction space, it becomes very possible

that the predictions, on a particular atomic question, made by two randomly chosen

structures will be close but not perfectly aligned. Thus, instead of checking strict equality

of these predictions, we need to modify our querying strategy to take into account the

distance between them. To this end, we will use the normalized average squared Euclidean

distance:

d2(g, g′; q) =
1

|A(q)|
∑
a∈A(q)

‖g(a)− g′(a)‖2

D

where D = maxa∈Amaxg,g′∈G ‖g(a) − g′(a)‖2. Note that d2(g, g′; q) is a value between 0

and 1, and thus we can treat it as a probability, similar to how we used d(g, g′; q) in the

0-1 loss setting. The full algorithm is shown in Figure 8.2.

In the 0-1 loss setting, we saw that structural QBC chooses queries proportional

to their uncertainty. What queries will structural QBC make in the general loss setting?

Define the variance of a ∈ A under distribution π as

var(a; π) =
∑
g∈G

π(g) ‖g(a)− Eg′∼π[(g′(a))]‖2 =
1

2

∑
g,g′∈G

π(g)π(g′) ‖g(a)− g′(a)‖2

and define the variance of a query q ∈ Q as the average variance of its constituent atoms,

var(q; π) = Ea∼unif(A(q))[var(a; π)] =
1

|A(q)|
∑
a∈A(q)

var(a; π).

Then it is not hard to see that the probability that structural QBC chooses q ∈ Q at step

t is proportional to ν(q)var(q; πt−1).

8.4 Kernelizing structural QBC

Consider the special case where G consists of linear functions, i.e. G = {gw(x) =

〈x,w〉 : w ∈ Rd}. As mentioned above, when the loss function is convex, the posteriors
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we encounter are log-concave, and thus efficiently samplable. But what if we want a more

expressive class than linear functions? To address this, we resort to kernels.

Gilad-Bachrach et al. [44] investigated the use of kernels in QBC. In particular,

they observed that to run QBC, we need not actually sample from the prior restricted to

the current version space. Rather, given a candidate query x, it is enough to be able to

sample from the distribution this posterior induces over the labelings of x. Although their

work was in the realizable binary setting, this observation readily applies to our noisy

structural setting.

Let φ : X → Rd be a feature mapping. Given a prior π over Rd, the posterior after

observing (x1, y1), · · · , (xt, yt) becomes

πt(gw) ∝ π(gw) exp

(
−β

t∑
i=1

`(〈φ(xi), w〉, yi)

)
.

A particularly interesting case is when `(·, ·) is the squared-loss and π is Gaussian. In

this case, we will show that the predictions of the posterior are distributed according to a

univariate Gaussian distribution with efficiently computable mean and variance. To show

this, we first observe that the posterior is a multivariate Gaussian.

Lemma 8.2. Suppose π = N(0, σ2
oId), `(·, ·) is the squared-loss, and we have observed

(x1, y1), · · · , (xt, yt). If Φ ∈ Rt×d denotes the matrix

Φ =



φ(x1)

φ(x2)

...

φ(xt)


.

then πt is N(µ̂, Σ̂) where Σ̂ =
(

2βΦTΦ + 1
σ2
o
Id

)−1

and µ̂ = 2βΣ̂ΦTy.

We defer the proof of Lemma 8.2 to the appendix. Since πt is a multivariate
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Gaussian, we know that if w ∼ πt and v ∈ Rd then 〈w, v〉 is distributed according to

N(µ, σ2) where

µ = vT µ̂ = 2βvT Σ̂ΦTy

σ2 = vT Σ̂v = vT
(

2βΦTΦ +
1

σ2
o

Id

)−1

v

Unfortunately, directly computing µ and σ2 in the forms above requires expanding out

the feature mappings, which is undesirable. However, the following theorem, known as the

Woodbury Matrix Identity [53, Exercise 13.9], allows us to rewrite these terms in a form

only involving inner products of the feature vectors.

Theorem 8.3 (Woodbury Matrix Identity). Let T,W,U, V be matrices of the appropriate

sizes. Then

(T + UW−1V )−1 = T−1 − T−1U(W + V T−1U)−1V T−1.

Theorem 8.3 implies that we can rewrite Σ̂ as

Σ̂ =

(
1

σ2
o

Id + ΦT (2βIn)Φ

)−1

= σ2
oId − σ2

oIdΦ
T

(
1

2β
In + Φ(σ2

oId)Φ
T

)−1

Φ(σ2
oId)

= σ2
o

(
Id − ΦT

(
1

2σ2
oβ
In + ΦΦT

)−1

Φ

)

= σ2
o

(
Id − ΦTΣ0Φ

)
where Σo =

(
1

2σ2
oβ
It + ΦΦT

)−1

. With this observation in hand, we have the following

Lemma 8.4. Suppose the assumptions of Lemma 8.2 hold. If gw ∼ πt, then 〈w, φ(x)〉 is

distributed according to N(µ, σ2) where

µ = 2σ2
oβκ

T (It − ΣoK) y
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σ2 = σ2
o

(
φ(x)Tφ(x)− κTΣoκ

)
where Kij = 〈φ(xi), φ(xj)〉, κi = 〈φ(xi), φ(x)〉, and Σo =

(
1

2σ2β
It +K

)−1

.

The important observation here is that all the quantities involving the feature

mapping in Lemma 8.4 are inner products. Thus we never need to explicitly construct any

feature vectors.

8.5 Consistency of structural QBC

In this section, we look at a typical setting in which there is a finite but possibly very

large pool of candidate questions Q, and thus the space of structures G is effectively finite.

Let g∗ ∈ G be the target structure, as before. Our goal in this setting is to demonstrate

the consistency of structural QBC, meaning that

lim
t→∞

πt(g
∗) = 1

almost surely. To do so, we first formalize our setting. Note that the random outcomes

during time step t of structural QBC consist of:

• the query qt;

• the atomic question at ∈ A(qt) that the expert chooses to answer (pick one at random

if the expert answers several of them); and

• the response yt to at.

Let Ft denote the sigma-field of all outcomes up to, and including, time t. We begin with

the special case of structural QBC under the 0-1 loss.
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8.5.1 Consistency under 0-1 loss

In order to prove consistency, we will have to make some assumptions about the

feedback we receive from a user. For any query q ∈ Q and any atomic question a ∈ A(q),

let η(y|a, q) denote the conditional probability that the user answers y to atomic question

a, in the context of query q. Our first assumption is that the most likely answer is g∗(a).

Assumption 8.1. There exists 0 < λ ≤ 1 such that η(g∗(a)|a, q)− η(y|a, q) ≥ λ for all

q ∈ Q and a ∈ A(q) and all y 6= g∗(a).

(We will use the convention λ = 1 for the noiseless setting.) In the learning

literature, Assumption 8.1 is known as Massart’s bounded noise condition [7]. As an

example, suppose that there are 11 possible answers to an atom. A user that answers

correctly with probability 0.10 and provides every other incorrect answer with probability

0.09 would satisfy Assumption 8.1 with λ = 0.01. Thus, Assumption 8.1 allows for users

who are prone to mistakes but not inherently biased to a particular incorrect answer.

The following lemma demonstrates that under Assumption 8.1, the posterior

probability of g∗ increases in expectation with each query, as long as the β parameter of

the update rule in equation (8.1) is small enough relative to λ.

Lemma 8.5. Fix any t, and suppose the expert provides an answer to atomic question

at ∈ A(qt) at time t. Let γt = πt−1({g ∈ G : g(at) = g∗(at)}). Define ∆t by:

E
[

1

πt(g∗)

∣∣∣∣Ft−1, qt, at

]
= (1−∆t)

1

πt−1(g∗)
,

Under Assumption 8.1, ∆t can be lower-bounded as follows:

(a) If λ = 1 (noiseless setting), ∆t ≥ (1− γt)(1− e−β).

(b) For any 0 < λ ≤ 1, if β ≤ λ/2, then ∆t ≥ βλ(1− γt)/2.
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Proof. Let y1, y2, . . . denote the possible answers to at, and set pj = η(yj|at, qt) be the

probability that the labeler answers yj. Without loss of generality, suppose p1 ≥ p2 ≥ · · · ,

so that (under Assumption 8.1) g∗(at) = y1 and p1 − p2 ≥ λ.

Further, define Gj = {g ∈ G : g(at) = yj}. Thus γt = πt−1(G1). By averaging over

the expert’s possible responses, we have

E
[

1

πt(g∗)

∣∣∣∣Ft−1, qt, at

]
= p1

πt−1(G1) + e−β(1− πt−1(G1))

πt−1(g∗)
+
∑
j>1

pj
πt−1(Gj) + e−β(1− πt−1(Gj))

e−βπt−1(g∗)

=
1

πt−1(g∗)

(
p1(πt−1(G1) + e−β(1− πt−1(G1)) +

∑
j>1

pj(e
βπt−1(Gj) + (1− πt−1(Gj)))

)

=
1

πt−1(g∗)

(
p1(1− (1− πt−1(G1))(1− e−β)) +

∑
j>1

pj(1 + (eβ − 1)πt−1(Gj))

)

=
1

πt−1(g∗)
− 1

πt−1(g∗)

(
p1(1− πt−1(G1))(1− e−β)−

∑
j>1

pj(e
β − 1)πt−1(Gj)

)
.

Setting the parenthesized term to ∆t, we have

∆t ≥ p1(1− πt−1(G1))(1− e−β)− p2(eβ − 1)
∑
j>2

πt−1(Gj)

=
(
p1(1− e−β)− p2(eβ − 1)

)
(1− γt).

This yields (a) in the lemma statement. For (b), using the inequalities eβ ≤ 1 + β + β2

and e−β ≤ 1− β + β2 for 0 ≤ β ≤ 1, we get

∆t ≥
(
p1(β − β2)− p2(β + β2)

)
(1− γt)

≥ β ((p1 − p2)− β(p1 + p2)) (1− γt) ≥ β(λ− β)(1− γt).

Taking β ≤ λ/2 completes the proof.
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To understand the requirement β = O(λ), consider an atomic question on which

there are just two possible labels, 1 and 2, and the expert chooses these with probabilities

p1 and p2, respectively. If the correct answer according to g∗ is 1, then p1 ≥ p2 + λ under

Assumption 8.1. Let G2 denote structures that answer 2.

• With probability p1, the expert answers 1, and the posterior mass of G2 is effectively

multiplied by e−β.

• With probability p2, the expert answers 2, and the posterior mass of G2 is effectively

multiplied by eβ.

The second outcome is clearly undesirable. In order for it to be counteracted, in expectation,

by the first, β must be kept fairly small relative to p1/p2. The condition β ≤ λ/2 is

sufficient for this.

Thus, Lemma 8.5 asserts that structural QBC shrinks 1/πt(g
∗), in expectation, on

every round: it corresponds to a random walk with a drift in the right direction. This

drift is proportional to βλ(1 − γt), where γt is the probability mass, under the current

posterior, of structures that agree with g∗ on the atom at.

Lemma 8.5 does not, in itself, imply consistency. It is quite possible for 1/πt(g
∗) to

keep shrinking but not converge to 1. Imagine, for instance, that the input space has two

parts to it, and we keep improving on one of them but not the other. What we need is,

first, to ensure that the queries qt capture some portion of the uncertainty in the current

posterior, and second, that the user chooses an atom that is at least slightly informative.

The first condition is assured by the SQBC querying strategy. For the second, we need an

assumption.

Assumption 8.2. There is some minimum probability po > 0 for which the following

holds. If the user is presented with a query q and a structure g ∈ G such that g(q) 6= g∗(q),

the user will provide feedback on some a ∈ A(q) such that g(a) 6= g∗(a) with probability at

least po.
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To understand this, note that the interface allows the user to either correct a

mistake in g(q) or to corroborate part of it that is correct. The assumption asserts that

the former occurs at least some fraction of the time, in situations where g(q) is not perfect.

It is one way of avoiding scenarios in which a user never provides feedback on a particular

atom a. In such a pathological case, we might not be able to recover g∗(a), and thus our

posterior will always put some probability mass on structures that disagree with g∗ on a.

The following lemma, whose proof is deferred to the appendix, gives lower bounds

on the quantity 1− γt under Assumption 8.2.

Lemma 8.6. Suppose that G is finite and the user’s feedback obeys Assumption 8.2. Then

there exists a constant c > 0 such that for every round t

E[1− γt | Ft−1] ≥ c πt−1(g∗)2(1− πt−1(g∗))2

where γt = πt−1({g ∈ G : g(at) = g∗(at)}), at is the atom the user provides feedback on, and

the expectation is taken over the randomness in structural QBC and the user’s response.

Together, Lemmas 8.5 and 8.6 show that the sequence 1/πt(g
∗) is a positive

supermartingale that decreases in expectation at each round by an amount that depends

on πt(g
∗). The following lemma gives us a condition under which such stochastic processes

can be guaranteed to converge to 1.

Lemma 8.7. Suppose that there exists a continuous, non-negative function f : [0, 1]→ R≥0

such that f(1) = 0 and f(x) > 0 for all x ∈ (0, 1). If for each t ∈ N, we have

E
[

1

πt(g∗)

∣∣∣∣Ft−1

]
≤ 1

πt−1(g∗)
− f(πt−1(g∗))

then πt(g
∗)→ 1 almost surely.

Proof. Let Xt = πt(g
∗). By assumption, 1

Xt
is a positive supermartingale, which implies

limt→∞
1
Xt

= 1
X

exists and is finite with probability one. By the Continuous Mapping
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Theorem, this implies limt→∞Xt = X and is non-zero with probability one. On the other

hand, we have by the law of total expectation

1 ≤ E
[

1

XT

]
≤ 1

π(g∗)
−

T−1∑
t=0

E[f(Xt)].

for all T ∈ N, which implies that limt→∞ E[f(Xt)] = 0. By Fatou’s lemma and the

Continuous Mapping Theorem, we have

0 = lim
t→∞

E[f(Xt)] = E
[

lim
t→∞

f(Xt)
]

= E [f(X)] .

Thus, f(X) = 0 with probability one. Since f has only two potential zeros at 0 and 1,

and since X > 0 with probability one, we conclude that X = 1 with probability one.

As an immediate corollary, we have that structural QBC is consistent.

Theorem 8.8. Suppose that G is finite, and Assumptions 8.1 and 8.2 hold. Then if struc-

tural QBC is run with a prior distribution π in which π(g∗) > 0, we have limt→∞ πt(g
∗) = 1

almost surely.

Proof. Combining Lemmas 8.5 and 8.6, we have

E
[

1

πt(g∗)

∣∣∣∣Ft−1

]
= (1− E[∆t|Ft−1])

1

πt−1(g∗)

≤
(

1− cβλπt−1(g∗)2(1− πt−1(g∗))2

2

)
1

πt−1(g∗)

=
1

πt−1(g∗)
− cβλπt−1(g∗)(1− πt−1(g∗))2

2

Now f(x) = cβλx(1−x)2

2
meets all of the conditions of Lemma 8.7, which concludes the

proof.

In Section 8.6 we provide rates of convergence.
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8.5.2 Consistency under general losses

We now turn to analyzing structural QBC with general losses. As before, we will

need to make some assumptions. The first is that the loss function is well-behaved.

Assumption 8.3. The loss function is bounded, 0 ≤ `(z, y) ≤ B, and Lipschitz in its first

argument,

`(z, y)− `(z′, y) ≤ C‖z − z′‖,

for some constants B,C > 0.

It is easily checked that this assumption holds for the three loss functions we mentioned

earlier.

In the case of 0-1 loss, we assumed that for any atomic question a, the correct

answer g∗(a) would be given with higher probability than any incorrect answer. We now

formulate an analogous assumption for the case of more general loss functions. Recall

that η(·|a) is the conditional probability distribution over the user’s answers to a ∈ A

(we can also allow η to also depend upon the context q, as we did before; here we drop

the dependence for notational convenience). The expected loss incurred by z ∈ Z on this

question is thus

L(z, a) =
∑
y

η(y|a) `(z, y).

We will require that for any atomic question a, this expected loss is minimized when

z = g∗(a), and predicting any other z results in excess expected loss that grows with the

distance between z and g∗(a).

Assumption 8.4. There exists a constant λ > 0 such that for any atomic question a ∈ A

and any z ∈ Z,

L(z, a)− L(g∗(a), a) ≥ λ‖z − g∗(a)‖2.

135



Let’s look at what this assumption implies in some concrete settings.

• 0− 1 loss with Y = Z = {0, 1}. For any z ∈ {0, 1}, we have

L(z, a) =
∑
y

η(y|a)`(z, y) = 1− η(z|a)

and thus Assumption 8.4 is equivalent to requiring

η(g∗(a)|a)− η(z|a) ≥ λ

for all a ∈ A and z 6= g∗(a). This is identical to the earlier Assumption 8.1.

• Squared loss with Y = {−1, 1} and Z ⊂ R. Assumption 8.4 requires that for any

a ∈ A,

g∗(a) = argmin
z

L(z, a) = argmin
z

∑
y

η(y|a)(z − y)2 = argmin
z

E[(z − y)2|a] = E[y|a],

where the expectation is over the choice of y given a. If this holds, then for any z,

by a standard bias-variance decomposition, L(z, a)− L(g∗(a), a) = (z − g∗(a))2, so

that λ = 1.

• Logistic loss with Y = {−1, 1} and Z = [−B,B]. Fix any a ∈ A, and write

p = η(1|a). Then

L(z, a) =
∑
y

η(y|a)`(z, y) = p ln(1 + e−z) + (1− p) ln(1 + ez).

This is minimized by g∗(a) = ln p − ln(1 − p), and L(g∗(a), a) is then the entropy

of a coin with bias p. Now pick any other value of z, and define q = 1/(1 + e−z) so

that z = ln q − ln(1− q). A further calculation shows that L(z, a)− L(g∗(a), a) is

exactly the KL divergence K(p, q). Using Pinsker’s inequality to lower-bound this in
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terms of (p− q)2, we then find that Assumption 8.4 is satisfied with

λ = 2

(
eB

(1 + eB)2

)2

.

From these examples, it is clear that requiring g∗(a) to be the minimizer of L(z, a) is

plausible if Z is a discrete space but much less so if Z is continuous. In general, we

can only hope that this holds approximately. With this caveat in mind, we stick with

Assumption 8.4 as a useful but idealized mathematical abstraction.

Given these notions, and recalling our earlier definitions of var(a; π) and var(q;π),

we have the following general loss analogue of Lemma 8.5.

Lemma 8.9. Suppose Assumptions 8.3 and 8.4 hold. Take β ≤ min(λ/(2C2), 1/B).

Suppose that at time t, the user provides feedback on an atomic question at ∈ A(qt) for

which var(at; πt−1) ≥ γ. Then

E
[

1

πt(g∗)

∣∣∣∣Ft−1, qt, at

]
= (1−∆t)

1

πt−1(g∗)
,

where ∆t ≥ βγλ/2.

Proof. Plugging in the update rule for the posterior distribution, we have

E
[

1

πt(g∗)

∣∣∣∣Ft−1, qt, at

]
=
∑
y

η(y|at)
∑

g∈G πt−1(g) exp(−β · `(g(at), y))

πt−1(g∗) exp(−β · `(g∗(at), y))

=
1

πt−1(g∗)

∑
y

η(y|at)
∑
g

πt−1(g) exp(−β [`(g(at), y)− `(g∗(at), y)]).

To turn this expression into the form (1−∆t)
1

πt−1(g∗)
, define

∆t =
∑
y

η(y|at)
∑
g

πt−1(g)(1− exp(−β [`(g(at), y)− `(g∗(at), y)])).

Since β ≤ 1/B, and losses lie in [0, B], we have that β[`(g(at), y)− `(g∗(at), y)] lies in the

137



range [−1, 1]. Using the inequality ex ≤ 1 + x+ x2 for −1 ≤ x ≤ 1, we can lower bound

∆t by

∑
g

πt−1(g)
∑
y

η(y|at)(β[`(g(at), y)− `(g∗(at), y)]− β2[`(g(at), y)− `(g∗(at), y)]2)

=
∑
g

πt−1(g)

(
β[L(g(at), at)− L(g∗(at), at)]− β2

∑
y

η(y|at)[`(g(at), y)− `(g∗(at), y)]2

)

≥
∑
g

πt−1(g)

(
βλ‖g(at)− g∗(at)‖2 − β2

∑
y

η(y|at)C2‖g(at)− g∗(at)‖2

)

= (βλ− β2C2)
∑
g

πt−1(g) ‖g(at)− g∗(at)‖2

≥ (βλ− β2C2)var(at; πt−1) ≥ β(λ− βC2)γ,

where the second and third lines have used Assumptions 8.3 and 8.4.

Similarly, we can also give a general loss analogue of Lemma 8.6.

Lemma 8.10. Suppose G is finite and Assumption 8.2 holds. Then there exists a constant

c > 0 such that for any round t

E[var(at; πt−1) | Ft−1] ≥ c πt−1(g∗)3(1− πt−1(g∗))2

where at is the atom the user provides feedback on and the expectation is taken over both

the randomness of user’s response and the randomness of structural QBC.

The proof of Lemma 8.10 is deferred to the appendix. With Lemmas 8.9 and 8.10

in hand, we get the consistency of general-loss structural QBC as a corollary.

Theorem 8.11. Suppose G is finite and the user’s feedback satisfies Assumptions 8.2, 8.3,

and 8.4. If the general loss version of structural QBC is run with a prior distribution π in

which π(g∗) > 0, then limt→∞ πt(g
∗) = 1 almost surely.
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8.6 Convergence rates

In this section, we bound the rate at which structural QBC’s posterior concentrates

on the target structure g∗ under the 0-1 loss. Before we do so, we first introduce some

concepts related to the informativeness of feedback.

8.6.1 Quantifying the informativeness of feedback

For an atomic question a and corresponding answer y, let Ga,y = {g ∈ G : g(a) = y}.

Define the shrinkage of posterior π′ due to atomic question a to be

S(π, a) = 1−max
y
π(Ga,y)

and define the shrinkage of π′ due to a query q to be the average shrinkage due to q’s

atoms

S(π, q) =
1

|A(q)|
∑
a∈A(q)

S(π, a).

This is very similar to the notion of information gain from the original query-by-committee

analysis [41], as we explain in further detail at the end of this section. The reason for

the modification is that it facilitates the generalizations introduced here: the multiclass

setting and noisy feedback.

In Section 8.5, we saw that by making relatively weak assumptions on the specific

atoms a user will provide feedback on when presented with a query, we can guarantee

the consistency of structural QBC. To get meaningful convergence rates, however, we will

need to make a stronger assumption. Specifically, we will require that when presented

with a query q, the user provides feedback on an atom a ∈ A(q) whose shrinkage is close

to the average shrinkage of the atoms in A(q).
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Assumption 8.5. When shown qt and gt(qt), the user provides feedback that satisfies

E[S(πt−1, at)] ≥ S(πt−1, qt)

where the expectation is taken over the randomness of the user’s choice of at.

Later in this section, we characterize the shrinkage that might be expected in a

few cases of interest. For the time being, we will think of it as one of the key quantities

controlling the efficacy of active learning, and give rates of convergence in terms of it.

8.6.2 Rate of convergence

In this section, we will again assume G is finite. To keep things simple, we think of

convergence as occurring when πt(g
∗) exceeds some particular threshold τ (such as 1/2).

Theorem 8.12. Suppose that G is finite, and that the expert’s responses satisfy Assump-

tions 8.1 and 8.5. Suppose moreover that there are constants 0 < τ, so < 1 such that at any

time t, if πt(g
∗) ≤ τ , the shrinkage of the next query is bounded below in expectation as

E[S(πt−1, qt)|Ft−1] ≥ so.

Pick any 0 < δ < 1. With probability at least 1− δ, the number of rounds T of querying

before πT (g∗) > τ can be upper-bounded as follows.

T ≤


2

so(1−e−β)
max

(
ln 1

π(g∗)
, 4
so(1−e−β)

ln 1
δ

)
if λ = 1 (noiseless case)

4
βλso

max
(

ln 1
π(g∗)

, 8eβ

βλso
ln 1

δ

)
for any λ, if β ≤ λ/2

Proof. We will spell out the argument for the noisy case; the other case is similar but

slightly simpler. Define

Rt = 1− πt−1(g∗)

πt(g∗)
.
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Using the random variable ∆t from Lemma 8.5, we have

E[Rt|Ft−1] = 1− πt−1(g∗)E
[

1

πt(g∗)

∣∣∣∣Ft−1

]
= 1− πt−1(g∗)E

[
E
[

1

πt(g∗)

∣∣∣∣Ft−1, qt, at

] ∣∣∣∣Ft−1

]
= E[∆t|Ft−1]

≥ 1

2
βλE[1− γt|Ft−1]

≥ 1

2
βλE[S(πt−1, qt)|Ft−1] ≥ 1

2
βλso.

as long as πt−1(g∗) ≤ τ throughout.

Pick any time T before πT (g∗) exceeds τ . Then E[R1 + · · ·+RT ] ≥ βλsoT/2. To

show that this sum is concentrated around its expected value, we can use a martingale

large deviation bound. First we check that each Rt is bounded. Since

e−βπt−1(g∗) ≤ πt(g
∗) ≤ eβπt−1(g∗),

it follows that Rt lies in an interval of size at most eβ. By the Azuma-Hoeffding inequal-

ity [55, 11], if T attains the value in the theorem statement, then

R1 + · · ·+RT >
1

2
E[R1 + · · ·+RT ] ≥ 1

4
βλsoT ≥ ln

1

π(g∗)
.

with probability at least 1 − δ. But this is not possible, since R1 + · · · + RT can be at

most ln(1/π(g∗)) by the chain of inequalities

1 ≤ 1

πT (g∗)
= (1−R1)(1−R2) · · · (1−RT )

1

π(g∗)
≤ exp(−(R1 + · · ·+RT ))

1

π(g∗)
.

It is likely that the quadratic dependence on so, λ, and β can be reduced by a more

careful large deviation bound.
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8.6.3 Shrinkage and uncertainty

The active learning literature has introduced a variety of different complexity

measures that attempt to capture the number of queries needed for learning. These include

the disagreement coefficient [51] and the aforementioned information gain [41]. Although it

is possible to give general bounds in terms of these quantities, it has proved quite difficult

to compute these complexity measures for all but a few simple cases.

Our notion of shrinkage is a reformulation of the information gain that avoids

assuming that the target structure is drawn from the prior distribution, and that accom-

modates scenarios beyond binary classification. By way of illustration, we will give an

example of a simple situation in which the shrinkage can be characterized.

The following lemma demonstrates that under the structural QBC strategy, we can

relate a query’s shrinkage to its uncertainty.

Lemma 8.13. Suppose the current posterior distribution is πt−1. Under Assumption 8.5,

the shrinkage St of the user’s next response has expected value

E[St] ≥
Eq∼ν [u(q; πt−1)2]

Eq∼ν [u(q; πt−1)]
.

Proof. Fix any query q ∈ Q and atom a ∈ A(q). From Lemma 8.1, we have

St = min
y
π({g : g(a) 6= y}) ≥ u(a; πt)/2.

Now, if the next query is qt, then under Assumption 8.5,

St ≥ Ea∼unif(A(qt))
1

2
u(a; πt−1) =

1

2
u(qt; πt−1).

The lemma follows by taking expectation over qt ∼ ν.
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We now turn to an example where we can bound the shrinkage.

Example: Partitioning a hypercube by axis-parallel cuts

Let X be the hypercube [0, 1]p, and consider axis-aligned bipartitions of X . Any

such partition is specified by a coordinate i and a value v, and yields clusters

{x : xi ≤ v} and {x : xi > v}.

Let π be the uniform distribution over such partitions G = [p]× [0, 1], so that π(i, v) = 1/p;

and suppose that the data distribution is uniform over X .

We will take atomic queries to be of the form {x, y} for x, y ∈ [0, 1]p, where the

answer is 1 if they lie in the same cluster, and 0 otherwise. The following lemma shows

that the shrinkage of structural QBC queries is always constant in this setting.

Lemma 8.14. Under Assumption 8.5, the shrinkage St of a user’s feedback satisfies

E[St] ≥ 1/3.

Proof. Note that if we query {x, y} and they are in separate clusters, the version space

shrinks to the regions between xi and yi on each coordinate i; while if they are in different

clusters, we get the complement. Either way, the resulting version space is isomorphic

to the original (G, π), and hence this is the only case we need consider in computing

uncertainty and shrinkage values.

For any x, y ∈ [0, 1]p, the probability that they are separated by a random draw

from π is exactly

p∑
i=1

Pr(cut coordinate is i) |xi − yi| =
‖x− y‖1

p
.
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Thus the uncertainty on a query {x, y} is

u({x, y}) = Prg,g∼π(exactly one of g, g′ separates x, y) = 2· ‖x− y‖1

p

(
1− ‖x− y‖1

p

)
.

We will compute the expectation of this over X = (X1, . . . , Xp) and Y = (Y1, . . . , Yp)

drawn uniformly at random from [0, 1]p.

First, a simple one-dimensional calculation shows that

E[‖X − Y ‖1] =

p∑
i=1

E|Xi − Yi| =
p

3
.

Likewise,

E[‖X − Y ‖2
1] =

p∑
i=1

E|Xi − Yi|2 +
∑
i 6=j

(E|Xi − Yi|)(E|Xj − Yj|) =
p

6
+
p(p− 1)

9
.

Inserting these into the expression for uncertainty, we get

E[u({X, Y })] = 2

(
E‖X − Y ‖1

p
− E‖X − Y ‖2

1

p2

)
=

4

9
− 1

9p
≥ 1

3
.

We finish by invoking Lemma 8.13 and observing that

E[St] ≥ E[u({X, Y })2]/E[u({X, Y })] ≥ E[u({X, Y })].

8.6.4 Relation to information gain

The original analysis of query-by-committee was specifically for active learning

of binary classifiers and was based on the notion of information gain [41]. Suppose the

current posterior distribution over classifiers is π, and that under this posterior, a specific

query x has probability p of having a positive label and probability 1 − p of having a
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negative label. The information gain here is the entropy of a coin with bias p,

I(π, x) = H(p).

In this same situation, the shrinkage is

S(π, x) = 1−max(p, 1− p).

These two quantities are related by a monotonic transformation. The analysis of QBC’s

query complexity assumes that the expected information gain, taken over the random

choice of next query, is always bounded below by a constant. In the analysis presented

in this section, we assumed the same of the expected shrinkage. In the case of binary

classification, these two conditions coincide.

For instance, [41] showed that if the classifiers are homogeneous (through-the-origin)

linear separators, and the data distribution is uniform over the unit sphere, then the

expected information gain due to a label query is bounded below by a constant. This

means that the same holds for the expected shrinkage.

8.7 Experiments

We now turn to our experiments with structural QBC in several applications.

Before we do so, we first consider a way to speed up the query selection procedure.

8.7.1 Reducing the randomness in structural QBC

It is easy to see that the query selection procedure of structural QBC is a rejection

sampler where each query q is chosen with probability proportional to ν(q)u(q; πt) (in the

case of the zero-one loss) or ν(q)var(q;πt) (for general losses). However, without knowing

the normalization constant, it is possible for the rejection rate to be quite high, even when
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Fixed set of queries q1, . . . , qm ∈ Q
Current distribution over G: π
Initial shrinkage estimate: ûo = 1/2

For t = 0, 1, 2, . . .:

• Draw g1, g
′
1, . . . , gnt , g

′
nt ∼ π

• If there exists qj such that 1
nt

nt∑
i=1

d(gi, g
′
i; qj) ≥ ût then halt and return qj

• Otherwise, let ût+1 = ût/2.

Figure 8.3. Robust query selection for structural QBC, under 0-1 loss.

there are many queries that have much higher uncertainty or variance than the rest. To

circumvent this issue, we introduce a ‘robust’ version of structural QBC, wherein many

candidate queries are sampled, and the query that has the highest uncertainty or variance

is chosen.

In the zero-one loss case, we can estimate the uncertainty of a candidate query q

by first drawing many pairs g1, g
′
1, . . . , gn, g

′
n ∼ πt and then using the unbiased estimator

û(q; πt) :=
1

n

n∑
i=1

d(gi, g
′
i; q).

By Hoeffding’s inequality, this quantity concentrates tightly around the true uncertainty of

q. Unfortunately, the number of structures we need to sample in order to identify the best

candidate depends on the uncertainty of that candidate, which we do not know a priori. To

circumvent this difficulty, we can start with an optimistic estimate of the largest uncertainty

and then iteratively halve our estimate until we are confident that we have found a query

with at least that much uncertainty. If the appropriate number of structures are sampled

at each round, then it can be shown that this procedure terminates with a candidate

query whose uncertainty is within a constant factor of the highest uncertainty (this is very
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similar to Lemma 7.5). The full algorithm for the zero-one loss case is shown in Figure 8.3.

In experiments, we have found that simply drawing a large number of candidate

structures and choosing the query with the highest empirical uncertainty over these works

quite well.

8.7.2 Clustering

In the case of flat clustering, queries can be taken to be restrictions of the current

clustering restricted to a subset of the data points, and feedback can consist of must-

link/cannot-link constraints over those data points. In each of our simulations, we ran

the robust version of structured QBC where the candidate queries are subsets of size ten

and feedback consists of a random correction to the proposed subset clustering. Below we

describe the clustering models we used.

Mixture of Gaussians

Consider the following Bayesian generative model for a mixture of k spherical

Gaussians.

• Weight vector (w1, . . . , wk) is drawn from a symmetric Dirichlet distribution with

parameter α > 0

• Means µ(1), . . . , µ(k) ∈ Rd are drawn i.i.d. from N(µo, σ
2
oId)

• For each data point i = 1, . . . , n:

– zi ∈ {1, . . . , k} is drawn from Categorical(w1, . . . , wk)

– x(i) ∈ Rd is drawn from N(µzi , σ
2Id)

Here, x(1), . . . , x(n) are the observed data points; α, µo, σ
2
o , and σ2 are known hyper-

parameters; and the w’s, µ’s, and z’s are the unobserved latent variables. Note that the

z’s induce a clustering over the data points. Our goal is to find the target clustering,
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with the Bayesian posterior distribution Pr(z |x) acting as our prior π over clusterings for

structural QBC.

To sample from this posterior, we used the collapsed Gibbs sampler. Although this

Markov chain may mix slowly, as shown in Chapter 5, we found that running structural

QBC with these samples often led to fast convergence to the underlying clustering.

We ran experiments on the wine and iris datasets from the UCI machine learning

repository [67]. In each of our experiments, we compared the robust structural QBC

strategy (denoted ‘Robust SQBC’) against three baseline strategies:

• ’Random’: feedback was provided on randomly sampled pairs of points.

• ’Random (correction)’: feedback was a random correction to a proposed clustering

of ten random points.

• ’Vanilla’: no feedback at all, just an unconstrained Gibbs sampler.

The target clustering in each of the datasets was the one induced by the labels of the data

points. Thus, in both of these datasets, the space of structures was clusterings containing

at most 3 clusters.

For all strategies, we measured the clustering distance from the current clustering

to the target clustering, i.e. the fraction of pairs of points the clusterings disagree on,

and the log-posterior probability after every pass of the Gibbs sampler. For the feedback

strategies, a constraint was added every 50 passes of the Gibbs sampler. The results are

displayed in Figures 8.4.

As can be seen in both of these experiments, clustering error does not perfectly

match log-posterior probability. In the iris experiments, for example, we see that the

SQBC model does converge upon the target clustering but its log-posterior probability

is still much lower than that of the clusterings found by the pure Gibbs sampler. Thus,

even though the prior distribution does not put much weight upon the target, the SQBC

strategy is still able to find the target clustering after a few rounds of interaction.
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Figure 8.4. Mixture of Gaussians clustering experiments. x-axis corresponds to full passes
of Gibbs sampler. Dashed orange line corresponds to log-posterior of target clustering.
Top: Iris dataset. Bottom: Wine dataset.

Mixture of Bernoullis

Consider the following Bayesian generative model for a mixture of k Bernoulli

product distributions:

• Weight vector (w1, . . . , wk) is drawn from a symmetric Dirichlet distribution with

parameter α > 0

• Bias variables a
(i)
j ∈ [0, 1] are drawn i.i.d. from Beta(β, γ) for i = 1, . . . , k and

j = 1, . . . , d

• For each data point i = 1, . . . , n:

– zi ∈ {1, . . . , k} is drawn from Categorical(w1, . . . , wk)

– x
(i)
j ∈ {0, 1} is drawn from Bern(a

(zi)
j ) for j = 1, . . . , d
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Figure 8.5. Mixture of Bernoullis experiments on MNIST dataset. Dashed orange line
corresponds to log-posterior of target clustering.

Here, x(1), . . . , x(n) are the observed d-dimensional binary-valued vectors, the a’s are

unobserved d-dimensional real-valued vectors, and α, β, and γ are known hyperparameters.

We ran experiments on a binarized version of the MNIST handwritten digit

dataset [65]. Here we randomly sampled 50 images from each of the 0, 1, and 2 classes

and sought to recover the clusters induced by these classes. The results are presented in

Figure 8.5.

8.7.3 Linear separators

We also considered the classical active learning setting of linear separators. In

all our experiments, we used QBC with a spherical prior distribution N(0, Id) and the

squared-loss posterior update.

Noisy linear simulations

When learning a linear separator under classification noise, there is a true linear

separator h∗ ∈ Rd. When a point x ∈ Rd is queried, we observe

y =


sign(〈h∗, x〉) with probability 1− p

−sign(〈h∗, x〉) with probability p

In our simulations, we used various settings of both the noise level p and the
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Figure 8.6. Simulations under different settings of the classification noise p. The dashed
purple line is the level of classification noise. In the legend, QBC run with posterior update
β is shown as ‘QBC (β).’
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Figure 8.7. Kernel experiments on MNIST. As in Figure 8.6, QBC run with posterior
update β is shown as ‘QBC (β)’ in the legend. Note that the test error axis is log-scale.

aggressiveness of the posterior update β. In the low noise setting, we found that setting β

large appears to be appropriate. But as the noise level grows, using a smaller β appears to

be advantageous. In all settings, however, QBC outperforms random sampling. Figure 8.6

shows some results of our simulations.

MNIST kernel experiments

We used the full MNIST handwritten digit dataset for our kernelized linear clas-

sification experiment. For this multiclass classification task, we interactively trained a

collection of ten one-vs-all classifiers using the kernelized squared-loss approach outlined

in Section 8.4. We used an RBF kernel K(x, x′) = exp(−γ‖x− x′‖2) with the choice of

γ = 0.001. Because we are observing the true labels, we found that large values of β

worked well for this task. Figure 8.7 shows the results in this setting. In particular, the
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experiments show the error obtained after 2500 random labels was obtained after just 1250

actively-sampled labels.

8.8 Related work

In this section, we discuss two areas of work related to the current manuscript:

active learning and interactive clustering.

Active learning

For any overview of the active learning literature, see the related work section of

Chapter 7.

The work presented here bears resemblance to both parametric [28, 34, 15] and

nonparametric [90, 33, 29] active learning. On the one hand, our definition of structure

is general enough to accommodate arbitrary labelings of a data set, as in nonparametric

active learning. However, the algorithms considered here are much more closely related to

those in the parametric setting. In particular, the algorithms considered in Section 8.3 are

clear generalizations of the query-by-committee algorithm, while the robustified algorithm

presented in Section 8.7 is in some sense an interpolation between the generalized binary

search algorithm [30, 48, 76] and the DBAL algorithm of Chapter 7. However, where this

work most clearly departs from the classical active learning literature is the change from

question-answering to partial correction feedback.

The analysis we presented in this chapter is closely related to that of the original

query-by-committee algorithm [41]; in particular, it uses a very similar notion of uncertainty.

Our results are also very close in spirit to those obtained for generalized binary search [76].

In fact, the latter work is able to characterize the query complexity of binary active

learning using certain geometric quantities, and it is an interesting open problem whether

something similar can be done in our structural setting.
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Interactive clustering

Another area relevant to this work is interactive clustering, which has also developed

along several fronts.

One interactive clustering model considered in the literature allows users to split

and merge clusters in the algorithm’s current clustering until the target clustering has

been found. In order to limit the amount of work required of the user, split requests are

not allowed to specify how a cluster is split, only that a cluster should be split, and the

algorithm must best decide how to go about splitting the chosen cluster. Under certain

assumptions on the user’s feedback and the target clustering, various algorithms have been

shown to recover the target clustering while needing relatively few rounds of interaction

with the user [14, 10, 8].

Another approach to interactive clustering is the clustering with constraints frame-

work. In this model, a user provides constraints that the target clustering satisfies, and

the algorithm attempts to find a clustering that both satisfies these constraints as well

as optimizes some cost function. In the flat clustering setting, the constraints are very

often must-link/cannot-link pairs [86]; while in the hierarchical clustering setting, there

has been work on constraints that are ordered triplets indicating which points are closer

in tree distance [85]. In the case where the target flat clustering optimizes the k-means

cost function, it has been shown that relatively few queries can transform an NP-hard

unsupervised learning problem into a tractable interactive learning problem [6].

As discussed in Section 8.2, the constraints in both the flat clustering and hierarchical

clustering models can be written using in our interactive structure learning framework.

It is less clear, however, how to incorporate split and merge feedback into our model.

It thus remains an interesting open problem to marry fine-grained interaction such as

must-link/cannot-link constraints with higher-level feedback such as cluster splits and

merges.
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Chapter 8 contains material that is currently being prepared for submission for

publication of the material. C. Tosh and S. Dasgupta. The dissertation author was the

primary investigator.
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Appendix A

Supplementary material for Chap-
ter 3

A.1 Proofs from Section 3.2

We start with a general result about the polynomial approximability of discrete

distributions, and then consider an application to topic models.

Lemma A.1. Consider any distribution with finite support, say p = (p1, . . . , p`). Pick

any positive integer M . Then there is a distribution p̂ = (p̂1, . . . , p̂`) such that:

• Each p̂i is a non-zero multiple of 1/M .

• For each i, we have p̂i ≥ (1− `/M)pi.

Proof. First define an intermediate distribution p as follows:

pi = (1− `/M)pi, rounded up to the nearest multiple of 1/M.

Therefore, (1− `/M)pi ≤ pi ≤ (1− `/M)pi + (1/M), and
∑

i pi is some multiple of 1/M

that is ≤ 1. To get p̂, take p and add multiples of 1/M to any coordinate(s) until the sum

of the coordinates equals 1.

This construction can be used to show that the maximum-likelihood topic model

admits a concise approximation.
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Lemma 3.2. Consider any V ×K topic distribution matrix Ψ. For any ε > 0 and any

integer m, there is a topic matrix Ψ̂ that uses dlog2(mV/ε)e bits per entry, such that

log p(x|Ψ)− log p(x|Ψ̂) ≤ ε for all documents x of ≤ m words.

Proof. Obtain Ψ̂ by applying the previous lemma to each individual topic distribution,

with M = d2mV/εe. Pick any document x of length m. Letting q denote the prior on

topic weights (that is, a prior on the K-simplex), and letting z ∈ {1, . . . , K}m denote the

topic assignments to the words xi, we have

Pr(x|Ψ) =

∫
q(θ)

∑
z

Pr(z|θ)Pr(x|z,Ψ) dθ

=
∑
z

(
n∏
i=1

Ψ(zi)
xi

)∫
q(θ)Pr(z|θ) dθ

By construction, for any z,

m∏
i=1

Ψ̂(zi)
xi
≥

m∏
i=1

(
(1− ε/2m)Ψ(zi)

xi

)
= (1− ε/2m)m

m∏
i=1

Ψ(zi)
xi
≥ e−ε

m∏
i=1

Ψ(zi)
xi
,

and thus Pr(x|Ψ) ≤ eεPr(x|Ψ̂), as claimed.

A.1.1 Proof of Theorem 3.3: hardness of finding the maximum-
likelihood topic model

Our goal is to prove the following theorem.

Theorem 3.3. [Implicit in [4]] We say a topic matrix Ψ is c-smooth for c > 0 if

mini maxj Ψ
(j)
i ≥ c. Given α > 0, tm-mle(α) is NP-hard when K = 2, all the documents

are restricted to have 2 words, and ΨML is guaranteed to be (1/V )-smooth.

In fact, we will prove a more general result. Let ∆N be the N -simplex, i.e.

∆N =

{
θ ∈ RN :

N∑
i=1

θi = 1 and θi ≥ 0

}
.

156



Theorem A.2. Let λS, λX ≥ 0 and ν0 be a distribution over ∆K such that for θ ∼ ν0

• E[θ2
1] = · · · = E[θ2

k] = λS and

• E[θiθj] = λX for all i 6= j.

Then tm-mle-ν0, the problem of maximizing the same objective as tm-mle(α) with the

Dir(α) prior replaced with ν0, is NP-hard when λS > λX when K = 2, there are exactly

two words in each document, and the ML solution is 1/V -smooth.

To see how this implies Theorem 3.3, note that for θ ∼ Dir(α) and i 6= j,

λS = E[θ2
i ] =

Γ(Kα)Γ(α + 2)

Γ(Kα + 2)Γ(α)
=

α + 1

K(αK + 1)
>

α

K(αK + 1)

=
Γ(Kα)(Γ(α + 1))2

Γ(Kα + 2)(Γ(α))2
= E[θiθj] = λX .

The proof follows the reduction from Arora et al. [4] very closely. We start from an instance

of minimum-bisection. Here the input is a graph G = (V,E) with |V | = n even and

|E| = m, and the goal is to find a cut (S, T ) such that |S| = n/2 = |T | and |E(S, T )| is

minimized.

Beginning with G, we construct our instance of tm-mle-ν0 as follows. The vocab-

ulary is the set of vertices V . Our corpus will consist of the following documents:

• for each word i ∈ V , create N documents with only the word i repeated twice, and

• for each edge (i, j) ∈ E, create one document with only the word i and the word j.

Here N is a polynomial of n, m, λS, and λX to be determined later. Given a document with

words i and j (possibly equal) and a topic matrix Ψ = [Ψ(1)|Ψ(2)], what is the likelihood

of the document under Ψ? This is simply

p(i, j |Ψ) = E[θ2
1]Ψ

(1)
i Ψ

(1)
j + E[θ1θ2]

(
Ψ

(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i

)
+ E[θ2

2]Ψ
(2)
i Ψ

(2)
j
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= λS〈Ψi,Ψj〉+ λX

(
Ψ

(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i

)

where Ψi = (Ψ
(1)
i ,Ψ

(2)
i ). Then the objective is to maximize the following function:

F (Ψ) =
∑

document=(i,j)

ln
(
λS〈Ψi,Ψj〉+ λX(Ψ

(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i )
)

=
∑
i∈V

N ln
(
λS‖Ψi‖2

2 + 2λXΨ
(1)
i Ψ

(2)
i

)
+
∑

(i,j)∈E

ln
(
λS〈Ψi,Ψj〉+ λX(Ψ

(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i )
)
.

For any bisection (S, T ), define the canonical solution Ψ = Ψ(S, T ) to be the topic matrix

which satisfies Ψ
(1)
i = 2/n and Ψ

(2)
i = 0 for all i ∈ S; and Ψ

(1)
i = 0 and Ψ

(2)
i = 2/n for all

i ∈ T . We’ll see that the maximum-likelihood solution (or an approximation thereof) is

approximately canonical, and therefore uniquely specifies a cut.

Write F (Ψ) = G(Ψ) +H(Ψ), where

G(Ψ) =
∑
i∈V

N ln
(
λS‖Ψi‖2

2 + 2λXΨ
(1)
i Ψ

(2)
i

)
H(Ψ) =

∑
(i,j)∈E

ln
(
λS〈Ψi,Ψj〉+ λX(Ψ

(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i )
)
.

When N is made large enough, G dominates H.

Each of the n rows of Ψ is a pair (Ψ
(1)
i ,Ψ

(2)
i ). We start by characterizing approxi-

mately optimal solutions subject to specific row-sum constraints.

Lemma A.3. Suppose the row-sums are constrained to be Ψ
(1)
i + Ψ

(2)
i = ri, for some

r1, . . . , rn summing to 2. Then:

(a) G is bounded as follows:

G(Ψ) ≤
n∑
i=1

N ln(λSr
2
i )−N

n∑
i=1

λS − λX
λS

min(Ψ
(1)
i ,Ψ

(2)
i )

ri
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with equality if each row has min(Ψ
(1)
i ,Ψ

(2)
i ) = 0.

(b) H lies in a smaller range:

m lnλX ≤ H(Ψ)−
∑

(i,j)∈E

ln(rirj) ≤ m lnλS.

Proof. To see (a), first note that

2Ψ
(1)
i Ψ

(2)
i

r2
i

=
2Ψ

(1)
i Ψ

(2)
i

(Ψ
(1)
i + Ψ

(2)
i )2

≥ min(Ψ
(1)
i ,Ψ

(2)
i )

Ψ
(1)
i + Ψ

(2)
i

=
min(Ψ

(1)
i ,Ψ

(2)
i )

ri
.

Therefore, we can write

G(Ψ) =
n∑
i=1

N ln
(
λS‖Ψi‖2

2 + 2λXΨ
(1)
i Ψ

(2)
i

)
=

n∑
i=1

N ln
(
λSr

2
i

)
+N

n∑
i=1

ln

(
r2
i − 2Ψ

(1)
i Ψ

(2)
i

r2
i

+
2λXΨ

(1)
i Ψ

(2)
i

λSr2
i

)

=
n∑
i=1

N ln
(
λSr

2
i

)
+N

n∑
i=1

ln

(
1− 2Ψ

(1)
i Ψ

(2)
i

r2
i

· λS − λX
λS

)

≤
n∑
i=1

N ln
(
λSr

2
i

)
−N

n∑
i=1

2Ψ
(1)
i Ψ

(2)
i

r2
i

· λS − λX
λS

≤
n∑
i=1

N ln(λSr
2
i )−N

n∑
i=1

λS − λX
λS

min(Ψ
(1)
i ,Ψ

(2)
i )

ri
.

(b) follows directly from algebra and applying the inequality λS > λX .

This immediately gives us the following corollary.

Corollary A.4. Fix any row-sums r1, . . . , rn, and any ∆ > 0. Let Ψ be any solution

whose F (·) value is within ∆ of optimal, subject to these constraints. Then for each i,

min(Ψ
(1)
i ,Ψ

(2)
i )

ri
≤ 1

N

(
mλS
λX

+
∆λS

λS − λX

)
.
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Thus each row has one entry that is approximately zero, whereupon, returning to

Lemma A.3, we see that G(·) is roughly 2N
∑

i ln ri, ignoring constants. The following

technical lemma then implies that in an approximately optimal solution, all row-sums

must be roughly equal.

Lemma A.5. Subject to the constraint that r1, . . . , rn are nonnegative and sum to 2:

(a) The quantity
∑

i ln ri is maximized when the ri are equal, in which case

n∑
i=1

ln ri = n ln
2

n
.

(b) Pick any ε > 0. If there is some ri 6∈ [ 2
n
(1 − ε), 2

n
(1 + ε)], then no matter how the

other rj are set,
n∑
i=1

ln ri ≤ n ln
2

n
− 1

4
ε2.

Proof. (a) follows directly from Jensen’s inequality. To see (b), we make use of the following

logarithmic inequalities, which can be found in Topsøe [84]. For 0 ≤ x < 1,

ln(1 + x) ≤ x

2
· 2 + x

1 + x
and ln(1− x) ≤ −2x

2− x
.

Now let δ > 0 and suppose that there is some i such that ri = 2(1 + δ)/n. Then by (a),

n∑
j=1

ln rj = ln

(
2

n
(1 + δ)

)
+
∑
j 6=i

ln rj

≤ ln

(
2

n
(1 + δ)

)
+ (n− 1) ln

(
1

n− 1

(
2− 2

n
(1 + δ)

))
= n ln

2

n
+ ln(1 + δ) + (n− 1) ln

(
1− δ

n− 1

)
≤ n ln

2

n
+
δ

2
· 2 + δ

1 + δ
− 2δ(n− 1)

2(n− 1)− δ

≤ n ln
2

n
− 1

4
δ2
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They proof for the case where ri = 2(1− δ)/n is similar. Thus, we have (b).

The G(·) function dominates H(·) and forces (approximately) canonical solutions.

Lemma A.6. Pick any 0 < ε < 1 and any ∆ > 0. Define

N0 =
2

ε2

(
∆ +m ln

(
λS
λX

n2

4

))
N1 =

1

ε

(
mλS
λX

+
∆λS

λS − λX

)
.

Let Ψ∗ be a maximizer of F (·). Then, if N ≥ max(N0, N1), any solution Ψ with F (Ψ) ≥

F (Ψ∗)−∆ must satisfy the following conditions for each i:

(a) Ψ
(1)
i + Ψ

(2)
i ∈ [ 2

n
(1− ε), 2

n
(1 + ε)].

(b) min(Ψ
(1)
i ,Ψ

(2)
i ) ≤ ε · 2

n
.

Proof. Let Φ be any canonical solution (which trivially implies F (Ψ∗) ≥ F (Φ)), let Ψ be

a solution satisfying F (Ψ) ≥ F (Ψ∗)−∆, and let r1, . . . , rn be the row sums of Ψ. Then

because Φ is canonical, we know from the above lemmas

∆ ≥ F (Φ)− F (Ψ)

= G(Φ)−G(Ψ) +H(Φ)−H(Ψ)

≥ G(Φ)−G(Ψ) +
∑

(i,j)∈E

ln

(
4

n2

)
+m lnλX −

∑
(i,j)∈E

ln(rirj)−m lnλS

= G(Φ)−G(Ψ)−m ln

(
n2

4
· λS
λX

)
−
∑

(i,j)∈E

ln(rirj)

≥ N

(
n ln

(
λS

4

n2

)
−

n∑
i=1

ln(λSr
2
i ) +

n∑
i=1

λS − λX
λS

min(Ψ
(1)
i ,Ψ

(2)
i )

ri

)

−m ln

(
n2

4
· λS
λX

)
−
∑

(i,j)∈E

ln(rirj).
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Now suppose by contradiction that Ψ does not satisfy condition (a). We know that because

the columns of Ψ sum to 1, it must be the case that rirj ≤ 1. Applying Lemma A.5(b),

∆ ≥ N

(
n ln

(
λS

4

n2

)
−

n∑
i=1

ln(λSr
2
i ) +

n∑
i=1

λS − λX
λS

min(Ψ
(1)
i ,Ψ

(2)
i )

ri

)
−m ln

(
n2

4
· λS
λX

)
> N

(
n ln

(
λS

4

n2

)
− n ln

(
λS

4

n2

)
+
ε2

2

)
−m ln

(
n2

4
· λS
λX

)
=
Nε2

2
−m ln

(
n2

4
· λS
λX

)
.

But this implies that

N <
2

ε2

(
∆ +m ln

(
λS
λX

n2

4

))
= N0

which is a contradiction.

To see that Ψ must satisfy condition (b), note that by Corollary A.4, if Ψ did not

satisfy condition (b), then F (Ψ) could not be within ∆ of F (Ψ∗).

Once we are within the realm of approximately canonical solutions, which uniquely

designate a bisection cut, the lower-order term H(·) serves to choose a cut of small size.

Lemma A.7. Pick any 0 < ε < 1. We will describe any Ψ that satisfies conditions (a)

and (b) of Lemma A.6 as being ε-approximately canonical.

(a) For any canonical solution Ψ,

H(Ψ) = m ln
4λS
n2
− |cut(Ψ)| · ln λS

λX
.

(b) For any ε-approximately canonical solution Ψ,

H(Ψ) ≤ m ln
4λS
n2
− |cut(Ψ)| · ln λS

λX
+ 2mε

λS
λX

.
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Proof. Recall that

H(Ψ) =
∑

(i,j)∈E

ln
(
λS〈Ψi,Ψj〉+ λX(Ψ

(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i )
)
.

Therefore, if Ψ is a canonical solution corresponding to the bisection (S, T ), then if E(S, T )

denotes the subset of edges with one endpoint in S and the other in T we have

H(Ψ) =
∑

(i,j)∈E(S,T )

ln
4λX
n2

+
∑

(i,j)∈E\E(S,T )

ln
4λS
n2

= m ln
4λS
n2
− |cut(Ψ)| · ln λS

λX
.

Now let Ψ be an ε-approximately canonical solution. Use it to define a cut (S, T ) in the

natural way:

S = {i : Ψ
(2)
i ≤ 2ε/n}, T = [n] \ S.

Given an edge (i, j) ∈ E, how do we bound Qi,j(Ψ) = λS〈Ψi,Ψj〉+λX(Ψ
(1)
i Ψ

(2)
j +Ψ

(1)
j Ψ

(2)
i )?

We consider two cases.

Case 1: (i, j) ∈ E \ E(S, T ). Assume w.l.o.g. that i, j ∈ S. Then because Ψ is

ε-approximately canonical, we know ‖Ψi‖1, ‖Ψj‖1 ∈ [ 2
n
(1− ε), 2

n
(1 + ε)] and Ψ

(2)
i ,Ψ

(2)
j ≤ 2

n
ε.

Letting Ψ
(2)
i = 2

n
δi and Ψ

(2)
j = 2

n
δj, we have

Qi,j(Ψ) = λS〈Ψi,Ψj〉+ λX(Ψ
(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i )

≤ 4

n2
(λS((1 + ε− δi)(1 + ε− δj) + δiδj) + λX((1 + ε− δj)δi + (1 + ε− δi)δj))

=
4

n2

(
λS(1 + ε)2 + (λS − λX)(2δiδj − (1 + ε)(δi + δj)

)
Since δi, δj ≤ ε < 1 and λS > λX , the above is maximized whenever δi = δj = 0. Thus,

Qi,j(Ψ) ≤ 4λS(1 + ε)2

n2
.
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Case 2: (i, j) ∈ E(S, T ). Assume w.l.o.g. that i ∈ S and j ∈ T . Then because Ψ is

ε-approximately canonical, we know ‖Ψi‖1, ‖Ψj‖1 ∈ [ 2
n
(1− ε), 2

n
(1 + ε)] and Ψ

(2)
i ,Ψ

(1)
j ≤ 2

n
ε.

Letting Ψ
(2)
i = 2

n
δi and Ψ

(1)
j = 2

n
δj, we have

Qi,j(Ψ) = λS〈Ψi,Ψj〉+ λX(Ψ
(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i )

≤ 4

n2
(λS((1 + ε)δi + (1 + ε)δj) + λX((1 + ε− δi)(1 + ε− δj) + δiδj)

=
4

n2

(
λX(1 + ε)2 + (λS − λX)((1 + ε)(δi + δj)− δiδj

)
≤ 4

n2

(
λX(1 + ε)2 + 2(λS − λX)(1 + ε)ε

)
=

4λX
n2

(1 + ε)

(
1 +

ε(2λS − λX)

λX

)

Combining the above two cases, we can bound on H(Ψ) above by

∑
(i,j)∈E\E(S,T )

ln

(
4λS(1 + ε)2

n2

)
+

∑
(i,j)∈E(S,T )

ln

(
4λX
n2

(1 + ε)

(
1 +

ε(2λS − λX)

λX

))

= m ln
4λS
n2
− |cut(Ψ)| · ln λS

λX
+ |cut(Ψ)| ln

(
(1 + ε)

(
1 +

ε(2λS − λX)

λX

))
+ (m− |cut(Ψ)|) ln((1 + ε)2)

≤ m ln
4λS
n2
− |cut(Ψ)| · ln λS

λX
+mεmax

(
2, 1 +

2λS − λX
λX

)
.

Using the fact that λS > λX gives us the lemma.

Let ∆, ε, N0, N1, N > 0 satisfy the relationship specified in Lemma A.6. We will

argue that for an appropriate, but polynomial setting, of these variables, any ∆-optimal

solution must correspond to the minimum bisection.

Let Ψ be a ∆-optimal solution. By Lemma A.6, Ψ must be ε-approximately

canonical. As in the proof of Lemma A.7, we can use Ψ to define a cut (S, T ). For

ε < 1/(2n), this cut is a bisection. Now let (S∗, T ∗) be an optimal bisection and let Ψ∗ be

164



the solution corresponding to this. Then we can say

∆ ≥ max
Ψ′

F (Ψ′)− F (Ψ) ≥ F (Ψ∗)− F (Ψ)

= G(Ψ∗)−G(Ψ) +H(Ψ∗)−H(Ψ) ≥ H(Ψ∗)−H(Ψ).

Now by Lemma A.7, we have

∆ ≥ H(Ψ∗)−H(Ψ)

≥ m ln
4λS
n2
− |cut(Ψ∗)| · ln λS

λX
−m ln

4λS
n2

+ |cut(Ψ)| · ln λS
λX
− 2mε

λS
λX

= (|cut(Ψ)| − |cut(Ψ∗)|) ln

(
λS
λX

)
− 2mε

λS
λX

≥ (|cut(Ψ)| − |cut(Ψ∗)|)
(
λS − λX
λS

)
− 2mε

λS
λX

.

Thus, if ∆ ≤ 1
3

(
λS−λX
λS

)
and ε ≤ 1

6m

(
λX
λS

)(
λS−λX
λS

)
, then we must conclude that

|cut(Ψ)| = |cut(Ψ∗)|.

These settings of ε and ∆, give us

N0 =
2

ε2

(
∆ +m ln

(
λS
λX

n2

4

))
= 72m2

(
λS
λX

)2(
λS

λS − λX

)2(
(m+ 1/2) ln

(
λS
λX

)
+m ln

(
n2

4

))

and

N1 =
1

ε

(
mλS
λX

+
∆λS

λS − λX

)
= 6m

(
λS
λX

)(
λS

λS − λX

)(
mλS
λX

+
λS

2(λS − λX)
ln

(
λS
λX

))
.
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This completes the proof of Theorem 3.3.

A.2 Proofs from Section 3.3

A.2.1 Proof of Lemma 3.6

The goal of this section is to prove the following lemma.

Lemma 3.6. Let c,m > 0 and suppose that Ψ and Φ are V ×K c-smooth topic matrices

such that ‖Ψ − Φ‖max ≤ min(c/m, 1/2). If α0 =
∑
αi, then for any document x with

length bounded by m,

|log p(x |Ψ)− log p(x |Φ)| ≤ ‖Ψ−Φ‖max

(
2m

c
+ max

(
1,

(
α0 +m

K

)K)
Kα0+2m−1/2

cm

)
.

To do so, we need to introduce some notation. Suppose x = (i1, . . . , im) is some

length m document. Then z ∈ [K]m is a labeling of x, that is an assignment of each word

in x to some topic. For some fixed labeling z, let ni(z) = {j : zj = i} denote the number

of times that Define the likelihood of z under Ψ is given by

q(Ψ, z) =

(
K∏
i=1

Γ(αi + ni(z))

Γ(αi)

)
m∏
j=1

Ψ
(zj)
ij
.

Then we see that summing over all labelings gives us the log-likelihood of document x.

Lemma A.8. For any length m document x and any topic matrix Ψ,

p(x|Ψ) =
∑

z∈[K]m

q(Ψ, z).

Proof. To generate document x = (i1, . . . , im) given Ψ, we can first sample θ ∼ Dir(α1, . . . , αK).

Given θ, we can sample z1, . . . , zm independently from the distribution θ and then inde-

pendently sample each word j from the distribution Ψzj . Marginalizing over θ and z and
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recognizing that x is independent of θ given the z’s,

p(x |Ψ) = Eθ[p(x |Ψ, θ)]

=
∑

z∈[K]m

Eθ [p(z|θ)p(x|Ψ, θ, z)]

=
∑

z∈[K]m

Eθ

[
m∏
j=1

θzj

]
m∏
j=1

Ψ
zj
ij

=
∑

z∈[K]m

Eθ

[
K∏
i=1

θ
ni(z)
i

]
m∏
j=1

Ψ
zj
ij

The expectation in the last line deals with the moments of the Dirichlet distribution. [75]

provides the following identity for the moments of the Dirichlet distribution

Eθ

[
k∏
i=1

θnii

]
=

Γ(
∑
αi)

Γ(
∑
αi + ni)

·
k∏
i=1

Γ(αi + ni)

Γ(αi)

for positive integers n1, . . . , nK . Plugging this into the above gives us the lemma.

Therefore, proving Lemma 3.6 amounts to getting a handle on a particular ratio of

sums:

p(x |Ψ)

p(x |Φ)
=

∑
z∈[K]n q(Ψ, z)∑
z∈[K]n q(Φ, z)

.

The next few technical lemmas deal with bounding ratios of sums.

Ratios of sums

Lemma A.9. Let a1, . . . , an, b1, . . . , bn, c > 0 such that ai/bi ≤ c, then
∑
ai∑
bi
≤ c.

Proof. We have that ai ≤ cbi for all i. Thus,
∑
ai∑
bi
≤

∑
cbi∑
bi
≤ c.

Lemma A.10. Suppose a, b, c, d, ε > 0, x, y ∈ [0, 1], and |x− y| ≤ ε then

a+ cx

b+ dy
≤ max

(
a+ cε

b
,

a+ c

b+ d(1− ε)

)
.
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Proof. There are two cases.

Case 1: y ≥ 1− ε. In this case we have

a+ cx

b+ dy
≤ a+ c

b+ d(1− ε)
.

Case 2: y ≤ 1− ε. In this case we have

a+ cx

b+ dy
≤ a+ c(y + ε)

b+ dy
=: f(y)

Then it can be shown that the sign of f ′ is independent of y (since y ≥ 0). Therefore f is

monotonic in y and reaches the maximum at the boundary {0, 1− ε}.

Lemma A.11. Let a, b, c, ε > 0 and x1, . . . , xn, y1, . . . , yn ∈ [0, 1] such that |xi − yi| < ε,

then

a+ c
∏n

i=1 xi
b+ c

∏n
i=1 yi

≤ max

(
a+ εc

b
,

a+ c

b+ (1− ε)nc

)
.

Proof. The proof is by induction on n. The base case is simply an appeal to Lemma A.10.

Now assume it holds for n− 1. There are three cases we need to consider.

Case 1: yn = 0. In this case we know xn ≤ ε, therefore

a+ c
∏n

i=1 xi
b+ c

∏n
i=1 yi

≤ a+ εc
∏n−1

i=1 xi
b

≤ a+ εc

b
.

Case 2: xn = 0. In this case,

a+ c
∏n

i=1 xi
b+ c

∏n
i=1 yi

≤ a

b
≤ a+ εc

b
.

Case 3: xn, yn > 0. In this case we can use our inductive assumption to see the
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following

a+ c
∏n

i=1 xi
b+ c

∏n
i=1 yi

=
xn
yn
· a/xn + c

∏n−1
i=1 xi

b/yn + c
∏n−1

i=1 yi

≤ xn
yn

max

(
a/xn + εc

b/yn
,

a/xn + c

b/yn + (1− ε)n−1c

)
= max

(
a+ εxnc

b
,

a+ xnc

b+ yn(1− ε)n−1c

)
≤ max

(
a+ εc

b
,

a+ xnc

b+ yn(1− ε)n−1c

)
.

By appealing again to Lemma A.10, we have

a+ xnc

b+ yn(1− ε)n−1c
≤ max

(
a+ εc

b
,

a+ c

b+ (1− ε)nc

)
.

Combining all of the above gives us the lemma.

Lemma A.12. Let a, b, ci, ε > 0 and xi,j, yi,j ∈ [0, 1] such that |xi,j − yi,j| for i ∈ [m], j ∈

[n], then there exists a partition Ω1,Ω2 of [m]

a+
∑m

i=1 ci
∏n

j=1 xi,j

b+
∑m

i=1 ci
∏n

j=1 yi,j
≤
a+

∑
i∈Ω1

εci +
∑

i∈Ω2
ci

b+
∑

i∈Ω2
(1− ε)nci

.

Proof. We prove by induction on m. The base case of m = 1 follows directly from Lemma

A.11. We can assume that the lemma holds for m− 1, then

a+
∑m

i=1 ci
∏n

j=1 xi,j

b+
∑m

i=1 ci
∏n

j=1 yi,j
=

a′︷ ︸︸ ︷
a+

m−1∑
i=1

ci

n∏
j=1

xi,j +cm
∏n

j=1 xm,j

b+
m−1∑
i=1

ci

n∏
j=1

yi,j︸ ︷︷ ︸
b′

+cm
∏n

j=1 ym,j

.
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By applying Lemma A.11, we have that this is bounded by

max

(
a′ + εcm

b′
,

a′ + cm
b′ + (1− ε)ncm

)
.

We will bound each of these quantities separately. Denoting a1 = a+εcm, then by induction

we have that there exists a partition Ω′1,Ω
′
2 of [m− 1] such that

a′ + εcm
b′

=
a1 +

∑m−1
i=1 ci

∏n
j=1 xi,j

b+
∑m−1

i=1 ci
∏n

j=1 yi,j

≤
a1 +

∑
i∈Ω′1

εci +
∑

i∈Ω′2
ci

b+
∑

i∈Ω′2
(1− ε)nci

=
a+

∑
i∈Ω′1∪{m}

εci +
∑

i∈Ω′2
ci

b+
∑

i∈Ω′2
(1− ε)nci

.

On the other hand, if we let a2 = a+ cm and b2 = b+ (1− ε)ncm, then by induction there

exists a partition Ω′′1,Ω
′′
2 of [m− 1] such that

a′ + cm
b′ + (1− ε)ncm

=
a2 +

∑m−1
i=1 ci

∏n
j=1 xi,j

b2 +
∑m−1

i=1 ci
∏n

j=1 yi,j

≤
a2 +

∑
i∈Ω′′1

εci +
∑

i∈Ω′′2
ci

b2 +
∑

i∈Ω′′2
(1− ε)nci

=
a+

∑
i∈Ω′′1

εci +
∑

i∈Ω′′2∪{m}
ci

b+
∑

i∈Ω′′2∪{m}
(1− ε)nci

.

By taking Ω1,Ω2 to be the partitions corresponding to the larger of these two scenarios

(either Ω′1 ∪ {m},Ω′2 or Ω′′1,Ω
′′
2 ∪ {m}), we have the lemma statement.

Actual proof of Lemma 3.6

We are now ready to prove the main lemma of this section.

Lemma 3.6. Let c,m > 0 and suppose that Ψ and Φ are V ×K c-smooth topic matrices

such that ‖Ψ − Φ‖max ≤ min(c/m, 1/2). If α0 =
∑
αi, then for any document x with
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length bounded by m,

|log p(x |Ψ)− log p(x |Φ)| ≤ ‖Ψ−Φ‖max

(
2m

c
+ max

(
1,

(
α0 +m

K

)K)
Kα0+2m−1/2

cm

)
.

Proof. Let Ω = [K]m denote the space of labelings and let x = (i1, . . . , im). From the

smoothness condition on Ψ and Φ, we can see that there is a labeling z∗ ∈ Ω such that

Φ
(z∗j )

ij
≥ c for j = 1, . . . ,m. From Lemma A.12 we know that we can partition Ω \ {z∗}

into Ω1,Ω2 such that

p(x |Ψ)

p(x |Φ)
=
q(Ψ, z∗) +

∑
z∈Ω\{z∗} q(Ψ, z)

q(Φ, z∗) +
∑

z∈Ω\{z∗} q(Φ, z)

=
q(Ψ, z∗) +

∑
z∈Ω\{z∗}

(∏K
i=1

Γ(αi+ni(z))
Γ(αi)

)∏n
j=1 Ψ

(zj)
ij

q(Φ, z∗) +
∑

z∈Ω\{z∗}

(∏K
i=1

Γ(αi+ni(z))
Γ(αi)

)∏n
j=1 Φ

(zj)
ij

≤
q(Ψ, z∗) +

∑
z∈Ω1

ε
∏K

i=1
Γ(αi+ni(z))

Γ(αi)
+
∑

S∈Ω2

∏K
i=1

Γ(αi+ni(z))
Γ(αi)

q(Φ, z∗) +
∑

z∈Ω2
(1− ε)m

∏K
i=1

Γ(αi+ni(z))
Γ(αi)

.

From Lemma A.9 we know that we can separately bound

q(Ψ, z∗) +
∑

z∈Ω1
ε
∏K

i=1
Γ(αi+ni(z))

Γ(αi)

q(Φ, z∗)
and

∑
z∈Ω2

∏K
i=1

Γ(αi+ni(z))
Γ(αi)∑

z∈Ω2
(1− ε)n

∏K
i=1

Γ(αi+ni(z))
Γ(αi)

.

The second quantity is simply bounded above by (1− ε)−m ≤ exp
(
εm
1−ε

)
≤ exp(2εm).

By properties of the gamma function,
∏K

i=1 Γ(αi + ri) ≤ Γ(α0 + m) for any

r1, . . . , rK ≥ 0 satisfying r1 + · · · + rK = m. Since ‖Φ − Ψ‖max ≤ ε and Φ
(z∗j )

ij
≥ c

for all j, we have

q(Ψ, z∗) +
∑

z∈Ω1
ε
∏K

i=1
Γ(αi+ni(z))

Γ(αi)

q(Φ, z∗)

=

(∏K
i=1

Γ(αi+ni(z
∗))

Γ(αi)

)∏m
i=1 Ψ

(z∗i )
i +

∑
z∈Ω1

ε
∏K

i=1
Γ(αi+ni(z))

Γ(αi)(∏K
i=1

Γ(αi+ni(z∗)|)
Γ(αi)

)∏m
i=1 Φ

(z∗i )
i
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≤
∏m

i=1 Ψ
(z∗i )
i∏m

i=1 Φ
(z∗i )
i

+
ε|Ω1|Γ(m+ α0)(∏K

j=1 Γ(αj + nj(z∗))
)(∏m

i=1 Φ
(z∗i )
i

)
≤ (1 + ε/c)m +

ε|Ω1|Γ(m+ α0)

cm
∏K

j=1 Γ(αj + nj(z∗))

≤ eεm/c +
εKmΓ(m+ α0)

cn
∏K

j=1 Γ(αj + nj(z∗))
.

Where the last line follows by observing that |Ω1| ≤ |Ω| = Km.

Additionally, by the log-convexity of Γ on the positive reals, we know that for

positive x1, . . . , xK , Γ(x1) · · ·Γ(xK) ≥ (Γ(x1/K + · · ·xK/K))K . Thus

p(x |Ψ)

p(x |Φ)
≤ eεm/c +

εKmΓ(m+ α0)

cm(Γ(α0/K +m/K))K
.

Taking logs and making use of ε < c/m, we have

ln
p(x |Ψ)

p(x |Φ)
≤ ln

(
eεm/c +

εΓ(α0 +m)Km

cm(Γ(α0/K +m/K))K

)
≤ ln

(
1 +

2mε

c
+

εΓ(α0 +m)Km

cm(Γ(α0/K +m/K))K

)
≤ ε

(
2m

c
+

(
K

c

)m
Γ(α0 +m)

(Γ(α0/K +m/K))K

)

By Gauss’ multiplicative theorem and the log-convexity of Γ, we know for any positive

integer k and any a > 0,

Γ(ka)

Γ(a)k
≤ max(1, ak)kak−1/2.

Applying this to the above gives us the lemma statement.

A.2.2 Proof of Theorem 3.7

Lemma 3.4. Pick any δ > 0 and any θ ∈ Θ within δ of the optimal MAP solution for Z,

that is,

log qZ(θ) ≥ sup
θ′∈Θ

log qZ(θ′)− δ.
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Then the log-likelihood of any θ′ ∈ Θ can exceed that of θ by at most

log p(X|θ′)− log p(X|θ) ≤ 1

k
(δ + log q0(θ)− log q0(θ′)) .

Proof. Note that since θ is within δ of the supremum of ln qZ , we have

−δ ≤ ln qZ(θ)− ln qZ(θ′) = ln
q0(θ)p(X | θ)k

q0(θ′)p(X | θ′)k
= ln

q0(θ)

q0(θ′)
− k ln

p(X | θ′)
p(X | θ)

.

Rearranging the above gives us

ln p(X | θ′)− p(X | θ) = ln
p(X | θ′)
p(X | θ)

≤ 1

k

(
δ + ln

q0(θ)

q0(θ′)

)
.

A.2.3 Proof of Theorem 3.8

Define the tm-mle(α,K,m) problem to be the tm-mle(α) problem where the

number of topics is K and the number of words per document is bounded from above by

m. tm-map(α, β,K,m) and tm-approx-sampling(α, β,K,m) are defined analogously.

For every c > 0, define

Sc =
{

Ψ ∈ ∆V×K : Ψ is c-smooth
}
.

If m is the length of the longest document, then we have by Lemma 3.6 that the max-norm

is (g(K,m, c, α), Sc)-admissible for

g(K,m, c, α) =
2m

c
+ max

(
1,

(
α0 +m

K

)K)
Kα0+2m−1/2

cm
.

The next thing we need to establish to apply our results from Sections 3.3 and 3.4 is
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that the prior distribution is well-behaved on neighborhoods of the maximum likelihood

estimate. The following lemma gives us a handle on the Dirichlet distribution.

Lemma A.13. Suppose that ν is the measure and q is the density associated with the

symmetric Dirichlet distribution over ∆N with parameter α. Then for any ε > 0 and any

point x ∈ ∆N s.t. mini xi ≥ ε we have

log q(x) ≥ − poly(N,α, 1/α, 1/ε)

which implies for any x ∈ ∆N

log ν(B`2(x, ε)) ≥ − poly(N,α, 1/α, 1/ε).

Further, if α ≥ 1, we have

log q(x) ≤ poly(N,α).

Proof. Recall that

q(x) =
Γ(Nα)

Γ(α)N
xα−1

1 · · ·xα−1
N .

We consider two cases.

Case 1: α < 1. In this case q is a convex probability density with minimum at

(1/N, . . . , 1/N). Thus,

q(x) ≥ Γ(Nα)

Γ(α)N
·
(

1

N

)N(α−1)

≥ Γ(Nα)

Γ(α)N
·N−N .

Notice by Γ’s recurrence relation

Γ(α) =
Γ(1 + α)

α
≤ 1

α
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for α ∈ (0, 1). Moreover, Γ(t) ≥ 3/4 for any real t > 0. Thus, we have

q(x) ≥ 3

4

( α
N

)N
≥ 2− poly(N,1/α).

Case 2: α ≥ 1. When xi ≥ ε for i = 1, . . . , n, we have

q(x) ≥ Γ(Nα)

Γ(α)N
εN(α−1) ≥ 2− poly(N,α,1/ε).

Then the inequalities dealing with the density q in the lemme statement can be gleaned

from the above two cases.

Now we turn to lower bounding ν(B`2(x, ε)∩∆N ). First, note that vol(B`2(x, ε)∩∆N )

is minimized for x ∈ ∆N when x is a corner of ∆n. Thus we can consider x ∈ ∆n such that

w.l.o.g. x1 = 1 and xi = 0 for i = 2, . . . , N . We claim B`2(x, ε) ∩∆N contains a regular

simplex with edge length ε/2N satisfying that mini xi ≥ ε/2N for all x ∈ S. To see this,

let S be the simplex created by the convex hull of x(1), . . . , x(N) ∈ ∆N where

x
(1)
i =


1− (N−1)ε

2N
if i = 1

ε
2N

o/w

and

x
(k)
i =


1− ε

2N

(
N − 2 + 1+

√
2√

2

)
if i = 1

(1+
√

2)ε

2
√

2n
if i = k

ε
2N

o/w

for k = 2, . . . , N . Then one can see that

• x(k) ∈ ∆N for k = 1, . . . , N ,

• ‖x(k) − x(k′)‖ = ε
2N

for all k 6= k′,
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• x(k) ∈ B`2(x, ε) for k = 1, . . . , N , and

• x(k)
i ≥ ε

2N
for i, k = 1, . . . , N .

Then the simplex S lying in the convex hull of x(1), . . . , x(N) is a regular simplex with edge

length ε/2N satisfying that mini xi ≥ ε/2N for all x ∈ S. Therefore for any x ∈ ∆N ,

ν(B`2(x, ε) ∩∆N) ≥ vol(S) · inf
x∈S

q(x) =

√
N + 1

N !2N/2
·
( ε

2N

)N
· inf
x∈S

q(x) ≥ 2− poly(N,α,1/α,1/ε).

We are now ready to apply Theorem 3.7.

Theorem A.14. Let α > 0, c = 1/V , β ≥ 1, K,m ∈ N, and let Πc denote the promise

that ΨML ∈ Sc, then Πc-tm-mle(α,K,m) ≤P tm-map(α, β,K,m) where the reduction is

polynomial in the input size and (1/c)m, Km, and max{β, 1/β}.

Proof. Suppose that q is the density associated with the symmetric Dirichlet distribution

over ∆V with parameter β. The prior density q0 we are interested in is the product

distribution, i.e. for Ψ ∈ RV×K ,

q0(Ψ) = q(Ψ(1)) · · · q(Ψ(K)).

From Lemma A.13, we know that q is bounded above by 2poly(V,β). The density q0 of the

product distribution is thus bounded above by 2poly(V,K,β).

From Lemma 3.6, we know that max-norm is (g(K,m, c, α), Sc)-admissible. Thus,

in order to apply Theorem 3.7, we need to show the existence of a topic matrix Ψ̂ satisfying

the following three conditions. For small enough ε > 0,

(a) Ψ̂ ∈ Sc,

(b) ‖Ψ̂−ΨML‖max ≤ ε, and
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(c) q0(Ψ̂) ≥ 2− poly(V,K,β,1/ε)

To construct such a Ψ̂, let us first denote Ψ = ΨML and let s = min(ε, 1/V 2). Consider a

particular column j. If it is the case that Ψ
(j)
i ≥ s for all rows i, then we take Ψ̂(j) = Ψ(j).

Otherwise, because Ψ(j) is a distribution over V words and sums to one, this implies that

there exists a row i∗ such that Ψ
(j)
i∗ ≥ 1

V
+ s

V
. Then we take

Ψ̂
(j)
i =


Ψ

(j)
i − s

V
if i = i∗

Ψ
(j)
i + s

V (V−1)
otherwise

Then Ψ̂ is a valid topic matrix. It is easy to check that it satisfies (a) and (b). To see (c),

notice that Ψ̂
(j)
i ≥ s

V (V−1)
for all i, j. By Lemma A.13, this implies that every column j

satisfies q(Ψ̂(j)) ≥ 2− poly(V,β,1/ε), which implies q0(Ψ) ≥ 2− poly(V,K,β,1/ε).

The ML estimate in the construction in Theorem 3.3 lies in Sc for c = 1/V . The

construction also satisfies that K = 2 and m = 2 (and that α is a constant), which

means that the dominating factor g(K,m, c, α) is bounded above by poly(V ). Theorem 3.8

follows as an immediate corollary.

Theorem 3.8. For any fixed α > 0 and β ≥ 1, tm-map(α, β) is NP-hard.

A.3 Proofs from Section 3.4

Lemma 3.10. Take any ε, δ > 0 and X ∈ X n. If Z is the sequence created by duplicating

X k times for

k ≥ 2

ε

(
log

(
1

δ
− 1

)
+ log

(
1− ν0(Bdp,X (θML, ε))

ν0(Bdp,X (θML, ε/2))

))

then νZ(Bdp,X (θML, ε)) ≥ 1− δ.
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Proof. For any measurable set B, we may write

νZ(B) =
Eθ∼ν0 [1[θ ∈ B]p(X|θ)k]

Eθ∼ν0 [p(X|θ)k]
.

Thus,

νZ(Bdp,X (θML, ε))

νZ(Θ \Bdp,X (θML, ε))
=

Eθ∼ν0 [1(θ ∈ Bdp,X (θML, ε)p(X|θ)k]
Eθ∼ν0 [1(θ 6∈ Bdp,X (θML, ε))p(X|θ)k]

≥
Eθ∼ν0 [1(θ ∈ Bdp,X (θML, ε/2))(e−ε/2p(X|θML))k]

Eθ∼ν0 [1(θ 6∈ Bdp,X (θML, ε))(e−εp(X|θML))k]

≥ ekε/2
Eθ∼ν0 [1(θ ∈ Bdp,X (θML, ε/2))]

Eθ∼ν0 [1(θ 6∈ Bdp,X (θML, ε))

= ekε/2
ν0(Bdp,X (θML, ε/2))

ν0(Bdp,X (θML, ε))

Note that if the above is greater than 1/δ − 1, we have

νZ(Bdp,X (θML, ε)) =
νZ(Bdp,X (θML, ε))

νZ(Bdp,X (θML, ε)) + νZ(Θ \Bdp,X (θML, ε))
≥ 1− δ.

However, this condition is satisfied when

k ≥ 2

ε
log

(
1

δ
− 1

)
+ log

(
ν0(Θ \Bdp,X (θML, ε))

ν0(Bdp,X (θML, ε/2))

)
.

A.3.1 Proof of Theorem 3.12

The following lemma shows that if two topic matrices are close in log-likelihood

distance and one of them is smooth, then the other must also be smooth.

Lemma A.15. Pick any ε > 0. Suppose Ψ and Φ are two topic matrices. Let α ∈ RK

be the parameter to our Dirichlet prior with αi ≥ αmin for all i and α0 =
∑
αi. If Ψ is

c-smooth and dp(Ψ,Φ) < ln 1/ε, then Φ must be εcαmin
α0

-smooth.

Proof. Suppose that Φ is not εcαmin
α0

-smooth. Then there exists a row i such that Φ
(j)
i ≤
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εcαmin
Kα0

for all j = 1, . . . , K. Take x to be the document with a single instance of the word

i in it. Then if θ ∼ Dirichlet(α),

ln p(x |Φ) = lnEθ

[
K∑
j=1

Φ
(j)
i θj

]
= ln

K∑
j=1

Φ
(j)
i

αj
α0

≤ ln
K∑
j=1

ε c αmin
α0

· αj
α0

= ln
ε c αmin
α0

.

On the other hand, we have that there exists a j′ such that Φ
(j′)
i ≥ c. Thus,

ln p(x |Ψ) = ln
K∑
j=1

Φ
(j)
i

αj
α0

≥ ln
c αmin
α0

.

Putting the above together, we have

dp(Ψ,Φ) = sup
x′
| ln p(x′ |Ψ)− ln p(x′ |Φ)| ≥ ln p(x |Ψ)− ln p(x |Φ) ≥ ln

1

ε
.

Thus we have a contradiction.

Much of the proof of Theorem 3.12 is similar to the proof of Theorem 3.8. One

key difference is that we care about lower bounding the probability mass of balls with

respect to the Dirichlet(β) distribution. Because the `∞ and `2 norms are related by a

factor which is polynomial in the dimension, Lemma A.13 also implies that

log ν(B`∞(x, ε)) ≥ − poly(N, β, 1/β, 1/ε)

for any x ∈ ∆N .

Theorem 3.12. For any fixed α, β > 0, tm-approx-sampling(α, β) is NP-hard.

Proof. We will reduce from an instance of tm-mle(α) from Theorem 3.3. In order to

apply Theorem 3.11, let S be the set of all 1/V -smooth matrices, S ′ be the set of all

1/(2V K)-smooth matrices, S ′′ be the set of all 1/(4V K)-smooth matrices, and let d be

the max-norm distance. Then
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(i) if Ψ ∈ S then Bdp(Ψ, ln(2)) ⊂ S ′ (Lemma A.15),

(ii) if Ψ ∈ S ′ then Bd(Ψ, 1/(4V K)) ⊂ S ′′ (max-norm distance),

(iii) d is (poly(V ), S ′′)-admissible (Lemma 3.6, K = m = 2, and α is a constant), and

(iv) for all ε > 0 and all Ψ ∈ S, ν0(Bd(Ψ, ε)) ≥ 2−poly(V,K,α,1/α,1/ε) (Lemma A.13).

Then since instances from Theorem 3.3 satisfy that ΨML ∈ S, Theorem 3.11 implies that

tm-approx-sampling(α, β) is NP-hard.

A.4 Proofs from Section 3.5

A.4.1 Proof of Theorem 3.13

Theorem 3.13. Let Π be the promise that there exists a low-order polynomial ρ(·, ·, ·) such

that if θML = (µ∗,π∗, σ∗) is an optimal maximum likelihood solution and θ = (µ,π, σ)

satisfies dp(θML, θ) < 1, then

(i) ‖µj‖ ≤ ρ(n, d, k) for all j,

(ii) σ2 ≥ 1/ρ(n, d, k),

(iii) πj > 0 for all j, and

(iv) π∗j ≥ 1/ρ(n, d, k) for all j.

Then Π-mle-mogs-sv(k) is NP-hard for k ≥ 2.

Proof. We will use the same reduction as in Chapter 2, reducing from the k-means problem

[2] in which there exist low-order polynomials α(·) and β(·) such that

• For an instance containing n points, each point is unique and has dimension at most

α(n), with individual coordinates taking values in {−1, 0, 1}.
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• Any set of means with k-means cost within a factor of 1 + 1/β(n) induces an optimal

k-means partition of the data.

Again, we pad the points with zeros until the dimension d satisfies

d ≥ max{16β(n) ln k, 2nα(n)
√

1 + 2 ln k}

and solve the resulting mogs-sv with b = 1. By the proof of Theorem 2.1, this solves the

original k-means instance. Now we need to demonstrate that conditions (i), (ii), (iii), and

(iv) hold for any θ = (µ,π, σ) satisfying dp(θ, θML) ≤ 1.

Proof of (i) We know from the proof of Theorem 2.1 that if θ has log-likelihood on

this data set within n of θML, then the partition (X1, . . . ,Xk) induced by µ is an optimal

k-means partition of the data set. By a bias-variance decomposition, this implies

Φ(µ) =
k∑
j=1

∑
x∈Xj

‖x−mean(Xj)‖2 +
k∑
j=1

|Xj|‖µj −mean(Xj)‖2

= ΦOPT +
k∑
j=1

|Xj|‖µj −mean(Xj)‖2

where ΦOPT is the optimal k-means cost of this data set. If ‖µj‖ ≥ 2d for some j, then we

have

Φ(µ) ≥ ΦOPT + d.

But Lemma 2.2 implies

ndp(θML, θ) ≥ LL(µ∗,π∗, σ∗)− LL(µ,π, σ)) ≥ nd

2
ln

(
Φ(µ)

ΦOPT

)
− 2n ln k.

Rearranging, we see

ΦOPT + d ≤ Φ(µ) ≤ ΦOPT

(
1 +

2

d
(1 + 2 ln k)

)
.
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We know ΦOPT ≤ nα(n)2, since this is the cost of taking the origin to be the only center.

Thus, we have

d2 ≤ nα(n)2(1 + 2 ln k)

which is not possible by our choice of d. Therefore, we have ‖µj‖ < 2d for all j.

Proof of (ii) Taking σ2 = γ ΦOPT
nd

, Lemma 2.5 implies

ndp(θML, θ) ≥
nd

2
ln γ +

nd

2γ
− nd

2
− 2n ln k ≥ nd

2

(
1

2γ
− 1

)
− 2n ln k.

Rearranging, we see

σ2 ≥ ΦOPT

2nd(1 + 2
d
(1 + 2 ln k))

.

Since all the data points are unique and at distance at least 1 from each other, there must

be at least one mean in any optimal solution that lies at least at distance 1/2 from one of

the data points. Thus ΦOPT ≥ 1/4 and

σ2 ≥ 1

16nd(1 + ln k)
.

Proof of (iii) Now let (X ′1, . . .X ′k) be the partition induced by (µ,π, σ), i.e.

X ′j = {x : j = argmax
i

πiN(x;µi, σ
2)},

breaking ties arbitrarily. Let µ̂j = mean(X ′j) for each non-empty cluster. Then we have

LL(µ,π, σ) ≤ n ln k +
k∑
j=1

∑
x∈X ′j

lnN(x;µj, σ
2)

= n ln k +
nd

2
ln

1

2πσ2
− 1

2σ2

k∑
j=1

∑
x∈X ′j

‖x− µj‖

182



≤ n ln k +
nd

2
ln

1

2πσ2
− 1

2σ2

k∑
j=1

∑
x∈X ′j

‖x− µ̂j‖

≤ n ln k +
nd

2
ln

nd

2πΦ(µ̂)
− nd

2

From this we see

ndp(θ, θML) ≥ nd

2
ln

(
Φ(µ̂)

ΦOPT

)
− 2n ln k.

Rearranging, we have

Φ(µ̂) ≤ ΦOPT

(
1 +

1

β(n)

)
.

This implies that (X ′1, . . .X ′k) is an optimal k-means partition, which implies that none of

the X ′j are empty, meaning each mixing weight must be non-zero.

Proof of (iv) Now let θML = (µ∗,π∗, σ∗). By the proof of (iii), we know that the

partition (X ∗1 , . . .X ∗k ) such that

X∗j = {x : j = argmax
i

π∗i N(x;µ∗i , σ
∗2)}

must satisfy that X∗j is non-empty for any j. Further, by the convergence of the EM

algorithm, we know that for any j,

π∗j =
1

n

∑
x∈X

π∗jN(x;µ∗j , σ
∗2)∑k

i=1 π
∗
iN(x;µ∗i , σ

∗2)
≥ 1

n

∑
x∈Xj

π∗jN(x;µ∗j , σ
∗2)∑k

i=1 π
∗
iN(x;µ∗i , σ

∗2)
≥ 1

kn
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A.4.2 Proof of Lemma 3.14

Recall that for two parameter vectors θ = (µ,π, σ) and θ̂ = (µ̂, π̂, σ̂), their

parameter distance is defined as

d(θ, θ̂) = max
i

(∣∣∣∣ln πiπ̂i
∣∣∣∣ , |σ2 − σ̂2|, ‖µi − µ̂i‖2

)
.

Lemma A.16. Suppose π, π̂, σ2, σ̂2 > 0 and | log π/π̂|, |σ2− σ̂2|, ‖µ− µ̂‖2 ≤ ε and x ∈ Rd,

then

∣∣∣∣log
π N(x |µ, σ2)

π̂ N(x | µ̂, σ̂2)

∣∣∣∣ ≤ ε ·max

(
1 +

d

2σ2
+

2‖x− µ‖+ ε

2σ̂2
+
‖x− µ‖2

2σ2σ̂2

1 +
d

2σ̂2
+

2‖x− µ̂‖+ ε

2σ2
+
‖x− µ̂‖2

2σ2σ̂2

)
.

Proof. The proof consists of first demonstrating

log
N(x |µ, σ2)

N(x | µ̂, σ̂2)
≤ ε

(
d

2σ2
+

2‖x− µ‖+ ε

2σ̂2
+
‖x− µ‖2

2σ2σ̂2

)

and then demonstrating

log
N(x | µ̂, σ̂2)

N(x |µ, σ2)
≤ ε ·

(
d

2σ̂2
+

2‖x− µ̂‖+ ε

2σ2
+
‖x− µ̂‖2

2σ2σ̂2

)
.

Because the proofs are symmetric, we will only demonstrate the first inequality. To begin,

note that we can write out the likelihood ratio as follows.

N(x |µ, σ2)

N(x | µ̂, σ̂2)
=

(
σ̂2

σ2

)d/2
exp

[
‖x− µ̂‖2

2σ̂2
− ‖x− µ‖

2

2σ2

]
≤
(

1 +
ε

σ2

)d/2
exp

[
(‖x− µ‖+ ‖µ̂− µ‖)2

2σ̂2
− ‖x− µ‖

2

2σ2

]
≤ exp

[
dε

2σ2
+
‖x− µ‖2 + 2ε‖x− µ‖+ ε2

2σ̂2
− ‖x− µ‖

2

2σ2

]
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= exp

[
dε

2σ2
+

2ε‖x− µ‖+ ε2

2σ̂2
+
‖x− µ‖2

2

(
1

σ̂2
− 1

σ2

)]
≤ exp

[
dε

2σ2
+

2ε‖x− µ‖+ ε2

2σ̂2
+
ε‖x− µ̂‖2

2σ2σ̂2

]

Taking logs and factoring out ε gives us the inequality.

Given the above, the following lemma is immediate.

Lemma 3.14. Let θ = (µ,π, σ) and θ̂ = (µ̂, π̂, σ̂) be two parameter vectors satisfying

πj, π̂j > 0 for all j. Then dp(θ, θ̂) ≤ d(θ, θ̂) poly(1/σ2
i , 1/σ̂

2
i , ‖µi‖2, ‖µ̂i‖2).

A.4.3 Proof of Lemma 3.15

Before we prove Lemma 3.15, we need to bound quantities related to the Normal-

Inverse-Gamma distribution and the Beta distribution.

Lemma A.17. Fix α, β, n0 > 0 and µ0 ∈ Rd. Let q and ν be the measure associated with

the Normal-Inverse-Gamma distribution with these parameters. Then for any µ ∈ Rd and

σ2 > 0, we have

− poly(α, β, n0, d, ‖µ‖, ‖µ0‖, σ2) ≤ log q(µ, σ2) ≤ poly(α, β, n0, d).

Moreover, if d((µ, σ2), (µ̂, σ̂2)) = max{‖µ− µ̂‖, |σ2 − σ̂2|}, then

logBd((µ, σ
2), ε) ≥ − poly(α, β, n0, d, ‖µ‖, ‖µ0‖, σ2, 1/ε).

Proof. The density q can be written out as

q(µ, σ2) =
βα

Γ(α)

(
1

σ2

)α+1

exp

(
−β
x

)( n0

2πσ2

)d/2
exp

(
−‖µ− µ0‖2

2σ2/n0

)
.

To see the upper bound on the density, note that the mode of this distribution occurs at

µ = µ0 and σ2 = β
α+d/2+1

.
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The lower bound on the density follows by noting that (i) ‖µ−µ0‖2 ≤ 2‖µ‖2+2‖µ0‖2

and (ii) Γ(x) ≥ 3/4 for all x and

Γ(x) ≤


xx = 2x log x for x > 1

1
x

for x ≤ 1

.

The lower bound on the measure follows by combining the lower bound on the

density for any point in Bd((µ, σ
2), ε) along with the volume of Bd((µ, σ

2), ε).

Lemma A.18. Let γ > 0 and take ν be the measure and q be the density associated

with the symmetric Beta(γ, γ) distribution. For θ = (w, 1 − w), θ̂ = (ŵ, 1 − ŵ), let

d(θ, θ̂) = max (| log(w/ŵ)|, | log((1− w)/(1− ŵ))|). If w, 1− w ≥ δ > 0, we have

q(θ) ≥ 2− poly(1/γ,γ,1/δ)

and for ε ∈ (0, γ),

ν(Bd(θ, ε)) ≥ 2− poly(1/γ,γ,1/ε,1/δ).

Proof. Writing out the density, we have

q(θ) =
Γ(2γ)

Γ(γ)2
wγ−1(1− w)γ−1.

The bound on q(θ) follows from Lemma A.13. To see the lower bound on ν(Bd(θ, ε)), assume

w.l.o.g. that w ≤ 1/2. For any ŵ > 0, if | log(w/ŵ)| ≤ ε, then | log((1−w)/(1− ŵ))| ≤ 2ε.

This implies

I := {θ̂ = (ŵ, 1− ŵ) : e−ε/2w ≤ ŵ ≤ eε/2w} ⊂ Bd(θ, ε).
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Then we have

ν(Bd(θ, ε)) ≥ ν(I)

≥ (eε/2w − e−ε/2w) min
θ̂∈I

q(θ̂)

≥ δε

2
min
θ̂∈I

q(θ̂)

≥ 2− poly(γ,1/γ,1/δ,1/ε)

Given the above two lemmas, Lemma 3.15 follows immediately.

Lemma 3.15. Let q and ν be the prior density and measure, respectively, for the Bayesian

mixture of two spherical Gaussians generative model with parameters α, β, γ, µ0, n0. For

any θ = (µ,π, σ) and any ε > 0, we have

log q(θ) ≥ − poly(1/πi, 1/σ, |µi‖, d, n0, α, β, γ, ‖µ0‖)

and

log ν(Bd(θ, ε) ≥ − poly(1/πi, 1/σ, |µi‖, d, 1/ε, n0, α, β, γ, ‖µ0‖).

Further, if γ ≥ 1, we have

log q(θ) ≤ poly(d, n0, α, β, γ, ‖µ0‖).
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Appendix B

Supplementary material for Chap-
ter 5

B.1 Proofs from Section 5.1

Lemma B.1. Suppose w = (w1, . . . , wk), θ = (θ1, . . . , θk), z = (z1, . . . , zn), and x =

(x1, . . . , xn) were generated as in (5.1). Then the joint probability over labelings and points

can be written as

Pr(x, z) =
Γ(kα)

Γ(kα + n)Γ(α)k

k∏
j=1

Γ(nj(z) + α)q(Cj(z)).

Proof.

Pr(x, z) =

∫
4k

∫
Θ

· · ·
∫

Θ

Dirα(π)π
n1(z)
1 · · · πnk(z)

k

k∏
j=1

Qβ(θj)Pθj(Cj(z))dθ1 · · · dθkdπ

=

(∫
4k
Dirα(π)π

n1(z)
1 · · · πnk(z)

k dπ

) k∏
j=1

(∫
Θ

Qβ(θj)Pθj(Cj(z))dθj

)

=

Γ(k · α)
k∏
i=1

Γ(ni(z) + α)

Γ(k · α + n)
k∏
i=1

Γ(α)

k∏
j=1

(∫
Θ

Qβ(θj)Pθj(Cj(z))dθj

)

=
Γ(k · α)

Γ(k · α + n)Γ(α)k

k∏
j=1

Γ(nj(z) + α)q(Cj(z)).
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Lemma 5.1. Pr(zi = j | z−i, x) is proportional to (α + nj(z−i))∆(Cj(z), i).

Proof. Using the definition of conditional probability and Lemma B.1, we have

Pr(zi = j | z−i, x) ∝ Pr(zi = j, z−i, x)

∝ Γ(nj(z−i) + α + 1)q(Cj(z−i) ∪ {i})
∏
l 6=j

(Γ(nl(z−i) + α)q(Cl(z−i)))

=
Γ(nj(z−i) + α + 1)q(Cj(z−i) ∪ {i})

Γ(nj(z−i) + α)q(Cj(z−i))

k∏
l=1

(Γ(nl(z−i) + α)q(Cl(z−i)))

∝ (α + nj(z−i)) ·
q(Cj(z) ∪ {i})
q(Cj(z) \ {i})

= (α + nj(z−i))∆(Cj(z), i).

B.2 Proofs from Section 5.2

Lemma 5.4. The state space Ω≤k(n) is isomorphic to the set of equivalence classes

induced by ∼ over {1, . . . , k}n, Ω]. Furthermore, the projected Gibbs sampler specified in

Figure 5.2 is the exactly the chain induced by taking the equivalence classes of the states of

the collapsed Gibbs sampler. Finally, projected Gibbs sampler is reversible with respect to

π[(C) ∝ 1

(k − |C|)!
∏
S∈C

Γ(|S|+ α)

Γ(α)
q(S).

Proof. Let P denote the collapsed Gibbs sampler and P [ denote the projected Gibbs

sampler.

Let us first show Ω≤k(n) ∼= Ω]. To do this we will give a bijection C : Ω] → Ω≤k(n).

Define C as

C([z]) = {{i : zi = j} : j ∈ {1, . . . , k}} \ {∅}.

To see C is injective, let z, z′ be labels such that C([z]) = C([z′]). We know there
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exists a k′ ≤ k such that C([z]) = {S1, . . . , Sk′}. Let σ be a permutation such that for

i ∈ {1, . . . , n}, we have σ(z)i = j where i ∈ Sj and let σ′ be a permutation such that for

i ∈ {1, . . . , n}, we have σ′(z′)i = j where i ∈ Sj. Since the set of permutations is a group

under composition, we know that σ′ has an inverse, call it σ̄. Thus, by construction, we

have σ̄(σ(z)) = z′. Again, because the set of permutations is a group under composition,

σ̄ ◦ σ is a permutation and z ∼ z′.

To see that C is surjective, let C = {S1, . . . , Sk′} be a clustering in Ω≤k(n). Then

consider the following labeling z: for each index i, if i ∈ Sj, then zi = j. Since C is

a clustering, every index is in some set S ∈ C. Further, since k′ ≤ k, z ∈ {1, . . . , k}n.

Finally, by construction, it is clear that C(z) = C.

Now let z be a labeling and let C = C([z]). How does P transition from z? With

probability 1/n, we choose an index i, and then we update according to Pr(zi = j | z−i, x).

What is the probability that we move i to a cluster S ∈ C? Say that cluster S has label j

under z. Then,

Pr(move x to S) = Pr(zi = j | z−i, x)

∝ (α + nj(z−i)) ·
q(Cj(z) ∪ {i})
q(Cj(z) \ {i})

= (α + |S \ {i}|) · q(S ∪ {i})
q(S \ {i})

.

Let E denote the event that i is moved to its own cluster, let r = k−|C|, and let a1, . . . , ar

be the empty labels of z−i. Then,

Pr(E) =
r∑
j=1

Pr(zi = aj | z−i, x)

∝
r∑
j=1

(α + naj(z−i)) ·
q(Caj(z) ∪ {i})
q(Caj(z) \ {i})

=
r∑
j=1

α · q({i}) = α(k − |C|)q({i}).
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Note that the above transition probabilities, P [(C,C′) = P [(z, C−1(C′)), do not depend

specifically on z but are equal for all z′ ∈ C−1(C). Thus, by Lemma 5.2, P [ is the induced

Markov chain, P ], and π[ = π].

B.3 Proofs from Section 5.3

Lemma 5.6. Let σ2, µ0, σ
2
0, Qβ, Pθ, x be as given above. Then for any set of indices

S ⊂ {1, . . . , n}, we have q(S) = L(S)R(S) where L(S) is the probability assigned to S by

the max-likelihood model,

L(S) =

(
1

2πσ2

)|S|d/2
exp

(
− 1

2σ2

∑
i∈S

‖xi − µ(S)‖2

)
,

and R(S) penalizes how far µ(S) is from µ0:

R(S) =

(
σ2

σ2 + |S|σ2
0

)d/2
exp

(
−|S|‖µ0 − µ(S)‖2

2(σ2 + |S|σ2
0)

)
.

Proof. To facilitate our calculations, let τ = 1
σ2 and τ0 = 1

σ2
0
. Further

q(S) =

∫
Θ

Qβ(θ)Pθ(S)dθ

=

∫
Rd

( τ
2π

)nd/2
exp

[
−τ

2

(∑
i∈S

‖xi − µ‖2

)]( τ0

2π

)d/2
exp

[
−τ0

2
‖µ− µ0‖2

]
dµ

=
( τ

2π

)nd/2 ( τ0

2π

)d/2
exp

[
−τ

2

(∑
i∈S

‖xi − µ(S)‖2

)]
·∫

Rd
exp

[
−1

2

(
τn‖µ(S)− µ‖2 + τ0‖µ− µ0‖2

)]
dµ

=
( τ

2π

)nd/2 ( τ0

2π

)d/2
exp

[
−τ

2

(∑
i∈S

‖xi − µ(S)‖2

)]
·

∫
Rd

exp

[
−1

2

(
(nτ + τ0)

∥∥∥∥µ− nτµ(S) + τ0µ0

nτ + τ0

∥∥∥∥2

+
nττ0

nτ + τ0

‖µ(S)− µ0‖2

)]
dµ
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=
( τ

2π

)nd/2 ( τ0

2π

)d/2
exp

[
−τ

2

(∑
i∈S

‖xi − µ(S)‖2 +
nτ0

nτ + τ0

‖µ(S)− µ0‖2

)]
·

∫
Rd

exp

[
−1

2

(
(nτ + τ0)

∥∥∥∥µ− nτµ(S) + τ0µ0

nτ + τ0

∥∥∥∥2
)]

dµ

=
( τ

2π

)nd/2( τ0

nτ + τ0

)d/2
exp

[
−τ

2

(∑
i∈S

‖xi − µ(S)‖2 +
nτ0

nτ + τ0

‖µ(S)− µ0‖2

)]

Substituting back in our identities for τ and τ0, we can see that q(S) = L(S)R(S).

B.4 Proofs from Section 5.4

B.4.1 Proof of Theorem 5.8

Lemma B.2. Say x = (x1, . . . , xn) is a sequence of points in Rd, S ⊂ {1, . . . , n} a subset

of indices, and ε > 0.

1. If i ∈ S and

|S| ≥ 1 +
2‖xi‖

(
√

1 + ε− 1)‖xi − µ(S)‖

we have ‖xi − µS\{i}‖2 ≤ (1 + ε)‖xi − µ(S)‖2.

2. If i ∈ {1, . . . , n} and

|S| ≥ 1 + 2

√
2

ε

we have ‖xi − µS\{i}‖2 ≤ 2‖xi − µ(S)‖2 + ε‖xi‖2.

3. If i ∈ {1, . . . , n} and

|S| ≥ σ2‖µ(S)‖
(
√

1 + ε− 1)‖xi − µ(S)‖

then ‖xi − µS‖2 ≥ (1− ε)‖xi − µ(S)‖2.

Proof. We first prove (1). Recall

µ(S \ {i}) =
(|S| − 1)µ(S)− xi

|S| − 1
.
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Thus,

‖xi − µS\{i}‖ =

∥∥∥∥xi − µ(S \ {i}) σ2
0(|S| − 1)

σ2 + σ2
0(|S| − 1)

∥∥∥∥
=
‖xiσ2 + σ2

0(|S| − 1)(xi − µ(S \ {i})‖
σ2 + σ2

0(|S| − 1)

=

∥∥∥xiσ2 + σ2
0(|S| − 1)

(
xi − µ(S) + xi

|S|−1

)∥∥∥
σ2 + σ2

0(|S| − 1)

≤ (σ2 + σ2
0)‖xi‖

σ2 + σ2
0(|S| − 1)

+
σ2

0(|S| − 1)‖xi − µ(S)‖
σ2 + σ2

0(|S| − 1)

≤ ‖xi − µ(S)‖+
2

|S| − 1
‖xi‖.

Applying the lower bound on |S| and squaring both sides gives us (1). To prove (2), we

first consider the case where i ∈ S and see that

‖xi − µS\{i}‖2 ≤ 2

(
(σ2 + σ2

0)‖xi‖
σ2 + σ2

0(|S| − 1)

)2

+ 2

(
σ2

0(|S| − 1)‖xi − µ(S)‖
σ2 + σ2

0(|S| − 1)

)2

≤ 2‖xi − µ(S)‖2 + 2

(
2

|S| − 1

)2

‖xi‖2.

Applying the lower bound on |S| gives us the desired bound. Similarly, the above holds

for the case where i 6∈ S and

|S| ≥ 2

√
2

ε
− 1.

This gives us (2). To prove (3), we calculate the following:

‖xi − µS‖ ≥ ‖xi − µ(S)‖ − ‖µ(S)− µS‖

= ‖xi − µ(S)‖ − ‖µ(S)‖
(

1− σ2
0|S|

σ2 + σ2
0|S|

)
= ‖xi − µ(S)‖ − σ2

S‖µ(S)‖

≥ ‖xi − µ(S)‖ − σ2

|S|
‖µ(S)‖.
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Applying the lower bound on |S| and squaring both sides gives us (2).

Lemma B.3. Let S1, . . . , S6, δ, r, and A be as in Section 5.4.1. Further, let k ∈ {1, . . . , 6},

i ∈ Sk and x = xi. Then ‖x− µ(Sk)‖2 ≤ (δr)2 and for any S ′ 6= Sk,

‖x− µ(S ′)‖2 ≥ r2(1− δ)2.

If Sk ⊂ A, then

‖x− µ(A)‖2 ≤ r2

(√
1

2
+ δ

)2

.

If Sk 6⊂ A, then

‖x− µ(A)‖2 ≥ r2(1− δ)2.

Lemma B.4. Let δ ≤ 1
32

. Then there is a constant n0 = Ω(σ2) s.t. for n ≥ n0 and for

i ∈ A, j ∈ S1,

‖xi − µA\{i}‖2

σ2 + σ2
A\{i}

− ‖xi − µS1‖2

σ2 + σ2
S1

‖xj − µS1\{j}‖2

σ2 + σ2
S1\{j}

− ‖xj − µA‖
2

σ2 + σ2
A

‖xj − µS1\{j}‖2

σ2 + σ2
S1\{j}

− ‖xj − µS2‖2

σ2 + σ2
S2


≤ − r2

4σ2

Proof. Consider the first inequality. Let ε1 = 1/8, ε2 = 1/20, and λ = 1/100. Then

we know from Lemmas B.2 and B.3 that there exists a c1 s.t. if |A|, |S1| ≥ c1 and

|S1| ≥ 26 ≥ 1+λ
ε2−λ , then

‖xi − µA\{i}‖2

σ2 + σ2
A\{i}

− ‖xi − µS1‖2

σ2 + σ2
S1

≤ (1 + ε1)
‖xi − µ(A)‖2

σ2 + σ2
A\{i}

− (1− λ)
‖xi − µ(S1)‖2

σ2 + σ2
S1

≤ (1 + ε1)
‖xi − µ(A)‖2

σ2
− (1− ε2)

‖xi − µ(S1)‖2

σ2
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≤ r2

σ2

(1 + ε1)

(√
1

2
− δ

)2

− (1− ε2)(1− δ)2


≤ − r2

4σ2
.

Now consider the second inequality . If we take ε1 = 1/5, ε2 = 1/2, and λ = 1/4,

then we know from Lemma B.2 and B.3 that there exists a c2 s.t. if |A|, |S1| ≥ c2 and

|A| ≥ 5 ≥ 1+λ
ε2−λ , then

‖xj − µS1\{j}‖2

σ2 + σ2
S1\{j}

− ‖xj − µA‖
2

σ2 + σ2
A

≤ 2‖xj − µ(S1)‖2 + ε1‖xj‖2

σ2 + σ2
S1\{j}

− (1− λ)
‖xj − µ(A)‖2

σ2 + σ2
A

≤ 2‖xj − µ(S1)‖2 + ε1‖xj‖2

σ2
− (1− ε2)

‖xj − µ(A)‖2

σ2

≤ r2

σ2
(2δ2 + ε1 − (1− ε2)(1− δ)2)

≤ − r2

4σ2
.

Finally we consider the last inequality. Using the same ε1. ε2, and λ as in the second

inequality, we know for the same c2, if |S1|, |S2| ≥ c2 and |S2| ≥ 5 ≥ 1+λ
ε2−λ , then

‖xj − µS1\{j}‖2

σ2 + σ2
S1\{j}

− ‖xj − µS2‖2

σ2 + σ2
S2

≤ 2‖xj − µ(S1)‖2 + ε1‖xj‖2

σ2 + σ2
S1\{j}

− (1− λ)
‖xj − µ(S2)‖2

σ2 + σ2
S2

≤ 2
‖xj − µ(S1)‖2 + ε1‖xj‖2

σ2
− (1− ε2)

‖xj − µ(S2)‖2

σ2

≤ r2

σ2
(2δ2 + ε1 − (1− ε2)(1− δ)2)

≤ − r2

4σ2
.

Note that Lemma B.2 gives an explicit form for the size of both c1 and c2. In the case of

c1, the ratios ‖xi‖
‖xi−µ(A)‖ and ‖µ(S1)‖

‖xi−µ(S1)‖ are constant, thus c1 ≥ Ω(σ2) suffices. In the case of

c2, we have that ‖µ(S2)‖
‖xj−µ(S2)‖ is constant, and thus c2 ≥ Ω(σ2) suffices.

Theorem 5.8. Let 0 < δ ≤ 1/32, α > 0, 0 < σ ≤ σ0, and k = 3. Then there is a constant
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n0 = Ω(max{α, σ2, d}) s.t. for n ≥ n0 the mixing rate of the projected Gibbs sampler with

parameters α, σ, σ0, and k over Ω is bounded below as τmix ≥ 1
24
· e

r2

8σ2 .

Proof. There are only four possible ways P can transition out of V : we can choose an

index in A and move it to S1 or S2, we can choose an index in S1 or S2 and move it to

A, we can choose an index in S1 and move it to S2, or we can choose an index in S2 and

move it to S1. Say that the first event is E1, the second event is E2, and the union of the

last two events is E3.

Let us establish bounds on the probability first of these events, E1. Since S1 and

S2 play symmetric roles in this event, we can say for any index i ∈ A

Pr(E1) ≤ 4

3

(
(α + n)∆(S1, i)

(α + 4n− 1)∆(A, i)

)

=
4

3

a︷ ︸︸ ︷
(α + n)

(α + 4n− 1)


b︷ ︸︸ ︷

σ2 + σ2
A\{i}

σ2 + σ2
S1


d/2 c︷ ︸︸ ︷

exp

(
1

2

[
‖xi − µA\{i}‖2

σ2 + σ2
A\{i}

− ‖xi − µS1‖2

σ2 + σ2
S1

])
.

It is easy to see that we can find an n1 = Θ(α) s.t. a ≤ 1/2. By Lemma 5.5 we know we

can find an n2 = Θ(d) s.t. b ≤ 21/d. By Lemma B.4, we know that there is an n3 = Θ(σ2)

s.t. c ≤ e−
r2

8σ2 . Thus, taking n ≥ n′0 ≥ max{n1, n2, n3} we have

Pr(E1) ≤ 4

3
e−

r2

8σ2

To bound E2, note that since S1 and S2 play symmetric roles in this event, we can say for

some index i ∈ S1

Pr(E2) ≤ 2

3

(
(α + 4n)∆(A, i)

(α + n− 1)∆(S1, i)

)
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=
2

3

a︷ ︸︸ ︷
(α + 4n)

(α + n− 1)


b︷ ︸︸ ︷

σ2 + σ2
S1\{i}

σ2 + σ2
A


d/2 c︷ ︸︸ ︷

exp

(
1

2

[
‖xi − µS1\{i}‖2

σ2 + σ2
S1\{i}

− ‖xi − µA‖
2

σ2 + σ2
A

])
.

It is easy to see that we can find an n′1 = Θ(α) s.t. a ≤ 5. By Lemma 5.5 we know we can

find an n′2 = Θ(d) s.t. b ≤ 21/d. By Lemma B.4, we know that there is an n′3 = Θ(σ2) s.t.

c ≤ e−
r2

8σ2 . Thus, taking n ≥ n′′0 ≥ max{n′1, n′2, n′3} we have

Pr(E2) ≤ 10

3
e−

r2

8σ2 .

Now consider E3. Since S1 and S2 play also symmetric roles in this event, we can say for

some index i ∈ S1

Pr(E3) ≤ 2

3

(
(α + n)∆(S2, i)

(α + n− 1)∆(S1, i)

)

=
2

3

a︷ ︸︸ ︷
(α + n)

(α + n− 1)


b︷ ︸︸ ︷

σ2 + σ2
S1\{i}

σ2 + σ2
S2


d/2 c︷ ︸︸ ︷

exp

(
1

2

[
‖xi − µS1\{i}‖2

σ2 + σ2
S1\{i}

− ‖xi − µS2‖2

σ2 + σ2
S2

])
.

It is easy to see that we can find an n′′1 = Θ(α) s.t. a ≤ 2. By Lemma 5.5 we know we can

find an n′′2 = Θ(d) s.t. b ≤ 21/d. By Lemma B.4, we know that there is an n′′3 = Θ(σ2) s.t.

c ≤ e−
r2

8σ2 . Thus, taking n ≥ n′′′0 ≥ max{n′′1, n′′2, n′′3} we have

Pr(E3) ≤ 4

3
e−

r2

8σ2

Thus, if we take n0 = max{n′0, n′′0, n′′′0 }, the conductance of S is bounded as

Φ(S) ≤ Pr(E1) + Pr(E2) + Pr(E3) ≤ 6e−
r2

8σ2 .
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Applying Theorem 4.2, the mixing rate of P is bounded below as

τmix ≥
1

4Φ∗
≥ 1

24
e
r2

8σ2 .

B.4.2 Proof of Theorem 5.9

Lemma B.5. Let {C1, C2} be a 2-partition of S3 and suppose n ≥ 2 and α ≥ 1, then

q(C1)q(C2) ≥
(
σ2

nσ2
0

)d/2
exp

(
− r

2

σ2
0

)
q(S3).

Proof. If n ≥ 2, then

(
nσ2

0

σ2

)(
nσ2

0

σ2
+ 1

)d/2
≥
(

(n/2)σ2
0

σ2
+ 1

)d
.

From the bias-variance decomposition, we additionally have the following.

∑
x∈C1

‖µ(S3)− x‖2 =
∑
x∈C1

‖µ(C1)− x‖2 + n1‖µ(S3)− µ(C1)‖2

∑
x∈C2

‖µ(S3)− x‖2 =
∑
x∈C2

‖µ(C2)− x‖2 + n2‖µ(S3)− µ(C2)‖2

Combining the above with the identity σ2
0 ≥ σ2, we have

q(C1)q(C2) ≥
(
σ2

nσ2
0

)d/2
exp(−r2/σ2

0)q(S3).

Lemma 5.10. For n ≥ 2 and α ≥ 1,

π(A)

π(V )
≤

23(α−1/2)Γ(α) exp
(
α2−α
n

+ r2

σ2
0

)
σd0

σdnα−d/2
.

Proof. Let z denote the single element of A. Since P (x, ·) is a probability measure for all
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x ∈ Ω≤3(XG),

1

π(V )

∑
x∈A,y∈V c

π(x)P (x, y) =
π(A)

π(V )

∑
y∈V c

P (z, y) ≤ π(A)

π(V )
.

If we let Ω2(S3) denote the set of non-empty partitions of S3, then by the definition of π

and from Lemma B.5,

π(A)

π(V )
≤

Γ(n+α)
Γ(α)

q(S3)∑
{C1,C2}∈Ω2(S3)

Γ(|C1|+α)
Γ(α)

q(C1) · Γ(|C2|+α)
Γ(α)

q(C2)

≤
2Γ(α)Γ(n+ α)(nσ2

0)d/2 exp
(
r2

σ2
0

)
σd

n(1/2+
√

2/4)∑
k=n(1/2−

√
2/4)

(
n
k

)
Γ(k + α)Γ(n− k + α)

≤
2Γ(α)(n+ α)α−1(nσ2

0)d/2 exp
(
r2

σ2
0

)
σd

n(1/2+
√

2/4)∑
k=n(1/2−

√
2/4)

(k + 1)α−1(n− k + 1)α−1

.

For k ∈ [n(1/2−
√

2/4), n(1/2 +
√

2/4)] and n ≥ 2,

(k + 1)α−1(n− k + 1)α−1 ≥ kα−1(n− k)α−1

≥ (n(1/2−
√

2/4))α−1(n(1/2 +
√

2/4))α−1

≥
(

1

8

)α−1

n2(α−1).

Additionally, for all n, α > 0,

(n+ α)α−1

nα−1
=
(

1 +
α

n

)α−1

≤ exp

(
α2 − α
n

)
.
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Thus,

π(A)

π(V )
≤ 23α−3/2Γ(α)(n+ α)α−1

√
2 · n2α−1

·
(
nσ2

0

σ2

)d/2
exp

(
r2

σ2
0

)

≤
23(α−1/2)Γ(α) exp

(
α2−α
n

+ r2

σ2
0

)
nα−d/2

·
(σ0

σ

)d
.

Lemma B.6. Let S1, S2, S3 be as in Section 5.4.2. Further, let i ∈ S1 ∪ S2 and j ∈ S3.

Then we have the following

1. ‖xi − µ(S1 ∪ S2)‖2 ≤ r2
(

1
2

+ δ
)2

,

2. ‖xi − y‖2 ≥ r2(1− 2δ)2, and

3. ‖xi − µ(S1 ∪ S2)‖2 ≥ r2
(√

3
4
− δ
)2

.

4. For b ∈ [1/2, 1], ‖xi − bxj‖2 ≥ r2
(√

7
12
− 2δ

)2

. (Law of Cosines)

The above lemma follows from simple geometric arguments.

Lemma B.7. Let C ⊂ S3. For δ ≤ 1
4

(√
7
3
− 3

2

)
, there exists an n0 = Ω(σ2) s.t. for

n ≥ n0 if i ∈ S3 and |C| ≥ n/2,

‖xi − µC\{i}‖2

σ2 + σ2
C\{i}

− ‖xi − µS1∪S2‖2

σ2 + σ2
S1∪S2

≤ − r2

48σ2

and if i ∈ S1 ∪ S2 and |C| ≥ 1,

‖xi − µS1∪S2\{i}‖2

σ2 + σ2
S1∪S2\{i}

− ‖xi − µC‖
2

σ2 + σ2
C

≤ − r2

48σ2
.

Proof. Consider the first inequality. Let L1 denote the left-hand side and ε1 = 1/3,

ε2 = 1/2, and λ = 1/4. We know from Lemmas B.2 and B.6 that there exists a c1 s.t. if
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|C|, |S1 ∪ S2| ≥ c2 and if |S1 ∪ S2| ≥ 5 ≥ 1+λ
ε2−λ , then

L1 ≤
2‖xi − µ(C)‖2 + ε1‖xi‖2

σ2 + σ2
C\{i}

− (1− λ)
‖xi − µ(S1 ∪ S2)‖2

σ2 + σ2
S1∪S2

≤ 2‖xi − µ(C)‖2 + ε1‖xi‖2

σ2 + σ2
C\{i}

− (1− ε2)
‖xi − µ(S1 ∪ S2)‖2

σ2

≤ r2

σ2

2δ2 + ε1 − (1− ε2)

(√
3

4
− δ

)2
 ≤ − r2

48σ2
.

Now we turn our attention to the second inequality and let L2 denote the left-hand side.

We first observe that since σ2
0 ≥ σ2 and |C| ≥ 1, we have

‖xi − µC‖2

σ2 + σ2
C

≥

∥∥∥xi − σ2
0

σ2+σ2
0
µ(C)

∥∥∥2

2σ2
≥
∥∥xi − 1

2
µ(C)

∥∥2

2σ2

Take ε = 1/100, then by Lemmas B.2 and B.6 that there exists a c2 s.t. if |S1 ∪ S2| ≥ c2,

then

L2 ≤
(1 + ε)‖xi − µ(S1 ∪ S2)‖2

σ2 + σ2
S1∪S2\{i}

−
∥∥xi − 1

2
µ(C)

∥∥2

2σ2

≤ r2

σ2

(1 + ε)

(
1

2
+ δ

)2

− 1

2

(√
7

12
− 2δ

)2
 ≤ − r2

48σ2
.

Note that Lemma B.2 gives an explicit form for the size of both c1 and c2. In the case of

c1, the ratio ‖µ(S1∪S2)‖
‖xi−µ(S1∪S2)‖ is constant, thus c1 ≥ Ω(σ2) suffices. In the case of c2, we have

that ‖xi‖
‖xi−µ(S1∪S2)‖ is constant, and thus c2 ≥ Ω(σ2) suffices.

Lemma 5.11. For δ ≤ 1
4

(√
7
3
− 3

2

)
, there exists an n0 = Ω(max{α, σ2, d}) s.t. for

n ≥ n0,

1

π(V )

∑
x∈B,y∈V c

π(x)P (x, y) ≤ 6 exp

(
− r2

96σ2

)
.

Proof. Let C = {C1, C2, S1 ∪ S2} be a 3-partition in B, where C1 and C2 are non-empty.
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To move from C to V c, there are 2 possibilities.

1. Move i ∈ S3 to S1 ∪ S2 (Event E1).

2. Move i ∈ S1 ∪ S2 to C1 or C2 (Event E2).

We want to bound from above the probability of each of these events occuring. Let us first

handle the first event. We know that one of C1 and C2 must have cardinality greater than

or equal to n/2. Since they each play symmetric roles, assume without loss of generality

that |C1| ≥ n/2. Then we can establish the following:

Pr(E1) ≤ Pr(choose i in S3)
α + 2n

α + |C1| − 1
· ∆(S1 ∪ S2, i)

∆(C1, i)

≤ 1

3

a︷ ︸︸ ︷
α + 2n

α + n/2− 1


b︷ ︸︸ ︷

σ2 + σ2
C1\{i}

σ2 + σ2
S1∪S2


d/2

exp

1

2


c︷ ︸︸ ︷

‖xi − µC1\{i}‖2

σ2 + σ2
C1\{i}

− ‖xi − µS1∪S2‖2

σ2 + σ2
S1∪S2




We know by Lemmas 5.5 and B.7 that there exists an n1 s.t. for n ≥ n1, we have a ≤ 5,

b ≤ 21/d, and c ≤ − r2

48σ2 . Thus, Pr(E1) ≤ 10
3
e−

r2

96σ2 .

Now consider event E2. Without loss of generality, say that moving i to C1 has

higher probability than moving i to C2. We can do the same computations as above to

establish that there exists an n2 s.t. for n ≥ n2 such that Pr(E2) is bounded above by

4

3
· α + n

α + 2n− 1

(
σ2 + σ2

S1∪S2\{i}

σ2 + σ2
C1

)d/2

exp

(
1

2

[
‖xi − µS1∪S2\{i}‖2

σ2 + σ2
S1∪S2\{i}

− ‖xi − µC1‖2

σ2 + σ2
C1

])

≤ 8

3
e−

r2

96σ2

Combining the above, we can conclude

∑
C∈B,C′∈V c

π(C)P (C,C′)
π(V )

≤
(

10

3
+

8

3

)
exp

(
− r2

96σ2

)
≤ 6 exp

(
− r2

96σ2

)
.
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Finally, both n1 and n2 satisfy Ω(max{α, σ2, d}). Taking n0 = max{n1, n2} gives us the

lemma statement.
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Appendix C

Supplementary material for Chap-
ter 6

C.1 Proofs from Section 6.3

Theorem 6.1. Let c1, c2 ≥ 0 such that c1c2 < 1, P (v) is c1-contractive, and P (h) is

c2-contractive. Then the mixing rate of the Gibbs sampler is bounded as

τ(ε) ≤ 1 +
1

log(1/c1c2)
log

(
C

ε

)

where C = min

(
γ
(max)
v

γ
(min)
v

,
γ
(max)
h

γ
(min)
h

, c2γ
(max)
v

γ
(min)
h

)
.

Proof. To see τ(ε) ≤ 1 + 1
log(1/c1c2)

log

(
1
ε

min

(
γ
(max)
h

γ
(min)
h

, c2γ
(max)
v

γ
(min)
h

))
, we will use the same

coupling (Xt, Yt) as given in the first part of the proof. Then by similar arguments,

Pr(Xt 6= Yt) ≤ Pr(dh(Xt, Yt) ≥ γ
(min)
h )

≤ E[dh(Xt, Yt)]

γ
(min)
h

≤ (c1c2)t−1E[dh(X1, Y1)]

γ
(min)
h

≤ (c1c2)t−1 min(γ
(max)
h , c2γ

(max)
v )

γ
(min)
h

204



Taking t ≥ 1 + 1
log(c1c2)

log

(
min(γ

(max)
h ,c2γ

(max)
v )

γ
(min)
v

)
makes the above less than ε. Applying

Lemma 4.4 completes the proof.

Lemma 6.2. P
(v)
RBM and P

(h)
RBM are ‖W‖1

2
- and ‖WT ‖1

2
-contractive, respectively.

Proof. Let x, y ∈ Ω be two configurations. We will prove the claim for the visible

conditional distributions. The proof for the hidden conditional distributions will follow

symmetrically.

For each visible node vi, let (X(vi), Y (vi)) be the maximal coupling of P (v)(X(vi) |x(h))

and P (v)(Y (vi) | y(h)) guaranteed in Lemma 4.3. By doing this independently for all visible

nodes, we have a valid coupling (X, Y ) of P (v)(· |x(h)) and P (v)(· | y(h)). Then we can

work out the expected Hamming distance of X and Y as

E[dv(X, Y )] =
n∑
i=1

∥∥P (v)(X(vi) |x(h))− P (v)(Y (vi) | y(h))
∥∥
TV

=
n∑
i=1

∣∣P (v)(X(vi) = 1 |x(h))− P (v)(Y (vi) = 1 | y(h))
∣∣

=
n∑
i=1

∣∣∣∣∣∣ 1

1 + exp
(
−ai −

∑m
j=1Wijx(hj)

) − 1

1 + exp
(
−ai −

∑m
j=1Wijy(hj)

)
∣∣∣∣∣∣

≤
n∑
i=1

∣∣∣∣∣∣
1− exp

(∑m
j=1Wij (y(hj)− x(hj))

)
1 + exp

(∑m
j=1Wij (y(hj)− x(hj))

)
∣∣∣∣∣∣

=
n∑
i=1

∣∣∣∣∣tanh

(∑m
j=1Wij

(
Yt+1/2(hj)−Xt+1/2(hj)

)
2

)∣∣∣∣∣
≤

n∑
i=1

1

2

∣∣∣∣∣
m∑
j=1

Wij (y(hj)− x(hj))

∣∣∣∣∣
≤ 1

2

∑
j : y(hj)6=x(hj)

n∑
i=1

|Wij|

≤ 1

2
‖W‖1dh(x, y).

Lemma 6.5. P
(h)
S and P

(v)
S are 1

2
‖W T‖1- and 1

2

(
K
2

)
‖W‖1-contractive, respectively.
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Proof. We will first show that P
(h)
S is 1

2
‖W T‖1-contractive. To do so, let x, y ∈ Ω be two

configurations. Our coupling (X, Y ) of P
(h)
S (· |x(v)) and P

(h)
S (· | y(v)) is exactly the same

as the coupling given in the proof of Lemma 6.2. Then, from the proof of Lemma 6.2, we

have

E[dh(X, Y ) |x(v), y(v)] =
m∑
j=1

∣∣∣P (h)
S (X(hj) = 1 |x(v))− P (h)

S (Y (hj) = 1 | y(v))
∣∣∣

≤

∣∣∣∣∣∣
1− exp

(∑n
i=1

∑K
k=1W

(k)
ij (1[y(vi) = k]− 1[x(vi) = k])

)
1 + exp

(∑n
i=1

∑K
k=1W

(k)
ij (1[y(vi) = k]− 1[x(vi) = k])

)
∣∣∣∣∣∣

=

∣∣∣∣∣tanh

(∑n
i=1

∑K
k=1W

(k)
ij (1[y(vi) = k]− 1[x(vi) = k])

2

)∣∣∣∣∣
≤ 1

2

∣∣∣∣∣
n∑
i=1

K∑
k=1

W
(k)
ij (1[y(vi) = k]− 1[x(vi) = k])

∣∣∣∣∣
≤ 1

2

∑
i :x(vi)6=y(vi)

m∑
j=1

|Wij|

≤ 1

2
‖W T‖1dv(x, y).

To prove P
(v)
S is 1

2

(
K
2

)
‖W‖1-contractive, we will again use Lemma 4.3 to construct inde-

pendent couplings (X(vi), Y (vi)) of P
(v)
S (vi |x(h)) and P

(v)
S (vi | y(h)) for each visible node

vi. Then by Lemma 4.3, we have

E[dv(X, Y ) |x(h), y(h)] =
n∑
i=1

‖P (v)
S (X(vi) |x(h))− P (v)

S (Y (vi) | y(h))‖TV

=
n∑
i=1

1

2

K∑
k=1

|P (v)
S (X(vi) = k |x(h))− P (v)

S (Y (vi) = k | y(h))|

≤ 1

2

n∑
i=1

K∑
k=1

∑
k′ 6=k

∣∣∣∣∣tanh

(∑m
j=1(W

(k′)
ij −W

(k)
ij )(y(hj)− x(hj))

2

)∣∣∣∣∣
≤ 1

2

n∑
i=1

K∑
k=1

∑
k′ 6=k

1

2

∣∣∣∣∣
m∑
j=1

(W
(k′)
ij −W

(k)
ij )(y(hj)− x(hj)

∣∣∣∣∣
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≤ 1

2

∑
j :x(hj)6=y(hj)

K(K − 1)

2

n∑
i=1

|Wij|

=
1

2

(
K

2

)
‖W‖1dh(x, y).

C.2 Proofs from Section 6.4

Lemma 6.8. Let c1, c2, ε0, δ0,M > 0 such that c1c2 < 1, P (h) is c1-contractive, P (v) is c2-

contractive and (ε0, δ0,M)-gamble admissible. There exists a Markovian coupling (Xt, Yt)

such that if E[dv(X0, Y0)] ≤M , then for any δ > 0, if

t ≥ log(2/δ)

log(1/c1c2) log(1/δ0)
log

(
2c1M

δε0
· log(2/δ)

log(1/δ0)

)

we have Pr(Xt(v) 6= Yt(v)) ≤ δ.

Proof. Let (Xs, Ys) be the interleaved coupling whose initial state is (X0, Y0) and is evolved

according to the following rule.

1. Draw (Xs+1(h), Ys+1(h)) according to the c1-contractive coupling of P (h)(· |Xs(v))

and P (h)(· |Ys(v)).

2. If dh(Xs+1, Ys+1) ≤ ε0, draw (Xs+1(v), Ys+1(v)) according to the (ε0, δ0,M)-gamble

coupling of P (v)(· |Xs+1(h)) and P (v)(· |Ys+1(h)). Otherwise, draw (Xs+1(v), Ys+1(v))

according to the c2-contractive coupling of P (v)(· |Xs+1(h)) and P (v)(· |Ys+1(h)).

It is not too hard to see that (Xs, Ys) is a Markovian coupling of the alternating Gibbs

sampler.

Let us define two stochastic processes Zs = dh(Xs+1, Ys+1), and Si = inf{s > Si−1 :

Zs ≤ ε0} where S0 = 0. Due to the definition of the interleaved coupling, it is not hard

to see that for any finite i ≥ 1, Si <∞ with probability one. Moreover, because of the

Markovian nature of Si, we know that given Si−1, Si is independent of S0, S1, . . . , Si−2.
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Now let T,K ≥ 1 be given. Then we can work out the following

Pr(XKT (v) 6= YKT (v)) ≤

a︷ ︸︸ ︷
K∑
k=1

Pr(Sk ≥ kT |Sk−1 ≤ (k − 1)T − 1)

+

b︷ ︸︸ ︷
Pr(XKT 6= YKT |S1 ≤ T − 1, . . . SK ≤ KT − 1)

We can bound the above two terms separately. To bound (a), note that for any 1 ≤ k ≤ K,

Pr(Sk ≥ kT |Sk−1 ≤ (k − 1)T − 1)

= Pr(dh(XkT+1, YkT+1) ≥ ε0 |Sk−1 ≤ (k − 1)T − 1)

≤
E
[
dh(XkT+1, YkT+1) |Sk−1 ≤ (k − 1)T − 1, XSk−1

(v) 6= YSk−1
(v)
]

ε0

≤ c1

ε0
E
[
dv(XkT , YkT ) |Sk−1 ≤ (k − 1)T − 1, XSk−1

(v) 6= YSk−1
(v)
]

≤ c1

ε0
E
[
(c1c2)kT−Sk−1−1dv(XSk−1

, YSk−1
) |Sk−1 ≤ (k − 1)T − 1, XSk−1

(v) 6= YSk−1
(v)
]

≤ c1(c1c2)TM

ε0

To bound (b) we make use of the fact that at each random time Sk we have at

least a 1− δ0 chance of setting XSk(v) = YSk(v). Therefore,

Pr(XKT (v) 6= YKT (v) |S1 ≤ T − 1, . . . SK ≤ KT − 1) ≤ δK0 .

Then for K = log(2/δ)
log(1/δ0)

and T = 1
log(1/c1c2)

log
(

2c1KM
δε0

)
,

Pr(XKT (v) 6= YKT (v)) ≤ c1(c1c2)TKM

ε0
+ δK0 ≤ δ.

The lemma follows by our choice of K and T .
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Lemma C.1. (a) There exists a coupling (X, Y ) of N(µX , σ
2
X) and N(µY , σ

2
Y ) such that

E
[
(X − Y )2

]
= (µX − µY )2 + (σX − σY )2.

(b) There exists a coupling (X, Y ) of N(µX , σ
2) and N(µY , σ

2) such that

Pr(X 6= Y ) ≤ |µX − µY |
2σ

and

E
[
(X − Y )2 |X 6= Y

]
≤ 4σ2

[
1 +
|µX − µY |√

2πσ
+

(
|µX − µY |

2σ

)2
]
.

Proof. Part (a) follows from a more general result [78]. To prove part (b), we introduce

some notation. Let µ̄ = µX+µY
2

. Assume w.l.o.g. µ̄ = 0, µX = −µ, and µY = µ for some

µ ≥ 0. Let fX and fY denote the p.d.f.’s of N(µX , σ
2) and N(µY , σ

2), respectively. Now

define three more p.d.f.’s:

fS(x) =
min (fX(x), fY (x))

ZS
for x ∈ R

fU(x) =
fY (x)− fX(x)

ZU
for x ≥ 0

fL(x) =
fX(x)− fY (x)

ZL
for x ≤ 0

Here ZS, ZU , and ZL are chosen so that their respective distributions integrate to 1. It is

not too hard to work out that

ZS = 2
(

1− Φ
(µ
σ

))
= 1− erf

(
µ

σ
√

2

)
ZU = ZL = Φ

(µ
σ

)
− Φ

(
−µ
σ

)
= erf

(
µ

σ
√

2

)

Here Φ(·) denotes cumulative distribution function for the standard normal distribution

and erf(·) denotes the error function. Figure C.1 helps explain the picture.

209



Figure C.1. Illustration of the unnormalized densities fS, fU , fL.

Then our coupling is the following.

1. Draw S ∼ fS, U ∼ fU , L = −U .

2. With probability ZS, set X = S = Y .

3. With probability 1− ZS, set X = L and Y = U .

It is not hard to see that (X, Y ) is a valid coupling of fX and fY . We now turn to the two

claims of this coupling. The first is easy:

Pr(X 6= Y ) = 1− ZS = erf

(
µ

σ
√

2

)
= erf

(
|µX − µY |

2σ
√

2

)
≤ |µX − µY |

2σ
.

Now we turn to the second claim. To handle this, we will first introduce two more

random variables.

• Let UX be distributed according to fUX (x) = fX(x)
1−Φ(µ

σ
)
.

• Let UY be distributed according to fUY (x) = fY (x)
1−Φ(−µ

σ
)
.

Then we can rewrite our objective to bound as

E[(X − Y )2 |X 6= Y ] = E[(U − L)2] = 4E[U2]
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=
4

ZU

[(
1− Φ

(
−µ
σ

))
E[U2

Y ]−
(

1− Φ
(µ
σ

))
E[U2

X ]
]

It is easy to see that UX and UY follow truncated normal distributions. Their moments can

be worked out according to formulas given by [59]. In particular we have for ε = |µX−µY |
2σ

E[(X − Y )2 |X 6= Y ] =
4

ZU

[
(µ2 + σ2)ZU +

2µ√
2π

exp

(
− µ2

2σ2

)]
= 4σ2

[
1 + ε2 +

2ε√
2πerf(ε/

√
2)

]
≤ 4σ2

[
1 + ε2 +

√
2

π

(
ε+

√
π

2

)]

= 4σ2

[
2 + ε

√
2

π
+ ε2

]

where the inequality in the third line comes from the inequality x
erf(x/

√
2)
≤ x+

√
π
2
.

Lemma 6.10. The following holds.

(a) P
(v)
GG, P

(h)
GG, P

(v)
GN are ‖W‖2

F -contractive.

(b) P
(h)
GN is 5

4
‖W‖2

F -contractive.

(c) P
(v)
GG and P

(v)
GN are (ε0, δ0,M)-gamble admissible for ε0 = 1

4‖(W/σ)T ‖22,1
, δ0 = 1/4, and

M = 4‖σ‖2
2 +

√
2

π

∥∥(Wσ)T
∥∥

2,1

‖(W/σ)T‖2,1

+

(
‖W‖F

2‖(W/σ)T‖2,1

)2

where W/σ and Wσ denote n×m matrices whose entries are Wij/σi and Wijσi, respectively

Proof. To prove part (a), we need only show the result for P
(v)
GG; the bounds for P

(h)
GG and

P
(v)
GN will follow symmetrically.

Recall that our distance is `2
2-distance dv(x, y) :=

∑n
i=1(x(vi)− y(vi))

2. To see that

P
(v)
GG is contractive, let x, y ∈ Ω be given. We will construct our contractive coupling (X, Y )

by coupling each visible node X(vi) independently. In particular, we will use the coupling
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from Lemma C.1(a) to couple together the marginal distributionsN(ai+
∑m

j=1Wijx(hj), σ
2
i )

and N(ai +
∑m

j=1Wijy(hj), σ
2
i ). By Lemma C.1(a), we have

E[dv(X, Y )] =
n∑
i=1

E
[
(X(vi)− Y (vi))

2
]

≤
n∑
i=1

(
m∑
j=1

Wij (x(hj)− y(hj))

)2

≤

(
n∑
i=1

m∑
j=1

W 2
ij

)
m∑
j=1

(x(hj)− y(hj))
2

= ‖W‖2
F dh (x, y) .

To prove part (b), we will couple each unit hj independently as follows.

1. Let (Zj, Z
′
j) be the coupling from Lemma C.1(a) of

N

(
n∑
i=1

Wijx(vi), σ

(
n∑
i=1

Wijx(vi)

))
and N

(
n∑
i=1

Wijy(vi), σ

(
n∑
i=1

Wijy(vi)

))
.

2. Let X(hj) = max(0, Zj) and Y (hj) = max(0, Z ′j).

Then by the definition of NReLU, X and Y have the correct marginal distributions. To

see that they are contractive, note first that for each hj,

E
[
(X(hj)− Y (hj))

2
]
≤ E

[(
Zj − Z ′j

)2
]

=

(
n∑
i=1

Wij (x(vi)− y(vi))

)2

+

(
σ

(
n∑
i=1

Wijx(vi)

)
− σ

(
n∑
i=1

Wijy(vi)

))2

where the equality comes from Lemma C.1(a). Thus,

E[dh(X, Y )] ≤
m∑
j=1

(
n∑
i=1

Wij (x(vi)− y(vi))

)2
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+
m∑
j=1

(
σ

(
n∑
i=1

Wijx(vi)

)
− σ

(
n∑
i=1

Wijy(vi)

))2

≤ ‖W‖2
F dv (x, y) +

m∑
j=1

(
1

2

n∑
i=1

Wij(x(vi)− y(vi))

)2

≤ ‖W‖2
F dv (x, y) +

1

4
‖W‖2

F dv (x, y)

=
5

4
‖W‖2

F dv (x, y) .

To prove part (c), it will suffice to prove that P
(v)
GG is gamble admissible; the gamble

admissibility of P
(v)
GN will follow by symmetry. To do this, we will construct a gamble

coupling (X, Y ) by independently coupling the visible nodes vi according to the coupling

from Lemma C.1(b). The probability that we set X(v) 6= Y (v) is bounded as

Pr(X(v) 6= Y (v)) = Pr (∃vi s.t. X(vi) 6= Y (vi))

≤
n∑
i=1

Pr(X(vi) 6= Y (vi))

≤
n∑
i=1

∣∣∣∑m
j=1Wij (x(hj)− y(hj))

∣∣∣
2σi

≤ 1

2

n∑
i=1

√√√√ m∑
j=1

(
Wij

σi

)2
√√√√ m∑

j=1

(x(hj)− y(hj))
2

=

∥∥(W/σ)T
∥∥

2,1

2

√
dh (x, y)

Similarly we can bound E[dv(X, Y ) |X(v) 6= Y (v)] by

n∑
i=1

E
[
(X(vi)− Y (vi))

2 |X(vi) 6= Y (vi)
]

≤
n∑
i=1

4σ2
i

1 +

∣∣∣∑m
j=1 Wij (x(hj)− y(hj))

∣∣∣
√

2πσi
+


∣∣∣∑m

j=1 Wij (x(hj)− y(hj))
∣∣∣

2σi

2


213



=
n∑
i=1

4σ2
i + 2

√
2

π

n∑
i=1

∣∣∣∣∣
m∑
j=1

σiWij (x(hj)− y(hj))

∣∣∣∣∣+
n∑
i=1

(
m∑
j=1

Wij (x(hj)− y(hj))

)2

≤
n∑
i=1

4σ2
i + 2

√
2

π

∥∥(Wσ)T
∥∥

2,1

√
dh (x, y) + ‖W‖2

F dh (x, y) .

Plugging in dh(x, y) ≤ ε0 = 1

4‖(W/σ)T ‖22,1
finishes the proof.

C.3 Proofs from Section 6.5

Theorem 6.12. Pick any T > 0 and n,m ∈ N even positive integers. Then there is a

weight matrix W ∈ Rn×m satisfying

‖W‖max ≤
2

min(n,m)
ln (4T (n+m))

such that the Gibbs sampler over the RBM with zero bias and weight matrix W has mixing

rate bounded as τmix ≥ T .

Proof. Let r = 2
min(n,m)

ln (4T (n+m)). Choose a canonical configuration x such that

exactly half of the x(vi)’s are 1 and exactly half of the x(hj)’s are 1. Now let W ∈ Rn×m

such that Wij = r if x(vi) = x(hj) and −r otherwise. Let π(·) denote the Gibbs distribution

for the RBM with weight matrix W and zero bias and let S = {x} be the singleton set

containing only the canonical configuration. Note that if x̄ satisfies that x̄(vi) = 1 iff

x(vi) = 0 and x̄(hj) = 1 iff x(hj) = 0, then π(x) = π(x̄). Thus, π(S) ≤ 1/2.

It is not hard to see Pr(X(hj) 6= x(hj) |x(v)) = σ
(
−nr

2

)
for all j ∈ [m], where

σ(x) = 1/(1 + exp(−x)) is the logistic sigmoid as before. Similarly, for any i ∈ [n],

Pr(X(vi) 6= x(vi) |x(h)) = σ
(
−mr

2

)
. Thus,

Pr(leave state x) ≤ m

1 + exp
(
nr
2

) +
n

1 + exp
(
mr
2

) ≤ 1

4T
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Thus the conductance of S (and therefore Φ∗) is upper bounded as

Φ(S) =
1

π(S)

∑
x∈S,y∈Sc

π(x)Pr(we transition from x to y) = Pr(leave state x) ≤ 1

4T

Theorem 4.2 completes the proof.

Lemma C.2. Φ(x) ≤ 1−
√

1− exp
(
−x2

2

)
for x ≤ 0.

Proof. We begin by writing Φ(·) in terms of the error function:

Φ(x) =
1

2

(
1 + erf

(
x√
2

))
.

Thus it suffices to prove erf (x)2 ≥ 1− e−x2 . By calculus, we have

erf(x)2 =
4

π

∫ x

0

∫ x

0

e−(s2+t2) ds dt

≥ 4

π

∫ π/2

0

∫ x

0

re−r
2

dr dθ

=
4

π

∫ π/2

0

[
−1

2
e−r

2

∣∣∣∣x
r=0

]
dθ

=
4

π

∫ π/2

0

1

2

(
1− e−x2

)
dθ

= 1− e−x2

where the inequality comes from the fact that e−(s2+t2) ≥ 0 and the quarter circle of radius

x centered at the origin and lying in the first quadrant is a subset of the square [0, x]2.

Theorem 6.13. Let T,B > 0 and n,m ∈ N be even positive integers. Then there exists

weight matrix W ∈ Rn×m s.t.

‖W‖max ≤
1

min(n,m)

(
1 +

1

B

√
8 log(4T max(n,m))

)

such that the B-truncated chain of the Gibbs sampler for the Gaussian-Gaussian RBM
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with no biases and unit variances mixes in time τmix ≥ T .

Proof. Let r = 1
min(n,m)

(
1 + 1

B

√
8 log(4T max(n,m))

)
. Let I−, I+ be an even partition

of [n], i.e. |I−| = n/2 = |I+|. Similarly, let J−,J+ be an even partition of [m]. Define

Wij =


r if (i, j) ∈ I− × J− ∪ I+ × J+

−r else

Sv = {x(v) ∈ [−B,B]n : x(vi) ≥ B/2 if i ∈ I+ and x(vi) ≤ −B/2 else}

Sh = {x(h) ∈ [−B,B]m : x(hj) ≥ B/2 if j ∈ J+ and x(hj) ≤ −B/2 else}

Then our low conductance set of configurations is S = Sv×Sh. Note that the c.d.f.’s of the

conditional distributions for the B-thresholded chain are exactly the same as the regular

normal distribution for points within [−B,B]. That is, given x ∈ Ω and p ∈ (−B,B), for

any hidden node hj and visible node vi

P (X(hj) < p |x(v)) = Φ

(
p−

n∑
i=1

Wij x(vi)

)

P (X(vi) < p |x(h)) = Φ

(
p−

m∑
j=1

Wij x(hj)

)

For x ∈ S and j ∈ J+, we have by Lemma C.2,

P (X(hj) < B/2 |x(v)) = Φ

B
2
− r

∑
i∈I+

x(vi)−
∑
i∈I−

x(vi)


≤ Φ

(
B

2
(1− rn)

)
≤ 1−

√
1− exp

(
−B

2

8
(1− rn)2

)
.

Symmetric inequalities also hold for P (X(hj) > −B/2 |x(v)) when j ∈ J−. Additionally,
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for i ∈ I+ and i′ ∈ I−,

P (X(vi) < B/2 |x(h)), P (X(vi′) > −B/2 |x(h)) ≤ 1−

√
1− exp

(
−B

2

8
(1− rm)2

)
.

Therefore, given that the current state of our chain Yt is in S, we can bound the probability

that we transition out of S in the next step as

P (Yt+1 6∈ S |Yt ∈ S) ≤ m

(
1−

√
1− exp

(
−B

2

8
(1− rn)2

))

+ n

(
1−

√
1− exp

(
−B

2

8
(1− rm)2

))
.

Plugging in our value for r gives us an upper bound of 1
4T

. Theorem 4.2 completes the

proof.

C.4 Proofs from Section 6.6

[61, 69, 45] technically deal with Ising (or spin glass) models as opposed to Boltz-

mann machines. As the following lemma demonstrates, however, the partition functions of

these models differs only by an easily computable constant. Thus, they are approximation-

preserving interreducible in the sense of [39].

Lemma C.3. Let G = (V,E) be a graph, Wij ∈ R for all (i, j) ∈ E, bi ∈ R for all i ∈ V ,

and define

ZIsing(G,W, b) =
∑

x :V→{−1,1}V
exp

 ∑
(i,j)∈E

Wijx(i)x(j) +
∑
i∈V

bix(i)
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as the Ising partition function and

ZBoltzmann(G,W, b) =
∑

x :V→{0,1}V
exp

 ∑
(i,j)∈E

Wijx(i)x(j) +
∑
i∈V

bix(i)


as the Boltzmann partition function then CZIsing(G,W, b) = ZBoltzmann(G,W ′, b′) where

W ′ = 4W

b′i = 2bi − 2
∑

j s.t.(i,j)∈E

Wij

C = exp

∑
i∈V

bi −
∑

(i,j)∈E

Wij


Proof. The key idea is to identify every Ising configuration x : V → {−1, 1}V with

a Boltzmann configurations y : V → {0, 1}V . The convention we will take is y(i) =

1
2
(x(i) + 1), which has the effect of identifying the spin −1 with 0 and 1 with 1. Then for

any Ising/Boltzmann corresponding pair x, y, we have

exp

 ∑
(i,j)∈E

W ′
ijy(i)y(j) +

∑
i∈V

b′iy(i)


= exp

 ∑
(i,j)∈E

4Wijy(i)y(j) +
∑
i∈V

y(i)

2bi − 2
∑

j s.t.(i,j)∈E

Wij


= exp

 ∑
(i,j)∈E

Wij(x(i) + 1)(x(j) + 1) +
∑
i∈V

(x(i) + 1)

bi − ∑
j s.t.(i,j)∈E

Wij


= exp

 ∑
(i,j)∈E

Wij(x(i) + x(j) + 1)−
∑
i∈V

(x(i) + 1)

 ∑
j s.t.(i,j)∈E

Wij

+
∑
i∈V

bi

 ·
exp

 ∑
(i,j)∈E

Wijx(i)x(j) +
∑
i∈V

bix(i)
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= C exp

 ∑
(i,j)∈E

Wijx(i)x(j) +
∑
i∈V

bix(i)

 .

Because the mapping from Ising to Boltzmann configurations is bijective, it then holds

that

ZBoltzmann(G,W ′, b′) =
∑

y :V→{0,1}V
exp

 ∑
(i,j)∈E

W ′
ijy(i)y(j) +

∑
i∈V

b′iy(i)


=

∑
x :V→{−1,1}V

C exp

 ∑
(i,j)∈E

Wijx(i)x(j) +
∑
i∈V

bix(i)


= CZIsing(G,W, b).
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Appendix D

Supplementary material for Chap-
ter 7

D.1 Remark from Section 7.3

In Section 7.3, the remark after the definition of average splitting stated that there

exist hypothesis classes V for which there are many points which 1/4-split E for any

E ⊂
(
V
2

)
but for which any x ∈ X satisfies

max{Φ(V +
x ),Φ(V −x )} ≈ Φ(V ).

Here we formally prove this statement.

Consider the hypothesis class of homogeneous linear separators and let V =

{e1, . . . , en} ⊂ H where ek is the k-th unit coordinate vector. Let the data distribution be

uniform over the n-sphere and the prior distribution π be uniform over V . As a subset of

the homogeneous linear separators, V has splitting index (1/4, ε,Θ(ε)) [31, Theorem 10].

On the other hand, for any i 6= j, d(hi, hj) = 1/2. This implies that

Φ(V ) = Pr(h 6= h′)Eh,h′ [d(h, h′) |h 6= h′] =
n− 1

2n
.

Moreover, any query x ∈ X eliminates at most half the hypotheses in V in the worst case.
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Therefore, for all x ∈ X ,

max{Φ(V +
x ),Φ(V −x )} ≥ (n/2− 1)

2(n/2)
=

(
n− 2

n− 1

)
Φ(V ).

D.2 Proofs of Lemma 7.5 and Lemma 7.7

The proofs in this section rely crucially on two concentration inequalities. The first

is known as Hoeffding’s inequality [55].

Lemma D.1. Let X1, . . . , Xn be i.i.d. random variables taking values in [0, 1] and let

X =
∑
Xi and µ = E[X]. Then for t > 0,

Pr(X − µ ≥ t) ≤ exp

(
−2t2

n

)

Our other tool will be the following multiplicative Chernoff-Hoeffding bound [3].

Lemma D.2. Let X1, . . . , Xn be i.i.d. random variables taking values in [0, 1] and let

X =
∑
Xi and µ = E[X]. Then for 0 < β < 1,

(i) Pr(X ≤ (1− β)µ) ≤ exp
(
−β2µ

2

)
and

(ii) Pr(X ≥ (1 + β)µ) ≤ exp
(
−β2µ

3

)
.

We now turn to the proof of Lemma 7.5.

Lemma 7.5. Let ρ, ε, δ0 > 0 be given. Suppose that version space V satisfies Φ(V ) > ε.

In select, fix a round t and data point x ∈ X that exactly ρ-average splits V (that is,

max{π|V (V +
x )2Φ(V +

x ), π|V (V −x )2Φ(V −x )} = (1− ρ)Φ(V )). If

mt ≥
48

ρ̂2
t ε

log
4

δ0

and nt ≥ max

{
32

ρ̂2
t Φ̂t

,
40

Φ̂2
t

}
log

4

δ0

then with probability 1− δ0,
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(a) Φ̂t ≥ (1− ρ̂t/4)Φ(V );

(b) if ρ ≤ ρ̂t/2, then 1
nt

max {ψ(E+
x ), ψ(E−x )} > (1− ρ̂t)Φ̂t; and

(c) if ρ ≥ 2ρ̂t, then 1
nt

max {ψ(E+
x ), ψ(E−x )} ≤ (1− ρ̂t)Φ̂t.

Proof. In round t, let ρ̂ := ρ̂t, Φ̂ := Φ̂t, m := mt, and n := nt. For (a), recall Φ̂ = 1
m
ψ(E ′)

for E ′ ∼ (π|V )2×m. By Lemma D.2, we have for β0 > 0

Pr
(

(1− β0)Φ(V ) ≤ Φ̂ ≤ (1 + β0)Φ(V )
)
≥ 1− 2 exp

(
−mβ

2
0ε

3

)
.

Taking m ≥ 3
β2
0ε

log
(

4
δ0

)
, we have the above probability is at least 1 − δ0/2. Let us

condition on this event occurring.

To see (b), say w.l.o.g.
(
π(V +

x )
π(V )

)2

Φ(V +
x ) = (1− ρ)Φ(V ). Then,

Pr

(
1

n
ψ(E+

x ) ≤ (1− ρ̂)Φ̂

)
≤ Pr

(
1

n
ψ(E+

x ) ≤ (1− ρ̂)(1 + β0)Φ(V )

)
.

Let β satisfy (1− β)(1− ρ) = (1− ρ̂)(1 + β0). By Lemma D.2 (i),

Pr

(
1

n
ψ(E+

x ) ≤ (1− ρ̂)Φ̂

)
≤ Pr

(
1

n
ψ(E+

x ) ≤ (1− β)(1− ρ)Φ(V )

)
≤ exp

(
−nβ

2(1− ρ)Φ(V )

2

)
≤ exp

(
−n(1− ρ)Φ̂

2(1 + β0)
·
[
1− (1− ρ̂)(1 + β0)

1− ρ

]2
)

≤ exp

(
−n(1− ρ̂/2)Φ̂

2(1 + β0)
·
[
1− (1− ρ̂)(1 + β0)

1− ρ̂/2

]2
)
.

Taking β0 ≤ ρ̂/4, the above is less than exp
(
−nΦ̂ρ̂2

32

)
. With n as in the lemma statement

and combined with our results on the concentration of Φ̂, we have with probability 1− δ0,

1

n
max

{
ψ(E+

x ), ψ(E−x )
}
> (1− ρ̂)Φ̂.
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To see (c), suppose now that w.l.o.g.
(
π(V −x )
π(V )

)2

Φ(V −x ) ≤
(
π(V +

x )
π(V )

)2

Φ(V +
x ) = (1− ρ)Φ(V ).

We need to consider two cases.

Case 1: ρ ≤ 1/2. Taking β such that (1 + β)(1− ρ) = (1− ρ̂)(1− β0), we have by

Lemma D.2 (ii),

Pr

(
1

n
ψ(E+

x ) > (1− ρ̂)Φ̂

)
≤ Pr

(
1

n
ψ(E+

x ) > (1− ρ̂)(1− β0)Φ(V )

)
= Pr

(
1

n
ψ(E+

x ) > (1 + β)(1− ρ)Φ(V )

)
≤ exp

(
−nβ

2(1− ρ)Φ(V )

3

)
≤ exp

(
−n(1− ρ)Φ̂

3(1 + β0)
·
[

(1− ρ̂)(1− β0)

1− ρ
− 1

]2
)

≤ exp

(
− nΦ̂

6(1 + β0)
·
[

(1− ρ̂)(1− β0)

1− 2ρ̂
− 1

]2
)
.

Taking β0 ≤ ρ̂/4, the above is less than exp
(
−nΦ̂ρ̂2

12

)
. Note this also implies

Pr

(
1

n
ψ(E−x ) > (1− ρ̂)Φ̂

)
≤ exp

(
−nΦ̂ρ̂2

12

)

since
(
π(V −x )
π(V )

)2

Φ(V −x ) ≤
(
π(V +

x )
π(V )

)2

Φ(V +
x ).

Case 2: ρ > 1/2. Taking β0 ≤ 1/16, we have

Pr

(
1

n
ψ(E+

x ) > (1− ρ̂)Φ̂

)
≤ Pr

(
1

n
ψ(E+

x ) > (1− ρ̂)(1− β0)Φ(V )

)
≤ Pr

(
1

n
ψ(E+

x ) > (1− ρ)Φ(V ) + (ρ− ρ̂− β0)Φ(V )

)
≤ Pr

(
1

n
ψ(E+

x ) > (1− ρ)Φ(V ) +
(ρ

2
− β0

)
Φ(V )

)
≤ Pr

(
1

n
ψ(E+

x ) > (1− ρ)Φ(V ) +

(
1

4
− β0

)
Φ(V )

)
≤ Pr

(
1

n
ψ(E+

x ) > (1− ρ)Φ(V ) +
1
4
− β0

1 + β0

Φ̂

)
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≤ Pr

(
1

n
ψ(E+

x ) > (1− ρ)Φ(V ) +
3

17
Φ̂

)

By Lemma D.1, the above is less than exp
(
−nΦ̂2

40

)
. Note this also implies

Pr

(
1

n
ψ(E−x ) > (1− ρ̂)Φ̂

)
≤ exp

(
−nΦ̂2

40

)

since
(
π(V −x )
π(V )

)2

Φ(V −x ) ≤
(
π(V +

x )
π(V )

)2

Φ(V +
x ). Regardless of which case we are in, we have for

n as in the lemma statement, with probability 1− δ0,

1

n
max

{
ψ(E+

x ), ψ(E−x )
}
≤ (1− ρ̂)Φ̂.

We next provide the proof of Lemma 7.7.

Lemma 7.7. The following holds for DBAL:

(a) Suppose that for all t = 1, 2, . . . , K that Φ(Vt) > ε. Then the probability that the

termination condition is ever true for any of those rounds is bounded above by

K exp
(
− εn

32

)
.

(b) Suppose that for some t = 1, 2, . . . , K that Φ(Vt) ≤ ε/2. Then the probability that the

termination condition is not true in that round is bounded above by K exp
(
− εn

48

)
.

Proof. Recall that the termination condition from DBAL is 1
n
ψ(E) < 3ε

4
for E ∼ (π|V )2×n.

Part (a) follows from plugging in β = 1
4

into Lemma D.2 (i) and taking a union

bound over rounds 1, . . . , K.

Similarly, part (b) follows from plugging in β = 1
4

into Lemma D.2 (ii) and taking

a union bound over rounds 1, . . . , K.
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Appendix E

Supplementary material for Chap-
ter 8

E.1 Proof of Lemma 8.2

Lemma 8.2. Suppose π = N(0, σ2
oId), `(·, ·) is the squared-loss, and we have observed

(x1, y1), · · · , (xt, yt). If Φ ∈ Rt×d denotes the matrix

Φ =



φ(x1)

φ(x2)

...

φ(xt)


.

then πt is N(µ̂, Σ̂) where Σ̂ =
(

2βΦTΦ + 1
σ2
o
Id

)−1

and µ̂ = 2βΣ̂ΦTy.

Proof. By expanding the form of N(µ̂, Σ̂), we first see

N(w | µ̂, Σ̂) ∝ exp

(
−1

2
(w − µ̂)T Σ̂−1(w − µ̂)

)
= exp

(
−1

2
wT Σ̂−1w − 1

2
µ̂T Σ̂−1µ̂+ wT Σ̂−1µ̂

)
∝ exp

(
−1

2
wT Σ̂−1w + wT Σ̂−1(2βΣ̂ΦTy)

)
= exp

(
−1

2
wT (2βΦTΦ +

1

σ2
o

I)w + 2βwTΦTy

)
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= exp

(
−β
(
wTΦTΦw − 2wTΦTy

)
− ‖w‖

2

2σ2
o

)

On the other hand, we have

πt(w) ∝ exp

(
−β‖y − Φw‖2 − ‖w‖

2

2σ2
o

)
= exp

(
−β
(
yTy + (Φw)TΦw − 2(Φw)Ty

)
− ‖w‖

2

2σ2
o

)
∝ exp

(
−β
(
wTΦTΦw − 2wTΦTy

)
− ‖w‖

2

2σ2
o

)

Thus πt = N(µ̂, Σ̂).

E.2 Proof of Lemma 8.6

Lemma E.1. There exists a constant c > 0 such that the random variable Ut = u(qt; πt−1)

satisfies

E[Ut | Ft−1] ≥ c πt−1(g∗)(1− πt−1(g∗))

for any round t where qt is the query shown to the user at time t and the expectation is

taken over the randomness of structural QBC.

Proof. Note that by the structural QBC strategy, the probability that q ∈ Q is selected is

proportional to ν(q)u(q; πt−1). This implies

E[Ut | Ft−1] =
Eq∼ν [u(q; πt−1)2]

Eq∼ν [u(q; πt−1)]
≥ Eq∼ν [u(q; πt−1)].

Now take νo = minq∈Q ν(q) and Ao = maxq∈Q |A(q)|. Then for any g ∈ G s.t. g 6= g∗,

there exists some a ∈ A such that g(a) 6= g∗(a) which implies

Eq∼ν [d(g, g∗; q)] =
∑
q∈Q

ν(q)

|A(q)|
∑
a∈A(q)

1[g(a) 6= g∗(a)] ≥ νo
Ao
.
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Then we have

E[Ut | Ft−1] ≥ Eq∼ν [u(q; πt−1)]

= Eg,g′∼πt−1 [Eq∼ν [d(g, g′; q)]]

=
∑
g,g′

πt−1(g)πt−1(g′) [Eq∼ν [d(g, g′; q)]]

≥ πt−1(g∗)
∑
g 6=g∗

πt−1(g)Eq∼ν [d(g, g∗; q)]

≥ νo
Ao
πt−1(g∗)(1− πt−1(g∗)).

Lemma 8.6. Suppose that G is finite and the user’s feedback obeys Assumption 8.2. Then

there exists a constant c > 0 such that for every round t

E[1− γt | Ft−1] ≥ c πt−1(g∗)2(1− πt−1(g∗))2

where γt = πt−1({g ∈ G : g(at) = g∗(at)}), at is the atom the user provides feedback on, and

the expectation is taken over the randomness in structural QBC and the user’s response.

Proof. Suppose that structural QBC shows the user query qt. Let ε > 0 and Ut = u(qt; πt−1)

be the random variable denoting the uncertainty of qt. For an atom a ∈ A(qt), we say that

a is known if

πt−1({g : g(a) 6= g∗(a)}) < εUt.

And we say that a is unknown otherwise. By a union bound, we have

πt−1({g : g(a) 6= g∗(a) for some known a ∈ A(qt)}) ≤ ε Ut|A(qt)|.

By Lemma 8.1, we have that for any a ∈ A

πt−1({g : g(a) 6= g∗(a)}) ≥ 1

2
u(a; πt−1).
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Moreover, there is some unknown atom a∗ ∈ A(qt) with u(a∗; πt−1) ≥ Ut, implying

πt−1({g : g(a∗) 6= g∗(a∗)}) ≥ 1

2
u(a∗; πt−1) ≥ Ut

2
.

So with probability at least Ut
(

1
2
− ε|A(qt)|

)
, a random draw from πt−1 gets all the known

atoms correct and some unknown atom incorrect. Then conditioned on this event occurring,

the user has probability at least po of correcting some unknown atom. So taking ε = 1
4Ao

where Ao = max |A(q)|, we have

E [1− γt | Ft−1] = E [πt−1({g : g(at) 6= g∗(at)}) | Ft−1]

= E [E [πt−1({g : g(at) 6= g∗(at)})|u(qt; πt−1) = Ut] | Ft−1]

≥ E
[
U2
t po

16Ao

∣∣∣∣Ft−1

]
≥ coE[U2

t | Ft−1] ≥ coE[Ut | Ft−1]2

where co = po/(16Ao) is a positive constant. But by Lemma E.1, we know E[Ut] ≥

c πt−1(g∗)(1− πt−1(g∗)) for some constant c > 0. The lemma follows by substitution.

E.3 Proof of Lemma 8.10

Lemma E.2. Suppose G is finite. For each round t, the query qt under the structural

QBC strategy satisfies E[var(qt; πt−1) | Ft−1] ≥ c πt−1(g∗)(1− πt−1(g∗)).

Proof. For a fixed query q, the probability that q gets chosen in round t can be written as

Pr(query q | Ft−1) =
ν(q) var(q; πt−1)∑

q′∈Q ν(q′) var(q′; πt−1)
=

ν(q) var(q; πt−1)

Eq′∼ν [var(q′; πt−1)]
.

Taking the expectation of var(q; πt−1) over this distribution gives us

E[var(qt; πt−1) | Ft−1] ≥ Eq∼ν [var(q; πt−1)2]

Eq∼ν [var(q; πt−1)]
≥ Eq∼ν [var(q; πt−1)].
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Now take νo = minq∈Q ν(q) and

do = min
g 6=g∗

max
q∈Q,a∈A(q)

‖g(a)− g∗(a)‖2

|A(q)|
.

For any particular a ∈ A,

var(a; πt−1) =
1

2

∑
g,g′∈G

πt−1(g)πt−1(g′) ‖g(a)− g′(a)‖2

≥ πt−1(g∗)
∑
g 6=g∗

πt−1(g) ‖g(a)− g∗(a)‖2

Which implies

Eq∼ν [var(q; πt−1)] =
∑
q∈Q

ν(q)

|A(q)|
∑
a∈A(q)

var(a; πt−1)

≥
∑
q∈Q

ν(q)

|A(q)|
∑
a∈A(q)

πt−1(g∗)
∑
g 6=g∗

πt−1(g)‖g(a)− g∗(a)‖2

= πt−1(g∗)
∑
g 6=g∗

πt−1(g)
∑
q∈Q

ν(q)

|A(q)|
∑
a∈A(q)

‖g(a)− g∗(a)‖2

≥ νodoπt−1(g∗)(1− πt−1(g∗))

Lemma 8.10. Suppose G is finite and Assumption 8.2 holds. Then there exists a constant

c > 0 such that for any round t

E[var(at; πt−1) | Ft−1] ≥ c πt−1(g∗)3(1− πt−1(g∗))2

where at is the atom the user provides feedback on and the expectation is taken over both

the randomness of user’s response and the randomness of structural QBC.

Proof. We first relate the variance of an atom to the probability of a mistake on that atom.
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To this end, recall

D = max
a∈A

max
g,g′∈G

‖g(a)− g′(a)‖2.

Moreover, since G and A are finite, we have the set of realizable values S = {g(a) : a ∈

A, g ∈ G} is also finite. Let do > 0 denote the minimum squared distance between any

two elements of S:

do = min
s,s′∈S:
s 6=s′

‖s− s′‖2.

For any atom a ∈ A, we have

1

D
var(a; πt−1) ≤ πt−1({g : g(a) 6= g∗(a)}) ≤ var(a; πt−1)

do πt−1(g∗)
.

To see the left-hand inequality, we can work out

πt−1({g : g(a) 6= g∗(a)}) ≥ 1

2
u(a; πt−1)

=
1

2

∑
g,g′

πt−1(g)πt−1(g′)1[g(a) 6= g′(a)]

≥ 1

2

∑
g,g′

πt−1(g)πt−1(g′)
‖g(a)− g′(a)‖2

D

=
1

D
var(a; πt−1)

To see the right-hand inequality, notice

var(a; πt−1) =
1

2

∑
g,g′

πt−1(g)πt−1(g′)‖g(a)− g′(a)‖2

≥ πt−1(g∗)
∑
g

πt−1(g)‖g(a)− g∗(a)‖2

≥ πt−1(g∗)
∑
g

πt−1(g) do 1[g(a) 6= g∗(a)]
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≥ do πt−1(g∗)πt−1({g : g(a) 6= g∗(a)})

Now suppose that structural QBC shows the user query qt. Let ε > 0 and Vt = var(qt; πt−1)

be the random variable denoting the variance of qt. For an atom a ∈ A(qt), we say that a

has low variance if

var(a; πt−1) < εVt.

And we say that a has high variance otherwise. Then by a union bound, we have

πt−1({g : g(a) 6= g∗(a) for some low variance a ∈ A(qt)}) ≤
εVt|A(qt)|
doπt−1(g∗)

.

On the other hand, there is some atom a ∈ A(qt) with at least average variance, so that

πt−1({g : g(a) 6= g∗(a)}) ≥ var(a; πt−1)

D
≥ Vt

D
.

So with probability at least Vt

(
1
D
− ε|A(qt)|

doπt−1(g∗)

)
, a random draw from πt−1 gets all the low

variance atoms correct and some high variance atom incorrect. Then conditioned on this

event occurring, the user has probability at least po of correcting some high variance atom.

So taking ε = doπt−1(g∗)
2DAo

where Ao = maxq |A(q)|, we have

E [var(at; πt−1) | Ft−1] = E [E [var(at; πt−1)|var(qt; πt−1) = Vt] | Ft−1]

≥ E
[
V 2
t poε

2D

∣∣∣∣Ft−1

]
≥ coπt−1(g∗)E[V 2

t | Ft−1] ≥ coπt−1(g∗)E[Vt | Ft−1]2

where co = dopo
4D2Ao

is a positive constant. But by Lemma E.1, we know E[Vt | Ft−1] ≥

c πt−1(g∗)(1− πt−1(g∗)) for some constant c > 0. The lemma follows by substitution.
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