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A B S T R A C T

This is an update to PII: S2665963820300178.
We present an updated version v2.0 of our minimal surface generator MiniSurf v1.0, that creates triply

periodic minimal surface (TPMS) computer-aided design (CAD) files for both finite element modeling and
additive manufacturing. Besides making the GUI more user-friendly, in this new version we significantly
improve the mesh quality of the generated CAD files by incorporating a mesh smoothing feature. With this
new smoothing feature, MiniSurf v2.0 can now produce high quality CAD files for more accurate finite element
modeling and more precise additive manufacturing.
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Fig. 1. Display of MiniSurf v2.0 GUI with the smoothing feature highlighted in red.

. Introduction

One of the major limitations we discussed in MiniSurf v1.0 is the
eneration of CAD files with suboptimal meshes (long and narrow
riangular facets resulting from the meshing of very complex topologies
ased on the 3D uniform grid points) [1]. The low-quality mesh often
esults in the inaccurate prediction of the local stress field (undesirable
specially when the peak stress in an implant is estimated [2] or
hen a local failure criterion is used such as in the case of the frac-

ure toughness modeling of cellular materials [3]) in a finite element
imulation and the poor manufacturing of 3D printed parts (missing
aces and geometric imprecision). To address this issue, we added the
esh smoothing feature that was previously used to obtain the smooth

pinodal shell-based structures [4–7].

. Smoothing algorithm and feature

The mesh smoothing algorithm is based on the Laplacian smoothing
etailed in [8] and briefly described below:

′
𝑗 =

1
𝑁

𝑁
∑
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where N is the total number of the neighboring nodes i, each of which
connects to a mesh node j by a single mesh edge; 𝑥′𝑗 , 𝑦′𝑗 , and 𝑧′𝑗 are
he new x, y, and z coordinates of the mesh node j found by taking the
verage of 𝑥𝑖, 𝑦𝑖, and 𝑧𝑖, the current x, y, and z coordinates of nodes i
espectively.

To preserve the periodicity of the generated TPMS mesh, the Lapla-
ian smoothing is only applied to the interior mesh nodes, so the
oundary nodes remain unchanged. The smoothing algorithm is incor-
orated in the smoothing push-button in the left control panel of the
UI as shown in Fig. 1. Note that every time the button is pushed,

t is equivalent to applying equation (2.1), (2.2) and (2.3) six times
this has been found in general to produce an optimal balance between
he smoothness and shrinkage of a given mesh) as shown in Fig. 2.
he mesh smoothing can be executed iteratively to the generated
riply periodic minimal surface (TPMS) mesh at user’s discretion. The
moothing algorithm is also parallelized (currently set to six processors
r less depending on its availability) for the efficient computation of
he smoothed mesh. Furthermore, we decouple the visualization and
he CAD file generation in the GUI with the addition of the ‘‘Export
AD’’ button as shown in Fig. 1 providing a more convenient, intuitive,
nd user-friendly experience.

3. New advantages and impact overview

We previously showed that MiniSurf v1.0 can efficiently create CAD
(a mesh made of many triangular facets) files of 19 common TMPSs for
finite element modeling and additive manufacturing. These TPMSs have
been studied extensively in multidisciplinary fields [9–17] due to their
large surface area with very uniform double curvatures (directly related
to the quality of underlying mesh [18–20]); hence it is extremely
essential to ensure that the generated CAD files have high quality
meshes consisting of triangular facets with aspect ratio close to one (not
realizable in MiniSurf v1.0).

MiniSurf v2.0 is built to address this challenge by incorporating
the Laplacian smoothing [18,21] feature detailed in Section 2. We
emphasize the advantages of MiniSurf v2.0 over v1.0 as follows: (1)
Users can control the smoothness of the generated mesh and hence
the underlying mesh curvatures. (2) The mesh smoothing is highly
parallelized (up to six processors by default). A finely meshed surface
(300 × 300 × 300 triangular facets) can be smoothed under three
seconds. (3) Most importantly, the generated TPMS CAD files now
have high quality mesh for more accurate finite element modeling
and more precise additive manufacturing. MiniSurf v2.0 is currently
being used in the following ongoing projects: (a) Whipple shield design
— SPH modeling of hypervelocity impact on sandwiched TPMSs. We
replace the traditional whipple shield design (a front bumper and
a back plate) with the sandwiched primitive TPMS (smoothed and
generated by MiniSurf v2.0). We then model the hypervelocity impact
of a space debris (represented by a sphere projectile traveling at the
speed of 6 km/s) using smoothed particle hydrodynamics (following
similar procedures in [22]). (b) Fracture toughness of 3D cellular
materials — minimal surface-based versus strut-based topologies. We
investigate the mode-I fracture toughness of primitive TPMS (smoothed
and created by MiniSurf v2.0), octet, and cubic lattices by performing
finite element calculations of the J-integral on a single-edge-notch-bend
(SENB) specimen (the numerical approach is detailed in [3]).

We expect MiniSurf v2.0 to be impactful in multidisciplinary fields
just as the MiniSurf v1.0 given the recent growing interest in building
new multifunctional materials with TPMS topologies. Furthermore,
with high quality CAD files (smoothed and generated by MiniSurf v2.0)
researchers can now make more accurate finite element predictions and
more precise prototyping to better design the materials.

4. Conclusion

In this work, we added the mesh smoothing functionality based on
the Laplacian smoothing to our previously developed software MiniSurf.
TPMS CAD files can now be efficiently created with a user-controlled
smooth mesh for more accurate finite element modeling and sound
2
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Fig. 2. Illustration of (a) unsmoothed gyroid mesh and (b) smoothed gyroid mesh with the zoom-in region shown in the red rectangular box.

additive manufacturing. In the future, we will continue to tackle the
remaining limitations mentioned in MiniSurf v1.0 [1]. Furthermore, we
will regularly add new TPMS to our existing library.
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