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SUMMARY

This protocol explains the pipeline for condition-dependent metabolite yield
prediction using Transcription Regulation Integrated with MEtabolic Regulation
(TRIMER). TRIMER targets metabolic engineering applications via a hybrid model
integrating transcription factor (TF)-gene regulatory network (TRN) with a
Bayesian network (BN) inferred from transcriptomic expression data to effec-
tively regulate metabolic reactions. For E. coli and yeast, TRIMER achieves reli-
able knockout phenotype and flux predictions from the deletion of one or
more TFs at the genome scale.
For complete details on the use and execution of this protocol, please refer to
Niu et al. (2021).

BEFORE YOU BEGIN

A metabolic network model is a mathematical abstraction of all known biochemical reactions and

transmembrane transporters that occur within a living system for in silico computational predictions

of metabolic dynamic behavior (Yurkovich and Palsson, 2015). Such networks provide a comprehen-

sive view of all characterized metabolic processes by quantifying their metabolic reaction fluxes.

Many methods for constraint-based network reconstruction and analysis can be used to simulate re-

action fluxes through metabolic networks at the whole-genome scale (Bordbar et al., 2014). Among

these, flux balance analysis (FBA) is a well-known technique that adopts linear programming to pre-

dict steady-state fluxes. For more accurate and robust prediction of target metabolic behavior under

different conditions or contexts (e.g., for mutant strains due to gene deletions in metabolic engi-

neering), these metabolic network models can also be integrated with a set of genetic regulatory

rules, which can be modeled as a transcriptional regulatory network involving transcription factors

(TFs) that may regulate metabolic reactions. Transcriptional regulation is often integrated via

‘‘transcriptional regulatory constraints’’ with various heuristics in metabolic network models for

flux predictions (Covert and Palsson, 2003; Shlomi et al., 2007; Covert et al., 2008).

With the advent of high-throughput profiling technologies, genome-scale gene expression profiles

can be easily obtained to help infer genetic regulatory rules. The recently developed hybrid model,

Transcription Regulation Integrated with MEtabolic Regulation (TRIMER) (Niu et al., 2021), moti-

vated by PROM (Chandrasekaran and Price, 2010), employs a Bayesian Network inferred from the

gene expression data, built with the prior knowledge on regulatory relationships between TFs

STAR Protocols 3, 101184, March 18, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and genes to probabilistically model TF-gene regulatory rules. The resulting BN can be used to infer

the joint probabilities in more general forms of Pr(gene(s)|TF(s)) than the marginal probabilities in

forms of Pr(gene|TF) in PROM. These probabilities can subsequently be used to adjust the corre-

sponding reaction flux constraints in the FBA formulation. This flexible probabilistic modeling of

TF-gene regulatory relations enables modeling of the global effect of multiple TFs over their regu-

lons, thereby better predicting themetabolic behaviors under different conditions, particularly when

the focus is to predict fluxes with different TF Knockout (KO) strategies.

This protocol provides step-by-step explanations of applying TRIMER that integrates both TF-gene

regulations andmetabolic reaction regulations for in silico condition-dependent metabolic behavior

modeling targeted for tasks such as knockout phenotype and knockout flux prediction. Specifically,

we focus on analyzing genome-scale metabolic network models (e.g., IAF1260 for E. coli or IMM904

for S. cerevisiae) to predict metabolic fluxes and phenotypes of TF knockout strains for E. coli and

yeast, to help identify knockout strains that overproduce the desired metabolites. The developed

TRIMER pipeline can be extended for other organisms when both the corresponding metabolic

reaction network model and transcriptomic expression data are available.

The main steps of the TRIMER pipeline comprise (1) learning a Bayesian network from gene expres-

sion data, (2) constructing flux constraints in predicting formulation, and (3) predicting metabolic

fluxes. We will first present the necessary preparation steps and data requirements before applying

TRIMER. Following this, we describe the critical steps for using TRIMER to predict metabolic fluxes

under different TF KO conditions. Before introducing detailed implementation steps, we first list the

corresponding input data, intermediate output files at each step, and final output results for TRIMER,

as listed in Table 1, with corresponding examples in the TRIMER GitHub repository.

Installation of dependent software

Timing: 30–60 min

Table 1. Examples of data inputs and outputs for TRIMER

Inputs

iAF1260.mat Metabolic model

Expressionname.mat gene names

Expressionid.mat ordered locus IDs of corresponding gene names

Regulator.mat transcriptional factors

Target.mat metabolic genes

Regulatornum.mat indices of transcriptional factors

targetnum.mat indices of metabolic genes

expression.mat gene expression data, from microarray as in our examples

ko_tf.mat transcriptional factors of interest

growth_pos.mat Indices of metabolic reactions of interest

Outputs

tegulator_f.mat transcriptional factors filtered by KS test

target_f.mat metabolic genes filtered by KS test

data.mat normalized and binarized gene expression data

bn_learn.bif learned Bayesian network

rxn_affected_ko.mat lists of affected metabolic reactions for considered conditions

rxn_prob_ko.mat lists of regulatory values for affected metabolic reactions

lb_est.mat lists of new lower bounds for affected reactions

ub_est.mat lists of new upper bounds for affected reactions

vmax.mat minimum/maximum fluxes estimated for each metabolic reactions

f.mat flux solutions of reactions of interest returned from solvers.

v.mat flux solutions of all the reactions returned from solvers

status.mat status of solvers

ll
OPEN ACCESS

2 STAR Protocols 3, 101184, March 18, 2022

Protocol



TRIMER package requires both MATLAB and R environments (for specific detailed requirements

please refer to the materials and equipment section below). When writing this protocol, we have

tested TRIMER with MATLAB 2016 and R version 4.0.3 in the Windows 10 Operating System. In

TRIMER, mathematical programming problems are constructed and solved to make predictions

about metabolic behaviors. Currently, TRIMER supports two solvers, CPLEX and GLPK, designed

for large-scale linear programming (LP), mixed integer programming (MIP), and other optimization

formulations. TRIMER also utilizes the bnlearn (Nagarajan et al., 2013) package, an R package for

learning the graphical structures of Bayesian networks (BNs), estimating model parameters, and per-

forming inference based on the learned network models.

1. Install CPLEX and connect it to MATLAB

a. Download CPLEX via https://www.ibm.com/analytics/cplex-optimizer, and install the pack-

age.

b. Add the CPLEX directory to your MATLAB path:

2. (Optional) Install and configure GLPK via either of the two ways described below:

a. Install GLPKMEX, a MATLABMEX interface of GLPK . Instructions of installation are available

at https://github.com/RoyiAvital/GLPKMEX

b. Install COBRA toolbox, which provides a MATLAB MEX interface of GLPK

i. Installation instructions of COBRA can be accessed via this link: https://opencobra.github.

io/cobratoolbox/stable/

ii. Add the GLPK directory to your MATLAB path:

3. Install bnlearn in the R environment. Instructions can be accessed via this link: https://www.

bnlearn.com/

CRITICAL: Only approximate inference methods are available in bnlearn. Install the gRain

package first if exact inference over Bayesian networks is desired. Instructions about

installing gRain are accessible at https://people.math.aau.dk/�sorenh/software/gR/ .

Preparation of metabolic model

Timing: 20–40 min

Any organism with available gene expression data, a TF-gene interaction list and a metabolic model

in the standardized data structure can be analyzed by TRIMER. For metabolic models, TRIMER re-

quires them to be a MATLAB structure array and organized in the same way as required by the

COBRA Toolbox, which is a popular module for constraint-based reconstruction and analysis of

metabolic networks in MATLAB (Heirendt et al., 2019) (a typical metabolic model is shown in

Figure 1).

4. While many metabolic model databases are publicly available online, the default choice in

TRIMER is the Biochemical Genetic and Genomic (BiGG) knowledge-base where metabolic

models in the COBRA format are provided. The database is accessible at: http://bigg.ucsd.

edu/models/.

>addpath yourCOShome\cplex\matlab\x64_win64

>addpath yourCOShome\cobratoolbox\external\base

\solvers\glpkmex.

ll
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Before using the metabolic models, users are suggested to run the function cobra_to_tri-

mer.m, which checks the contents of COBRA model and converts it to the appropriate form

for the CPLEX or GLPK solver. [Troubleshooting 1]

a. In TRIMER, an exemplary model for E.coli is provided in the directory:

b. Field .grRules and .rules in the MATLAB array shown in Figure 1 correspond to the same

set of GPR (Gene-Protein-Reaction) rules, written in two different forms. Illustrative examples

are shown in Figure 2. Only GPR rules written in the way of the right column in Figure 2 can be

processed by TRIMER. In field .rules, gene names are replaced by indices in the form of

x(number), where the numbers represent the ordering of gene names contained in field

.genes. In addition, logical operators are replaced by recognizable symbols in MATLAB. In

case field .rules is missing, function cobra_to_trimer.m will try to create it based on

field .genes and .grRules.

5. There are also many public databases of gene expression data and annotated TF-gene pairs.

When needed, interactions obtained from inference methods, such as GENIE3 (Huynh-Thu et al.,

2010), TIGRESS (Haury et al., 2012), or Inferelator (Bonneau et al., 2006), can also be used to extend

the interaction list. For this protocol, the authors use EcoMAC datasets (Carrera et al., 2014) at

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299492/. The TF-gene pairs in EcoMAC are ob-

tained from the RegulonDBv8.1 database at http://regulondb.ccg.unam.mx/. Gene expression

should be normalized and binarized, about which more details can be found in the step-by-step

method details section. In TRIMER, exemplary binarized gene expression and TF-gene list can be

found in the following two file paths:

>TRIMER\source_data\Ecoli_model_EcoMac.mat

Figure 1. A MATLAB data structure representing the IAF1260 metabolic model for E. coli

>TRIMER\source_data\Ecoli_model_EcoMac.mat,

>TRIMER\source_data\EcoMac_data_binary.mat.
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6. Constructing a TIGER-TRIMER (Jensen et al., 2011) hybrid model requires a Boolean regulatory

network, a demo model is provided in the path:

The model is converted from the Boolean network model: iMC1010. The conversion code is in the

path:

The Boolean model iMC1010 is accessible at this link: https://systemsbiology.ucsd.edu/

InSilicoOrganisms/Ecoli/EcoliRegulations.

Configure mathematical programming solver

Timing: 1–3 min

A mathematical programming solver should be specified and configured before metabolic analysis.

Following TIGER (Jensen et al., 2011), TRIMER builds a customized MATLAB CMPI (Common Math-

ematical Programming Interface) for metabolic flux prediction based on the data structure detailed

above. This CMPI defines a consistent and friendly interface for mathematical programming solvers,

including GLPK and CPLEX for now.

7. Demo code for setting up CPLEX by CMPI is shown below. Users can resort to the MATLAB doc-

uments of CMPI for more details about its usage.

8. Demo code for how to set up the solvers is shown below:

>TRIMER\source_data\boolean.mat.

>TRIMER\boolean.m.

>options.Display=’off’;options.MaxTime=100;

>cmpi.set_solver(’cplex’);

>cmpi.set_option(options);

Figure 2. Examples of GPR rules contained in the E. coli IAF1260 model in two forms
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KEY RESOURCES TABLE

MATERIALS AND EQUIPMENT

� Hardware and operating systems: The authors used a Dell Inspiron 7370 computer with the Micro-

soft Windows 10 operating system. This computer has a 500 GB hard drive, an Intel Core i5-8250U

CPU @ 1.60 GHz and 8 GB RAM. However, any reasonably up-to-date computer may be used to

run all the code and any operating system can be used - Windows, Mac OS, or Unix/Linux.

� R software and required packages: The required packages should be installed for the first time

when you run TRIMER. The authors used R (v4.0.3) and the following packages at the indicated

versions when writing this protocol:

� bnlearn (v4.6.1)

� dplyr (v1.0.6)

� parallel (v4.0.3)

� purrr (v0.3.4)

� R.matlab (v3.6.2)

� binaryLogic (0.3.9)

� gRain (1.3.6)

� MATLAB software and required toolboxes: The authors used MATLAB 2016b and the following

packages at the indicated versions when writing this protocol:

� COBRA (v2020)

� GLPKMEX (v4.62)

� Mathematical programming solver software: The authors used CPLEX version 12.8.0.

STEP-BY-STEP METHOD DETAILS

In this section, a comprehensive step-by-step protocol is laid out for applying TRIMER to a typical

metabolic model of E.coli iAF1260 based on the EcoMac dataset. Interconnections of the main

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw gene expression data (Carrera et al., 2014) https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4299492/

Gene interaction list database RegulonDB v8.1 http://regulondb.ccg.unam.mx/

Other

Dell Inspiron 7370 Desktop with
Windows 10 OS

Dell NA

Software and algorithms

MATLAB MathWorks https://www.mathworks.com/
products/matlab.html

R The Comprehensive
R Archive Network

https://cran.r-project.org/

TRIMER (Niu et al., 2021) https://doi.org/10.5281/zenodo.5880036

Bnlearn (Nagarajan et al., 2013) https://www.bnlearn.com

Dplyr The Comprehensive
R Archive Network

https://cran.r-project.org/web/
packages/dplyr/

Parallel Part of R NA

purr The Comprehensive
R Archive Network

https://cran.r-project.org/web/
packages/purrr/index.html

R.matlab The Comprehensive
R Archive Network

https://cran.r-project.org/web/
packages/R.matlab/index.html

binaryLogic The Comprehensive
R Archive Network

https://cran.r-project.org/web/
packages/binaryLogic/index.html

gRain The Comprehensive
R Archive Network

https://cran.r-project.org/web/
packages/gRain/index.html

GLPKMEX GitHub repository https://github.com/blegat/glpkmex
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computational modules of TRIMER are shown in Figure 3. All steps described are case-specific, but

they can easily be adapted to any gene expression and TF-gene interaction dataset or metabolic

model that the users wish to analyze. All the implemented MATLAB functions in TRIMER are well

documented. Users can resort to MATLAB’s help command for more details about function usages.

Demo MATLAB code illustrating the complete procedure of applying TRIMER for biomass and

indole flux prediction with TF-knockouts are accessible at the following paths:

Construct TF-regulated gene network (TRN)

Timing: 30–60 min

We call the set of TF-gene regulations as TF-Regulated gene Network (TRN). In TRIMER, TRN

is modeled by a Bayesian network, which is trained from pre-binarized data since TRN concerns

‘on\off’ states of TFs and genes. Step 2 below can be skipped if users just want to model TRN in

the way of PROM (The TRN in PROM is just the filtered TF-gene list).

1. (Under MATLAB environment) Gene expression data and TF-gene interaction list should be

preprocessed before being used to learn a Bayesian network. Running the function data_

preprocessing.m in TRIMER, the following steps will be completed:

>TRIMER\flux_biomass.m,

>TRIMER\flux_indole.m.

Figure 3. TRIMER workflow

A workflow summarizing the interconnections between the main computational modules in TRIMER (Modified based

on two figures in the original publication (Niu et al., 2021), which is an open access article under the CC BY-NC-ND

license: http://creativecommons.org/licenses/by-nc-nd/4.0/).
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a. Quantile normalizes the raw expression data.

b. Binarize the normalized data given a threshold. When writing this protocol, the authors chose

the threshold to be 0.33 as suggested in the original PROM paper. In practice, the range of

threshold is determined by evaluating PROM’s performance. As PROM is computationally effi-

cient and supported in TRIMER, the best threshold range for PROM can be chosen as the

threshold for TRIMER.

c. Perform Kolmogorov-Smirnov (KS) test over expression data for each TF-gene pair and prune

out the ones that are tested to be independent.

d. Here is an example of using data_preprocessing.m:

CRITICAL: The binarization threshold is a very important hyperparameter, affecting TF-

gene pair selection and thereafter Bayesian network modeling of TRN.

2. (Under R environment) In TRIMER, bnlearn is used to learn Bayesian networks based on binary

expression data and TF-gene interaction lists. Network learning is comprised of two steps: struc-

ture learning and parameter fitting:

a. Finding the global optimal structure by checking all possible directed acyclic graphs (DAGs) is

computationally expensive as the cost grows exponentially with the number of nodes. Two

structure learning strategies are implemented in TRIMER: Chow-Liu tree algorithm and

Tabu search.

i. Chow-Liu tree algorithm gives the optimal tree structure.

ii. Tabu search is a greedy searching method to learn general network structure. To further

reduce the computation cost, TRIMER requires TF-gene pair as the searching space of

Tabu search.

b. Demo code for learning a Bayesian network using the EcoMac dataset is provided at the

following path:

c. The learned network is saved in the .bif format and will be used for further metabolic analysis in

MATLAB. More details about .bif format can be found in the documents provided by the

bnlearn package. A demo model is provided at the following path:

Infer conditional probabilities

Timing: 3–10 min

Once we have learned a BN, we canmake inference of all the relevant conditional probabilities which

are in the form of Pr(gene(s)|TF(s)) and identified based on the TF-gene interaction list for one or

>TRIMER\BN_Module\bnlearn.R.

>TRIMER\BN_Module\learned_network.bif

>%expression ->microarray data

>%regulator,targets ->TF-gene pair list

>%expressionid -> list of TF/genes name

>[expression_b,regulator_f,targets_f]=data_preprocessin

g(expression,expressionid,regulator,targets,’thresh_value’,0.33);
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multiple TFs. These probabilities are then used to compute the regulatory values used for building

new flux constraints in the metabolic reaction models.

3. Function prob_estimation_R.m allow two ways for computing regulatory values based on

conditional probabilities inferred from BNs (Please refer to the TRIMER paper, , for more detail).

Given a set of conditions where TF(s) are knocked out, this function returns the indices of reactions

affected and the corresponding regulatory values under each KO condition considered. [Trouble-

shooting 2]

a. Users can choose either of the two ways by setting the argument ‘method’ to be ‘CN’ or

‘BN’, corresponding to the one adopted in PROM and the new one supported by TRIMER.

It can happen that for a reaction, many genes controlling this reaction are affected simulta-

neously. This may cause computation problems when using the second way for probability

inference. [Troubleshooting 3]

b. The default choice of performing inference over Bayesian networks is an approximate infer-

ence method called logic sampling (please resort to bnlearn documents for more details).

For exact inference, package gRain (Højsgaard, 2012) is required besides bnlearn. It should

be pointed out that exact inference may be computationally infeasible if the scale of Bayesian

network model is large (e.g., hundreds of nodes). [Troubleshooting 4]

c. TRIMER relies on the annotated TF-gene pairs (also called TF-target interaction list) to deter-

mine the affected genes when one TF or multiple TFs are knocked out. Here the TF-gene pair

list filtered by KS test during step 1 is utilized again.

d. Here is the demo code for using prob_estimation.m. (exemplary results are shown in Fig-

ures 4 and 5):

>%R_path->the directory of R software installed in

your computer

>%R_path->the directory of R functions of TRIMER

package

>%R_model_path->the path of a BN model saved in .bif

format.

>%ko_tf ->knock-out conditions. (list of TFs)

>%rxn_affected_ko -> the list of reaction affected

under each

>%KO condition.

>%rxn_prob_ko -> the list of conditional

probabilities for reactions affected under each KO

condition.

>R_path=[’"C:\Program Files\R\R-

4.0.3\bin\Rscript.exe"’];

>Rfun_path=[pwd,’\BN_Module’];

>Rmodel_path=[pwd,’\learned_network.bif’];

>[rxn_affected_ko,rxn_prob_ko]=prob_estimation_R(trim

er,ko_tf,regulator,targets,R_path,Rmodel_path,’Rfun_path’,Rfun

_path,’mode’,’BN’);
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Optional: TRIMER supports users to compute the conditional probabilities by relative

frequencies of TF-gene state pairs as in PROM by calling the function prob_estimation.m.

Construct transcriptional constraints

Timing: 1–5 min

With the list of affected genes and the associated regulatory values, new flux constraints can be

derived for each TF KO condition. In this way, regulatory relationships between TFs and genes

are integrated into predicting formulations (e.g., FBA).

4. Regulatory flux constraints are constructed by calling the function regulatory_bound.m. New

flux constraints are obtained by multiplying the regulatory values computed from inferred

conditional probabilities in the previous major step with the max/min flux values estimated via

flux variability analysis (FVA) (Mahadevan and Schilling, 2003). For stability, flux constraints

with values smaller than a threshold value (e.g., 10-6 ) set by users are treated as zero.

5. Demo code for building new flux constraints is shown below:

6. TRIMER allows users to refine the regulatory flux bounds by calling the function regulatory_-

bound.m. Setting a minimum growth rate (biomass flux) requirement, this function returns the

minimum set of regulatory flux constraints that cannot be satisfied when finding a feasible solu-

tion. This helps users to remove or adjust the bounds that over-constrained metabolic models.

7. Demo code for flux constraint refinement is shown below:

>% Threshold value is set to be 1e-6

>% lb_est/ub_est -> constructed flux bounds

>% vmax -> maximum/minimum flux values estimated by FVA

>[lb_est,ub_est,vmax]=regulatory_bound(trimer,ko_tf,rxn_

affected_ko,rxn_prob_ko,’thresh’,1e-6);

Figure 4. An example list of affected metabolic reactions with the corresponding regulatory values for flux

constraints after running prob_estimation.m

>% the minimum growth rate is 0.1 times the Wildtype

rate

>% lb_est/ub_est -> constructed flux bounds

>% infeasible -> lists of reaction index
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Make flux predictions

Timing: 1–5 min

With constructed additional flux constraints for each KO condition, flux prediction can be made by

optimizing predicting formulations using either GLPK or CPLEX solver.

8. Three kinds of metabolic predicting formulations are implemented in TRIMER, including FBA,

sFBA, ROOM. sFBA denotes the formulation adopted in PROM. The main difference between

sFBA and FBA is that fluxes are constrained by soft bounds in sFBA instead of hard bounds in

the original FBA formulation. Users can easily implement these formulations by calling the func-

tion ko_prediction.m. [Troubleshooting 5]

9. Demo code for flux prediction is shown below:

10. Besides the three formulations, TRIMER provides a set of useful functions that allow users to

explore other formulations. Details about function usages can be found in their MATLAB help

documents. Figure 6 shows the data structure used to represent all flux constraints. In this pro-

tocol, the authors take the implementation of sFBA as an example to show how to use these

functions. The implementation can be achieved by the following steps:

>%f ->biomass(growth rate) predictions

>%v ->solutions (all reaction flux predictions)

>%states -> types of solution return by solvers

>[f,v,status]=ko_prediction(trimer,lb_est,ub_est,rxn_aff

ected_ko,vmax,’growth_pos’,growth_pos,’method’,’sfba’);

Figure 5. Intermediate displayed output when running the function prob_estimation.m

>[infeasible]=find_infeasible_constrain(trimer,lb_est,ub

_est rxn_affected,’obj_frac’,0.1);
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a. Add binary slack variables a and b:

b. Initialize bounds of a and b:

c. Add linear constraints: a+v>0 and v-b<0:

d. Initialize flux bounds:

e. Estimate the wild-type reaction fluxes:

f. Relax upper bounds of a and b to allow the fluxes of potentially affected reactions to exceed

its bounds:

>lna=T_linalg({{eye(nRxns),trimerS.rxns},{eye(nRxns),va

r_alpha}},’>’,trimer.lb(1:nRxns));

>lnb=T_linalg({{eye(nRxns),trimerS.rxns},{eye(nRxns),va

r_beta}},’<’,trimer.ub(1:nRxns));

>trimerS=add_matrix_constraint(trimerS,{lna,lnb},{’Alph

a_’,’Beta_’});

>trimerS=change_bound(trimerS,max(trimer.ub(1:nRxns)),’

u’,trimerS.rxns);

>trimerS=change_bound(trimerS,min(trimer.lb(1:nRxns)),

’l’,trimerS.rxns);

>%add new variable beta and alpha

>var_beta=map(@(x) [’Beta_’ x],trimer.rxns);

>var_alpha=map(@(x) [’Aplha_’ x],trimer.rxns);

>trimerS= add_column(trimer,var_alpha,’c’,0,0);

>trimerS= add_column(trimerS,var_beta,’c’,0,0);

>sol=fba(trimer); f0=sol.val;v0=sol.x(1:nRxns)

>ub_alpha(temprxnpos(v0(temprxnpos)<0))=max(trimer.ub(

1:nRxns));

>ub_beta(temprxnpos(v0(temprxnpos)>0))=max(trimer.ub(1

:nRxns));

>trimerS=change_bound(trimerS,ub_alpha,’u’ ,var_alpha)

;

>trimerS=change_bound(trimerS,ub_beta, ’u’,var_beta);
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g. Compute the penalties for exceeding upper/lower flux bounds:

h. Change the optimizing objective:

i. Replace the initial constraints with new regulatory constraints

j. Make predictions for TF-knockout conditions:

The data structures for constraint representations used in TRIMER are compatible with those

used in TIGER. Flux constraints constructed by TRIMER can be directly added into the data

structures in TIGER. This allows users to build the hybrid TRIMER-TIGER model where a part

of flux constraints is constructed by TRIMER and the other part can be constructed by TIGER.

This allows the modeling of the feedback effect from metabolites to genes. These feedback

regulations cannot be obtained from gene expression data and are often expressed as Bool-

ean rules. Demo code for using the TRIMER-TIGER model to predict flux phenotypes under

various growth conditions can be found at the following path:

EXPECTED OUTCOMES

Themain outcome of this protocol is to explain the procedure for using TRIMER to predict metabolic

behaviors with TF knockouts. Here we present an example of the pipeline applied to the metabolic

model for E. coli: iAF1260, following the workflow shown in Figure 3. The procedure begins with

>mthresh = 10^(-3); %for computation stability

>vv=abs(vm(temprxnpos));

>vv(vv<mthresh)=mthresh;

>vv=(kappa*(-1)*abs(f0))./ vv;

>weights_alpha(temprxnpos(v0(temprxnpos)<0)) =

vv(v0(temprxnpos)<0);

>weights_beta(temprxnpos(v0(temprxnpos)>0)) =

vv(v0(temprxnpos)>0);

>trimerS=change_obj(trimerS, weights_alpha, var_alpha);

>%lbg/ubg-> new regulatory constraints

>lnpl=T_linalg({{eye(nRxns),trimer.rxns},{eye(nRxns),va

r_alpha}},’>’,lbg);

>lnpu=T_linalg({{eye(nRxns),trimer.rxns},{eye(nRxns),va

r_beta}},’<’,ubg);

>trimerS=update_matrix_constraint(trimerS,{lnpl,lnpu},{

’Alpha_’,’Beta_’});

>sol=fba(trimerS);

>TRIMER\phenotype.m.
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learning a Bayesian network based on the gene expression data and TF-gene interaction list. Then

conditional probabilities can be inferred from the learned BN and used to compute the regulatory

values for affected reactions. Based on these regulatory values and maximum/minimum flux values

estimated by FVA, new flux bounds can be constructed and added to the flux prediction formula-

tions, such as FBA, sFBA, and ROOM. Finally, metabolic behaviors represented as changes of flux

values can be obtained by optimizing these formulations using CPLEX or GLPK. Exemplary data

including predicted biomass fluxes for E.coli and corresponding intermediate result like regulatory

values for affected reactions can be found at the following path:

While this example is case-specific, a similar procedure described in this protocol can be applied to

other organisms. Our code and step-by-step descriptions are intended to make the way of applying

TRIMERmore accessible to non-experts and to serve as a guide to other investigators for combining

in silico flux simulations with regulatory network modeling.

QUANTIFICATION AND STATISTICAL ANALYSIS

To evaluate the performance of metabolic predictions by TRIMER, Pearson Correlation Coefficient

(PCC) is used to evaluate the agreement between predicted fluxes and measured fluxes obtained

experimentally. If TF knockout strains are tested under multiple growth conditions, we suggest using

the normalized PCC, which is defined as the PCC between experimental flux ratios and predicted

flux ratios. The flux ratio is computed by normalizing the knockout mutant strain fluxes by the corre-

sponding wild-type flux in the corresponding growth condition. In this way, the normalized PCC re-

moves the influence due to different growth conditions and can better illustrate how well is the

knockout flux predictions (Table 2 show an example of predicted fluxes and experimentally

measured ground-truth fluxes with the corresponding PCCs and normalized PCCs).

>TRIMER\grRate_KO.m.

Figure 6. TRIMER metabolic network analysis data structure

The data structure used to represent flux constraints: Gray areas represent the information obtained from the

metabolic model; white areas represent the information of additional flux constraints added by users (Modified based

on two figures in the original publication (Niu et al., 2021), which is an open access article under the CC BY-NC-ND

license: http://creativecommons.org/licenses/by-nc-nd/4.0/).
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LIMITATIONS

In TRIMER, the set of affected genes for a set of TFs considered is determined by the annotated TF-

gene pair list. In this protocol, RegulonDB, a gold-standard TF-gene list with strong experimental

validation support is used. Such a validated list is important for achieving reasonable prediction per-

formances. However, it should be noted that the gold-standard interactions are not necessarily per-

fect and may contain false-positive interactions. Similarly, the low-confidence interactions identified

from other sources, for example by computational inferencemethods, could be either false positives

or true interactions that have not been validated yet (Chandrasekaran and Price, 2013). This means

that potential performance improvement can be still possible with better interaction lists (Wang

et al., 2017). However, currently there is no commonly-adopted procedure to refine TF-gene

interactions.

For metabolic network modeling, there is no standard operating procedure for determining the up-

take rates of nutrients represented by lower bounds of the corresponding reactions. In the absence

of in vivo uptake rates obtained from time-course metabolomic experiments, it is suggested to use

uptake rates measured under wild-type conditions, which may not achieve the best flux predictions.

TROUBLESHOOTING

Problem 1

Error occurs when using cobra_to_trimer.m to processGPR rules.

Potential solution

Only when GPR rules are in the standard form shown on the left column of Figure 2, running co-

bra_to_trimer.m is guaranteed to transform them into the MATLAB recognizable form as shown

on the right column of Figure 2. Otherwise, users are suggested to manually transform them into the

standard form first before running cobra_to_trimer.m.

Problem 2

Failure to call the R script for probability inference in the MATLAB environment.

Table 2. An example of predicted fluxes and experimentally measured ground-truth fluxes under different growth

conditions

Knock-out type Ground-truth Predicted

’WT+O2’ 0.71 0.708

’arcA+O2’ 0.686 0.61

’fnr +O2’ 0.635 0.547

’arcA fnr +O2’ 0.648 0.619

’appY +O2’ 0.636 0.708

’oxyR +O2’ 0.637 0.708

’soxS +O2’ 0.724 0.707

’WT -O2’ 0.485 0.481

’arcA -O2’ 0.377 0.071

’fnr -O2’ 0.41 0.371

’arcA fnr -O2’ 0.301 0.16

’appY -O2’ 0.476 0.481

’oxyR -O2’ 0.481 0.481

’soxS -O2’ 0.465 0.481

PCC - 0.906

Normalized PCC - 0.841

The unit of fluxes is mmol/gDCW/hr; fluxes are measured under aerobic and anaerobic conditions with glucose as the only

substrate (Covert et al., 2004); uptake rates of glucose and oxygen were set to be 8.5 and 14.6 mmol/gDCW/hr when making

predictions for the aerobic condition; and 20.8 and 0 14.6 mmol/gDCW/hr for the anaerobic condition, respectively.
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Potential solution

It is likely that the input R environment path is incorrect. Users should specify the installation path of

the R environment when using TRIMER. The installation path of the R environment varies depending

on the user’s computer setup. Here is an example to define the path:

Problem 3

The running time and requiredmemory to compute flux bound constraints for affected reactions is high.

Potential solution

TRIMER supports two ways of computing the flux bounds. The first relies on estimating probabilities

in the form of P(gene=1|TF=0) for each TF-gene pair, which is computationally efficient. In the sec-

ond way, the probabilities are estimated in the form of P(genes=p|TFs=0) and are inferred by consid-

ering each valid gene-TF state pair denoted by p. It is possible that for a given reaction, the number

of genes that affect this reaction and are also affected by the TF knockout is large. This means that

there are an exponentially growing number of probability values to estimate with respect to the

number of genes. Thus, implementing the second way can be computationally expensive. To avoid

this computational problem in TRIMER, the default setup to infer conditional probabilities is to

estimate P(gene=1|TF=0) for each TF-gene pair when the number of genes is higher than 12. Users

can change this setting based on their need and computer setups.

Problem 4

There may be two potential issues when running functions for inferring conditional probabilities: (1)

by multiple function calls for inference, the returned results are different; (2) the returned probability

values may not satisfy the normalization axiom.

Potential solution

Thedefault inferencemethod inbnlearn isby logic sampling, anapproximate inference algorithm, so that

the returned results by multiple separate function calls can be different and they may not add up to 1. If

these are observed, the user should increase the sample size of logical sampling to achieve more robust

estimates. The default choice of the sample size is 5000 x log10 (number of BN model parameters).

Problem 5

MATLAB crashes when using the ROOM formulation to predict fluxes for some knockout conditions.

Potential solution

MATLAB often freezes when mathematical programming solvers (CPLEX or GLPK) are unable to reach

optimality, and instead iterate the same solution repeatedly. It is a common phenomenon when solving

mix-integer programmingproblems, such as ROOM.To address this issue, users can change the settings

of the solvers to avoid this. For example, users can set themaximum running time of the solver to 10min.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be

fulfilled by the lead contact, Xiaoning Qian, xqian@ece.tamu.edu.

Materials availability

This study did not generate new unique reagents.

>R_path=[’"C:\Program Files\R\R-4.0.3\bin\Rscript.exe"’];

>[rxn_affected_ko,rxn_prob_ko]=prob_estimation_R(trimer,ko_tf,regulator,targets,R_path);
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Data and code availability

The developed package TRIMER is available online in an open-source GitHub repository: https://

github.com/niupuhua1234/TRIMER (https://doi.org/10.5281/zenodo.5880036). All the imple-

mented functions in TRIMER are documented with MATLAB’s help function. Code for the reported

experiments in this paper can also be found in the referred GitHub repository.
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