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Abstract

Time Representation and Reasoning over Knowledge Graphs

by

Ling Cai

Knowledge Representation and Reasoning (KRR) is an interdisciplinary research field

dedicated to the formalization and conceptualization of knowledge in order to enable

machines to solve tasks that require logical deduction/induction and to help people re-

trieve information from KR systems in more intuitive ways. Despite their success stories

in semantic search, semantic parsing, question answering, recommender systems, etc.,

one commonly neglected aspect is that the world is ever-changing, and thus, statements

about it may only hold during a certain time period. Unfortunately, temporal information

is often inaccurate, incomplete and of different types and forms (e.g., quantitative time

versus temporal relations). This poses great challenges to conventional rule-based rea-

soning systems (i.e., symbolic reasoning), which are deterministic, and unable to address

noise (errors or incompleteness). In order to address these challenges, this dissertation

focuses on developing new methods to represent and reason about temporal information

in a subsymbolic manner. Chapter 3 and Chapter 4 study how to subsymbolically rep-

resent various temporal primitives (i.e., time instants and intervals). Chapter 5 shifts

focus to qualitative temporal relations and presents a subsymbolic approach to perform

(spatio-) temporal reasoning. Chapter 6 investigates why subsymbolic approaches out-

perform conventional methods in terms of qualitative (spatio-) temporal reasoning, and

finds conceptual neighborhood of qualitative relations can be discovered by subsymbolic

approaches. Throughout the dissertation, I focus on how domain theory can be used in

subsymbolic methods and how theories can be discovered by subsymbolic methods.
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Chapter 1

Introduction

This chapter starts with introducing background materials about geographic informa-

tion representation, in particular temporal aspects. Then I will present limitations of

conventional symbolic methods when reasoning about time. This will motivate the pri-

mary research goal of this dissertation - how to devise new ways to represent and reason

about temporal information. Next, I introduce subsymbolic approaches popular in rep-

resentation learning (e.g., Machine Learning/Deep Learning techniques), which provide

potentials to tackle limitations in conventional methods for representation and reasoning

over temporal information. Finally, I propose four separate but related research questions

to achieve my primary research goal. The structure of this dissertation is outlined in the

end.
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Introduction Chapter 1

1.1 Background

The big research questions of GIScience are all centered around how to collect, rep-

resent, store, manipulate, analyze, visualize and understand geographic data and the

entities and processes they represent [1, 2]. The past decades have witnessed a massive

proliferation of studies on how to computationally represent rich phenomena such places,

events, cultural differences, and so on. Geospatial ontologies and geographic knowledge

graphs in particular have attracted substantial attention by practitioners as they facil-

itate conceptualization, data accessibility, and semantic interoperability [3, 4, 5]. Such

knowledge graphs also align closely to the rapidly increasing need for FAIR-based research

data management [6].

Knowledge graphs (KGs) as sets of statement structured knowledge about the world in

the form of machine understandable and reason-able triples (most often in form <subject,

predict, object>). By their interconnected nature, KGs usually contain various types of

information from different domains, e.g., providing cross-walks between geography, sup-

ply chains, disaster relief, and so forth. Geographic knowledge graphs typically appear

as a subgraph of such cross-domain KGs (such as Wikidata1 and DBpedia2). Concretely,

geographic information usually describes relationships between/within geographic con-

cepts and geographic entities, and thus can be represented as geographic statements in

the form of triples (e.g., <Santa Barbara, partOf, California>). By using such symbolic

representation, the semantics of entities and their interactions are formally preserved in

KGs (more specifically, in the ontologies that provide schema for these KG). Thus it fa-

cilitates humans and machines to perform logic inference to derive new information based

on ontologies, axioms and/or rules. For example, given that <Santa Barbara, partOf,

California> and <California, partOf, USA>, we can derive <Santa Barbara, partOf,
1https://www.wikidata.org/
2https://www.dbpedia.org/

2
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USA> by using the transitive property of the relation partOf. Such symbolic way of

representing and reasoning over existing information falls into the well-known realm of

symbolic artificial intelligence (AI).

However, the world is ever-changing, and thus statements about the world are not

static. That is, statements are often temporally scoped, meaning that they are only valid

during certain time periods or at some points[7, 8]. For example, the statement that the

European Union (EU) has diplomatic relation to Norway is only true after 1994, and

the statement that the United Kingdom is part of the EU only holds during a certain

period (i.e., 1973 - 2020). Without considering the validity period of statements, we may

easily arrive at wrong answers in inference and reasoning. For example, we may ask this

question: find me countries that are members of the EU and share borders with it. Appar-

ently, we, human beings, easily know there is no correct answer since we know no country

can be part of EU and share (exterior) borders with it simultaneously3. Our thinking

and reasoning process implicitly uses the temporal dimension. However, when machines

are used for answering such queries, incorrect answers may be returned, if the temporal

information is not expressed explicitly and properly in knowledge representation. For

example, Spain and the UK will be returned but both are incorrect, as the former shared

borders with the EU before joining and the latter shares borders after exiting the EU.

Temporal information needs to be carefully addressed in reasoning when the validity of

statements is subject to change. However, addressing temporal information is not as

trivial as it appears.
3The territory of the EU consists of all its member countries. So we will not say the EU shares

borders with its members.

3
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1.2 Challenges

The temporal dimension brings up new challenges for classic knowledge representation

and reasoning in particular. First, the validity period of a statement in a KG is often

missing and exhibits diverse forms (e.g., time instants, semi-closed intervals and closed

intervals). As a direct result, it is difficult to tell apart whether statements in a KG are

truly atemporal or time-aware in the first place. Take the following two statements as

examples <Sun, instanceOf, Star> and <UK, containsAdministrativeTerritorialEntity,

Southern Ireland>. The first statement is golden true and thus no temporal scope is

needed. For the second statement, it only holds during the time period from May 3rd

1921 to December 6th 1922. However, due to missing information, these two types of

statements are mixed up and we cannot distinguish whether they are temporal statements

or not. Similarly, semi-open intervals are also ambiguous, because the semi-openness may

either be a true validity period for a statement or caused by missing information on the

other end. Some statements may have been valid for a long time and we may be unable to

know when they would turn invalid. For instance, the statement that Norway is a member

of the United Nations has been valid since it joined in 1945. Thus, a semi-open interval

as the validity period will be reasonable and accurate. However, there are cases when

semi-open intervals are caused by missing information. For instance, from Wikidata, we

only know that Ukraine ceased to share borders with Czechoslovakia after 1993, but do

not know when it started. The incompleteness of temporal information makes classic

rule-based methods difficult on the one hand. On the other hand, it necessitates a new

task of predicting missing validity period of statements, which cannot be accomplished

by classic symbolic approaches.

In addition to validity periods of statements (one kind of temporal information), other

types of temporal information are also abundant in KGs and potentially useful for rea-

4
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soning. Temporal literals are one type of temporal information used to describe the start

or end date of entities/concepts rather than statements. For example, <USA, inception,

1776>. With this being known, we can infer that New York City was not part of USA

in 1744. Another type of temporal information in KGs is qualitative temporal relations,

which describe the temporal relationships (e.g., during, before, after, etc) between entities

(events). For example, <Cold War, follows, World War II>. Such ordinal relationships

are useful for cause-effect inference. Last but not least, temporal patterns are common

in KGs as well, seasons being an intuitive example. For instance, the presidency in the

US is limited to at most 8 years (i.e., 2 terms). In order to make use of such tempo-

ral information, classic symbolic reasoners usually require human efforts to discover and

conclude associations/rules between entities. Therefore, this sets up a barrier for classic

reasoning methods as far as the scale of KGs is concerned. Additionally, no existing clas-

sic reasoning is able to make full use of all these different types of temporal information

as different types of time representation and levels of abstraction are needed.

Furthermore, erroneous temporal information is common due to mistakes in data

collection and open information extraction [9, 10]. For example, in some statements, the

end time of their validity periods are earlier than their start time, which is clearly wrong.

Intuitively we may easily fix them by switching the start time and end time; however,

it is hard to ensure this resulting validity period is correct. This poses another treat at

classic reasoning methods that are prone to errors and uncertainty.

1.3 Symbolic AI versus Subsymbolic AI

The section above summarizes challenges that classic symbolic inference and reasoning

approaches (a.k.a. Symbolic AI) may encounter when temporal information is missing,

contains errors, or includes uncertainty. Moreover, the symbolic and logical nature of
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knowledge representation in KGs prohibits information/knowledge in KGs from being

applied to various applications, such as recommendation systems and urban computing,

which involve numeric computation in a continuous vector space [11]. Therefore, we need

new methods for representing time as well as reasoning over temporal knowledge in KGs.

Recent advances in Machine Learning (ML) and Deep Learning (DL), embedding

techniques in particular, have given rise to new solutions. Rather than using symbolic

representation, the key idea of such methods is to represent everything as numeric vectors

(i.e., subsymbolic representations) in high-dimensional vector spaces. To implement this

idea, different approaches have been developed to learn such vector representations auto-

matically through being optimized towards an objective that best captures the character-

istics of data. Then a reasoning task can be transformed to perform vector algebra over

those numeric representations; thus called subsymbolic reasoning. For KGs specifically,

both entities and relations are represented as continuous high-dimensional real-value vec-

tors, which are learned automatically while preserving the underlying graph structures of

KGs [12, 13]. Then reasoning or inference over KGs boils down to performing vector op-

erations (such as multiplication, addition, subtraction, etc.) over vector representations

of entities and relations. This group of subsymbolic methods is known as Knowledge

Graph Embedding methods (KGE), which will be detailed later in Section 2.3.

The advantages of KGE have been demonstrated in prior works in many aspects

[14, 15, 16, 17]. First, KGE models are tolerant to (small) errors, because they learn

continuous representations of entities and relations from data by optimizing a global

objective[18]. Meanwhile, the learned representation encodes both the local and global

graph information between entities and thus is more comprehensive. Second, unlike sym-

bolic reasoning methods, they are able to deal with incomplete and uncertain information,

as explicit rules or axioms are not necessary[19]. Third, thanks to the semantic informa-

tion encoded, the continuous representations can be regarded as external information and
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used in various downstream tasks, such as recommendation systems, question answer-

ing, language modeling[20, 21, 22]. Fourth, KGE models are implicitly non-monotonic

inference systems [23] in contrast to classic symbolic reasoners, which are monotonic.

In a monotonic system, statements that are true will never be falsified. Clearly, this is

unrealistic since old statements are likely to be proven false.

1.4 Research Questions

Despite the fact that KGEs have made massive breakthrough in generic knowledge

representation and reasoning, research on the temporal aspect of KGs by using subsym-

blic approaches is still at an early stage. One general question I set out to answer in

this dissertation is how to accomplish a subsymbolic temporal reasoning system that

can address challenges appearing in classic time representation and reasoning. Such a

question is very substantial and thus should be addressed step by step. Humans often

learn through analogies. I draw insights from a mature symbolic temporal reasoning

system and decompose my research question into small ones by analogy. According to

Vila [24], a symbolic temporal reasoning system usually consists of three components,

including identifying ontological primitives of time, providing ways to formalize tempo-

ral information (i.e., how to build the linkage between an atemporal statement and a

temporal reference), and devising methods to reason about temporal knowledge (i.e., the

mechanism and approaches used to reason). More details regarding symbolic temporal

reasoning are presented in Section 2.2. Therefore, I propose to study each component in a

subsymbolic temporal reasoning system accordingly, which corresponds to three research

questions listed below. In addition, a fourth research question is proposed to examine

why subsymbolic temporal reasoning methods perform better than symbolic reasoning

methods.

7



Introduction Chapter 1

Question 1: In a subsymbolic reasoning system, what should be the ontological prim-

itive of time? How to represent the temporal primitive in a subsymbolic way?

This research question focuses on how to build a proper time reference for temporal

reasoning, namely what elements and relations should be chose to constitute such a

time reference. This is the most fundamental question for temporal reasoning because it

is the basis for subsequent time formalization and reasoning. In the study of symbolic

temporal reasoning, it was not until the early 80s that general theories of time for symbolic

temporal reasoning have been proposed[24, 25], such as temporal logic [26], Allen’s general

theory of time and action [27], and theories of time [28]. At that time, prior researchers

encountered the problem of deciding on the ontological primitives for a time ontology.

Two dominating contenders are time instants (i.e., points in time) and periods (i.e.,

intervals of time), while a third is to take them together. For instance, McCarthy used

time instants to develop Situational Calculus for temporal reasoning [25]. In this case,

time is modeled as an infinite line, consisting of an infinite and dense collection of instants.

However, Allen argued that time intervals/periods should be the primitive as they are

inline with our understanding of temporal concepts, and refused to represent points.

Based on time periods alone, Allen defined interval calculus [29] for temporal reasoning.

Nevertheless, other researchers noticed that instants indeed appear in our common sense

of temporal concepts. For instance, many situations (e.g., transitions between states) are

instantaneous. Therefore, they proposed a time ontology made up of both time instants

and time periods [28, 30]. However, this is not the end of the story because it leads to

several semantic problems, such as Divided Instant Problem [31].

Apparently, time instants and intervals are the two core primitives for temporal rea-

soning no matter which is more in keeping with human’s understanding of temporal

concepts. In terms of subsymbolic temporal reasoning, the challenge of choosing instants

or intervals mostly lies in computational effectiveness of subsequent subsymbolic rep-
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resentation and reasoning methods. Because subsymbolic representation methods are

better at consuming discrete/categorical data instead of continuous data (e.g., intervals),

dividing time into equal-distance instants seems to be more appropriate and natural.

However, this assumes that time is a line. In order to capture other properties of time

(such as continuity, periodicity, etc.), the objective for this research question comes down

to develop a representation method for time instants in a subsymbolic way. Traffic pre-

diction is an ideal research area for this purpose, since timestamp-ed traffic information

is available and the temporal factor plays an important role for forecasting traffic speed.

More specifically, in this research question, I will design a method to learn subsymbolic

representation for each time instant.

Question 2: How should we formalize temporal information in a subsymbolic rea-

soning system, namely how to establish the link between the time reference and atemporal

statements?

This research question focuses on how to introduce time into reasoning mechanisms.

In terms of symbolic temporal reasoning systems, this relates to introducing time in logic

as logic-based calculus are the basis for generic symbolic reasoning. Three mainstream

approaches include temporal arguments [32, 33], modal temporal logics[34, 35] and reified

temporal logics[36, 26, 37]. For instance, the well-known method - Temporal Arguments

- introduced time as another parameter in first-order logic, and extended functions and

predicates with temporal arguments to indicate the specific time when an argument is

valid. One example would be containsAdministrativeEntity(UK; Southern Ireland; [May

1921, Dec. 1922]). Then the extended first-order logic and temporal ordering relations

can be utilized to perform temporal reasoning.

In terms of subsymbolic temporal reasoning approaches, although logic and general

reasoning theories of time are not necessary, the challenge remains similar, that is, how

to marry time instants/time intervals with their atemporal assertions in the subsym-
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bolic space. As discussed in Research Question 1, time instants seem to be a better

ontological primitive for subsymbolic temporal reasoning. In addition, previous works

on KGE indicate that generic subsymbolic reasoning is based on vector operations over

numeric representations of entities and relations; see Section 1.3. Therefore, one naive

way to introduce time into atemporal assertions for subsymbolic reasoning may follow

two steps. First, I can utilize the representation method delivered by Research Question

1 to learn numeric representations of time instants. During the learning process, I ensure

that numeric representations of time, entities and relations are in the same vector space,

so that I can perform vector operations over them to achieve subsymbolic reasoning.

Then, I need to design an association function to measure the compatibility of different

quadruples (i.e., <subject, predicate, object, time>). Generally speaking, the associa-

tion function should give more scores to quadruples presenting in KGs and versa vice.

Following this proposal, the challenge is how to design an association function that can

work for statements with different types of validity information. Although we leverage

time instants as ontological primitives and learn subsymbolic representations for them,

we still need to subsymbolically represent time intervals and measure the compatibility

of such temporal statements. This is similar to symbolic temporal reasoning in the sense

that we need to define intervals using the ontological primitive - instants [38, 39].

Question 3: How can I perform subsymbolic temporal reasoning over qualitative

temporal reasoning? And how is it compared to conventional symbolic reasoning?

For this research question I shift my focus from quantitative temporal reasoning to

qualitative temporal reasoning. I am interested in exploring how subsymbolic meth-

ods, in particular KGE methods, will perform in terms of qualitative reasoning. Unlike

quantitative temporal reasoning, qualitative temporal reasoning focuses on qualitative re-

lations between entities [29]. One example of such temporal relations could be <Bronze

age, follows, Iron age>. Notice that such temporal statements have the exact same
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triple representation as generic statements do in KGs (i.e., <subject, predicate, object>).

Therefore, technically speaking, any generic KGE method can be applied to perform qual-

itative temporal reasoning over temporal statements. However, generic KGE methods

usually do not consider any prior knowledge of statements in KGs. As generic statements

are mixed information from cross domains, there is no general prior/domain knowledge.

However, time representation is a well-developed domain. A plethora of general theories

of time and properties of temporal relations have been developed/discovered. First, the

transitivity/composition table of temporal relations specifies chain rules for temporal rea-

soning. For example, if we know event A happened during event B, and event B occurred

after event C, we can easily arrive at the conclusion that event A occurred before the

happening of event C. Second, some temporal relations are transitive, have an inverse, or

are symmetric; these properties also form the basis for temporal reasoning. For example,

before and after are inverse relations. Thus, once we know event A happened before

event B, we can easily know event B occurred after event A. Another example would be

the relation meet, which is a symmetric relation. Thus if event A meets event B, then

event B meets event A as well. Such domain knowledge has been widely used for sym-

bolic temporal reasoning. I believe such prior knowledge could also be extremely useful

for subsymbolic qualitative temporal reasoning. Thus, here my objective is to develop a

domain-specific subsymbolic reasoning method for qualitative temporal reasoning. The

challenge lies in how to make full use of such domain knowledge to guide KGE models

to prioritize their reasoning process.

Question 4: Why do subsymbolic reasoning methods perform better than conventional

symbolic reasoning methods?

Experiments conducted in Research Question 3 showed that subsymbolic reasoning

methods performed better than conventional approaches by significant margins for both

spatial and temporal reasoning. In this research question, I focus on understanding why
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this may be the case. Conventionally, symbolic qualitative (spatio-) temporal reasoning

is built upon well-established theories or calculi, such as Composition tables (CT) and

conceptual neighborhood structures (CNS) between temporal relations[40, 41, 42]. For

example, Rina presented a unified method to temporal reasoning by executing temporal

calculus over a temporal constraint network[43]. It seems to me that domain knowledge

is the key to qualitative temporal reasoning. Thus, I assume if subsymbolic reasoning

methods are capable of achieving good results for temporal reasoning, would it be pos-

sible that the subsymbolic models have learned some general theories of time from data

implicitly? There are two challenges in testing my hypothesis. The first challenge is

what domain knowledge could have been learned by the model. Since there are different

general theories of time, it is hard to know what has been learned and where to start

testing. A good starting point to test could be conceptual neighborhood of relations,

since this theory is relatively easy. However, an in-depth analysis and understanding of

symbolic methods is needed to justify which theory is likely to be learned by them. The

second challenge is how to test whether a hypothetical theory has been learned, namely

how to distill the hypothetical theory from the subsymbolic model itself.

1.5 Structure of the Dissertation

This chapter described the background of this dissertation and challenges that the

subject - time - has posed to conventional symbolic temporal reasoning. Then I pointed

out a potential direction that could address the aforementioned challenges. Next, I

presented the general research question that this dissertation aims to answer, and raised

four questions in Section 1.4 to answer it step by step. The following four articles provide

solutions to each question sequentially, corresponding to Chapter 3, 4, 5 and 6 within

this dissertation.

12



Introduction Chapter 1

• Chapter 3: L. Cai, K. Janowicz, G. Mai, B. Yan, and R. Zhu, Traffic transformer:

Capturing the continuity and periodicity of time series for traffic forecasting, Trans-

actions in GIS 24 (2020), no. 3 736–755.

• Chapter 4: L. Cai, K. Janowicz, B. Yan, R. Zhu, and G. Mai, Time in a box:

advancing knowledge graph completion with temporal scopes, in Proceedings of

the 11th on Knowledge Capture Conference, pp. 121–128, 2021.

• Chapter 5: L. Cai, K. Janowicz, R. Zhu, G. Mai, B. Yan, and Z. Wang, Hyper-

quaternione: A hyperbolic embedding model for qualitative spatial and temporal

reasoning, GeoInformatica (2022) 1–39.

• Chapter 6: L. Cai, K. Janowicz, and R. Zhu, Automatically discovering conceptual

neighborhoods using machine learning methods, in 15th International Conference

on Spatial Information Theory (COSIT 2022).

The rest of this dissertation is structured as follows.

Chapter 2 first defines important terms used in this dissertation, including knowledge

graphs and temporal knowledge graphs. Then it provides necessary background about

the general knowledge of time. Specifically, it introduces most of the fundamental prob-

lems in temporal reasoning, including how to decide on ontological primitives for time

ontology, what kinds of time expressions we may encounter in our daily life, and how

time is incorporated in traditional knowledge representation and reasoning (symbolic

representation and reasoning). Then, it provides a concise summary of related works

that apply subsymbolic methods (machine learning/ deep learning) to generic knowledge

graphs. Finally, this chapter points to the potential of leveraging subsymbolic methods

to develop a subsymbolic temporal reasoning system.

Chapter 3 presents a subsymbolic method for learning representations for the selected
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ontological primitive - time instants. I choose traffic prediction as my target application to

test whether I could learn subsymbolic representations for time instants. Traffic condition

at a place always changes from time to time, and thus traffic data usually come with

timestamps. However, previous studies on traffic prediction usually treat traffic data as

sequential/ordinal data (such as texts) while ignoring the associated timestamps (time

instants). In this chapter, instead I preserve each timestamp with its corresponding traffic

information and learn numeric representations for each timestamp. A representation

function is used to ensure that the learned time representations preserve the continuity of

time. Additionally, different encoding strategies are performed over time representations

to capture the periodicity of traffic data. The learned representations of timestamps can

be used to provide temporal signals for the downstream task - traffic prediction.

Chapter 4 presents a subsymbolic method that is able to perform temporal reasoning

over different types of temporal statements present in KGs. Although Chapter 3 demon-

strates the efficacy of subsymbolic methods in learning numeric representations for time

instants, the problems of how to model time intervals and how to introduce time in atem-

poral statements remain. Since computers are better at consuming discrete/categorical

inputs, I first discretize time intervals by using random sampling methods to pick up

representative time instants, which are treated as the modeling result of time intervals in

subsymbolic reasoning methods. Then I design an association function to measure the

compatibility of temporal statements. Through training, time instants that are closer in

the original temporal domain will still be closer in their vector space in terms of numeric

representations. This chapter accomplishes a subsymbolic temporal reasoning system

that contains all three core components as studied in conventional symbolic temporal

reasoning system [24].

Chapter 5 presents a subsymbolic method that aims at performing qualitative tem-

poral reasoning in contrast to quantitative temporal reasoning discussed in the previous
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two chapters. The method is designed to model various theories of time (such as com-

position tables) and properties of temporal relations (such as transitivity, asymmetricity

v.s. symmetricity and inverse relations). Quaternions and calculus over quaternions are

introduced such that the subsymbolic method is able to automatically discover and uti-

lize chain rules in composition tables, inverse relations and symmetricity of relations.

Besides, I leverage hyperbolic space rather than Euclidean space as the vector space such

that the model is capable of modeling the transitive property of relations. Although the

subsymbolic method is motivated by theories of time and properties of temporal relations,

it can also be successfully applied to qualitative spatial reasoning. This is important as

it shows that my work generalizes well. Last but not least, I introduce comparison ex-

periments between symbolic reasoning methods (e.g., constraint network method) and

subsymbolic reasoning methods.

Chapter 6 presents a graph-based method that produces a relation graph for inves-

tigating relationships between qualitative temporal relations discovered by subsymbolic

methods. This method takes advantage of the reasoning result of subsymbolic methods

and reconstructs the relationships between relations. A relation graph is produced, which

is a directed weighted graph with nodes denoting different temporal relations and edges

denoting the similarity between relations. This graph is well-aligned with conceptual

neighborhood structures discovered by prior scholars in the literature. This chapter aims

to explain why subsymbolic methods perform better than conventional symbolic meth-

ods, and will contribute to Explainable AI and Machine Learning-driven theory discovery

more broadly.

This dissertation concludes in Chapter 7. There, I provide a summary of previous

chapters and a discussion of the theoretical and practical contributions of my research.

Furthermore, I conclude this dissertation by introducing limitations of this work and

future research directions.
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Preliminary and Related Work

This chapter provides technical background knowledge and related works that are most

related to this dissertation. First it introduces informal definitions of knowledge graphs

and temporal knowledge graphs. Then it provides a review of three core components

in symbolic temporal reasoning, including the discussion of ontological primitives for

time, different time expressions used in common sense, and various ways of formalizing

time. These three components lay the foundation for this dissertation and correspond to

the first three research questions raised in Section 1.4 under the context of subsymbolic

temporal reasoning. The third piece introduces related work on subsymbolic methods

used in knowledge graph-based applications.
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2.1 Knowledge Graph and Temporal Knowledge Graphs

This section explains what a knowledge graph is. Then it gives the definition of

a temporal knowledge graph and points out its unique characteristics that differ from

generic knowledge graphs.

Knowledge graphs (KGs) can be thought of as data repositories which store state-

ments about the world around us. Most often, a statement consists of two entities and the

relationship between them. Most KGs adopt the graph-structured data model - Resource

Description Framework (RDF) to store such statements for computational and reasoning

convenience. The data unit in RDF is a triple, consisting of three components corre-

sponding to <subject, predicate and, object>. Subjects and objects are entities (objects

can also be literals, such as the date of birth.) and the predicate describes the relation

between entities. From a graph point of view, a KG is viewed as a directed labeled multi-

relational graph. Each edge represents a statement, connecting a subject and an object

with a relation as the label of the edge[44]. Despite the wide usage of this definition, a

KG is beyond a data repository. It is made up of two parts: a knowledge base and a rea-

soner. The knowledge base refers to the data repository described above, which provides

a way of explicitly and formally modeling the semantics of statements. In this sense,

KGs facilitate information conceptualization, data accessibility, and semantic interoper-

ability [3, 4, 5]. The reasoner emphasizes the ability of a KG in deriving/inferring new

knowledge from existing information by using rules, ontologies or axioms. In this dis-

sertation, I mostly focus on the knowledge base itself rather than the broader definition.

KGs and KBs are used interchangeably through this dissertation. Note that the machine

learning (ML) community also leverages <h, r, t> to represent a statement, where h is

the head (subject), r the relation (predicate), and t the tail (object), respectively. Given

the introduction above, a definition of KGs can be formalized as below:
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Definition 1 A Knowledge Graph consists of a set of RDF triples T =
⋃

⟨hi,ri,ti⟩, where

⟨hi, ri, ti⟩ denotes a unique RDF triple. Thus the KG can be denoted as G = ⟨V ,R⟩,

where V = {hi|⟨hi, ri, ti⟩ ∈ T }∪{ti|⟨hi, ri, ti⟩ ∈ T } denotes the set of nodes/entities, and

R = {ri|⟨hi, ri, ti⟩ ∈ T } denotes a set of relations.

The definition of Temporal Knowledge Graphs (TKGs) is controversial, particularly

in the ML community. Broadly speaking, a temporal knowledge graph is a knowledge

graph that contains certain temporal information. Such temporal information could be

quantitative temporal information, such as the inception year of a country presented in

the object position (such as <USA, inception, 1776>), the validity period of a statement

<UK, isMemberOf, EU, [1973, 2020]>, or qualitative temporal information, such as

<United Arab Republic, followedBy, Egypt>. More details about different types of time

expressions are summarized in Section 2.2.2. In this dissertation, I treat statements that

contain any temporal information in any form (as shown above) as temporal statements.

In this sense, almost all KGs are essentially temporal KGs. However, most works in the

ML community define TKGs as a subgraph of generic KGs, and only include statements

that have known validity periods into TKGs. That means they ignore the fact that some

(temporal) statements may miss their validity periods due to lack of data. Such works,

though, relieve the burden of addressing tricky challenges in TKGs by simplifying the

definition itself, they are impractical and do not make advantages of atemporal state-

ments and other types of temporal statements in KGs. In this dissertation, I adopt the

broader definition of TKGs as it is more realistic, and study different types of temporal

information in different chapters.
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2.2 Time Primitives, Expressions and Formalization

The world is dynamic, in which activities and phenomena occur and change over

time. Moreover, human usually perceive, interact and understand the real world through

the lens of time. Therefore, the statements made by humans usually relate to time in a

certain way: they are either time-aware events/states per se or attached to a transaction

time (i.e., meta-data information indicates when a statement is made). This section

introduces representational and formalizational issues of time when time is conceptualized

for computational and reasoning purposes.

2.2.1 Time Primitives

A fundamental problem influencing representation of and reasoning about time is to

determine the ontological primitives of time. In the study of temporal reasoning in AI,

there are mainly three contenders, including time instants, periods (intervals) and both.

The main motivation of thinking of instants as the primitive lies in its expressiveness

of the continuity of time [24]. Based on this idea, time is modeled as an infinite line,

consisting of individual points on the line. On the other hand, others believe that time

periods are closer to common sense of temporal knowledge and should be the only primi-

tive of time. Allen argued that points can be modeled as time intervals with a very short

duration, and, thus are unnecessary to be regarded as primitives [29]. Additionally, he

developed the well-known Interval Calculus as a formal theory of reasoning about time.

Nevertheless, instants seem apparent in our common sense reasoning and are needed in

many situations; for instances, transitions of states usually occur instantaneously. Other

researchers proposed to acknowledge both time points and intervals as primitives and

extended Allen’s Interval Calculus to incorporate point-interval and interval-interval re-

lations. However, incorporating both of them brings about some semantic difficulties,
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such as Divided Instant Problem [45]. Each contender comes with its pros and cons. In

terms of subsymbolic temporal reasoning, I choose time instants as the ontological prim-

itive, because machine learning methods, representation learning methods in particular,

are better at digesting discrete/categorical inputs (here time instants).

2.2.2 Different Types of Time Expression

Differences in the conceptualization of time reflect the empirical usage, the internal

representation and human’s understanding of time. Roughly speaking, different expres-

sions of time fall into two groups, corresponding to absolute and relational theories of

time. In the absolute theory, time is a temporal reference frame defined precedently and

independently of anything else. Upon it, events and activities can be said to happen at

certain time points/periods. Everything is timestamped metrically. Quantitative time

expressions (e.g., November 2021), also known as metric time, are used to express the tem-

poral dimension of things. For instance, in a TKG, time intervals are used to indicate the

validity period of statements (e.g., <Poland, memberOf, Warsaw Pact, [1955, 1991]>)

and time instants represent the temporal information in a statement (e.g., <Santa Bar-

bara, inception, 1847>). On the other hand, the relational theory claims that time exists

only because events happening in the world are temporally related. Therefore, time can

be defined by events and its properties are just reflections of the characteristics of events.

Qualitative temporal relations have to be used to represent the relations among events.

For example, we use predicates (e.g., follows, followedBy) to declare the temporal relation

between archaeological ages (e.g., Bronze Age is followed by Stone Age). The predicate

“hasPart” is used to describe the relation between the World War II and the Pacific War.

These different expressions of time are prevalent in TKGs like the examples shown

above. In Chapter 3, Chapter 4 and Chapter 5, I primarily focus on how to model time
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instants, time intervals, qualitative temporal relations in a subsymbolic way, respectively.

2.2.3 Time Formalization

Reasoning mechanisms of time and the complexity of reasoning are largely determined

by ways of introducing time to atemporal statements. Introducing qualitative temporal

relations in statements is straightforward, since temporal relations can be just modeled

as ordinary predicates. Then general theories of time (such as temporal calculus [46, 47,

48, 29] and temporal conceptual neighborhood structures [41, 49]) can serve as inference

techniques to trigger temporal reasoning. However, incorporating quantitative time into

atemporal statements is more challenging as it may cause computational and reasoning

difficulties. There are five different ways to build the bridge between atemporal arguments

and a temporal reference in the Semantic Web.

Standard Reification Reification provides a higher expressive power that permits one

to express statement-level metadata (such as the validity of a statement) [50, 51, 52]. Re-

lying on existing methods in Resource Descriptive Framework (RDF), standard reification

introduces a blank node to notify an atemporal statement and attaches other metadata

into the blank node. Take as an example the statement <Poland, memberOf, War-

saw Pact, [1955, 1991]>. It can be decomposed into an atemporal statement <Poland,

memberOf, Warsaw Pact> and other statement-level statements <statement1, hasTem-

poralScope, [1955, 1991]>, <statement1, subject, Poland>, <statement1, object, Warsaw

Pact> and <statement1, predicate, memberOf>, where statement1 is uniquely deter-

mined by the atemporal statement.

N-ary Relations This approach introduces a higher-order data structure via a new re-

lationship concept class connecting all components in a temporal argument [53, 54]. The
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example above can be expressed by four statements: (1) <memberOfRelationship1, type,

memberOfRelationship> (2) <memberOfRelationship1, partner1, Poland> (3) <mem-

berOfRelationship1, partner2, Warsaw Pact> (4) <memberOfRelationship1, hasTempo-

ralScope, [1955, 1991]>.

Singleton Properties Naively, this approach adds a statement identifier to the pred-

icate [55]. The example can be easily represented as two triples: (1) <Poland, mem-

berOf_1, Warsaw Pact> (2) <memberOf_1, hasTemporalScope, [1955, 1991]>. Note

that the 1 in memberOf_1 is the unique identifier for the atemporal statement.

Named Graphs As the name indicates, it uses the so-called named graphs and is a

variation of the singleton property [56, 57]. A fourth element is introduced to the triple

(<subject, predicate, object>) to indicate that this statement is part of a concrete named

graph (also a node in the RDF graph). Then temporal information can be attached to

the named graph. The example above can be expressed as two triples: (1)<Poland,

memberOf, Warsaw Pact, statement_1> (2)<statement_1, hasTemporalScope, [1955,

1991]>.

RDF* It is an extension of RDF standard that allows for triples to be directly used as

the subject or object of other triples that represent their metadata. Namely, it introduces

the notion of nested triples. It provides a more efficient way of reifying statements, thus

being able to handle more statement-level information [58, 59]. From the perspective

of query answering and data storage, it requires less storage and shorter queries. The

example above can be represented by two triples: (1)<Poland, memberOf, Warsaw Pact>

(2) < <Poland, memberOf, Warsaw Pact>, hasTemporalScope, [1955, 1991]>

These different ways of introducing time to atemporal statements have pros and cons.

They may bring up different impacts on data exchange, query efficiency, data mainte-
22



Preliminary and Related Work Chapter 2

nance, reasoning, etc. In terms of subsymbolic temporal reasoning, I also need to think

about how to establish the link between the time reference and atemporal statements,

and how those different ways would impact the performance of the reasoning system.

This corresponds to Research Question 2. However, unlike symbolic temporal reasoning,

this way of introducing time is most concerned with its impact on temporal reasoning,

since other parts will not cause much difficulty to subsymbolic methods. Chapter 4

provides an answer to this concern.

2.3 Knowledge Graph Embedding

Knowledge graphs are commonly incomplete, necessitating the task of knowledge

graph completion (KGC), i.e., inferring missing knowledge based on existing statements

in KGs. Reasoners relying on formal logic would easily fail when missing links emerge.

Moreover, the symbolic and logical nature of knowledge representation in KGs restricts

it from being applied to other applications that involve numeric computation, such as

recommendation systems [11]. In order to address these issues, recently many studies

have proposed knowledge graph embedding (KGE) methods, which fall into representa-

tion learning. These methods aim to learn numeric vector representations of entities and

relations in a high-dimensional vector space while preserving the underlying semantic

and structural information presented in KGs [12, 60, 61].

Different training objectives are developed to guide how to learn those numeric repre-

sentations of entities and relations. One of the most classic assumptions used for training

purpose is Translation [62, 63, 64, 11]. For a triple <h, r, t> in a KG, Translation-based

models first project h, t and r onto vectors h, t and r in a high-dimensional vector space.

Then it assumes h can be translated to t by the relation r. Thus, a training objective

should be ||h+ r− t|| = 0. This training objective is then applied to each statement pre-

23



Preliminary and Related Work Chapter 2

sented in KGs. Finally, numeric representations of entities and relations will be learned

after iterative optimization. Meanwhile, the learned representations contain the global

information thanks to the linkages between entities. Besides the translation assumption,

another transformation assumption is rotation. Sun et al. thought of a relation as a ro-

tation from the subject to the object in the complex vector space and proposed RotatE,

which was the first model that can deal with symmetry/anti-symmetry, inversion, and

composition relations simultaneously [65].

Unlike the aforementioned two branches, another group of embedding methods is

called semantic matching energy methods. They measure the existence of a statement as

the compatibility of the subject, the object and the relation between in a latent vector

space. For instance, DistMult [66] used a 3-way inner product as the scoring function.

Other approaches along this line include RESCAL [67] and ComplEx [68].

The aforementioned methods all fall into triple-based methods, in which triples/ state-

ments are regarded as atomic training samples. Instead, some other works incorporate

higher-order information (e.g., multi-hop paths, neighbourhood structures) to training

objectives such that more diverse information can be used for representation learning,

such as PTransE [16], R-GCN [17], and Trans-GCN [69].

To summary, the goal of KGE methods is to learn representations for entities and

relations in a high-dimensional space. Then downstream tasks boil down to performing

vector operations over numeric representations of involved entities and/or relations. De-

spite pronounced breakthrough in time-agnostic knowledge graphs, these models neglect

the fact that most statements are only true during a certain time period, thus being

incapable of addressing temporal statements in TKGs. In this dissertation, I will take

full advantage of representation learning methods, knowledge graph embedding methods

in particular, to develop subsymbolic methods for temporal reasoning specifically.
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2.4 Summary

This chapter presented essential background knowledge of this dissertation and re-

viewed related works most relevant to this dissertation. It first clarified the definition

of knowledge graphs and temporal knowledge graphs, which points out the study scope

of this dissertation. Then it provided a detailed introduction of three core components

in symbolic temporal reasoning, which will be utilized as the guidance to the study of

subsymbolic temporal reasoning. The connections between the three core components,

the research questions raised in Section 1.4 and the contents of following Chapters were

further clarified. In the end, the general idea of subsymbolic methods was described by

using the success stories of KGE methods in reasoning over generic knowledge graphs.
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Chapter 3

Traffic Transformer: Capturing the

Continuity and Periodicity of Time

Series

In this chapter, I focus on learning numeric representations for the chose ontological

primitive - time instants. Specifically, I use Traffic Prediction as a case study since traffic

data usually come with time information (in terms of time instants/timestamps) and

time is an important factor for traffic prediction. The developed subsymbolic methods

can preserve the continuity of time and the periodicity of time series. Experiments on

real-life datasets show that explicitly considering the continuity and periodicity of time

series can boost the prediction performance.
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Abstract Traffic forecasting is a challenging problem due to the complexity of jointly

modeling spatiotemporal dependencies at different scales. Recently, several hybrid deep

learning models have been developed to capture such dependencies. These approaches

typically utilize Convolutional Neural Networks (CNNs) or Graph Neural Networks (GNNs)

to model spatial dependency and leverage Recurrent Neural Networks (RNNs) to learn

temporal dependency. However, RNNs are only able to capture sequential information in

the time series, while being incapable of modeling their periodicity e.g., weekly patterns.

Moreover, RNNs are difficult to parallelize, making training and prediction less efficient.

In this work, we propose a novel deep learning architecture called Traffic Transformer

to capture the continuity and periodicity of time series and an additional GNN to model

spatial dependency. Our work takes inspiration from Google’s Transformer framework

for machine translation. We conduct extensive experiments on two real-world traffic

datasets and demonstrate that our model outperforms baseline models by a substantial

margin.
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3.1 Introduction

Traffic forecasting is concerned with estimating future traffic conditions, such as the

density of vehicles and their speed, to enable the prediction of future events such as

congestion or travel duration, more generally, by analyzing historical traffic conditions

and patterns. Highly accurate forecasts provide guidance to decision makers, provide

safety and convenience for citizens, and reduce environmental impacts.

Traffic forecasting, however, is challenging due to the complexity of modeling spa-

tiotemporal dependencies of traffic conditions at varying scales [70, 71]. For instance,

the traffic flow on a road is influenced by both its historical traffic conditions and the

conditions of upstream roads. Due to the increasing availability of massive traffic data,

high-performance computing, and novel deep learning models, recent work has pushed

the envelop on learning spatiotemporal dependency models for accurate traffic forecasting

[72, 70, 73, 74, 75].

RNN-based models, e.g. Gated Recurrent Unit (GRU) and Long Short Term Memory

(LSTM), can be used effectively to capture temporal dependencies [74, 73]. For example,

[76] proposed a convolutional LSTM model for traffic forecasting, in which the traffic flow

at each time step was fed into an LSTM architecture recursively. Similarly, [77] proposed

a convolutional RNN model, where graph diffusion convolutional operators were used to

model spatial dependencies and GRU was employed instead of LSTM to capture temporal

dependencies.

Although these RNN-based models can capture temporal sequential dependency,

RNNs have several inherent deficiencies. First, they struggle to preserve very long-term

sequential information, which leads to the loss of long-term temporal dependency in time

series during the forward path [78]. Second, RNNs are unable to capture the periodicity

of time series, since they treat different time steps equally in the time series. This is
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an important shortcoming as time series usually convey periodic patterns, e.g. hourly,

daily, weekly, and seasonally [79, 75]. Third, RNNs are difficult to parallelize, making

the training and prediction process less efficient.

Recently, researchers have introduced the Transformer architecture to replace RNNs

for machine translation [80]. It replaces convolutional and recurrent neural networks and

is solely built on attention mechanisms to model sequential data. Hence Transformer

does not require sequential data to be fed recursively. This makes the architecture com-

putationally more efficient than RNNs. More importantly, so as to preserve the order of

elements in a sequence (e.g., the order of words in a sentence) when modeling sequences,

Transformer introduces a position encoding strategy. It encodes positions of elements

(e.g., words) in the sequence (e.g., a sentence) by first indexing them by their positions

and then passing the indexes through a series of sinusoidal functions. Transformer and

its variants have achieved significant success in natural language processing, including

machine translation, text generation, and so on [81, 82, 83].

Interestingly machine translation and traffic prediction share some structural simi-

larities. In machine translation [84], the aim is to translate a source sentence written in

one language to a target sentence in another language by using a sequence-to-sequence

learning framework [85], where the source and target sequences both consist of tokens.

Likewise, traffic prediction can be formulated in a similar way. More specifically, the

task is to utilize data about historical traffic conditions in such a way that they become

indicative of future conditions, where the source sequence consists of a series of traffic

data (e.g., traffic volume, speed) in the past and the target sequence is composed of a

series of traffic conditions at future time steps. Put differently, each time step in the

source and target traffic sequences amounts to the position index of each word in the

input and output sentences in the machine translation task.

Analogies are partial by definition. Hence, Transformer cannot be directly applied to
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traffic forecasting due to the following reasons. First, the position encoding strategy is

inapplicable. The semantics of the source sequence and the target sequence in machine

translation and traffic forecasting are different. In machine translation, the source and

target sequences represent two sentences with the same meaning in different languages;

thereby the corresponding words in the two sequences should share similar position index.

In contrast, in traffic forecasting, the source-target sequence is consecutive; hence there

is no correspondence between elements in the source and target sequences. Instead,

traffic forecasting takes into account the continuity of time series when indexing the

traffic by their time steps. Additionally, traffic data are also characterized by several

other properties of time, e.g., periodicity. For instance, the traffic condition on one

road at Wednesday 3:00 pm is similar to its traffic condition on Thursday at the same

time. The periodic characteristics of traffic data should also be considered when adapting

Transformer to this domain. Consequently, this calls for new ways of encoding temporal

features in the Transformer architecture. Second, Transformer is only able to handle the

sequential dependency between the source and target sequences in machine translation,

while spatial (network information) and temporal (sequential information) dependencies

in traffic data are prominent [86, 87]. Hence, we need to enable Transformer to handle

spatial and temporal dependencies coherently.

To solve these problems, we propose to design different strategies of encoding tem-

poral information so that both the continuity and periodicity of traffic data can be

preserved, and extend Transformer to modeling temporal dependencies and spatial de-

pendencies jointly with the help of Graph Convolutional Networks (GCNs). The main

contributions of our research are as follows:

• We design four novel position encoding strategies to encode the continuity and

periodicity of time series to facilitate the modeling of temporal dependencies in
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traffic data. In total, we propose seven temporal encoding methods by combining

different strategies.

• We introduce a hybrid encoder-decoder architecture, called Traffic Transformer, to

coherently model spatial and temporal dependencies of traffic data in an end-to-end

training manner, where Transformer is leveraged to model temporal dependencies

and a GCN contributes to the modeling of spatial dependencies.

• Experimental results on two real-world benchmark datasets show the performance

of our model compared to state-of-the-art methods, demonstrating the effectiveness

of our temporal encoding methods and the hybrid architecture.

The rest of this paper is structured as follows. Section 3.2 reviews existing work

on traffic forecasting. Section 3.3 defines the traffic forecasting task and introduces

Transformer in a nutshell. Next, section 3.4 presents different strategies for encoding

temporal characteristics and the proposed architecture for traffic forecasting. Section

3.5 explains our experiments and presents the results. Finally, section 3.6 concludes our

work and points to directions for future research.

3.2 Related Work

Big data-driven machine learning models for traffic forecasting have attracted exten-

sive attention from both academia and industries for several years [88, 89, 75, 83, 90].

As far as deep learning is concerned, [91] were among the first to applying deep learn-

ing models to forecasting traffic, by designing a deep belief network for unsupervised

feature learning and then passing these features through a regression layer for traffic

forecasting. Since then, most of deep learning models for traffic forecasting were built by

utilizing RNN due to its capability to memorize temporal dependencies in time series via
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self-circulation. [92] compared different RNN models, namely LSTM and GRU, finding

that GRU achieved better performance than LSTM in forecasting traffic. However, these

aforementioned methods are limited to only capturing forward temporal dependencies.

In contrast, [73] proposed a deeply stacked bidirectional and unidirectional LSTM ar-

chitecture, which is able to capture both forward and backward dependencies in time

series.

While these aforementioned models account for temporal dependencies in traffic data,

spatial correlations were often neglected. To fill the gap, [89] proposed a novel deep

learning architecture to inherently consider temporal and spatial dependencies, where

autoencoders are first introduced to serve as the building block to learn latent features.

[93] designed a deep learning model, which takes into account both temporal aspects –

temporal closeness, periods, and trends of crowd traffic – and spatial proximity. More

recently, CNNs and GNNs became the most widely used models in detecting patterns

thanks to their progress in capturing spatial/topological dependencies in images, videos,

and graphs [94, 95, 72, 70]. In addition to a GRU for capturing temporal features, [96]

converted network-wide traffic matrices into images, after which a CNN was imposed to

learn global spatial interactions of the converted images. [70] proposed a hybrid deep

learning framework by marrying the CNN with LSTM architecture, where an 1-D CNN

was utilized to model spatial dependencies while two LSTMs were exploited to learn

temporal patterns. Considering that a graph is a more appropriate abstraction of a road

network, [77] suggested to replace CNNs with GCNs in order to extract spatial dependen-

cies, and proposed a new model, called DCRNN, in which spatial dependencies are mod-

eled as a diffusion process. Similarly, [87] defined another graph convolutional operator,

incorporating the adjacency matrix and a free-flow reachable matrix to capture localized

spatial features. More generally the future seems to lie in combining CNNs/GCNs with

RNNs to extract both spatial and temporal dependencies for traffic forecasting. However,
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one limitation of such architectures stems from RNNs themselves, which are well-known

for their high computational cost during the training process.

To circumvent the inherent deficiencies of RNNs, research started to investigate non-

recurrent models. For example, [97] proposed a universal framework that completely

consists of spatiotemporal convolutional blocks. Experiments showed that this model

yielded better results than the model proposed by Li et al. [77]. Guo et al. [79] designed

a spatiotemporal attention mechanism as well as a spatiotemporal convolutional module

to capture spatiotemporal dependencies of traffic data. However, this approach solely

relied on the temporal attention mechanism to assign different importance to traffic in

the past and by doing so it ignored the fact that the most recent traffic condition should

have a greater influence on predicting current traffic.

Recently, Transformer [80] has been developed as a new architecture in deep learn-

ing, which employs attention mechanisms along with a position encoding strategy for

sequence modeling. In light of this, several attempts have been made to tailor Trans-

former towards time series forecasting [98, 99]. For example, [98] argued that the basic

Transformer architecture is not sensitive to local contexts, and suggested to add a con-

volutional self-attention layer to improve it. Although this work has been demonstrated

effective in capturing long-term temporal dependencies, it is insufficient for network-

wide traffic forecasting. First, it ignored spatial dependencies on a road network and

thus failed to model spatiotemporal correlations. Second, it captured periodical patterns

at the cost of feeding very long sequences (e.g. 768) into models, which may be impossible

for network-wide traffic forecasting. The amount of traffic data in a network is far larger

than that at a single spot as there are hundreds of sensors on a road network reporting

the traffic frequently. Very long sequences will, hence, consume too much memory. As

a result, the question of how to preserve periodical patterns when using Transformer for

network-wide traffic forecasting remains under-explored. In our paper, we focus on ex-
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plicitly modeling spatial and temporal dependencies all together – the spatial correlations

of the traffic in a network as well as the continuity and periodicity of time series.

3.3 Preliminary

3.3.1 The Network-wide Traffic Forecasting Task

The goal of traffic forecasting is to predict the future traffic given a sequence of

historical traffic observations (here speed, density, and volume) that are detected by

sensors on a road network. Such a sensor network deployed to monitor roads is usually

represented as a weighted directed graph G = (V , E ,W), where V is a set of sensors with

|V| = N , E is a set of edges, connecting sensors, and W ∈ RN×N is the adjacency matrix

storing the distance between sensors in the network. Xt ∈ RN×P denotes the feature

matrix of the graph that is observed at time t, where P is the number of features. The

prediction problem can then be formalized as learning a mapping function F from M

previously observed feature matrices to H future feature matrices on the premise of a

network G:

X t+H
t+1 = F

(
G;X t

t−(M−1)

)
(3.1)

where X i+n
i denotes an array of feature matrices from time stamp i to i+ n and X i+n

i =

[Xi,Xi+1,...,Xi+n].

3.3.2 Transformer in Machine Translation

Unlike RNNs, Transformer belongs to the family of non-recurrent neural networks.

It is solely built upon attention mechanisms, which makes it possible to access any part

of a sequence regardless of its distance to the target [80, 98].

In essence, Transformer is organized in an encoder-decoder manner, in which identical
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encoder modules are stacked at the bottom of stacked decoder modules. Each encoder

module is composed of a multi-head self-attention layer and a position-wise feed forward

layer, while each decoder module has one more layer, namely encoder-decoder attention

layer, which is inserted between the self-attention layer and feed forward layer to bridge

the encoder part and decoder part.

The aim of multi-head attention layers is to attach different importance of words/tokens

to each other in a sequence from multiple aspects (heads). Then the outputs of those

different heads are concatenated and then passed through a linear transformation to ag-

gregate all the information. As the attention mechanisms behind the self-attention layer

and the encoder-decoder attention layer are the same, we take the self-attention layer

as an example. It operates on a sequence of tokens x = (x1, x2, ..., xn), each of which

is initialized by a random vector, and is updated by using a weighted sum of any other

word after being passed through a linear transformation. The weights, called attention

scores, are assigned by their similarities.

Take the update of xi as an example:

yi =
n∑

j=1

aij(xjWV ) (3.2)

where yi is the updated xi, and aij is the attention score, measuring the similarity between

xi and xj, calculated by Eq. 3.3.

aij =
exp(eij)
n∑

k=1

exp(eik)
(3.3)

where eij measures the compatibility of two linearly transformed xi and xj, calculated

by using the scaled dot product:
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eij =
(xiWQ)(xjWK)

T

√
h

(3.4)

where h is the dimension of the output. Note that WV , WQ, WK are three linear

transformation matrices to strengthen the expressiveness of Transformer .

More importantly, since Transformer does not involve any convolutional and recurrent

module, position embeddings are designed to preserve the sequential order in a sequence.

The positions of words in a sentence are first indexed starting from 0 to the length of

the sentence and then position indexes are fed into Eq. 3.5 to gain position embeddings

for each word. The corresponding words in the source sentence and the target sentence

share the same position embedding. The encoding strategy guarantees that the position

embedding at pos + k is a linear function of that at pos. Then an element-wise addi-

tive operator is imposed on the position embeddings and the initialized vectors of their

corresponding word. The result is fed into encoder/decoder modules subsequently.

pos_embedding(pos, 2i) = sin(pos/10000
2i
h )

pos_embedding(pos, 2i+ 1) = cos(pos/10000
2i
h )

(3.5)

where pos is the position index of a word in a sequence, i is the i-th dimension of the

position embedding and h is the dimension of hidden layers. We denote the position

embedding of a word at pos as pos_embeddingpos ∈ Rh.

Although this encoding strategy is useful for machine translation, it is inappropriate

for traffic forecasting as temporal features such as continuity and periodicity have to be

carefully incorporated.
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3.4 Proposed Architecture

In this section, we introduce four strategies of encoding temporal information, more

specifically the continuity and periodicity of time series. Next, we introduce two graph

convolutional filters which can help capture spatial dependencies. Finally, we illustrate

our proposed hybrid deep learning architecture.

3.4.1 Transformer for Capturing Temporal Dependencies

For ease of expression, we assume the sampling frequency of the time series is s times

per day. We use [t− (M − 1), t− (M − 2), ..., t] and [t+ 1, t+ 2, ..., t+H] to denote the

time steps of the source sequence (from the past) and that of the target sequence (in the

future).

The Continuity of Time Series

Relative Position Encoding This strategy aims at encoding relative continuity, which

means that we care about the continuity of time in the window of the source-target se-

quence regardless of the position of one time step in the whole time series under con-

sideration. This can be achieved by indexing the time step (t − (M − 1)) with 0 as the

starting position and raising the index position by one per time step. These position

indexes are simply passed through Eq. 3.5 to get position embeddings for each time step.

By doing so, the continuity of time within the source-target sequence pair is encoded.

All concatenated source-target sequences in the traffic prediction task share the same

position embeddings.

Global Position Encoding Relative position encoding only preserves the local conti-

nuity of time within H+M−1 time steps. However, we may notice that most time steps
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in two consecutive source-target sequence pairs are common. For example, the previous

sequence pair may range from 3:00 pm to 5:00 pm with 5 minutes as the sampling time

interval, while the subsequent sequence pair ranges from 3:05 pm to 5:05 pm. So the

potential limitation of the relative position encoding strategy is that the same time step

is assigned with a different position embedding depending on its position in a sequence

pair. Hence, we additionally propose a global/absolute position encoding strategy so that

a time step occurring in the whole time period in question has only one position embed-

ding even if it appears in different sequences. All the time steps in question are sorted

by time first and then are indexed starting from 0. Same as for the relative position

encoding strategy, position embeddings for each time step are obtained by passing the

position index into Eq. 3.5. Hence, we assume that both the local and global continuity

of time series are preserved.

The Periodicity of Time Series

Aside from the continuity, time series also conveys periodicity, namely weekly patterns

and daily patterns. There are two potential ways to go about this. One is centered around

the position encoding design: the position embedding for each time step is enriched with

periodic patterns. The other one is by using different time series segments corresponding

to different temporal features.

Periodic Position Encoding Based on any position encoding strategy in subsection

3.4.1, here we enrich position embeddings with periodic patterns. The idea is to design

another position encoding strategy to cover weekly-periodic and daily-periodic informa-

tion, which implies applying the relative/global position encoding strategy to position

indexes in terms of weeks and days, respectively. For a single day, the sampling times per

day are regarded as the number of positions for daily-periodic position encoding. For in-
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stance, if the sampling time interval is 5 minutes, then the sampling times per day are 288

(=60*24/5), namely the total number of positions we need to encode for a daily-periodic

pattern. The derived position embedding is called daily-periodic position embedding. On

the other hand, weekly-periodic patterns imply that traffic on the same days of the week

are more similar as compared to other days. For instance, usually the traffic pattern

on a future Friday should be more similar to those from past Fridays as compared to,

say, Wednesdays. In this case, only seven positions are used that correspond to different

week days. We call the resulting kind of position embeddings weekly-periodic position

embedding. We impose element-wise addition over relative/global position embedding,

daily-periodic position embedding and weekly-periodic position embedding to gain a hy-

brid position embedding for each time step. Note that all embeddings are members of

the same vector space in Rh, with h being the number of dimensions.

Time Series Segments In essence, periodic position encoding employs different flags

(e.g., flags to differentiate different time steps on one day and flags to denote days with

distinct week attributes) to explicitly differentiate sequences in three aspects. Although

it seems compelling to solely rely on the hybrid position embedding, this may hide other

commonalities among sequences. This would make training models more difficult, espe-

cially when a training dataset is small. Hence, one may enrich the existing time series

segment by concatenating two more intercepted time series segments - a daily component

and weekly component, along the time axis as the input for modeling as Guo et al. [79]

did and then to encode positions in this hybrid segment jointly.

For daily-periodic segment, denoted as X t+H
t+1 (D), we intercept segments at the same

time period as the predicting time period on last few days, say d days. The segment can

be formulated as Eq. 3.6.
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X t+H
t+1 (D = d) = [X t+H−s∗d

t+1−s∗d ,X t+H−s∗(d−1)
t+1−s∗(d−1) , ...,X t+H−s

t+1−s ] (3.6)

The weekly-periodic segment, denoted as X t+H
t+1 (W ), consists of the time series seg-

ment at the same time period as the predicting period on the days with the same week

attribute in the past few weeks, say w weeks. This segment can be written as follows:

X t+H
t+1 (W = w) = [X t+H−s∗7∗w

t+1−s∗7∗w ,X t+H−s∗7∗(w−1)
t+1−s∗7∗(w−1) , ...,X t+H−s∗7

t+1−s∗7 ] (3.7)

Finally, the hybrid segment, enriched by the recent, daily-periodic and weekly-periodic

information is composed of [X t+H
t+1 (W ),X t+H

t+1 (D),X t
t−(M−1)] as the input to replace X t

t−(M−1)

in Eq. 3.1.

Note that although we concatenate these three segments along the time axis, it is im-

possible for Transformer to figure out the order information as it is completely attention-

based. Therefore a position encoding strategy is also required. Since the time periods of

a daily-periodic and week-periodic sub-segment on one day are the same as the forecast-

ing period, the time steps in a daily-periodic/week-periodic sub-segment share the same

position embeddings as that of the forecasting segment. Here we do not explicitly take

into account the different contributions of daily-periodic/week-periodic segments to the

prediction and leave it to the model to determine.

A Summary of Encoding Methods

In total, there are seven different encoding methods for capturing the continuity and

the periodicity of time series by combining the aforementioned strategies. A summary

can be found in Table 3.1. To provide a concrete example, given the traffic at 8:00am -

8:55am on 01/01/2020 (Wed.), we want to predict the future traffic at 9:00am - 9:55am

on 01/01/2020 (Wed.) in the table below.
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Table 3.1: A summary of encoding methods
Embedding Method Relative Position Embedding Global Position Embedding Relative and Periodic Embedding Global and Periodic Embedding Time Series Segment Method

Encoding Strategy Relative Position Encoding Global Position Encoding Relative Position Encoding
and Periodic Position Encoding

Global Position Encoding
and Periodic Position Encoding Time Series Segments

Abbreviation RPE GPE RPPE GPPE TSE

Captured Features relative continuity of time series global continuity of time series relative continuity
and periodicity of time series

global continuity
and periodicity of time series

relative continuity
and periodicity of time series

Example (position index) [0, 1, ... , 11] → [12, 13, ... , 23] [99, 100, ... , 110]
→ [111, 112, ... , 122]

[0, 1, ... , 11] * [3, 3, ..., 3] * [97,
98,..., 108] → [12, 13, ... , 23]

[99, 100, ... , 110] * [3, 3, ..., 3] * [97,
98, ..., 108] → [111, 112, ... , 122]

[12, 13, ... , 23, 12, 13, ... , 23,
0, 1, ... , 11] → [12, 13, ... , 23]

Notes
Assume among the whole time
steps in question, 01/01/2020
Wed. 8:00am is indexed as 99.

"*" here means we consider
these three kinds of position
indexes - relative, weekly, daily.

See the previous. Here, d=w=1.

After obtaining these position indexes from different encoding methods, they are used

in Eq. 3.5 to derive position embeddings for each time step in the source-target sequence.

Similar to the original Transformer, one option of incorporating position embeddings

into time series is by element-wise addition between the traffic features and its position

embeddings. Although it is easy to implement, it is hard to interpret such combination

since the vector spaces of the traffic features and the position embeddings would not be

the same. We call this approach an addition-based combination. However, we suggest

another approach here, namely a similarity-based combination. We adjust the attention

score aij in Eq. 3.2 by using the similarity between two time steps in terms of position

embeddings. In this way, the similarity between two time steps serves as a decay factor.

That is to say, when two time steps are adjacent, then their similarity is high. So in the

traffic prediction task, we can rewrite Eq. 3.2 and Eq. 3.3 as,

Yi =
L∑

j=1

a′ij(X
jWV ) (3.8)

where a′ij is the adjusted attention score. Note that in the traffic prediction scenario

Xi ∈ RN×h is the traffic at time i and L is the length of a sequence in question.

a′ij =
exp(e′ij)

L∑
k=1

exp(e′ik)

(3.9)

where e′ij is the adjusted compatibility of two linearly transformed Xi and Xj with the
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similarity between corresponding temporal features being considered.

e′ij = bijeij (3.10)

bij =
exp(dij)

L∑
k=1

exp(dik)

(3.11)

dij = pos_embeddingi × (pos_embeddingj)
T (3.12)

where dij is the similarity between two position embeddings of Xi and Xj and eij is

defined in Eq. 3.4.

3.4.2 Graph Convolutional Neural Networks for Capturing Spa-

tial Dependency

Another important dependency we need to address is spatial dependency. Simply

put, we need to account for the fact that the change in traffic on one road is influenced

by the traffic on its upstream roads. Since the traffic network is modeled as a graph and

the traffic observations (e.g. speed, volume, etc.) can be considered as features of that

road (at some time), we take advantage of GNNs to perform the convolution operation

over graph-structured data to capture topological properties such as adjacency.

In general, a GNN built on the spectral graph theory is a generalization of a traditional

convolutional neural network. In spectral graph theory, a graph is usually represented

by its Laplacian matrix. The topological features of a graph can be obtained by ana-

lyzing the Laplacian matrix. Formally, graph spectral convolution can be defined as the

multiplication of a signal X ∈ RN with a kernel gθ, and written as,
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gθ ∗G X = Ugθ(Λ)UTX (3.13)

where ∗G is the notion of graph convolutional operator, U ∈ RN×N is the matrix of

eigenvectors decomposed from the normalized graph Laplacian L = IN −D− 1
2AD− 1

2 =

UΛUT ∈ RN×N , where IN is an identity matrix, D ∈ RN×N is the diagonal degree matrix

and Λ is a diagonal matrix of its eigenvalues.

Since it is computationally expensive to directly decompose the Laplacian matrix,

especially when a graph is large, several approximation approaches have been proposed.

Two kinds of graph convolutional operators based on different approximation strategies

have been used for traffic forecasting.

The most popular approximation was proposed by Kipf et al. [100]. Basically they

followed the idea of Hammond et al. [101] that gθ can be well-approximated by a truncated

expansion of Chebyshev polynomials. But they only adopted the 1st-order polynomials

as the graph convolutional filter, since it is more computationally efficient. This setting

can be achieved by a single neural layer with the 1st-order neighbors being considered. In

order to allow for multi-hop neighbors, they proposed to stack multiple such neural layers.

Consequently, the structural neighborhood information on graphs can be incorporated

by a deep neural network architecture without explicitly parameterizing polynomials.

Specifically, Eq. 3.13 can be simplified as,

gθ ∗G X = θ0X− θ1D
− 1

2AD− 1
2X (3.14)

with two shared parameters θ0 and θ1. To reduce the number of parameters in practice,

θ is used to replace θ0 and θ1 with θ = θ0 = −θ1. Furthermore, the Eq. 3.14 can be

expressed as,

gθ ∗G X = θ(IN +D− 1
2AD− 1

2 )X = θ(D̂− 1
2 ÂD̂− 1

2 )X (3.15)
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where Â = A + IN and D̂ =
∑

j Âij are the renormalized matrices of A and D to deal

with exploding/vanishing gradient problems.

The second graph convolutional filter also belongs to spectral convolutional opera-

tors, but this one is derived by modeling the traffic flow as a diffusion process, which is

characterized by Markov process [95]. The assumption is that after several time steps,

the diffusion process would stop and converge to a stationary distribution P ∈ RN×N . A

K-step truncated stationary distribution P is used to characterize the transition prob-

abilities between nodes. Additionally, bidirectional diffusion process is included in this

model such that the model can flexibly capture the impact of the traffic on both upstream

and downstream roads. The resulting diffusion convolutional operation over graphs can

be formulated as:

gθ ∗G X =
K−1∑
k=0

(θk,1(D
−1
outW)k + θk,2(D

−1
in W

T)k)X (3.16)

where θ ∈ RK×2 are the parameters of the bidirectional filter gθ, and D−1
outW and D−1

in W
T

are the state transition matrices of the diffusion process.

There are some similarities and differences between these two kinds of graph convo-

lutions. Both GCN and DCN are designed from a spectral perspective and operate over

non-Euclidean data structure, namely graphs. The difference is that GCN is defined on

undirected graphs while DCN can be applied both in directed and undirected graphs.

By introducing a similarity transformation, GCN can be considered as a special case of

DCN.

In our proposed architecture, we can use either approach to capture spatial interac-

tions over graphs, with the traffic condition Xt
t−(M−1) as the input. We want to investigate

which model would work better with Transformer to model spatiotemporal dependencies.
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3.4.3 Traffic Transformer Architecture

Since Transformer itself can only deal with sequential information, it is unable to deal

with complicated spatiotemporal dependencies. In order to address this problem, here

we extend Transformer to Traffic Transformer by introducing a GNN. As illustrated

in Figure 3.1, our proposed architecture conforms to an end-to-end sequence framework,

composed of an encoder and a decoder.

In the encoder, a sequence of traffic X t
t−(M−1) is first passed through a GCN layers

by using Eq. 3.15/3.16 to aggregate the neighborhood information on a road network,

which captures the spatial dependency over nearby nodes. Then a fully-connected neural

network is employed to strengthen the expressiveness of the model. These features then

are fed into the Transformer encoder cell to learn temporal features. A typical transformer

encoder cell is depicted in 3.2

As for the decoder, it has a similar structure but has one more dense layer in the end.

During the training process, a sequence of traffic X t+H−1
t is fed into the decoder through

the same series of neural networks as the input for the encoder and then is passed through

the additional dense layer to map the outputs of the Transformer decoder cell to the

predicted traffic X t+H
t+1 . Unlike other recurrent models where the traffic data at different

time steps are fed recursively, the input sequence for the encoder/decoder can be sent

into our architecture simultaneously. Thereby, the architecture is more computationally

efficient during the training process. However, in the prediction phase, this decoder

functions a little differently as any other model for time series prediction does, because

in practice the input sequence for the decoder is unknown. In order to yield the predicted

traffic at future time steps, we use Xt as the first input for the decoder to output the

predicted traffic Xt+1, which then serves as the next input for the decoder to gain Xt+2.

This whole process continues until the predicted horizon meets. Note that here Xt rather
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than a zero matrix, which is widely adopted by other models, is used as the first input

for the decoder, since it is supposed to provide more useful information than zeros.
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Figure 3.1: The architecture of Traffic Transformer
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Figure 3.2: The diagram of Transformer encoder cell

During the training phase, the goal of our model is to minimize the difference between
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the real traffic and the predicted at each future time step, measured by Mean Absolute

Error (MAE). The loss function of Traffic Transformer can be formulated as,

Loss =
1

H

H∑
t=1

1

N

N∑
j=1

|Xt
j − X̂ t

j | (3.17)

where Xt
j is the predicted traffic expected to be observed at sensor j at time t, and X̂ t

j

is the corresponding ground truth.

3.5 Experiments

In this section, we report on the experiments we carried out to evaluate the perfor-

mance of the proposed architecture.

3.5.1 Dataset Description

Two real-world benchmark datasets are used for evaluation: METR-LA and PEMS-

BAY . Those two datasets were collected and aggregated in a 5-min window by [77] from

loop detectors in the highway of Los Angeles County and California Transportation

Agencies Performance Measurement System (PeMS), respectively. Both data are sorted

by time in an ascending order (from the past to the present) and are split into three parts

for training (70%), validation (10%), and testing (20%). Z-score normalization with the

mean and standard derivation of training data is applied to these three sets. To keep

comparable with baselines, we use the sensor graphs of both datasets constructed by [77].

Table 3.2 shows the basic descriptions.
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Table 3.2: Basic description of two datasets
Dataset METR-LA PEMS-BAY
#sensors 207 325
region Los Angeles County Bay Area
time periods Mar.1st-Jun.30th, 2012 Jan.1st-May 31st, 2017
#training_pairs 23974 36465
#validation_pairs 3425 5209
#testing_pairs 6850 10419

3.5.2 Experimental Details

Baselines

We compare our proposed Traffic Transformer with multiple baselines:

• Historical Average model - HA which studies the seasonal trend of the traffic flow

and then calculate the weighted average of seasonal traffic flow as the predictions

Liu et al. [102].

• Auto-regressive Integrated Moving Average model with Kalman filter - ARIMA_kal,

which is a typical parametric model in time series community [103].

• Linear Support Vector Regression model - LSVR [104] which employs linear support

vector machine to learn relationships between the input time series and the output

time series from historical traffic flow and then predict the future traffic.

• Feed-Forward Neural Network - FNN, composed of two dense layers with L2 nor-

malization.

• Fully Connected LSTM - FC-LSTM, an RNN-based sequence model. This archi-

tecture conforms to an encoder-decoder framework composed of two LSTM layers

in both encoder and decoder side [85].
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• Diffusion Convolutional Recurrent Neural Network - DCRNN, proposed by Li et

al. [77]. As the name has indicated, it designs a diffusion convolutional operator by

assuming the traffic follows a diffusion process, and then this graph convolutional

operator is fused with GRU to capture spatiotemporal dependencies.

• Spatiotemporal Graph Convolutional Networks - ST-GCN [72], which is completely

built on spatial and temporal convolutional structures.

For more implementation details of these baselines, please refer to the work by [77].

In order to keep a fair comparison, we do not run most of the baselines but directly take

the results from the DCRNN paper. For ST-GCN model, we use open-sourced codes

provided by [72] to train the models with the datasets we use in this paper.

Implementation Details

To test the performance of different encoding methods, we set the length of a sequence

in history – M and the length of the forecasting sequence – H as 12. For the Time Series

Segment Method, the number of days for capturing weekly-periodic patterns – w and

daily-periodic patterns – d are 1. The hidden dimension is 64 for all the layers in our

model. Two encoder and decoder cells are used and one graph convolutional layer is

utilized. We use open source code to implement this whole architecture. 1 Additionally,

as stated in subsection 3.4.3, the forecasting sequence is unknown at prediction while

known at training. As a result, there is a discrepancy between these two process, which

causes a quick error accumulation along the yielded sequence [105]. In order to solve

this problem, we also adopted scheduled sampling in our model to bridge the difference.

Please refer to [105] for more details.
1https://github.com/tensorflow/models/tree/master/official/transformer
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Evaluation Metrics

In order to evaluate and compare the performance of different models, we adopt the

following three metrics.

Mean Absolute Errors(MAE): the same as Eq. 6.1.

Root Mean Squared Errors (RMSE):

RMSE =

√√√√ 1

H

H∑
t=1

1

N

N∑
j=1

(Xt
j − X̂ t

j)
2 (3.18)

Mean Absolute Percentage Errors (MAPE):

MAPE =
1

H

H∑
t=1

1

N

N∑
j=1

|
Xt

j − X̂ t
j

Xt
j

| (3.19)

The first two metrics measure absolute prediction errors, while the last metric measures

relative prediction errors. For all these metrics, smaller values mean better prediction

performance. On both datasets, we exclude missing data when evaluating the perfor-

mance of models.

3.5.3 Experimental Results

Comparison of Traffic Prediction Performance

Table 3.3 shows the prediction performance of different methods in terms of the

15-min, 30-min and 60-min ahead prediction. Obviously, there are several interesting

discoveries: (1) In general, neural network-based models, including FNN, FC-LSTM,

ST-GCN, DCRNN, and our model noticeably outperform these weak baselines which

typically only focus on modeling temporal features. This indicates that these simple
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Table 3.3: Prediction performance of different models on two datasets
METR-LA

T Metric HA ARIMAKal SVR FNN FC-LSTM ST-GCN DCRNN Our model
MAE 4.16 3.99 3.99 3.99 3.44 3.8 2.77 2.43

15 mins RMSE 7.8 8.21 8.45 7.94 6.3 7.9 5.38 4.73
MAPE 13.00% 9.60% 9.30% 9.90% 9.60% 9.48% 7.30% 6.57%
MAE 4.16 5.15 5.05 4.23 3.77 5.07 3.15 2.79

30 mins RMSE 7.8 10.45 10.87 8.17 7.23 10.28 6.45 5.61
MAPE 13.00% 12.70% 12.10% 12.90% 10.90% 12.90% 8.80% 7.45%
MAE 4.16 6.9 6.72 4.49 4.37 7.16 3.6 3.28

60 mins RMSE 7.8 13.23 13.76 8.69 8.69 13.43 7.59 6.68
MAPE 13.00% 17.40% 16.70% 14.00% 13.20% 13.45% 10.50% 9.08%

PEMS-BAY
T Metric HA ARIMAKal SVR FNN FC-LSTM ST-GCN DCRNN Our model

MAE 2.88 1.62 1.85 2.2 2.05 1.46 1.38 1.22
15 mins RMSE 5.59 3.3 3.59 4.42 4.19 3.24 2.95 2.78

MAPE 6.80% 3.50% 3.80% 5.19% 4.80% 3.01 2.90% 2.76%
MAE 2.88 2.33 2.48 2.3 2.2 1.94 1.74 1.59

30 mins RMSE 5.59 4.76 5.18 4.63 4.55 4.27 3.97 3.61
MAPE 6.80% 5.40% 5.50% 5.43% 5.20% 4.59% 3.90% 3.43%
MAE 2.88 3.38 3.28 2.46 2.37 2.52 2.07 1.77

60 mins RMSE 5.59 6.5 7.08 4.98 4.96 5.52 4.74 4.36
MAPE 6.80% 8.3 8.00% 5.89% 5.70% 6.05% 4.90% 4.29%

models are unable to capture the complicated spatiotemporal dependency in traffic. (2)

The prediction performance of Traffic Transformer is way better than the other models on

both datasets in terms of all the evaluation metrics. Especially on the more challenging

dataset METR-LA, the average prediction error is reduced by 26.8%, 12.4%, 34.5%

in terms of MAE, RMSE, MAPE, respectively. These improvements demonstrate the

effectiveness of our architecture in modeling complex spatiotemporal dependencies for

traffic prediction.

In addition, to have a better understanding of why our model performs the best,

we visualize the forecasting results of our model and the DCRNN model. From Figure

3.3a and 3.3b, we can observe that the DCRNN and our model achieve almost the

same performance in the sense that both models are good at dealing with relatively

stable traffic conditions. Figure 3.3c and 3.3d illustrate our model has a better ability to

accurately capture the abrupt changes in the traffic and the predicted traffic is aligned

with the ground truth better than that of DCRNN. However, when the traffic changes
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very frequently and abruptly, as shown in Figure 3.3e and 3.3f, our model also struggles,

although it is still better than DCRNN. More attention should be paid to this extreme

circumstance in the future. In addition, we observe that our model and the DCRNN

models yield completely different forecasting results between 22:00-2:00 in Figure 3.3g.

Apparently, our prediction results are much more accurate. By comparing the similarity

of the two forecasting time series at that time interval in this subfigure, we attribute our

success to the ability of our model in capturing periodic patterns.

Experimental Comparison of Different Temporal Encoding Methods

With the aim to evaluate the effectiveness of our model in capturing temporal fea-

tures, we compare the prediction performance of our models under different encoding

methods. For most of the encoding methods, we consider two ways of injecting position

embeddings to our models, namely addition-based combination (AC) and similarity-based

combination (SC). However, we only apply AC to the encoding methods which are cen-

tered around the periodic position encoding strategy, since the similarity between the

hybrid periodic position embedding and the position embedding of the future time step

is meaningless. In addition, we also include the results of using the original position

encoding (OPE) strategy in Transformer. This experiment is conducted on METR-LA

dataset and RMSE is reported.

Table 3.4 describes the comparison results. We observe that: (1) The encoding meth-

ods centered around the periodic position encoding strategy, including RPPE and GPPE,

yield the worst results. This is because this idea in fact increases the difficulty of the

model learning the commonality from training sequences, as more detailed temporal

features in the position embedding reduce the similarity between two sequences. (2) Rel-

ative position encoding strategy (RPE) works much better than global position encoding

strategy (GPE) when Addition-based combination is applied. This is led by the unseen
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(a) Case 1: similar results to DCRNN (b) Case 2: similar results to DCRNN

(c) Case 3: ours captures abrupt changes (d) Case 4: ours captures abrupt changes

(e) Case 5: both models need improving (f) Case 6: both models need improving

(g) Case 7: our model benefits from the modeling of the periodicity of time series
Figure 3.3: One-hour ahead traffic speed prediction on METR- LA dataset
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position embeddings of the time steps at testing. In the global position encoding strategy,

we generate position indexes for the whole time steps, and thus each position embedding

is unique. The position embeddings of the time steps at testing set are never trained

during the training process. However, when similar-based combination is adopted, they

achieve similar results. This attributes to the characteristics of Eq. 3.5 as the similarity

between different time steps is only relevant to their time interval. (3) As expected,

OPE has higher prediction errors. Since there is no translation relationship between

the source sequence and the target sequence in traffic forecasting, the original position

encoding strategy is inapplicable to traffic forecasting. (4) The best performance goes

out to the TSE method and the similar-based combination shows a better result. This

demonstrates the superiority of this encoding idea and the similar-based combination is

more appropriate in dealing with temporal information.

Table 3.4: Performance comparison of different temporal encoding methods

OPE RPE GPE RPPE GPPE TSE

AC AC SC AC SC AC SC AC SC AC SC

15 mins 5.75 5.26 5.07 7.47 5.10 8.47 - 8.42 - 4.91 4.73
30 mins 6.82 6.30 6.18 9.54 6.15 11.53 - 11.35 - 5.88 5.61
60 mins 8.79 7.45 7.30 12.57 7.32 13.99 - 14.08 - 6.91 6.68

Benefits of Modeling Spatial Dependency

Aside from temporal dependencies, here we compare the performance of different

graph convolutional operators in modeling spatial dependencies. Three variants of our

model-Traffic Transformer (TT for short) are: (1)TT-GCN, which utilizes the well-known

GCN to capture spatial dependencies. (2)TT-DCN, which assumes the traffic flow follows

a diffusion process. (3)TT-NO, which neglects the role of spatial dependencies.

Figure 3.4 shows the prediction performance of these variants with the same parame-
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Figure 3.4: Prediction results on METR-LA dataset

ters. Without explicitly modeling the spatial dependency, TT-NO yields the worst results

in terms of all the horizons. This effectively demonstrates the necessity of explicitly mod-

eling the spatial dependency. Furthermore, TT-DCN consistently outperforms TT-GCN,

though, by a small margin. We believe this is because DCN can account for the direction

of the traffic flow while GCN fails.

3.6 Conclusion

In this research we introduced the novel non-recurrent architecture Traffic Trans-

former. We successfully used it for traffic forecasting to capture spatiotemporal depen-

dencies. This architecture can be regarded as an extension of Transformer, a well-known

sequential model in natural language processing. In order to explore how to capture

temporal dependencies in Transformer, we proposed seven different ways of modeling the

continuity and the periodicity of time series. The time series segment method achieved

the best result. Additionally, we introduced a graph convolutional neural network into

Transformer for modeling spatial dependencies of the traffic. By doing so, the dynamic

spatiotemporal characteristics of traffic can be captured. Extensive experiments on two

benchmark datasets showed that our model is superior to the baselines, demonstrating
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the effectiveness of our proposed temporal encoding method and our proposed overall

architecture. One limitation of this paper is that we only account for temporal attention

mechanism, while different upstream roads at different time may contribute differently.

In the future work, we will explore how to design a spatiotemporal attention mechanism

to address this at a finer scale.
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Chapter 4

Time in a Box: Advancing Knowledge

Graph Completion with Temporal

Scopes

This chapter is related to Research Question 1 and 2. Firstly, given that a time interval

can be modeled by a collection of time instants that are within it, I use representations

of a collection of time instants to represent both semi-intervals and closed intervals.

However, different time intervals may contain various number of instants, which makes

subsymbolic methods hard to be optimized. A random sampling method is introduced

to address this issue. In the end, for each statement, a unified input can be generated

regardless of the type of its temporal information. In addition, a method for linking

different types of temporal information to atemporal statements is developed, in which I

assume temporal information can be viewed as another relation that may hold between

entities. This chapter provides a complete landscape of applying subsymbolic methods

for quantitative temporal reasoning.
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Abstract Almost all statements in knowledge bases have a temporal scope during

which they are valid. Hence, knowledge base completion (KBC) on temporal knowledge

bases (TKB), where each statement may be associated with a temporal scope, has at-

tracted growing attention. Prior works assume that each statement in a TKB must be

associated with a temporal scope. This ignores the fact that the scoping information is

commonly missing in a KB. Thus prior work is typically incapable of handling generic

use cases where a TKB is composed of temporal statements with/without a known tem-

poral scope. In order to address this issue, we establish a new knowledge base embedding

framework, called TIME2BOX, that can deal with atemporal and temporal statements

of different types simultaneously. Our main insight is that answers to a temporal query

always belong to a subset of answers to a time-agnostic counterpart. Put differently, time

is a filter that helps pick out answers to be correct during certain periods. We introduce

boxes to represent a set of answer entities to a time-agnostic query. The filtering func-

tionality of time is modeled by intersections over these boxes. In addition, we generalize

current evaluation protocols on time interval prediction. We describe experiments on

two datasets and show that the proposed method outperforms state-of-the-art (SOTA)

methods on both link prediction and time prediction.
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4.1 Introduction

A knowledge base (KB) such as Wikidata and DBpedia stores statements about the

world around us. A KB is typically represented as a set of triples in the form of (s, r, o) –

short for (subject, relation, object), encoding the association between entities and relations

among them. A statement is often temporally scoped, which indicates during which time

period it is valid. Two examples are (Albert Einstein, educatedAt, ETH Zurich, 1896

- 1900 ) and (Albert Einstein, academicDegree, Doctor of Philosophy in Physics, 1906 ).

The former specifies the time period during which Albert Einstein studied at ETH, and

the latter points out the specific date when he obtained his degree. Graphs that contain

a substantial amount of such time-aware statements are often called temporal knowledge

base (TKB) in the machine learning literature. Each statement in a TKB is associated

with a validity time as (s, r, o, t∗)1.

Due to the ever-changing state of the world and missing data, TKBs usually contain

inaccurate and incomplete information similar to KBs. The sparsity of TKBs necessitates

temporal knowledge base completion (TKBC), namely inferring missing statements from

known statements. Temporal link prediction task is proposed to evaluate a TKBC model

by testing its performance on answering incomplete temporal queries of the form (s, r,

?o, t∗) or (?s, r, o, t∗).

Despite recent success stories on time-agnostic KBC, research on TKBC is still in

its early age and is facing new challenges. The validity time period of a statement is

often missing in a KB. As a result, it is difficult to distinguish whether statements in a

KB are atemporal (e.g., (Albert Einstein, instanceOf, Human)) or time-dependent (e.g.,

(United States of America, instanceOf, Historical Unrecognized State2)). This leads to

the question of which statements should be part of a TKB in the first place. Prior
1t∗ could be a time instant or time interval
2According to Wikidata that statement holds true during 1776-1784.
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works restrict TKBs to a collection of statements where the validity time period for each

statement must be available. However, in WIKIDATA114k, a dataset from Wikidata,

for instance, 85.1% of all statements are temporal, 56.2% of the temporal statements are

missing their validity temporal information and are excluded in previous studies while

only 247,393 out of 1,660,824 statements (i.e., 14.9%) are truly atemporal 3. As the

number of temporal statements with missing validity information is substantial, excluding

them from a TKB will significantly reduce the amount of information that could be useful

in TKB studies.

Retaining these temporally scoped statements leads to several challenges that need to

be addressed. For instance, how to design a TKBC model to handle statements with and

without known temporal scoping from the data representation perspective and model

design perspective? Clearly, the conventional representation in prior TKBC in the form

of (s, r, o, t)4 falls short. An ideal TKBC model should be more flexible to address cases

when the validity information of different types (i.e., point in time, right-open interval

(known start time), left-open interval (known end time), closed interval) is presented in

a TKB or even no validity information is available for a statement.

The second challenge is how to predict the temporal scope of a statement as it is often

missing in TKBs. This task is referred to as time interval prediction, which amounts to

answering incomplete queries of the form (s, r, o, ?I). How to generate a predicted

time interval and evaluate it require further investigation. This problem has only been

addressed very recently by Jain et al. [106]. However, at times their evaluation protocols

fail to distinguish one predicted interval from another since they do not consider the gap

between the predicted and the gold interval in case of no overlap. For instance, the same
3For all the statements, we first categorize predicates into two groups – atemporal predicates and

temporal predicates. If a predicate has ever been involved in a statement that has temporal scoping, it
belongs to temporal predicates; otherwise, it is an atemporal predicate. Atemporal statements are those
associated with atemporal predicates.

4t denotes a time point
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metric scores are assigned to two predictions [1998, 1999] and [1998, 2010] when a gold

interval [2011, 2020] is considered.

In this paper, we present a novel TKBC embedding framework, called TIME2BOX,

which relies on the intuition that the answer set in a temporal query (s, r, ?o, t∗) is

always a subset of answers of its time-agnostic counterpart (s, r, ?o). As illustrated in

Figure 4.1, there are four correct answer entities to a query (Albert Einstein, employer,

?o). However, when temporal information is specified (e.g., Albert Einstein, employer,

?o, 1933 ) as shown in Figure 4.1e, the number of positive answers becomes three. With

more temporal information being available (e.g., Albert Einstein, employer, ?o, [1933,

1955]), the answer set shrinks further (see Figure 4.1f). Therefore, we propose to model

a statement in a TKB by imitating the process of answering its corresponding temporal

query(s, r, ?o, t∗), which can be achieved in two steps – finding answer entities to its

atemporal counterpart (s, r, ?o) by using KBC methods and then picking out entities to

be true to the temporal query from preceding answers by including time. We implement

this idea by using box embeddings, especially inspired by QUERY2BOX [107], which is

originally used for answering conjunctive queries. Boxes, as containers, can naturally

model a set of answers they enclose. The filtering functionality of time can be naturally

modeled as intersections over boxes similarly to Venn diagrams. Meanwhile, performing

an intersection operation over boxes would still result in boxes, thus making it possible

to design a unified framework to deal with statements of different types.

Our main research contributions are listed as follows:

• We propose a box-based KG embedding TKBC framework (TIME2BOX) that can

represent and model statements with different types of validity information (i.e.,

unknown temporal scoping, left/right-open intervals and closed intervals).

• We introduce a new evaluation metrics gaeIOU for interval evaluation by taking
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Query q = ?o: (Albert Einstein, employer, ?o).
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Query q = ?o: (Albert Einstein, employer, ?o, 1933).
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Figure 4.1: Illustration of TIME2BOX reasoning process. In each figure, the
upper part shows entities and relations in the KB space and the latter illustrates their
correspondences in the embedding space. In all figures, the final boxes are shaded
regions in orange and answer entities are in the boxes. Note that we omit the edges
between Albert Einstein and associated entities in Figure 4.1e and 4.1f for simplicity.
Figure 4.1d shows that for an atemporal query, the reasoning process picks out all
possible answers from the whole entity space and encloses them into a time-agnostic
box. In Figure 4.1e a time-aware box is added to enclose entities that are relevant to
Albert Einstein in 1933. Then the intersection between time-agnostic and time-aware
boxes consists of a new box, which contains entities that satisfy both requirements.
When more validity information is available, Figure 4.1f shows that more time-aware
boxes can be added and the intersection box that contains correct answers would
shrink further. By doing so, TIME2BOX is flexible enough to handle different types
of queries.
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the gap between a gold interval and a predicted interval into consideration if no

overlap exists.

• Extensive experiments on two datasets - WIKIDATA12k and WIKIDATA114k -

show that TIME2BOX yields the state-of-the-art (SOTA) results in link prediction

and outperforms SOTAs in time prediction by significant margins. TIME2BOX

code is available at Github5.

4.2 Related Work

Knowledge Base Completion The core insight of KBC is to embed entities and

relations in a KB into low-dimensional vectors, which can be utilized in downstream

tasks, such as link prediction. These methods can be roughly classified into two groups:

transformation-based models [62, 65] and semantic matching energy based models [66,

68]. All KBC models ignore the temporal scoping of statements, and thus are unable to

address temporal statements. However, these models are the foundations for TKBC.

Temporal Knowledge Base Completion There are two lines of works on temporal

link prediction. The first assumes that knowledge in KBs evolves over time and historical

statements/events drive the occurrence of new events [108, 109]. The other line is to fill in

missing components in TKGs with/without explicitly modeling temporal dependencies

between statements. We are on the second line. However, our idea is to deal with

cases when time could be an instant, a (left/right-open) interval, closed interval or even

missing, while prior works can only handle timestamped statements.
5https://github.com/ling-cai/Time2Box
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4.3 Preliminaries

4.3.1 Temporal Knowledge Bases

Prior TKBC methods typically work on TKBs in which each statement has to be

associated with validity information. Thereby, for statements that do not have known

temporal scopes, they either exclude them from a TKB in the beginning or assume that

these statements hold all the time [110]. However, there are limitations in both ways.

As discussed in Section 4.1, excluding them from a TKB will significantly reduce the

amount of information that could be beneficial in TKBC studies as the number of such

statements is substantial. For the latter, their assumption would be problematic since

a lot of them may only hold for a certain time period. For instance, the statement

(Warsaw, country, Russian Empire) holds during the time interval [1815-07-09, 1916-11-

04]. Following the open-world assumption (OWA), we argue that TKBs are an extension

to KBs insofar as the lack of temporal scoping for any given statement does not imply it

holding indefinitely.

In the following, we use t and Ietst = [st, et] to denote a time point and a time interval,

respectively. The symbol − will stand for unknown temporal validity. There are five types

of statements in such a TKB: (1) (s, r, o) for a statement without a known temporal

scope; (2) (s, r, o, t) for a timestamped statement which holds at a point in time t;

(3) (s, r, o, I−st) for a right-open interval-based statement, in which only the time when

the statement starts to hold is known; (4) (s, r, o, Iet− ) for a left-open interval-based

statement, in which only the time when the statement ceases to hold is known; and (5)

(s, r, o, Ietst ) for a statement which is temporally scoped by a closed interval Ietst . Then

a TKB is denoted as G =
⋃

(s,r,o,t∗), namely the union of statements of the five types,

where s, o ∈ E represent entities, r ∈ R denotes a relation and t∗ ∈ {t, I−st , Iet− , Ietst , None}

denotes different types of valid time or no valid time available.
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4.3.2 The TKBC Problem

Link prediction and time prediction are two main tasks used to evaluate a TKBC

model. Statements in TKBs are split into training, validation, and test sets, used for

model training, parameter tuning and model evaluation, respectively.

Link prediction Queries used in this task are of the form (s, r, ?o, t∗). Performance

is evaluated on the rank of a given golden, i.e., ground truth, answer in the list of all

the entities sorted by scores in a descending order. Then MRR (mean reciprocal rank),

MR (mean rank), HITS@1, HITS@3 and HITS@10 are computed from the ranks over

all queries in the test set. However a query may be satisfied by multiple answer entities.

Thus another correct answer may be ranked over the given golden answer. In such cases,

a KBC/TKBC model should not be penalized. A traditional strategy used in KBC is to

filter out those correct answers that are already in the training and validation sets before

calculating metrics. This strategy can be directly applied to queries of the form (s, r, ?o)

or (s, r, ?o, t). However, it may not be sufficient for queries of the form (s, r, ?o, I ), as

there may exist other answers that are true during a time period within the interval I.

For example, suppose two statements – (Albert Einstein, employer, Princeton University,

[1933, 1955]) and (Albert Einstein, employer, Leiden University, [1920, 1946]), both

Princeton University and Leiden University are correct answers during the period [1933,

1946]. One naive way to solve this problem is to discretize the interval I to a sequence of

time points ts and then to convert (s, r, ?o, I ) into timestamped queries of the form (s,

r, ?o, t) so that the same filtering process can be performed on each timestamped query.

Finally, the ranks over them are averaged to be the rank for a time interval-based query.

This idea is well-aligned with the proposal by Jain et al. [106].
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Time prediction Time prediction queries in TKBs are of the form (s, r, o, ?I ). Despite

the fact that the validity information could be a point in time or a time interval, a point in

time can be viewed as a special time interval, in which start time and end time coincide.

Thus, time prediction boils down to time interval prediction. Its performance is

evaluated by the overlap between a gold interval and a predicted interval or the closeness

between those in case of no overlap. We describe the existing evaluation protocols and

propose a generalized evaluation metric in Section 4.5.

4.4 Method

The key insight of TIME2BOX lies in an intuition that the answer set of a temporal

query (s, r, ?o, t∗) is always a subset of answers of its time-agnostic counterpart (s, r,

?o) and set size decreases by adding more temporal constraints.

As illustrated in Figure 4.1d, four object entities satisfy the atemporal query (Albert

Einstein, employer, ?o) while three entities are the correct answers when the query is

restricted to the year of 1993 (see Figure 4.1e) and only one entity is correct when another

temporal information is further added in the statement, shown in Figure 4.1f. Inspired

by this observation, we propose to model a temporal statement (s, r, o, t∗) by imitating

the process of answering its corresponding temporal query (s, r, ?o, t∗), which can be

achieved through two steps: 1) finding a set of answer entities that are true for the

corresponding atemporal query by using any KBC model and 2) imposing a filtering

operation enforced by time to restrict answers afterwards. In following sections, we take

a time instant-based statement as example to formalize our idea in a KB space and a

vector space, respectively.
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4.4.1 Formalization in a KB Space

For a statement (s, r, o, t) in a TKB, the first step of TIME2BOX, as shown in

Figure 4.1d, is to project the subject s to a set of object entities that are true to its

corresponding atemporal query in the form of (s, r, ?o) enforced by the relation r.

This is a prerequisite for any statement and can theoretically be addressed by any KBC

method. Formally, the relation projector is defined as:

Relation Projector – OPr: Given the subject entity s and the relation r, this

operator obtains: Sr = {o′ | (s, r, o′) ∈ GN}. GN is the time-agnostic counterpart of G.

Then temporal information is used to filter out entities that are incorrect during the

time of interest from the answer set Sr. This can be achieved by first projecting the

subject s to a set of object entities that co-occur with s in statements at a given time

point (as shown in blue edges in Figure 4.1e) and then finding the intersection over them

and Sr (see the three entities in red in Figure 4.1e). Accordingly, the two involved steps

are defined as:

Time Projector – OPt: Given the subject s and the timestamp t, this operator

obtains: St = St = {o′ | o′ ∈ E and (s, r′, o′, t) ∈ G and r′ ∈ R}.

Intersection Operator – OI: Given Sr and St, this operator obtains the intersec-

tion Sinter = {o | o ∈ (Sr and St)}.

In fact, such a modeling process also fits to left/right-open interval-based statements

directly. For a left/right-open interval-based statement, we only consider the known

endpoint time in such an interval as we follow the open-world assumption. However, for

an atemporal statement, we only need one relation projector to obtain Sr, which is the

final set consisting of correct answer entities to its query form. For a closed interval-

based query, one commonly used approach is to randomly pick one timestamp within the

interval and to associate it with (s, r, o). Then it can be modeled the same way as an
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instant-based statement. At training, a timestamp is always randomly picked from the

interval to ensure that all the timestamps in the interval are used. In addition to the

common strategy, TIME2BOX allows sampling of a sub-time interval within the given

interval so that two temporal constraints (i.e., start time and end time) can be imposed

by using two temporal projectors, as shown in Figure 4.1f6.

4.4.2 Implementation in a Vector Space

In order to implement this idea in a vector space, two key points are 1) how to model

a set of answers returned by a KBC model and 2) how to instantiate two projectors and

one intersection operator.

Prior KBC models are incapable of directly representing a set of answer entities in a

vector space. Instead, they usually represent entities and relations as single points in the

vector space and model point-to-point projections, e.g., TransE.

Inspired by QUERY2BOX [107], which is used to deal with complex queries that

involve conjunctions, existential quantifiers, and disjunctions, we introduce the idea of

boxes in the vector space and thus name the proposed framework TIME2BOX. The

reasons for adopting boxes are three-fold. First, boxes are containers that can naturally

model a set of answer entities they enclose. Second, finding the intersection set among

sets of entities amounts to finding the intersected area over boxes similar to the concept

of Venn diagram. Third, the result of performing an intersection operation over boxes is

still a box, which makes it possible to deal with statements of different types in a unified

framework.
6Alternatively, one could also enumerate all the timestamps within the interval and use different

OPt to project the subject to multiple sets of entities, each of which is specific for one timestamp.
Subsequently, an intersection operator again is performed over all the sets of entities obtained from OPr

and OPt in the previous step. However, in spite of its efficiency, this practice is hard to implement in
mini-batch training manner since time intervals in different statements usually have varying duration
and thus contain different number of timestamps.
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In TIME2BOX, each entity e ∈ E, relation r ∈ R, and timestamp t ∈ T (T is the set

of all discrete timestamps in a TKB) are initialized as vector embeddings e ∈ Rd, r ∈ Rd,

and t ∈ Rd. Sr, St, and Sinter refer to sets of entities and thus are modeled by boxes,

represented as box embeddings in the vector space. In the following, we first introduce

the definition of box embeddings and then introduce main components of modeling and

reasoning.

Box Construction and Reasoning

Box embeddings: Mathematically, they are axis-aligned hyper-rectangle in a vector

space, which can be determined by the position of the box (i.e., a center point) and

its length (i.e., offsets). Formally, in a vector space Rd, a box can be represented by

b=(Cen(b), Off(b)), where Cen(b) ∈ Rd is its center point and Off(b) ∈ Rd
≥0 specifies

the length/2 of the box in each dimension. If an entity belongs to a set, its entity

embedding is modeled as a point inside the box of the set. The interior of a box in the

vector space can be specified by points inside it:

boxb = {e ∈ Rd : Cen(b)− Off(b) ⪯ e ⪯ Cen(b) + Off(b))} (4.1)

where ⪯ denotes element-wise inequality.

Projection operators in a vector space In previous work, relations are commonly

assumed to be projectors that transform a subject embedding to an object embedding

in terms of points in a vector space, e.g., TransE [62] and RotatE [65]. Here we adopt

a similar idea but take both relations and timestamps as projectors (OPr and OPt) to

project a subject to a set of entities in Sr – represented as a time-agnostic box bSr and

to a set of entities in St – represented as a time-aware box bSt , respectively, which are
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illustrated in Figure 4.1.

The center of a box can be defined as the resulting embedding after applying a

projection operator (OPr or OPt) on the subject embedding. The centers of bSr and

bSt can be formulated as below:

Cen(bSr) = e⊙ r; Cen(bSt) = e⊗ t (4.2)

where ⊙r and ⊗t are projectors OPr and OPt, respectively. Theoretically, projec-

tion operators could be instantiated by any projector in existing KBC models, such

as element-wise addition in TransE [62] , element-wise product in DistMult [66] , and

Hadamard product in RotatE [65]. Even though OPr and OPt can be different, we

choose the same projector for both and implement two TIME2BOX models by taking

element-wise addition and element-wise product as operators by following TransE and

DistMult, respectively. Accordingly, these two models are named as TIME2BOX-TE and

TIME2BOX-DM.

Ideally, the size of the box bSr should be determined by both the subject entity and

the relation, since the box contains all object entities that satisfy a query in the form

of (s, r, ?o). The same applies to bSr . However, as the entity space is usually large

in a KB, introducing entity-specific parameters would result in high computational cost.

Therefore, in practice, Off(bSr) and Off(bSt) are only determined by the relation r ∈ R

and the timestamp t ∈ T , respectively. Put differently, the size of bSr and bSt are

initialized based on r and t, which are learned through training.

Intersection Operators in a vector space An intersection operator aims to find

the intersection box binter = (Cen(binter),Off(binter)) of a set of box embeddings B =

{bSr ,bSt1, ...,bStn} obtained from the previous step. The intersection operator should be
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able to deal with B of different sizes, as required in Figure 4.1. Thus, both Cen(binter)

and Off(binter) are implemented by using attention mechanisms. Following the idea in

[111], the center point Cen(binter) is calculated by performing element-wise attention over

the centers of boxes in B. This can be formulated as follows:

Cen(binter) =
∑
i

softmax(NN(Cen(bi))⊙ Cen(bi) (4.3)

where NN is a one-layer neural network and bi ∈ B.

Since the intersection box binter must be smaller than any of the box in B, we

use element-wise min-pooling to make sure the new box must be shrunk and perform

DeepSets [112] over all the Off(bi) (bi ∈ B) to downscale binter [107]. This can be

written as below:

Off(binter) = Min(Off)⊙ σ(DeepSets(Off)) (4.4)

where DeepSets({x1,x2, ...,xn}) = MLP(1/n)·
∑n

i MLP(xi), σ denotes the sigmoid func-

tion, and Off = {Off(bi) : bi ∈ B}.

4.4.3 Optimization Objective

For a query, TIME2BOX aims to pull correct entity embedding into the final box

binter while pushing incorrect entity embedding far away from it. The distance-based

loss proposed by Sun et al. [65] satisfies this need :

Loss = −log σ(γ −D(o,binter))−
1

k

k∑
i=1

log σ(D(o′,binter)− γ) (4.5)

where σ is the sigmoid function, γ is a fixed margin, o is the embedding of a positive entity

to the given query, and k is the number of negative samples o′. D(o,binter) measures

the distance between entity o and the final box binter. With the size of a box being
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considered, the distance is divided into two parts: outside distance Doutside(o,binter) and

inside distance Dinside(o,binter). For cases when o is outside of binter, the former refers

to the distance of an entity embedding o to the boundary of the box binter, and the latter

calculates the distance between the box’s center Cen(binter) and its boundary. This can

be formalized as below:

D(o,binter) = α ·Dinside(o,binter) +Doutside(o,binter) (4.6)

where α ∈ [0, 1]. When α = 0, it means that a positive entity is required to be in a binter,

but its distance to the center is not as important. Dinside(o,binter) and Doutside(o,binter)

are written as:

Dinside(o,binter) = ∥Cen(binter)− Min(bmax,Max(bmin,o))∥1

Doutside(o,binter) = ∥Max(o− bmax,0) + Max(bmin − o,0)∥1

where bmin = Cen(binter) − Off(binter) and bmax = Cen(binter) + Off(binter) are embed-

dings of the bottom left corner and the top right corner of binter, respectively.

Compared to answering atemporal queries, finding correct answers to temporal ones

is more challenging. Therefore, the loss function should reward more in the optimization

direction that is capable of correctly answering temporal queries. For a given query qi,

we use 1
nqi

, where nqi is the number of correct answers to qi that appear in training as a

weight to adjust the loss. The core idea here is that time-aware queries often are satisfied

with fewer answers, and, thus, are harder to answer compared to atemporal queries.
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4.4.4 Time Negative Sampling

Entity negative sampling is widely used in KBC. For a positive sample (s, r, o), nega-

tive samples are constructed by replacing o with other entities o′, ensuring that (s, r, o′)

must not appear in training set. In this paper, we adopt this strategy so that the model

is able to learn the association between entities, relations, and time occurring in a posi-

tive sample by distinguishing the correct answers from the negative samples. Moreover,

for time-aware statements, we perform temporal negative sampling, which corrupts a

statement (s, r, o, t) by replacing t with a number of timestamps t′. This is important

for statements where only start time or end time is available. As shown in Figure 4.1,

the proposed architecture cannot distinguish those statements from time instant-based

statements. But temporal negative sampling can mitigate this issue to some degree. The

following is used for temporal negative sampling concerning different types of statements

(st and et are short for start and end time):

T ′ =



{t′ ∈ T : (s, r, o, t′) /∈ G} (s, r, o, t)

{t′ ∈ T : (s, r, o, t′) /∈ G, t′ < st} (s, r, o, I−st)

{t′ ∈ T : (s, r, o, t′) /∈ G, t′ > et} (s, r, o, Iet− )

{t′ ∈ T : (s, r, o, t′) /∈ G, t′ /∈ T et
st } (s, r, o, Ietst )

(4.7)

where T et
st denotes a set of time points within the interval Ietst .

4.4.5 Time Smoothness Regularizer

Time is continuous. We may expect that neighboring timestamps would have similar

representations in the vector space. Following Lacroix et al. [110], we penalize time
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difference between embeddings of two consecutive timestamps by using L2:

Λ(T ) =
1

|T | − 1

|T |−1∑
i=1

∥ti+1 − ti∥22 (4.8)

During the training step, for batches with temporal statements, we add this regularizer

with a weight scalar β to the loss function in Eq. 6.1, where β specifies the degree of

penalization.

4.5 Evaluation Metrics in Time Prediction

Time Interval Evaluation gIOU [113] and aeIOU [106] are two evaluation metrics

recently adopted in time interval prediction. Both are built on Intersection Over Union

that is commonly used for bounding box evaluation in Computer Vision.

The idea of gIOU is to compare the intersection between a predicted interval and a

gold interval against the maximal extent that the two intervals may expand. It can be

formulated as below:

gIOU(Igold, Ipred) =
D(Igold

⋂
Ipred)

D(Igold
⋃

Ipred)
−

D(Igold
⊎

Ipred \ (Igold
⋃
Ipred))

D(Igold
⊎
Ipred)

∈ (−1, 1]

(4.9)

where Igold
⋂

Ipred is the overlapping part of two intervals, Igold
⊎
Ipred denotes the short-

est contiguous interval (hull) that contains both Igold and Ipred. As shown in Figure 4.2,

if Igold = [2011, 2016] and Ipred = [2009, 2013], then Igold
⋂
Ipred = [2011, 2013] and

Igold
⊎

Ipred = [2009, 2016]. D(I) = Imax − Imin + 1 is the number of time points at a

certain granularity (e.g., year in this paper) during the time interval I.

Compared to gIOU , affinity enhanced IOU, denoted as aeIOU , provides a better
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2011 201920182017201620152013 20142008 2009 201020072006 2012

20152013

20132009 20192014

20102006

20102007

20082007

Gold Interval

1

2
3

4

5

6

aeIOU gaeIOU Overlap
1 0.5 0.5 yes
2 0.375 0.375 yes
3 0.333 0.333 yes
4 0.091 0.045 no
5 0.1 0.05 no
6 0.1 0.025 no
7 0.1 0.1 yes

7

2007 2011

Figure 4.2: Evaluation Comparison between aeIOU and gaeIOU on different predicted
intervals. Suppose a gold interval is [2011, 2016], seven possible predicted intervals are
represented as rectangles in black. Intersections between the predicted and the gold
are in pink and gaps are in orange if no overlap exists. Notably, gaeIOU is able to
distinguish these predictions while aeIOU fails to do so.

evaluation in case of non-overlapping intervals and outputs scores in [0, 1]. It can be

written as follow:

aeIOU(Igold, Ipred) =


D(Igold

⋂
Ipred)

D(Igold
⊎

Ipred)
D(Igold

⋂
Ipred) > 0

1
D(Igold

⊎
Ipred)

otherwise

(4.10)

However, we notice that aeIOU cannot tell some cases apart. As illustrated in Fig-

ure 4.2, aeIOU results in the same scores for 5○, 6○, and 7○ when compared to the gold

interval[2011, 2016]. Intuitively one would assume that 7○ is better than the others and

6○ is the least desirable. The former has a one-year intersection between 7○ and the

gold. For the latter, the gap between 5○ and the gold is smaller than that between 6○

and the gold, despite the fact that neither 5○ and 6○ overlaps with the gold. Its failure

lies in that it does not consider the gap between the gold and the predicted interval in

case of no overlap.

In the following, we take both the hull and the intersection/gap between a gold interval
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and a predicted interval into the design of the metric. The intuition is that when the

size of the hull remains the same, the metric score of a predicted interval decreases with

a larger gap to the gold in case of no overlap and increases with a larger intersection.

aeIOU is therefore generalized to gaeIOU as below:

gaeIOU(Igold, Ipred) =



D(Igold
⋂

Ipred)
D(Igold

⊎
Ipred)

D(Igold
⋂
Ipred) > 0

D′(Igold, Ipred)−1

D(Igold
⊎

Ipred)
otherwise

(4.11)

where D′(Igold, Ipred) = max(Igoldmin , I
pred
min )−min(Igoldmax, I

pred
max) + 1 is the length of the gap.

Accordingly, the Property (P ) that a good evaluation metric must satisfy can be

rewritten as: if predicted intervals (partially) overlap with the gold interval with the

same size, then the prediction having a smaller hull with the gold interval should be

awarded more by M ; if there is no overlap, the prediction that has a smaller hull and a

narrower gap with the gold should be scored higher by M . It can be formalized as below:

Property P: In case of D(Igold
⋂
Ipred1) = D(Igold

⋂
Ipred2) ̸= 0, M(Igold, Ipred1) >

M(Igold, Ipred2) if and only if D(Igold
⋃
Ipred1) < D(Igold

⋃
Ipred2).

In case of non-overlapping, M(Igold, Ipred1) > M(Igold, Ipred2) if and only if

D(Igold
⋃

Ipred1) ·D′(Igold
⋂

Ipred1) > D(Igold
⋃
Ipred2) ·D′(Igold

⋂
Ipred2)).

It follows that gaeIOU satisfies Property P, whereas aeIOU does not satisfy it; see

Figure 4.2.

4.6 Experiment

Our goal here is to evaluate TIME2BOX in both link prediction and time prediction

tasks. For a test sample (s, r, ?o, t∗), we replace ?o with each entity o′ ∈ E and use
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logσ(γ − D(o′,binter)), a variation of the inverse distance used in Eq. 6.1, as scores

for link prediction. Entities that have higher scores are more likely to form new links.

Likewise, in terms of time prediction, for a query (s, r, o, ?I), we first replace I with each

timestamp t ∈ T and calculate its score. Then we use the greedily coalescing method

proposed in [106] to generate time intervals as predictions.

4.6.1 Datasets

We report experimental results using two TKBC datasets, which both are rooted in

Wikidata. WIKIDATA12k is a widely used benchmark dataset in TKBC where each

statement is associated with a time “interval” [114]. Such an “interval”, in fact, could be

a time instant, where start time and end time are the same, a left/right-open interval,

or a closed interval. Note that this dataset excludes statements that do not have known

temporal scopes in Wikidata, although they may be time-dependent and useful in TKBC,

as discussed in Section 4.1. The other dataset is a subset of WIKIDATA432k proposed

by [110], which is the only TKB dataset where the start time, end time, or both of

a statement can remain unspecified. Although this dataset is more appropriate for a

TKBC problem, there are two limitations. First, it poses a computational burden as

it contains 432k entities and 407 relations, consisting of 7M tuples in the training set.

Second, there are several mistakes in the temporal information. For instance, 2014 was

written as 2401. We extract a subgraph, named as WIKIDATA114k, and correct temporal

information by checking it against Wikidata. More details about data pre-processing and

statistics are in Appendix A.1 (All Appendices are available online7). Since our focus is

on generic knowledge bases, we do not consider event-based datasets, such as ICEWS14

and ICEWS05-15, in which each statement is associated with a timestamp.
7Link to online Appendices.
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4.6.2 Baselines and Model Variants

In the following experiments, we regard TIME2BOX-TE as our main model, in which

both the relation operator and the time projector are instantiated as an element-wise

addition. It is denoted as TIME2BOX in resulting tables. We compare it against two

SOTAs in TKBC: TNT-Complex and TIMEPLEX base model by using the implementa-

tion in [106], both of which are based on the time-agnostic KBC model: ComplEx [68].

In addition to comparison with existing SOTAs, we also conduct an ablation study,

in which several variants of the proposed model are compared: (1) TIME2BOX-SI, short

for Sample Interval: for a closed interval-based statement, this variant randomly samples

a sub time interval from a given interval at each training step and train it as shown in

Figure 4.1f. (2) TIME2BOX-TR: previous works in TKBC often explicitly fused relations

with temporal information to obtain time-aware relations and empirically demonstrated

its effectiveness [106, 110, 115]. We also explicitly model the association between relations

and time as a new point prt = r + t in the vector space and incorporate it into Eq. 4.3

to help locate the intersection box.

(3)TIME2BOX-DM: this variant implements the relation and temporal projectors as

an element-wise product in real space as DistMult does.

(4) TIME2BOX-TNS: this variant is used to test the effect of temporal negative

samples, in which we replace a number of entity negative samples with temporal negative

samples, as introduced in Section 4.4.4.

All these models are trained on statements in training set and evaluated by answering

queries where either the object or the temporal information is missing. Hyper-parameter

settings are introduced in Appendix A.2 and comparison of parameters used in different

models is summarized in Table 11 in Appendix A.6. Moreover, we notice there are several

limitations in current experimental setups of SOTAs and we detail them in Appendix A.3.
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4.6.3 Main Results

Datasets WIKIDATA12k WIKIDATA114k
Metrics MRR MR HITS@1 HITS@10 MRR MR HITS@1 HITS@10
TNT-Complex 31.77 415 19.24 51.74 49.25 638 41.02 66.99
TIMEPLEX base 34.55 302 21.91 53.25 49.99 337 41.25 66.10
TIME2BOX-TR 34.99 102 24.79 56.32 50.25 85 41.73 67.13
TIME2BOX-DM 35.90 139 25.52 56.74 48.84 284 41.09 64.33
TIME2BOX-SI 36.79 100 27.16 56.43 50.42 139 41.65 67.58
TIME2BOX-TNS 37.25 100 27.41 57.31 50.55 185 41.77 67.78
TIME2BOX 37.30 101 27.38 57.36 50.49 168 41.69 67.91

Table 4.1: Link prediction evaluation across two datasets.

Link Prediction Task We report main results of link prediction in Table 4.1.

TIME2BOX and all its variants consistently outperform or are on a par with the perfor-

mance on SOTAs in terms of MRR, MR, HITS@1 and HITS@10. On WIKIDATA12k,

TIME2BOX outperforms TIMEPLEX base by around 3 points in terms of MRR and over

5 points in HITS@1. On WIKIDATA114k, TIME2BOX is slightly better than two SO-

TAs in general for MRR, HITS@1 and HITS@10. In addition, we notice that TIME2BOX

beats SOTAs by large margins in time interval-based link prediction, as shown in Table

8 in Appendix A.4. Our method improves around 20 and 7 HITS@1 points in terms

of half-open interval-based link prediction and closed interval-based link prediction on

WIKIDATA12k, respectively. On WIKIDATA114k TIME2BOX improves around 6 and

4 HITS@1 points, respectively.

Another critical observation in Table 4.1 is the substantial improvements of using

TIME2BOX in terms of MR on both datasets. TIME2BOX returns an MR of 100 and

139 on WIKIDATA12k and WIKIDATA114k, respectively and TIMEPLEX base obtains

302 and 337 for MR on both datasets. It indicates that TIME2BOX is capable of giving

a fair rank for a gold answer to any test query on average. This is likely because of the
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idea of using boxes to constraint the potential answer set. As a time-agnostic box is

optimized towards embracing entities satisfying atemporal queries of the form (s, r, ?o)

in the learning process, boxes implicitly manage to learn common characteristics of the

satisfied ?o. Therefore, TIME2BOX is less likely to output extremely bad predictions.

Examples in Section 4.6.4 exemplify this hypothesis.

Time Prediction Task Table 4.2 and Table 4.3 summarizes the results for two

datasets. On both datasets, TIME2BOX and its variants consistently outperform SOTAs

by significant margins. Specifically, TIME2BOX improves over TIMEPLE by about 5.56,

7.25, and 4.87 points with respect to gIOU@1, aeIOU@1, and gaeIOU@1, respectively,

on WIKIDATA12k. As for WIKIDATA114k, despite subtle improvements in link pre-

diction, the advancement of TIME2BOX is more pronounced in time prediction, which

shows that it gains 8.7, 5.87, and 4.66 points on gIOU@1, aeIOU@1, and gaeIOU@1, re-

spectively. Furthermore, the improvements on gaeIOU@10 are much more notable with

gains of 15.81 and 11.07 points on the two datasets, respectively.

Datasets WIKIDATA12k
Metrics gIOU@1 gIOU@10 aeIOU@1 aeIOU@10 gaeIOU@1 gaeIOU@10
TNT-Complex 31.44 55.18 18.86 40.94 11..01 29.51
TIMEPLEX base 35.63 60.86 18.60 37.75 12.61 32.63
TIME2BOX-TR 39.63 67.83 23.47 44.64 15.87 41.53
TIME2BOX-DM 38.78 62.44 21.91 41.55 14.94 37.14
TIME2BOX-SI 39.68 65.30 23.66 42.16 16.09 38.54
TIME2BOX-TNS 42.30 70.16 25.78 50.04 17.41 47.54
TIME2BOX 41.20 68.53 24.70 46.05 16.98 43.08

Table 4.2: Time prediction evaluation on WIKIDATA12k.

80



Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes Chapter 4

Datasets WIKIDATA114k
Metrics gIOU@1 gIOU@10 aeIOU@1 aeIOU@10 gaeIOU@1 gaeIOU@10
TNT-Complex 27.94 48.31 16.18 35.32 7.31 23.68
TIMEPLEX base 29.31 57.68 18.56 36.70 12.53 32.47
TIME2BOX-TR 37.49 67.95 25.05 49.02 15.41 45.72
TIME2BOX-DM 35.88 66.62 24.33 48.03 14.89 44.48
TIME2BOX-SI 34.02 62.89 23.10 44.74 14.07 40.05
TIME2BOX-TNS 37.31 66.91 25.07 48.18 15.57 44.66
TIME2BOX 38.01 71.29 24.42 50.07 15.88 47.77

Table 4.3: Time prediction evaluation on WIKIDATA114k.

4.6.4 Qualitative Study

Table 4.4 showcases examples of timestamp-based link prediction on WIKIDATA12k.

The comparison between TIMEPLEX base and TIME2BOX reveals that TIME2BOX

is able to learn common characteristics of entities by adopting boxes. For instance,

the predicted top 10 returned by TIME2BOX are possible affiliations (e.g., institutes,

colleges, universities) in the first query and are countries in the second query. By contrast,

TIMEPLEX base returns a mixture of entities with distinct classes for both queries.

Furthermore, Table 4.5 shows an example of time interval-based link prediction, in which

TIME2BOX is able to consistently output correct predictions across time and precisely

discern the changes of objects over time (i.e., the correct answer shifts from Russian

Empire to Ukrainian People’s Republic in 1916), while TIMEPLEX base fails. This can

be attributed to the ability of TIME2BOX to capture the order of timestamps and the

idea of temporal boxes as a constraint over potential answer entities. Hence, answer

entities that are true in two consecutive years can be enclosed in the intersection of

temporal boxes.
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Query Example 1: (Yury Vasilyevich Malyshev, educatedAt, ?o, 1977)
TIMEPLEX base TIME2BOX

1. Bauman Moscow State Technical University,
2. Gold Star,
3. Communist Party of the Soviet Union,
4. Order of Lenin,
5. S.P. Korolev Rocket and Space Corporation Energia,
6. Hero of the Soviet Union,
7. Gagarin Air Force Academy,
8. Balashov Higher Military Aviation School of Pilots,
9. Ashok Chakra,
10. Heidelberg University

1. Bauman Moscow State Technical University,
2. Gagarin Air Force Academy,
3. S.P. Korolev Rocket and Space Corporation Energia,
4. Saint Petersburg State Polytechnical University,
5. University of Oxford,
6. Saint Petersburg State University,
7. Steklov Institute of Mathematics,
8. Leipzig University,
9. Heidelberg University,
10. Moscow Conservatory

Query Example 2: (Pedro Pablo Kuczynski, countryOfCitizenship,?o, 2015)
TIMEPLEX base TIME2BOX

1. doctor honoris causa,
2. President of Peru,
3. Minister of Economy and Finance of Peru,
4. Grand Cross of the Order of the Sun of Peru,
5. President of the Council of Ministers of Peru,
6. World Bank,
7. Serbia,
8. Royal Spanish Academy,
9. Meurthe-et-Moselle,
10. Norwegian Sportsperson of the Year

1. France,
2. Germany,
3. United States of America,
4. Austria,
5. Romania,
6. United Kingdom,
7. Poland,
8. Kingdom of Italy,
9. Russian Soviet Federative Socialist Republic,
10. Russian Empire

Table 4.4: Examples of timestamp-based link prediction on WIKIDATA12k. Top
10 entities predicted by TIMEPLEX base and TIME2BOX are numbered, where 1
denotes Top One. Correct answers are in bold.
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Query Example: (Kyiv, country, ?o, [1905, 1919])
Gold Answers: (1)[1905, 1916]->Russian Empire; (2)[1917, 1919]->Ukrainian People’s Republic

year Timplex TIME2BOX
1905 Soviet Union Russian Empire
1906 Soviet Union Russian Empire
1907 Russian Empire Russian Empire
1908 Soviet Union Russian Empire
1909 Ukrainian Soviet Socialist Republic Russian Empire
1910 Soviet Union Russian Empire
1911 Russian Empire Russian Empire
1912 Ukrainian Soviet Socialist Republic Russian Empire
1913 Soviet Union Russian Empire
1914 Ukrainian Soviet Socialist Republic Russian Empire
1915 Soviet Union Russian Empire
1916 Ukrainian People’s Republic Russian Empire
1917 Ukrainian People’s Republic Ukrainian People’s Republic
1918 Ukrainian People’s Republic Ukrainian People’s Republic
1919 Ukrainian People’s Republic Ukrainian People’s Republic

Table 4.5: An example of interval-based link prediction on WIKIDATA12k. For time
interval-based link prediction, the current strategy is to discretize intervals to times-
tamps and average ranks for each timestamp-based prediction result as the final eval-
uation. Only top 1 predictions are shown here.

4.6.5 Model Variation Study

In this section, we report on observations of results about different model variations,

which are shown in Table 4.1, 4.2 and 4.3. Compared to TIME2BOX-DM, which adopts

element-wise product as operators, element-wise addition projectors (TIME2BOX) per-

form better in link prediction and time prediction on both datasets. Moreover, we observe

that explicitly modeling association between time and relation (i.e., TIME2BOX-TR)

does not significantly improve the performance of TIME2BOX framework, although it

speeds up the convergence at training, indicating that intersection operators are good

enough to learn the association between time and relations implicitly. As for different

time-aware strategies incorporated in TIME2BOX-SI and TIME2BOX-TNS, we find that

on both datasets TIME2BOX-SI does not outperform TIME2BOX, indicating that using

one sample strategy (i.e., Figure 4.1e) is better at modeling time interval-based state-
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ments in TIME2BOX. In addition, we find that by incorporating time negative samples,

the performance on time prediction can be further improved on WIKIDATA12k, although

TIME2BOX-TNS is not superior to TIME2BOX in link prediction.

4.7 Conclusion

In this work, we presented a box-based temporal knowledge graph (TKBC) comple-

tion framework (called TIME2BOX) to represent and model statements with different

types of validity information (i.e., no time, known start time, known end time, instant,

both start and end time) in a vector space. We argued that a TKBC problem can be

solved in two steps. First by solving an atemporal KBC problem and then narrowing

down the correct answer sets that are only true at the time of interest. Therefore, we

introduced time-agnostic boxes to model sets of answers obtained from KBC models.

Time-aware boxes are used as a filter to pick out time-dependent answers. TIME2BOX

outperforms existing TKBC methods in both link prediction and time prediction on

two datasets - WIKIDATA12k and WIKIDATA114K. By investigating the model per-

formance on statements with different types of validity information, we found that the

improvement of TIME2BOX largely attributes to its better ability to handle statements

with interval-based validity information. In the future, we will explore how to incorpo-

rate spatial scopes of statements into KGE models, such that KBC can benefit from both

spatial and temporal scopes of statements.
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Chapter 5

A Hyperbolic Embedding Model for

Qualitative Spatial and Temporal

Reasoning

This chapter concentrates on qualitative temporal reasoning rather than quantitative

temporal reasoning. It presents a generic method for qualitative temporal reasoning

by drawing insights from theories of time and properties of temporal relations. The

proposed method is designed to automatically discover rule chains among relations as

disclosed in composition/transitivity tables. Meanwhile, the method is capable of model-

ing inverse relations, transitivity, symmetricity and asymmetricity of temporal relations.

The method is also tested on qualitative spatial reasoning. The evaluation results have

show its superiority over conventional symbolic reasoning methods on both tasks of qual-

itative spatial and temporal reasoning. The chapter demonstrates the effectiveness of

subsymbolic methods in qualitative reasoning.
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Abstract Qualitative spatial/temporal reasoning (QSR/QTR) plays a key role in re-

search on human cognition, e.g., as it relates to navigation, as well as in work on robotics

and artificial intelligence. Although previous work has mainly focused on various spatial

and temporal calculi, more recently representation learning techniques such as embedding

have been applied to reasoning and inference tasks such as query answering and knowl-

edge base completion. These subsymbolic and learnable representations are well suited

for handling noise and efficiency problems that plagued prior work. However, applying

embedding techniques to spatial and temporal reasoning has received little attention to

date. In this paper, we explore two research questions: (1) How do embedding-based

methods perform empirically compared to traditional reasoning methods on QSR/QTR

problems? (2) If the embedding-based methods are better, what causes this superior-

ity? In order to answer these questions, we first propose a hyperbolic embedding model,

called HyperQuaternionE, to capture varying properties of relations (such as symmetry

and anti-symmetry), to learn inversion relations and relation compositions (i.e., compo-

sition tables), and to model hierarchical structures over entities induced by transitive

relations. We conduct various experiments on two synthetic datasets to demonstrate the

advantages of our proposed embedding-based method against existing embedding models
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as well as traditional reasoners with respect to entity inference and relation inference.

Additionally, our qualitative analysis reveals that our method is able to learn conceptual

neighborhoods implicitly. We conclude that the success of our method is attributed to

its ability to model composition tables and learn conceptual neighbors, which are among

the core building blocks of QSR/QTR.

5.1 Introduction

In our daily life, we humans usually use qualitative expressions, such as left, north,

after and during, to describe and infer spatial/temporal relations between two objects.

The field that studies how to enable machines/artificial intelligence (AI) agents to repre-

sent qualitative spatial and temporal expressions, and to draw inferences on top of these

representations, namely qualitative spatial/temporal reasoning (QSR/QTR), is an active

research topic in AI. In the past years, it has fostered a variety of research across vari-

ous applications such as cognitive robotics [?], visual sensemaking [?], semantic question

answering [?], spatio-temporal data mining [?] and (spatial) cognition and navigation

[40, 116].

Since the late 1980s, a plethora of theoretical research have been dedicated to compu-

tational QSR/QTR [29, 42, 117, 118, 119, 120, 121, 122, 123, 124]. Among them two best

studied fundamental problems in qualitative reasoning (QR) are qualitative knowledge

representation and reasoning. In the past, a lot of work has focused on the knowledge rep-

resentation aspect. For instance, non-null regions in an n-dimensional embedding space

Rn [125] are taken as ontological primitives, and binary topological relations, i.e., Region

Connection Calculus (RCC)-8 relations [42, 126], and Allen’s temporal relations [29] as

primitive relations between two regions/time intervals. Reasoning, however, remains to

be a challenge. Composition tables (CT) and conceptual neighborhood structures (CNS)
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are among the major reasoning techniques, jointly supporting inferences about spatial

and temporal relations between geospatial entities or events [40, 127, 42, 128]. For in-

stance, one can use CT as constraints to reason over spatial relations. Simply put, such

a method regards known binary relations as constraints between regions. Then the rea-

soning task boils down to a consistency satisfactory problem (CSP), i.e., to determine

whether the available information is consistent or not, given the CT. For example, as

shown in Figure 5.1, the possible topological relation between property1 and property2 is

either partially overlap or externally connected after path-consistency checking built up

on RCC-8’s composition table [129, 130].

house1dchouse2

property2

road

*property1

dc

ntpp

ec

dc

ectpp

*

dc

(a) Constraint network

house1dchouse2

property2

road

po|ec
property1

dc

ntpp

ec

dc

ectpp

po

dc

(b) Resulting network

Figure 5.1: Constraint network-based reasoning. The symbol ∗ in red denotes all
RCC-8 relations. Full names of relations are described in Table 5.1. Figure 5.1a
illustrates the initial constraints between entities imposed by the relations on edges,
and Figure 5.1b shows the resulting relations after path-consistency checking.

Despite those success stories of traditional QR approaches, several limitations remain.

First, constraint-based methods are prone to erroneous information, e.g, introduced by

noise. Errors may occur at any stage during information collection, and, thus, are in-

evitable in reality, which may break down the traditional reasoning capabilities. For

instance, if the relation between house2 and property2 is wrongly recorded as dc in-
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stead of ec, inferring unknown relations based on CT will fail. Second, traditional QR

approaches are only applicable to a limited number of reasoning tasks, such as deduc-

ing new knowledge, checking consistency, updating existing knowledge, and discovering

a minimal set of useful representations. Albeit seemingly different, all these tasks are

in fact mutably transformable and can be solved essentially in a similar fashion [131].

Such a shortage of applications is partially attributed to the symbolic knowledge repre-

sentation used in traditional QR, which prohibits it from being beneficial to other tasks

which purely rely on numeric computations. Meanwhile, the symbolic representation of

knowledge is usually in the form of triples (i.e., ⟨subject, relation, object⟩). Traditional

QR approaches only make full use of pairwise constraints between entities while failing to

benefit from higher-order interactions. Third, reasoning over spatial/temporal calculi is

NP-complete [129], which makes traditional QR methods difficult to scale. Extra efforts

(e.g., identifying maximal tractable subsets containing all basic relations and different

optimizing strategies) are needed to improve the efficiency, which becomes even more

problematic with an increasing number of relations. These limitations, consequently,

necessitate more robust spatial/temporal reasoners.

The past decade has witnessed great breakthroughs in Machine Learning (ML).

Embedding/sub-symbolic techniques, in particular, have been applied to tackle various

reasoning tasks. Examples include word/sentence similarity measuring [132, 133, 81],

question/query answering [134, 135, 136, 137], dynamic interaction inference [138], as

well as knowledge graph completion and reasoning [14, 15, 16, 17]. Generally speaking,

their success can be attributed to learnable sub-symbolic representations (i.e., embed-

dings) in contrast to symbolic representations. At training, an embedding method is

trained to draw patterns of and interactions between entities from data and sub-symbolic

representations of entities are learned accordingly. This training process is analogous to

knowledge abstraction, which preserves the core essentials of entities but ignores subtle
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details. Moreover, such a process of automatic abstraction makes embedding models less

prone to local errors and data incompleteness, and improve their generability [?, ?].

Despite their appealing characteristics, the adoption of sub-symbolic approaches to

QSR/QTR remains mostly unexplored. To fill in this gap, we propose a hyperbolic

embedding model, called HyperQuaternionE, as an implicit reasoner for spatial and tem-

poral reasoning. In the model design, we consider the following two prominent character-

istics of spatial/temporal reasoning. First, composition tables, which specify role chains

of relations, have been the backbone of most qualitative reasoning methods. In order to

enable embedding models to automatically find and take use of such role chains, we intro-

duce quaternions, an extension of complex numbers, in the embedding space. Quaternion

mutiplication follows the non-commutative law and thus is well suited for modeling re-

lation composition. Additionally, quaternions can be used to model other properties of

relations (e.g., symmetric and anti-symmetric) and inverse relations. Second, hierarchi-

cal structures over entities must be considered. Certain spatial and temporal relations,

such as non-tangentially proper par and before, are transitive, thus inducing hierarchical

structures over entities (e.g., regions or temporal intervals). This suggests that a hy-

perbolic embedding space, which can embed trees with arbitrarily low distortion [139],

would be more appropriate than Euclidean space. Therefore, we adopt hyperbolic space

as our embedding space and transfer quaternions to this space to preserve the proper-

ties mentioned above. We evaluate our method on two tasks, namely entity inference

and relation inference, which are to identify entities that have a given (spatial/temporal)

relation (e.g., partially overlapping) to a target entity, and to infer the relation held be-

tween two given entities, respectively. Finally, we conduct a qualitative analysis over the

trained models in order to uncover the reasoning mechanisms behind our model.

The remainder of this paper is structured as follows. Section 5.2 introduces impor-

tant concepts and terms applied in the proposed method. Section 5.3 summarizes related
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work on spatial and temporal reasoning, knowledge graph embedding models, and their

applications in geospatial knowledge graphs. Section 6.3 elaborates on the motivation of

our proposed embedding model and its formulation. To compare the reasoning ability

of different models, Section 6.4 presents the datasets, baseline methods, as well as eval-

uation metrics used in the study, followed by an experimental summary of key findings.

Section 6.5 concludes our work and points out future research directions.

5.2 Background

Before reviewing related work, we first introduce concepts and terms used in the

literature.

5.2.1 Basic Definitions

Definition 2 (Spatial and Temporal Relations) In this paper, we focus on the eight

topological relations of RCC-8 [42], and the thirteen temporal relations developed by

Allen [29]. Table 5.1 and 5.2 list those relations together with their inherent properties

(i.e., transitive and symmetric).

Name (abbrev.) Transitive Symmetric
disconnected (dc) ✗ ✓

externally connected (ec) ✗ ✓

partially overlapping (po) ✗ ✓

tangentially proper part (tpp) ✗ ✗

tangentially proper part inverse (tppi) ✗ ✗

non-tangentially proper part (ntpp) ✓ ✗

non-tangentially proper part inverse (ntppi) ✓ ✗

equal (eq) ✓ ✓

Table 5.1: List of spatial relations
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Name (abbrev.) Transitive Symmetric Name (abbrev.) Transitive Symmetric
before (<) ✓ ✗ after (>) ✓ ✗

meets (m) ✗ ✗ met-by (mi) ✗ ✗

overlaps (o) ✗ ✗ overlapped-by (oi) ✗ ✗

during (d) ✓ ✗ contains (di) ✓ ✗

starts (s) ✓ ✗ started-by (si) ✓ ✗

finishes (f) ✓ ✗ finished-by (fi) ✓ ✗

equal (=) ✓ ✓

Table 5.2: List of temporal relations

Definition 3 (Knowledge Graphs) Formally, a Knowledge Graph (KG) can be rep-

resented as G = (V,E), where V is the set of nodes/entities and E is the set of edges

with labels, denoting relations held between two entities. A statement then consists of a

head entity, a relation, and a tail entity, written as ⟨h, r, trlangle, where h, t ∈ V and

r = σ(e), e ∈ E. σ is a mapping function from an edge to its label. One way to represent

such a type of knowledge is known as the RDF (Resource Description Framework), a

standard mostly used in the Semantic Web literature. We use the term Knowledge Graph

here to denote such a set of RDF statements. Naturally, a statement claiming a spatial

or temporal relation between two entities (i.e., geometries or temporal intervals) can be

represented as a triple. For instance, a statement that geometry A is disconnected to

geometry B can be represented as triple (A, dc, B). Note that we use a unified name –

spatial KGs (SKGs) – to refer to KGs involving only spatial relations or/and temporal

relations.

Definition 4 (Knowledge Graph Embedding) Given their symbolic nature, it is

difficult to apply RDF-based knowledge graphs directly to applications that require notions

such as quantitative measurements of similarity. For instance, most recommender sys-

tems are built upon sub-symbolic approaches and it is hard for symbolic KGs to contribute

directly. In order to address this limitation, knowledge graph embeddings (KGE) were

proposed, which aim at encoding entities and relations of a KG into a high-dimensional
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continuous vector space while preserving the underlying structures. Specifically, a KGE

model projects symbolic representations of a head entity and a tail entity – h and t,

to points in a continuous vector space – their numeric vector representations, h and t,

respectively. Additionally, it assumes the relation r acts as a transformation operator,

transforming h to t in this continuous space, such as translation, rotation, etc. Note that

we use plain symbols (e.g., h) to denote symbolic representations and the bold format

(e.g., h) to denote numeric vector representations.

Mathematically, the embedding of an entity, or a relation, is mostly formalized as

v ∈ Rd, or r ∈ Rd, in Euclidean space. Trained on symbolic representations of statements

presented in KGs, a KGE model is optimized towards minimizing the loss of reproduc-

ing those presented statements. More details on embedding models will be reviewed in

Section 5.3.

Definition 5 (Entity Inference) Entity Inference refers to answering queries in which

one of the entity in a statement is missing, usually expressed as either ⟨?h, r, t⟩ or

⟨h, r, ?t⟩, corresponding to missing head or missing tail entities. A plain text example

would be which city is located in California?, or which event occurred during the COVID-

19 pandemic?

Definition 6 (Relation Inference) Relation Inference refers to inferring the relation

between two entities, usually in the form of ⟨h, ?r, t⟩. Example queries include: what is

the topological relation between Los Angeles to California? and which temporal relation

holds between the Bronze Age and Stone Age?

Definition 7 (Quaternion) A quaternion q has the form of q = a+ bi+ cj+dk, where

a, b, c, d ∈ R and a is the real part and bi, cj, dk are three imagery parts. Alternatively, we

can express a quaternion as [a,u], where u ∈ R3, consisting of three imagery components.

q is a pure quaternion when a = 0.
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It was first introduced in 1843 by Irish mathematician William Rowan Hamilton

and applied to mechanics in 3D space. We can view it as a generalization of complex

numbers (i.e., a + bi) but it contains two more imagery parts. Similar to multiplication

over complex numbers, there is a rule for the three imagery units i, j, k: i2 = j2 = k2 =

ijk = −1. According to polynomial multiplication, the multiplication of two quatertions

qx = a+ bi+ cj + dk and qy = e+ fi+ gj + hk can be calculated as below:

qxqy = (a+ bi+ cj + dk) ∗ (e+ fi+ gj + hk) =



a −b −c −d

b a −d c

c d a −b

d −c b a





e

f

g

h


(5.1)

According to Eq.5.1, we can easily derive that qxqy ̸= qyqx, meaning that quaternion

multiplication does not conform to the commutative law. This lays the foundation of

modeling asymmetric composition tables for qualitative spatial and temporal reasoning,

which will be discussed in Section 6.3.

Important properties and definitions of quaternions are given as below:

1. Inversion of a quaternion: qq−1 = q−1q = 1 (q ̸= 0).

2. Conjugate of a quaternion: q∗ = a−bi−cj−dk = a−u. In addition, (pq)∗ = q∗p∗.

3. Norm of a quaternion: ∥q∥ :=
√
qq∗ =

√
q∗q =

√
a2 + b2 + c2 + d2 =

√
a2 + ∥u∥2.

When ∥q∥ = 1, we call q a unitary quaternion, denoted as qu.

Because qq∗ = q∗q = ∥q∥2, one way of deriving quaternion inverse is q−1 = q∗
∥q∥2 . In

particular, when q is a unitary quaternion, q−1 = q∗.

94



A Hyperbolic Embedding Model for Qualitative Spatial and Temporal Reasoning Chapter 5

Definition 8 (Hyperbolic Space) Hyperbolic space is a homogeneous space which ex-

hibits hyperbolic geometry with a constant negative sectional curvature.

There are different hyperbolic models to describe hyperbolic space mathematically,

such as the Poincaré plane model [140] and the hyperboloid model (the Lorentz model)

[141]. Here, we introduce the Poincaré ball model, which is the generalization of the

Poincaré plane model. Mathematically, a d-dimensional Poincaré ball of radius 1√
c
(c > 0)

can be expressed as Bd
c = {x ∈ Rd : c∥x∥2 < 1}, where ∥ · ∥ is the Euclidean norm. Such

a ball has a negative curvature −c, and with a larger c, the space is more curved. Note

that Euclidean space has a curvature of zero, corresponding to c = 0, and spherical space

has a constant positive curvature. When c = 1, the distance between two points in the

hyperbolic space is given by:

dH(x,y) = arcosh(1 + 2
∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)
) (5.2)

where ∥ · ∥ is the Euclidean norm.

This formula provides a desirable property that allows hyperbolic space to embed

trees/hierarchical data. According to this formula, we can observe that when a point is

close to the origin (i.e., ∥x∥ ≈ 0), the distance between it and any other point will be

smaller. Conversely, as points move towards the boundary of the ball (e.g., ∥x∥ ≈ 1),

the distance will be larger and the distance dH(x,y) between two points approaches

dH(x, 0) + dH(0,y). Also, as points move away from the root/origin, more “space” is

available to separate points (e.g., nodes in a tree) in hyperbolic space. This is analogous

to the shortest distance between two sibling nodes in a tree, which is equal to the length

of the path through their parent. This means hyperbolic distance exhibits a desirable

resemblance to tree metrics. Figure 5.3 illustrates how a tree-like 2D embedding space

looks like.
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the US

CA

AZ

NY

Figure 5.2: Example of a hierarchical tree.
This tree is induced by ntppi (non-tangen-
tially proper part inverse) relation, which
means a preceding entity has a nttpi rela-
tion to its succeeding entities in this tree.

Figure 5.3: Illustration of embed-
ding a hierarchical tree (with two
being the branching factor) into a
2D hyperbolic plane. Distances be-
tween any two directly connected
points (in blue) are equal and dis-
tances grow exponentially when ap-
proaching to the edge of the plane.
(source from [142])

5.3 Related Work

A plethora of Knowledge Graph Embedding (KGE) models have been developed in

the past decade. Relations in KGs have different properties, such as symmetry, anti-

symmetry, inversion, and transitivity [65]. Different models preserve varying properties

due to distinct ways of manipulating relations. Accordingly, we roughly divide them

into four groups – translation, rotation, mixed manner, and others. Particularly, this

group focuses on which properties of relations (e.g., symmetric and inverse) are preserved

and whether the model is able to encode relation composition by design. Last but not

least, we review related work on hyperbolic embeddings, which sheds lights on modeling

hierarchical relations.
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Relations as Translation The most representative KGE model is TransE [62]. It

assumes that for a statement ⟨h, r, t⟩, t is resulted from h being translated by r in a

vector space. Translation operation in a real vector space can be easily achieved by

vector addition, and thus the idea of TransE is formalized as h + r = t. A number

of variants were proposed subsequently to address issues with the original TransE. For

example, TransH argued that TransE cannot deal with other types of relations except for

1-to-1 relation type, and, thus, introduced relation-aware hyperplanes [11]. TranSparse

introduced adaptive sparse matrices to address the heterogeneity and imbalance issues

of entities and relations in KGs [143]. This group of methods is simple yet very effective,

and lays the foundation of most KGE methods. However, they fail to encode simple

properties of relations and logic patterns. For instance, they cannot model symmetric

property of relations. If relation r is symmetric, both h+r = t and t+r = h should hold

according to TransE, which leads r to be close to 0. Additionally, although TransE is

able to achieve relation composition, the order of relations is not considered. Namely, it

presumes that r1◦r2 = r2◦r1. Therefore, TransE ignores the non-commutativity law

in relation composition, which causes issues in modeling role chains in composition tables

for spatial and temporal reasoning. Moreover, TransE cannot deal with hierarchical

relations either.

Relations as Rotation One seminal example in this group is RotatE, which assumes

that a relation acts as a rotation in 2D space and encodes a relation as a unit complex vec-

tor [65]. Similar to TransE in the real space, RotatE can be formalized as ∥h⊗r−t∥ = 0,

where ⊗ is the vector multiplication in the complex space instead. RotatE by design suc-

ceeds in modeling multiple logic patterns, such as symmetry, anti-symmetry, inversion,

and relation composition. However, it is incapable of dealing with the order of relations in

composition, either. Recently, due to the non-commutative law of quaternion multiplica-
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tion, quaternions, which have two more imaginary elements than complex numbers, have

been introduced to address this issue. RotatE3D assumes that a tail entity is resulted

from a head entity being rotated by rin3D [144]. Despite its effectiveness in capturing

various logic patterns, it falls short of modeling hierarchical relations from transitive rela-

tions. Such relations are in fact prominent in spatial and temporal reasoning since most

spatial/temporal relations are transitive. In this paper, we also make use of quaternions

to capture additonal logic patterns and extend it to hyperbolic space in order to encode

hierarchical structures.

Relations as Mixed Operators Recently, [145] argue that existing work considers

the relation to be either a translation or rotation operator but not both, thus limiting

the representational and inferring ability of sub-symbolic models. Hence, they introduce

dual quaternions to represent relations, which embrace the properties of translation and

rotation simultaneously. Despite its intuitive physical and geometric interpretations, the

unified framework do not improve significantly on data sets that encode hierarchical

hypernym relations, such as specific type of.

Other Methods Another track of studies are based on tensor factorization, such as

DistMult [66] and RESCAL [67] in real space and ComplEx [146] and TNTComplEx [147]

in complex space. This type of methods measures the compatibility score of two entities

and a relation in a statement. For example, DistMult defines the score as the result of

h⊙r∗tT , where ⊙ is the element-wise vector multiplication and ∗ the dot product. Such

methods do not have intuitive geometric interpretations and often fail to capture logic

patterns as well as properties of spatial/temporal relations.

Hyperbolic Embeddings All the aforementioned methods are not effective in mod-

eling hierarchical data, since their embeddings are built in Euclidean space. Recent
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embedding methods based on hyperbolic geometry exhibit promising results when mod-

eling parsimonious and taxonomic patterns in data, since hyperbolic geometry is natural

to model tree-like structures with low distortion [139, 148, 149, 150, 151]. Specifically, as

a counterpart to TransE in the hyperbolic space, MuRP, was proposed by [150] to handle

hierarchical data in KGs. It achieves remarkable performance with fewer parameters than

TransE. However, MuRP faces the same issues as TransE does since they both conform

to the translation assumption. In order to encode various logic patterns and to preserve

other properties of relations, [152] proposed to combine hyperbolic rotation and reflec-

tion with attention. While substantial improvements are observed, this method mainly

focuses on anti-symmetric and symmetric relations. On the contrary, our paper aims

at taking a broader range of relation properties (e.g., symmetric and anti-symmetric),

inverse relation, and relation composition (i.e., role chains in composition tables) into

account when designing an embedding model for QSR/QTR.

5.4 HyperQuaternionE

In this section, we first introduce the motivation of the proposed embedding model

and then formulate the idea mathematically.

5.4.1 Motivation

Composition tables, which specify role chains of relations1, have been widely used in

traditional qualitative spatial and temporal reasoning methods, and are identified as one

of the key reasoning techniques [40, 127, 42]. An embedding method should also be able to

automatically find and take full use of such role chains in its inference and reasoning. One
1For instance, if entity A is non-tangential proper part of entity B and entity B is externally connected

to entity C, then entity A must be disconnected to entity C.
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core requirement for such an embedding method is to model asymmetric role chains in

composition tables; namely r1◦ r2 ̸= r2◦ r1, where ◦ denotes the composition operation.

For example, if we know geographic entity A is disconnected to geographic entity B and

B is tangential proper part of geographic entity C, the relation of A to C will fall into one

of five possible relations, i.e., dc, ec, po, tpp or ntpp according to the composition table.

By contrast, if we first know A is tangential proper part of B and B is disconnected to C,

then the relation of A to C must be disconnected. This means the order of relations in

role chains matters. In order to take this into account, we use quaternions, an extension

of complex numbers, to automatically capture role chains from training data, thanks to

the non-commutative law of quaternion multiplication. Additionally, quaternions can be

readily used to model varying properties of relations (e.g., symmetric and anti-symmetric

relations) and inverse relations, which further contributes to inference and reasoning over

spatial and temporal information.

In addition to the need of capturing role chains in composition tables, we notice that

3/8 spatial relations in RCC8, and 9/13 temporal relations in Allen’s temporal inter-

vals [29] are transitive (see Table 5.1 and 5.2). Geometrically, transitive relations usually

induce tree-like structures over entities, in which as the depth of a tree increases, the

number of child nodes grows exponentially. As shown in Figure 5.2, as the root – the US,

branches out, more and more child nodes emerge. Also, although some relations (such as

tpp and tppi) are not transitive, they may still induce a tree-like structure over entities

to some degree. Thereby, an embedding method for spatial and temporal reasoning should

be built on a suitable embedding space, which is able to encode non-Euclidean structures

exhibited in data (e.g., hierarchies). Past works have demonstrated that hyperbolic em-

beddings are more suitable for data exhibiting non-Euclidean geometric properties, such

as hierarchy [139]. This is because hyperbolic space can be naturally viewed as a contin-

uous analogy to hierarchical trees in discrete space and it grows exponentially with an
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increasing radius, which corresponds to an exponential increase in the number of child

nodes with increasing tree depth [150]. Therefore, given the abundance of transitive spa-

tial/temporal relations, we embed entities and relations in hyperbolic space rather than

Euclidean space.

Despite the aforementioned advantages of quaternions and hyperbolic space, the tech-

nical bottleneck of the model design rests on how to harmonize quaternions and hyper-

bolic space while preserving their respective properties. The transformation of quater-

nions, which are originally defined in Euclidean space, into a hyperbolic space is not

trivial, since quaternion-related vector operations (e.g., vector addition, matrix-vector

multiplication, and vector inner product over quaternions) and geometric metrics (e.g.,

the closed form of distance) in Euclidean space is hard to be generalized to hyperbolic

space.

In this paper, we propose a hyperbolic embedding model, called HyperQuaternionE,

in which this challenge is tackled. In the following, we will first introduce preliminary

concepts and notations, then propose our model, and finally analyze which relation prop-

erties and composition patterns our model can preserve.

5.4.2 Preliminaries

Quaternion Multiplication and 3D Rotation As mentioned above, one significant

advantage of using quaternions in KGE models lies in the ability of quaternions to model

asymmetric role chains in composition tables; namely r1◦r2 ̸= r2◦r1. This is guaranteed

by the non-commutative law of quaternion multiplication (Definition 7). Here, we give

a geometrical interpretation by contrasting the role of complex numbers in 2D rotation

and that of quaternions in 3D rotation. In 2D space (see RotatE [65]), a 2D rotation

can be achieved by the multiplication of a complex number (i.e., a 2D vector to be
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rotated) and a unitary complex number (i.e., the rotating angle). The rotation direction

is either clockwise or counter-clockwise, and the rotation is around the origin. Thus,

the order of two consecutive rotations does not make a difference to the resulting vector.

That is, the result of rotating a vector by θ1 first and then by θ2 is the same as that

of rotating the same vector by θ2 first and then by θ1; both equal to rotating a vector

by an angle of θ1 + θ2 at the end. By contrast, quaternions are related to rotations in

3D space, which are originally used in computer graphics [153, 154]. Any point in 3D

space in the form of vectors can be expressed as a pure quaternion, and 3D rotation as

quaternion multiplication over a pure quaternion (i.e., the point to be rotated) and a

unitary quaternion (i.e., the rotation). Unlike rotations in 2D space, where a vector is

always rotated around the origin, each 3D rotation specifies a distinct rotating axis and a

rotating angle. That is, rotating results are determined by both rotation axes and angles.

As such, the result of performing several 3D rotations over a vector consecutively differs

from that of performing the same 3D rotations in another order.

Mathematically, 3D rotations can be formalized as Eq.1. We denote the 3D point

(v ∈ R3) to be rotated as a pure quaternion v = [0,v], a unitary quaternion qu =

[cos(θ), sin(θ)u] (θ is the rotating angle and u is the rotating axis) as the rotating vector

and the resulting point as v′ = [0,v′] (v′ ∈ R3).

Theorem 1 (Euler-Rodrigues-Hamilton Formula [155]) Any rotation in 3D

space can be derived by quaternion multiplication. The result of rotating a 3D point

v by an angle of θ around a unit axis u (i.e., qu) can be expressed as follows:

v′ = v∥ + quv⊥ = puvp
−1
u = puvp

∗
u (5.3)

where v∥ is the component of v parallel to u and v⊥ the component of v perpendicular to
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u. qu = p2u and pu = [cos( θ
2
), sin( θ

2
)u]. This theorem can be interpreted as the component

of v perpendicular to u is rotated twice by θ
2

around u. Proofs to this theorem can be

found in [156, 155].

Theorem 2 Product of two unit quaternions is still a unit quaternion.

Proof. Let p and q be two arbitrary quaternions. According to Property 2 in Definition

7, ∥pq∥ =
√

pq(pq)∗ =
√
pqq∗p∗ =

√
p(qq∗)p∗ =

√
pp∗

√
qq∗ = ∥p∥∥q∥. Thus when p and

q are unit quaternions; namely ∥p∥ = ∥q∥ = 1, ∥pq∥ = 1, i.e., pq is a unitary quaternion.

This property ensures that a number of consecutive rotations can be replaced by a single

rotation, which is fundamental to the modeling of relation composition.

Poincaré Ball Model. Similar to [150] and [152], this work uses a d-dimensional

Poincaré ball model to form the hyperbolic embedding space for embedding tree-like

structures ( Definition 5.2.1). Reasons for choosing such a model are two-fold. It provides

convenient communication between hyperbolic space and Euclidean space via exponential

and logarithmic maps [148], thus making it relatively easy to incorporate quaternions

rooted in Euclidean space to hyperbolic space. Moreover, it is well-suited for gradient-

based optimization methods (see Section 5.4.2).

When c is considered, the hyperbolic distance of two points x,y ∈ Bd
c is defined as

its geodesic distance in the space, which has the desirable property of forming a tree-like

embedding space (see Figure 5.3). It is formulated as follows:

dc(x,y) =
2√
c
arctanh(

√
c ∥(−x)⊕c y∥) (5.4)

where arctanh(·) denotes the inverse hyperbolic tangent. The Möbius addition (i.e., ⊕c)
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of two points x,y ∈ Bd
c can be expressed as below:

x⊕c y =
(1 + 2cxTy + c∥y∥2)x+ (1− c∥x∥2)y

1 + 2cxTy + c2∥x∥2∥y∥2
(5.5)

where ∥ · ∥ is the Euclidean norm. We can obtain that x⊕c (−x) = (−x)⊕c x = 0. This

property helps model inverse relations in the embedding space.

Bridging Quaternion and Hyperbolic Space

Exponential Map and Logarithmic Map. As mentioned in Section 5.4.1, the dif-

ficulty of model design lies in how to simultaneously preserve inherent properties from

both hyperbolic space and quaternions that are well-studied in Euclidean space. In this

paper, instead of directly generalizing möbius transformation as well as Poincaré distance

with quaternion entries [157], we adopt a simple strategy by introducing exponential and

logarithmic maps [148], which bridges between tangent space (which sits in Euclidean

space) and hyperbolic space. By doing so, we can perform quaternion operations in

tangent space while measuring hyperbolic distance in hyperbolic space.

For a point x ∈ Bd
c , its tangent space representation (xE) is defined as a d-dimensional

vector, which approximates the hyperbolic space Bd
c around x (origin). The two mappings

(expc
0(·) and logc0(·)) at the origin have the following closed-form expressions:

expc
0(x

E) = tanh(
√
c∥xE∥) xE

√
c∥xE∥

= xH (5.6)

logc0(x
H) = arctanh(

√
c∥xH∥) xH

√
c∥xH∥

= xE (5.7)

where expc
0(·) maps xE in the tangent space to Bd

c and conversely, logc0(·) maps xH in Bd
c

to the tangent space. Note that we use xH to denote x in the hyperbolic space while xE
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being in Euclidean space.

5.4.3 Model Formulation

The core idea behind the proposed HyperQuaternionE is to encode relations as 3D

rotations, and assumes that for a triple ⟨h, r, t⟩, the tail entity t is the result of the

head entity h being rotated by relation r. This indicates two key steps in our method:

rotating the head entity by the relation and measuring the distance between the tail entity

and the head entity after being rotated. Despite being similar to the rotation family

introduced in Section 5.3, the main difference is that in our method these two steps are

performed in different spaces. The rotating step is performed in the tangent space with

the aim to use quaternions in order to capture role chains from data, and the distance

measuring step is executed in hyperbolic space so as to form a tree-like embedding space

for hierarchical data. Mathematically, for a triple ⟨h, r, t⟩ in a KG, these two steps can

be formalized as follows. Note that for entities and relations, their embeddings are first

randomly initialized, denoted as hE, rE, tE ∈ Rd (d is the dimension), and are learned

automatically through training.

In the first step, a 3D rotation on the head entity h performed by relation r is achieved

by Theorem 1. Concretely, head entities are modeled as 3D points to be rotated, and

tail entities are modeled as results of head entities being rotated by relations (i.e., 3D

rotation). In order to utilize quaternions to implement 3D rotation, we convert real value

entries in hE and rE into quaternions. Hence each head embedding hE ∈ Rd can be

expressed as d
3

pure quaternions. Specifically, it can be written as V E
h = [h1, h2, ..., hi]

T ,

where hi = [0,hi] is a pure quaternion and hi ∈ R3 (i ∈ {1, 2, ..., d
3
}) denotes a 3D

point. Similarly, each relation is represented by d
3

unitary quaternions, whose embedding

can be written as QE
r = [qr,1, qr,2, ..., qr, d

3
]T , where each qr,i (i ∈ {1, 2, ..., d

3
}) is a unitary
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quaternion. According to Eq. 5.3, 3D rotation in the embedding space is given as follows:

RotEhr,4 = Rot3D(hE, rE) = QE
r ⊚ V E

h ⊚ (QE
r )

∗ (5.8)

RotEhr = concat(RotEhr,4) (5.9)

where ⊚ denotes element-wise quaternion multiplication and (QE
r )

∗ = [h∗
1, h

∗
2, ..., h

∗
i ]

T

denotes the conjugate of QE
r . RotEhr,4 is the rotating result of the head entity and contains

d
3

pure quaternions. concat(·) is to concatenate three imagery components of these pure

quaternions in order to recover the original dimension d.

In the second step, to form a tree-like embedding space for hierarchical data, we

measure the distance between the resulting head embedding and the tail embedding

in hyperbolic space. Since the first step is performed in tangent spaces, we first map

Euclidean embeddings into hyperbolic embeddings via exponential maps shown in Eq. 5.6.

However, rather than using a generic curvature c, a relation-aware learnable curvature cr

is introduced for each relation because relations of different kinds may yield hierarchical

structures of varying degrees. For example, a graph where only the relation tangential

proper part holds between entities would have a higher hierarchy index than the one

induced by the relation disconnected. The relation-aware exponential maps are shown

below.

RotHhr = expcr
0 (RotEhr) = tanh(

√
cr∥RotEhr∥)

RotEhr√
cr∥RotEhr∥

(5.10)

tH = expcr
0 (t

E) = tanh(
√
cr∥tE∥)

tE
√
cr∥tE∥

(5.11)

where RotHhr and tH are embeddings of RotEhr and tE in hyperbolic space, respectively.

Finally, the distance is calculated by using the following formula:
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dcr(RotHhr, t
H) =

2
√
cr

arctanh(
√
cr ∥(−RotHhr)⊕cr t

H∥) (5.12)

Eq. 5.12 is originated from Eq. 5.4, but contains a relation-aware learnable curvature cr

to consider the difference of embedding spaces induced by various relations.

Similar to previous work [66, 65], we optimize the model by minimizing the distance

between RotHhr and a valid tail t (meaning that ⟨h, r, t⟩ exists in our KG) and maximizing

that to a negative tail. More specifically, for a triple ⟨h, r, t⟩ in a KG, t itself is a positive

tail and we construct negative tails by replacing t with another entity (i.e., t′), which

is randomly picked from all other entities. It is done by n times in order to obtain n

negative tails. Finally, the optimizer is to pull the correct t towards RotHhr as close as

possible while pushing negative ones far away, which can be formalized as:

L = −log σ(γ − dcr(RotHhr, t
H))− 1

n

n∑
i=1

log σ(dcr(RotHhr, t
′
i
H
))− γ) (5.13)

where σ denotes the sigmoid function and γ is a hyper-parameter indicating the tolerance

of distance between the positive/negative and the resulting entity embedding.

Likewise, with regard to relation inference, for each positive triple ⟨h, r, t⟩, we corrupt

it by replacing r with other (spatial/temporal) relations nr times so as to generate nr

relation-based negative samples. To consider both tasks, we construct a joint loss function

and use a scalar β to adjust their respective contributions:

L′ = L − β
1

nr

nr∑
i=1

log σ(dcri (RotHhri , t
H))− γ) (5.14)

Last but not least, we introduce a way of representing relations such that they can be

ensured to be unitary quaternions. This is of great importance to achieve 3D rotations

based on Theorem 1. Recall that only three values are needed to determine a unitary
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quaternion. So for any three arbitrary values α, θ1, θ2 ∈ [−π, π], a unitary quaternion

can be constructed as follows:

qu = cos(α) + sin(α)cos(θ1)cos(θ2)i+ sin(α)cos(θ1)sin(θ2)j + sin(α)sin(θ1)k (5.15)

Based on the definition of quaternion norm (see Property 3), ∥qu∥ = 1 can be readily

ensured (See Appendix B.1.1 for proofs). In what follows, we analyze relation properties

and composition patterns that are preserved by using the proposed model.

Lemma 3 HyperQuaternionE can model symmetric/anti-symmetric properties of rela-

tions.

If ⟨h, r, t⟩ and ⟨t, r, h⟩hold, according to Theorem 1, in the tangent space for each

rotation we have:

tEi = qr,ih
E
i q

∗
r,i (5.16)

hE
i = qr,it

E
i q

∗
r,i (5.17)

Thus, when we plug Eq. 5.16 into Eq. 5.17, it yields:

hE
i = qr,i(qr,ih

E
i q

∗
r,i)q

∗
r,i = q2r,ih

E
i (q

∗
r,i)

2 (5.18)

The correspondence of hE
i in hyperbolic space is given by Eq. 5.6:

hH
i = tanh(

√
cr∥hE

i ∥)
hE
i√

cr∥hE
i ∥

(5.19)
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When we substitute hE
i in Eq.5.19 with Eq.5.18, we obtain the following:

hH
i = tanh(

√
cr∥hE

i ∥)
q2r,ih

E
i (q

∗
r,i)

2

√
cr∥hE

i ∥

= q2r,i
tanh(

√
cr∥hE

i ∥)hE
i√

cr∥hE
i ∥

(q∗r,i)
2

= q2r,ih
H
i (q

∗
r,i)

2

⇔ q2r,i = ±1

It indicates that the sufficient and necessary condition of modeling symmetric relations

is that q2r,i = ±1 holds. Clearly, in 3D space, a rotation angle of k ∗180◦ (k ∈ {1, 3, 5, ...})

satisfies this condition. Likewise, we can derive that q2r,i ̸= ±1 is the sufficient and

necessary condition for modeling anti-symmetric relations.

Lemma 4 HyperQuaternionE can model inversion of relations.

If ⟨h, r1, t⟩ and ⟨t, r2, h⟩ hold, similarly, according to Theorem 1, in the tangent space

for each rotation we have:

tEi = qr1,ih
E
i q

∗
r1,i (5.20)

hE
i = qr2,it

E
i q

∗
r2,i (5.21)

The correspondence of hE
i in hyperbolic space is given by Eq. 5.6:

hH
i = tanh(

√
cr2∥hE

i ∥)
hE
i√

cr2∥hE
i ∥

(5.22)
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Then, we can obtain:

hH
i = tanh(

√
cr2∥hE

i ∥)
(qr2,iqr1,i)h

E
i (qr2,iqr1,i)

∗
√
cr2∥hE

i ∥

= (qr2,iqr1,i)
tanh(

√
cr2∥hE

i ∥)hE
i√

cr2∥hE
i ∥

(qr2,iqr1,i)
∗

= (qr2,iqr1,i)h
H
i (qr2,iqr1,i)

∗

⇒ qr2,i = ±q∗r1,i

Clearly, this equation can have multiple solutions. For instance, for a relation r1 with

its quaternion representation in a dimension being qr1,i = [α1,v1], it inverse relation r2

at the same dimension can be constructed as qr2,i = [α1,−v1] or qr2,i = [−α1,v1].

Lemma 5 HyperQuaternionE can capture non-commutative patterns of relation compo-

sition. In special cases, HyperQuaternionE can model commutative patterns.

Non-commutative composition of relations implies that r1◦r2 ̸= r2◦r1 while commutative

composition indicates that r1 ◦ r2 = r2 ◦ r1. Here ◦ refers to quaternion multiplication.

According to Theorem 5.4.2, r1 ◦ r2 yields another relation r3, namely r1 ◦ r2 = r3, and

likewise r2 ◦ r1 = r4. Due to the non-commutative law of quaternion multiplication (see

Eq.5.1), r3 ̸= r4 can be naturally guaranteed. On the other hand, in special cases, for

example, when r1 and r2 share the same rotating axis, we can conclude that r1 ◦ r2 =

r2 ◦ r1 = r3 = r4 (i.e., commutative composition).

Table 5.3 summarizes varying properties of relations and patterns of relation composi-

tion that different models can preserve. As can be seen, the proposed HuperQuaternionE

achieves all.
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TransE
[62]

RotatE
[65]

Rotate3D
[144]

HyperRotatE
[152] HyperQuaternionE

Property

Symmetric ✗ ✓ ✓ ✓ ✓

Anti-symmetric ✓ ✓ ✓ ✓ ✓

Inversion ✓ ✓ ✓ - ✓

Composition commutative ✓ ✓ ✓ - ✓

non-commutative ✗ ✗ ✓ - ✓

Hierarchy induced by transitive relations ✗ ✗ ✗ ✓ ✓

*Note that - means inapplicable.

Table 5.3: Varying properties and patterns modeled by differing models

5.5 Experiments

In this section, we introduce the experimental data and baseline methods. Plus,

experimental results are reported quantitatively and qualitatively.

5.5.1 Data Preparation

We synthesize two datasets –region187 and interval205 for spatial reasoning and tem-

poral reasoning, respectively. Both datasets are generated from randomly generated

rectangular regions and intervals. For region187, we first generate 200 pairs of points.

Each pair is used to represent the top left and bottom right corners of a rectangle. We

further filter out invalid cases (e.g., the top left and the bottom right points share the

same x/y value). Then we calculate the spatial (topological) relation between any two

rectangles based on their geometries and organized them as triples (e.g., (rectangle 1, dc,

rectangle 2)). Additionally, we sample 5 rectangles to establish more eq relations since it

is relatively rare to yield the same rectangles from the previous step. A similar process is

adopted to generate interval205. Finally, we randomly split both datasets into training

(70%), validation(15%), and testing sets (15%). Table 5.4 describes statistics of the two

datasets.
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Dataset #entities #relations #train #valid #test

region187 187 8 24,460 5,241 5,243
interval205 205 13 29,399 6300 6301

Table 5.4: Statistics of region187 and interval205

5.5.2 Baseline Methods

Our model is compared with four baselines: three embedding models and one tradi-

tional method used in spatial and temporal reasoning. The three embedding methods

(i.e., RotatE, QuaternionE/Rotate3D, HyperRotatE/RotH) are chose upon Table 5.32.

All these models are unified in the same framework and thus adopt the same protocols

for data processing, training, as well as evaluation. Experimental data along with the

framework is openly shared for reproducibility and replicability3.

Traditional methods are built upon path consistency checking over a constraint net-

work, where nodes represent entities (e.g., rectangles or intervals in this paper) and edges

are labelled with a set of possible relations between entities [29]. By propagating tem-

poral/spatial composition tables over the network [158], this network will be refined as

the relations between entities that do not conform to composition tables will be ruled

out. Similarly, in our experiment, we construct a network by using training and testing

datasets, where relations in the testing set all are changed to be a set of all possible rela-

tions in the beginning (namely eight relations for spatial reasoning and thirteen relations

for temporal reasoning). Through propagation, relations that lead to inconsistency will

be discarded and the remaining relations are viewed as inference results. Figure 5.1 gives

an illustrative interpretation. We name this method as constraint network method and

use an open-sourced package to implement it4.
2We omited TransE here, since its performance is relatively weak.
3we will release the github repository after the blind review process
4https://github.com/alreich/qualreas
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5.5.3 Experimental Settings

In order to achieve a fair comparison, we ensure that all compared models share ap-

proximately the same number of parameters. The number of learnable parameters used

in each model is shown in Appendix B.2. Similar to [152], we carry out two experi-

mental settings – low-dimensional and high-dimensional. More details on the number of

parameters as well as the best parameter setting are shown in Table 5.5. Note that four

hyper-parameters are chose from various ranges: learning rate – lr:[0.05, 0.1], margin in

Eq.6.1 – γ:[8, 10, 12], batch size – b :[512, 1024] and negative samples – n: [8, 16, 32, 64].

For the weighting parameter β in Eq. 6.1, we set it as 0.5 empirically.

Models on region187 low-dimensional high-dimensional
HyperQuaternionE lr0.1-b512-g8-n8-h30 (5,858) lr0.05-b1024-g12-n8-h120 (23,408)

HyperRotatE lr0.1-b512-g0-n8-h26 (5,681) lr0.05-b1024-g0-n64-d110 (23,405)
QuaternionE lr0.1-b1024-g12-n8-h30 (5,850) lr0.1-b1024-g12-n64-h120 (23,400)

RotatE lr0.1-b512-g10-n64-h16 (6,112) lr0.1-b1024-g12-n64-h62 (23,684)
Models on interval205 low-dimensional high-dimensional
HyperQuaternionE lr0.01-b1024-g8-n8-h45 (9,823) lr0.05-b1024-g8-n32-h150 (32,713)

HyperRotatE lr0.05-b1024-g0-n16-h40 (9,978) lr0.05-b1024-g0-n64-h132 (32,631)
QuaternionE lr0.1-b1024-g12-n16-h45 (9,810) lr0.1-b512-g12-n64-h150 (32,700)

RotatE lr0.05-b1024-g12-n32-h23 (9,729) lr0.05-b1024-g12-n32-h78 (32,994)

Table 5.5: Best parameter setting for each model on two datasets (low-dimensional vs.
high-dimensional)

Evaluation Metrics

At testing, we compare different methods on two tasks: entity inference (Defini-

tion 5) and relation inference (Definition 6). Note that the constraint network method

can only achieve the relation inference task while being incapable of inferring missing

entities. Specifically, for each test sample ⟨h, r, t⟩, we generate three queries: ⟨?h, r, t⟩

and ⟨h, r, ?t⟩ for the former task, and ⟨h, ?r, t⟩ for the latter. For each query, we utilize

Eq.5.12 as the scoring function and measure distances between each candidate entity or
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relation and the correct answer. Then all candidate entities/relations are scored and later

ranked by distances in the inference process. A smaller distance means a better fit to a

query, indicating a higher likelihood of the entity/relation to be true. Following previous

works [63, 146, 62], we choose two popular ranking-based metrics, namely Mean Recipro-

cal Rank (MRR), which measures inverse ranks of gold answers over all test samples on

average and H@k (k ∈ {1, 2, 3}), which measures the proportion of gold answers being

ranked in the top k on average. In general, the higher the rank is, the better a model

performs. Meanwhile, during the evaluation, we also follow [62] to filter out inference

results that are already true in the KG5.

5.5.4 Experimental Results

In this subsection, we first report the performance of our model in comparison with

other embedding methods and traditional methods, and analyze what our model learns.

Comparison with embedding methods

Figure 5.4 and Figure 5.5 show our model performance against baseline embedding

methods on the task of entity inference, and Figure 5.6 and Figure 5.7 report results on

the task of relation inference. We summarize our main findings as below.

(1) Our proposed method consistently outperforms baseline methods on

two datasets in both low-dimensional and high-dimensional settings. More

specifically, in terms of the task of entity inference, compared with the strongest baseline

method - HyperRotatE (in orange), HyperQuaternionE (in blue) gains around 8-point

improvements in terms of MRR in both low-dimensional and high-dimensional settings,
5For example, for a test query (geometry 1, dc, geometry 2), it is expected that a model should

output geometry 2 as the correct answer to a query (geometry 1, dc, ?t). However, there may exist
other geometries in the KG that can satisfy the query. In such cases, the model should not be penalized
if other valid geometries are ranked ahead of geometry 2.

114



A Hyperbolic Embedding Model for Qualitative Spatial and Temporal Reasoning Chapter 5

respectively (see Figure 5.4). In terms of H@1, HyperQuaternionE beats HyperRotatE

by around 8% in the low-dimensional setting, and by around 12% in the high-dimensional

setting. On the interval205 dataset (See Figure 5.5), all embedding methods perform very

well and the difference between our method and HyperRotatE is slightly subtle. Specif-

ically, even in the low-dimensional setting (with 9,823 parameters), HyperQuaternionE

reaches to around 91% in terms of H@1 and 97.85% in terms of H@3.

In terms of the relation inference task (see Figure 5.6 and Figure 5.7), HyperQuater-

nionE still consistently outperforms all other embedding methods on all evaluation met-

rics. For example, HyperQuaternionE surpasses HyperRotatE by around 5% and 3 points

in terms of H@1 and MRR on the interval205 dataset, respectively. On the region187

dataset, our method improves HyperRotatE by around 5% and 2% in terms of H@1 in

the low-dimensional setting and high-dimensional setting, respectively. It is worth-noting

that all embedding methods perform very well on the task of relation inference with H@1

being over 95%. We compare our method with traditional reasoning methods in Section

5.5.4 on this task.

(2) Hyperbolic embedding methods are more robust than Euclidean meth-

ods when handling spatial and temporal reasoning. Apparently, hyperbolic em-

bedding methods (i.e., HyperQuaternionE consistently exceeds their Euclidean alterna-

tives (i.e., QuaternionE and RotatE) on both datasets for both tasks. For example, in

the high-dimensional setting in Figure 5.4b, HyperQuaternionE improves over Quater-

nionE by around 14 points and HyperRotatE gains around 19 points against RotatE.

In Figure 5.5c, HyperQuaternionE and HyperRotatE achieve improvements of 6.6% and

6% over their Euclidean alternatives, respectively. More remarkably, we find that the

performance of hyperbolic embedding methods in low-dimensional settings is even com-

parable to that of their Euclidean equivalents in high-dimensional settings. In Figure 5.4b

and 5.4c, HyperQuaternionE in the low-dimensional setting (5,858 parameters) is on a

115



A Hyperbolic Embedding Model for Qualitative Spatial and Temporal Reasoning Chapter 5

par with QuaternionE in the high-dimensional setting (23,400 parameters). For instance,

the difference in MRR (0.72 for low-dimensional HyperQuaternionE v.s. 0.73 for high-

dimensional QuaternionE) is subtle.
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Figure 5.4: Model performance on the region187 dataset – entity inference task
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Figure 5.5: Model performance on the temporal205 dataset – entity inference task
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Figure 5.6: Model performance on the region187 dataset – relation inference task
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Figure 5.7: Model performance on the interval205 dataset – relation inference task

Comparison with traditional reasoners

We compare embedding methods in high-dimensional settings with a traditional

method (i.e, the constraint network method which relies on composition tables) on the

relation inference task. A challenge in this experiment is how to evaluate their inference

results quantitatively. A traditional reasoner built upon RCC8/temporal composition

tables usually yields a set of possible relations that could be held between two enti-

ties, despite the fact that there must be exactly one (spatial/temporal) relation holds

between two entities. Differently, embedding methods usually output a ranked list of

relations sorted by a scoring function (e.g., Eq. 5.12); see Table 5.6 for more details. In

order to compare these two methods, we use five evaluation metrics - two absolute met-

rics for accuracy evaluation, two relative metrics for error evaluation and one for recall

evaluation.

In terms of absolute metrics, we stick with H@1 and MRR to evaluate their inference

accuracy. For H@1, when the constraint network method yields only one relation, we call

it a success since in theory only one (spatial/temporal) relation would be held between

any two entities; otherwise, we view it as a “failure”. This is a “strict” evaluation. In

order to take into account the contribution of those “failures”, we use MRR. In this case,

if the constraint network method yields exactly one relation for a testing sample (e.g.,
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Examples Subject Relation Object Constraint Network HyperQuaternionE (Top 1)
0 103 dc 72 dc, ec, po dc
1 39 ec 153 ec, po ec
2 134 po 140 po po
3 49 po 61 po po
4 76 dc 92 dc dc
5 102 eq 186 dc, ec, eq, po, tpp, tppi eq
6 150 tppi 31 po, tppi tppi
7 22 po 3 dc, ec, po po
8 65 tpp 150 ntpp, tpp tpp
9 122 tppi 40 po, tppi tppi

Table 5.6: Examples of relation inference results. Both methods aim to infer the rela-
tion between a subject and an object. Column Relation denotes the correct relation,
column Constraint Network and HyperQuaternionE denote their respective inference
results. Note that constraint network method outputs a set of possible relations while
HyperQuaternionE yields a ranked list of relations. Here we only show Top 1 relation
from the ranked list.

⟨h, ?r, t⟩), then the score for this sample is 1. Otherwise, the score for a sample with a

set of inferred relations will be the average MRRs of the correct relation being ranked at

any position in the answer set, which is 1
|s|
∑|s|

n=1
1
n

(|s| is the number of elements in the

set s).

constraint network HyperQuaternionE
Training Size H@1 MRR H@1 MRR

70% 76.8% 0.927 96.8%±0.3% 0.983±0.002
60% 74.9% 0.920 93.5%±0.1% 0.965±0.004
50% 71.3% 0.906 91.0%±0.5% 0.951±0.003
40% 67.1% 0.890 88.3%±0.8% 0.935±0.003
30% 60.9% 0.865 82.8%±0.4% 0.902±0.002

Table 5.7: H@1 and MRR on the region187 dataset. ± indicates the following is the
standard deviation.

Table 5.7 and 5.8 show the accuracy comparison between the constraint network

method and HyperQuaternionE with varying sizes of training data. We find that our

model outperforms the constraint network method on spatial reasoning tasks

by significant margins in terms of different training sizes and achieves com-
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constraint network HyperQuaternionE
Training Size H@1 MRR H@1 MRR

70% 96.8% 0.989 97.9%±0.2% 0.989±0.001
60% 96.6% 0.986 97.1%±0.3% 0.984±0.002
50% 96.0% 0.984 96.7%±0.2% 0.982±0.002
40% 95.0% 0.981 95.8%±0.3% 0.979±0.004
30% 93.0% 0.971 94.2%±0.4% 0.970±0.002

Table 5.8: H@1 and MRR on the interval205 dataset.

parable results on temporal reasoning tasks. With respect to the “strict” accu-

racy evaluation – H@1, HyperQuaternionE consistently surpasses the constraint network

method on both spatial and temporal relation inference. In Table 5.7, HyperQuater-

nionE beats the constraint network method by over 20% for all different training sizes

on the region187 dataset. On the interval205 dataset (see Table 5.8), our method consis-

tently outperforms the constraint network method by around 1%. Additionally, with the

training size increasing, we observe that both methods improve as we expect. It is worth-

noting that even with only 30% data (of the entire graph) being in the training set, our

method can obtain 82.8% and 97.9% in terms of H@1 on these two datasets, respectively.

In terms of MRR, a similar pattern of their performance is observed: HyperQuaternionE

outperforms the constraint network method by around 5 points on the region187 dataset;

however the differences between both methods on the interval205 dataset are relatively

subtle but both achieve very high scores (i.e., over 0.97) for all different training sizes.

Despite the fact that the constraint network method does not necessarily to uncover

the single (true) relation between entities, inference results are theoretically guaranteed

by composition tables based on the amount of data given. Put differently, the correct

relation is always a member of the result/answer set. We denote this inferred results as

theoretical results. Here we are interested in evaluating errors of our inference against

the theoretical results. We use two relative metrics - Error Ratio and Recall-Coverage

Ratio to achieve this. Error Ratio - ER measures the failure of our model against the
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inference of composition tables. For a testing sample, it examines whether the Top 1

relation produced by our method is a member of the theoretical results yielded by the

constraint network method. We use the average score over all testing samples as its final

Error Ratio of our model. It can be expressed as follows.

Error Ratio =
1

n

n∑
i=1

TrueOrFalsei (5.23)

Here, for a testing sample i, if Top 1 relation in our ranked list is not a member of its corre-

sponding theoretical relation set, then TrueOrFalsei will be 1; otherwise, TrueOrFalsei

will be 0. n is the number of testing samples.

In addition, we introduce a Recall-Coverage Ratio - RC-R to measure the difficulty

of our model in recalling results from the classical RRC8 reasoner. Specifically, for a

ranked list of relations produced by our model regarding a testing sample ⟨h, ?r, t⟩, we

calculate the ratio of the cardinality of the theoretical result set over the minimal length

of a ranked list (staring from the first position) containing all relations in the theoretical

set. This measure can be formulated as follows:

Recall-Coverage Ratio =
1

n

n∑
i=1

|si|
maxr∈si pos(r)

(5.24)

Here, si is the result set from the classical RCC8 reasoner for a testing sample i and

pos(r) denotes the position index of relation r (from si) in our ranked list (1-index).

Additionally, we calculate the Recall (R) of our method. In the literature, Recall

is defined to measure whether a true relation is contained in the result produced by a

model. For the constraint network method, its Recall is always 1. As mentioned above,

for a testing sample, its inference result always contains the correct relation, since the

method performs a filtering-out operation, which excludes impossible relations between

two entities. In our method, we also examine our Recall against the constraint network
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method. For each testing sample, we check whether the correct relation is contained in

the top |s| of our ranked list (|s| is the cardinality of the relation set s produced by the

constraint network method). This ensures that the sublist of our ranked list used in the

Recall calculation has the same length as the relation set from the constraint network.

region187 interval205
Training Size RC-R ER R RC-R ER R

70% 96.64% 2.29% 100% 98.91% 1.38% 100%
60% 93.80% 4.08% 100% 98.59% 1.83% 100%
50% 92.46% 5.95% 100% 98.38% 1.95% 100%
40% 91.52% 6.69% 100% 97.66% 2.44% 100%
30% 88.68% 9.63% 100% 96.37% 3.49% 100%

Table 5.9: Error Ratio, Recall-Coverage Ratio and Recall on two datasets.

Table 5.9 shows Error Ratio (ER), Recall-Coverage Ratio (RC-R) and Recall (R)

of our method against the theoretical results. As expected, Error Ratio increases and

Recall-Coverage Ratio drops as the training size decreases. When the training size is 70%,

ER is as low as 2.29% and 1.38% on the region187 dataset and interval205, respectively.

Meanwhile, Recall-Coverage Ratio reaches to 96.64% and 98.91%, respectively. Even

when the training size drops to 30%, Error Ratio is still low (9.63% on the region187

dataset and 3.49% on the interval205 dataset). Similarly, the Recall-Coverage Ratio is

88.86% and 96.37%, respectively. Moreover, it is worth noting that we achieve the same

Recall as the constraint network method does, meaning that the correct answer is also

contained in the top |s| of our ranked list. Overall, the results from Table 5.9 clearly

show the suitability of our method for inference.

Summing up all presented evaluations, the results demonstrate that our embedding

method can produce results of a higher accuracy for reasoning over relations than the

constraint network method. Moreover, although our method can also achieve a Recall

of as high as 100% as the constraint network method does, Recall-Coverage Ratio in

Table 5.9 indicates these two methods may adopt different reasoning mechanisms or our
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embedding method may use other implicit inference. It would be interesting to study

and analyze the underlying reasoning techniques in the future. In Section 5.5.4, we

qualitatively analyze our model and examine what has been learned by our model from

data.

Comparison between spatial reasoning and temporal reasoning tasks

By contrasting the performance of spatial reasoning and temporal reasoning (e.g.,

Figure 5.4b and Figure 5.5b, Figure 5.6b and Figure 5.7b, Figure 5.4c and Figure 5.5c,

etc.), we can easily find that achieving temporal reasoning is relatively easier than spatial

reasoning, at least when the proportion of missing relations is the same. Note that we

use 70% of the entire dataset as the training set for both spatial and temporal reasoning

(see Table 5.4). In low-dimensional settings (see Figure 5.4b and Figure 5.5b), Hyper-

QuaternionE yields an MRR of 0.72 on the region187 dataset while obtaining an MRR

of 0.94 on the interval205 dataset. Similarly, in Figure 5.7c and 5.6c, HyperQuater-

nionE in low-dimensional settings yields 88.46% and 96.32% on the region187 dataset

and interval205, respectively. Moreover, we observe a similar pattern from Table 5.7 and

5.8. For instance, we can see that when the training size is the same, both the constraint

network method and our method are better at reasoning about temporal relations.

In order to further test the hypothesis that temporal reasoning is relatively easier to

achieve, we conduct experiments to compare the performance of our model in spatial rea-

soning and temporal reasoning tasks with changing hidden dimensions, which determines

the number of learnable parameters (see Appendix B.2) and thus impacts the training

efficiency6. Figure 5.8 and 5.9 demonstrate that our model indeed consistently performs

better on temporal reasoning tasks, particularly on the task of entity inference. For in-

stance, with a hidden dimension of 12, our model can yield an H@1 of 55.8 for temporal
6Usually a training process needs more time when the hidden dimension is high.
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entity inference while obtaining 36.6 for spatial entity inference. With the hidden di-

mension increasing, the gap between them is shrinking even though it is still significant.

With a hidden dimension of 30, when the model reaches to 0.91 in terms of MRR on the

temporal entity inference task, MRR of the spatial case yields 0.72. This observation

may also be viewed as a potential advantage of embedding methods against traditional

methods that rely on path-consistency checking (e.g., the constraint network method).

For path-consistency checking based methods, as the number of relations increases, com-

position tables often become more complicated and thus reasoning over relations will be

inefficient. That is, the efficiency of the traditional reasoner is bounded by the complica-

tion of composition tables as relations involved increase. However, empirical experiments

shown above disclose that embedding-based methods like HyperQuaternionE, with less

parameters can obtain a even better result when reasoning over temporal relations than

over spatial relations; thus they are more efficient on reasoning over temporal relations.

This observation indicates the fact that the performance and training efficiency of em-

bedding methods may not be bounded by the complication of composition tables, which

is another advantage of embedding methods. We leave more in-depth theoretical and

empirical analyses as future work.

interval205 region187
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Figure 5.8: Performance comparison between temporal and spatial entity inference
tasks. d is the hidden dimension.
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Figure 5.9: Performance comparison between temporal and spatial relation inference tasks.

Qualitative Analysis

In this section, we are interested in the question whether embedding methods are able

to implicitly learn knowledge from data. This perspective not only suggests promoting

embedding methods as a new tool for knowledge discovery, but may also help the design

of new models. That is, if some domain knowledge can be learned implicitly, there is no

need to make theories/domain knowledge explicit during the model design.

In particular, we examine whether embedding methods could learn conceptual neigh-

borhood structures implicitly, which is fundamental to spatial and temporal reasoning.

According to [41, 127, 128], if two relations between pairs of entities (i.e., geometries or

events) can be directly transformed from one to the other by continuous deformation of

entities (i.e., enlarging, shrinking, lengthening or shortening), these two relations are con-

ceptual neighbors. Conceptual neighborhood structures of spatial and temporal relations

are illustrated in Figure 5.10.

In order to investigate whether embedding methods manage to learn these structures,

we create (spatial/temporal) relation networks. In a spatial/temporal network, nodes are

relations and the linkages between relations are determined by the result of the relation

inference task. More specifically, in the relation inference task, for a testing sample, (e.g.,

< h, ?r, t >), our model will output a ranked list of all relations sorted by scores in a
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Figure 5.10: Conceptual neighborhood structure (CNS) [117, 41]. Figure 5.10a il-
lustrates conceptual neighbors of spatial relations. Figure 5.10b reveals conceptual
neighbors of temporal relations, in which there are three types of neighboring rela-
tions to the relation equal (i.e., =), distinguished by three different colors.

descent order, in which a relation with a high score means a higher likelihood to be the

relation held between h and t. We pick Top 1 and Top 2 relation from the ranked list

and establish a directed edge from Top 1 relation to Top 2 relation to indicate these two

relations are likely to be concept neighbors. The underlying rationale is that relations

that are conceptual neighbors are hard to be distinguished when determining which one

is the true relation held between two entities, thus neighboring relations are supposed to

be ranked closely by embedding methods on the task of relation inference. After going

through all the samples, we obtain a directed relation network. In order to measure the

strength of connections between two relation nodes, we weight each directed edge by the

ratio of outgoing edges from the source relation node to the target relation node over the

total number of outgoing edges from the source relation node.

Figure 5.11 reveals original relation networks as well as conceptual neighbor struc-

tures yielded by HyperQuaternionE. Figure 5.11a and 5.11c are original relation net-

works, where nodes are spatial/temporal relations and the label on a directed edge is the

strength of connections. Edges between two nodes are highlighted in red when the sum
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of weights in both directions is over threshold of 0.407, which turns out to be neighbor-

hood structures of relations shown in Figure 5.11b and 5.11d after removing labels and

arrows. In general, Figure 5.11b and Figure 5.10a are alike and Figure 5.11d is similar to

Figure 5.10b. It indicates that our embedding method is capable of implicitly learning

conceptual neighborhood structure of spatial/temporal relations. However, due to a lack

of equal relations in both region187 and interval2058, it fails to completely reproduce

the structure around eq/=. In addition, we find that for temporal relations another

reason of failure for equal relation is that it has multiple conceptual neighbors and the

proportion of outgoing edges to each target relation is marginal. Thereby, a relatively

large threshold would easily filter out edges linked to the relation = ( see Figure 5.12).

It reveals that our method successfully rules out four relations (i.e., <, m, mi, and >)

that are impossible to be conceptual neighbors of the relation = and learns that all the

other eight relations can be transformed from it by differing proportions (0.05 − 0.19).

This echos the neighborhood structures around relation = in Figure 5.10b.

Moreover, we set varying thresholds to investigate the closeness of neighboring re-

lations. Figure 5.13 reveals that nttpi-tppi and ntpp-tpp are densely connected over

changes, which is in line with the discovery of [117] that topological distances between

them are the least. Furthermore, our method identifies another closely-connected chain:

dc-ec-po, which intuitively makes sense as ec is the critical condition of continuous trans-

formation between dc and po. Figure 5.14b, 5.14c and 5.14d confirm the stability of the

found network structure between temporal relations. Meanwhile, it is interesting to see

even when the threshold is set as large as 0.7 (meaning only edges with the strongest

connections remains), two chain structures are recognized, where each relation and its
7This threshold is chose empirically. We also report results when thresholds vary in Figure 5.13

and 5.14.
8There are only 192 triples with eq relation (187 of which is self-equal (e.g., < h, eq, h >)) and 210

triples with = relation (205 of which is self-equal).
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Figure 5.11: Conceptual neighborhood structures yielded by HyperQuaternionE.

inverse are separated in different chains.

Last but not least, we compare network structures of relations yielded by different
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Figure 5.12: Original relation network around the relation =. Edges in blue are its
outgoing edges while edges in black incoming.

embedding models (see Figure B.1 and B.2 in Appendix). In general, results show

that all embedding models are capable of implicitly learning neighborhood structures of

relations with nuanced differences.
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Figure 5.13: Network structures with varying thresholds (spatial relations).
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Figure 5.14: Network structures with varying thresholds (temporal relations).
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5.6 Discussion and Future Work

Qualitative spatial and temporal reasoning [127, 40] have played a crucial role for

a wide range of tasks such as topological integrity constraints in GIS, spatial queries,

navigation and orientation in robotics, representing spatial human cognition, and so

forth. Traditionally, composition tables of RCC-8 relations and temporal relations have

been widely adopted in spatial reasoners to accomplish inference tasks. However, such

symbolic reasoning with explicitly-injected knowledge has many restrictions that arise

from the inability to efficiently deal with noise, missing data, high-order neighborhood

information, or large datasets in general. This makes existing techniques unsuitable for

many interesting applications, such as knowledge base completion and knowledge graph-

based recommendation. Recently, success stories in Machine Learning (ML), in particular

embedding techniques, shed light on spatial and temporal reasoning, thanks to their sub-

symbolic and learnable representations of knowledge. In this paper, we designed novel

embedding-based methods for spatial and temporal reasoning and examined how these

methods perform when compared against traditional methods. We were especially inter-

ested in examining whether embedding-based methods learn domain knowledge implicitly

from data.

In order to answer these questions, we developed an embedding model, named as

HyperQuaternionE. Our method is able to encode symmetric/anti-symmetric properties

of relations and inverse relations, and can automatically find and capture composition

patterns of relations from data, which is key to automatic spatial and temporal reason-

ing. Moreover, our method provides a hyperbolic embedding space to embed tree-like

structures over entities induced by transitive relations such as after and non-tangentially

proper part. We evaluated our work using two synthetic datasets (region187 and inter-

val205), and compared different methods against relation inference and entity inference
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tasks. The experimental results revealed that our embedding method achieves

superior performance on both datasets in terms of both tasks and outper-

formed both other baseline embedding methods and the constraint network

method relying on composition tables.

We hypothesize that such strong results are partially because embedding methods

are capable of capturing constraints from both local and global high-order information

through training. Representations of entities and relations are learnable and updated

globally over iterations. Another advantage of embedding methods lies in that they yield

ranked lists of relations with high precision rather than sets of relations without order

produced by traditional methods. A ranked list is more preferable, since in theory exactly

one topological relation between two geographical entities holds due to the relations’

jointly exhaustiveness and pairwise disjoint (JEPD) characteristic. Moreover, we argued

that embedding methods have much broader applications than traditional reasoners, such

as entity inference and checking the validity of relations between two entities.

In order to answer the second research question, we analysed relation inference results

and found that embedding methods implicitly learned conceptual neighborhood

structures of spatial relations and temporal relations, and some neighborhood

structures are much more closely connected (such as dc-ec-po and nttpi-tppi)

than others. This is a valuable discovery in two aspects. First, from the viewpoint of

model interpretation, it helps explain why embedding methods succeed in spatial and

temporal reasoning. Early on, [127, 128] pointed out that the representation and/or

reasoning processes will be considerably simplified by incorporating conceptually neigh-

boring relations into reasoning. Second, from the viewpoint of model design, this suggests

that understanding and analyzing what machine learning methods are able to learn from

existing data is of great importance to theory-informed model design. For instance, with

“enough” data available, as shown in our paper, conceptual neighbors of relations can be
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learned automatically and implicitly by models from data, and, thus, incorporating such

theories/spatial thinking explicitly would not supply extra useful information.

Following the discussion above, this work raises several questions that deserve further

investigation. First, in this paper we focused on the qualitative reasoning capability

of embedding methods, and, thus, intuitively we assume the developed methods would

not be affected by the original geometries of geographical entities. However, given that

geographical entities with complex geometries (e.g., arbitrary polygons, polygons with

holes, etc.) may bring about complex topological relations, it is worth examining the

adaptability of embedding methods to such cases. Second, it is worth further exploring

what other spatial theories or knowledge in spatial and temporal reasoning can be/have

been learned implicitly in addition to conceptual neighborhood structures. This direction,

broadly speaking, falls into the the bigger trend of explainable AI and ML in geography

which is key for accountable data-driven decision making.
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Chapter 6

Automatically Discovering Conceptual

Neighborhoods Using Machine

Learning Methods

This chapter addresses a follow-up question raised from last chapter, namely why sub-

symbolic reasoning methods achieve better results in terms of qualitative spatial and

temporal reasoning. A graph-based method is presented to measure similarities of quali-

tative relations by analyzing reasoning results produced by subsymbolic methods. I find

that the resulting structure of similar relations yielded by the proposed method is well-

aligned with the conceptual neighborhood structure of temporal relations in theoretical

literature. Meanwhile, extensive experiments are conducted to study how many training

data are needed for subsymbolic methods to recover such structure. This chapter con-

cludes that subsymbolic methods can learn conceptual neighborhood structures purely

from data.
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Abstract Qualitative spatio-temporal reasoning (QSTR) plays a key role in spatial

cognition and artificial intelligence (AI) research. In the past, research and applications

of QSTR have often taken place in the context of declarative forms of knowledge repre-

sentation. For instance, conceptual neighborhoods (CN) and composition tables (CT) of

relations are introduced explicitly and utilized for spatial/temporal reasoning. Orthog-

onal to this line of study, we focus on bottom-up machine learning (ML) approaches to

investigate QSTR. More specifically, we are interested in questions of whether similarities

between qualitative relations can be learned from data purely based on ML models, and,

if so, how these models differ from the ones studied by traditional approaches. To achieve

this, we propose a graph-based approach to examine the similarity of relations by ana-

lyzing trained ML models. Using various experiments on synthetic data, we demonstrate

that the relationships discovered by ML models are well-aligned with CN structures intro-

duced in the (theoretical) literature, for both spatial and temporal reasoning. Noticeably,

even with significantly limited qualitative information for training, ML models are still

able to automatically construct neighborhood structures. Moreover, patterns of asym-

metric similarities between relations are disclosed using such a data-driven approach. To

the best of our knowledge, our work is the first to automatically discover CNs without
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any domain knowledge. Our results can be applied to discovering CNs of any set of

jointly exhaustive and pairwise disjoint (JEPD) relations.

6.1 Introduction

Since the 90s, Qualitative Spatio-Temporal Reasoning (QSTR) has attracted atten-

tions from researchers and practitioners in several fields, such as geographical information

science, artificial intelligence and cognitive science [159, 117, 160, 120, 161, 127]. Aside

from the clear connection to human representations and linguistic communication of the

spatial configuration of our environment, QSTR has numerous advantages over its quan-

titative counterpart [118]. Representing qualitative information by using symbols and

developing calculi to infer unknown qualitative information is the key to QSTR. Dif-

ferent sets of qualitative spatial relations (such as directional and topological relations)

along with a system of qualitative caculi are developed [162], among which reasoning

over topological relations becomes the most well-established area in QSTR.

As far as regions are concerned, the most well-known formalizations for qualita-

tive topological relations are - the Region Connection Calculus (RCC-8) [42] and the

9-Intersection Model (9-IM) [163, 117]. Both arrive at the same conclusion that there

exist eight base topological relations between regions in 2D space, although they are de-

veloped independently during the earlier 90s [40]. Those relations form the foundation

for a variety of qualitative spatial reasoning techniques [164, 117, 126, 165]. Two major

(and interconnected) lines of works are: (1) Composition Tables (CTs) (i.e., transitivity

tables), which store possible resulting relations arising from the composition of two rela-

tions [29, 42, 116, 166]. (2) Conceptual Neighborhood Graphs (CNGs), which formalize

transitions between relations. Conceptual neighbors of a relation are defined as a set

of relations that can be directly transformed into/from the relation by deforming (e.g.,
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moving and scaling) the related entities continuously (in a topological sense) [128]. In a

CNG, relations are modeled as nodes and an undirected edge is established between two

neighboring relations (see Figure 6.3f). CNGs play an essential role for reasoning with

uncertain or incomplete information [127], and have been used in research of cognitive

similarity assessment [167, 168] and modeling of linguistic spatial terms [169]. In addi-

tion to topological relations, composition tables, and conceptual neighborhoods have also

been developed for reasoning over temporal relations [29, 128].

Those reasoning methods follow a top-down manner, which usually requires (noise-

free) explicit domain knowledge. On the contrary, success in data-driven Machine Learn-

ing (ML) approaches, which are insensitive to noise and good at dealing with incomplete

information as well as uncertainty, provides new opportunities to study QSTR from a

bottom-up perspective. ML models rely solely on training data to discover patterns/rules

that can be implicitly used for reasoning rather than explicitly injecting domain knowl-

edge into the model. However, the question of why they succeed and whether they are

able to (re)discover theories, here in the sense of rule sets or CNGs, is unexplored.

In this paper, we propose a graph-based approach to investigate similarities of quali-

tative relations from a bottom-up perspective. Particularly, we are interested in how the

similarities derived from ML methods are related to classic theoretical studies (e.g., on

conceptual neighborhoods). By conducting extensive experiments on synthetic data re-

garding spatial reasoning (here, RCC-8 relations) and temporal reasoning (here, Allen’s

thirteen interval relations), we are able to demonstrate that ML models can automatically

discover conceptual neighborhood graphs. In addition, experiment results showcase that

such graphs can be easily discovered by ML methods even when limited data are avail-

able for training. Moreover, the similarities of relations are mostly asymmetric, which

echos the findings in [167] from a perspective of cognitive assessment. Furthermore,

patterns observed in asymmetric similarities of relations are disclosed. To the best of our
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knowledge, we are the first to automatically discover conceptual neighborhood graphs of

qualitative relations from a bottom-up perspective by analyzing ML methods. In theory,

our approach can be used to discover CNGs for any calculus with jointly exhaustive and

pairwise disjoint (JEPD) relations.

The remainder of this paper is structured as follows: Section 6.2 introduces back-

ground about how to perform QSTR by using machine learning methods. Section 6.3

elaborates on the proposed graph-based approach to discover similarities among relations.

Section 6.4 describes the generation of synthetic data, evaluation metrics, and reports

experimental results. Section 6.5 discusses our findings and points out the direction for

future studies.

6.2 Background

In this section, we introduce preliminaries of ML methods to achieve QSTR. We

summarize notations and abbreviations we use in this paper in Table 6.1 for quick refer-

ence.

Terms (abbrev.)
Qualitative Spatio-temporal Reasoning (QSTR) Conceptual Neighborhood Graphs (CNGs)

Machine Learning (ML) Artificial Intelligence (AI)
Knowledge Graphs (KGs) Knowledge Graph Embedding (KGE)
Composition Tables (CTs) Jointly Exhaustive and Pairwise Disjoint (JEPD) relations

RCC-8 Relations IR-13 Relations
disconnected (dc) before (<) after (>)

externally connected (ec) meets (m) met-by (mi)
partially overlapping (po) overlaps (o) overlapped-by (oi)

tangentially proper part (tpp) during (d) contains (di)
tangentially proper part inverse (tppi) starts (s) started-by (si)
non-tangentially proper part (ntpp) finishes (f) finished-by (fi)

non-tangentially proper part inverse (ntppi) equal (=)
equal (eq)

Table 6.1: Terms and their abbreviations used in this paper.

137



Automatically Discovering Conceptual Neighborhoods Using Machine Learning Methods Chapter 6

6.2.1 Qualitative Representation of Relations

In this paper, we store binary relations between entities in form of triples. A triple of

the form ⟨s, r, o⟩ represents an entity subject that has a relation to another entity object.

For instance, the statement that a house is externally connected (ec) to a park can be

represented as ⟨house, ec, park⟩. A set of such tripled is called a knowledge graph (KG).

In our paper, a KG is a simple directed graph, consisting of entities being modeled as

nodes and relations between them being modeled as labels of edges. Formally, it can be

represented as G = (V,E), where V and E are the set of nodes/entities and edges with

relations being labels, respectively.

6.2.2 Relation Prediction Task

We will focus on a task known as relation prediction, namely inferring the relation

between two entities based on other information. It is equivalent to answering the query

⟨s, ?r, o⟩. Examples include: what is the topological relation between Los Angeles and

Santa Monica? or what is the temporal relation between the Battle of Trafalgar and the

Napoleonic Wars?

Symbolic Reasoning Methods

Traditionally, symbolic representations are adopted to represent entities and relations,

on top of which qualitative calculi are developed to perform reasoning tasks. For instance,

CTs along with path-consistency algorithms are often used to infer missing relation be-

tween entities [116]. Given that (property A, tangential proper part (tpp), park B) and

(park B, disconnect (dc), house C ), we are able to infer that (property A, disconnect (dc),

house C ) by checking the CT of RCC-8. Usually such top-down approaches (which are

based on qualitative calculi) fall into the group of symbolic reasoning. Despite their great
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success in qualitative reasoning in the past, such approaches are faced with noticeable

limitations. For instance, they are sensitive to erroneous information or noise. Moreover,

they can only be applied to a limited range of reasoning tasks, do not scale well over large

datasets, and cannot be easily applied in combination with numeric approaches [170].

Knowledge Graph Embedding Methods

Knowledge Graph Embedding (KGE) methods are an embedding technique in ML

that has been empirically proven to be effective in reasoning in a subsymbolic way.

Generally speaking, the goal of KGE methods is to learn subsymbolic representations

of entities and relations in a high-dimensional continuous vector space while preserving

the connectivity between entities and relations from KGs. Typically, developing a KGE

model requires the following three components. (I) The first is to randomly initialize

subsymbolic representations for each entity/relation in a high-dimensional continuous

vector space. By doing so, each entity/relation is initialized as a high-dimensional vector

(a.k.a embedding or subsymbolic representation) and can be viewed as a point in such

high-dimensional vector space. The vector space could be Euclidean space, Hyperbolic

space, Spherical space, etc., which vary between different KGE models. The embedding

of an entity v, or a relation r, can be expressed as v ∈ Ud, or r ∈ Ud, where U denotes

the vector space and d is its dimension.

(II) a scoring function is required to measure the likelihood of a triple being positive

(i.e., a true statement). Various KGE models specify different scoring functions. For

instance, TransE [62], the first KGE model, assumes that for a triple ⟨s, r, o⟩, the relation

r is a transformation operator in a vector space, which translates the subject s to the

object o. Thus the embedding of an object entity o should be equivalent to the resulting

embedding of a subject entity s being translated by the relation r in the vector space.

Then the distance between the embedding of the object entity and the resulting entity

139



Automatically Discovering Conceptual Neighborhoods Using Machine Learning Methods Chapter 6

can be used as a scoring function: score(s, r, o) = ∥s + r − o∥. Thus, triples that are

present in KGs (i.e., positive triples) will obtain a lower score while triples that are not

present will gain a higher score.

(III) an objective function is needed for training through a process of optimization.

A commonly used way of constructing such an objective function is by contrasting scores

obtained by positive triples with those of negative triples. Often, the objective function

is built upon the task of entity prediction (namely answering queries such as ⟨?s, r, o⟩

or ⟨s, r, ?o⟩). For each positive triple ⟨s, r, o⟩, a number of negative triples (e.g., k) are

generated by switching the subject s and/or the object o with other randomly selected

entities (e.g., si or oi). Then an objective function L can be defined to minimize scores

for positive triples while maximizing scores for negative ones:

L = −log σ(γ − score(s, r, o))− 1

k

k∑
i=1

log σ(score(si, r, o)− γ) (6.1)

where σ is the sigmoid function and γ is a pre-specified hyper-parameter as a margin.

⟨si, r, o⟩ is a negative sample of ⟨s, r, o⟩.

After a number of iterative optimization over the training data, minimizing the ob-

jective function yields embeddings (representations) for all entities and relations in the

KG. The optimized KGE model then can be used in various downstream tasks, such as

entity prediction relation prediction, and triple classification. A plethora of KGE models

have been developed in the the past years, e.g., [62, 63] and various scoring functions

have been used (refer to [171] for more details).

Here we elaborate on how to perform relation prediction (i.e., answering a query

⟨s, ?r, o⟩) by using trained KGE methods, since they are closely related to our approach

discussed in Section 6.3. Concretely, we enumerate all possible relations (r′ ∈ R )

to replace ?r individually and then sort these relations by score(s, r′, o) in an ascend-
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ing/descending order. Finally the embedding method regards the relation ranked first

as the correct answer to the query. The table on the left in Figure 6.1 shows examples

of ordered sets of relations produced by a trained KGE model regarding different testing

queries.

6.3 Knowledge Graph Embedding Methods as Knowl-

edge Miner

Similarity is one of the most commonly used measures to examine relationships

of objects. For instance, domain experts introduce conceptual neighbors to indicate

similar qualitative relations [128]. Likewise, in this section we introduce an approach to

examine similarities between qualitative relations by analyzing trained KGE models from

a bottom-up perspective. There are two steps in this approach - initial construction of a

relation graph and its refinement.

The first question is how to derive similarities between any two relations in the set

R from a trained KGE model. Our assumption is that it would be difficult for a trained

embedding model to distinguish relations that are similar in a topological sense. That is,

in terms of the task of relation prediction, for a testing query (geometry A, ?r, geometry

B) (whose target answer is externally connected (ec)), we hypothesize the embedding-

based model may yield similar scores for (geometry A, ec, geometry B) and (geometry

A, partially overlap (po), geometry B), because po and ec are topologically similar.

Put differently, the sorted set of predicted relations reveals structural similarities among

relations in the sense that similar relations are more easily confused in relation prediction

(see Figure 6.1).

Based on this assumption, we initiate a graph in which vertices are different types of
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relations. For each testing query ⟨s, ?r, o⟩, a directed edge is established from the correct

relation to either the relation ranked at first (top 1) or second (top 2) in the ordered list

of relations. Such a choice relies on whether the relation at top 1 is the correct relation or

not. When the correct is ranked at top 1, we do not introduce a loop. Instead, a directed

edge starting from the correct relation to the relation at Top 2 is added. If the relation

at Top 1 is not the correct, then an edge is built from the correct relation to Top 1.

The resulting graph is a directed graph, whose edges originate from the correct relation

to a relation identified as most similar to the correct by the KGE model. In a directed

edge, we use terms - head and tail - to refer to the source and the target of an edge,

respectively. The direction of edges reflects which candidate relation (tail) is similar to

the target relation (head). Note that by such a distinction, we are able to examine the

asymmetric similarities between relations.

The graph constructed above only illustrates which relations are considered as similar

by a KGE model, but does not quantify similarities between relations. Here, we design

a weighting function to quantify these similarities. Specifically, the weight of an edge is

estimated as the proportion of the number of edges from a head to a tail relation over

the total number of edges originating from the head. This function can be formulated as

follows:
weight(ri → rj) =

count(ri → rj)∑
r′∈R count(ri → r′)

(6.2)

where count(ri → rj) is the cardinality of edges originating from ri (head) to rj (tail)

(with shortest paths). An example of the construction process is shown in Figure 6.1.

So far, we obtain a directed and weighted graph, which reveals the similarities be-

tween different relations; see Figure 6.2a. We observe that this graph is almost complete

(i.e., any two relations/vertices are connected via an edge), because eventually any two

relations are likely to be thought of as similar by a KGE model. However, not all these

similarities are significant; for instance many edges only have marginal weights (e.g.,
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id queries correct
answer sorted list

1 <obj 1, ?r, obj 3> tpp tpp|po|ec|dc|eq|ntpp|tppi|ntppi

2 <obj 4, ?r, obj 5> dc dc|po|ec|tpp|tppi|ntpp|eq|ntppi

3 <obj 45, ?r, obj 56> po ntpp|po|tpp|ec|dc|tppi|ntppi|eq

4 <obj 25, ?r, obj 6> ec tpp|ec|ntpp|po|dc|tppi|ntppi|eq

5 <obj 51, ?r, obj 9> ntpp tpp|ntpp|po|ec|dc|eq|ntppi|tppi

6 <obj 7, ?r, obj 11> tppi tppi|ec|ntppi|po|dc|tpp|ntpp|eq

7 <obj 15, ?r, obj 1> ntppi ntppi|tppi|po|ec|dc|eq|tpp|ntpp

8 <obj 22, ?r, obj 5> eq eq|tppi|tpp|po|ec|ntppi|ntpp|dc

9 <obj 17, ?r, obj 51> tppi ntppi|ntpp|ec|po|dc|tpp|ntpp|eq

... ... ... ...

Relation Graph Construction

dc
ec

tpp
1.0

0.5

tppi
1.0 eq

1.0

ntpp

1.0

po

1.01.0
ntppi

0.5
1.0

Figure 6.1: Relation Graph Construction. Here nine queries are used as examples
and the sorted list column shows relations sorted by a scoring function from a KGE
method. Each relation is represented as a vertex in the graph and edges are established
from the correct answer (column 3) to the relation in bold in the sorted list. Weights
are calculated by using Eq. 6.2.

0.01). In order to extract significant relationships from the initial relation graph, the

next step is to prune insignificant edges to get a refined graph.

Intuitively one could enumerate different thresholds (for instance, by gradually in-

creasing a threshold (i.e., 0.0, 0.05, 0.1,..., 1.0 )) to cut off edges whose weights are

insignificant. Then one can terminate the enumeration process by manually checking

whether the refined graph is aligned with our domain knowledge/cognition. However,

without enough domain knowledge, it is hard to conclude which graph is meaningful

and this means the proposed solution is not truly bottom-up. In order to reduce human

intervention in the refinement process, we define a condition to automatically terminate

the enumeration. The condition is based on the naive fact that all relations/vertices

must be preserved/connected in the graph after the refinement, since our focus in this

paper is on the relationships of all relations. Based on graph theory, such a fact boils

down to ensuring that there is always one connected component in the graph after the

refinement. Therefore, we can gradually increase thresholds by constant margins (e.g.,
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0.05) until the initial graph is no longer one connected component. In summary, in the

process of refining relation graphs, we generate a number of candidate thresholds (within

the range of (0.0, 1.0) and a step of 0.05) in an ascending order and find the maximal

threshold that leads to only one connected component in the graph, which is regarded

as the refined relation graph.

6.4 Experiments

In this section, we introduce the synthetic data we use to test our method, the

evaluation metrics used for graph similarity measure, and present experimental results.

Although theoretically our proposed approach can be applied to any set of JEPD relations

to automatically discover a graph of relations, we focus on RCC-8 and IR-13 here.

6.4.1 Data Preparation

Since real-life datasets are usually incomplete, we generate sets of synthetic data for

the purpose of demonstration. Specifically, we choose rectangles as primitive geographical

entities for RCC-8 relations and closed-intervals as primitive temporal entities for IR-13

relations.

To generate rectangles, we first set up a main area, in which rectangles should be

located. By default, the main area is set to be a 15×15 unit square with the origin being

its bottom-left corner. Then we randomly generate pairs of points within the square

and each pair of points compose the top-left corner and the bottom-right corner of a

rectangle1. Finally, we compute RCC-8 relations between any two rectangles to generate

synthetic spatial relation triples. Likewise, we generate a number of closed-intervals on

the x-axis within the range [0, 500]. Specifically, we randomly select two integers from
1We ensure that each rectangle is valid. For example, if the two points in a pair align along the same

axis, we will remove this pair.
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the range and use the smaller one as the beginning of an interval and the bigger one

as the ending of the interval. Then we compute the IR-13 relations between any two

intervals to generate synthetic temporal relation triples. We call the set of all synthetic

triples as complete synthetic data.

However, without any prior knowledge, it is hard to decide how many rectan-

gles/intervals should be generated within the given main area/line segment. Meanwhile,

the number of rectangles/intervals generated in the same area/line may affect discovered

relation graphs. Therefore, we independently generate several sets of synthetic triples for

both the RCC-8 and the IR-13 relations with different number of rectangles/intervals

(i.e., [64, 128, 256, 512, 1024]). These sets of triples have different densities of rectan-

gles/intervals. The proportions of different relations generated with respect to different

numbers of rectangles/intervals are shown in Table 6.2.

N 64 128 256 512 1024
dc 43.5 43.4 42.7 42.8 42.3
ec 12.2 11.9 11.8 11.5 11.8
eq 1.6 0.8 0.4 0.2 0.1

ntpp 1.2 1.4 1.1 1.5 1.5
ntppi 1.2 1.4 1.1 1.5 1.5
po 35.6 34.8 37.4 36.4 36.7
tpp 2.4 3.1 2.8 3.1 3.1
tppi 2.4 3.1 2.8 3.1 3.1

N 64 128 256 512 1024
< 18.7 14.9 16.1 16.4 16.5
= 1.6 0.8 0.4 0.2 0.1
> 18.7 14.9 16.1 16.4 16.5
d 15.7 17.2 16.4 16.2 16.9
di 15.7 17.2 16.4 16.2 16.9
f 0.1 0.1 0.1 0.1 0.1
fi 0.1 0.1 0.1 0.1 0.1
m 0 0.1 0.1 0.1 0.1
mi 0 0.1 0.1 0.1 0.1
o 14.6 17.1 16.9 16.9 16.1
oi 14.6 17.1 16.9 16.9 16.1
s 0.1 0.2 0.1 0.1 0.1
si 0.1 0.2 0.1 0.1 0.1

Table 6.2: Relation proportions of RCC-8 (on the left) and IR-13 (on the right)
regarding different numbers of rectangles/intervals N=64, 128, 256, 512 or 1024. All
values are multiplied by 100.

6.4.2 Experiment Settings

We choose HyperRotatE [152] as the embedding model to learn subsymbolic repre-

sentations of entities and relations, thanks to its ability of modeling the composition of

relations (which is relevant to composition tables) and tree-like graph structures (which
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is useful for modeling transitive relations (e.g., ntpp)). This model also contains the three

components mentioned in Section 6.2.2 and has a different scoring function. We use the

original implementation of HyperRotatE to learn embeddings for entities and relations2.

Hyper-parameters used for the RCC-8 and the IR-13 relations include learning rates:

0.05 (for the RCC-8 relations) and 0.1 (for the IR-13 relations), batch sizes: 1024 for

both, negative samples: 64 (for the RCC-8 relations) and 32 (for the IR-13 relations),

and dimensions: 110 (for the RCC-8 relations) and 18 (for the IR-13 relations). For

IR-13 relations, we use the same hyper-parameters for all synthetic data. For RCC-8

relations, we increase the dimension of the embedding space to 200 when the number

of entities is 512 or 10243. In the experiment, we train HyperRotatE and then perform

relation prediction over the complete synthetic data by default 4.

6.4.3 Evaluation Metrics

In order to quantify the differences between the learned relation graph and from

CNGs, we introduce three metrics to measure commonality and difference. One solution

is to convert graphs to sets of edges (each edge consists of a pair of relations) and to use

set operations for quantification. Three metrics can be defined: (1) False Recall (i.e.,

number of false positives): the number of edges that are in our generated graph but not

in CNGs (set difference). (2) True Recall (i.e., number of true positives): the number of

edges that are in both our generated graph and CNGs (set intersection). (3) Failed Recall

(i.e., number of false negatives): the number of edges that are not in our generated graph

but in CNGs (set difference). Clearly, a graph that is similar to CNGs should have a low
2https://github.com/HazyResearch/KGEmb
3When the number of entities increased to 512/1024, the model’s performance greatly deteriorated.

We assume the performance is compromised due to lack of learnable parameters. Thus, we increase the
dimensions to provide more learnable parameters for our models to learn.

4Note that we do not tune these hyper-parameters but choose them by empirical experiences. It is
worthwhile to investigate the impact of hyper-parameters on the experiment results in the future.
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False Recall, a high True Recall, and a low Failed Recall.

6.4.4 Experimental Results

In this section, we first show direct results from our approach introduced in Sec-

tion 6.3. Figure 6.2 illustrates (a) the initial relation graph resulting from the construc-

tion steps and (b) the refined relation graph after pruning. Next we report main findings

based on the refined relation graph.
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(a) Initial Relation Graph

dc ec0.816
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eq

0.91

(b) Refined Relation Graph

Figure 6.2: Examples of initial/refined relation graphs produced by our approach.

1. Relation graphs automatically discovered by our approach are well-

aligned with CNGs for both RCC-8 and IR-13 relations.

Figure 6.2b implies that our refined relation graph resembles conceptual neighborhood

graphs (Figure 6.3f). This motivates us to examine how similar our refined relation graphs

are CNGs from the literature and whether this is merely a coincidence. In order to make

our refined graphs comparable with CNGs, we convert the refined graphs into undirected

and unweighted relation graphs (UU-RGs).
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Figure 6.3 and Figure 6.4 report the results for RCC-8 and IR-13 relations, re-

spectively, with different number of entities being considered. Noticeably, our approach

discovers stable relation graphs for both RCC-8 and IR-13 relations. In specific, relation

graphs for RCC-8 remain almost unchanged with an increasing number of rectangles

and relation graphs for IR-13 begin to be fixed (except for the equal relation) when

the number of intervals is 256. This observation also aligns with the statistics shown in

Table 6.2, in which the relation proportions become relatively stable when the number

of entities reaches 256. This indicates that the KGE model is mainly affected by the

proportion of relations in the synthetic data. Moreover, by comparing Figure 6.3a, 6.3b,

6.3c, 6.3d and 6.3e with Figure 6.3f (or comparing Figure 6.4c, 6.4d and 6.4e with Fig-

ure 6.4f), we can observe that the discovered relation graphs are well-aligned with the

CNGs which are defined in the literature (see Figure 6.3f and Figure 6.4f), except for

differences around the equal relation(i.e., “eq” and “=”). This observation demonstrates

the ability of ML models in learning domain knowledge purely from data and the ef-

fectiveness of our approach in automatically discovering relationships of JEPD relations

(RCC-8 and IR-13 as examples here). This demonstrates that conceptual neighborhood

graphs can be reproduced from data without any domain knowledge/inductive bias.

As for the differences around the equal relation, one explanation is the lack of enough

equal relations in our synthetic data. Because we randomly generate rectangles/intervals

within a given area/segment, it is relatively rare to yield two rectangles/intervals that

have the same geometry. As a result, most equal relations are just self-equivalent (e.g.,

⟨s, eq, s⟩), which in fact does not provide enough useful information for the model to

learn. Hence, we do not consider this a shortcoming of the model.

2. Similarities of relations are asymmetric and certain relations are more

similar. Several patterns in asymmetric similarities of relations are also dis-

closed.
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Figure 6.3: The relation graph of the RCC-8 relations w.r.t. different number of rectangles.

In this experiment, we examine similarities of relations, which are quantified by

weights in Eq. 6.2. We extract a subgraph from our initial relation graphs (see Fig-

ure 6.2a) that contain edges presented in the theoretical CGNs except for edges that are

connected to the equal relation (since the equal relation is not well-reproduced). We set

the number of entities to 1024 and run the HyperRotatE model for 20 times to obtain av-

erage weights/similarity scores. The extracted subgraphs for RCC-8 and IR-13 relations

are illustrated in Figure 6.5.

Apparently, we can observe that similarities of relations are asymmetric. In other
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Figure 6.4: The relation graph of the IR-13 relations w.r.t. different number of intervals.
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words, the statement that a is similar to b differs from that b is similar to a (a and b

are relations). For instance, the similarity between dc and ec is 0.903 while the inverse

similarity is 0.215. Namely, dc is more similar to ec while ec is less similar to dc. In fact,

Figure 6.5a shows ec is most similar to po, and both dc and po are most similar to ec.

Meanwhile, we find that ec and po are more similar in general with higher similarities

of 0.556 and 0.654. Additionally, there exist similar patterns between relations and their

inverses in terms of their asymmetric similarities to other relations. For instance, Fig-

ure 6.5b shows < is most similar to m and m is most similar to o. In terms of their inverse

relations, > is most similar to mi and mi is most similar to oi. Moreover, in Figure 6.5a,

ntpp is most similar to tpp and ntppi is most similar to tppi. Similar patterns are shown

between d–>f–>oi and di–>fi–>o, as well as between d–>s->o and di–>si–>oi. Another

interesting observation is that all neighboring relations of the overlapping relation (i.e.,

po in RCC-8 and o and oi in IR-13 ) are most similar to the overlapping relation (see

the arrows that point to the overlapping relation). By contrast, in Figure 6.5b, both d

and di are most similar to their neighboring relations (the red arrows around them leave

out of them). Interestingly, similarity assessments in the cognitive science literature have

been shown to be highly non-symmetric as well due to differences in (feature) alignment.

For instance, Klippel et al. disclosed that the similarity between RCC-8 relations vary

from different scenarios (such as hurricane, cannon and geometry). In addition, Mark et

al. also found that some topological relations indeed are conceptually more similar to

others [172].

3. Even with limited training data (i.e., as low as 15% of the complete

synthetic data), HyperRotatE is still capable of reproducing CNGs.

Finally, we are interested in the question of how much training data is needed for Hy-

perRotatE to reproduce CNGs. In order to answer this question, we extract subsets of the

complete synthetic data with different proportions and use the three metrics introduced
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dc ec0.903
0.215 po0.556

0.654

tpp0.148

tppi

0.152

ntpp0.995
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0.376

ntppi0.9950.477
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(a) Similarities for RCC-8 relations.
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difi 0.484 si
0.4740.3390.551
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0.531 0.423
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0.299

0.419

0.273

0.29

(b) Similarities for IR-13 relations.

Figure 6.5: Asymmetric similarities of relations. For two edges between two vertices,
the edge with a larger weight is highlighted in red.

in Section 6.4.3 to evaluate the commonality and difference between UU-RGs and CNGs.

Experiment results with the number of entities being 256 are shown in Figure 6.6. Red

lines and black lines are theoretical references, indicating numbers of edges that are con-

nected to the equal relation and that are not in theoretical CNGs, respectively. Clearly,

regarding RCC-8 relations, when more than 10% of the complete synthetic data are used

for training, HyperRotatE is able to reproduce CNGs with stable recalls. Specifically,

when the proportion is larger than 10%, False Recall continues to be 0, True Recall is

either 7 or 8 and Failed Recall is either 3 or 4. Noticeably, True Recall is always above

the red line (i.e., 6 – the theoretical number of edges that are not connected to “=” in

the CNG) and Not Recall is close to the black line (i.e., 5 – the theoretical number of

edges that are connected to “=” in the CNG). That is, the relation graphs (except for

conceptual neighbors of the equal relation) is well-aligned with the theoretical CNGs

even when only 10% of the complete synthetic data are available. Similar observations

are shown for IR-13 relations; see Figure 6.6b; however, the same pattern is observed
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when the training proportion is larger than 15%. In summary, HyperRotatE is a robust

knowledge miner, which succeeds in discovering CNGs even with limited training data.
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Figure 6.6: Quantitative comparison between UU-RGs and CGNs. UU-RGs are re-
produced w.r.t. different proportions of the complete synthetic data as training data.
Lines in red denote the number of edges that are not connected to the equal relation
in CNGs and lines in black denotes the opposite.
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6.5 Conclusion

In this work, we presented a graph-based approach to examine similarities among

RCC-8 and IR-13 relations in neighborhood graphs since they are important to spatio-

temporal reasoning and spatial queries. In contrast to traditional approaches that heavily

rely on top-down techniques and rule sets, we address this problem in a bottom-up manner

without the need of any domain knowledge. Specifically, we focus on the task of relation

prediction; namely to answer the query ⟨s, ?r, o⟩. Our rationale is that it would be difficult

for machine learning methods to distinguish relations that are topologically similar when

predicting missing relations between two entities. Therefore, we can pull similar relations

out of the relation prediction task, and then use the proposed method to construct a

graph to examine the structure among relations. Our experiments on synthetic data

about RCC-8 and IR-13 relations reveal that (1) the extracted relation graphs are well-

aligned with conceptual neighborhood graphs introduced in [128] and [117] except for

neighboring relations of the equal relation. We believe this may be caused by a lack

of enough equal relations in generated training data, which is left for future work; that

(2) similarities of relations are asymmetric, and patterns in asymmetric similarities of

relations are the same as those in their inverse relations; and that (3) the presented

embedding models are robust in mining qualitative spatial and temporal knowledge (i.e.,

CNGs), even with limited training data.

Theoretically, our approach could be applied to any calculus with JEPD relations [159]

to automatically discover CNGs. We believe our research would benefit theoretical stud-

ies of CNGs in general and contribute to a broader field, such as geospatial artificial

intelligence, by promoting a deeper understanding of what machines really learn from

data in a bottom-up manner. In the future, we plan to study whether such CNGs will

be preserved when realistic data (particularly when non-spatial information is also con-
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sidered) are used at training.
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Chapter 7

Conclusions and Future Work

This chapter concludes this dissertation and points out research directions for further

exploration. Firstly, it starts with a concrete summary of each chapter (including key

questions, solutions and findings) as well as a discussion of the relationships among

these chapters. Secondly, this chapter summarizes the potential contributions of this

dissertation from both theoretical and practical perspectives. Finally, the chapter closed

by identifying the potential limitations of my dissertation and lists research areas that

would benefit from further exploration.
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7.1 Summary and Discussions

This dissertation revisits areas related to common sense reasoning in Artificial Intelli-

gence, namely temporal reasoning, and addresses the research problem of how to develop

a subsymbolic temporal reasoning system. This proposal is mostly motivated by the

fact that the world is ever-changing, and statements about the world change and grow

over time. In the past few years, with advancements in data collection and information

extraction, more and more time-related information has become available and is stored

in large-scale KGs. Despite the sheer amount of information, temporal information may

be incomplete, contain errors, and have diverse expressions. This imposes much burden

on traditional temporal reasoning systems that are based on logic and algebra. Due

to the symbolic nature of their representation and reasoning, they are subject to noise,

scalability issues, and incompleteness.

The central idea of addressing challenges that traditional temporal reasoning sys-

tems are faced with is to find an alternative representation and reasoning method. Ad-

vanced techniques in machine learning and deep learning methods, representation learn-

ing/embedding techniques in particular, have made tremendous breakthroughs in natural

language modeling, natural language understanding, image classification, and computer

vision, etc. in the past decade. Most recently, they also successfully applied to generic

knowledge graph-related downstream tasks. Key insights of these methods are to learn

numeric/subsymbolic representations of things. Then the accomplishment of different

downstream tasks amounts to performing various numeric operations over these repre-

sentations. Extensive research has shown that such methods are noise-tolerant, easy

to scale, and can handle incompleteness, which addresses most of the aforementioned

challenges. Therefore, this subsymbolic paradigm for representation and task accom-

plishment provides a good potential to achieve a temporal reasoner. Following such a
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paradigm, a subsymbolic temporal reasoning system is developed step by step in this

dissertation by analogy to the key components in a classic symbolic temporal reasoner.

More concretely, Chapter 3 focuses on sybsymbolic representations of time instants,

which are chosen as the ontological primitive in this dissertation. Traffic prediction is used

as the application case, since traffic data are usually timestamped (time instant), and

time plays a critical role in traffic speed prediction. However, as for temporal information,

traditional methods only take into account the sequential information of traffic data while

ignoring the quantitative temporal information associated with each data point. I argue

that this is insufficient and previous methods can only tackle traffic data of the same

resolution. Instead, this dissertation makes full use of quantitative temporal information

and learns numeric representations of time instants by considering the continuity and

periodicity of traffic data. Because numeric representations can be easily integrated with

each other, the learned representations for time instants can be directly combined with

numeric traffic data as temporal signals for traffic prediction. Such a direct combination

results in an improvement in performance compared to previous methods. Meanwhile,

this result demonstrates the efficacy of learning representations for time instants. Chap-

ter 4 focuses on subsymbolic representations of time intervals (open intervals, semi-closed

intervals, and closed intervals) and presents a subsymbolic method for quantitative tem-

poral reasoning. It addresses a number of representational and reasoning issues, such

as how to represent intervals subsymbolically based on the subsymbolic representation

of the ontological primitive, how to link temporal information with statements and how

to reason about time in a subsymbolical manner. In addition, the proposed method is

tested on two downstream tasks by using two datasets: temporal link prediction and

temporal scoping prediction. Experimental results show that the proposed method can

boost performance on both datasets in terms of these two downstream tasks. This work

presents a complete workflow for developing a subsymbolic reasoning system for quantita-
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tive time. Chapter 5, by contrast, focuses on qualitative temporal reasoning and presents

a temporally-explicit subsymbolic approach. The design of this approach is motivated by

general theories of time developed in classic symbolic temporal reasoning (such as com-

position tables), and properties of temporal relations (such as transitivity, symmetricity,

etc.). In order to empower the subsymbolic method to automatically discover these prior

knowledge from data, quaternions are introduced to hyperbolic space to fulfill represen-

tational and reasoning purposes. The proposed method has been successfully applied to

qualitative temporal reasoning as well as qualitative spatial reasoning. Chapter 6 an-

swers a follow-up question raised from experimental results in Chapter 5, namely why

subsymbolic methods perform better than traditional symbolic methods in terms of qual-

itative spatial and temporal reasoning? My assumption is that the subsymbolic method

must have learned some domain theory purely from data. Since two primary reasoning

mechanisms - composition tables and conceptual neighborhood structures - both focus on

exploring relationships between relations for facilitating reasoning, a graph-based method

is proposed as an initial attempt to examine similarities between qualitative relations.

Experimental results are well-aligned with conceptual neighborhood structures of quali-

tative relations. This work can not only help us interpret why machine learning methods

work but also contribute to theory verification/discovery from a machine learning-driven

perspective.

In summary, this dissertation points out the need for new approaches to temporal

reasoning by pointing out the limitations of traditional reasoning systems. It proposes

to develop a subsymbolic temporal reasoning system and identifies the key ingredients

to implement such a system. By decomposing this task into a few separated but cor-

related research questions, each chapter in this dissertation contributes to answering

these research questions. In the end, the success of sub-symbolic reasoning systems is

interpreted.
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7.2 Research Contributions

This dissertation first points out that conventional symbolic temporal reasoning sys-

tems are faced with several limitations, e.g., prone to noise and incompleteness. Mo-

tivated by great breakthroughs made by machine learning/deep learning, in particular

representation learning/embedding techniques, in the past few years, this dissertation

aims to leverage such techniques to find new potentials for temporal reasoning. The key

contribution of this dissertation lies in the idea of developing a subsymbolic temporal

reasoning system. This dissertation accomplishes such a goal by decomposing it into

separate but related research questions and addresses each of them step by step. The

following two subsections summarize the theoretical contributions and practical implica-

tions of this dissertation, respectively.

7.2.1 Theoretical Contributions

This dissertation has contributed to the theoretical study of time under the context of

machine learning and deep learning. I summarize the four most important contributions

as below.

The idea of developing subsymbolic temporal reasoning systems. By analyzing

the limitations of symbolic temporal reasoning systems, this dissertation comes up with

a new idea of developing a temporal reasoning system by using machine learning/deep

learning methods, particularly representation learning/embedding techniques. By anal-

ogy to key components in a symbolic temporal reasoning system, this dissertation claims

that the five components described below are the ingredients for developing a subsymbolic

temporal reasoning system. It includes choosing ontological primitives, learning numeric

(subsymbolic) representations of the chosen ontological primitive, modeling representa-
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tions of other temporal information using the primitive, linking time with atemporal

statements (time formalization), and devising methods to perform subsymbolic temporal

reasoning. These different parts as well as solutions for each part are discussed through-

out the entire dissertation. This dissertation as a whole provides a concrete solution

for developing subsymbolic temporal reasoning systems, which will lay the theoretical

foundation for future study in this direction.

A subsymbolic approach to quantitative temporal reasoning. This dissertation

provides a broader definition of temporal knowledge graphs, which clarifies the study

subject for temporal reasoning under the context of deep learning. Chapter 3 demon-

strates the efficacy of learning numeric representations of time instants using embedding

techniques. Furthermore, Chapter 4 devises a concrete subsymbolic approach to imple-

menting a subsymbolic temporal reasoning system by figuring out the five ingredients

that constitute a subsymbolic time reasoning system step by step. Although there are

different ways to implement such a reasoning system, this proposed approach is more

generic and can be applied to KGs that contain any kind of temporal and non-temporal

statements.

A subsymbolic approach to qualitative temporal reasoning. Traditionally, the

success of qualitative temporal reasoning lies in the application of logic and algebra cal-

culus. This dissertation assumes that such prior knowledge will also benefit machine

learning methods to perform temporal reasoning. By considering general theories in

time (e.g., transitivity/composition tables) and properties of qualitative temporal rela-

tions (e.g., transitivity, symmetricity and inverse relations), Chapter 5 presents a theory-

informed subsymbolic approach to capture such priors. Theoretically, the method can be

applied to any other type of qualitative reasoning, as long as the data involved can be rep-
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resented in the form of triples. For example, this dissertation has proven its effectiveness

in qualitative spatial reasoning.

Automatic discovery of conceptual neighborhood structures. Commonly, the

development of a theory demands four stages, including tension, search, elaboration and

proclamation [173]. During this process, research scientists are heavily involved and play

various roles (as creator, codifier, carrier, researcher and advocate). Such a process re-

quires long-term significant investment of time and labor. Instead, chapter 6 presents

a machine/deep learning-driven method for discovering conceptual neighborhood struc-

tures for qualitative relations. It follows a common paradigm for theory discovery, made

up of hypothesis formalization, diagnosis of individual cases and hypothesis testing [174],

though only two types of qualitative reasoning are diagnosed. This method successfully

re-discovers conceptual neighborhood structures for both qualitative spatial and tempo-

ral relations. Theoretically, such an idea can be applied to any other JPED relations to

find conceptual neighborhood structures.

7.2.2 Practical Contributions

This work can also contribute to practical problems, which are listed in the following.

Automatic Knowledge Graph Construction. Although automatic knowledge

graph construction primarily relies on information extraction techniques that directly

apply to natural language texts [175, 176, 177]. The task of knowledge graph completion

can contribute a lot as well once an initial knowledge graph is ready [178]. Chapter 4

presents a generic method that could be applied to any generic knowledge graph to pre-

dict missing statements as well as missing validity periods of statements. This method

can be complementary to the mainstream automatic construction methods, particularly
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in terms of providing temporal information. Evidences [179, 180, 181] show it is usually

hard to accurately exact temporal information from texts due to its diverse expressions

used in different contexts.

Query/Question Answering System. Chapter 4 and Chapter 5 presents two sub-

symbolic methods for quantitative and qualitative temporal reasoning, respectively. They

are complementary and can be integrated easily to implement a temporal query answer-

ing system [182, 183]. The system is able to answer quantitative/qualitative temporal

queries and non-temporal queries. Furthermore, this query-answering system can be

combined with other query-answering systems, which are also based on subsymbolic rea-

soning methods, to build an even larger query-answering system.

Time-Aware Recommendation System. Users’ preference/inclination for items

usually changes over time ( e.g., people’s tastes on music/news) due to personal issues or

external driving force [184, 185, 186]. It is essential to capture such changes in order to

recommend correct items to correct users timely. By using time representations proposed

in Chapter 3, time-aware recommendation system can be developed to track users’ habits

and detect changes in their preferences. Such time-aware recommendation systems could

be useful for news, movie, location, route,s and food recommendation, to name a few.

Time Series Prediction. Chapter 3 presents a good example of how to apply sub-

symbolic representations of time instants to traffic prediction. As a matter of fact, the

same idea can be generalized to any time series predictions. Unlike prior time series

prediction, we can directly incorporate quantitative temporal information into predic-

tion models and tackle temporal patterns at different resolutions (e.g., weekly, seasonal,

monthly patterns). In order to deal with the issue of diverse temporal patterns, we could

learn numeric representations of time at each resolution and integrate them to obtain a
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mixed representation for later usage. This idea opens a new door to time series prediction.

7.3 Limitations and Future Work

In this section, I outline the limitations of this dissertation and point out research

areas that deserve further investigation.

The choice of ontological primitives. In this dissertation, time instants are chosen

as the ontological primitive for time, because representation learning methods (e.g., em-

bedding techniques) aim to learn numeric representations for discrete/categorical things.

However, the computational bottleneck should not be the only factor to consider when we

decide on ontological primitives. One factor that deserves consideration is the difficulty of

using the chose ontological primitive to represent the other temporal information. In this

dissertation, it is challenging to obtain numeric representations of time intervals when

time instants are chosen as the primitive. Even though we might agree intervals can be

modelled by a set of consecutive instants conceptually (scoped by start instant and end

instant), how to aggregate representations of such instants to obtain numeric representa-

tions of intervals (both closed and semi-closed intervals) lacks a thorough study. Another

factor to consider should be thediscovery resolution of time instants (e.g., years, months,

minutes). The resolution used in this dissertation varies from one chapter to another.

However, this is not ideal, given that a real-life dataset usually contains temporal in-

formation of different resolutions. This calls for a more generic representation learning

method for quantitative time.

Impact of time formalization of different kinds. Section 2.2.3 introduces different

ways of incorporating time into statements for symbolic temporal query and reasoning

purposes, and emphasizes on their distinct impacts on query performance, data storage
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and maintenance, etc. In this dissertation, I come up with one simple solution to link

time with statements in the context of subsymbolic temporal reasoning, namely regarding

temporal information as another relation held between entities. Such solution, though

straightforward, decomposes a quadruple (<subject, predicate, object, time>) into two

independent triples (<subject, predicate, object> and <subject, time, object>). It breaks

up the semantics among them. Therefore, this needs improvements and other possibilities

deserve exploration. In addition, it would also be interesting to investigate how different

ways of linking time with statements will affect the reasoning performance of different

subsymbolic temporal reasoning methods. This question is also related to a broader re-

search question that how syntax/structures of inputs will impact representation learning

methods.

Undoing learning to achieve non-monotonic reasoning. Statements about the

world change as time goes by, and, thus, they usually only hold during a certain period of

time. We view statements as temporally scoped statements in this dissertation. However,

there are other perspectives. For example, we can also treat them as data streams, and

each of them can have two states (corresponding to the start instant and end instant of

its validity period). One state indicates it starts to be valid when it appears, therefore

the information it carries should be added to a subsymbolic reasoning model. The other

state indicates it is not valid anymore when it is falsified or turns invalid. In this case,

the information it brings to the reasoning model should be canceled out. Although it

may seem reasonable, this requires a reasoning model to be non-monotonic. However,

most machine learning/deep learning models conform to a repetitive training process and

are optimized iteratively over training datasets. That said, they cannot instantaneously

undo what they have learned from previous statements, because all the information that

has been in the reasoning model is interconnected to some degree and training data are

165



Conclusions and Future Work Chapter 7

used repeatedly. Despite these challenges, figuring out how to undo learning to achieve

a non-monotonic reasoning model is definitely a fascinating research direction.

Machine learning-driven theory discovery. One of the theoretical contributions

of this dissertation is that it demonstrates that conceptual neighborhood structures of

any kind of JPED relations can in principle be discovered by machine learning/deep

learning methods purely from data. However, this is just a starting point. The success

of conventional symbolic (temporal) reasoning lies in the application of various logic

calculus, such as composition tables. Then a follow-up question, which is even more

intriguing, is whether it is possible that machine learning/deep learning methods have

discovered them as well and utilize them implicitly to help perform reasoning. If this

assumption is reasonable, how could we test our hypothesis? I believe that this research

direction could contribute to both explainable AI and theory discovery/verification.
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A.1 Data Statistics
Generation of WIKIDATA114k We extracted a sport-centric subgraph from WIKI-
DADA432k. We first picked out statements where the relation memberOfSportsTeam
appears and obtained an entity set from those statements. Then we find all the state-
ments that entities obtained from the previous step participate in as our initial subgraph.
Finally, we ensure that each entity/relation is associated with at least 5 statements and
the time period is restricted to [1883, 2023] for temporal statements, which encloses most
of the temporal statements in the initial subgraph. This results in 1.7 million statements
with 114k entities and 126 relations, and thus named as WIKIDATA114k. See Table A.1
for data statistics.

A.2 Hyperparameter Settings
We tune models by the MRR on the validation set. Grid search is performed over

negative samples k = [16, 32, 64, 128], learning rate lr = [0.003, 0.002, 0.001], batch
size b = [1500, 2000, 2500, 3000, 3500]; dimension d = [200, 300, 400], and weight for
time smoothness regularizer β = [0.0, 0.1, 0.001, 0.0001], as shown in Table A.2.1 We
find that effects of different hyperparameters are minimal except for learning rate as the
trained model usually converge to similar MRRs as long as they are trained thoroughly.
We also observe that time smoothness regularizer is useful in learning time embeddings
on WIKIDATA12k while failing to improve the model on WIKIDATA114k. This may be
due to data sparsity with regard to time. As the time span of WIKIDATA114k is much
smaller, time information is intensive and thus models are capable of learning temporal
order between timestamps implicitly.

1Experiments are terminated after 10000 steps.
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WIKIDATA12k WIKIDATA114k
#entities 12,544 114,351
#relations 24 126
time period [19, 2020] [1883, 2023]

train

#all 32,497 1,670,969
#time instant 14,099 175,637
#start time only 4,089 44,809
#end time only 1,273 2,164
#full time interval 13,035 402,135
#no time 0 1,046,224

valid

#all 4,051 11,720
#time instant 1,857 1,177
#start time only 322 342
#end time only 76 11
#full time interval 1,796 2,655
#no time 0 7,535

#test

#all 4,043 11,854
#time instant 1,844 1,219
#start time only 324 306
#end time only 56 15
#full time interval 1,819 2,790
#no time 0 7,524

Table A.1: Statistics of these datasets used.

#negative samples # learning rate

16 32 64 128 0.003 0.002 0.001

MRR 36.02 36.68 37.06 37.30 36.64 36.82 37.30
MR 97 100 98 101 126 103 101
HITS@1 25.96 26.81 27.25 27.38 26.83 26.73 27.38

#batch size # dimension

2000 2500 3000 3500 200 300 400

MRR 36.71 36.87 37.30 36.78 36.12 36.88 37.30
MR 100 114 101 100 106 101 101
HITS@1 26.59 26.88 27.38 26.77 25.98 26.88 27.38

Table A.2: Effects of hyper-parameters on WIKIDATA12k
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A.3 Experimental Setup
Upon inspection on implementations of TKBC models, we find there are two common

issues.
First, SOTAs only learn time embeddings for timestamps that appear in training set,

which would be problematic at testing. For instance, suppose a sorted (ascending) list of
timestamps occurring in training set is [1540, 1569, 1788, 1789, 1790], SOTAs only learn
embeddings for these timestamps, while ignoring intermediate timestamps. As a result,
they cannot answer queries when the associated time is not in the list, such as (s, r, ?o,
1955 ). This problem would be even worse regarding time interval generation. As when
we need to grow a time point to a time interval by extending it to the left or the right,
we may jump from one year to a year far away from it. For instance, from 1569 to 1540
(left) or 1788 (right). This is not reasonable and thus may severely affect the evaluation
on time prediction. In order to address this issue, we enumerate all the time points in
the time span of the training set with a fixed granularity (i.e., year) and use them for all
models at training periods.

The other issue is about the evaluation of link prediction task on time interval-based
statements (including closed interval-based and left/right-open interval-based state-
ments). In existing works, the evaluation boils down to assessing the correctness of
answering a timestamp-based query by randomly picking one timestamp from a set of
timestamps within the time interval and then measuring the performance on the newly
generated query (i.e., the timestamp-based query). However, this is problematic. For
closed interval-based samples, the evaluation results may vary from randomly sampled
timestamps and thus may not be stable. For left/right-open interval-based statements, it
is more severe. For instance, for a left-open interval-based test sample (Albert Einstein,
educatedAt, ?o, [-, 1905]), [110] randomly pick a year before 1905, say 1000, and evaluate
whether a model can output the correct answer (University of Zurich) to the new query
(Albert Einstein, educatedAt, ?o, 1000). Clearly, there is no correct answer at all since he
was born in 1879. Therefore, the evaluation on such test samples may not be plausible.
In order to address these issues, for a closed interval-based sample, we enumerate all the
time points in the interval and do evaluation on each time point separately. Then we
use the average performance over them as the overall evaluation. For the latter, we only
consider the known endpoint in an interval, namely (s, r, ?o, st) for right-open cases and
(s, r, ?o, et) for left-open cases.

A.4 Link Prediction Performance by types of validity
information

Table A.3 shows the comparison between different methods in terms of different types
of validity information.
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Chapter A

Datasets WIKIDATA12k
Types Time Interval (O) Time Interval (C) Time Instant No Time
Methods TIMEPLEX base TIME2BOX TIMEPLEX base TIME2BOX TIMEPLEX base TIME2BOX TIMEPLEX base TIME2BOX
MRR 46.74 51.48 25.30 28.44 41.11 43.13 - -
MR 203 68 273 84 350 125 - -
HITS@1 19.21 41.05 11.54 18.5 32.6 33.30 - -
Datasets WIKIDATA114k
Types Time Interval (O) Time Interval (C) Time Instant No Time

Methods TIMEPLEX TIME2BOX TIMEPLEX TIME2BOX TIMEPLEX TIME2BOX TIMEPLEX TIME2BOX
MRR 22.63 22.43 17.72 18.85 20.81 21.32 67.85 68.40
MR 346 168 155 147 176 193 430 172
HITS@1 4.98 11.21 3.94 8.35 11.07 11.16 61.52 60.30

Table A.3: Link prediction evaluation by types of validity information. Time Interval
(O) denotes left/right-open interval-based statements, and Time Interval (C) refers to
closed interval-based statements.

A.5 Time Prediction Performance by duration length
Table A.4 and A.5 compare the performance of TIMEPLEX and TIME2BOX on the

time prediction task across different duration lengths on two datasets. Test samples are
first classified into three groups by duration (du) and then evaluate the performance of
each group. For an interval I, du = Imax − Imin +1. It shows that our improvements are
more pronounced in terms of shorter durations in general.

WIKIDATA12k
Duration (du) du=1 1<du<=5 du>5
Method TIMEPLEX base TIME2BOX TIMEPLEX base TIME2BOX TIMEPLEX base TIME2BOX
gIOU@1 30.29 38.09 39.51 43.68 47.4 46.99
aeIOU@1 20.84 28.34 15.86 22.95 18.23 13.20
gaeIOU@1 12.47 18.62 11.73 16.34 16.85 11.20

Table A.4: Time prediction by duration on WIKIDATA12k

WIKIDATA114k
Duration (du) du=1 1<du<=5 du>5
Method TIMEPLEX base TIME2BOX TIMEPLEX base TIME2BOX TIMEPLEX base TIME2BOX
gIOU@1 28.75 37.03 29.77 38.36 27.99 39.07
aeIOU@1 25.80 34.16 16.52 21.54 7.09 9.94
gaeIOU@1 14.69 21.08 10.50 14.50 3.85 7.02

Table A.5: Time prediction by duration on WIKIDATA114k

A.6 Model Parameter Comparison
Table A.6 summarizes the number of parameters used in each method.
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Chapter A

Models Number of parameters
TNTComplex 2d(|E| + |T | + 4|R|)
TIMEPLEX base 2d(|E| + |T | + 6|R|)
TIME2BOX d(|E| + 2|T | + 2|R|) + 4d2

Table A.6: Number of parameters for each model
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Appendix B

B.1 Some proofs

B.1.1 Unitary Quaternion

qu = cos(α) + sin(α)cos(θ1)cos(θ2)i+ sin(α)cos(θ1)sin(θ2)j + sin(α)sin(θ1)k (B.1)

∥qu∥ =
√

cos(α)2 + (sin(α)cos(θ1)cos(θ2))2 + (sin(α)cos(θ1)sin(θ2))2 + (sin(α)sin(θ1))2

=
√

cos(α)2 + (sin(α)cos(θ1))2 + (sin(α)sin(θ1))2

=
√

cos(α)2 + sin(α)2 = 1.

B.2 Number of Learnable Parameters

Model #parameters
HyperQuaternionE d ∗ |E|+ (d+ 1) ∗ |R|
HyperRotatE (d+ 1) ∗ |E|+ (3d+ 1) ∗ |R|
QuaternionE d ∗ |E|+ d ∗ |R|
RotatE 2d ∗ |E|+ d ∗ |R|

Table B.1: Number of parameters in each model. |E| and |R| are number of entities
and relations, respectively.

B.3 Network structures by different embedding models
Here we compare network structures yielded by different embedding models. Note

that since there is no practical guideline on how to determine thresholds to extract
closely-connected substructures, we choose threshold=0.3 and threshold=0.4 empirically.
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In general, according to Figure B.1 and B.2, we can conclude that all embedding mod-
els are capable of implicitly learning neighborhood structures of relations with nuanced
differences. By comparing Figure B.1d, B.1e, B.1f with Figure 5.13b, we can find that
our model yields a better structure as part of the substructure around eq is discovered
successfully while others fail to do so. For network structures of temporal relations (Fig-
ure B.2e, B.2e and 5.14b), they all exhibit much similarity except for small differences
around =, which is partly attributed to a lack of equal relations in datasets. However, as
discussed in Section 5.5.4, our model in fact discovers the inner structure around =, which
is filtered out by thresholds yet. Therefore, our model is superior to other embedding
models in discovering relationships between relations.
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Figure B.1: Network structures by different models (spatial relations).

173



<

m

o

s

=

>

mi

oi

si

d

f

di

fi

(a) HyperRotatE-0.3

<

m

o =

s

>

mi

oi

d

f

di

fi

si

(b) QuaternionE-0.3

<

>m

mio =

s oi

d

f

di

fi

si

(c) RotatE-0.3

<

m

o =

s

>

mi

oi

d

f

di

fi

si

(d) HyperRotatE-0.4

<

m

o >

mi

oi

d

fs

di

fi

si

(e) QuaternionE-0.4

<

m

o =

s

>

mi

oi

d

f

di

fi

si

(f) RotatE-0.4
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