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Abstract 

Deep Learning Approaches for Cell Segmentation and Tracking in Time-Lapse 
Microscopy 

 
Abolfazl Zargari 

This dissertation addresses the challenges of cell segmentation and tracking in time-lapse 

microscopy using advanced deep-learning techniques. Analyzing microscopy images involves 

several challenges, including accurate segmentation and tracking of cells, handling the presence 

of artifacts and noise, and dealing with the proximity and overlapping of cells in densely populated 

images. Furthermore, there is a significant challenge in obtaining large annotated datasets 

necessary for training robust deep-learning models, as manually annotating microscopy images 

is time-consuming and labor-intensive. To overcome these issues, first, we developed DeepSea, 

a deep-learning model for efficient cell segmentation and tracking. DeepSea incorporates 

auxiliary models for cell edge detection, residual blocks for efficiency, and progressive learning 

techniques, achieving high segmentation accuracy and effective cell tracking. Additionally, we 

propose cGAN-Seg, a CycleGAN-based model that generates synthetic images to enhance the 

training process of cell segmentation models, incorporating style generation paths, linear 

attention mechanisms, differentiable image augmentation, and VGG perceptual loss. This 

significantly improves segmentation performance on limited datasets, with substantial 

improvements across various cell types and imaging modalities. A GAN-based super-resolution 

video generator is also introduced, generating annotated high-quality, realistic time-lapse 

microscopy videos, further addressing annotated dataset scarcity for live single-cell tracking 

models. Finally, we employed our quantitative single-cell image analysis pipeline to gain insights 

into cell size regulation and morphological diversity, as well as cell spatial and frequency feature 

distribution. 
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Introduction  

 

 

1.1 Background 

Live single-cell imaging allows biologists to directly capture the dynamic of cellular 

processes with high temporal resolution. This powerful tool allows for the visualization of 

cell biological processes such as including cell division, growth, migration, and intracellular 

signaling, which are fundamental to understanding biological functions and disease 

mechanisms. However, accurate quantification of microscopy images in an automated 

manner remains challenging. New frontiers are emerging in the integration of artificial 

intelligence (AI) and machine learning (ML) with advanced microscopy techniques to 

automate the analysis of live-cell imaging experiments with the goal of providing novel 

insights into cellular behaviors. 

1.2  Motivation 

The motivation for this dissertation stems from the need to address several challenges 

associated with live-cell imaging, particularly in the context of cell segmentation, tracking, 

and analysis. Cell segmentation refers to the process of partitioning a microscopy image 

into segments that correspond to individual cells, which is crucial for subsequent analysis 

of cell morphology and behavior. Cell tracking, on the other hand, involves monitoring and 

recording the movement and lineage of individual cells over time in a series of time-lapse 

images, enabling the study of dynamic cellular processes. Traditional methods often 

struggle with the complexities of live-cell imaging data, such as variations in cell 

morphology, dynamic cellular behaviors, and the presence of noise and artifacts in 

microscopy images. The advent of AI and ML offers promising solutions to these 

challenges, enabling more accurate and efficient analysis of live-cell imaging data. 
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1.3 Objectives 

The primary objective of this dissertation is to develop and evaluate advanced deep-

learning tools for the segmentation, tracking, and quantitative analysis of single cells in 

live-cell imaging experiments. The specific aims include: 

Developing DeepSea: A versatile and trainable deep learning model for single-cell 

segmentation and tracking in time-lapse microscopy images. This model aims to automate 

the analysis of cellular features and provide insights into cellular dynamics and 

heterogeneity. 

Introducing cGAN-Seg: A CycleGAN-based segmentation model designed to enhance 

cell segmentation performance with limited annotated training data. This approach seeks 

to overcome the limitations of existing segmentation models by generating realistic and 

diverse synthetic microscopy images. 

Creating tGAN: A GAN-based super-resolution video-to-video generative model for time-

lapse microscopy. This model aims to generate high-quality synthetic annotated datasets, 

facilitating the training of deep learning models for various cell analysis tasks. 

Quantitative Analysis: Conducting a quantitative analysis of single-cell images using 

computational tools and algorithms. This analysis aims to characterize the morphological 

and functional diversity of different cell types and understand the underlying biological 

mechanisms. 

1.4  Structure of the Dissertation 

This dissertation is structured into several chapters, each addressing a specific aspect 

of live-cell imaging and the application of AI and ML techniques: 
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Chapter 2: Live-Cell Imaging: Provides an overview of live-cell imaging, including its 

principles, techniques, applications, and challenges. 

Chapter 3: Integration of AI and ML in Microscopy Image Analysis: Discusses the 

fundamentals of AI and ML, data preparation, machine learning techniques, and the 

innovations enabled by these technologies in microscopy. 

Chapter 4: DeepSea: Introduces the DeepSea model for single-cell segmentation and 

tracking, detailing its design, implementation, and performance evaluation. 

Chapter 5: cGAN-Seg: Presents the cGAN-Seg model for enhanced cell segmentation 

with limited training data, discussing its architecture, methods, and results. 

Chapter 6: tGAN: Describes the tGAN model for generating super-resolution time-lapse 

microscopy videos, including its design, methods, and performance evaluation. 

Chapter 7: Quantitative Analysis of Single-Cell Images: Explores the use of computational 

methods for the quantitative analysis of single-cell images, highlighting key findings and 

insights. 

Chapter 8: Conclusion: Summarizes the key contributions of the dissertation and 

discusses future research directions. 

1.5 Contributions 

This dissertation makes several significant contributions to the field of live-cell imaging 

and microscopy image analysis: 

DeepSea Model: Development of a deep learning model for efficient cell segmentation and 

tracking, demonstrating high accuracy and robustness in time-lapse microscopy images. 
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cGAN-Seg Model: Introduction of a CycleGAN-based approach for enhancing cell 

segmentation performance with limited annotated datasets, showing significant 

improvements over traditional methods. 

tGAN Model: Creation of a GAN-based generative model for producing high-quality 

synthetic annotated time-lapse microscopy videos, facilitating more effective training of 

time-lapse microscopy deep learning models. 

Quantitative Analysis Framework: Implementation of a framework for the quantitative 

analysis of single-cell images, providing valuable insights into cellular heterogeneity and 

dynamics. 

1.6  Summary 

The integration of AI and ML in live-cell imaging represents a transformative 

advancement in cellular biology, enabling more accurate and detailed analysis of cellular 

processes. This dissertation addresses key challenges in the field by developing innovative 

deep-learning models and techniques, paving the way for future research and applications 

in biomedical imaging. The following chapters will delve into the specifics of these models 

and their contributions to the advancement of live-cell imaging. 
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2 Live-Cell Imaging 

 

 

2.1 Introduction 

Direct observation of single cells through live imaging can reveal dynamics of 

fundamental cellular processes such as cell division, cellular migration, and growth in real 

time using sophisticated imaging technologies. Live cell imaging enables scientists to 

directly visualize cellular processes as they occur, which is crucial for understanding the 

complex dynamics and functions within living organisms [1, 2]. By using fluorescent 

markers and fluorescent microscopes, researchers can monitor specific proteins and 

organelles within cells, tracking their movement and interactions over time at single-cell 

resolution. This dynamic approach offers a significant advantage over other single-cell 

methods or static imaging methods, which only provide snapshots of cellular activity, 

limiting the understanding of cellular processes to discrete moments. 

The roots of live-cell imaging trace back to the 17th century when Antonie van 

Leeuwenhoek used his handcrafted microscopes to reveal the "uncanny world of the very 

small," providing the first glimpses of living cells and microorganisms (Figure 2.1). 

However, the field truly advanced in the 1950s and 1960s with the development of phase-

contrast microscopy by Frits Zernike and the subsequent invention of fluorescence 

microscopy [3]. These innovations allowed cells and cellular components to be seen with 

greater clarity and contrast, revolutionizing the study of live cells [4]. In the 1990s, the 

introduction of green fluorescent protein (GFP) as a biological marker was a landmark 
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event. It enabled the visualization of protein locations, movements, and interactions within 

live cells without disrupting their normal functions [5]. This discovery earned Osamu 

Shimomura, Martin Chalfie, and Roger Y. Tsien the Nobel Prize in Chemistry in 2008, 

highlighting its significance in biological research. Over the years, live-cell imaging has 

become indispensable in cellular biology. It has facilitated groundbreaking studies in cell 

division, migration, and signal transduction and contributed to medical advances in 

understanding diseases like cancer and neurodegenerative disorders [6]. The ability to 

observe cellular mechanisms in their natural state has not only provided insights into 

cellular function and behavior but also accelerated drug discovery and development 

processes by allowing real-time monitoring of cellular responses to new treatments [7]. 

Moreover, technological advancements in live-cell imaging techniques continue to expand 

its capabilities. Innovations such as super-resolution microscopy and automated image 

analysis using artificial intelligence are pushing the boundaries of what can be visualized 

and understood from living cells [8]. These advancements are enhancing the temporal and 

spatial resolution with which researchers can observe cellular processes, thus opening 

new avenues for discovery in cellular biology and beyond [9]. 

 

Figure 2.1: Dutch cloth merchant named Antonie van Leeuwenhoek. He created single-
lens microscopes with very high magnification. Using these lenses, he was the first to see 
and describe tiny living things called 'animalcules.' 
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2.2 Principles of Live-cell Imaging 

2.2.1 Basic Principles of Microscopy as Applied to Live-cell Imaging 

Live-cell imaging utilizes the fundamental principles of microscopy to observe living 

cells in real-time while preserving their natural physiological processes. Key to this method 

is the use of optical systems that minimize phototoxicity as well as an environmental control 

system to keep cells alive during imaging. This involves the careful selection of objectives, 

light sources, and imaging modalities to ensure optimal resolution and minimal disruption 

to cell function. In addition, an environmental control chamber should be coupled to the 

microscope to regulate the temperature and CO2 of the cells.  

Optical Systems: The optical system in live-cell imaging typically includes high numerical 

aperture objectives, which provide a larger collection efficiency for emitted light from the 

sample, enhancing image clarity and detail. Additionally, the use of sensitive cameras 

capable of capturing images under low-light conditions is crucial to reduce exposure times 

and minimize light-induced damage to the cells. 

Light Sources: Choosing the appropriate light source is vital for live-cell imaging. LEDs 

and lasers are commonly employed for their precise control over intensity and wavelength, 

which helps in reducing phototoxic effects associated with prolonged exposure to high-

energy light.  

2.2.2 Contrast Methods Used in Live-cell Imaging 

Contrast enhancement is critical for visualizing cellular structures and functions 

that are otherwise transparent. Live-cell imaging employs various contrast methods to aid 

in this visualization: 

Phase Contrast Microscopy: This technique is widely used to enhance the visibility of 

transparent and colorless specimens, making it ideal for observing live cells without the 
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need for staining (Figure 2.2). Additionally, phase contrast imaging is non-toxic, ensuring 

that the cells remain viable and behave naturally during the experiments. Phase contrast 

microscopy converts the phase shifts in light passing through the specimen into brightness 

changes in the image, effectively highlighting cellular structures [11]. 

 

Figure 2.2: Phase contrast microscopy of Rat cells [12]. 

 

Fluorescence Microscopy: Fluorescence microscopy is another pivotal technique in live-

cell imaging (Figure 2.3). It involves labeling cell components with fluorescent dyes or 

proteins and exciting them with specific wavelengths of light. The emitted light from the 

fluorophores is then captured to form an image, allowing for detection of signal from a 

specific protein or cellular organelle [13]. 
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Figure 2.3: Fluorescence microscopy of budding yeast cells progressing through meiosis 
[14]. 

 

Differential Interference Contrast (DIC): DIC enhances contrast in unstained, 

transparent samples by utilizing differences in light refraction through the specimen (Figure 

2.4). It produces a pseudo-three-dimensional effect that is useful for detailed morphological 

studies of living cells [15]. 

 

 

Figure 2.4: Differential interference contrast images of red blood cells [16]. 



10 
 

2.2.3 Importance of Maintaining Cell Viability During Imaging 

Maintaining cell viability during live-cell imaging is paramount for accurate 

interpretation of cellular dynamics and functions. Several strategies are implemented to 

ensure cells remain healthy and active throughout the imaging process [17]: 

Temperature Control: Live-cell imaging systems are often equipped with temperature-

controlled stages or enclosures that maintain a physiological temperature conducive to 

normal cell function. 

Medium and Environment: The imaging medium should closely mimic the natural 

environment of the cells, including appropriate buffers, pH, and osmolarity. Additionally, 

CO₂ levels must be regulated when imaging cells that require a controlled atmospheric 

composition. 

Minimizing Phototoxicity and Mechanical Stress: Reducing the intensity and duration 

of light exposure is crucial to prevent phototoxic effects that can alter cell behavior or induce 

cell death. Similarly, minimizing mechanical disturbances during setup and focusing is 

critical to avoid physical stress on the cells. 

In conclusion, while setting up live-cell imaging experiments can be a complex 

process, it can be a highly informative technique that provides insights into the dynamic 

nature of cellular processes. By integrating advanced microscopy techniques with careful 

experimental preparation, researchers can observe and analyze cellular functions in 

unprecedented detail and with high temporal resolution l while ensuring the health and 

viability of the cells being studied. 
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2.3 Imaging techniques to study live cellular processes  

There are several advanced microscopy methods that are pivotal for conducting 

live-cell imaging studies. Each technique offers unique advantages and is suitable for 

different types of biological inquiries. Some of the widely used methods are introduced as 

follows: 

Fluorescence Microscopy: Fluorescence microscopy is one of the most common 

techniques used in live-cell imaging. It involves labeling cell components with fluorescent 

tags and exciting these tags with specific wavelengths of light. The emitted light is then 

captured to produce images that reveal the distribution and dynamics of cellular 

constituents. This method is invaluable for tracking cellular events over time, although it 

can be limited by photobleaching and phototoxicity, which may affect cell viability [18]. 

Confocal Microscopy: Confocal microscopy enhances the clarity of fluorescence imaging 

by using a spatial pinhole to block out-of-focus light in specimens that are thicker than a 

single optical section. This results in images with superior resolution and contrast. Confocal 

microscopy is particularly useful for detailed three-dimensional reconstructions of cellular 

structures, enabling researchers to precisely observe the interactions and functions of 

various cellular components within a thicker context [19]. 

Two-photon and Multi-photon Microscopy: Two-photon microscopy uses near-infrared 

excitation light, which allows deeper penetration into the specimen with less photodamage 

compared to traditional fluorescence microscopy. This is advantageous for imaging thicker 

tissues. Multi-photon microscopy extends this principle by using two or more photons of 

lower energy to excite the fluorophore simultaneously, further reducing phototoxicity and 

enabling detailed imaging of live animals over extended periods [20]. 
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Total Internal Reflection Fluorescence Microscopy (TIRF): TIRF microscopy utilizes an 

evanescent wave that only illuminates a thin section of the specimen immediately adjacent 

to the glass-water interface, typically less than 100 nanometers thick. This technique is 

particularly suited for studying cell membrane dynamics, such as vesicle trafficking and 

receptor-ligand interactions at the cell surface [21]. 

Super-resolution Microscopy: Techniques such as Stimulated Emission Depletion 

(STED), Photoactivated Localization Microscopy (PALM), and Stochastic Optical 

Reconstruction Microscopy (STORM) break the diffraction limit of light to provide resolution 

at the nanoscale. These methods allow researchers to observe structures and events in 

cells in unprecedented detail, far beyond what traditional light microscopy can achieve [22]. 

Time-lapse Microscopy: Time-lapse microscopy involves capturing a sequence of images 

at specific intervals over time to track the dynamic processes within live cells. This method 

is crucial for understanding cellular processes such as mitosis, migration, and intracellular 

trafficking over extended periods [23]. 

High-content Screening (HCS): High-content screening combines automated microscopy 

with quantitative analysis to gather data from large sets of cellular images. This technique 

is highly effective for screening large libraries of compounds or genetic modifiers in drug 

discovery and genetic research. HCS allows for the simultaneous analysis of multiple 

cellular parameters, providing a comprehensive overview of cellular responses to 

experimental treatments [24]. 

Each of these techniques has been optimized to address specific scientific 

questions and experimental conditions, making them indispensable tools in the field of cell 

biology and medical research. Together, they provide a comprehensive suite of options for 
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researchers looking to explore the complexities of cellular function and disease pathology 

in a living context. 

2.4 Image Processing and Analysis Software Tools 

Quantitative analysis of live-cell imaging relies heavily on sophisticated image 

processing and analysis software. These tools are essential for transforming raw imaging 

data into meaningful quantitative information that can inform biological hypotheses. Key 

functionalities of these software packages include noise reduction, signal enhancement, 

object recognition, and tracking capabilities. Examples of widely used software in live-cell 

imaging include ImageJ/FIJI, which is favored for its plugin-rich, open-source platform; 

MATLAB and its Image Processing Toolbox for customizable processing workflows; and 

commercial software like MetaMorph and Volocity, which provide integrated solutions with 

user-friendly interfaces [25, 26]. 

Python has also become increasingly popular for image processing in live-cell 

imaging due to its extensive libraries, such as OpenCV, scikit-image, and NumPy, which 

facilitate powerful and flexible image analysis [27]. Each software choice has strengths 

specific to the types of analyses. For instance, ImageJ is particularly useful for general 

image processing and analysis, while MATLAB and Python excel in handling custom 

algorithm development for specific applications like fluorescence resonance energy 

transfer (FRET) or fluorescence recovery after photobleaching (FRAP) analyses [28]. 

Proper selection and application of these tools are crucial for effective data interpretation, 

requiring users to have both technical knowledge of the software and biological insights 

into the sample being studied [29]. 

2.5 Applications of Live-cell Imaging 

Live imaging offers the possibility of recording cellular processes of single cells at 

high temporal resolution, which allows for the dissection of dynamics of heterogenous 
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biological processes that are often masked in bulk and static analysis. Here, I focus on a 

few applications of live cell imaging as pertains to my PhD dissertation:  

2.5.1 Study of Cell Dynamics 

Cell Division Cycle: live-cell imaging is instrumental in exploring the various phases of the 

cell cycle in a dynamic and uninterrupted manner. Fundamental to the continuity of life is 

the ability of individual cells to divide into two cells. This orchestrated process is the cell 

division cycle and has four distinct phases (Figure 2.5). Each phase of the cell cycle—G1, 

S, G2, and M—can be studied in detail [39]: 

- G1 Phase (Gap 1): This phase involves cellular growth and the synthesis of mRNA 

and proteins necessary for DNA replication. Live-cell imaging allows for the 

observation of changes in cell size and the preparation for DNA synthesis. 

- S Phase (Synthesis): DNA replication occurs during this phase, and using 

fluorescence microscopy, researchers can monitor the replication of DNA and the 

synthesis of additional chromosomal components. This phase is crucial for 

ensuring genetic material is accurately copied, and any errors are promptly 

repaired. 

- G2 Phase (Gap 2): Following DNA synthesis, the cell prepares for mitosis. This 

phase can be monitored to study protein synthesis and the mechanisms that 

ensure the cell's readiness for mitosis, including the integrity of the DNA after 

replication. 

- M Phase (Mitosis): This phase, which includes prophase, metaphase, anaphase, 

and telophase, can be intricately observed to track the organization and 

segregation of chromosomes. Live-cell imaging facilitates the study of mitotic 

spindle dynamics and the alignment of chromosomes, which are critical for 

ensuring accurate cell division.  
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Utilizing time-lapse microscopy, researchers can directly observe the chronological 

progression of cell division in real-time across different cell types and treatments. This 

method allowed for the direct observation and quantitative analysis of progression through 

different phases of the cell cycle.  Changes in size and shape of the single cells can easily 

be revealed through label-free, non-toxic phase-contrast imaging [36]. In addition, key 

mitotic events, such as the formation of chromosomes and their alignment at the 

metaphase plate, can also be monitored by live single-cell imaging. This real-time data 

from live imaging experiments can also reveal the emergence of cancer cells in the dish, 

where the regulation of cell division is often compromised, leading to uncontrolled cell 

proliferation. 

 

Figure 2.5: Cell Cycle Phases [40]. 

 

Cell Migration: Another pivotal application of live-cell imaging is in the study of cell 

migration, which is integral to processes such as wound healing, immune responses, and 
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the invasion and metastasis of cancer cells. Live imaging techniques enable researchers 

to track the movement of cells across a substrate in real-time, offering insights into the 

mechanics of cell motility and the roles of various signaling pathways that govern 

directional movement. Advanced imaging modalities, including fluorescence and confocal 

microscopy, are particularly useful for elucidating the functions of specific molecules in cell 

migration. These techniques allow for the visualization of intracellular components in high 

resolution, aiding in the identification of cytoskeletal elements and adhesion molecules that 

play crucial roles in the migration process. 

By integrating live-cell imaging techniques to study these cellular dynamics, 

scientists have gained a deeper understanding of how cells use growth signals to control 

their division and how cells may form memories about past exposure to growth signals [38]. 

This method not only provides a visual and quantitative analysis of cellular processes under 

psychological conditions but also offers novel insights that lead to unregulated cell division 

in cancer cells. 

2.5.2 Investigation of Intracellular Processes 

Signal Transduction: Live-cell imaging is used to investigate the dynamics of signal 

transduction pathways within cells. This includes observing the dynamics of response to 

external signals and how different dynamics are converted into a cellular decision [41]. In 

these experiments, fluorescent reports are designed to change their level or localization in 

response to specific external signaling factors. Real-time imaging helps visualize the 

dynamics of protein interactions and movements across the cell membrane and within the 

cell, enhancing our understanding of cellular communication and function. 

Organelle Trafficking: Another significant application is the study of organelle trafficking. 

Live-cell imaging tracks the movement and interaction of organelles like mitochondria, 

lysosomes, and the Golgi apparatus within cells. Such imaging is crucial for understanding 
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organelle function, dynamics, and their role in diseases such as neurodegenerative 

disorders, where organelle transport is often impaired [42]. 

2.5.3 Drug Development and Cellular Response Analysis 

Screening and Development: In the pharmaceutical industry, live-cell imaging is 

employed for drug screening and development. This method allows for the direct 

observation of how drugs affect cells, providing essential data on drug efficacy and toxicity 

before clinical trials. For example, researchers can monitor how cancer cells respond to 

new chemotherapy agents or assess the side effects of drug candidates in real time [43]. 

Mechanism of Action: Understanding the mechanism of action of drugs is facilitated by 

live-cell imaging. This application is critical in determining how drugs interact with cells and 

their components and what changes occur at the molecular level. This information can lead 

to the optimization of drug dosages and schedules, potentially reducing side effects and 

enhancing therapeutic efficacy [44]. 

Disease Modelling and Pathology: Live-cell imaging is invaluable in disease modeling. 

By observing how cells react to pathogenic infection or genetic mutations, researchers can 

elucidate disease mechanisms and identify potential therapeutic targets. This real-time 

data is critical for the development of treatments for complex diseases such as Alzheimer's 

and other chronic conditions [45]. 

In conclusion, live-cell imaging, with its ability to track cellular and subcellular 

activities in real time, continues to be a cornerstone in the field of life sciences. As imaging 

technologies evolve, they will further enhance our understanding of cell biology, aid in the 

development of new drugs, and offer profound insights into cellular responses to therapies. 

This technique not only allows us to visualize the unseen dynamics of life but also holds 
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the promise of unlocking new therapies and treatments that can manage or cure diseases 

at a cellular level. 

2.6 Challenges and Limitations of Live-cell Imaging 

2.6.1 Technical and Practical Challenges in Live-cell Imaging 

Live-cell imaging is a powerful technique used to observe the dynamic processes 

of living cells in real time. However, this technique poses various technical and practical 

challenges. The primary technical challenge is maintaining cell viability and normal 

physiology during prolonged imaging sessions. Live cells are highly sensitive to their 

environment; factors such as temperature, pH, and ion concentrations must be strictly 

controlled to prevent cell damage or death [46]. Additionally, the light exposure required for 

imaging, particularly in fluorescence microscopy, can lead to phototoxicity and 

photobleaching. Phototoxicity can alter cell behavior or even kill cells, while photobleaching 

reduces the fluorescence signal over time, complicating data acquisition [47]. 

Another practical challenge is the complexity of the imaging setup. Advanced live-

cell imaging systems, such as confocal microscopes or high-throughput imaging platforms, 

require significant expertise and calibration to operate effectively. Ensuring consistent 

focus over time and across different focal planes (z-stacking) also demands sophisticated 

hardware and software solutions, such as adaptive focus control [48]. 

2.6.2 Limitations in Spatial and Temporal Resolution 

The spatial and temporal resolution of live-cell imaging is another critical limitation. 

Spatial resolution is restricted by the diffraction limit of light, which for conventional optical 

microscopy is about 200 nanometers. This makes it difficult to visualize structures smaller 

than this limit, such as individual molecules or smaller organelles. Techniques like super-

resolution microscopy have been developed to overcome this limit, but they often require 

more intense light or more complex procedures, which can exacerbate phototoxicity [50]. 
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Temporal resolution is limited by the speed at which images can be acquired 

without compromising image quality. Faster imaging is necessary to capture rapid cellular 

processes, but increased speed can reduce image resolution and increase noise, making 

it harder to discern fine details. Balancing these factors is a constant challenge in designing 

live-cell imaging experiments [51]. 

2.7 Future Perspectives 

2.7.1 Predicted Developments in Imaging Technologies 

The evolution of live-cell imaging technologies continues to advance at an 

unprecedented pace, driven by the need to visualize and understand cellular processes in 

real time and in their natural environment. Innovations in high-resolution microscopy, such 

as super-resolution and light-sheet microscopy, are anticipated to grow further. These 

technologies aim to reduce phototoxicity, enabling longer observation periods while 

maintaining cellular viability [51]. 

Another significant development is the improvement in time-lapse imaging. This 

technique is likely to see advances in temporal resolution which will allow researchers to 

capture faster biological processes accurately. Coupled with advancements in fluorescent 

protein engineering and the emergence of novel biosensors, these developments are 

expected to enhance our ability to monitor dynamic cellular events with minimal intrusion 

[52]. 

Quantitative phase imaging (QPI) technologies, which provide high-contrast, label-

free imaging, are set to become more mainstream. These methods will benefit from 

computational advancements, potentially allowing for the non-invasive analysis of cellular 

components and their physical properties over time, contributing to a deeper understanding 

of cell biology without the need for dyes or labels [53]. 
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2.7.2 Potential New Applications in Biomedical Research 

As imaging technologies evolve, so too will their applications in biomedical 

research. We are likely to see increased use of live-cell imaging in drug discovery, where 

understanding the dynamics of drug interactions at the cellular level can lead to the 

development of more effective therapeutics [54]. Additionally, the integration of live-cell 

imaging with organ-on-a-chip models could revolutionize toxicity testing and disease 

modeling by providing more accurate simulations of human physiological responses [55]. 

Live-cell imaging is also poised to expand its role in immunology, particularly in 

studying the interactions between immune cells and pathogens in real time. This could 

significantly enhance our understanding of infection mechanisms and immune response, 

leading to better vaccines and treatments [56]. 

Furthermore, the adaptation of live-cell imaging for use in personalized medicine 

is on the horizon. By observing how individual cells from a patient respond to therapeutic 

agents, personalized treatment regimens can be developed and optimized for efficacy and 

minimal side effects. 

2.7.3 Integration of Artificial Intelligence and Machine Learning in Image 
Analysis 

Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize image 

analysis in live-cell imaging by improving the speed, accuracy, and efficiency of data 

processing. Deep learning algorithms, in particular, are making it possible to automate 

complex image analysis tasks that were previously labor-intensive and prone to human 

error [57]. 

One of the forefront applications of AI in live-cell imaging is in feature detection 

and classification. AI models can be trained to recognize patterns and anomalies in cell 

behaviors, facilitating faster and more accurate diagnoses of diseases such as cancer [58]. 
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Moreover, these technologies are enhancing the quantification of cellular components, 

enabling researchers to gather precise measurements of cell morphology, motility, and 

interaction dynamics [59]. 

AI and ML are also integral in managing and interpreting the vast amounts of data 

generated by modern imaging techniques. By leveraging these tools, researchers can 

uncover subtle biological processes and interactions at a scale and with a level of detail 

that was previously unattainable. In addition, predictive modeling using AI can forecast 

outcomes of cellular processes under various experimental conditions, thereby not only 

saving valuable research time but also minimizing resource expenditure. 

In conclusion, the integration of emerging imaging technologies with AI and ML is 

not only expanding the capabilities of live-cell imaging but is also paving the way for 

groundbreaking discoveries in biomedical research. The future of live-cell imaging 

promises to bring even more sophisticated tools and methodologies that will continue to 

push the boundaries of what we can observe and understand about living cells. 

2.8 Conclusion 

Live-cell imaging has revolutionized cellular and molecular biology by providing 

real-time visualization of dynamic cellular processes. Utilizing high-resolution microscopy 

and fluorescent markers, it has advanced our understanding of cell division, migration, 

signal transduction, and organelle interactions, significantly impacting medical research 

and drug development. 

This technology allows for the observation of cellular processes in their natural 

state, enhancing our understanding of the mechanisms underlying health and disease. It 

has been instrumental in discoveries across various fields, such as neuroscience and 

oncology, by enabling researchers to monitor processes like cancer cell migration and 
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response to therapies in real time, thus improving experimental accuracy and manipulation 

of biological systems. 

Future innovations in live-cell imaging, including improved super-resolution 

techniques, adaptive optics, and AI integration, promise to refine observation capabilities 

without compromising cell health. Combining live-cell imaging with technologies like 

CRISPR-Cas9, organ-on-a-chip systems, and single-cell sequencing will further dissect 

cellular behavior, enhancing drug testing, personalized medicine, and disease 

understanding. Live-cell imaging remains a cornerstone of biological sciences, driving new 

discoveries and medical innovations. 
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3 Integration of Artificial Intelligence and Machine 
Learning in Microscopy Image Analysis 

 

 

3.1 Introduction 

The advent of artificial intelligence (AI) and machine learning (ML) in recent years 

has transformed many scientific domains, notably within biological research, where 

microscopy serves as an essential tool to visualize cellular and molecular structures. This 

integration offers unprecedented capabilities for automated image analysis, ultimately 

accelerating discoveries and innovations [61, 62]. 

Artificial Intelligence (AI) and Machine Learning (ML) are branches of computer 

science that emphasize the creation and implementation of algorithms that can learn from 

and make predictions or decisions based on data (Figure 3.1). AI incorporates a broader 

concept of machines being able to carry out tasks in a way that we would consider "smart", 

while ML is a specific subset of AI that trains a machine how to learn from data [63]. 
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Figure 3.1: Unraveling AI Complexity: A Comparative View of AI, Machine Learning, Deep 
Learning, and Generative AI [64]. 

 

In the context of microscopy image analysis, AI and ML have become 

transformative tools. Machine learning, in particular, has been crucial in developing 

methods that can automatically recognize complex patterns in image data—something that 

is incredibly challenging for traditional algorithms. These methods include supervised 

learning techniques, where the system learns from a dataset containing labeled images to 

create a predictive model, and unsupervised learning techniques, which identify patterns 

and structures in unlabeled data [65, 66]. 

AI and ML not only improve the accuracy and efficiency of image analysis but also 

enhance the ability to handle large datasets—common in modern high-throughput and 

high-content screening methods. By automating the process of feature detection, 

segmentation, and classification, AI-driven tools can analyze vast quantities of data with a 
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consistency that is not feasible for human observers. Moreover, these tools can adapt and 

improve over time as they are exposed to more data [67]. 

Furthermore, deep learning, a particular type of machine learning characterized by 

deep neural networks, has shown significant promise in the field of image analysis. These 

networks excel in tasks such as feature identification and image classification, 

outperforming traditional machine-learning models in many cases. Their ability to learn 

progressively more complex features at various levels of abstraction allows them to make 

sense of data with high variability and detail, such as those encountered in microscopy 

images of biological tissues [68]. 

This integration of AI and ML into microscopy image analysis not only streamlines 

workflows but also opens up new avenues for biological discovery, facilitating detailed 

phenotypic profiling, complex morphological categorization, and dynamic bioprocess 

analysis. As these technologies continue to evolve, they promise to further revolutionize 

our understanding of biological systems at the microscopic level [69]. 

3.2 Fundamentals of AI and ML in Image Analysis 

3.2.1 Basic Principles of Machine Learning and Artificial Intelligence 

Machine Learning relies on statistical methods to enable machines to improve at 

tasks with experience. The basic principle is to build models from input data that can predict 

outcomes or categorize data into different labels. These models are trained using a large 

set of data known as training data, which helps the algorithm adjust and improve its 

accuracy over time through a process called learning. 

Artificial Intelligence extends beyond learning from data; it also involves reasoning, 

problem-solving, and decision-making capabilities that mimic human intelligence. This 

includes not only ML but also logic, planning, and symbolic reasoning. 
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3.2.2 Overview of Common Algorithms Used in Image Analysis 

In the context of microscopy image analysis, several ML algorithms are particularly 

prevalent: 

Convolutional Neural Networks (CNNs): These are deep learning algorithms that are 

particularly powerful for analyzing visual imagery. CNNs automatically detect important 

features without any human supervision, using layers of processing units for feature 

extraction and output generation. This capability makes them exceptionally good for image 

classification, object detection, and more complex tasks like scene recognition [70, 71]. 

Decision Trees: These models use a tree-like model of decisions and their possible 

consequences. It's a type of supervised learning algorithm that is used for classification 

and regression tasks. In image analysis, decision trees can help in segmenting the image 

into different parts based on the features [72]. 

Random Forests: An ensemble of decision trees typically used to improve the robustness 

and accuracy of decision trees. Random forests combine multiple decision trees to produce 

a more accurate and stable prediction [73]. 

Support Vector Machines (SVM): SVMs are another supervised learning method used 

for classification or regression problems. In image processing, SVMs are used for 

classification tasks, including image categorization and object recognition [74]. 

3.2.3 Differences Between Traditional Image Analysis and ML-driven 
Methods 

Traditional image analysis often involves manual feature selection and rule-based 

methods. For instance, in microscopy, traditional methods might require setting thresholds 

for color intensity, size filtering, and shape parameters to identify objects of interest. 
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ML-driven methods, on the other hand, leverage algorithms that can learn these 

features and rules from the data itself. This not only reduces the need for manual 

intervention but often results in more robust, scalable, and flexible analysis systems. For 

example, a CNN trained on microscopy images can learn to identify patterns that are far 

too complex for traditional methods to detect, such as subtle differences in cell morphology. 

Scalability and Adaptability: ML methods can easily scale with the addition of new data, 

and they adapt better to new, unforeseen scenarios once they are retrained with updated 

data sets. This contrasts with traditional methods, which may require manual re-tuning or 

redesign when new types of images are analyzed. 

Accuracy and Efficiency: ML algorithms often surpass traditional methods in terms of 

accuracy, especially in complex image datasets where the manual feature design might 

miss nuanced patterns that a machine can learn to recognize. 

Overall, integrating AI and ML in microscopy image analysis not only enhances the 

efficiency and accuracy of analyses but also opens up new avenues for scientific discovery 

that were previously unattainable with traditional methods. AI and ML-based solutions are 

rapidly replacing rule-based tools in microscopy image analysis, fostering advancements 

in both diagnostic and research methodologies. 

3.3 Data Preparation and Preprocessing 

Data preparation and preprocessing are critical steps in the development of ML 

models, particularly in the field of microscopy image analysis. These steps significantly 

affect the performance, accuracy, and reliability of the ML algorithms employed. Below, we 

expand on the importance of data quality and quantity, various techniques for image data 

augmentation and normalization, and methods for labeling and annotating microscopy 

images. 
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3.3.1 Importance of Data Quality and Quantity in Machine Learning 

Data Quality: High-quality data is paramount in machine learning. For microscopy images, 

this means the images must be in focus, high-resolution, and free from artifacts that could 

mislead the learning algorithm. Factors such as focus, uniform lighting, and staining 

consistency are crucial. Noise reduction and artifact removal are often necessary to 

improve data quality. Algorithms need accurate and representative data to learn effectively; 

otherwise, they may produce biased or generalized models that fail to perform in practical 

applications. 

Data Quantity: Alongside quality, the quantity of data is equally crucial. A larger dataset 

provides a more comprehensive basis for training models, enabling them to learn a wide 

variety of features and patterns. However, in specialized fields like microscopy, obtaining 

large datasets can be challenging due to the labor-intensive nature of data collection. 

Techniques such as data augmentation can help overcome these limitations by artificially 

expanding the dataset. 

3.3.2 Techniques for Image Data Augmentation and Normalization 

Data Augmentation: This technique involves generating new training samples from 

existing data by applying random but realistic transformations to input images. For 

microscopy images, common augmentation techniques include rotation, scaling, flipping, 

and the use of elastic deformations. These manipulations help the model generalize better 

to new, unseen images by simulating different viewing conditions and orientations 

commonly encountered in real-world scenarios. 

Normalization: Normalization is another crucial preprocessing step designed to 

standardize the intensity levels across multiple images. This process is important because 

variations in lighting conditions, staining intensity, and camera settings can affect the visual 

appearance of microscopy images. Techniques such as min-max normalization, Z-score 
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standardization, or histogram equalization are commonly used to ensure consistent image 

quality and help ML models focus on relevant features rather than being misled by intensity 

variations. 

3.3.3 Methods for Labeling and Annotating Microscopy Images 

Manual Labeling: The most reliable method for annotating microscopy images involves 

expert biologists or trained annotators who manually label the images. This process, while 

time-consuming and expensive, provides the highest quality data, especially for complex 

structures that require a nuanced understanding of the subject matter. 

Semi-Automated Annotation: To alleviate the burden of manual labeling, semi-automated 

tools that combine human expertise and algorithmic assistance are used. These tools 

might include interactive segmentation techniques, where the annotator outlines rough 

boundaries and the software refines them, or classification assistants that suggest potential 

labels based on preliminary ML models. 

Automated Annotation: Fully automated annotation involves using pre-trained models to 

label new datasets. These models are trained on previously annotated datasets and can 

rapidly annotate large volumes of data. However, their accuracy depends heavily on the 

quality and relevance of the training data used. Continuous validation by human experts is 

necessary to ensure the reliability of automated annotations. 

In summary, the effectiveness of ML models in microscopy image analysis heavily 

relies on rigorous data preparation and preprocessing steps. By ensuring high-quality and 

abundant data through proper preprocessing techniques and by employing meticulous 

labeling and annotating methods, researchers can enhance the performance and 

applicability of their ML models to real-world microscopy challenges. This foundation is 
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critical not only for model development but also for advancing the field of digital pathology, 

developmental biology, and other areas reliant on microscopic imaging. 

3.4 Machine Learning Techniques Applied to Microscopy 

3.4.1 Supervised Learning Models for Classification and Regression Tasks 

Supervised learning involves training a model on a labeled dataset, where each 

input image is associated with an output label (classification) or a continuous output 

(regression). In microscopy, these models are pivotal for tasks such as identifying cell 

types, diagnosing diseases from histological images, and quantifying biological structures 

[74, 75]. 

Classification Tasks: Deep learning models, particularly convolutional neural networks 

(CNNs), have revolutionized the field of image classification. In microscopy, CNNs can 

differentiate between various cell types or identify pathological changes in tissues. For 

example, researchers have developed models that accurately classify cancerous cells in 

histopathology images, aiding in early diagnosis and treatment planning [76, 77]. 

Regression Tasks: Regression models in microscopy are used for quantitative tasks, such 

as estimating the concentration of a substance in a sample or measuring cell features (e.g., 

size, shape). These models can also be used for predictive modeling, such as predicting 

the potential growth rate of cultured cells based on initial imaging [78]. 

3.4.2 Unsupervised Learning Models for Clustering and Dimensionality 
Reduction 

Unsupervised learning does not require labeled data, making it suitable for 

exploratory analysis or situations where manual labeling is impractical. 

Clustering: Clustering algorithms, such as k-means or hierarchical clustering, are used to 

group similar images or features without prior knowledge of the group labels. This 
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technique can be instrumental in discovering new biological phenomena or in segregating 

cell populations in flow cytometry data without predefined markers [80, 81]. 

Dimensionality Reduction: High-dimensional data typical in microscopy can be 

challenging to analyze and visualize. Dimensionality reduction techniques like Principal 

Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) help 

in reducing the number of random variables under consideration, revealing the intrinsic 

patterns in the data. For instance, PCA can be used to reduce the dimensionality of image 

datasets before classification, while t-SNE is often employed to visualize complex data 

clusters in a two-dimensional space [82, 83]. 

3.4.3 Reinforcement Learning in Adaptive Imaging Techniques 

Reinforcement learning (RL) involves training models to make a sequence of 

decisions. In microscopy, RL can be applied to develop adaptive imaging systems that 

optimize their parameters in real time for improved image quality or faster data acquisition 

[84, 85]. 

Adaptive Imaging Techniques: Autofocus Systems: RL can be utilized to train autofocus 

systems in digital microscopy, allowing the microscope to adaptively adjust focus across 

different sample sections, enhancing image clarity and reducing manual adjustments [86]. 

Dynamic Adjustment of Imaging Parameters: RL algorithms can dynamically adjust 

exposure time, light intensity, and other imaging parameters based on the observed sample 

characteristics to optimize image quality [87]. 

Active Learning for Sample Selection: RL can be employed in systems where the 

algorithm actively selects which samples to image next based on the most informative 

samples, thereby improving the efficiency of large-scale experiments [88]. 
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These machine learning techniques offer significant advantages in microscopy, 

enabling more efficient, accurate, and detailed image analysis. Their integration into 

microscopy not only enhances existing methodologies but also opens up new avenues for 

scientific discovery and technological innovation in the field [89]. 

3.5 Enhancements and Innovations Enabled by AI and ML models in 
Microscopy 

 

 

Figure 3.2: Deep learning-based image processing in optical microscopy [90]. 
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3.5.1 Improvement in Image Resolution and Quality (Super-Resolution 
Microscopy) 

Artificial Intelligence (AI) and Machine Learning (ML) have dramatically improved 

the resolution and quality of images captured by microscopes, particularly through super-

resolution microscopy techniques. Super-resolution microscopy, which includes methods 

like STED, SIM, and PALM, traditionally faces limitations such as photobleaching and 

photon budget issues. AI and ML algorithms help overcome these by reconstructing high-

resolution images from low-resolution data, thus enhancing the clarity and details visible in 

the images. Techniques such as deep learning have been used to predict high-resolution 

details from available data, reducing noise and increasing resolution beyond the diffraction 

limit of light. This has not only improved image quality but also allowed for the observation 

and analysis of biological processes at the molecular level, which were previously invisible 

with standard resolution methods [95, 96]. 

3.5.2 Automation of Repetitive Tasks 

AI and ML excel in automating repetitive and labor-intensive tasks in microscopy 

image analysis, such as cell counting, size measurements, and morphological 

assessments. These tasks, which are tedious and error-prone when performed manually, 

can be handled efficiently and with greater accuracy by trained algorithms. Automation 

speeds up these processes significantly and allows researchers to focus on more complex 

analysis tasks. For instance, convolutional neural networks (CNNs) can be trained on a set 

of images to automatically recognize and count cells or measure their dimensions, even in 

cluttered or complex images where traditional methods fail. This automation not only saves 

valuable time but also reduces human error and enhances the reproducibility of 

experiments [97-99]. 
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3.5.3 Enhanced Detection of Subtle or Complex Patterns Not Discernible 
by Human Observers 

AI and ML are particularly adept at identifying patterns and anomalies in data that 

might be missed by human observers. In the context of microscopy, this capability allows 

for the detection of subtle or complex biological structures and phenomena. Advanced 

algorithms can analyze vast amounts of data to find patterns indicating disease, such as 

cancerous cells, or monitor the progression of a disease over time. Furthermore, 

unsupervised learning techniques can discover new patterns without prior knowledge or 

intervention, opening new avenues for scientific discovery. These capabilities extend 

beyond pattern recognition, as machine learning models can also predict outcomes based 

on data trends, thus providing valuable insights that can guide future research and clinical 

practices. 

In summary, the integration of AI and ML into microscopy image analysis not only 

enhances the capabilities of traditional microscopy techniques but also transforms the 

scale and scope of what can be achieved. These advancements lead to more detailed and 

accurate scientific inquiry, better disease diagnosis, and potentially groundbreaking 

discoveries in biological research. By reducing the human workload and improving the 

precision of data analysis, AI and ML pave the way for a new era in microscopy. 

3.5.4 Enhanced Health and Disease Diagnostics 

AI and ML have revolutionized the field of health diagnostics through advanced 

microscopy techniques, particularly in the detection and analysis of diseases such as 

cancer and various pathogens. 

Cancer Detection: Machine learning algorithms are increasingly used to automate the 

detection of cancer cells in histopathology images. Convolutional neural networks (CNNs), 

for example, have demonstrated high accuracy in distinguishing between benign and 
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malignant cells, significantly speeding up diagnostics and reducing human error. Studies 

have shown that AI can even identify cancer subtypes and predict patient outcomes by 

analyzing patterns invisible to the human eye [100, 101]. For instance, deep learning 

models have been effective in identifying clinically actionable genetic alterations in various 

cancers and predicting responses to treatments [102]. 

Pathogen Identification: In microbiology, AI techniques help in the rapid identification of 

bacteria, viruses, and parasites from microscopic images. Automated systems using image 

processing and machine learning can detect subtle morphological features that 

differentiate pathogens, facilitating faster and more accurate diagnoses than conventional 

methods. These advanced techniques are crucial for timely and effective treatment of 

infectious diseases, reducing the burden on healthcare systems [103]. 

3.5.5 Enhanced Drug Discovery and Development 

The application of AI in microscopy extends significantly into the area of drug 

discovery, aiding in both the design and development of new pharmaceuticals. 

High-Content Screening (HCS): High-content screening involves the automated analysis 

of large sets of cellular images using microscopy to assess the effects of thousands of 

potential drugs. AI algorithms optimize this process by analyzing image data to identify 

cellular changes specific to drug interactions, thereby predicting the efficacy and toxicity of 

pharmaceutical compounds. This method not only enhances the speed of analysis but also 

improves the predictive accuracy of drug responses [104-106]. 

3.6 Cell Segmentation 

Cell segmentation and tracking are pivotal techniques in biological research, 

enabling scientists to observe and quantify the behavior of cells in dynamic and static 

states (Figure 3.3). These methodologies provide critical insights into cell morphology, 
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migration, division, and death, which are essential for understanding various physiological 

and pathological processes. Applications span numerous fields, including developmental 

biology, cancer research, neurology, and immunology, facilitating studies on cell 

development, disease progression, and treatment responses [107, 108]. 

The capability to isolate individual cells in an image (cell segmentation) and follow 

their trajectory over time (cell tracking) allows researchers to generate quantitative data on 

cellular dynamics and interactions. This not only aids in the visualization of cell behavior in 

their native environments but also supports high-throughput data analysis, which is crucial 

for statistical validation in experimental outcomes. As such, these techniques are 

instrumental in advancing personalized medicine, drug discovery, and the broader field of 

cell biology by providing a deeper understanding of cellular function and interaction [109, 

110]. 
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Figure 3.3: Cell segmentation algorithm [111] 

 

3.6.1 Principles of Cell Segmentation 

Cell segmentation is a fundamental process in digital image analysis where the 

goal is to partition a digital image into multiple segments to simplify and/or change the 

representation of an image into something that is more meaningful and easier to analyze. 

In the context of cellular biology, cell segmentation aims to accurately identify and outline 

individual cells within a heterogeneous image (Figure 3.3). This is crucial for quantitative 

analysis of cell morphology, tracking cell movements over time, and understanding cellular 

dynamics in different environments. 

The primary goals of cell segmentation include: 

Enhancing Image Interpretability: Making complex cellular images more understandable 

by isolating individual cells or groups of cells. 
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Quantitative Analysis: Facilitating the measurement of various cellular properties such as 

size, shape, texture, and intensity. 

Automation: Reducing manual annotation efforts, thus speeding up the data processing 

pipeline in large-scale studies. 

Accuracy and Precision: Ensuring high accuracy and precision in the identification and 

outlining of cells, which is critical for subsequent analysis like phenotyping or drug testing. 

3.6.2 Overview of Common Techniques Used for Segmentation 

Thresholding Methods: Thresholding is one of the simplest yet most effective approaches 

to segmenting images [112]. It involves converting a grayscale image into a binary image 

where the pixels are marked as either foreground (cell) or background. This is done by 

selecting a threshold value, and then all pixels above this threshold are classified as one 

part of the image, while those below are classified as another. There are various methods 

to determine the optimal threshold, including: 

1- Global Thresholding: Suitable for images with high contrast between the 

foreground and background, where a single threshold is used across the entire 

image. 

2- Adaptive Thresholding: Used for images with varying lighting conditions across 

different areas; it calculates thresholds for smaller regions, thus providing flexibility. 

3- Otsu’s Method: An automatic thresholding technique that determines the threshold 

by minimizing the intra-class variance of the black and white pixels. 

 

Edge Detection Techniques: Edge detection techniques focus on identifying the 

boundaries of cells by detecting discontinuities in brightness [113]. Techniques include: 
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1- Sobel Operator: Used to detect edges based on the gradient of image intensity at 

each pixel.  

2- Canny Edge Detector: A multi-stage algorithm that detects a wide range of edges 

in images. 

3- Laplacian of Gaussian: This method applies a Gaussian blur to smooth the image 

before calculating the Laplacian, helping to reduce the noise and improve edge 

detection. 

Region-Based Segmentation: Region-based segmentation techniques are aimed at 

finding regions within an image that are similar according to a set of predefined criteria 

[114]. Techniques include: 

1- Region Growing: This method starts with a seed point and grows the region by 

appending to the region those neighboring pixels that have similar properties. 

2- Watershed Algorithm: Often used for separating touch objects in an image, this 

technique is based on visualizing the image in three dimensions where brightness 

levels correspond to height. 

Machine Learning Approaches: Machine learning approaches provide powerful tools for 

cell segmentation, especially in complex images where traditional methods fail [115, 116]. 

1- Supervised Learning: These methods require a labeled dataset and include 

techniques like support vector machines (SVM) and convolutional neural networks 

(CNN). They are trained to recognize cells based on features extracted from 

labeled examples. 

2- Unsupervised Learning: These methods do not require labeled data and include 

algorithms like k-means clustering and hierarchical clustering that infer the 

structure of cell images based on the data provided. 
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Each of these techniques offers different advantages and is chosen based on the 

specific requirements of the image data and the analysis objectives. Combining multiple 

approaches can often provide better segmentation results, especially in complex imaging 

conditions or in the presence of heterogeneous cell populations. 

3.6.3 Methods to Improve Segmentation Accuracy 

Data Augmentation: By artificially increasing the diversity of training data through 

transformations like rotation, scaling, and flipping, models can generalize better to new 

images [117]. 

Advanced Post-processing: Techniques such as mathematical morphology can refine 

the segmentation results by removing noise and filling gaps in detected cell boundaries 

[118]. 

Ensemble Techniques: Combining the predictions from multiple models can reduce errors 

and improve the robustness of the segmentation [119]. 

Transfer Learning: Using a pre-trained CNN model and fine-tuning it on cell images can 

leverage learned features from extensive datasets, typically leading to better performance 

than training a model from scratch [120]. 

Implementing these computational techniques and evaluation strategies ensures 

the effective segmentation of cells, thereby facilitating accurate biological interpretations 

and findings. 

3.7 Cell Tracking 

3.7.1 Definition and Objectives of Cell Tracking 

Cell tracking is the process of monitoring the movements and behavior of cells 

across a series of time-lapse microscopy images or video sequences (Figure 3.4) [121, 
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122]. The primary objective of cell tracking is to obtain quantitative data that can be 

analyzed to understand cellular dynamics, such as migration patterns, proliferation rates, 

and interactions with the microenvironment. This technique is critical in areas such as 

developmental biology, cancer research, and regenerative medicine, where understanding 

the mechanics of cell behavior can provide insights into complex biological processes. 

 

 

Figure 3.4: Cell tracking process [123]. 

 

Key objectives of cell tracking include: 

Quantitative Analysis: Provide detailed, quantitative descriptions of cell movement, 

division, and death. 
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Behavioral Insight: Understand cellular responses under normal and experimental 

conditions, such as drug treatment or genetic modification. 

Dynamic Modeling: Facilitate the development of models that predict cellular behavior 

under various physiological and pathological conditions. 

3.7.2 Description of Challenges in Tracking Individual Cells Over Time 

Tracking cells over time presents multiple technical challenges that can complicate 

the analysis: 

Cell Division: The process of cell division creates a challenge in maintaining the identity 

of individual cells. Identifying which cells are the progeny of the division and tracking their 

subsequent paths is non-trivial. 

Varying Intensities: Changes in cell appearance due to factors such as variable staining, 

photobleaching, or intrinsic changes in cell morphology can make it difficult to consistently 

identify the same cell over time. 

Motion Blur: Rapid movement of cells, especially in vivo environments, can lead to motion 

blur in images, reducing the accuracy of tracking algorithms. 

Cell Density: High cell density in cultures or tissues can lead to occlusions where cells 

overlap or touch, making it hard to differentiate and track individual cells. 

3.7.3 Common Methodologies for Tracking 

Single-Cell Tracking: Single-cell tracking focuses on following the path of individual cells. 

This technique is particularly useful in studying cell dynamics in a controlled environment 

where individual cell behavior plays a critical role in the overall outcome of the experiment. 

Methods often involve: 
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1- Manual Tracking: Direct human annotation of cell position in each frame, which is 

time-consuming but can provide highly accurate data for small datasets. 

2- Automated Algorithms: Utilize edge detection, thresholding, and region-based 

methods to identify and track individual cells automatically through image 

sequences. 

Multi-Cell Tracking: Multi-cell tracking deals with the simultaneous tracking of multiple 

cells within a collective group or tissue. This approach is essential for understanding the 

interactions within a cell population, such as in tumor growth or tissue development studies. 

Techniques include: 

1- Graph-Based Methods: These create a graph where nodes represent detected 

cells in each frame and edges represent possible trajectories, optimized globally 

using various algorithms. 

2- Model-Based Tracking: Involves using statistical models to predict cell positions 

and optimize tracking across frames based on these predictions. 

Predictive Tracking Using Dynamic Models: Predictive tracking incorporates dynamic 

models that use the historical data of cell movement to predict future positions and 

behaviors. This method is useful in complex dynamic environments where cells exhibit non-

linear behavior. Techniques involve: 

1- Kalman Filters: These are used to predict the state of a linear dynamic system over 

time and are suitable for tracking cells with predictable, linear motion patterns. 

2- Particle Filters: Offer a robust alternative for handling non-linear dynamics where 

multiple hypotheses of cell positions are maintained and updated over time. 

Each methodology has its strengths and limitations and may be chosen based on the 

specific requirements of the research, such as the type of cells being tracked, the imaging 
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setup, and the expected cell behavior. Combining multiple tracking methodologies can 

often provide a more robust and comprehensive analysis, particularly in complex biological 

systems. 

3.8 Cell Segmentation and Tracking Applications in Research and 
Medicine 

Cell segmentation and tracking are pivotal techniques in modern biological 

research and medical diagnostics. These methodologies not only enable the detailed 

analysis of cellular behaviors and properties but also facilitate the monitoring of dynamic 

changes over time, providing insights that are critical in a range of applications. 

3.8.1 Cancer Research 

In oncology, cell segmentation and tracking techniques are indispensable for 

understanding the complex mechanisms of tumor progression and metastasis. By 

distinguishing and monitoring individual cells within a tumor, researchers can observe how 

cancer cells proliferate, invade new tissues, and respond to the microenvironment. This is 

particularly crucial for studying tumor heterogeneity, where different cells within the same 

tumor can behave differently. Moreover, tracking the migration of cancer cells helps in 

studying metastasis, whereby cancerous cells leave a primary tumor and initiate secondary 

growths elsewhere in the body. These insights are vital for developing targeted therapies 

that aim to inhibit tumor growth and prevent the spread of cancer cells. 

3.8.2 Developmental Biology 

Developmental biology benefits greatly from the nuanced application of cell 

segmentation and tracking, as these techniques allow for the detailed study of cell lineage 

and development patterns over time. By tracking how cells divide, differentiate, and 

contribute to the formation of tissues and organs, researchers can uncover the rules that 

govern normal development and identify deviations that may lead to congenital anomalies. 
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This includes tracking morphogenetic processes, such as gastrulation, organogenesis, and 

the formation of the nervous system. These detailed cellular activities provide crucial 

insights into the fundamental aspects of life and have implications for understanding 

developmental disorders. 

3.8.3 Drug Development 

Cell segmentation and tracking are also critical in the field of drug development. 

These techniques allow scientists to assess how different cells react to potential 

therapeutic treatments. By monitoring changes in cell morphology, viability, proliferation, 

and signaling in response to drug exposure, researchers can evaluate the efficacy and 

potential toxicity of new drugs. This is especially important in the development of 

chemotherapeutic agents, where the goal is to maximize tumor cell death while minimizing 

harm to normal cells. Automated tracking systems also facilitate high-throughput screening 

processes, enabling the rapid analysis of thousands of compounds, thereby accelerating 

the pace of drug discovery and development. 

3.8.4 Regenerative Medicine 

In regenerative medicine, understanding cell dynamics through segmentation and 

tracking is essential for developing effective therapies that replace, engineer, or regenerate 

human cells, tissues, or organs to restore or establish normal function. This includes 

monitoring stem cells and their derivatives to ensure correct differentiation and integration 

into existing biological systems. Tracking the behavior and fate of these cells in real-time 

can significantly enhance the design of scaffolds and other support structures intended to 

facilitate tissue regeneration and repair. 

3.8.5 Immunology and Infectious Diseases 

Cell tracking is fundamental in immunology, particularly in the study of how immune 

cells respond to pathogens. Observing the movement and interaction of cells such as T-
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lymphocytes and macrophages during an immune response provides valuable insights into 

the mechanisms of immunity and the cellular basis of immune disorders. Additionally, 

tracking pathogen-infected cells can help in understanding disease progression and the 

effectiveness of immunotherapeutic interventions. 

By integrating advanced imaging techniques and computational analyses, cell 

segmentation and tracking continue to open new avenues for research and therapeutic 

applications. These methodologies not only deepen our understanding of cellular functions 

and interactions but also pave the way for innovative treatments in personalized medicine 

and beyond. 

3.9 Challenges 

3.9.1 Technical Challenges in Implementing and Training AI Models 

The integration of artificial intelligence (AI) and machine learning (ML) into 

microscopy image analysis presents numerous technical challenges. One of the primary 

concerns is the complexity of model development and deployment. Designing AI models 

that effectively interpret microscopic images requires extensive preprocessing of data, 

feature extraction, and the selection of appropriate algorithms. This process can be 

impeded by computational limitations, especially when dealing with high-resolution images 

that demand substantial processing power and memory. 

Another significant technical challenge is the training of these models. AI systems 

rely heavily on large, well-annotated datasets for training. In microscopy, acquiring such 

datasets can be difficult due to the time-intensive nature of generating labeled data, where 

each image must be annotated by experts. Additionally, the quality of the training data 

critically impacts the model's performance, necessitating rigorous quality control processes 

to ensure the data's accuracy and representativeness. 
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3.9.2 Data Privacy and Ethical Issues Associated with Automated Decision-
Making 

The use of AI in microscopy also raises important data privacy and ethical issues. 

Microscopic image datasets often contain sensitive information, particularly when derived 

from human biological samples. Ensuring the confidentiality and integrity of this data is 

paramount, as unauthorized access or data breaches can lead to privacy violations. 

Moreover, the automated nature of decision-making in AI-driven microscopy 

analysis poses ethical challenges. Reliance on automated systems can lead to scenarios 

where critical decisions are made without human oversight. This raises concerns about the 

transparency of AI decisions, as it can be difficult for users to understand how the AI arrived 

at a particular conclusion. Ensuring that these systems provide explainable outputs is 

essential to maintaining trust and accountability in AI applications. 

3.9.3 Addressing Bias and Ensuring Reliability in AI-driven Systems 

Bias in AI models is a critical issue that can undermine the reliability and fairness 

of automated microscopy image analysis. AI systems can inadvertently perpetuate or 

amplify biases present in the training data. For instance, if the data predominantly contains 

images from certain groups (e.g., based on race, gender, or age), the model may perform 

less effectively for underrepresented groups. Addressing these biases involves careful 

curation of diverse datasets and the implementation of algorithms designed to mitigate 

bias. 

Ensuring the reliability of AI-driven systems in microscopy is another challenge. AI 

models must not only be accurate but also robust and generalizable across different 

settings and types of data. This requires extensive validation and testing under varied 

conditions to confirm that the models are stable and perform consistently. Furthermore, 

ongoing monitoring is necessary to detect and correct drifts in model performance over 



48 
 

time, which might be caused by changes in the types of images processed or shifts in the 

underlying biological or medical conditions being studied. 

In conclusion, the integration of AI and ML into microscopy image analysis 

undoubtedly enhances the capabilities and efficiency of research in this field. However, 

addressing the technical, ethical, and bias-related challenges is crucial for advancing these 

technologies responsibly and effectively. By acknowledging and tackling these issues, 

researchers and practitioners can better harness the power of AI to contribute to significant 

breakthroughs in science and medicine. 

3.10 Conclusion 

The integration of artificial intelligence (AI) and machine learning (ML) into 

microscopy image analysis has dramatically advanced biological research. These 

technologies significantly enhance the accuracy, efficiency, and scalability of image 

analysis, enabling researchers to derive meaningful insights from extensive datasets. AI 

and ML facilitate detailed phenotypic profiling, complex morphological categorization, and 

dynamic bioprocess analysis, accelerating scientific discoveries and innovations. 

Machine learning algorithms, such as convolutional neural networks (CNNs) and 

support vector machines (SVMs), have revolutionized traditional image analysis methods. 

Deep learning, a subset of ML characterized by deep neural networks, excels in handling 

high-dimensional and complex datasets. This has expanded the potential for biological 

discovery, particularly when combined with rigorous data preparation and preprocessing 

techniques like data augmentation, normalization, and meticulous labeling, ensuring the 

development of robust and reliable ML models. 

The application of AI and ML extends to essential methodologies in microscopy, 

such as cell segmentation and tracking. These techniques are critical for understanding 
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cellular dynamics, including cell morphology, migration, division, and interaction. Advances 

in these areas have profound implications for fields like cancer research, developmental 

biology, drug development, and regenerative medicine. The ability to accurately segment 

and track cells enhances our understanding of cellular behavior in both normal and 

pathological states, providing insights that are crucial for developing targeted therapies and 

improving disease diagnostics. 

Despite these advancements, the implementation of AI and ML in microscopy 

image analysis presents technical, ethical, and bias-related challenges. Addressing these 

issues is essential for the responsible and effective use of AI technologies. Efforts to 

mitigate biases, ensure data privacy, and maintain the reliability of AI-driven systems are 

vital for advancing the field. Overall, the integration of AI and ML into microscopy image 

analysis not only enhances existing methodologies but also opens new avenues for 

scientific discovery, ultimately contributing to significant breakthroughs in science and 

medicine. 
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4 DeepSea: An Efficient Deep Learning Model for 
Single-Cell Segmentation and Tracking in Time-
Lapse Microscopy   

 

 

4.1 Introduction 

Cells frequently adapt their behavior in response to environmental cues to make 

important fate decisions, such as whether to divide or not. In addition, individual cells within 

a clonal population and under identical conditions display heterogeneity in response to 

environmental cues [124]. In recent years, it has become clear that single-cell level analysis 

over time is essential for revealing the dynamics and heterogeneity of individual cells [125, 

126].  

Single-cell quantitative live microscopy can directly capture both dynamics and 

heterogeneity of cellular decisions by continuous long-term measurements of cellular 

features [127, 128]. Widely available microscopy techniques such as label-free phase-

contrast live microscopy allow for monitoring the dynamics of morphological features such 

as the size and shape of the cells [129]. The key to the successful application of single-cell 

live microscopy is the scalable and automated analysis of a large dataset of images. Typical 

live-cell imaging of biological features of cells is a multi-day experiment that produces 

several gigabytes of images collected from thousands of cells [127]. A major challenge for 

quantitative analysis of these images is the difficulty of accurately defining the borders of 

a cell, segmentation and tracking them over time. Low signal-to-noise ratio, existing non-

cell small particles in the background, the proximity of cells, and unpredictable movements 
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are among the challenges for software-based automated image analysis of live single-cell 

microscopy data. In addition, cells are non-rigid bodies, and thus, tracking them is more 

challenging because they can change their shapes with time. Most critically, they divide 

into two new daughter cells during mitosis, which is unique and not comparable with other 

phenomena we encounter in conventional object-tracking applications. Solving single-cell 

microscopy challenges requires integrating different disciplines, such as cell biology, image 

processing, and machine learning.  

In recent years, deep learning (DL) has outperformed conventional rule-based 

image processing techniques in tasks such as object segmentation and object tracking 

[130-132]. Traditional image segmentation approaches often require experiment-specific 

parameter tuning, while DL schemes are adaptive and trainable. More recently, DL-based 

image processing methods have attracted attention among cell biologists and 

microscopists, for example, to localize single molecules in super-resolution microscopy 

[133], enhance the resolution of fluorescence microscopy images [134], develop an 

automated neurite segmentation system using a large 3D anisotropic electron microscopy 

image dataset [135], design a model to restore a wide range of fluorescence microscopy 

data [136], and train a fast model that refocuses 2D fluorescence images onto 3D surfaces 

within the sample [137]. In particular, DL-based segmentation methods have greatly 

facilitated the task of cell body segmentation in microscopy images [138-141]. However, 

the successful application of DL-based models for time-lapse microscopy depends on 

applying the segmentation and tracking models in one platform to automate the analysis 

of a large sequence of images of live cells.  

Here, we developed a versatile and trainable deep learning model for cell body 

segmentation and cell tracking in time-lapse phase-contrast microscopy images of 

mammalian cells at the single-cell level. Using this model, we developed a user-friendly 
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software tool, termed DeepSea, for automated and quantitative analysis of phase-contrast 

microscopy images. We showed that DeepSea captures dynamics and heterogeneity of 

cellular features such as cell cycle division and cell size in different cell types. Our analysis 

of cell size distribution in mouse embryonic stem cells revealed that despite their short G1 

phase of the cell cycle, embryonic stem cells exhibit cell size control in the G1 phase of the 

cell cycle.  

4.2 Methods 

4.2.1 Overview of designing and training a cell segmentation and tracking 
model 

As illustrated in Figure 4.1, first, we created an annotated dataset of phase-

contrast live image sequences of three cell types: 1) mouse embryonic stem cells, 2) 

bronchial epithelial cells, and 3) mouse C2C12 muscle progenitor cells. To facilitate manual 

annotation of the cells, we developed a Matlab-based software to generate a labeled 

training dataset, including pairs of original cell images and corresponding cell ground-truth 

mask images (our annotation software is available here https://deepseas.org/software/). To 

further generalize our model, we used image augmentation techniques to increase the size 

of our dataset with more variations efficiently and less expensively. In addition to six 

conventional image augmentation techniques with random settings such as cropping, 

changing the contrast and brightness, blurring, applying the vertical/horizontal flip, and 

adding Gaussian noise [142, 143],  we proposed and applied a random cell movement 

method as a novel image augmentation strategy to generate new cell images (with their 

annotated masks) that look more different than the original existing samples (Figure 4.2). 

Next, we used the annotated and augmented dataset of cell images to train our supervised 

DL-based segmentation model called DeepSea to detect and segment the cell bodies. To 

design our DeepSea segmentation model, we were inspired by the UNET model, which 

has been successful in different segmentation tasks [144]. We made several innovative 

https://deepseas.org/software/
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changes to make this model more suitable for single-cell live microscopy. First, we scaled 

down 2D UNET to considerably reduce the number of parameters and thus have a faster 

model processing large high-resolution images with less computational and memory costs. 

To do this, we modified our model with convolutional residual connections to increase the 

depth of the network with fewer extra parameters [145-147]. Second, we added an auxiliary 

edge detection layer trained on the edge area between touched cells to enhance the 

learning algorithm to focus on touching cell edges and thus improve the segmentation 

accuracy in hard samples with high-density touched cell images (Figure 4.3A). In the 

training process, we also used a progressive learning technique (used in progressive GANs 

[148]) to help the model generalize well for different image resolutions and generate large 

high-resolution masks that better separate the touching cell edges (Figure 4.4). The 

progressive learning technique makes the model first learn coarse-level features and then 

finer information.  

To visualize the dynamics of cellular behavior over time, we added cell tracking 

capability to our DeepSea model. We trained a DL tracking model to localize and link single 

cells from one frame to the next and detect cell divisions (mitosis). As shown in Figure 

4.3B, we used a baseline architecture similar to the DeepSea segmentation model. This 

model extracts the convolutional information from two consecutive image inputs 

(segmented cell images of times t-τ and t) to localize and detect the same target single cell 

or its daughter cells among the segmented cells in the current frame (time t) by generating 

a binary mask (Figure 4.5 and Figure 4.6). With this model, we could monitor multiple 

cellular phenotypes and several cell division cycles across the microscopy image 

sequences to generate lineage tree structures of cells. To make our model widely 

accessible, we developed a DL-based software with a graphical user interface (Figure 4.8) 

that allows researchers with no background in machine learning to automate the 
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measurement of cellular features of live microscopy data. We added manual editing options 

to DeepSea software to allow researchers to correct our model outputs when needed to 

bring all the DeepSea detections to the highest possible accuracy and, thus, fully track the 

life cycle of the cells. An interesting feature of our software is that it also allows researchers 

to train a new model with an annotated dataset of any cell type. We provide step-by-step 

instructions on how to use our software and train a model with a new dataset. Our software, 

instructions, and cell images dataset are publicly available at https://deepseas.org/.  

 

https://deepseas.org/
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Figure 4.1: An overview of our approach. A) Generating an annotated dataset of images 
for training a deep learning model, B) Designing a deep learning model for segmentation, 
C) Designing a deep learning model for tracking single cells across sequences of phase-
contrast images, and D) Developing user-friendly software to analyze cell biological 
features in live microscopy data. 
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Figure 4.2: The proposed random cell movement block diagram. It can perform cell image 
augmentation more deeply than conventional image augmentation methods. It generates 
new cell images with their annotated masks from the original existing samples that look 
very different. θ is the direction angle between 0 and 360, and d is the displacement in 
pixels. 
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Figure 4.3: DeepSea segmentation and Tracking models. (A) The DeepSea segmentation 
model receives the label-free microscopy cell image and returns two outputs of the 
touching cell edge mask and the segmented cell body mask. This model architecture 
applies 1) a scaled-down version of 2D-UNET, 2) residual blocks to increase the depth of 
the model with fewer parameters, and 3) the auxiliary touching cell edge representations 
to improve the performance of the model, especially in high-density cell cultures. (B) 
DeepSea tracking model architecture with two input images of subsequent time points and 
the output of a binary mask localizing the target single cell on the current frame. Since it 
uses a segmentation-based process to localize and link the target cells across the frame 
sequences, we proposed an architecture similar to the DeepSea segmentation model as a 
fast and accurate enough architecture. 
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Figure 4.4: DeepSea progressive training stages. (A) First, the training algorithm starts 
training the coarsest part on low-resolution ground truth images of 96X128. (B) After some 
training epochs, it transfers the Res block weights to the half DeepSea model and keeps 
training it with the ground truth images of 192x256. (C) Finally, it finishes the last n training 
epochs with the full DeepSea model training. 
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Figure 4.5: Single-cell tracking example from one frame to the next frame. (A) We limited 
our search space in x and y coordinates to a small square with the size of 5 times the target 
cell size centered at the previous frame target cell's centroids. Then, we fed each search 
crop into the DeepSea segmentation model to have only the segmented bodies of the 
target single cell in the previous frame and the segmented cells in the current frame. (B) 
The tracking model predicts the target single-cell location among the segmented cells on 
the current frame by generating a binary mask. (C) We validated the predictions using the 
IoU (Intersection over Union) score. We used the IoU score as a validation score to match 
the tracking model binary mask to each segmented cell body on the current frame and then 
find the true link (target cell at t-τ to selected cell at t) corresponding to the highest IoU 
value. A valid IoU value should be higher than a pre-defined threshold value, e.g., 
IoU_thr=0.5. If the model finds two or more valid IoU values, it takes it as a mitosis 
occurrence and thus creates the mother-daughter links between the target cell of the 
previous frame and the two selected cells with the highest IoU values. 
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Figure 4.6: Daughter cell detection example from one frame to the next frame. (A) We 
limited our search space in x and y coordinates to a small square with the size of 5 times 
the target cell size centered at the previous frame target cell's centroids. Then, we fed each 
search crop into the DeepSea segmentation model to only have the segmented cell bodies 
of the target single cell on the previous frame and segmented cells on the current frame. 
(B) The tracking model predicts the daughter cell locations among the segmented cells on 
the current frame by generating a binary mask. (C) We validated the prediction using the 
IoU (Intersection over Union) score. We used the IoU as a validation score to match the 
tracking model binary mask to each segmented cell body on the current frame and then 
find the true mother-daughter links corresponding to the highest IoU values. A valid IoU 
value should be higher than a pre-defined threshold value, e.g., IoU_thr=0.5. If the model 
finds more than two valid IoU values, it creates the mother-daughter links between the 
mother cell of the previous frame and the two selected cells with the highest IoU values. 
Also, if the model finds only one valid IoU value in the current frame, it takes it as a single-
cell tracking (non-mitosis) event and thus creates a single link between the target cell of 
the previous frame and the single valid prediction on the current frame. 
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4.2.2 Cell Culture and Microscopy 

Mouse ESCs (V6.5) were maintained on 0.1% gelatin-coated cell culture dishes in 

2i media (Millipore Sigma, SF016-100) supplemented with 100U/ml Penicillin-Streptomycin 

(Thermo Fisher, 15140122). Cells were passaged every 3-4 days using Accutase (Innovate 

Cell Technologies, AT104) and seeded at a density of 5,000-10,000 cells/cm2. For live 

imaging, between 5000 to 10,000 cells were seeded on 35mm dishes with a laminin-coated 

(Biolamina) 14mm glass microwell (MatTek, P35G-1.5-14-C). Cells were imaged in a 

chamber at 37C perfused with 5% CO2, a Zeiss AxioVert 200M microscope with an 

automated stage, and an EC Plan-Neofluar 5x/0.16NA Ph1objective or an A-plan 

10x/0.25NA Ph1 objective. The same culture condition was used for confocal imaging, 

except that 24 hours after seeding, the media was replaced with 2ml DMEM-F12 (Thermo 

Fisher, 11039047) containing 2ul CellTracker Green CMFDA dye (Thermo Fisher, C2925) 

and placed back in the incubator for 35 minutes. Next, 2 ul of CellMask Orange plasma 

membrane stain (Thermo Fisher, C10045) was added, and the dish was incubated for 

another 10 minutes. Dishes were washed three times with DMEM-F12, after which 2ml of 

fresh 2i media was added. Cells were imaged directly after the live-cell staining protocol 

using the Zeiss 880 Microscope using a 20x/0.4 N.A. objective and a 1µm interval through 

the z-axis. 

Immortalized human bronchial epithelial (HBEC3kt) cell line homozygous for 

wildtype U2AF1 at the endogenous locus was obtained as a gift from the laboratory of 

Harold Varmus (Cancer Biology Section, Cancer Genetics Branch, National Human 

Genome Research Institute, Bethesda, United States of America and Department of 

Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, United States of 

America) and cultured according to Fei et al. [149]. This host cell line was used for lentiviral 
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transduction and blasticidin selection to generate a line with stable expression of KRASG12V 

using a lentiviral plasmid obtained as a gift from the laboratory of John D Minna (Hamon 

Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical 

Center) described in [150]. Cells from passage 11 were grown to 80% confluency in 

Keratinocyte SFM (1X) (Thermo Fisher Scientific, USA) before being re-seeded as 

biological duplicates at three densities: 0.3M, 0.2M, and 0.5M cells per well in 6-well plates 

and allowed to adhere before live-cell imaging over a 48h time period. 

4.2.3 Dataset 

We collected phase-contrast time-lapse microscopy image sequences of three 

different cell types, including two in-house datasets of Mouse Embryonic Stem Cells 

(MESC, 31 sets, 1074 images) and Bronchial epithelial cells (7 sets, 2010 images) and 

one dataset of Mouse C2C12 Muscle Progenitor Cells (7 sets, 540 images) obtained from 

an external resource with the cell culture described in [151]. Our collected datasets are 

publicly available at https://deepseas.org/datasets/. Some dataset statistics are shown in 

Table 4.1. We designed an annotation software in MATLAB 

(https://deepseas.org/software/) to manually create the ground-truth mask images 

corresponding to our cell images. We applied an image augmentation scheme to generate 

a larger dataset with more variations efficiently and less expensively, aiming to train a more 

generalized model. In our image augmentation scheme, in addition to conventional image 

transformations [142, 143], we proposed moving the stem cell bodies by the random 

vectors of (θ,d) relative to their center points, where θ is the direction angle between 0 and 

360 and d is the displacement in pixels (Figure 4.2). The proposed cell image augmentation 

method improved the model performance with unseen test images (different microscopy 

live imaging sets not used in the training set), confirming that it could less overfit training 

https://deepseas.org/datasets/
https://deepseas.org/software/
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samples and thus help the model generalization. For each training image, we applied a 

pipeline of augmentation functions, which were randomly selected and set. 

Table 4.1: DeepSea dataset characteristics. 

 Image 
Size 

Frame 
Rate 

Num 
of 

Sets 

Num of 
Images 

Num of 
Single 
Cells 

Num of 
Cell 

Cycles 

Stem Cells 1344x1024 15-30 
min 

30 2010 14995 115 

Bronchial 
Cells 

1244x904 5 min 8 1174 48027 292 

Muscle 
Cells 

1392x1040 20 min 9 502 22080 274 

 

4.2.4 Segmentation model  

As mentioned before, our dataset samples are label-free microscopy images that 

are usually noisy, low contrast, hard, and high cell density samples. It is difficult for any 

existing instance tools (that have not seen these types of images in their training process) 

to segment the cell bodies of our test images. The original pre-trained version of StraDist 

and StarDist models achieved an average precision of around 43% and 5%, respectively, 

on our test sets. Figure 4.7 shows the CellPose and StarDist outputs compared with the 

ground truth mask images. 
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Figure 4.7: Comparative performance analyses. The original pre-trained CellPose and 
StarDist model outputs compared with the ground truth cell body masks. 

 

In the instance segmentation task, we proposed and built a 2D deep learning-

based model called DeepSea (Figure 4.3A). To design our DeepSea segmentation model, 

we were inspired by the UNET model [144, 152]. Since we needed a fast segmentation 

and tracking model to be used in our DeepSea software, we decided to reduce the number 

of parameters and make a scaled-down version of 2D UNET. By reducing the model size, 

we could feed larger high-resolution images into the model and get more accurate results 

[153, 154] with less computational and memory costs. However, to compensate for the 

model compression and also avoid the model from underfitting the training data, we 
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modified the scaled-down 2D-UNET model with the convolutional residual connections. It 

has been proved that the residual connections can increase the depth of the network with 

fewer extra parameters. They can also accelerate the speed of training the deep network, 

reduce the effect of the vanishing Gradient Problem, and potentially obtain higher accuracy 

in network performance [145, 147]. Our DeepSea segmentation model involves only 1.9 

million parameters, which is considerably smaller than typical instance segmentation 

models such as UNET [152], PSPNET [155], and SEGNET [156]. 

During the training process, we started training the model with the low-resolution 

images 95x128, then increased it to 191x256, and finished it with 384x512, as described 

in Figure 4.4. Our learning algorithm started with the lowest resolution part and then 

progressively added the other high-resolution blocks until the desired image size and full 

DeepSea model were achieved. The progressive learning technique (as used in 

progressive GANs [148]) can help the model generalize well for different image resolutions 

and generate large-high-resolution masks that better separate the touching cell edges. 

Also, when adding the higher resolution part to the training process, our learning algorithm 

reduces the learning rate of previously trained parts, making the different parts of the model 

learn information from different resolutions independently. 

The auxiliary edge representations (highlighting the edge area between touching 

cells) and the auxiliary training loss value (Equation 4.2) also encouraged the learning 

algorithm to spend more computational budget and time to separate the touching cells. 

They thus improved the model performance, especially for hard samples where we have 

high-density touching cells. We also artificially increased and repeated the hard cell images 

in our training dataset to make the model see them more during the training process 

(almost the same number as non-touching samples). This also helps the learning algorithm 
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balance the loss functions (Equation 4.2). To create each touching cell edge mask, we first 

created a weight map from the ground truth cell masks according to Equation 4.1:  

w(x) = w0. exp( −
(d1(x)+d2(x))

2

2σ2
)   (4.1) 

 , where x is pixels in the image, d1 is the distance to the border of the nearest cell, d2 is 

the distance to the border of the second nearest cell, and w0 and σ were set to 10 and 25, 

respectively. Then, we make a binary image by replacing all pixel values above a 

determined threshold (=1.0) with 1s and setting all other pixels to 0s. 

In the training process, we used the early stopping technique to stop training when 

the validation score stopped improving. We also took advantage of batch normalization 

and dropout techniques to improve the model's speed, performance, and stability [157]. 

Besides, the image augmentation pipeline we designed (Figure 4.2) could help the model 

see more variations during the training process and then process the unseen test samples 

more confidently. We chose the RMSprop optimization function with the learning rate 

scheduler of the OneCycleLR method (LR=1e-3) to optimize model weights and minimize 

the proposed loss function (Equation 4.2). Our loss function is a linear combination of 

cross-entropy (CE) loss and Dice loss (DL) functions [158], as well as auxiliary loss 

functions (EdgeCE and EdgeDL) for the touching cell edge representations. CE takes care 

of pixel-wise prediction accuracy, while DL helps the learning algorithm increase the 

overlap between true area and predicted area, which is essentially needed where the 

number of image background pixels is much higher than foreground pixels (object area 

pixels). 

Loss = CE + DL + EdgeCE + EdgeDL               (4.2) 
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In the test phase, we used the IoU index, a value between 0 and 1 and known as 

the Jaccard index as well [159] (Equation 4.3), to match the segmentation model 

predictions to the ground truth annotated masks: 

IOU =
Area of overlap between predicted pixels and ground truth pixels

Area of union encompassed by both predicted pixels and ground truth pixels
                      (4.3) 

In each test image, we labeled each detected cell body whose IoU index was higher than 

a pre-defined threshold value as a valid match and a True Positive (TP) prediction. Also, 

the ground truth cell body masks with no valid match were categorized into the False 

Negative (FN) set, and the predictions with no valid ground truth masks were labeled as 

the False Positive (FP) cases (non-cell objects). Then, using Equation 4.4, we calculated 

the average precision (AP) value for each image in the test set used by the other state-of-

the-art methods in cell body segmentation tasks [138]: 

AP =
TP

TP+FN+FP
                                                  (4.4) 

4.2.5 Tracking model 

Our tracking model aimed to localize and link the same target single-cell bodies 

from one frame to the next and also detect cell divisions (mitosis). We used a baseline 

architecture similar to the DeepSea segmentation model (as a fast and accurate enough 

architecture) but with multiple images, two inputs, and one output (Figures 4.3B, 4.5, and 

4.6). The first input is the target cell image at the previous frame (previous time point t-τ), 

the second input is the segmented cell image at the current frame (current time point t), 

and the output is a binary mask at the current frame. This model extracts the convolutional 

information from the input images to localize and find the target single cell or its daughter 

cells among the segmented cells on the current frame by generating a binary mask 

(Figures 4.5B and 4.6B). To increase the accuracy of the tracking model, we limited our 
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search space in x and y coordinates to a small square with the size of 5 times the target 

cell size centered at the previous frame target cell's centroids (Figures 4.5A and 4.6A). 

Since cells move slowly through space, the cell's previous location presents a good guess 

of where the model should expect to find it in the current frame. To validate the tracking 

model's output, we used the IoU (Intersection over Union, Equation 4.3) as a validation 

score. We matched the tracking model binary mask to each segmented cell body on the 

current frame and measured the IoU value (Figures 4.5C and 4.6C). In the validation 

process, if the IoU score of a segmented cell body on the current frame was higher than a 

pre-specified IoU matching threshold value (e.g., IoU_thr=0.5), we labeled it as a positive 

detection and valid link. Then, we categorized them into true or false positive detections by 

comparing them with ground truth cell labels aiming to measure the average precision (AP 

metric introduced in Equation 4.4) of the tracking model in tracking the target cell bodies 

from one frame to the next and detecting cell divisions. 

The number of the DeepSea tracking model parameter is only 2.1 million, while 

the other deep tracking models, such as ROLO [160], DeepSort [161], and TrackRCNN 

[162], which are mostly used in other object-tracking applications, involve more than 20 

million parameters, confirming that we have an efficient model in the tracking process as 

well. Also, since the number of cell division events is naturally much fewer than single-cell 

tracking events, we artificially repeated and increased the cell division events fifty times 

more than single-cell tracking events in our training set. This helped the model see a 

balanced number of both single-cell links and cell divisions during the training process and 

thus reduced the risk of overfitting the most repeated category. The train optimization 

function and hyperparameters are the same as the segmentation model training process. 

To evaluate our tracking model in a continuous cell trajectory tracking process during an 

entire cell life cycle from birth to division, we used MOTA (Multiple Object Tracking 
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Accuracy, Equation 4.5), which is widely used in multi-object tracking challenges [130, 163, 

164]. To our knowledge, this is the first time that this metric has been used to evaluate a 

cell tracking model performance. We also used other commonly used tracking metrics, as 

follows, to give more detailed evaluation information. 

IDS: Identity Switch is the number of times a cell is assigned a new label in its track.  

MT: Mostly Tracked is the number of target cells assigned the same label for at least 80% 

of the video frames.  

ML: Mostly Lost is the number of target cells assigned the same label for at most 20% of 

the video frames.  

Frag: Fragmentation is the number of times a cell is lost in a frame but then redetected in 

a future frame (fragmenting the track). 

MOTA = 1 −
∑ (FPn+FNn+IDS)n

∑ (Numberofcells)n
                                           (4.5) 

, where n is the frame number. A perfect tracking model achieves MOTA=1. 

4.2.6 Designed software tools 

We designed two software tools for the Deepsea project, including 1) Manual 

annotation software and 2) DeepSea cell segmentation and tracking software. The step-

by-step instructions with examples of how to use them are uploaded to the page at 

https://deepseas.org/software/. The manual annotation software is a MATLAB-based tool 

that we designed and used to manually segment and label the cells of the raw dataset of 

microscopy images we collected. This tool helped us provide the required ground truth 

dataset that we needed for training the cell segmentation and tracking models. It can also 

be used to manually annotate any other image datasets.  

https://deepseas.org/software/
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Also, DeepSea software (Figure 4.8) is a user-friendly and automated software 

designed to enable researchers to 1) load and explore their phase-contrast cell images in 

a high-contrast display, 2) detect and localize cell bodies using the pre-trained DeepSea 

segmentation model, 3) track and label cell lineages across the frame sequences using 

the pre-trained DeepSea tracking model, 4) manually correct the DeepSea models' outputs 

using user-friendly editing options, 5) train a new model with a new cell type dataset if 

needed, 6) save the results and cell label and feature reports on the local system. It 

employs our latest trained DeepSea models in the segmentation and tracking processes. 

 

 

Figure 4.8: DeepSea software snapshot. It is an automated cell segmentation and tracking 
software that employs our latest trained DeepSea models and also provides users the 
editing options to manually correct the DeepSea outputs. 
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4.3 Results 

4.3.1 Model and training configuration effects 

Table 4.2 shows how our proposed techniques and modifications can improve the 

segmentation scores for the simple and crowded samples as measured by precision. 

Table 4.2: Model and training configuration. 

 Easy 
samples 
ap@0.5 

Hard 
samples 
ap@0.5 

Number of 
parameters 

2D UNET Scaled Down 0.87±0.1 0.82±0.2 1035778 

Modified 2D UNET Scaled Down + Res 
Connections  

0.93±0.1 0.84±0.1 1938306 

Modified 2D UNET Scaled Down + Res 
Connections + Progressive Learning 

0.94±0.2 0.87±0.2 1938306 

Our DeepSea: Modified 2D UNET Scaled 
Down + Res Connections + Progressive 
Learning + EdgeDetectionLayer/Loss 

0.93±0.2 0.90±0.1 1938436 

 

4.3.2 DeepSea performance evaluation 

The trained segmentation model fits the exact boundary of the target cells and 

labels their pixels with different colors, helping to determine each cell's shape and area 

within the input microscopy image (Figure 4.3A). To evaluate the performance of our 

segmentation model, we compared the model's predictions to true manually segmented 

cell bodies at different thresholds of the standard intersection over union metric (IoU) on 

the test images. Next, we used the standard average precision metric, which is commonly 

used in pixel-wise segmentation and object detection tasks, to compare DeepSea with 

recently developed segmentation models. DeepSea was able to outperform existing state-

of-the-art models such as CellPose [138], StarDist [139], and 2D-UNET [144, 152] in terms 

of latency and mean average precision (mAP) when trained on the same training sets and 

tested on the same test sets at all pre-defined IoU thresholds (Figure 4.9A, B). Notably, we 
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observed close prediction accuracy between images with a higher density of cells with 

touching edges (hard cases) and images with a lower density of cells (easy) with an overall 

higher precision compared to the CellPose model (Figure 4.9C, D). Examples of 

DeepSea's accuracy in high-density cell cultures are shown in Figure 4.10. In addition, we 

demonstrated the generalizability of the DeepSea model performance with different cell-

type test images of our dataset (Figure 4.9E). Three examples of the DeepSea and 

CellPose segmentation model's output are compared in Figure 4.11. Next, we compared 

the performance of DeepSea with CellPose in measuring cellular phenotypes such as cell 

size. A comparison of cell size distribution obtained from DeepSea and CellPose showed 

that DeepSea obtains a median cell size that is closer to the median cell size obtained by 

manual segmentation (Figure 4.12). Together, these results indicate that DeepSea's 

segmentation model works robustly across different densities of cells and different cell 

types in our dataset with high precision.  
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Figure 4.9: Segmentation model evaluation on the test set images. (A) Comparing the 
performance of DeepSea, Cell Pose, StarDist, and 2D-UNET using the standard average 
precision at different IoU matching thresholds. (B) Measuring models' latency (per image) 
to compare the DeepSea efficiency with the other models. (C-D) Comparing models' 
performance in segmenting easy (sparse cell density) and hard (high cell density) test 
images. (E) Comparing models' performance in segmenting different cell types of the 
DeepSea dataset. 
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Figure 4.10: Examples of outputs. Two examples of the DeepSea segmentation model 
output, confirming high precision with high-density cell images. 
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Figure 4.11: Three examples of segmentation outputs. DeepSea output (middle column) 
compared with the CellPose (right column) for different cell types. DeepSea has higher 
average precision (ap) compared to the CellPose model. 
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Figure 4.12: Cell size distribution of ground truth test dataset compared with the 
distribution obtained from DeepSea and CellPose detections. 

 

The DeepSea tracking model receives the segmented target cell image at the 

previous time point and the segmented cell image at the current time point to generate a 

binary mask localizing the target cell (or its daughter cells) at the current time point (Figures 

4.5 and 4.6). For the tracking model, we evaluated the model's performance on the test set 

by measuring the average precision of single-cell tracking from one frame to the next 

frame, as well as mitosis detections. We matched the binary masks obtained from the 

tracking model at time t to the true target cell bodies (at time t) at different matching 

thresholds of IoU. While our model achieved 0.98±0.2 precision (@0.5 IoU threshold) for 

tracking single cells, the precision of our model for mitosis detection was around 0.89±0.3 

(@0.5 IoU threshold) (Figure 4.13A, B). Mitosis detection was particularly more challenging 

for stem cell images (Figure 4.14). We speculated that there might be a direct relationship 
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between the single-cell and mitosis detection results and the frame imaging intervals. Thus, 

we ran an experiment to measure the tracking model sensitivity to the frame sampling rate. 

We used the test frame sequences of Bronchial epithelial cells and down-sampled the 

frames to make the sub-sampling intervals of 5, 10, and 15 minutes. The results are shown 

in Figure 4.15, confirming that the model precision is sensitive to the changes in the frame's 

time distance. It shows that the higher sampling rate reduces the tracking model failures, 

especially for the cells that move and change fast over time. 

Next, we systematically compared DeepSea tracking precision with some existing 

cell tracking tools (Table 4.3). As shown, some of these tools only support a part of the 

required process, either single-cell tracking [165, 166] or mitosis detection [167], and some 

of them are proposed to be used for both, like Trackmate [168]. Similar to the DeepSea 

tracking pipeline, they all first need to detect and segment the cell bodies before starting 

the cell tracking process and frame-by-frame cell-linking. The segmentation precision of all 

of them with our cell images is lower than 50%. Thus, we decided to use DeepSea 

segmentation outputs as the input for these tracking tools to obtain the best possible 

tracking results and then compare only their cell tracking part performance. We assessed 

the tracking model of DeepSea and other tracking tools in a full cell cycle tracking task. 

This test uses the trained tracking model to track and label the target single-cell motion 

trajectories across the live-cell microscopy frame sequences from birth to division. In this 

evaluation process, we used MOTA (Multi-Object Tracking Accuracy) which is a widely 

used metric in multi-object tracking schemes and measures the precision of localizing 

objects over time across the frame sequences (Equation 4.5). We also included other 

commonly used tracking metrics such as IDS (Identity Switch), MT (Mostly Tracked), ML 

(Mostly Lost), and Frag (Fragmentation) to provide more detailed evaluation information 

[130, 163, 164]. 
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Our DeepSea tracking model achieved a MOTA value of 0.94±0.2 compared with 

the Trackmate model, with a MOTA of 0.29±0.7 (Table 4.4). In the evaluation process, we 

used 228 full ground truth cell cycle trajectories, each including more than three 

consecutive frames. The Trackmate algorithm [168] is one of the widely used cell tracking 

tools. The main factor for Trackmate's overall low MOTA was that it frequently did not detect 

mitotic events, leading to high false positive (FP)  and false negative (FN) labels (Table 4.4 

and Equation 4.5). We also would like to note that rule-based tools like Trackmate are not 

trainable and cannot be rapidly adapted to any specialized dataset. 

Figure 4.16 shows one example of our model output with MOTA=1.0, tracking the 

cell motion trajectories over nine consecutive frames for three target cells. We also added 

the manual editing option to DeepSea software so that users can edit the software's output 

and reduce the segmentation and tracking errors. Thus, it allows researchers to fully and 

accurately track the life cycle of a cell. 

Table 4.3: Single-cell tracking and mitosis detection precision. 

 Single-cell tracking Mitosis detection 

Trackmate [31] 0.76 0.36 

CellTracker [28] 0.69 Not supported 

MDMLM [30] Not supported 0.85 

CellTracking [29] 0.82 Not supported 

DeepSea Tracker 0.98 0.89 

 

Table 4.4: Multi-cell cycle tracking results. 

 MOTA MT ML Precision Recall Frag IDS FP FN Latency 
Per image (GPU 

NVIDIA 
RTX2080) 

Trackmate 
[31] 

0.29 0.15 0.56 0.42 0.51 25 8 2614 2053 85 ms 

DeepSea 
Tracker 

0.94 0.93 0.01 0.98 0.97 62 82 153 162 580 ms 
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Figure 4.13: Tracking model evaluation on the test set. We evaluated the model 
performance using the standard average precision at different IoU matching thresholds. A) 
Single-cell tracking precision at different IoU matching thresholds. B) Mitosis detection 
precision at different IoU matching thresholds. 

 

 

Figure 4.14: The DeepSea tracker model and mitotic detection performance with different 
cell types of the test set. 
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Figure 4.15: The tracking model sensitivity to the frame sampling rate. Bronchial epithelial 
cell images are used for this experiment. 
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Figure 4.16: Example of the cell cycle tracking process obtained by feeding nine 
consecutive stem cell frames (with a sampling time of 20 minutes) to our trained tracking 
model. Daughter cells are linked to their mother cells by an underline (in the sixth and 
seventh frames). 

 

4.4 Conclusion 

Here, we introduced DeepSea, an efficient deep-learning model for automated 

analysis of time-lapse images of cells. The segmentation and tracking of cell bodies and 

subcellular organelles from microscopy images are critical steps for nearly all microscopy-

based biological analysis applications. Although phase-contrast microscopy is a non-

invasive and widely used method for live-cell imaging, developing automated segmentation 

and tracking algorithms remains challenging. Segmentation of phase-contrast images 
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remains difficult because of the presence of bright light artifacts such as halo at the edges 

of the cells and inhomogeneity in refractive index, producing noisy images. Although not 

unique to phase-contrast microscopy, cell tracking has its own challenges due to the 

unpredictable nature of cells in their movements over time, the close proximity of cells, and 

the division of cells.  

Here, we leveraged the recent advancement in deep learning-based image 

processing to address some of these challenges. The lack of a comprehensive, high-quality 

annotated dataset of cells prevents the full utilization of deep learning-based models for 

microscopy image analysis systems. We generated large manually annotated datasets of 

time-lapse microscopy images of three cell types, which are publicly available and can be 

used for new image analysis models. In addition, we were able to significantly increase the 

size of annotated data covering more variations by applying image augmentation 

techniques, which benefited from both conventional image augmentation techniques and 

a proposed random cell movements method. We expect this resource to facilitate the future 

application of deep learning-based models for the analysis of microscopy images. 

To address the challenge of cell segmentation and tracking, we built a deep 

learning model, termed DeepSea, which can efficiently segment cell areas in phase-

contrast microscopy images. Our segmentation model was trained on our generated 

dataset and achieved an IoU value of 0.90±0.2 at the IoU matching threshold of 0.5. We 

were able to improve on existing segmentation models by incorporating (i) an auxiliary 

model trained on where cell edges meet to be able to separate cells that are close to each 

other (ii) the addition of the residual blocks to decrease the number of parameters without 

sacrificing the accuracy making our model efficient (iii) progressive learning technique to 

improve the generalizability of our model for images with different resolution. Importantly, 

we were able to exploit the deep learning capabilities to automate the tracking of cells 



83 
 

across the time-lapse microscopy image sequences. Our DeepSea tracking model was 

able to track the full cell cycle trajectories with a MOTA value of 0.94±0.3 obtained from 

228 cell cycles. We also showed that more frequent imaging of microscopy frames would 

increase the accuracy of tracking the full cell cycle by providing more information about the 

cell features right before cell division.  

We would like to note that our dataset and models are limited to the phase contrast 

2D images of three cell types. However, the researchers can train our model using their 

own annotated images of single cells using DeepSea software training options. A larger 

dataset of samples from different cell types and different imaging modalities would be 

useful for testing our proposed model's generalization, reliability, and robustness. In 

addition, in our future work, we will investigate other deep models that have recently 

achieved considerable advancement in object detection and tracking tasks, such as 

Recurrent Yolo, TrackR-CNN, JDE, RetinaNet, and CenterPoint [130-132], or merge their 

architecture with our current models to improve the results. To reduce the DeepSea 

sensitivity to the frame sampling, we will also evaluate the idea of feeding more previous 

frames into the tracking model, including the cell images of t, t-τ, t-2τ, and t-3τ, as one of 

the possible solutions. 
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5 cGAN-Seg: An Enhanced Cell Segmentation with 
Limited Training Datasets using Cycle Generative 
Adversarial Networks 

 

5.1 Introduction 

Generative Adversarial Networks (GANs) have gained significant attention in 

recent years due to their remarkable success in generating realistic images and videos 

[169, 170]. GANs are deep learning architectures that consist of two neural networks: a 

generator and a discriminator [171-173] [3-5]. The generator network is responsible for 

synthesizing new data, while the discriminator network attempts to distinguish between 

real and synthetic samples. The two networks compete in a game-like scenario until the 

generator produces data that is nearly indistinguishable from real data. GANs have 

exhibited substantial capabilities across a wide variety of applications, including image 

synthesis [169], video generation [174], and natural language processing [175]. 

Cell segmentation is a crucial step in microscopy, which involves the identification 

and delineation of individual cells within images. Cell segmentation is inherently complex 

due to the diversity and irregularity of morphological features of different cell types, such 

as shape and size, as well as the propensity for cells to cluster together, making highly 

accurate segmentation a challenging task. Deep learning methods, particularly 

convolutional neural networks (CNNs), have shown great success in improving cell 

segmentation accuracy [176-180]. The development and application of deep learning 
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models for cell segmentation heavily depend on the availability of a large amount of 

annotated training data. 

While recent efforts have introduced useful large datasets of microscopy images 

such as LiveCELL [181], manual annotation of cell images remains a laborious and time-

consuming task. Although software such as Cell-ACDC and microSAM have made 

significant improvements in segmentation, annotation speed, and efficiency by assisting 

experts in the manual labeling process [177,182], outlining individual cells in microscopic 

images to create 'ground truth' masks still requires considerable effort by cell biology 

experts. This process becomes practically infeasible when dealing with large volumes of 

data or when timely results are needed. Despite the progress in dataset development, the 

scarcity of annotated data still poses challenges to training robust models, thus slowing 

down progress in building cell segmentation models that work across diverse imaging 

scenarios and modalities.  

In this study, we propose a solution to this challenge by employing a novel 

CycleGAN-based segmentation model, termed cGAN-Seg, that is designed to train cell 

segmentation models with limited annotated data. We used cGAN-Seg to generate realistic 

and diverse microscopy images of cells in different modalities, thereby enriching the 

training data for the segmentation model. We systematically compared the cGAN-Seg 

training approach with that of the conventional training approach on the performance of our 

segmentation model. Our results showed that the cGAN-Seg approach, with limited 

annotated cell image datasets, increased the model's ability to generalize and, thus, 

enhanced the performance of cell segmentation tasks. 
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5.2 Methods 

5.2.1 Overview of designing an enhanced cycle-GAN architecture  

An overview of our cGAN-Seg design is illustrated in Figure 5.1A. The cGAN-Seg 

architecture uses a new CycleGAN approach [183] for cell image segmentation, offering 

enhanced data diversity. The cGAN-Seg has several new key features: (i) Application of a 

novel style generation path within a 2D-UNET-based image generator [184, 185], our 

approach captures complex image variations from varied cell shapes to intricate structures 

and textures and also enhances the creation of diverse synthetic microscopy cell images 

(Figure 5.3). This prepares the model to tackle a wide range of image conditions, boosting 

its versatility and accuracy, (ii) Two adversarial PatchGan discriminators enhanced with a 

linear attention layer [186, 187], our model focuses on the most salient features, producing 

synthetic images that closely mirror real samples (Figure 5.4). This approach guarantees 

stable and efficient training dynamics, making the synthetic images more authentic, (iii) 

Implementation of a differentiable image augmentation technique [188] in our design 

applies identical differentiable augmentations to both real and synthetic samples (Figure 

5.1A and 5.2). This reduces the risk of the discriminator memorizing exact training samples, 

combats overfitting, and improves the realism of synthetic images, aligning them closely 

with real-world scenarios, and finally (iv) Through a balanced utilization of different loss 

functions, including L1 and VGG-based perceptual loss functions (for the generation 

model) [189, 190] and Cross-Entropy and Dice losses (for the segmentation model), the 

model ensures the production of high-fidelity synthetic cell images while maintaining 

segmentation accuracy (Equations 5.6-5.17).  

The CycleGAN architecture is unique in that every step in the training process 

encompasses two mapping paths: forward consistency and backward consistency 

(Equation 5.1). In the forward consistency path, the model learns to translate an image 



87 
 

from domain A (mask image) to domain B (cell image). Subsequently, it attempts to 

translate this new cell image back to domain A, aiming to reconstruct the original mask 

image. The backward consistency path mirrors this process, starting with domain B, 

translating to domain A, and then back to B. The essence of this approach lies in its ability 

to maintain the integrity of the original images throughout the translation and back-

translation processes, ensuring that crucial information is not lost. This dual-path 

mechanism has the potential to introduce a greater degree of diversity to the training data. 

Within this architecture, the generator plays a pivotal role. It is capable of creating new 

synthetic cell images that might exhibit a significantly different distribution pattern from the 

original, real training samples. As a result, our segmentation model can train on a blend of 

these artificially generated images and the augmented real images. This hybrid training 

approach not only diversifies the data pool but also helps the model adapt to a broader 

spectrum of cell images. The addition of synthetic images simulates a wider array of 

scenarios that the model may encounter, thus improving its robustness and predictive 

power when faced with unfamiliar data.  

{
 
 

 
 

𝐅𝐨𝐫𝐰𝐚𝐫𝐝 𝐂𝐨𝐧𝐬𝐢𝐬𝐭𝐞𝐧𝐜𝐲 𝐏𝐚𝐭𝐡:    

Real mask image
Generation
→         Fake cell image  

Segmentation
→          Fake mask image 

𝐁𝐚𝐜𝐤𝐰𝐚𝐫𝐝 𝐂𝐨𝐧𝐬𝐢𝐬𝐭𝐞𝐧𝐜𝐲 𝐏𝐚𝐭𝐡:  

Real cell image 
Segmentation
→          Fake mask image

Generation  
→         Fake cell image

        (5.1) 
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Figure 5.1: Three different cell segmentation training scenarios. A) Training cGAN-Seg on 
a limited dataset of cell images (e.g., 200 training samples in this paper) using a new design 
of CycleGAN approach, termed cGAN-Seg, that incorporates features such as style 
injecting, modified PatchGan discriminator, and differentiable image augmentation. B) 
Conventional training of the segmentation model on a limited dataset of cell images. C) 
Conventional training of the segmentation model on a large dataset of cell images (e.g., 
1000 training samples in this paper). 

 

5.2.2 Datasets 

In our study, we utilized four distinct training datasets, each representing different 

modalities and cell types, to ensure the robustness and generalizability of our proposed 

segmentation model across a diverse range of biological contexts. They include 1) our 
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recently published annotated dataset of phase-contrast images of the DeepSea [180], 

which is a large collection of accurately annotated phase-contrast time-lapse microscopy 

images of three cell types of Mouse Embryonic Stem Cells, Bronchial epithelial cells, and 

Mouse C2C12 Muscle Progenitor Cells, 2) LiveCell dataset [181] which is a diverse 

collection of annotated microscopy images. It covers various cell types such as A172, 

BT474, Huh7, and SkBr3 across multiple experimental conditions, 3) Cell Tracking 

Challenge dataset [191], which is a dataset repository consisting of 2D and 3D time-lapse 

sequences of fluorescent images of different cell types such as PSC and U373 cells, 4) 

CellPose dataset [179] which is a curated collection encompassing a wide variety of 

annotated images from different cell types, tissues, and organisms. We used 15% of the 

dataset samples to test all training scenarios. To ensure a rigorous evaluation of our model, 

we allocated 15% of the samples from each dataset exclusively for testing across all 

training scenarios. 

5.2.3 Augmentation functions 

Image augmentation techniques play a critical role in expanding the diversity of 

training datasets, thereby improving model generalization and robustness [192, 193]. In 

the training process of our deep learning models, we applied some mostly used 

conventional image augmentation functions to every single cell image with the probability 

of p_vanilla, including random histogram equalization, random crop, random sharpness 

adjustment, random brightness adjustment, random contrast adjustment, random 

horizontal flip, random vertical flip, random saturation, adding random gaussian noise, and 

adding random gaussian blur as shown in Figure 5.2A. For the binary mask images, we 

only used the applicable random crop, horizontal flip, and vertical flip functions. The training 

algorithm executes a sequence of the provided augmentation functions for each cell and 

mask image pair with a pre-defined probability value 'p_vanilla'. In the requested 
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augmentation pipeline, each function is randomly chosen with a consistent probability of 

50% and is also applied in a randomized sequence. 

However, when it comes to training Generative Adversarial Networks (GANs), 

especially models like CycleGAN that learn mappings between different image domains, 

conventional augmentation might not be sufficient for enhancing the diversity of generated 

images. This is where differentiable augmentation, as proposed in [188], becomes 

valuable. Differentiable augmentation applies the same random augmentations to both real 

and fake samples in a way that is differentiable with respect to the model parameters. This 

approach encourages the discriminator to less memorize the exact training samples, thus 

causing the generator to produce more diverse images, thereby improving the overall 

image generation performance. Furthermore, differentiable augmentation can mitigate 

overfitting and improve training stability, making it particularly beneficial for GANs trained 

with limited data. In this project, we used five different differentiable augmentation 

functions: random contrast, random brightness, random cutout, random translation, and 

random saturation (Figure 5.2B). The decision to perform an augmentation is dictated by 

the probability variable 'p_diff'. In an attempt to ensure fair representation and randomness, 

each of the differentiable augmentation functions is executed in a randomized sequence, 

with each having an equal 50% probability of selection. This approach not only diversifies 

the images but also ensures that the model remains adaptable to any new form of data it 

might encounter in the future, thus improving its resilience and overall effectiveness. 
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Figure 5.2: Augmentation functions used in the proposed training process. A) The 
conventional vanilla augmentation that was applied to both cell image and corresponding 
binary mask pairs aimed to increase the diversity of samples fed into the cGAN-Seg model. 
B) The differentiable augmentation functions used to reduce the risk of discriminator 
overfitting and help the generator produce more diverse synthetic images. 

 

5.2.4 Segmentation models 

For the segmentation tasks, we employed and compared our recently published 

DeepSea baseline architecture [180] along with two widely used segmentation models: the 

2D-UNET [185] and CellPose [179] models. The 2D-UNET model has become 

synonymous with high-performance image segmentation across various biomedical 

applications. Its design is characterized by a symmetric encoder-decoder structure that 

efficiently captures context and enables precise localization. This architecture facilitates 
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the learning of rich feature representations from limited training data, making it particularly 

suitable for medical imaging tasks where annotated samples are scarce. The strength of 

2D-UNET lies in its ability to handle a wide range of cell types and imaging conditions, 

thanks to its deep convolutional layers and skip connections that preserve spatial 

information across the network. DeepSea architecture is also an efficient scaled-down 

version of the 2D-UNET mode. To simplify the task, we chose not to incorporate the layer 

representing touching cells, as this would necessitate custom touching cell masks 

(alongside cell body masks) and additional loss functions. The CellPose model also 

represents a significant leap forward in the segmentation of complex cell images. It is 

designed around the concept of predicting cell 'poses'—spatial arrangements that are 

invariant to cell shape and size—allowing it to segment cells in a highly generalized 

manner. This model leverages a powerful neural network trained on a diverse dataset, 

enabling it to accurately segment cells across different experiments without the need for 

retraining. The CellPose model's robustness and adaptability stem from its novel use of 

flow fields, which guide the segmentation process and ensure high precision across varying 

biological contexts. We would like to mention that to reduce complexity and focus on the 

essential aspects of segmentation, we excluded CellPose's flow fields from the cGAN-Seg 

approach. 

5.2.5 Style-based generative model 

In our proposed cGAN-Seg architecture, the generator is responsible for 

generating synthetic cell images. It employs a 2D-UNET architecture [185], as shown in 

Figure 5.3. UNET is renowned for its effectiveness in biomedical image segmentation due 

to its unique architecture, which consists of a contracting path to capture context and a 

symmetric expanding path that enables precise localization. However, we have taken this 
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a step further by incorporating a style decoding path into the decoder part of the UNET 

architecture, an idea inspired by the StyleGAN2 model [184]. 

This fusion of concepts from StyleGAN2 and UNET brings about the prospect of 

generating better synthetic images. The style decoding network is designed to control the 

stylistic aspects of the generated images, thereby allowing the model to create more 

diverse and potentially higher-quality synthetic cell images. This combination of 

architectures seeks to maximize the strengths of both models - the segmentation prowess 

of UNET and the sophisticated generative capacity of StyleGAN2. This integration could 

potentially yield a more powerful generator model for synthetic cell image creation, thereby 

enhancing the overall performance of our cGAN-Seg model. 

 

 

Figure 5.3: Our proposed generative architecture. It employs the 2D-UNET architecture 
with a style decoding network to create more diverse and potentially higher-quality 
synthetic cell images. 

 

5.2.6 Discriminators 

In our proposed method, we applied a modified version of the PatchGAN baseline 

architecture [186] for our discriminators, integrating a layer of residual linear attention, as 
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shown in Figure 5.4. The PatchGAN architecture, known for its effectiveness in examining 

both global and local image features, has demonstrated impressive performance in diverse 

GAN applications. The architecture operates by creating multiple 'paths' with different 

receptive field sizes, enabling the model to scrutinize image details at various scales. 

However, we sought to improve the discriminator's ability to focus on critical features by 

incorporating an additional layer of residual linear attention [187]. This is an approach to 

attention mechanisms that makes use of a linear combination of input features and learned 

attention maps, thereby enabling the model to weigh different regions of the input 

differently. As a result, the model can focus on more critical parts of the image, thereby 

enhancing its ability to discriminate real images from synthetic ones accurately. By 

modifying the PatchGAN discriminator, we aimed to improve the model's focus on salient 

image features, thus boosting its ability to accurately distinguish between real and 

generated images. 

 

 

Figure 5.4: A modified version of the PatchGan discriminator used in our proposed cGAN-
Seg. We integrated a layer of residual linear attention to improve the discriminator 
performance. 
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5.2.7 Evaluation metrics 

In the testing phase, we leveraged the Intersection over Union (IoU) metric, also 

known as the Jaccard Index, which ranges from 0 to 1, to evaluate the alignment between 

the segmentation model's predictions and the manually annotated ground truth masks 

[194]. For each test image, we designated each detected cell body as a True Positive (TP) 

prediction if its IoU index exceeded a predetermined threshold value, indicating a valid 

match to the ground truth. Conversely, any ground truth cell body masks that failed to find 

a valid match were classified as False Negatives (FN), and any predictions lacking 

corresponding ground truth masks were labeled as False Positives (FP), representing non-

cell entities. Subsequently, we calculated the Precision, Recall, and F-score for each image 

in the test set using Equations (5.2-5.4). 

Precision =
TP

TP+FP
                                                      (5.2) 

Recall =
TP

TP+FN
                                                           (5.3) 

Fscore = 2 ×
Precision×Recall

Precision+Recall
                                       (5.4) 

We also evaluated our segmentation models using Dice Score. The Dice score, 

also known as the Dice Similarity Coefficient, is a common metric used in the field of image 

segmentation, including cell image segmentation, to measure the similarity between two 

samples and can be measured by Equation (5.5), X represents the set of pixels in the 

predicted segmentation and Y represents the set of pixels in the ground truth segmentation. 

Dice Score = 2 ×
|X∩Y|

|X|+|Y|
                                                 (5.5) 

Frechet Inception Distance (FID) is also a widely used metric to evaluate the quality of 

images generated by GAN models [195]. It quantifies the dissimilarity between the 
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distributions of generated and real images in the feature space of a pre-trained Inception 

network. Lower FID scores represent higher-quality synthetic images that more closely 

resemble the distribution of real images. By assessing differences in both mean and 

covariance of the features, FID provides a more comprehensive evaluation of image quality 

and diversity, making it a good choice for evaluating the performance of our modified 

generator. 

5.2.8 Loss functions 

In the training phase of our cGAN-Seg model, we employed a series of loss 

functions to effectively optimize the performance of both the generator and the 

segmentation model. These loss functions are specifically tailored to address the unique 

challenges presented by the task of generating high-quality synthetic images and 

accurately segmenting cell structures. 

Two fundamental loss functions utilized in our model are identity loss and 

reconstruction loss. Identity loss ensures that an image translated to its own domain 

remains unchanged, which encourages the generator to preserve color and texture 

composition between the input and output [183]. Reconstruction loss, on the other hand, 

is used to maintain cycle consistency, ensuring that an image translated from one domain 

to another can be accurately translated back to its original form. These losses are critical 

to ensure that the model not only learns the correct mappings between the domains but 

also produces images that are consistent with the original data distribution. 

For the generator, we utilized the VGG perceptual feature loss function [190, 196] for both 

identity and reconstruction loss (Equations 5.8 and 5.10). The VGG loss function is a high-

level feature extraction loss that helps preserve the perceptual and semantic understanding 

of the images. It is a concept based on a deep convolutional neural network (CNN), like 

VGG, that has been pre-trained on a large dataset for an image classification task. 
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For the segmentation model, we combined Cross-Entropy (CE) loss and Dice loss 

for both identity and reconstruction loss (Equations 5.9 and 5.11). Cross-Entropy loss is a 

popular choice for multi-class classification problems, calculating the dissimilarity between 

the predicted probability distribution and the ground truth distribution. The Dice loss, on the 

other hand, is specifically designed for handling imbalanced datasets and is extensively 

used in medical image segmentation tasks due to its efficiency in dealing with small objects 

and imbalanced classes. By using these two loss functions in tandem, we enhance the 

performance of our segmentation model, ensuring it can effectively handle the challenges 

of cell image segmentation. 

The discriminators in our model were optimized using the Mean Squared Error 

(MSE) loss as an adversarial loss. This loss function encourages the discriminators to 

distinguish between real and fake images by minimizing the average squared differences 

between the predicted and actual values. 

Each of these loss functions is assigned a specific weight in order to balance their 

contributions during the optimization process (Equations 5.16 and 5.17). By integrating 

these diverse loss functions and carefully selecting their weights, we can effectively train 

our cGAN-Seg model, ensuring both the production of diverse, high-quality synthetic cell 

images and the accurate segmentation of cell structures. 

D1_G_L = MSE(1, D1(DiffAug(Gen(real_mask))))                  (5.6) 

D2_S_L = MSE(1, D2(Seg(real_img)))                          (5.7) 

Rec_G_L = L1(real_img, Gen(Seg(real_img))) + VGG(real_img, Gen(Seg(real_img)))          (5.8) 

Rec_S_L = CE(real_mask, Seg(Gen(real_mask))) + Dice (real_mask, Seg(Gen(real_mask)))  

(5.9) 
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Id_G_L = L1(real_img, Gen(real_mask)) + VGG(real_img, Gen(real_mask))            (5.10) 

Id_S_L = CE(real_mask, Seg(real_img)) + Dice(real_mask, Seg(real_img))            (5.11) 

Real_D1_L = MSE(1, D1(DiffAug(real_img)))                        (5.12) 

Real_D2_L = MSE(1, D2(real_mask))                                (5.13) 

Fake_D1_L = MSE(0, D1(DiffAug(Gen(real_mask))))                    (5.14) 

Fake_D2_L = MSE(0, D2(Seg(real_img)))                             (5.15) 

Total_Gen_loss = D1_G_L + D2_S_L + 100 × Rec_G_L + 100 × Rec_S_L + 50 × Id_G_L +

50 × Id_S_L     (5.16) 

Total_D_loss = 0.5 × Real_D1_L + 0.5 × Real_D2_L + 0.5 × Fake_D1_L + 0.5 × Fake_D2_L        

(5.17) 

5.2.9 Code and data availability   

The Python scripts encompassing the methodologies we developed are publicly 

accessible for download at our GitHub repository: https://github.com/abzargar/cGAN-Seg. 

Additionally, the image dataset utilized in our study is available via a link on the repository's 

page, facilitating easy access for replication and further research efforts. 

5.3 Results 

5.3.1 Model's performance evaluation 

To test our proposed cGAN-Seg approach, we designed and ran three distinct 

segmentation training scenarios: 1) Employing cGAN-Seg to train segmentation models on 

a selected small subset of a dataset, followed by evaluation on the selected test set (Figure 

5.1A); 2) Direct and conventional training of segmentation models on the same small 

subset without cGAN-Seg, with subsequent testing on the same test set (Figure 5.1B); 3) 
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Direct and conventional training of segmentation models on the full dataset of the same 

cell type and assessing its performance on the same test set (Figure 5.1C). To ensure the 

robustness and generalizability of our proposed approach across a diverse range of 

biological contexts, we utilized samples from four different image datasets, each featuring 

different modalities and cell types. These datasets include DeepSea [180], the LiveCell 

dataset [181], the Cell Tracking Challenge dataset [191], and the CellPose dataset [179]. 

For the segmentation tasks, we used the DeepSea baseline architecture [180], as well as 

two of the most widely utilized baselines in the field: the 2D-UNET [185] and the CellPose 

models [179]; The 2D-UNET is known for its high performance and suitability for biomedical 

imaging due to its encoder-decoder architecture, the DeepSea architecture is a streamlined 

adaptation of 2D-UNET optimized for simplicity without compromising on efficiency; and 

CellPose uses a versatile neural network that is trained on diverse cell types, allowing for 

generalization across various cell types. 

In the testing phase, our evaluation focused on the accuracy of the segmentation 

models by measuring the Intersection Over Union (IOU) between predicted and true cell 

masks. Cells detected with an IOU at or above our threshold were labeled as the correct 

detection. To provide a holistic view of model performance, we calculated precision, recall, 

and the F-score. These metrics inherently account for the impact of false positives 

(incorrectly predicted cells) and false negatives (missed actual cells), offering a balanced 

measure of our models' effectiveness across varying IOU thresholds (Equations 5.2-5.4). 

In all experiments and score reports, we applied the five-fold cross-validation technique, 

aiming to provide a more robust assessment of the segmentation model's performance by 

reducing the impact of random variations in the training and validation data splits and 

ensuring that the model's performance is not overly influenced by a specific subset of the 

data. 
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Figure 5.5 presents the average f-score of three segmentation models trained 

using the cGAN-Seg method on a small dataset of 200 samples. This performance is 

compared with that achieved by conventional training methods (Figures 5.1B and 5.1C), 

using both the same small dataset and a larger dataset of 1000 samples. It focuses on two 

distinct cell types from the DeepSea dataset for which sufficiently large, annotated image 

collections were available. In all test experiments, cGAN-Seg significantly improved the 

performance of three segmentation models of 2D-UNET, CellPose, and DeepSea almost 

at all IOU threshold values compared to when we trained the segmentation model with the 

same limited dataset. This enhancement is particularly evident in stem cell samples, which 

pose a greater challenge due to the higher diversity and complexity of cell images. 

Importantly, the segmentation scores achieved using the cGAN-Seg method with a limited 

dataset closely match, or even surpass, those of segmentation models trained with 

traditional approaches on large datasets. This outcome underscores the cGAN-Seg 

architecture's style generator's capability to produce a diverse enough array of samples 

during training. This diversity effectively compensates for the limited data available to the 

segmentation model, showcasing the method's efficiency in optimizing performance 

despite data constraints. 

Next, we extended our analysis to two other publicly available datasets or 

microscopy images, LiveCell and Cell Tracking Challenge, to test the applicability of cGAN-

Seg for a diverse set of cell types. Table 5.1 summarizes an f-score comparison between 

the conventional segmentation and our proposed cGAN-Seg training method for different 

cell types in the LiveCell and Cell Tracking Challenge datasets. In addition, we measured 

the average recall, precision, and dice score metrics (Tables 5.2-5.4) for the 2D-UNET and 

CellPose models. The results demonstrate that the cGAN-Seg model improves the 

segmentation model performance in every case. This consistent enhancement across 
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different cell types and experimental conditions highlights the model's robustness and its 

adaptability to the inherent variations present in biological imaging data, particularly where 

data scarcity often limits the efficacy of conventional approaches. 

Next, we sought to test the impact of the modifications we introduced in the 

CycleGAN-based approach on the generation of synthetic images of cells by comparing 

synthetic cell images generated by three different generator configurations: 1) UNET 

generator with L1 loss, 2) StyleUNET generator with L1 loss, and 3) StyleUNET generator 

with L1+VGG loss (Figure 5.6) and used the DeepSea model for the segmentation part. 

Synthetic images generated by the UNET model with L1 had an average Frechet Inception 

Distance (FID) score of 98, indicating a high dissimilarity between the synthetic and real 

cell images. The FID score dropped to 43 when we applied StyleUNET with L1 loss, 

resulting in increased similarities between synthetic images and real images. This 

improvement primarily stems from the enhanced capability of StyleUNET to capture and 

generate variations in style. Lastly, when we applied StyleUNET with the VGG perceptual 

loss, the synthetic images achieved a remarkably enhanced FID score of 23, reflecting a 

substantial increase in similarity to real cell images. The overall results of these 

modifications are synthetic images with detailed representations of features at subcellular 

levels. The enhanced similarity of synthetic images and lower FID score signifies the 

superiority of the perceptual loss function in preserving high-level details and morphological 

nuances, thereby leading to more realistic synthetic images.  

To demonstrate the extensibility of our proposed approach, we trained the cGAN-

Seg model across various imaging modalities, diverse cell types, and subcellular 

organelles (from DeepSea and CellPose datasets). Subsequently, the trained StyleUNET 

generator was employed to produce synthetic images that span these diverse conditions. 

While the limited number of available annotated images posed a challenge for a subset of 
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samples, our SyleUNET generation model still generated realistic synthetic images similar 

to the real domain images and relatively overall low FID scores (Figure 5.7). We anticipate 

that with more extensive training data, the model's capacity for generating high-quality 

images would be significantly enhanced. 

Most of our training data consisted of low and mid-density cell images. We were 

curious to test if our generator could extrapolate its knowledge by generating new synthetic 

high-density images of cells that were not seen during training. This is particularly useful 

as manual annotation of high-density images of cells can be very time-consuming and 

error-prone. To accomplish this, we designed an algorithm for generating synthetic high-

density and colony-like cell masks (a relatively easy task) as input for the generator (in the 

test phase). As shown in Figure 5.8, our approach confirms the ability to extrapolate 

knowledge from low and mid-density cell images, creating annotated images across any 

density level and magnification. This also includes the generation of colony-like cell 

formations (Example 3 in Figure 5.8) extending beyond the variations present in the original 

dataset. Such a capacity enables us to create synthetic cell images mimicking a broad 

range of real-world scenarios. The capacity of our model to extrapolate learned knowledge 

to unseen scenarios can provide a powerful tool to generalize this approach, aiming to 

develop segmentation models for a variety of cellular imaging modalities.  

To further assess the capability of the StyleUNET generation model in enhancing 

the segmentation of more challenging, high-density cell images, we used our synthetic 

high-density cell images (showcased in Figure 5.8) to conventionally train a segmentation 

model. To validate the model evaluation process, we categorized the test set images into 

two groups based on their complexity: 'easy' samples, which include isolated cells or cells 

in non-touching colonies, and 'hard' samples, characterized by cells in close contact or 

within touching colonies. In this experiment, we employed the DeepSea model for the 
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segmentation and focused on the DeepSea stem cell test set, where we found enough 

easy and hard samples for this specific analysis. As presented in Table 5.5, integrating 

hard, colony-like, and high-density synthetic images into the training process notably 

enhances segmentation performance on 'hard' samples to a greater extent compared to 

the 'easy' samples, underscoring the effectiveness of StyleUNET generation model outputs 

in tackling complex segmentation scenarios. 
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Figure 5.5: F-Score performance across varied IoU thresholds for A) UNET (top row), B) 
CellPose (middle row), and C) DeepSea (bottom row) segmentation models using cGAN-
Seg training vs. conventional training on datasets of 200 and 1000 samples. 
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Table 5.1: F-Score comparison for cGAN-Seg and conventional segmentation. 
Comparative analysis of average f-scores at 0.5 IoU threshold: cGAN-Seg segmentation 
vs. conventional segmentation using limited datasets (200 training samples) across diverse 
cell types. 

 A172 
[181] 

BT474 
[181] 

Huh7 
[181] 

SkBr3 
[181] 

C2C12 Muscle 
[180] 

PSC 
[191] 

U373 
[191] 

CellPose 0.51 0.53 0.47 0.89 0.79 0.90 0.95 

2D-UNET 0.52 0.53 0.49 0.90 0.79 0.92 0.96 

cGAN-Seg 
Seg: CellPose 

0.60 0.56 0.55 0.91 0.84 0.92 0.98 

cGAN-Seg 
Seg: 2D-UNET 

0.60 0.55 0.59 0.92 0.83 0.95 0.98 

 

 

Table 5.2: Precision comparison for cGAN-Seg and conventional segmentation. 
Comparative analysis of average precision at 0.5 IoU threshold: cGAN-Seg vs. 
conventional segmentation using limited datasets (200 training samples) across diverse 
cell types. 

 A172 
[181] 

BT474 
[181] 

Huh7 
[181] 

SkBr3 
[181] 

C2C12 Muscle 
[180] 

PSC 
[191] 

U373 
[191] 

CellPose 0.63 0.56 0.57 0.89 0.82 0.90 0.91 

2D-UNET 0.63 0.57 0.60 0.90 0.83 0.91 0.95 

cGAN-Seg 
Seg: CellPose 

0.64 0.57 0.59 0.90 0.87 0.90 0.96 

cGAN-Seg 
Seg: 2D-UNET 

0.63 0.58 0.63 0.91 0.87 0.94 0.97 

 

 

Table 5.3: Recall comparison for cGAN-Seg and conventional segmentation. Comparative 
analysis of average recall at 0.5 IoU threshold: cGAN-Seg vs. conventional segmentation 
using limited datasets (200 training samples) across diverse cell types. 

 A172 
[181] 

BT474 
[181] 

Huh7 
[181] 

SkBr3 
[181] 

C2C12 Muscle 
[180] 

PSC 
[191] 

U373 
[191] 

CellPose 0.44 0.51 0.41 0.89 0.76 0.90 0.98 

2D-UNET 0.45 0.50 0.42 0.89 0.75 0.92 0.96 

cGAN-Seg 
Seg: CellPose 

0.57 0.56 0.52 0.90 0.82 0.93 0.99 

cGAN-Seg 
Seg: 2D-UNET 

0.57 0.53 0.56 0.91 0.80 0.95 0.98 
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Table 5.4: Dice score comparison for cGAN-Seg and conventional segmentation. 
Comparative analysis of average dice score at 0.5 IoU threshold: cGAN-Seg vs. 
conventional segmentation using limited datasets (200 training samples) across diverse 
cell types. 

 A172 
[181] 

BT474 
[181] 

Huh7 
[181] 

SkBr3 
[181] 

C2C12 Muscle 
[180] 

PSC 
[191] 

U373 
[191] 

CellPose 0.87 0.80 0.87 0.90 0.87 0.93 0.97 

2D-UNET 0.87 0.80 0.87 0.90 0.87 0.94 0.98 

cGAN-Seg 
Seg: CellPose 

0.85 0.78 0.83 0.89 0.88 0.94 0.98 

cGAN-Seg 
Seg: 2D-UNET 

0.84 0.78 0.83 0.90 0.88 0.95 0.98 

 

 

Figure 5.6: Two examples of comparing the effect of the style injecting technique and Vgg 
perceptual feature loss function on cGAN-Seg performance to generate images of 
DeepSea embryonic stem cells. 
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Figure 5.7: cGAN-Seg can generate synthetic images across multiple imaging modalities, 
cell types, and subcellular organelles (from DeepSea and CellPose datasets) similar to real 
images, as relatively low FID scores show. 
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Figure 5.8: Three examples of producing colony-like and high-density cell images using 
synthetic high-density mask images as input for cGAN-Seg. 

 

Table 5.5: Average f-score comparison before and after adding synthetic high-density cell 
images (generated by the cGAN-Seg generation model) into the conventional training 
process of the DeepSea segmentation model. 

 200 training images 
 

200 training images+700 synthetic images 
 

Easy samples 0.86 0.92 

Hard samples 0.77 0.86 

 

5.4 Conclusion 

A large and diverse annotated dataset of images is key to the successful 

development of deep learning models that can perform across a variety of real-world 

images. Currently, a harmonized large and diverse dataset of microscopy images is not 

available to train new deep-learning models because the annotation of microscopy images 
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is a tedious and time-consuming task. Our study provides a solution to this problem by 

proposing a novel method for training cell segmentation models using a CycleGAN 

approach that we termed cGAN-Seg to address the critical issue of limited annotated data 

in cellular imaging. cGAN-Seg harnesses the potential of GANs to generate a diverse set 

of synthetic realistic cell images, enhance the diversity of the available training datasets 

without manual annotation, and improve the overall performance of the segmentation 

models with a limited annotated dataset. Importantly, we showed that cGAN-Seg allows for 

the extrapolation of knowledge by model by generating synthetic images that the model 

has not been exposed to during the training. 

We made several modifications to the original CycleGAN architecture to build the 

cGAN-Seg model and apply the microscopy images. First, a style generation path was 

integrated into the synthetic image generator to boost variation in synthetic images. 

Second, a linear attention mechanism was incorporated into the PatchGAN discriminator-

based architecture to enhance its differentiation capabilities and synthetic image quality. 

Third, differentiable image augmentation was introduced during the training phase to 

further diversify image generation and reduce the risk of overfitting. Fourth, instead of the 

L1 loss function conventionally used in the CycleGAN, we employed a combination of 

Cross-Entropy (CE) and Dice losses for the segmentation, improving the handling of multi-

class classification and imbalanced datasets. Finally, as a critical modification, we replaced 

the L1 loss function in the generator with a VGG perceptual loss function to promote the 

retention of more high-level features and nuances in the generated synthetic images, 

leading to enhanced similarity between real images of cells and synthetic images. These 

enhancements collectively improved the diversity and quality of synthetic cell images, 

resulting in a more diverse and generalized segmentation model trained with various 

microscopy imaging styles and conditions. 
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Our experimental results show that the proposed cGAN-Seg approach provides a 

straightforward solution for the paucity of annotated microscopy data for training deep-

leaning models. Experimental results showed that the performance of segmentation 

models trained using our cGAN-Seg method improved the segmentation scores across 

different cell types of different datasets. Notably, this enhancement was observed 

irrespective of the scarcity of annotated cell image datasets, illustrating the potential of our 

approach in effectively addressing this prevalent issue in biomedical imaging. 

Implementation of Style injecting in our UNET generator significantly improved the quality 

of synthetic images, reflected by an FID score reduction from 98 to 43. A further 

enhancement was achieved by adding VGG perceptual loss to the conventional L1 loss 

function, resulting in an FID score of 23. We also validated the model's versatility across 

multiple imaging modalities, cell types, and subcellular organelles. Besides, we further 

validated the trained cGAN-Seg ability to extrapolate knowledge from low and mid-density 

cell images, creating annotated images across different density levels and magnifications, 

even those absent in the original training dataset. We extended the utility of the cGAN-Seg 

model by incorporating the generated synthetic high-density cell images into the 

segmentation finetuning process. This addition enhanced the model's segmentation 

capabilities, especially for complex, densely populated cell structures. 

In our experiments, we noticed that the impact of the cGAN-Seg training approach 

varied between different cell-type images. The dataset comprising less complexity and 

lower diversity showed a lower improvement compared to the more complex dataset. This 

can be attributed to the inherent simplicity of the data, which likely enabled the model to 

learn necessary patterns without the need for additional augmented examples. Conversely, 

for complex datasets with more inherent variability, cGAN-Seg proved more beneficial by 

providing diverse synthetic image examples during the training, thus enhancing the model's 
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ability to generalize. We believe that the exact dynamics depend on the specific dataset, 

model, and augmentation techniques used, underscoring the need for task-specific 

experimentation and validation. 

Our CycleGAN-based method opens up new possibilities for training deep-learning 

models for microscopy applications by offering a novel solution to the challenge of limited 

annotated cell image datasets. This study illustrates how generative deep learning 

methods like GANs can be utilized to address data limitations in microscopy, thereby 

pushing the boundaries of what is possible in the field of biomedical imaging. It is important 

to mention that while our approach has shown promising results, there is room for further 

improvement and experimentation, including exploring different GAN architectures and 

further refinement of the augmentation techniques. The generated synthetic images can 

also be made more diverse and realistic through additional modifications in the GAN 

training process. 
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6 tGAN: A GAN-based Super-Resolution Video-to-
Video Time-Lapse Microscopy Generative Model  

 

6.1 Introduction 

Recent advancements in deep learning, particularly in generative adversarial 

networks (GANs) [197], have revolutionized various fields, offering unprecedented 

capabilities in data generation and analysis [198, 199]. GAN models, known for their ability 

to generate highly realistic synthetic data, have found applications across a wide range of 

disciplines, from art creation to medical imaging [200-202]. Their importance in biomedical 

imaging cannot be overstated, as they provide innovative solutions to simulate realistic 

biological data, which is essential for training and testing analytical models [203]. Among 

these applications, the generation of synthetic cell images from time-lapse microscopy 

using deep learning models, especially GANs, stands out as a particularly promising area 

[204]. These models offer new avenues for research in cell biology, enabling the creation 

of detailed and accurate representations of cellular processes. 

Time-lapse microscopy, a crucial tool in cell biology, captures the dynamic 

behaviors of cells over time. However, the analysis of these images poses significant 

challenges, particularly in tracking and interpreting complex cellular dynamics [205]. A key 

hurdle in this process is the lack of annotated datasets, which are vital for training deep 

learning models to accurately perform various tasks related to cell analysis, such as 

segmentation, tracking, and behavior prediction [206]. Annotated time-lapse microscopy 
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images are indispensable for understanding cellular mechanisms and responses, yet 

creating such datasets is often labor-intensive and requires expert knowledge. 

In response to these challenges, this paper introduces a video-to-video generative 

approach designed to generate annotated time-lapse microscopy images. Leveraging the 

capabilities of deep learning, our model transforms binary mask image sequences into 

corresponding high-resolution, synthetic images of cells. This approach not only enhances 

the quality and utility of microscopic images but also opens up possibilities for further 

computational analysis and interpretation in biomedical research. The model offers a 

significant advancement in the automated generation of annotated datasets, facilitating 

more efficient and accurate analysis of cellular dynamics. 

6.2 Methods 

6.2.1 Overview of designing a novel Gan-based super-resolution video 
generator  

The architectural design of our video-to-video generative model is central to its 

performance and is characterized by its two-part structure, encompassing both video-to-

video low-resolution and image-to-image super-resolution models (Figure 6.1A). While the 

low-resolution model adequately captures essential dynamic structures for many 

applications, integrating a separate super-resolution model further enhances the quality of 

synthetic images. This two-part structure is designed to optimize computational efficiency 

and precision. Since the low-resolution model training process involves multiple 

components such as discriminators, flow networks, and the video-to-video generator 

(Figure 6.1B), integrating all these elements at a high resolution would significantly 

increase computational costs and could potentially degrade the performance and training 

efficiency of the generator. Therefore, we initially trained the video-to-video generator in 

low resolution, achieving higher accuracy with less computational overhead. Subsequently, 
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we trained a GAN-based super-resolution model (Figure 6.1C) to refine the video-to-video 

model outputs to high resolution, enhancing the quality and adding necessary details 

crucial for applications requiring high fidelity. This sequential approach not only ensures 

detailed, high-quality outputs but also maintains manageable computational demands, 

facilitating more efficient processing and superior performance in scenarios that require 

detailed, high-resolution images. 

The low-resolution video-to-video generator, inspired by 2D-UNET architecture 

[207], encodes multiple inputs, including current n (for example, two) consecutive mask 

frames, a previously generated cell frame (at t-Ƭ), and a consistent reference background 

image, ensuring context-aware and consistent background generation (Figure 6.1B and 

Figure 6.2). One of the distinctive features of this phase is the inclusion of a reference 

background image. Incorporating a reference background image in our low-resolution GAN 

model enhances contextual accuracy and ensures consistency in background features. It 

also increases the variability of background visual features in synthetic samples, 

accommodating various real-world scenarios like background noises, debris, or optical 

artifacts common in microscopy. This approach enriches the realism and detail of the 

generated images, which is crucial for precise analysis in applications such as time-lapse 

microscopy, where accurate background representation is vital. The integration of attention 

layers allows for adaptively integrating visual features from three model inputs. The 

innovative inclusion of style and noise injection into the decoding path, which was 

introduced and validated in our prior research [208], adds variability and realism to the 

generated images.  

Transitioning to the super-resolution phase, our image-to-image generator 

employs an enhanced UNET-based architecture, incorporating style and noise injection for 

refining textural details and aesthetic elements, adding finer details and thus resulting in 
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higher quality and more detailed images (Figure 6.1C and Figure 6.3). While, in our 

experiments, we targeted a high resolution of 512x768 for the super-resolution model 

output, our model is adaptable and can be easily configured to achieve higher resolutions 

by adjusting its parameters, thus accommodating a diverse range of research 

requirements. The discriminators, designed with a PatchGAN architecture [209] and 

enhanced with a linear attention layer [210], effectively distinguish fine details in images 

(Figure 6.1B and Figure 6.4). This enhances the model’s accuracy in differentiating 

between real and synthetic images. In the training process of the video-to-video generator, 

alongside the GAN and discriminator models, we concurrently trained and used a FlowNET 

(Figure 6.1B and Figure 6.5) designed to calculate and integrate flow loss into the training 

regime. This FlowNET plays a crucial role in determining the optical flow loss [211], 

comparing motion between consecutive frames in both real and generated sequences. 

This is essential for preserving the dynamic nature of cell movements in time-lapse 

microscopy. The optical flow loss computed by our FlowNet ensures that the temporal 

coherence and motion consistency of generated images align closely with actual 

microscopy sequences. However, it is not incorporated in the super-resolution model, 

which concentrates on image-to-image translation rather than the generation of video 

sequences, thereby making flow consistency less relevant in that context. 

Besides, the chosen loss functions, including temporal consistency and perceptual 

losses, ensure temporal coherence and visual similarity between generated and real 

images (Equations 6.1-6.3). Throughout the training process, we also employed robust 

augmentation strategies, including video-level augmentations for general model training, 

as well as video-level differentiable augmentations [212] for the discriminators (Figure 6.6). 

These augmentations enhance the model’s robustness and prevent overfitting, especially 

when the training dataset size is limited, as proved in our previous research [208]. 
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Figure 6.1: Overview of the proposed GAN-based generator. A) Illustration of the two-part 
inference architecture: This includes both the low-resolution video-to-video and super-
resolution image-to-image models, where the initial phase generates low-resolution time-
lapse microscopy image sequences to capture essential cellular dynamics, followed by the 
super-resolution phase that refines these sequences into more detailed and high-quality 
images. B) Low-resolution video-to-video training process: Showcasing the sequence-
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based approach and the integration of various inputs and deep learning components. C) 
Super-resolution image-to-image training process: Highlighting the approach and models 
used for refining textural details and enhancing aesthetic elements, thereby producing 
scientifically accurate and visually high-resolution images. 

 

6.2.2 Datasets 

In our study, we used two distinct training datasets from time-lapse microscopy, 

each representing different cell types, to ensure the robustness and generalizability of our 

proposed generative model across various biological contexts. These include 1) our 

recently published annotated dataset of phase-contrast images from the DeepSea 

collection [213], which comprises a large set of accurately annotated phase-contrast time-

lapse microscopy images of three cell types of Mouse Embryonic Stem Cells, Bronchial 

Epithelial Cells, and Mouse C2C12 Muscle Progenitor Cells; and 2) the Cell Tracking 

Challenge dataset [214], a repository of 2D and 3D time-lapse sequences of fluorescent 

images featuring different cell types such as PSC and U373 cells. 

6.2.3 Low-resolution video-to-video generative model overview 

As illustrated in Figures 6.1B and 6.2, our low-resolution model is a sequence-

based model inspired by the 2D-UNET architecture, known for its efficiency in image 

segmentation tasks [207]. This model is uniquely designed to process three types of input: 

the current consecutive mask images (e.g., two consecutive mask images), the previous 

generated synthetic cell image, and a consistent background image that serves as a 

reference for background visual features. The mask sequences act as the driving force, 

dictating the formation of the synthetic cell images, which are then superimposed onto the 

reference background. This approach allows for a more realistic and context-aware 

generation of cell images, which is essential for accurate subsequent analysis and ensures 

the consistency of the background visual features as well. 
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Central to our model's architecture is the incorporation of specialized attention layers. 

These layers are strategically placed to merge features from three encoded inputs 

adaptively at different down-sampling stages. This process employs an attention 

mechanism, directing the model's focus to the most pertinent features across the different 

inputs, thereby enhancing the detail and relevance of the generated images. In addition to 

structured feature integration, our model innovatively employs style and noise injection 

techniques in its decoding pathway, inspired by advancements in neural style transfer 

[215]. As proved in our previous research [208], this approach introduces a layer of 

variability and texture to the synthetic images, elevating their realism and authenticity. The 

style and noise elements are carefully modulated to complement the intrinsic features of 

the cell images, ensuring that the synthetic outputs are not only high in resolution but also 

rich in biological detail. Its ability to process and integrate multiple input types, coupled with 

the innovative use of attention mechanisms and style injections, sets a new benchmark in 

the field of synthetic image generation for time-lapse microscopy.  
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Figure 6.2: Detailed architecture of the low-resolution sequence-based generative model 
utilizing 2D-UNET encoding and decoding pathways, attention mechanism, and style 
injections. 

 

6.2.4 Super-resolution image-to-image generative model overview 

Following the generation of low-resolution synthetic cell image sequences, our 

approach employs a super-resolution generative model to further refine and enhance these 

synthetic images (Figure 6.3). This super-resolution model, similar to its low-resolution 

counterpart, is built on a UNET-based architecture [207] but with additional enhancements. 

This model similarly integrates style and noise injection techniques in its decoding path, 



120 
 

which is influenced by StyleNet principles [215]. The style and noise injection significantly 

enhance the textural details and stylistic elements, contributing to the generation of more 

realistic and aesthetically consistent images, as demonstrated in our previous research 

[208]. The architecture features a sequence of encoder blocks that increase feature map 

depth, capturing intricate cell details. This is followed by a bottleneck process that prepares 

these features for nuanced reconstruction. In the decoder stages, the model combines 

upsampled features with style and noise information, progressively enhancing image 

resolution and quality. An additional upsampling layer in the decoder further increases the 

output resolution to 512x768, which can be adjusted to higher resolutions by modifying the 

model parameters.  

 

Figure 6.3: Super-resolution generative model architecture for refining low-resolution 
synthetic cell image sequences, integrating UNET-based design with style and noise 
injection techniques. 
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6.2.5 Discriminator architecture overview 

The discriminator plays a pivotal role in distinguishing between real and generated 

images. We have chosen the PatchGAN architecture for the discriminator of both low-

resolution and high-resolution training, enhanced with the addition of a linear attention layer 

in its early layers (Figure 6.4). This architecture and the inclusion of specific components 

are deliberate choices aimed at optimizing the discriminator’s performance. PatchGAN is 

known for its effectiveness in distinguishing fine details in images, making it a good choice 

for our purposes [209]. Unlike traditional discriminators that classify an entire image as real 

or fake, PatchGAN focuses on classifying smaller patches of the image. This approach is 

particularly beneficial for our model as it ensures that the generated images not only look 

realistic on a macro scale but also maintain high fidelity in finer details. In the measurement 

of our low-resolution discriminator loss, we employed a specific approach to enhance the 

model’s discriminative capability. At each training step, we concatenated the last n (e.g., 

two) real and synthetic (fake) frames along with their corresponding last two real binary 

mask frames. This concatenation provides the discriminator with a more comprehensive 

context, allowing it to assess not just the individual frames but also their temporal 

consistency and alignment with the binary masks. This technique is particularly effective in 

reinforcing the discriminator’s ability to discern subtle differences between real and 

generated image sequences, thereby sharpening the adversarial dynamic of the model. 

The integration of a linear attention layer in the early layers of the discriminator is a 

beneficial approach. Attention mechanisms have gained popularity in various deep-

learning applications for their ability to enhance model performance by focusing on relevant 

features while ignoring irrelevant ones [210]. The linear attention layer in our model allows 

the discriminator to prioritize certain aspects of the image, such as specific textures or 

patterns that are crucial for making accurate classifications. This focused approach 
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improves the model’s efficiency and accuracy in distinguishing real images from synthetic 

ones. 

 

Figure 6.4: Discrimination model architecture employing PatchGAN techniques with linear 
attention. 

 

6.2.6 FlowNet architecture overview 

In the training process of the low-resolution video-to-video generative model, we 

simultaneously trained a FlowNET model (Figure 6.5), a specialized component designed 

to calculate and integrate flow loss. This flow loss is crucial for accurately simulating the 

dynamics of cell movements, thereby enhancing the temporal consistency across video 

frames [211]. We incorporated this additional loss metric to optimize the generative model's 

weight updates, specifically aiming to maintain temporal coherence in the synthesized 

video sequences. This strategy ensures that the generated sequences not only mirror real-

world temporal dynamics but also enhance the realism and scientific applicability of the 

generated images. 

The optical flow loss, calculated by our FlowNET, is pivotal in maintaining the 

integrity of temporal dynamics across generated frames, aligning these dynamics closely 

with real-world observations to enhance the realism and scientific utility of the synthetic 

images. It’s important to note, however, that the application of flow loss is selectively 
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applied; it is not utilized in the high-resolution model, which focuses primarily on enhancing 

image detail through image-to-image translation, thus reducing the need for temporal 

consistency in that specific context.  

 

Figure 6.5: Our FlowNET model architecture used in the training process of the video-to-
video low-resolution generative model. 

 

6.2.7 Augmentation Process in Training 

We employed a robust augmentation pipeline to enhance the training of both the 

generators and discriminators. This process involves applying a series of video-level 

augmentation functions to each training sample, designed to introduce variability and 

improve the model's generalization capabilities. As illustrated in Figure 6.6A, we applied 

some mostly used conventional image augmentation functions, including random 

adjustments in histogram equalization, sharpness, brightness, and contrast, as well as 

horizontal and vertical flips, cropping, saturation modifications, and the addition of 

Gaussian noise and blur. The training algorithm executes a sequence of the provided 

augmentation functions for each cell and mask video pair with a pre-defined probability 

value 'p_vanilla'. In the requested augmentation pipeline, each function is randomly chosen 

with a consistent probability of 50% and is also applied in a randomized sequence. 
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In the training of GAN models, the limitations of conventional augmentation 

become apparent, particularly in its inability to significantly diversify the generated images 

when the training dataset size is limited. To address this challenge, the concept of 

differentiable augmentation, detailed in [212], proves to be invaluable. This approach has 

also been validated in our previous research [208]. Differentiable augmentation applies the 

same random augmentations to both real and fake samples in a way that is differentiable 

with respect to the model parameters. This approach encourages the discriminator to 

mitigate overfitting and improve training stability, making it particularly beneficial for GANs 

trained with limited data, thus causing the generator to produce more diverse images, 

thereby improving the overall image generation performance. In the training process, we 

ran five distinct differentiable video-level augmentation functions, such as random contrast, 

brightness, cutout, translation, and saturation (Figure 6.6B). The application of each 

augmentation is controlled by a predetermined probability variable, 'p_diff'. To promote 

unbiased representation and randomness in the training data, these augmentations are 

applied in a random sequence. Each function has an equal chance of being selected, set 

at a 50% probability.  



125 
 

 

Figure 6.6: The proposed video-level augmentation approach used in the training process. 

 

6.2.8 Loss functions and their rationale 

We employed a combination of other critical loss functions (Equations 6.1-6.3) to 

guide the models effectively during the training process. These include perceptual (VGG) 

loss [216], L1 loss, and discriminator loss, each serving a specific purpose and contributing 

to the overall performance and accuracy of the model. The perceptual (VGG) loss and the 

L1 loss, respectively, ensure perceptual and pixel-wise similarity between the generated 

and real images. These losses focus on high-level features and granular accuracy. The 
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discriminator loss, Mean Squared Error (MSE), plays a dual role: for the generator, it 

gauges effectiveness in deceiving the discriminator, and for the discriminator, it evaluates 

its capacity to differentiate real from synthetic images. This adversarial loss is key in driving 

the generative process toward producing images that closely mimic real ones. 

We also, in the training process, assigned a specific weight (w1-w3) for each of 

these loss functions aiming to ensure a balanced contribution during the optimization 

process. This weighting is crucial as it fine-tunes the impact of each loss function according 

to its relevance and importance in the image generation task. It is important to note that we 

do not employ flow loss in the training process of the super-resolution model, as the 

FlowNET, which calculates flow loss, is not utilized in this phase of the training. This 

decision is based on the super-resolution model’s focus on image-to-image translation 

rather than temporal video sequence generation. 

Low_Res_Gen_loss = D_MSE + w1 × Floss_Loss + w2 × L1_Loss + w3 × VGG_Loss      (6.1) 

High_Res_Gen_loss = D_Fake_MSE + w2 × L1_Loss + w3 × VGG_Loss             (6.2) 

D_loss = 0.5 × D_Real_MSE + 0.5 × D_Fake_MSE                             (6.3) 

6.2.9 Code availability   

The Python scripts that implement the methodologies we developed are publicly 

available for download at our GitHub repository: https://github.com/abzargar/tGAN. 

Additionally, the image datasets used in our study can be accessed through a link on the 

repository page, enabling straightforward replication and further research. 
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6.3 Results 

6.3.1 Model's performance evaluation 

In Table 6.1, we compared the performance of our model with the vid2vid model, 

a notable example among state-of-the-art video-to-video generative models [217]. The 

vid2vid framework is particularly relevant for our comparative analysis as it is among very 

few publically available generative models capable of translating mask scene sequences 

into realistic scene sequences and generating high-resolution video frames. This capability 

aligns closely with our model's application in generating annotated video datasets, making 

it an appropriate benchmark for assessing our model's efficacy.  we employed a set of 

metrics to benchmark its performance. This included the Structural Similarity Index (SSIM) 

and Peak Signal-to-Noise Ratio (PSNR) for assessing image quality and similarity to real 

frames [218]. Additionally, we utilized the Frechet Video Distance (FVD) [219] to measure 

the distributional similarity between generated and real images, providing insights into the 

perceptual quality of our model's outputs. To evaluate the temporal coherence of generated 

video sequences, we adopted specific metrics designed to assess the smoothness and 

continuity of changes across frames. Finally, the Perceptual Image Patch Similarity (LPIPS) 

metric [220] was used to gauge the perceptual resemblance of generated images to real 

ones, ensuring that our model's outputs align closely with human visual judgment. 

Together, these metrics provided a robust framework for evaluating and benchmarking our 

model in a video-to-video generation. As presented in Table 6.1, our tGAN model obtained 

better performance across almost all the metrics and five cell types when tested on the 

DeepSea [213] and Cell Tracking Challenge [214] dataset time-lapse image sequences. 

The use of these two annotated time-lapse microscopy datasets, with their challenging 

imaging conditions, further emphasizes the robustness and versatility of our approach, 

making it a significant contribution to the field of biomedical imaging and analysis. In Tables 

6.2 and 6.3, we further evaluate the quality of video frames generated by our tGAN and 
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the vid2vid model. This assessment is conducted using the DeepSea cell tracker [213] and 

Bayesian Tracker (btrack) [223], comparing the results to real annotated time-lapse videos 

from the DeepSea dataset. The evaluation leverages various object-tracking metrics that 

we described in our previous research [213], allowing for a detailed comparison of each 

cell-tracking model's performance. This evaluation focuses on how closely our model's 

tracking scores align with the ground truth annotated cell image sequences and align with 

our primary objective, which is to develop a GAN model capable of producing realistic 

annotated time-lapse microscopy images, addressing the scarcity of annotated data for 

training the sequence-based deep learning models, such as cell trackers. 

The DeepSea tracker, already trained on the DeepSea dataset samples, shows 

better results than btrack in all cases. More importantly, our tGAN model shows better and 

closer results to real annotated time-lapse microscopy cell images compared to the vid2vid 

model. This confirms that the video frame sequences generated by our tGAN model 

possess more realistic static and dynamic structures across frames, further validating the 

effectiveness of our approach in producing high-quality synthetic imagery. 

Table 6.1: Comparative assessment of model performance. This table presents a 
comparison of our model's performance across five different cell-type image sequences 
against the vid2vid model, measuring different video similarity metrics. 

Method FVD (↓) SSIM (↑) PSNR (↑) LPIPS (↓) 

 Mouse Embryonic Stem Cells [21] 

vid2vid [217] 44.18 0.81 25.31 0.36 
tGAN (ours) 8.83 0.95 32.58 0.19 

 Bronchial Epithelial Cells [213] 

vid2vid 47.32 0.83 26.61 0.35 
tGAN (ours) 17.21 0.90 28.42 0.25 

 Mouse C2C12 Muscle Progenitor Cells [213] 

vid2vid 12.72 0.73 19.19 0.36 
tGAN (ours) 14.93 0.89 23.14 0.21 
 PhC-C2DH-U373 [214] 
vid2vid 8.86 0.88 25.91 0.25 
tGAN (ours) 6.43 0.91 26.58 0.18 
 PhC-C2DL-PSC [214] 
vid2vid 127.58 0.51 10.03 0.39 
tGAN (ours) 98.27 0.84 15.68 0.13 



129 
 

 

Table 6.2: Quality evaluation of synthetically generated time-lapse microscopy sequences 
using DeepSea Cell tracking model, measuring different object-tracking metrics. 

Time-lapse test 
sequences 

MOTA 
(↑) 

MT 
(↑) 

ML 
(↓) 

Precision 
(↑) 

Recall 
(↑) 

 Mouse Embryonic Stem Cells [213] 

Real 0.90 0.82 0.02 0.96 0.94 

Synthetic Vid2vid 0.73 0.57 0.09 0.94 0.81 

Synthetic tGAN 0.93 0.90 0.01 0.97 0.98 

 Bronchial Epithelial Cells [213] 

Real 0.93 0.94 0.02 0.96 0.98 

Synthetic Vid2vid 0.88 0.88 0.03 0.89 0.90 

Synthetic tGAN 0.91 0.92 0.03 0.95 0.97 

 Mouse C2C12 Muscle Progenitor Cells [213] 

Real 0.80 0.64 0.03 0.93 0.89 

Synthetic Vid2vid 0.52 0.23 0.25 0.74 0.64 

Synthetic tGAN 0.76 0.60 0.06 0.94 0.85 

 

Table 6.3: Quality evaluation of synthetically generated time-lapse microscopy sequences 
using the btrack model, measuring different object-tracking metrics. 

Test set MOTA (↑) MT (↑) ML (↓) Precision (↑) Recall (↑) 

 Mouse Embryonic Stem Cells [213] 

Real 0.85 0.80 0.02 0.93 0.94 

Synthetic Vid2vid 0.73 0.51 0.18 0.86 0.84 

Synthetic tGAN 0.92 0.90 0.01 0.96 0.97 

 Bronchial Epithelial Cells [213] 

Real 0.84 0.75 0.25 0.87 0.98 

Synthetic Vid2vid 0.78 0.52 0.12 0.79 0.95 

Synthetic tGAN 0.83 0.73 0.27 0.86 0.96 

 Mouse C2C12 Muscle Progenitor Cells [213] 

Real 0.80 0.62 0.04 0.93 0.88 

Synthetic Vid2vid 0.53 0.23 0.25 0.74 0.63 

Synthetic tGAN 0.75 0.56 0.09 0.93 0.81 

 

Figure 6.7 showcases examples of two consecutive frames generated by our tGAN 

for each of the three DeepSea cell types. Additionally, these outputs are compared with the 

corresponding outputs from the vid2vid model. As observed, our tGAN-generated images 

successfully capture realistic details of the cell bodies, including features like the nucleus, 

as well as the nuances of the background, demonstrating the model’s effectiveness in 

rendering intricate biological structures. Figure 6.8 also compares the performance of our 
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tGAN output with the vid2vid model, specifically focusing on the ability to replicate fine 

visual features of single stem cells. This comparison highlights the intricacies and 

effectiveness of each model in capturing detailed cellular characteristics. In Figure 6.9, we 

also present the capability of our proposed approach in generating cell image sequences 

against a variety of backgrounds given two reference background images. As shown, these 

backgrounds are precisely referenced from the reference background image used in the 

low-resolution video-to-video model, highlighting our method’s adaptability in replicating 

diverse cell environmental settings. 
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Figure 6.7: The examples of two consecutive synthetic cell images generated by our 
proposed tGAN model compared to the vid2vido model outputs. 
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Figure 6.8: Comparative performance of our model vs. vid2vid in replicating fine visual 
features of single stem cells. 

 

Figure 6.9: The examples of applying different reference background images for the same 
sample. 

 

In a plot analyzing the FVD score against the length of the tGAN-generated video 

in frames (Figure 6.10), we observed that the FVD scores exhibited only a slight fluctuation, 

approximately 1 FVD unit when comparing videos ranging from 10 to 30 frames in length. 
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This consistency in FVD scores, regardless of video length, underscores our tGAN model's 

stability and reliability in generating high-quality video sequences over varying durations. 

Besides, we noticed that the tGAN training dataset (DeepSea and Cell Tracking Challenge 

Datasets) predominantly contained low and mid-density cell image sequences, which led 

us to investigate if our model could generate synthetic high-density cell images, a type not 

seen during training. This aspect is crucial as manual annotation of high-density images is 

laborious and prone to errors. Therefore, we developed an algorithm specifically for 

creating synthetic high-density and colony-like time-lapse binary mask images (a task that 

can be comparatively straightforward using image processing techniques). These were 

then used as inputs for our tGAN generator during testing. Figure 6.11 demonstrates our 

model's successful extrapolation from low and mid to high-density images, proving its 

ability to produce a broad spectrum of realistic cell images and highlighting its potential in 

various applications.  

 

 

Figure 6.10: Frechet Video Distance (FVD) scores across different video lengths for three 
DeepSea cell-type time-lapse video frames. 
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Figure 6.11: The examples of producing synthetic high-density and colony-like time-lapse 
cell video frames using our tGAN given synthetically generated binary mask images. 
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6.4 Conclusion 

A foundational aspect of developing deep learning models, particularly in the field 

of biomedical imaging, is the availability of a large and diverse annotated dataset. However, 

the creation of such datasets for microscopy images is often hindered by the laborious and 

time-consuming nature of manual annotation. Addressing this bottleneck, our study 

introduced a GAN-based super-resolution video generator designed to bridge the gap 

caused by the scarcity of annotated microscopy datasets, a field that demands high 

accuracy and detail in image processing. By utilizing our model, we effectively circumvent 

the need for extensive manual annotation, generating realistic and diverse sets of synthetic 

annotated time-lapse cell images. This approach not only enhances the breadth of 

available training data but also significantly boosts the performance of the models, such as 

the cell segmentation and cell dynamic tracking models, particularly in scenarios with 

limited annotated datasets. 

The model's two-part structure adeptly handles both low-resolution and high-

resolution image generation, a design choice that has proven pivotal in its performance. 

The integration of style and noise injection, coupled with the inclusion of a reference 

background image, improves the generation of synthetic time-lapse cell images. These 

features not only enhance the realism and detail of the generated images but also ensure 

their adaptability to diverse environmental settings. A critical aspect of our study was the 

use of different cell types, encompassing a variety of challenging cell imaging scenarios. 

Our model's superior performance in generating high-quality, realistic time-lapse 

microscopy videos, as evidenced by its outperformance of state-of-the-art models, 

underscores its effectiveness in handling complex microscopy images. This success is 

quantitatively supported by comprehensive metrics, which collectively affirm the model's 

superiority in image quality, temporal coherence, and perceptual accuracy. Besides, our 
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model's ability to generate high-density cell images marks a useful advancement in the 

field. This capability addresses a critical need in biological research, where high-density 

cell images are often challenging to annotate manually. By generating synthetic high-

density cell binary masks and using them as the model inputs in the test phase, we 

demonstrated the model's capacity to extend its application beyond the conditions 

experienced during training. This extrapolation is a practical benefit that can help reduce 

the time and effort required for manual annotation. 

In conclusion, our tGAN model stands as a robust tool in biomedical imaging, 

capable of generating high-quality synthetic annotated time-lapse cell images across a 

spectrum of densities and cell types. While our current focus has been on the DeepSea 

and Cell Tracking Challenge datasets, the model's architecture and performance suggest 

a broader applicability across various cellular imaging modalities. Future work could 

explore the model's adaptability to even more diverse cell types and imaging conditions, 

as well as optimize computational efficiency for larger datasets. The potential for further 

enhancing the model's generalization capabilities remains an exciting prospect, paving the 

way for its application in a wider array of biomedical research scenarios. 
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7 Quantitative Analysis of Single-Cell Images 

 

7.1 Introduction 

In recent years, the field of cellular biology has been transformed by advances in 

imaging and computational technologies, enabling researchers to study single cells in 

unprecedented detail [222, 223]. This chapter focuses on the quantitative analysis of single 

cells, employing cutting-edge imaging techniques and sophisticated data analysis methods 

to delve into the cellular microcosm. Our primary goal is to characterize the inherent 

heterogeneity and dynamic behaviors of cells, which are often obscured in bulk cell 

analyses. 

Single-cell analysis is pivotal for understanding the complex landscape of cellular 

functions across different cell types and states. By quantitatively measuring a wide range 

of cellular features such as shape, size, and internal structures, we can glean insights into 

the roles individual cells play in both health and disease. This approach is particularly 

beneficial for identifying subtle phenotypic variations that contribute to diverse biological 

functions and responses to environmental stimuli [224, 225]. 

Moreover, the ability to dissect the interactions of cells within their 

microenvironment opens new avenues for exploring how cells communicate and cooperate 

with each other, and how they contribute to the architecture and functionality of tissues. 

These insights are crucial for unraveling the mechanistic bases of biological processes and 

for understanding the progression of complex diseases such as cancer, where the 
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microenvironment plays a key role in disease development and response to treatment 

[226]. 

In addition to providing a snapshot of cellular diversity, quantitative single-cell 

analysis facilitates the study of cellular dynamics over time. By tracking changes in 

individual cells, we can observe cellular responses to external stimuli, understand cellular 

aging processes, and investigate mechanisms of disease progression at a granular level. 

This dynamic perspective is essential for developing more effective therapeutic strategies 

that target specific cell populations or that modulate the cellular environment [227, 228]. 

In this chapter, we describe the use of computational methods to conduct a 

quantitative analysis of single cells from the DeepSea dataset [229]. We discuss the 

computational tools and algorithms used to extract meaningful data from single-cell 

images, highlighting how different cell types exhibit unique morphological and functional 

traits. Initially, high-resolution microscopy images of DeepSea stem cells, lung cells, and 

muscle cells were segmented using the DeepSea tool [229], ensuring accurate cellular 

representations. Following segmentation, detailed feature extraction was performed using 

both conventional morphological metrics and innovative pixel intensity-based features. 

Morphological data was further processed with the Celltool software for alignment and 

normalization, facilitating comparative analyses across different cell types and conditions. 

In addition to morphological analysis, we extracted spatial and frequency features 

to explore more granular aspects of cell structure and function. These features were 

analyzed to understand the distribution and variability in pixel intensity, which reflect 

underlying cellular processes not apparent through morphology alone. We applied 

statistical methods and machine learning algorithms, including k-means clustering and 

silhouette score analysis, to assess the clustering quality and distinguishability of the 

features. This comprehensive approach enabled us to characterize cellular heterogeneity 
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and uncover critical insights into the dynamic behaviors and interactions of single cells 

within their microenvironments. 

7.2 Methods 

7.2.1 Dataset 

In this study, we leverage our DeepSea dataset [229], which consists of high-

resolution time-lapse microscopy images capturing three distinct cell types: mouse 

embryonic stem cells, bronchial epithelial cells, and mouse C2C12 muscle progenitor cells. 

The inclusion of time-lapse imaging enables the study of temporal changes within cells, 

offering insights into cellular processes over time. Utilizing this dataset, our research aims 

to dissect the complex biological characteristics of these cell types, understanding their 

unique and shared features across different conditions and over time. This comprehensive 

approach ensures a deep and nuanced exploration of cellular morphology and behavior, 

critical for advancing our understanding of cell biology. 

7.2.2 Cell Shape Alignment and Normalization Using Celltool 

The morphological analysis of single cells commenced with an in-depth 

examination of cell shapes. To ensure the integrity of our results, it was necessary to 

perform precise cell shape alignment and normalization. The individuality of each cell's 

orientation, specifically the variance in the major axis across the population, presents a 

significant analytical challenge. To facilitate comparative analysis and feature extraction, 

standardizing these orientations was imperative [230, 231]. 

Celltool [232], a comprehensive suite tailored for cellular morphology analysis, was 

instrumental in our process. This robust collection of analytical tools allowed us to 

meticulously process the segmented cell images. Its functionality extends beyond mere 

extraction; Celltool systematically aligns every cell contour along its longest axis (Figure 

7.1). This standardization is critical for establishing a uniform frame of reference across all 
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cells, thereby enabling the extraction and comparison of shape features on a common 

scale. 

With the assistance of Celltool, we could navigate the complexities of cellular 

morphology. By plotting the variation in cell shape—referred to as shape modes—we were 

able to visualize and quantify the degree of morphological diversity present within our cell 

populations. The software's capability to perform statistical comparisons of shape 

distributions empowered us to discern subtle morphological differences and categorize 

cells into distinct phenotypic profiles. 

This systematic approach to cell shape alignment and normalization not only 

standardized the orientation and scale of the cells but also provided a foundation for a more 

nuanced and quantitatively robust analysis. As a result, the extracted shape features could 

be directly correlated to cellular function and phenotype, offering a clear window into the 

biological significance of morphological variation. This preparatory step, therefore, was 

pivotal in achieving the overarching goal of our study: to elucidate the complexities of 

cellular form and function through quantitative analysis. 

 

 

Figure 7.1: Cell shape alignment and normalization using Celltool [232]. 
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7.2.3 Cell Feature Extraction 

- Cell Shape Features: 

The first category we delved into was cell shape features. These attributes are 

crucial as they often correlate directly with the specialized functions cells perform within 

the body. Evolution has sculpted cells into specific shapes to optimize their roles, from 

nutrient absorption to rapid mobility. Therefore, by examining the shape of cells, we gain 

valuable insights into their biological roles. 

To obtain these shape features, the initial step is to distinguish the cell body from 

its surroundings using segmentation tools like DeepSea. Once isolated, a variety of image 

processing techniques can be applied to extract a suite of shape features (Figure 7.2). In 

our study, we identified and computed 20 significant shape features that include area, 

perimeter, aspect ratio, rectified area, extent, convex area, solidity, equivalent diameter, 

orientation, major and minor axis lengths, eccentricity, axis ratio, circularity, convex 

perimeter, waviness, and the Fréchet extrema and coefficient of variation (fret_max, 

fret_min, fret_mean, fret_CV). Each of these features offers a different perspective on the 

cell's morphology and, by extension, its function. 

 

Figure 7.2: Some of the cell shape features we extracted from the segmented cell body. 
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- Frequency and Spatial Features: 

While shape features are visually intuitive and easily interpretable, they represent only a 

portion of the information available within cellular images. To broaden our analysis, we 

incorporated frequency and spatial features, which can be thought of as 'hidden' features. 

These attributes are not immediately apparent to the naked eye but can be critical 

indicators of cellular behavior and function. 

As illustrated in Figure 7.3, the spatial features we analyzed, such as texture, Gray 

Level Co-occurrence Matrix (GLCM), and Gray Level Difference Method (GLDM), give us 

an understanding of the distribution of pixel intensities across the cell's area [233, 234]. In 

contrast, frequency features derived from the Fast Fourier Transform (FFT) and wavelet 

transform examine the variation in pixel intensity across the cell's domain [235, 236]. These 

features provide a more comprehensive view of a cell's internal structure and activity by 

detailing how often pixel intensities fluctuate in various directions. 

 

Figure 7.3: Frequency and spatial features we extracted from the segmented cell body. 
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- Comprehensive Feature Analysis: 

Upon extraction, we were faced with a rich dataset comprising 251 frequency and spatial 

features alongside the 20 cell-shape features. The next step was to evaluate these features 

to determine their significance and ability to convey cellular information. Our goal was to 

identify the most salient and distinctive features—those that not only define cellular identity 

but also carry implications for understanding cell functionality. 

This endeavor provided us with a multi-faceted view of cells, combining the 

tangible aspects of cell shape with the more elusive but equally important frequency and 

spatial features. By doing so, we aimed to capture a holistic picture of the cell, one that 

extends beyond mere form to encompass dynamic processes and interactions within the 

cell's internal and external environments. 

7.2.4 Cell Feature Clustering and Analysis 

Upon extracting a comprehensive set of cellular features, our analysis progressed 

to the evaluation of their discriminatory power using clustering techniques. Clustering 

scores serve as a quantitative benchmark for determining the effectiveness of each feature 

in differentiating individual cells. To facilitate this, we employed the k-means clustering 

algorithm [237], a widely used method due to its efficiency and simplicity in grouping data 

into coherent subsets. 

The k-means algorithm was utilized to categorize the cell bodies into distinct 

clusters based on the plethora of extracted features (Figure 7.4). This unsupervised 

learning algorithm operates by partitioning the cells into k clusters, where each cell belongs 

to the cluster with the nearest mean feature vector, thus minimizing within-cluster 

variances. The process iteratively assigns cells to clusters based on their Euclidean 

distances from the centroids of the clusters. 
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To evaluate the performance of the k-means clustering, we relied on the silhouette 

score—a metric that assesses the quality of the clustering. The silhouette score is 

calculated for each sample and provides a measure of how similar that sample is to 

samples in its own cluster compared to samples in other clusters. Scores close to 1 suggest 

that samples are far away from neighboring clusters, indicating well-separated and defined 

groupings. Conversely, scores near -0 indicate overlapping clusters with poor separation. 

The silhouette score is particularly valuable as it incorporates both cohesion and 

separation—two key aspects of successful clustering. Cohesion measures how closely 

related objects are within the same cluster, while separation quantifies the distinctness of 

different clusters from one another. A high average silhouette score across all cells 

suggests that the clustering method has successfully captured the intrinsic patterns and 

structures present in the cellular feature space. 

 

 

Figure 7.4: Single-cell feature clustering using the K-means method. 

 

7.2.5 Optimal Feature Selection 

In the pursuit of refining our feature set for maximal interpretability and efficiency, 

we adopted Particle Swarm Optimization (PSO) [238] as a heuristic approach to identify 
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the most impactful and relevant features that contribute to the highest clustering 

(silhouette) score. PSO is a computational method inspired by the social behavior of birds 

flocking or fish schooling and is adept at solving complex optimization problems by 

iteratively improving a candidate solution with regard to a given measure of quality. 

Our method integrated PSO to adjust importance weights dynamically within the 

original cell feature vector (Equations 7.1 and 7.2). As depicted in the accompanying 

flowchart in Figure 7.5, the PSO algorithm navigates through the multi-dimensional feature 

space, assigning and adjusting weights with the explicit goal of maximizing the silhouette 

score. Throughout this optimization process, the algorithm evaluates the contribution of 

each feature to the clustering outcome. 

FOriginal = [F1, F2, F3, … . , Fn]                                            (7.1) 

FNew = [w1F1, w2F2, w3F3, … . , wnFn]                                     (7.2) 
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Figure 7.5: Single cell feature selection using particle swarm optimization. 

 

One of the defining steps in our PSO application is the iterative selection and 

deselection of features based on their weighted importance. Features that receive a weight 

above a pre-defined threshold (in our case, 0.5) are retained, whereas those with lesser 

weights are deemed less relevant for clustering and are thus excluded from the feature 

vector. This process results in a dual-fold optimization wherein features are not only 

selected but also weighted according to their contribution to the overall clustering efficacy. 
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The PSO-driven selection method culminated in a distilled set of features that hold 

the greatest significance for distinguishing between different cell populations. This targeted 

feature set not only enhances the clarity of our clustering analysis but also paves the way 

for more nuanced biological interpretations. By focusing on features with high-importance 

weights, we ensure that the selected attributes have a substantial influence on the 

silhouette score, thereby aligning our analysis closely with the underlying biological 

phenomena that dictate cellular diversity and behavior. This approach harmonizes feature 

selection with feature weighting, creating a robust framework for identifying the salient 

features that capture the essence of our cellular data. 

7.3 Results 

7.3.1 Cell cycle duration is adjusted based on birth size: showcasing the 
application of the DeepSea 

In this section, we showcased the application of DeepSea by investigating cell size 

regulation in mESCs across hundreds of cell division cycles. Cells need to grow in size 

before they can undergo division. Different cell types maintain a fairly uniform size 

distribution by actively controlling their size in the G1 phase of the cell cycle [239]. However, 

the typical G1 control mechanisms of somatic cells are altered in mESCs [240, 241]. Mouse 

embryonic stem cells have an unusually rapid cell division cycle that takes about 10 hours 

to complete (Figure 7.6A). The rapid cell cycle of mESCs is primarily due to an ultrafast G1 

phase that is about 2h compared to ~10 in skin fibroblast cells with daughter cells born at 

different sizes (Figure 7.7A, B). An interesting question is whether mESCs can employ size 

control in their rapid G1 phase, just as most somatic cells do.  

Using confocal microscopy, we showed that the area of a cell is closely correlated 

with the cell volume, making the area a faithful measurement of cell size (Figure 7.7C, D). 

By measuring the size of the sister cells at birth, we showed that 42% of divisions resulted 
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in daughter cells of different sizes (Figure 7.6B). We hypothesized that smaller-born cells 

would spend more time growing compared to their larger sister cells. In support of this 

hypothesis, we observed that smaller-born cells increase their cell cycle duration by about 

~2h compared to their larger sister cells (Figure 7.7C). 

Together, our results show that DeepSea can be applied to accurately quantify the 

cell biological features of cells, such as cell size or cell cycle duration. In addition, our 

findings support the hypothesis that mESCs can adjust the cell cycle duration based on 

birth size, suggesting cell size control through an unknown molecular mechanism [239]. 

Besides, it shows that DeepSea can capture cell size distribution that is closer to the ground 

truth as determined by manually segmented cells.  

 

 

Figure 7.6: Showcasing the DeepSea application. Cell size regulation in mouse embryonic 
stem cells. (A) Distribution of the cell cycles. (B) Histogram of birth size ratio of daughter 
cell pairs. (C) Comparing the cell cycle duration of the cells born small with those born 
large. 
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Figure 7.7: Stem cell feature analysis. (A) Cell size ratio graph of daughter cell pairs. (B) 
Automated measurement of G1 duration using Fucci sensor (Geminin-GFP) that increases 
its activity as cells enter the S phase. (C) Cell area versus cell volume measurement using 
confocal microscopy for each embryonic stem cell. (D) One example of cell surface 
measurement, obtained from our confocal microscopy experiment. 

 

7.3.2 Morphological Diversity Across Cell Types 

The application of Celltool to our dataset unveiled a tapestry of shape modes that 

reflect the intricate morphology of various cell types. As shown in Figure 7.8, bronchial 

epithelial cells, with their six identified shape modes, predominantly exhibited one primary 

model (83%) and a secondary model (7%), indicating a dominant structural phenotype. 

Stem cells presented a simpler morphological spectrum with two shape modes aligning 

with their more uniform functions. Here, 90% of stem cells conformed to the first shape 

mode, emphasizing their consistent morphology, while the rest displayed the second mode, 
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indicating minimal variation. Muscle cells, conversely, demonstrated a broader array of six-

shape modes, suggesting a higher degree of morphological complexity and adaptability. 

 

 

Figure 7.8: Shape mode distribution of three DeepSea dataset cell types obtained using 
Celltool. 

 

7.3.3 Genotypic Influence on HBEC3kT Cell Morphology 

We made a discovery when examining a separate, genotype-specific dataset of 

HBEC3kT, an immortalized human bronchial alveolar cell line. Using DeepSea software, 

we segmented this new set of cell lines (3000 cell images), and utilizing Celltool, we 

identified five distinct shape models and observed notable differences in shape distribution 

across six genotypic categories that were annotated already. As show in Figure 7.9, The 

contrast was particularly striking between the ‘empty’ genotype (A3 and B3) and the other 

four (A1- WT1_Kv12, A2- WT1_LACZ, B1- MUT1_Kv12, B2-MUT1_LACZ), with the latter 

groups primarily exhibiting the first shape model, suggesting a genotype-influenced 

structural pattern. 
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Figure 7.9: Influence of specific genotypes on cell shape patterns. 

 

7.3.4 Feature Clustering Scores and Significance 

Employing k-means clustering (with three clusters), we analyzed individual feature 

clustering scores and prioritized them accordingly. The emergent pattern underscored the 

predominance of spatial features over shape attributes, with the notable inclusion of shape 

circularity for stem cells among the top 20 features. This finding reiterates the concept that 

critical cellular features, often concealed from direct observation, can be pivotal in 

characterizing cell types. 

7.3.5 Comparative Clustering Efficacy 

Our clustering score comparisons revealed that spatial features, particularly GLCM 

and GLDM, consistently achieved higher scores across all cell types, underscoring their 

discriminating power. Moreover, an experiment aggregating the top 20 stem cell features 

for clustering resulted in an impressive silhouette score. Interestingly, selecting features 

with a silhouette score above 60% yielded a substantial score, indicating that a subset of 
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high-scoring features could provide greater discriminatory power than the entire feature set 

or solely shape-based features. 

7.3.6 Optimization and Clustering with PSO and K-Means 

In a further experiment, we applied PSO in conjunction with l-means clustering 

(choosing two clusters) to refine the selection of shape features. This resulted in a 

respectable silhouette score of 0.52, with PSO selecting 8 out of the 20 shape features. 

The top-weighted features—minor axis, aspect ratio, and Feret mean—played a crucial 

role in defining the clusters. Illustrative cell shape examples demonstrated clear differences 

between the clusters in these features, justifying their segregation into distinct groups. 

Expanding to three clusters slightly reduced the silhouette score to 0.47, with PSO 

selecting 12 features. The heaviest weights were given to circularity, orientation, and 

equivalent diameter, reflecting their significance in the clustering process. The provided cell 

shape examples for these clusters showcased their distinct circularities and orientations, 

validating the PSO’s feature selection in capturing the essence of cell morphology. 

These results encapsulate the efficacy of computational tools in deciphering 

cellular complexity. They also highlight the potential of integrating feature selection 

algorithms like PSO to enhance the precision of morphological analysis, providing deeper 

insights into the cell's structural attributes as they relate to function and genotype. 

7.4 Conclusion 

We showcased the application of DeepSea by investigating cell size regulation in 

mESCs across hundreds of cell division cycles. Our cell size analysis revealed that smaller-

born mESCs regulate their size by spending more time growing in the G1 phase of the cell 

cycle. These findings strongly support the idea that mESCs actively monitor their size, 
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consistent with the presence of size control mechanisms in the short G1 phase of the 

embryonic cell cycle. 

This chapter has delved into the intricate world of single-cell analysis, an endeavor 

made increasingly vital and feasible by significant advancements in imaging and 

computational technologies. Our multifaceted approach to characterizing the complex 

heterogeneity and dynamics of single cells has offered an unprecedented window into the 

cellular microcosm. Through meticulous data collection, segmentation, and the application 

of Celltool for shape alignment and normalization, we have established a framework for 

quantitative cellular analysis that underpins the vast potential of this field. 

The methods we employed served to distill a vast array of cellular features into 

meaningful data, enabling us to transcend the traditional boundaries of visual 

interpretation. Our analyses highlighted the significant roles of both morphological and 

hidden frequency and spatial features in capturing the full spectrum of cellular diversity. 

The innovative use of k-means clustering and silhouette scores provided quantitative 

validation of our feature extraction, emphasizing the remarkable discriminative power of 

spatial features in particular. 

Our exploratory journey into feature selection was further enhanced by the 

adoption of Particle Swarm Optimization (PSO), which not only refined the selection 

process but also provided weighted importance to the most critical features. This selective 

weighting illuminated the path to understanding the functional significance of each cellular 

attribute, aligning our computational analysis closely with biological relevance. 

The results we achieved are emblematic of the synergy between computational 

prowess and biological inquiry. We observed distinct morphological profiles across lung, 

stem, and muscle cells, which were intricately linked to their functional roles and genetic 
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backgrounds. The application of PSO with l-means clustering revealed a nuanced picture 

of cell morphology and provided a quantitative foundation for categorizing cells based on 

structural traits. 

In conclusion, our work underscores the transformative impact of quantitative 

single-cell analysis in biological research. By marrying advanced computational techniques 

with cellular biology, we have carved out a detailed landscape of cellular behavior, 

functionality, and interaction. The insights gleaned from our study not only contribute to the 

scientific understanding of cellular diversity but also hold the promise for the development 

of novel diagnostic tools and targeted therapies. The methodologies and findings 

presented herein lay a solid groundwork for future explorations, poised to unravel the 

complexities of life at the single-cell level. 
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8 Conclusion 

 

 

This dissertation has journeyed through the intricate dynamics of cellular 

processes, highlighting the pivotal roles of cell cycle dynamics, live-cell imaging, and the 

transformative impact of artificial intelligence and machine learning in microscopy. This 

conclusion synthesizes the key findings and lays out prospective directions for future 

research that could continue to advance our understanding and application of these 

fundamental insights. 

8.1 Summary 

The exploration began with Live-cell imaging in Chapter 2, introducing it as a 

revolutionary technique allowing real-time observation of cellular processes. This chapter 

highlighted advancements from traditional microscopy to high-resolution methods like 

fluorescence and confocal microscopy, which have enhanced our ability to observe cellular 

functions in their native states without disruption. The significance of these techniques 

extends beyond basic research, offering profound benefits in areas such as drug 

development and the personalized medicine approach to treatment, where understanding 

individual cellular responses is key. 

In Chapter 3, the focus shifted to the integration of artificial intelligence and 

machine learning with microscopy image analysis, demonstrating how these technologies 

have begun to redefine the possibilities within biological research. AI and ML not only 

improve the efficiency and accuracy of image analysis but also open new avenues for 

exploring cellular mechanisms at unprecedented scales and complexities. This integration 

presents exciting opportunities in diagnostic and therapeutic contexts, particularly through 

enhanced image resolution and the automated interpretation of complex biological data. 
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Chapter 4 introduced DeepSea, a versatile and trainable deep-learning model for 

single-cell segmentation and tracking in time-lapse microscopy images. This model 

automates the analysis of cellular features and provides insights into cellular dynamics and 

heterogeneity, achieving high accuracy and robustness in segmentation and tracking tasks. 

Chapter 5 presented cGAN-Seg, a CycleGAN-based segmentation model 

designed to enhance cell segmentation performance with limited annotated training data. 

This approach overcomes the limitations of existing segmentation models by generating 

realistic and diverse synthetic microscopy images, significantly improving the segmentation 

accuracy. 

Chapter 6 described tGAN, a GAN-based super-resolution video-to-video 

generative model for time-lapse microscopy. This model generates high-quality synthetic 

annotated datasets, facilitating the training of deep learning models for various cell analysis 

tasks, and enhancing the breadth of available training data. 

Chapter 7 showcased the application of the proposed AI tools in quantitative 

single-cell analysis, investigating cell size regulation in mouse embryonic stem cells 

(mESCs) and highlighting the significant roles of both morphological and hidden frequency 

and spatial features in capturing cellular diversity. The comprehensive framework for 

quantitative cellular analysis provided valuable insights into cellular heterogeneity and 

dynamics. 

8.2 Future Work 

The findings and methodologies presented in this dissertation open several promising 

avenues for future research in live-cell imaging and the integration of AI and ML in 

microscopy. To build on this work, the following directions are proposed: 
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1- Expansion of Deep Learning Models for Diverse Imaging Modalities: While this 

dissertation focused on phase-contrast microscopy and specific cell types, future 

research could extend the DeepSea, cGAN-Seg, and tGAN models to other 

imaging modalities such as fluorescence microscopy, confocal microscopy, and 3D 

imaging techniques. This expansion would enhance the applicability and 

robustness of these models across a broader range of biological contexts and 

imaging conditions. 

2- Development of Multimodal Data Integration Techniques: Integrating data from 

different imaging modalities and combining them with other types of biological 

data, such as genomics, proteomics, and metabolomics, could provide a more 

comprehensive understanding of cellular processes. Future research could 

develop AI models that can seamlessly integrate and analyze multimodal data, 

leading to new insights into cellular mechanisms and disease pathways. 

3- Real-Time and Adaptive Imaging Analysis: Enhancing live-cell imaging capabilities 

to include real-time and adaptive analysis using AI and ML could significantly 

improve our understanding of dynamic cellular behaviors. Future work could focus 

on developing models that not only analyze images in real-time but also adapt 

imaging parameters based on ongoing analysis, optimizing the quality and 

relevance of the data being collected. 

4- Advancements in Cell Tracking and Lineage Tracing: The DeepSea model has 

demonstrated promising results in cell tracking, but further improvements are 

needed to track cells through complex behaviors such as cell division, 

differentiation, and migration in heterogeneous populations. Future research could 

explore advanced tracking algorithms and lineage tracing methods that provide 

more detailed insights into cellular development and interactions over time. 
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5- Enhanced Synthetic Data Generation and Validation: The use of GAN-based 

models like cGAN-Seg and tGAN for synthetic data generation has shown great 

potential. However, further refinement is needed to ensure that synthetic data 

closely mimics real biological conditions. Future work could focus on developing 

more sophisticated validation techniques to ensure the quality and reliability of 

synthetic data, as well as exploring the use of synthetic data in training models for 

rare or difficult-to-obtain cell types. 

6- Automated High-Throughput Screening: The integration of AI and ML with live-cell 

imaging can be extended to automated high-throughput screening of drug effects, 

genetic perturbations, or environmental changes in cellular behavior. Developing 

systems that combine automated imaging, analysis, and experimental 

manipulation would significantly accelerate the discovery of new therapeutic 

targets and improve our understanding of cellular responses. 

7- Collaborative and Open-Source Platforms: To maximize the impact of AI and ML 

in microscopy, developing collaborative and open-source platforms that allow 

researchers to share models, datasets, and analysis tools is essential. Future work 

could focus on creating and maintaining such platforms, fostering a collaborative 

environment that accelerates innovation and reproducibility in the field. 

In conclusion, the advancements presented in this dissertation lay a foundation for 

future research in live-cell imaging and the integration of AI and ML in microscopy. By 

pursuing these proposed directions, researchers can further enhance our understanding 

of cellular processes and develop new tools and methodologies that will drive significant 

progress in biomedical research and clinical applications. 
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