
UNIVERSITY OF CALIFORNIA

Los Angeles

Efficient Algorithms for Partial Information Management:

Bandit Problems and Graph Neural Networks

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Jialin Dong

2024

© Copyright by

Jialin Dong

2024

ABSTRACT OF THE DISSERTATION

Efficient Algorithms for Partial Information Management:

Bandit Problems and Graph Neural Networks

by

Jialin Dong

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Lin Yang, Chair

Abstract:

This thesis explores the development of efficient algorithms for managing partial information

in complex systems, focusing on two key areas: Graph Neural Networks (GNNs) and Bandit

Problems. In an era where the boundaries between physical and digital realms are rapidly blurring,

these seemingly disparate fields have emerged as integral components in addressing the challenges

of modern interconnected systems. The research journey begins with investigations into blind

demixing for Internet-of-Things applications, naturally progressing to explorations in nonconvex

optimization and high-dimensional statistical analysis. This foundation serves as a springboard for

novel contributions in GNNs and Bandit Problems, addressing the pressing need for robust, scalable,

and intelligent algorithms capable of handling the complexity of data-driven applications in our

increasingly connected world.

The work introduces a Global Neighborhood Sampling algorithm for efficient GNN training

on giant graphs, specifically optimized for mixed CPU-GPU hardware setups. This innovation

significantly reduces data movement between CPU and GPU, leading to substantial performance

ii

improvements over existing state-of-the-art sampling methods. Building on this, the thesis presents

G-RAG, a graph-based reranking approach for Retrieval Augmented Generation systems. G-

RAG leverages both the connections between retrieved documents and their semantic information,

providing a context-informed reranker that outperforms current methods while maintaining a smaller

computational footprint.

Delving into the realm of bandit problems, the thesis explores sparse bandit learning with

misspecified linear features. This investigation provides valuable insights into how structural

assumptions can aid in misspecified bandit learning, demonstrating that algorithms can obtain

near-optimal actions by querying a number of actions that scale exponentially with the sparsity

parameter rather than the ambient dimension. Furthermore, the research presents a novel feature-

mapping framework for solving Markov Decision Processes with delayed feedback, where the

agent’s observations are delayed by multiple time steps. By carefully addressing the statistical

challenges introduced by overlapping action sequences, this approach achieves a regret bound that

is independent of the size of the state and action spaces.

The thesis also develops an online stochastic gradient descent (SGD)-based algorithm for

stochastic bandit problems with general parametric reward functions. This method employs an

action-elimination strategy and a uniform action-selection approach, providing high-probability

regret guarantees and effectively handling the bias introduced by greedy action selection. This

contribution extends the applicability of bandit algorithms to a broader class of problems with

complex reward structures.

Throughout the research, a common thread emerges: the importance of understanding and

leveraging the inherent structure in complex systems. This realization serves as a bridge between

the work on GNNs and bandit problems, highlighting their complementary nature in modeling and

decision-making within large-scale, interconnected systems. The synthesis of these areas leads to

novel insights and methodologies with the potential to impact a wide range of applications, from

improving recommendation systems and enhancing financial modeling to optimizing large-scale

infrastructure networks and advancing human-AI interaction.

iii

This thesis stands at the intersection of several critical domains in computer science and

applied mathematics, building upon foundational work in optimization, statistical learning, and

network analysis while addressing the pressing needs of emerging technologies in AI and IoT.

By bridging theoretical and empirical perspectives, the research advances the state-of-the-art in

efficient algorithms for partial information management. The developed techniques not only push

the boundaries of our understanding but also offer practical solutions to real-world challenges in

managing and leveraging partial information in complex systems.

In conclusion, this work contributes to the development of more robust, scalable, and intelligent

systems capable of navigating the complexities of our data-driven world. As we continue to face

challenges in areas such as large-scale graph learning, decision-making under uncertainty, and

human-AI interaction, the algorithms and insights presented in this thesis pave the way for future

advancements in the field, offering a foundation for more adaptive and efficient approaches to partial

information management in the ever-evolving landscape of interconnected systems.

iv

The dissertation of Jialin Dong is approved.

Christina Panagio Fragouli

Jonathan Chau-Yan Kao

Lieven Vandenberghe

Lin Yang, Committee Chair

University of California, Los Angeles

2024

v

To my parents who showered me with unconditional love,

and my friends who supported me through all times.

vi

TABLE OF CONTENTS

1 Introduction . 1

1.1 Notation . 5

1.2 Graph Neural Networks . 5

1.2.1 Graph Representation . 5

1.2.2 Message Passing . 6

1.2.3 Graph Convolution . 6

1.3 Stochastic Linear Bandit . 7

1.4 Finite-horizon Markov Decision Process . 7

2 Efficient Sampling for Graph Neural Network Training 9

2.1 Introduction . 9

2.2 Background . 11

2.2.1 Existing GNN Training Algorithms . 11

2.2.2 Mixed CPU-GPU Training . 15

2.3 Global Neighbor Sampling (GNS) . 16

2.3.1 Overview of GNS . 17

2.3.2 Sample Cache . 18

2.3.3 Sample Neighbors with Cache . 21

2.3.4 Importance Sampling Coefficient . 21

2.3.5 Theoretical Analysis . 22

2.3.6 Summary and Discussion . 25

2.4 Experiments . 25

vii

2.4.1 Datasets and Setup . 25

2.4.2 Experiment Results . 27

2.4.3 Hyperparameter Study . 31

2.5 Conclusions . 31

3 Partial Information Selection in Retrieval Augmented Generation 33

3.1 Introduction . 33

3.2 Related Work . 36

3.3 Proposed Method: G-RAG . 37

3.3.1 Establishing Document Graphs via AMR 37

3.3.2 Graph Neural Networks for Reranking . 38

3.4 Experiments . 42

3.4.1 Setting . 42

3.4.2 Comparing Reranker Systems . 45

3.4.3 Using different LLMs as Embedding Models 46

3.4.4 Investigating PaLM 2 Scores . 47

3.5 Conclusions . 48

4 Exploration of Partial Information in Sparse Bandit Problems 50

4.1 Introduction . 50

4.2 Related Work . 52

4.3 Preliminary . 54

4.4 Main Results . 55

4.4.1 An Algorithm that Breaks the Ω(exp(d)) Sample Barrier 55

viii

4.4.2 Lower Bound . 59

4.5 Improvement on the ε−s Dependence . 61

4.6 A poly(s)-Query Algorithm for Benign Features 65

4.7 A poly(s)-Query Algorithm for General Features 68

4.8 Conclusions . 72

5 Investigation into Partial Observation in Delay Bandit Problem 73

5.1 Introduction . 73

5.2 Related Work . 74

5.3 Preliminaries . 78

5.4 Problem Formulation . 79

5.5 Value-Targeted Model Regression for Delayed MDP 81

5.5.1 Confidence Set Construction for Value-Targeted Model with Delayed Feed-

back . 81

5.5.2 Value Iteration . 83

5.6 Theoretical Analysis . 84

5.7 Proof of the Main Theorem . 86

5.7.1 Confidence Set Construction . 86

5.7.2 Optimism . 87

5.7.3 Regret Decomposition . 88

5.7.4 Transform between Sample Complexity of Exploration and Regret 90

5.8 Conclusion . 91

6 SGD-based Method for Partial Gradient Information 92

6.1 Introduction . 92

ix

6.1.1 Related Work . 93

6.2 Preliminaries . 97

6.3 Algorithm . 98

6.4 Main Theory . 100

6.5 Proof Sketch . 103

6.6 Simulation Results . 105

6.7 Conclusion . 108

A Proofs for Chapter 2 . 109

A.1 Proof of Theorem 1 . 109

A.2 Proof of Lemma 7 . 111

B Supplementary for Chapter 3 . 116

B.1 Dataset Statistics . 116

B.2 Simulation Results with Different GNN Models. 116

B.3 Qualitative Examples . 118

B.4 Examples of LLM-generate Relevant Score . 125

C Proofs for Chapter 4 . 127

C.1 Proof of Lemma 1 . 127

C.2 Proof of Lemma 10 . 129

C.3 poly(s)-Query Algorithm for s-sparsity Case with Noise 132

D Proofs for Chapter 5 . 134

D.1 Proof of Lemma 2 . 134

x

D.2 Proof of Lemma 3 . 139

D.3 Proof of Theorem 8 . 140

D.4 Proof of Theorem 9 . 148

D.5 Proof of Lemma 11 . 150

D.6 Proof of Lemma 18 . 154

D.7 Technical Lemmas . 156

D.8 Proof of Theorem 9 . 157

D.9 Details on Implementation of Algorithm 7 . 159

E Proofs for Chapter 6 . 163

E.1 Summary of Appendix . 163

E.2 Proof of Lemma 4 . 163

E.2.1 Technical Overview for the Second Case (t ≥ 1) 164

E.3 Proof of Lemma 5 . 167

E.4 Proof of Lemma 20 . 168

E.5 Proof of Lemma 21 . 169

E.6 Proof of Lemma 22 . 170

E.7 Proof of Lemma 23 . 174

E.8 Proof of Proposition 1 . 177

E.9 Technical Lemmas . 178

E.10 Regret Result for Finite Actions . 181

E.11 Reward and Loss Functions for Different Models 182

References . 184

xi

LIST OF FIGURES

2.1 Runtime breakdown (%) of each component in mini-batch training for an efficient

GraphSage implementation in DGL. 16

2.2 Runtime breakdown (s) of each component in mini-batch training of NS and GNS on

OGBN-products and OAG-paper graphs. 27

2.3 Comparison of the accuracy (F1 score) v.s. epochs. 30

2.4 The effect of mini-batch size on the performance of LazyGCN on the Yelp dataset. . . 31

3.1 G-RAG uses two graphs for re-ranking documents: The Abstract Meaning Representa-

tion (AMR) graph is used as a feature for the document-level graph. A document graph

is then used to rerank the document. 34

6.1 The cumulative regret vs. time-step of different algorithms. 105

6.2 The cumulative regret vs. computational time of different algorithms. 106

6.3 Cumulative regret of different algorithms for linear and logistic bandits for timestep.

(a) and (b) illustrate linear bandits with K = 10 and K = 30, respectively. (c) and (d)

illustrate logistic bandits with K = 20 and K = 40, respectively. 107

B.1 Number of nodes and edges in AMR graphs in train/dev/test set of dataset NQ and TQA.117

B.2 Number of SSSPs AMR graphs in train set of dataset NQ and TQA. 118

B.3 Examples of LLM-generate relevant score. 126

xii

LIST OF TABLES

2.1 Summary of notations and definitions. 17

2.2 Dataset statistics. 26

2.3 Performance of different sampling approaches. 28

2.4 The average number of input nodes in a mini-batch of NS and GNS as well as the

average number of input nodes from the cache of GNS. 29

2.5 Percentage of isolated training nodes in LADIES. 30

2.6 GNS sensitivity to update period and cache size. 32

3.1 Results on the dev/test set of NQ and TQA without hyperparameter fine-tuning. 45

3.2 G-RAG with changing the embedding model. 47

3.3 Results of PaLM 2 being the reranker. Small embedding models outperform LLMs in

this setting. In comparison, G-RAG-RL considerably improves the results compared to

both language model types by leveraging connection information across documents.

We use Tied Mean Hits@10. 48

6.1 Comparison of our main result and state-of-the-art. 97

B.1 Dataset Statistics. 116

B.2 Results of G-RAG with difference GNN models. We use Mean Hits @ 10. 119

xiii

ACKNOWLEDGMENTS

Most importantly, I would like to express my deepest gratitude to my advisor Professor Yang for

expanding my research interests and allowing me to explore diverse topics, pursue internships, and

collaborate with others during my Ph.D. study. My journey to this point began with my graduate

experience. My desire to push boundaries, broaden my horizons, experience new things, and

learn from different research approaches made me continue with a Ph.D. when I already had some

publications in wireless communication during graduate studies. I am grateful to my graduate

advisors, Professor Shi, who introduced me to the world of research, and Professor Lin, who

expanded my perspective with his vast expertise and profound knowledge.

I feel incredibly fortunate to have studied at UCLA, which has rich resources and opportunities.

During my Ph.D., I have been blessed with the support of my committee members. Professor

Vandenberghe’s book on convex optimization was my research starting point in 2017, and it has

been an honor to take his Convex Optimization course at UCLA. Professor Fragouli’s reading group

has been instrumental in helping me develop a comprehensive understanding of the bandit problem.

I am thankful to Professor Kao for his support during my preliminary exam, and for offering me a

grader position, which was vital for my financial support.

The teaching experience at UCLA has been equally rewarding. I am grateful to have been

a TA for Professors Ian Robert and Yang Zhang, whose classes are related to my undergraduate

major. Their passion for teaching reminded me of my initial encounters with these subjects and

the wonderful professors I had then. The TA positions were crucial in supporting my Ph.D. studies.

Throughout this journey, Deeona has been an invaluable source of support, helping me overcome

various challenges.

My academic journey has been complemented by invaluable industry experiences. My intern-

ships at JP Morgan, Google, and Amazon in New York and Seattle have allowed me to explore

different cities and collaborate with industry professionals. I am thankful for the amazing mentors I

met, including Kshama and Yu-Husan, who understood my thoughts and provided helpful advice.

xiv

Collaborations with Anton, Bahare, and Bryan reignited the passion I felt during my first research

project, and I learned a great deal from their constructive suggestions. However, it all started with

my collaboration with Da during my first year internship at AWS. His earnestness and self-discipline

continue to influence me today. Additionally, I want to acknowledge my first work experience as an

RA in Hong Kong with Professor Jun Zhang, whose attitude towards work and research has had a

profound impact on me.

Lastly, but certainly not least, I want to express my heartfelt thanks to my friends and parents.

Their unwavering support has been a constant source of strength during every significant moment,

whether at my peak or my lowest points, during job-hunting, life, or research. Their presence and

encouragement have been instrumental in my journey, and I am deeply grateful for their enduring

support.

xv

VITA

2020-2024 Ph.D. in Electrical Engineering, University of California, Los Angeles

2017-2020 M.E. in Communication Engineering, University of Chinese Academy of Sci-

ences

2015-2016 Exchange Student in Electrical Engineering, University of Michigan Dearborn

2013-2017 B.E. in Communication Engineering, University of Electronic Science and Tech-

nology of China

2024 Applied Scientist Intern, Amazon

2023 Research Intern, Google Research

2023 Summer Associate in the AI Research program, JPMorgan Chase & Co.

2020-2021 Applied Scientist Intern, Amazon Web Services Shanghai AI-Labs

2019-2020 Research Assistant, Dept. of Electronic and Information Engineering, The Hong

Kong Polytechnic University

PUBLICATIONS

J. Dong, B. Fatemi, B. Perozzi, L. F. Yang, and A. Tsitsulin, “Don’t Forget to Connect!

Improving RAG with Graph-based Reranking,” Under Review., 2024.

J. Dong, J. Wang, L. F. Yang “Provably Correct SGD-Based Exploration for Generalized

xvi

Stochastic Bandit Problem” in IEEE International Conference on Smart Applications, Communica-

tions and Networking (SmartNets), Aug. 2024.

J. Dong, J. Wang, L. F. Yang “Delayed MDPs with Feature Mapping” in International Joint

Conference on Neural Networks (IJCNN), July 2024.

J. Dong, K. Dwarakanath, and S. Vyetrenko, “Analyzing the Impact of Tax Credits on House-

holds in Simulated Economic Systems with Learning Agents AAAI 2024 Workshop on AI in

Finance for Social Impact, Feb. 2024.

J. Dong and L. F. Yang, “Does Sparsity Help in Learning Misspecified Linear Bandits? in

International Conference on Machine Learning (ICML), Jul. 2023.

J. Dong, D. Zheng, L. F. Yang, and G. Karypis, “Global Neighbor Sampling for Mixed

CPU-GPU Training on Giant Graphs,” in Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining (KDD), pp. 289-299, Singapore, Aug. 2021.

Y. Shi, J. Dong, and J. Zhang, Low-overhead Communications in IoT Networks: Structured

Signal Processing Approaches, Springer, Apr. 2020.

J. Dong, J. Zhang, Y. Shi, and J. Wang, “Faster activity and data detection in massive random

access: A multi-armed bandit approach,” IEEE Internet of Things Journal , vol. 9, no. 15, pp.

13664-13678, 2022.

J. Dong, Y. Shi, and Z. Ding, “Blind over-the-air computation and data fusion via provable

Wirtinger flow,” IEEE Trans. Signal Process., vol. 68, pp. 1136-1151, Feb. 2020.

xvii

J. Dong, K. Yang, and Y. Shi, “Ranking from crowdsourced pairwise comparisons via smoothed

matrix manifold optimization,” ACM Trans. Knowl. Discovery Data.,vol. 14, no. 2, pp. 1-26, Feb.

2020.

J. Dong, K. Yang, and Y. Shi, “Blind Demixing for Low-Latency Communication,” IEEE Trans.

Wireless Commun., vol. 18, no. 2, pp. 897-911, Dec. 2018.

J. Dong and Y. Shi, “Nonconvex demixing from bilinear measurements,” IEEE Trans. Signal

Process., vol. 66, no. 19, pp. 5152-5166, Oct. 2018.

J. Dong, J. Zhang, and Y. Shi, “Bandit sampling for faster activity and data detection in massive

random access,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Barcelona,

Spain, May 2020.

M. Fu, J. Dong, and Y. Shi,“Sparse blind demixing for low-latency wireless random access with

massive connectivity,” in Pro. IEEE Veh. Technol. Conf. (VTC), Honolulu, Hawaii, USA, Sept.

2019.

J. Dong, Y. Shi, and Z. Ding, “Sparse blind demixing for low-latency signal recovery in massive

IoT connectivity,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Brighton,

United Kingdom, May 2019.

J. Dong and Y. Shi, “Blind demixing via Wirtinger flow with random initialization,” in Proc.

Int. Conf. Artificial Intell. Stat. (AISTATS), Naha, Okinawa, Japan, Apr. 2019.

J. Dong, and Y. Shi, “Nonconvex demixing from bilinear measurement,” Proc. IEEE Int. Symp.

Inform. Theory (ISIT), Vail, Colorado, USA, Jun. 2018.

xviii

J. Dong, K. Yang, and Y. Shi, “Blind demixing for low-latency Communication,” in Proc. IEEE

Wireless Commun. Networking Conf. (WCNC), Barcelona, Spain, Apr. 2018.

J. Dong, K. Yang, and Y. Shi, “Ranking from crowdsourced pairwise comparisons via smoothed

matrix manifold optimization,” in ICDM Workshops on Data-driven Discovery of Models (D3M),

New Orleans, Louisiana, USA, Nov. 2017.

xix

CHAPTER 1

Introduction

In the era of ubiquitous connectivity and data-driven decision-making, complex systems are emerg-

ing that require novel approaches in data analysis, optimization, and machine learning. Throughout

my graduate research, I have traversed a diverse range of topics, from blind demixing in Internet-

of-Things to nonconvex optimization and high-dimensional statistical analysis. This journey has

ultimately led me to focus on two pivotal areas of research during my PhD: the development of

graph neural networks (GNNs) and the study of bandit problems, where I aim to push the boundaries

of our current understanding and drive innovation in these critical fields.

These seemingly disparate fields are, in fact, integral components of a larger picture that aims

to address the challenges of modern interconnected systems. My work in blind demixing for IoT

applications highlighted the need for robust signal processing in high-dimensional spaces, naturally

leading to an exploration of nonconvex optimization techniques. This, in turn, opened doors to

the realm of high-dimensional statistical analysis, where the interplay between data structure and

algorithmic efficiency became increasingly apparent.

As I delved deeper into these topics, a common thread emerged: the importance of understanding

and leveraging the inherent structure in complex systems. This realization served as a bridge to

my work on graph neural networks during internships at Amazon and Google. GNNs, with their

ability to capture and process relational data, presented a powerful framework for modeling the

intricate dependencies in networked systems, from social networks, and computer version to natural

language processing.

Concurrently, my experience with multi-agent reinforcement learning at JP Morgan illuminated

1

the challenges of decision-making in dynamic, interactive environments. This naturally led to

an interest in bandit problems, which offer a principled approach to balancing exploration and

exploitation in uncertain scenarios. The recent work on fine-tuning multi-turn chatbots at Amazon

further underscored the relevance of sequential decision-making in human-AI interaction contexts.

Based on all my background, this thesis aims to push the boundaries of our understanding and

application of graph neural networks and bandit problems in the context of large-scale, intercon-

nected systems. By bridging these two areas, we seek to develop more adaptive, efficient, and

interpretable algorithms capable of handling the complexity of modern data-driven applications.

Our research stands at the intersection of several critical domains in computer science and

applied mathematics. It builds upon foundational work in optimization, statistical learning, and

network analysis while addressing the needs of emerging technologies in AI/ML. Through this

work, we aim to contribute to the development of more robust, scalable, and intelligent systems that

can navigate the complexities of our increasingly connected world.

In many real-world systems, the information available to decision-makers is often incomplete or

partial. This partial information can arise due to various factors, such as sensor limitations, privacy

concerns, or the inherent complexity of the underlying system. Efficiently utilizing this partial

information to achieve desired objectives is a fundamental challenge in numerous fields, including

machine learning, optimization, and control.

This thesis focuses on developing efficient algorithms that can effectively leverage partial

information to tackle complex problems. The research presented in this work spans two key areas:

bandit problems and graph neural networks.

Bandit problems are a class of sequential decision-making problems where the decision-maker

must choose an action from a set of alternatives, and the reward associated with each action is

initially unknown. In many real-world scenarios, the decision-maker may only have access to

partial information about the rewards, such as sparse or delayed feedback. This thesis explores

novel algorithms that can efficiently navigate these partial information settings, providing strong

2

theoretical guarantees and empirical performance.

This work’s second focus is the use of GNNs for learning from graph-structured data. Graph-

based data is involved in various domains, such as social networks, recommendation systems, and

biological networks. However, training Graph Neural Networks (GNNs) on large-scale graphs can

be computationally challenging, as the full graph structure may not fit in memory and may incur

high computational costs. This thesis presents efficient sampling-based algorithms that enable GNN

training on giant graphs in mixed CPU-GPU hardware setups, where data movement between the

CPU and GPU can be a significant bottleneck.

The key contributions of this thesis are as follows:

1. Efficient Sampling for GNN Training on Giant Graphs: We propose a novel Global

Neighborhood Sampling algorithm that enables efficient training of GNNs on industry-

scale graphs, specifically designed for mixed CPU-GPU hardware setups. This approach

significantly reduces the data movement between the CPU and GPU, leading to substantial

performance improvements over state-of-the-art sampling methods. It demonstrates that

partial neighborhood information, when utilized under a well-designed algorithm, is sufficient

for effective GNN training.

2. Graph-based Reranking for Retrieval Augmented Generation: Reranking is an effective

method for optimizing the use of partial information. We introduce G-RAG, a graph neural

network-based reranking approach for Retrieval Augmented Generation (RAG) systems.

G-RAG leverages both the connections between retrieved documents and their semantic

information to provide a context-informed reranker, outperforming state-of-the-art methods

while having a smaller computational cost.

3. Sparse Bandit Learning with Misspecified Linear Features: We explore the impact of

sparsity on the learnability of misspecified linear bandits, a challenging setting where the true

reward function is not perfectly captured by the given linear features. We show that algorithms

can obtain near-optimal actions by querying several actions that scale exponentially with the

3

sparsity parameter, rather than the ambient dimension, providing a deeper understanding of

how to utilize partial information in misspecified bandit learning.

4. Feature Mapping in Delayed Markov Decision Processes: We propose a new feature-

mapping-based framework to solve Markov Decision Processes with delayed feedback, where

the agent only has partial observations due to the delay. By carefully addressing the statistical

challenges introduced by the overlapping action sequences, our algorithm achieves a regret

bound that is independent of the size of the state and action spaces.

5. SGD-based Exploration for Generalized Stochastic Bandits: We develop an online stochas-

tic gradient descent (SGD)-based algorithm for stochastic bandit problems with general

parametric reward functions. By employing an action-elimination strategy and a uniform

action-selection approach, our method effectively leverages partial gradient information,

yielding high-probability regret guarantees and robust performance.

Through these contributions, this thesis advances the state-of-the-art in efficient algorithms for

partial information management, bridging the gap between theoretical and empirical perspectives.

The developed techniques have the potential to significantly impact a wide range of applications,

from large-scale graph learning to decision-making under uncertainty.

In the following chapters, we will investigate the theoretical foundations, methodological

innovations, and practical applications of our research, showcasing how this integrated approach

can address some of the most challenging problems in modern computing and decision-making

systems.

The remainder of this chapter introduces essential notation, concepts, and definitions that will

be utilized throughout chapters 2, 3, 4, 5, and 6. The results presented in chapters 2, 4, 5, and 6

have been published as [1], [2], [3], and [4], respectively. Chapter 3 is under review [5].

4

1.1 Notation

In this dissertation, we use the following notations. The Euclidean norm of a vector x is denoted

by ∥x∥2, and the spectral norm of a matrix M is denoted by ∥M∥. Given a matrix A ∈ Rm×n,

the Frobenius norm is denoted as: ∥A∥F =
√∑m

i=1

∑n
j=1 |aij|2 where aij represents the element

in the i-th row and j-th column of the matrix A. We denote the transpose of any column vector

x by x⊤. For any vectors x and y, we use ⟨x,y⟩ to denote their inner product. Let A be a

positive semi-definite d × d matrix and ν ∈ Rd. The weighted 2-norm of ν with respect to A

is defined by ∥ν∥A =
√
ν⊤Aν. We denote the minimum and maximum eigenvalue of A by

λmin(A) and λmax(A). For a positive integer n, [n] denotes the set {1, 2, . . . , n}, while for positive

integers m ≤ n. We use ei to denote the i-th standard basis vector. Finally, we use standard Õ

notation for big-O notation that ignores logarithmic factors. For two sequences {f(n)} and {g(n)},

f(n) = O(g(n)) denotes that there exists a constant c > 0 such that |f(n)| ≤ c|g(n)|. Additionally,

f(n) = Ω(g(n)) means that there exists a constant c > 0 such that |f(n)| ≥ c|g(n)|. Let f(x) and

g(x) be functions such that f(x) ≍ g(x) as x → ∞. This indicates that f(x) and g(x) have the

same asymptotic growth rate.

1.2 Graph Neural Networks

Graph Neural Networks (GNNs) are a class of deep learning models designed to operate on

graph-structured data. They extend traditional neural networks to handle non-Euclidean data

representations, making them particularly useful for tasks involving relational and interconnected

information.

1.2.1 Graph Representation

A graph G is typically defined as a pair (V,E), where V is the set of nodes (or vertices) and E is

the set of edges connecting the nodes. Each node vi ∈ V can have associated features, represented

5

as a vector xi. Similarly, edges can have features eij for an edge connecting nodes i and j.

1.2.2 Message Passing

The core idea of GNNs is the message passing mechanism, where nodes collect information from

their neighbors. A general formulation of message passing can be expressed as:

h
(l+1)
i = ϕ

(
h
(l)
i ,A

({
ψ(h

(l)
i ,h

(l)
j , eij) : j ∈ N (i)

}))
. (1.1)

Here, h(l)
i is the feature vector of node i at layer l, N (i) is the set of neighbors of node i, ψ is

a function for message passing, A is an aggregation function (e.g., sum, mean, max), and ϕ is an

update function.

1.2.3 Graph Convolution

A simple and popular form of GNN is the Graph Convolutional Network (GCN). The layer-wise

propagation rule in a GCN can be written as:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W(l)). (1.2)

In this equation, Ã = A + I is the adjacency matrix with self-loops, D̃ is the degree matrix

of Ã, H(l) is the matrix of node features at layer l, W(l) is a learnable weight matrix, and σ is a

non-linear activation function.

This formulation allows GNNs to learn representations that capture both node features and

graph structure, enabling a wide range of applications in areas such as social network analysis,

recommendation systems, and molecular property prediction.

6

1.3 Stochastic Linear Bandit

In a stochastic linear bandit setting, at each round t, the agent is presented with a decision set Dt,

which is a subset of the d-dimensional real space Rd. The agent then selects an action xt from the

decision set Dt. After choosing the action xt, the agent observes a reward yt, which is derived based

on an unknown vector θ∗ ∈ Rd and the chosen action xt, plus some random additive noise ηt.

Mathematically, the reward yt is expressed as: yt = ⟨θ∗,xt⟩+ ηt. Here, θ∗ ∈ Rd is an unknown

vector, and ηt represents the random additive noise. Let T be the total number of rounds played. We

define the cumulative regret of the entire process as:

RT :=
T∑
t=1

⟨θ∗,x∗⟩ − ⟨θ∗,xt⟩ .

The optimal action x∗ is defined for Dt as argmaxx∈Dt ⟨θ∗,x⟩. The goal is to minimize the

cumulative regret and achieve regret that is sublinear in T .

1.4 Finite-horizon Markov Decision Process

A finite-horizon Markov decision process (MDP) is represented as M = (S,A, H,P, r), where S

denotes the set of states, A denotes the set of actions, H represents the duration of each episode

(horizon), P = {Ph}Hh=1 indicates the transition probabilities, and r = {rh}Hh=1 denotes the reward

functions. For each time-step h ∈ [H], Ph (s
′ | s, a) signifies the probability of moving to state s′

upon taking action a from state s, and rh : S ×A → [0, 1] represents the reward function. S and A

are known, but the transition probabilities Ph and rewards rh are unknown to the agent and must be

discovered through interaction. The agent engages with the unknown environment described by M

over multiple episodes. Specifically, at each episode k and time-step h ∈ [H], the agent observes

the state skh, selects an action akh ∈ A, and receives a reward rkh := rh
(
skh, a

k
h

)
.

A policy is a function π : S × [H] → A, where π(s, h) specifies the action that the policy π

prescribes for the agent to take at time-step h ∈ [H] when in state s ∈ S. A randomized policy

7

π : S × [H]→ ∆A maps states and time-steps to probability distributions over actions, such that

a ∼ π(s, h) represents the action that the policy π recommends for the agent to take at time-step

h ∈ [H] when in state s ∈ S.

The cumulative expected reward achieved under a policy π during and following time-step

h ∈ [H], referred to as the value function V π
h : S → R, is defined by

V π
h (s) := E

[
H∑

h′=h

rh′ (sh′ , π (sh′ , h′)) | sh = s

]
.

We define the state-action value action Qπ
h : S ×A → R for a policy π at time-step h ∈ [H] as

Qπ
h(s, a) := E

[
H∑

h′=h+1

rh′ (sh′ , π (sh′ , h′)) | sh = s, ah = a

]
.

For the function f , we define [Phf] (s, a) := Es′∼Ph(·|s,a)f (s
′). Let π∗ denote the optimal policy,

for which V π∗
h (s) := V ∗

h (s) = supπ V
π
h (s) holds for every (s, h) ∈ S × [H]. Therefore, for all

(s, a, h) ∈ S × A × [H], the Bellman equations for a deterministic policy π and for the optimal

deterministic policy are:

Qπ
h(s, a) = rh(s, a) +

[
PhV

π
h+1

]
(s, a), V π

h (s) = Qπ
h(s, π(s, h)),

Q∗
h(s, a) = rh(s, a) +

[
PhV

∗
h+1

]
(s, a), V ∗

h (s) = max
a∈A

Q∗
h(s, a),

where V π
H+1(s) = V ∗

H+1(s) = 0.

The Bellman equations for a randomized policy π and the optimal randomized policy are as follows:

Q̃π
h(s, a) = rh(s, a) +

[
PhṼ

π
h+1

]
(s, a), Ṽ π

h (s) = Ea∼π(s,h)

[
Q̃π

h(s, a)
]
,

Q̃∗
h(s, a) = rh(s, a) +

[
PhṼ

∗
h+1

]
(s, a), Ṽ ∗

h (s) = max
θ

Ea∼θ

[
Q̃∗

h(s, a)
]
.

8

CHAPTER 2

Efficient Sampling for Graph Neural Network Training

2.1 Introduction

Many real-world data come naturally in the form of graphs; e.g., social networks, gene expression

networks, and knowledge graphs. In recent years, Graph Neural Networks (GNNs) [6, 7, 8] have

been proposed to learn from such graph-structured data and have achieved outstanding performance.

Yet, in many applications, graphs are usually large, containing hundreds of millions to billions

of nodes and tens to hundreds of billions of edges. Learning on such giant graphs is challenging

due to the limited memory available on a single GPU or machine. As such, mini-batch training is

developed to train GNN models on such giant graphs. However, due to the connectivities between

nodes, computing node embeddings with multi-layer GNNs usually involves many nodes in a

mini-batch. This leads to substantial computation and data movement between CPUs and GPUs

and makes training inefficient.

To remedy this issue, various GNN sampling methods have been developed to reduce the number

of nodes in a mini-batch [8, 9, 10, 11, 12]. Node-wise neighbor sampling used by GraphSage [8]

samples a fixed number of neighbors for each node independently. Even though it reduces the

number of neighbors in a mini-batch, the number of nodes in a layer still grows exponentially.

FastGCN [10] and LADIES [11] sample a fixed number of nodes in each layer, which results

in isolated nodes when used on large graphs. In addition, LADIES requires significantly more

computation on sampling and potentially slows down the overall training speed. The work by Liu

et al. [12] alleviates the neighborhood explosion and reduces the sampling variance by applying a

9

bandit sampler. However, this method leads to a very large sampling overhead and does not scale

to large graphs. These sampling methods are usually evaluated on small to medium-sized graphs.

When applying them to industry-scale graphs, they have suboptimal performance or substantial

computation overhead as we discovered in our experiments.

To address some of these problems and reduce training time, LazyGCN [13] periodically

samples a mega-batch of nodes and edges and reuses it to sample further mini-batches. By

loading each mega-batch in GPU memory once, LazyGCN can mitigate data movement/preparation

overheads. However, LazyGCN requires very large mega-batches (cf. Figure 2.4) to match the

accuracy of standard GNN training, which makes it impractical for graphs with hundreds of millions

of nodes.

We design an efficient and scalable sampling method that takes into account the characteristics of

training hardware into consideration. GPUs are the most efficient hardware for training GNN models.

Due to the small GPU memory size, state-of-the-art GNN frameworks, such as DGL [14] and

Pytorch-Geometric [15], keep the graph data in CPU memory and perform mini-batch computations

on GPUs when training GNN models on large graphs. We refer to this training strategy as mixed

CPU-GPU training. The main bottleneck of mixed CPU-GPU training is data copy between CPUs

and GPUs (cf. Figure 2.1). Because mini-batch sampling occurs in the CPU, we need a low-

overhead sampling algorithm to enable efficient training. Motivated by the hardware characteristics,

we developed the Global Neighborhood Sampling (GNS) approach that samples a global set of

nodes periodically for all mini-batches. The sampled set is small so that we can store all of their

node features in GPU memory and we refer to this set of nodes as cache. The cache is used for

neighbor sampling in a mini-batch. Instead of sampling and neighbors of a node, GNS gives the

priorities of sampling neighbors that exist in the cache. This is a fast way of biasing node-wise

neighbor sampling to reduce the number of distinct nodes of each mini-batch and increase the

overlap between mini-batches. When coupled with GPU cache, this method drastically reduces

the amount of data copied between GPU and CPU to speed up training. In addition, we deploy

importance sampling that reduces the sampling variance and also allows us to use a small cache

10

size to train models.

We develop a highly optimized implementation of GNS and compare it with efficient implemen-

tations of other sampling methods provided by DGL, including node-wise neighbor sampling and

LADIES. We show that GNS achieves state-of-the-art model accuracy while speeding up training

by a factor of 2×−4× compared with node-wise sampling and by a factor of 2×−14× compared

with LADIES.

The main contributions of the work are described below:

1. We analyze the existing sampling methods and demonstrate their main drawbacks on large

graphs.

2. We develop an efficient and scalable sampling algorithm that addresses the main overhead in

mixed CPU-GPU mini-batch training and show a substantial training speedup compared with

efficient implementations of other training methods.

3. We demonstrate that this sampling algorithm can train GNN models on graphs with over 111

million nodes and 1.6 billion edges.

2.2 Background

In this section, we review GNNs and several state-of-the-art sampling-based training algorithms,

including node-wise neighbor sampling methods and layer-wise importance sampling methods. The

fundamental concepts of mixed-CPU-GPU training architecture are introduced. We discuss the

limitations of state-of-the-art sampling methods in mixed CPU-GPU training.

2.2.1 Existing GNN Training Algorithms

Full-batch GNN Given a graph G(V , E), the input feature of node v ∈ V is denoted as h(0)
v , and the

feature of the edge between node v and u is represented as wuv. The representation of node v ∈ V

11

at layer ℓ can be derived from a GNN model given by:

hℓ
v = g(hℓ−1

v ,
⋃

u∈N (v)

f(hℓ−1
u ,hℓ−1

v ,wuv)), (2.1)

where f ,
⋃

, and g are pre-defined or parameterized functions for computing feature data, aggregating

data information, and updating node representations, respectively. For instance, in GraphSage

training [8], the candidate aggregator functions include mean aggregator [6], LSTM aggregator

[16], and max pooling aggregator [17]. The function g is set as a nonlinear activation function.

Given training dataset {(xi, yi)}vi∈Vs , the parameterized functions will be learned by minimizing

the loss function:

L =
1

|Vs|
∑
vi∈Vs

ℓ(yi, z
L
i), (2.2)

where ℓ(·, ·) is a loss function, zLi is the output of GNN with respect to the node vi ∈ Vs where

VS represents the set of training nodes. For full-batch optimization, the loss function is opti-

mized by gradient descent algorithm where the gradient for each node vi ∈ VS is computed as
1

|Vs|
∑

vi∈VS
∇ℓ(yi, zLi). During the training process, full-batch GNN must store and aggregate all

nodes’ representations across all layers. The expensive computation time and memory costs prohibit

full-batch GNN from handling large graphs. Additionally, the convergence rate of full-batch GNN

is slow because model parameters are updated only once at each epoch.

Mini-batch GNN To address this issue, a mini-batch training scheme has been developed which

optimizes via mini-batch stochastic gradient descent 1
|VB |

∑
vi∈VB

∇ℓ(yi, zLi) where VB ∈ VS . These

methods first uniformly sample a set of nodes from the training set, known as target nodes, and

sample neighbors of these target nodes to form a mini-batch. The mini-batch training methods focus

on reducing the number of neighbor nodes for aggregation via various sampling strategies to reduce

the memory and computational cost. The state-of-the-art sampling algorithm is discussed in the

sequel.

Node-wise Neighbor Sampling Algorithms. Hamilton et al. [8] proposed an unbiased sampling

method to reduce the number of neighbors for aggregation via neighbor sampling. It randomly

12

selects at most snode (defined as fan-out parameter) neighborhood nodes for every target node;

followed by computing the representations of target nodes via aggregating feature data from the

sampled neighborhood nodes. Based on the notations in (2.1), the representation of node v ∈ V at

layer ℓ can be described as follows:

hℓ
v = g

(
hℓ−1
v ,

⋃
u∈Nℓ(v)

f
(1

snode
hℓ−1
u ,hℓ−1

v

))
, (2.3)

where Nℓ(v) is the sampled neighborhood nodes set at ℓ-th layer such that |Nℓ(v)| = snode. The

neighbor sampling procedure is repeated recursively on target nodes and their sampled neighbors

when dealing with multiple-layer GNN. Even though the node-wise neighbor sampling scheme

addresses the memory issue of GNN, there exists excessive computation under this scheme because

the scheme still results in the exponential growth of neighbor nodes with the number of layers. This

yields a large volume of data movement between CPU and GPU for mixed CPU-GPU training.

Layer-wise Importance Sampling Algorithms. To address the scalability issue, Chen et al. [10]

proposed an advanced layer-wise method called FastGCN. Compared with the node-wise sampling

method, it yields extra variance when sampling a fixed number of nodes for each layer. To address

the variance issue, it performs degree-based importance sampling on each layer. The representation

of node v ∈ V at layer ℓ of FastGCN model is described as follows:

hℓ
v = g

(
hℓ−1
v ,

⋃
qu∈q(v)

f
(1

slayer
hℓ−1
u /qu,h

ℓ−1
v

))
, (2.4)

where the sample size denotes as slayer, q(v) is the distribution over v ∈ V and qu is the probability

assigned to node u. A major limitation is that FastGCN performs sampling on every layer inde-

pendently, which yields approximate embeddings with large variances. Moreover, the subgraph

sampled by FastGCN is not representative of the original graph. This leads to poor performance and

the number of sampled nodes required to guarantee convergence during the training process is large.

The work by Zhou et al. [11] proposed a sampling algorithm known as LAyer-Dependent

Importance Sampling (LADIES) to address the limitation of FastGCN and exploit the connection

between different layers. Specifically, at ℓ-th layer, LADIES samples nodes reachable from the nodes

13

in the previous layer. However, this method [11] comes with a cost. To ensure node connectivity

between layers, the method needs to extract and merge the entire neighborhood of all nodes in the

previous layer and compute the sampling probability for all candidate nodes in the next layer. Thus,

this sampling method has a significantly higher computation overhead. Furthermore, when applying

this method on a large graph, it still constructs a mini-batch with many isolated nodes, especially

for nodes in the first layer (Table 2.5).

LazyGCN. Even though layer-wise sampling methods effectively address the neighborhood explo-

sion issue, they failed to investigate computational overheads in preprocessing data and loading fresh

samples during training. Ramezan et al. [13] proposed a framework called LazyGCN which decou-

ples the frequency of sampling from the sampling strategy. It periodically samples mega-batches and

effectively reuses mega-batches to generate mini-batches and alleviate the preprocessing overhead.

There are some limitations in the LazyGCN setting. First, this method requires large mini-batches to

guarantee model accuracy. For example, their experiments on Yelp and Amazon datasets use a batch

size of 65,536. This batch size is close to the entire training set, yielding overwhelming overhead

in a single mini-batch computation. Its performance deteriorates for smaller batch sizes even with

sufficient epochs (Figure 2.4). Second, their evaluation is based on inefficient implementations with

very large sampling overhead. In practice, the sampling computation overhead is relatively low in

the entire mini-batch computation (Figure 2.1) when using proper development tools.

Even though both GNS and LazyGCN cache data in GPU to accelerate computation in mixed

CPU-GPU training, they use very different strategies for caching. LazyGCN caches the entire

graph structure of multiple mini-batches sampled by node-wise neighbor sampling or layer-wise

sampling and suffers from the problems in these two algorithms. Due to the exponential growth

of the neighborhood size in node-wise neighbor sampling, LazyGCN cannot store a very large

mega-batch in GPU and can generate a few mini-batches from the mega-batch. Our experiments

show that LazyGCN runs out of GPU memory even with a small mega-batch size and mini-batch

size on large graphs (OAG-paper and OGBN-papers100M in Table 2.2). Layer-wise sampling may

result in many isolated nodes in a mini-batch. In addition, LazyGCN uses the same sampled graph

14

structure when generating mini-batches from mega-batches, this potentially leads to overfitting. In

contrast, GNS cache nodes and use the cache to reduce the number of nodes in a mini-batch; GNS

always sample a different graph structure for each mini-batch and thus it is less likely to overfit.

2.2.2 Mixed CPU-GPU Training

Due to limited GPU memory, state-of-the-art GNN frameworks (e.g., DGL [14] and Pytorch

Geometric [15]) train GNN models on large graph data by storing the whole graph data in CPU

memory and performing mini-batch computation on GPUs. This allows users to take advantage

of large CPU memory and use GPUs to accelerate GNN training. In addition, mixed CPU-GPU

training makes it easy to scale GNN training to multiple GPUs or multiple machines [18].

A mixed CPU-GPU training strategy usually involves six steps: 1) sample a mini-batch from

the full graph, 2) slice the node and edge data involved in the mini-batch from the full graph, 3)

copy the above-sliced data to GPU, 4) perform forward computation on the mini-batch, 5) perform

backward propagation, and 6) run the optimizer and update model parameters. Steps 1–2 are done

by the CPU, whereas steps 4–6 are done by the GPU.

We benchmark the mini-batch training of GraphSage [8] models with node-wise neighbor

sampling provided by DGL, which provides very efficient neighbor sampling implementation and

graph kernel computation for GraphSage. Figure 2.1 shows the breakdown of the time required

to train GraphSage on the OGBN-products graph and the OAG-paper graph (see Table 2.2 for

dataset information). Even though sampling happens in the CPU, its computation accounts for

10% or less with sufficient optimization and parallelization. However, the speed of copying node

data in the CPU (step 2) is limited by the CPU memory bandwidth, and moving data to the GPU

(step 3) is limited by the PCIe bandwidth. Data copying accounts for most of the time required by

mini-batch training. For example, the training spends 60% and 80% of the per mini-batch time in

copying data from CPU to GPU on OGBN-products and OAG-paper, respectively. The training on

OAG-paper takes significantly more time on data copy because OAG-paper has 768-dimensional

15

Figure 2.1: Runtime breakdown (%) of each component in mini-batch training for an efficient

GraphSage implementation in DGL.

BERT embeddings [19] as node features, whereas OGBN-products use 100-dimensional node

features.

These results show that when the different components of mini-batch training are highly

optimized, the main bottleneck of mixed CPU-GPU training is data copy (both data copy in CPU

and between CPU and GPUs). To speed up training, it is essential to reduce the overhead of data

copy, without significantly increasing the overhead of other steps.

2.3 Global Neighbor Sampling (GNS)

To overcome the drawbacks of the existing sampling algorithms and tackle the unique problems in

mixed CPU-GPU training, we developed a new sampling approach, called Global Neighborhood

Sampling (GNS), that has low computational overhead and reduces the number of nodes in a

mini-batch without compromising the model accuracy and convergence rate. Like node-wise and

layer-wise sampling, GNS uses mini-batch training to approximate the full-batch GNN training on

16

giant graphs.

Table 2.1: Summary of notations and definitions.

G = (V, E) G denotes the graph consist of set of |V| nodes and |E| edges.

L,K L is the total number of layers in GCN, and K is the dimension of

embedding vectors (for simplicity, assume it is the same across all

layers).

b, snode, slayer For batch-wise sampling, b denotes the batch size, snode is the

number of sampled neighbors per node for node-wise sampling,

and slayer is the number of sampled nodes per layer for layer-wise

sampling.

N (v) Denotes the set of neighbors of node v ∈ V .

Nℓ(v) Denotes the set of sampled neighbors of node v ∈ V at ℓ-th layer.

NC(v) Denotes the set of neighbors of node v ∈ V in the cache.

C, pcache
v Denotes the set of cached nodes which are sampled from V corre-

sponding to the probability of pcache
v for v ∈ V .

p
(ℓ)
v Denotes importance sampling coefficients with respect to the node

v ∈ V at ℓ-th layer in Algorithm 1.

VS , |VS | Denotes the training set and the size of the training set.

target node The node in the mini-batch where the mini-batch is sampled at

random from the training node-set.

VB , |VB| Denotes the set of target nodes and the number of target nodes in

a mini-batch.

2.3.1 Overview of GNS

Instead of sampling neighbors independently like node-wise neighbor sampling, GNS periodically

samples a global set of nodes following a probability distribution P to assist in neighbor sampling.

17

Pi defines the probability of node i in the graph being sampled and placed in the set. Because GNS

only samples a small number of nodes to form the set, we can copy all of the node features in the set

to GPUs. Thus, we refer to the set of nodes as node cache C. When sampling neighbors of a node,

GNS prioritizes the sampled neighbors from the cache and samples additional neighbors outside the

cache only if the cache does not provide sufficient neighbors.

Because the nodes in the cache are sampled, we can compute the node sampling probability

from the probability of a node appearing in the cache, i.e., P . We rescale neighbor embeddings

by importance sampling coefficients p(ℓ)u from P in the mini-batch forward propagation so that

the expectation of the aggregation of sampled neighbors is the same as the aggregation of the full

neighborhood.

E

 ∑
u∈Nℓ(v)

p(ℓ)u ∗ hℓu

 =
∑

u∈N (v)

hℓu (2.5)

Algorithm 1 illustrates the entire training process.

In the remaining sections, we first discuss the cache sampling in Section 2.3.2. We explain

the sampling procedure in Section 2.3.3. To reduce the variance in GNS, an importance sampling

scheme is further developed in Section 2.3.4. We then establish the convergence rate of GNS

which is inspired by the paper [13]. It shows that under the mild assumption, GNS enjoys a

comparable convergence rate as underlying node-wise sampling in training, which is demonstrated

in Section 2.3.5. The notations and definitions used in the following are summarized in Table 2.1.

2.3.2 Sample Cache

GNS periodically constructs a cache of nodes C to facilitate neighbor sampling in mini-batch

construction. GNS uses a biased sampling approach to select a set of nodes C that, with high

probability, can be reached from nodes in the training set. The features of the nodes in the cache are

loaded into GPUs beforehand.

Ideally, the cache needs to meet two requirements: 1) to keep the entire cache in the GPU

18

Algorithm 1: Minibatch Training with GNS

1

Input :Graph G(V, E);

list of target nodes of mini-batches {B1, · · · ,BM};

input features {xv,∀v ∈ V};

number of epochs T ;

depth L; weight matrices Wℓ,∀ℓ ∈ {1, ..., L};

cache sampling probability P;

nonlinear activation function g;

differentiable aggregator functions fℓ,∀ℓ ∈ {1, ..., L}.

Output :Vector representations zv for all v ∈ B

1: for t = 0 to T do

2: C ← sample cache(V,P, {B1, · · · ,BM})

3: for B ∈ {B1, · · · ,BM} do

4: BL ← B

5: for ℓ = L...1 do

6: Bℓ−1 ← {}

7: for u ∈ Bℓ do

8: Nℓ(u),Pℓ(u)← sample(N (u), C)

9: Bℓ−1 ← Bℓ−1 ∪Nℓ(u);

10: Pℓ−1 ← Pℓ−1 ∪ Pℓ(u)

11: end for

12: end for

13: h0
u ← xv,∀v ∈ B0

14: for ℓ = 1...L do

15: for u ∈ Bℓ do

16: Compute importance sampling coefficients

p
(ℓ−1)
u′ for ∀u′ ∈ Nℓ(u)}

17: hℓ
N (u) ← fℓ({p(ℓ−1)

u′ hℓ−1
u′ ,∀u′ ∈ Nℓ(u)})

18: hℓ
u ← g

(
Wℓ · (hℓ−1

u ,hℓ
N (u))

)
19: end for

20: end for

21: end for

22: end for

19

memory, the cache has to be sufficiently small; 2) to have sampled neighbors come from the cache,

the nodes in the cache have to be reachable from the nodes in the training set with a high probability.

Potentially, we can uniformly sample nodes to form the cache, which may require a large number

of nodes to meet requirement number two. Therefore, we deploy two approaches to define the

sampling probability for the cache. If the majority of the nodes in a graph are in the training set, we

define the sampling probability based on node degree. For node i, the probability of being sampled

in the cache is given by

pi = deg(i)/
∑
k∈V

deg(k). (2.6)

For a power-law graph, we only need to maintain a small cache of nodes to cover the majority of

the nodes in the graph.

If the training set only accounts for a small portion of the nodes in the graph, we use short random

walks to compute the sampling probability. Define Nℓ(v) as the number of sampled neighbor nodes

corresponding to node v ∈ V in each layer,

d = [Nℓ(v1)/deg(v1), · · · ,Nℓ(v|V|)/deg(v|V|)]
⊤. (2.7)

The node sampling probability P ℓ ∈ R|V| for the ℓ-th layer is represented as

P ℓ = (DA+ I)P ℓ−1, (2.8)

where A is the adjacency matrix and D = diag(d). P 0 is

p0i =

 1
|VS |

, if i ∈ VS

0, otherwise.
(2.9)

The sampling probability for the cache is set as P L, where L is the number of layers in the

multi-layer GNN model.

As the experiments will later show (cf. Section 2.4), the size of the cache C can be as small as

1% of the number of nodes (|V|) without compromising the model accuracy and convergence rate.

20

2.3.3 Sample Neighbors with Cache

When sampling k neighbors for a node, GNS first restricts sampled neighbor nodes from the cache

C. If the number of neighbors sampled from the cache is less than k, it samples the remaining

neighbors uniformly at random from its neighborhood.

A simple way of sampling neighbors from the cache is to compute the overlap of the neighbor

list of a node with the nodes in the cache. Assuming one lookup in the cache has O(1) complexity,

this algorithm will result in O(|E|) complexity, where |E| is the number of edges in the graph.

However, this complexity is significantly larger than the original node-wise neighbor sampling

O(
∑

i∈VB
min(k, |N (i)|)) in a power-law graph, where VB is the set of target nodes in a mini-batch

and |N (i)| is the number of neighbors of node i. Instead, we construct an induced subgraph S that

contains the nodes in the cache and their neighbor nodes. This is done once, right after we sample

nodes in the cache. For an undirected graph, this subgraph contains the neighbors of all nodes

that reside in the cache. During neighbor sampling, we can get the cached neighbors of node i by

reading the neighborhood NS(i) of node i in the subgraph. Constructing the subgraph S is much

more lightweight, usually≪ O(|E|).

We parallelize the sampling computations with multiprocessing. That is, we create a set of

processes to sample mini-batches independently and send them back to the trainer process for

mini-batch computation. The construction of subgraphs S for multiple caches C can be parallelized.

2.3.4 Importance Sampling Coefficient

The nodes in the cache are sampled non-uniformly at random. So are the neighbors of a node. To

approximate the expectation of the uniform sampling method, we assign importance weights to the

nodes, thereby rescaling the neighbor features for aggregation:

hℓ
N (u) ← fℓ({1/p(ℓ−1)

u′ · hℓ−1
u′ ,∀u′ ∈ Nℓ(u)}). (2.10)

21

To establish the importance sampling coefficient, we begin with computing the probability of the

sampled node u′ ∈ Nℓ(u) being contained in the cache, given by

pCu′ = 1− (1− pu′)|C|, (2.11)

where the sampling probability pu′ refers to (2.6) and |C| denotes the size of cache set. The

importance sampling coefficient p(ℓ−1)
u′ can be represented as

p
(ℓ−1)
u′ = pCu′

k

max{k,NC(i)}
. (2.12)

2.3.5 Theoretical Analysis

In this section, we establish the convergence rate of GNS which is inspired by the work of Ramezani

et al. [13]. It shows that under the mild assumption, GNS enjoys a comparable convergence rate as

underlying node-wise sampling in training. Here, the convergence rate of GNS mainly depends on

the graph degree and the size of the cached set. We focus on a two-layer GCN for simplicity and

denote the loss functions of full-batch, mini-batch, and proposed GNS as

J(θ) =
1

N

∑
i∈V

fi

 1

|N (i)|
∑

j∈N (i)

1

|N (j)|
∑

k∈N (j)

gjk(θ)

 (2.13)

JB(θ) =
1

B

∑
i∈VB

fi

 1

|N (i)|
∑

j∈N (i)

1

|N (j)|
∑

k∈N (j)

gjk(θ)

 (2.14)

J̃B(θ) =

1

B

∑
i∈VB

fi

(
1

|N u
2 (i) ∩ C|

∑
j∈N u

2 (i)∩C

1

|N u
1 (j) ∩ C|∑

k∈N u
1 (j)∩C

p
(1)
k gjk(θ)

)
, (2.15)

respectively, where the outer and inner layer function are defined as f(·) ∈ R and g(·) ∈ Rn, and

their gradients as ∇f(·) ∈ Rn and ∇g(·) ∈ Rn×n, respectively. Specifically, the function gjk(·)

22

depends on the nodes contained in two layers. For simplicity, we denote N C(j) := N u
1 (j) ∩ C. We

denote |N (i)| = N i, |N u
ℓ (i)| = N i

ℓ , ℓ = 1, 2 and |N C(j)| = N j
C in the following.

The following assumption gives the Lipschitz continuous constant of the gradient of the com-

posite function J(θ), which plays a vital role in theoretical analysis.

Assumption 1 Suppose f(·) is Lf -Lipschitz continuous, g(·) is Lg-Lipschitz continuous,∇f(·) is

L′
f -Lipschitz continuous,∇g(·) is L′

g-Lipschitz continuous.

Theorem 1 Denote N i
ℓ as the number of the neighborhood nodes for i ∈ V sampling uniformly

at random at ℓ-th layer. The cached nodes in the set C with the size of |C| are sampled without

replacement according to pcache
v . The dimension of the node feature is denoted as n and the size of

the mini-batch is denoted as B. Define C̃ = |C|/|V| and Cd =
∑

vi∈V deg(vi)/|V| with the constant

c > 0. Under Assumption 1, with probability exceeding 1− δ, GNS optimized by stochastic gradient

descent can achieve

E
[
∥∇J(θ̂)∥2

]
≤ O

(√
MSE

t

)
, (2.16)

where θ̂ = mint E [∥∇J (θt)∥] with θt = {Wℓ
t}Lℓ=1 and

MSE ≤O
(
L

′2
f

log(4n/δ) + 1/2

B

)
+O

(
L

′2
f L

4
g

log(4n/δ) + 1/2

cC̃CdN
j
1N

i
2

)

+O

(
L

′2
g L

2
f

log(4n/δ)

cC̃CdN
j
1N

i
2

)
. (2.17)

Proof: The details on the proof of Theorem 1 are provided in Appendix A.1. □

Variance of GNS We aim to derive the average variance of the embedding for the output nodes

at each layer. Before moving forward, we provide several useful definitions. Let B denote the

size of the nodes in one layer. Consider the underlying embedding: Z = LHΘ, where L is the

Laplacian matrix, H denotes the feature matrix and Θ is the weight matrix, Let Z̃ ∈ RB×d with

the dimension of feature d denote the estimated embedding derived from the sample-based method.

23

Denote P ∈ RB×|V| as the row selection matrix which samples the embedding from the whole

embedding matrix. The variance can be represented as E[∥Z̃−PZ∥F]. Denote Li,∗ as the i-th row

of matrix L,L∗,j is the j -th column of matrix L, and Li,j is the element at the position (i, j) of

matrix L.

For each node at each layer, its embedding is estimated based on its neighborhood nodes

established from the cached set C. Based on the Assumption 1 in [11], we have

E
[
∥Z̃−PZ∥2F

]
=

|V|∑
i=1

qi · E
[∥∥∥Z̃i,∗ − Zi,∗

∥∥∥2
2

]

=

|V|∑
i=1

qi ∥Li,∗∥0

 |V|∑
j=1

pij · sj ∥Li,jHj,∗Θ∥22 − ∥Li,∗HΘ∥2F


=

|V|∑
i=1

qi ∥Li,∗∥0
(|V|∑

j=1

pij · sj ∥Li,jHj,∗Θ∥22−

qi · pij · sj∥LHΘ∥2F
)

(2.18)

where qi is the probability of node i being contained in the first layer via neighborhood sampling

and pij is the importance sampling coefficient related to node i and j. Moreover, sj is the probability

of node i being in the cache set C.

Under Assumption 1 and 2 in [11] such that ∥Hi,∗Θ∥2 ≤ γ for all i ∈ [|V|] and ∥Li,∗∥0 ≤
C
|V|
∑|V|

i=1 ∥Li,∗∥0 and the definition of the importance sampling coefficient, we arrive

E
[
∥Z̃−PZ∥2F

]
≤

|V|∑
i=1

qi ∥Li,∗∥0
|V|∑
j=1

pij · sj ∥Li,jHj,∗Θ∥22

≤C
|V|∑
i=1

|V|∑
j=1

qi · pij · sj ∥Li,jHj,∗Θ∥22

≤CBoutCdγ∥L∥2F
|V|

, (2.19)

where Cd denotes the average degree and Bout is the size of nodes at the output layer.

24

2.3.6 Summary and Discussion

GNS shares many advantages with various sampling methods and can avoid their drawbacks. Like

node-wise neighbor sampling, it samples neighbors on each node independently and, thus, can be

implemented and parallelized efficiently. Due to the cache, GNS tends to avoid the neighborhood

explosion in multi-layer GNN. GNS maintains a global and static distribution to sample the cache,

which requires only one-time computation and can be easily amortized during the training. In

contrast, LADIES computes the sampling distribution for every layer in every mini-batch, which

makes the sampling procedure expensive. Even though GNS constructs a mini-batch with more

nodes than LADIES, forward and backward computation on a mini-batch is not the major bottleneck

in many GNN models for mixed CPU-GPU training. Even though both GNS and LazyGCN deploy

caching to accelerate computation in mixed CPU-GPU training, they use cache very differently.

GNS uses a cache to reduce the number of nodes in a mini-batch to reduce computation and data

movement between CPU and GPUs. It captures the majority of the connectivities of nodes in a

graph. LazyGCN caches and reuses the sampled graph structure and node data. This requires a

large mega-batch size to achieve good accuracy, which makes it difficult to scale to giant graphs.

Because LazyGCN uses node-wise sampling or layer-wise sampling to sample mini-batches, it

suffers from the problems inherent to these two sampling algorithms. For example, as shown in the

experiment section, LazyGCN cannot construct a mega-batch with node-wise neighbor sampling on

large graphs.

2.4 Experiments

2.4.1 Datasets and Setup

We evaluate the effectiveness of GNS under inductive supervise setting on the following real-world

large-scale datasets: Yelp [9], and Amazon [9], OAG-paper 1, OGBN-products [20], OGBN-

1https://s3.us-west-2.amazonaws.com/dgl-data/dataset/OAG/oag_max_paper.dgl

25

https://s3.us-west-2.amazonaws.com/dgl-data/dataset/OAG/oag_max_paper.dgl

papers100M [20]. OAG-paper is the paper citation graph in the medical domain extracted from the

OAG graph [21]. On each of the datasets, the task is to predict the labels of the nodes in the graphs.

Table 2.2 provides various statistics for these datasets.

Table 2.2: Dataset statistics.

Dataset Nodes Edges Avg. Deg Feature Classes Multiclass Train / Val / Test

Yelp 716,847 6,977,410 10 300 100 Yes 0.75 / 0.10 / 0.15

Amazon 1,598,960 132,169,734 83 200 107 Yes 0.85 / 0.05 / 0.10

OAG-paper 15,257,994 220,126,508 14 768 146 Yes 0.43 / 0.05 / 0.05

OGBN-products 2,449,029 123,718,280 51 100 47 No 0.10 / 0.02 / 0.88

OGBN-Papers100M 111,059,956 3,231,371,744 30 128 172 No 0.01 / 0.001 / 0.002

For each trial, we run the algorithm with ten epochs on Yelp, Amazon OGBN-products, OGBN-

Papers100M dataset, and each epoch proceeds for # train set
batch size iterations. For the OAG-paper dataset,

we run the algorithm with three epochs. We compare GNS with node-wise neighbor sampling (used

by GraphSage), LADIES, and LazyGCN for training 3-layer GraphSage. The detailed settings

concerning these four methods are summarized as follows:

• GNS: GNS is implemented by DGL [14] and we apply GNS on all layers to sample neighbors.

The sampling fan-outs of each layer are 15, 10 for the third and second layers. We sample

nodes in the first layer (input layer) only from the cache. The size of the cached set is 1% · |V|.

• Node-wise neighbor sampling (NS) 2 [8]: NS is implemented by DGL [14]. The sampling

fan-outs of each layer are 15, 10, and 5.

• LADIES 3 [11]: LADIES is implemented by DGL [14]. We sample 512 and 5000 nodes for

LADIES per layer, respectively.

2https://github.com/dmlc/dgl/tree/master/examples/pytorch/graphsage

3https://github.com/BarclayII/dgl/tree/ladies/examples/pytorch/ladies

26

https://github.com/dmlc/dgl/tree/master/examples/pytorch/graphsage
https://github.com/BarclayII/dgl/tree/ladies/examples/pytorch/ladies

• LazyGCN 4 [13]: we use the implementation provided by the authors. We set the recycle

period size as R = 2 and the recycling growth rate as ρ = 1.1. The sampler of LazyGCN is

set as node wise sampling with 15 neighborhood nodes in each layer.

GNS, NS, and LADIES are parallelized with multiprocessing. For all methods, we use the batch

size of 1000. We use two metrics to evaluate the effectiveness of sampling methods: micro F1-score

to measure the accuracy and the average running time per epoch to measure the training speed.

We run all experiments on an AWS EC2 g4dn.16xlarge instance with 32 CPU cores, 256GB

RAM, and one NVIDIA T4 GPU.

Figure 2.2: Runtime breakdown (s) of each component in mini-batch training of NS and GNS on

OGBN-products and OAG-paper graphs.

2.4.2 Experiment Results

We evaluate the test F1-score and average running time per epoch by using different methods in the

case of the large-scale dataset.

4https://github.com/MortezaRamezani/lazygcn

27

https://github.com/MortezaRamezani/lazygcn

Table 2.3: Performance of different sampling approaches.

Dataset(hidden layer dimension) Metric NS LADIES (512) LADIES (5000) LazyGCN GNS

Yelp(512)
F1-Score(%) 62.54 59.32 61.04 35.58 63.20

Time per epoch (s) 58.5 62.1 237.9 1248.7 23.1

Amazon(512)
F1-Score(%) 76.69 76.46 77.05 31.08 76.13

Time per epoch (s) 89.5 613.4 3234.2 3280.2 42.8

OAG-paper(256)
F1-Score(%) 50.23 43.51 46.72 N/A 49.23

Time per epoch (s) 3203.2 2108.0 7956.0 819.4

OGBN-products(256)
F1-Score(%) 78.44 70.32 75.36 69.78 78.01

Time per epoch (s) 25.6 45.4 223.5 264.2 11.9

OGBN-Papers100M(256)
F1-Score(%) 63.61 57.94 59.23 N/A 63.31

Time per epoch (s) 462.2 152.7 313.2 98.5

The results were obtained by training a 3-layer GraphSage with a hidden state dimension of 512 on Yelp

and Amazon datasets, and 256 on the rest, using four methods. We update the model with a mini-batch

size of 1000 and an ADAM optimizer with a learning rate of 0.003 for all training methods. We use

the efficient implementation of node-wise neighbor sampling, LADIES, and GNS in DGL, parallelized

with multiprocessing. The number of sampling workers is 4. The column labeled “LADIES(512)” means

sampling 512 nodes at each layer and “LADIES(5000)” means sampling 5000 nodes in each layer. In

GNS, the size of cached was 1% of |V|. LazyGCN runs out of GPU memory on OAG-paper and OGBN-

papers100M.

28

As is shown in Table 2.3, GNS can obtain a comparable accuracy score compared to NS with

2×−4× speed in training time, using a small cache. The acceleration is attributed to the smaller

number of nodes in a mini-batch, especially a smaller number of nodes in the input layer (Table 2.4).

This significantly reduces the time of data copy between CPU and GPUs as well as reducing the

computation overhead in a mini-batch (Figure 2.2). In addition, a large number of input nodes have

been cached in the GPU, which further reduces the time used in data copy between CPU to GPU.

GNS scales well to giant graphs with 100 million nodes as long as the CPU memory of the machine

can accommodate the graph. In contrast, LADIES cannot achieve state-of-the-art model accuracy

and its training speed is slower than NS on many graphs. Our experiments also show that LazyGCN

cannot achieve good model accuracy with a small mini-batch size, which is not friendly to giant

graphs. In addition, The LazyGCN implementation provided by the authors fails to scale to giant

graphs (e.g., OAG-paper and OGBN-products) due to the out-of-memory error even with a small

mega-batch. Our method is robust to a small mini-batch size and can easily scale to giant graphs.

Table 2.4: The average number of input nodes in a mini-batch

of NS and GNS as well as the average number of input nodes

from the cache of GNS.

#input nodes #input nodes #cached nodes

(NS) (GNS) (GNS)

Yelp 151341 24150 5796

Amazon 132288 19063 13986

OGBN-products 433928 88137 21552

OAG-paper 408854 102984 56422

OGBN-Papers100M 507405 155128 111923

We plot the convergence rate of all of the training methods on OGBN-products based on the test

F1-scores (Figure 2.3). In this study, LADIES samples 512 nodes per layer, and GNS caches 1%

of nodes in the graph. The result indicates that GNS achieves similar convergence and accuracy

as NS even with a small cache, thereby confirming the theoretical analysis in Section 2.3.5, while

29

LADIES and LazyGCN fail to converge to good model accuracy.

Figure 2.3: Comparison of the accuracy (F1 score) v.s. epochs.

Table 2.5: Percentage of isolated training nodes in

LADIES.

of sampled nodes/layer 256 512 1000 5000 10000

% of isolated target nodes 52.7 45.2 24.0 3.9 0

Percentage of isolated nodes in the first layer when training three-layer

GCN on OGBN-products with LADIES.

One of reasons why LADIES suffers poor performance is that it tends to construct a mini-batch

with many isolated nodes, especially for nodes in the first layer (Table 2.5). When training three-

layer GCN on OGBN-products with LADIES, the percentage of isolated nodes in the first layer

under different numbers of layerwise sampled nodes is illustrated in Tables 2.5.

LazyGCN requires a large batch size to train GCN on large graphs, which usually leads to

out-of-memory. Under the same setting of the paper [13], we investigate the performance of

nodewise LazyGCN on the Yelp dataset with different mini-batch sizes. As shown in Figure 2.4,

LazyGCN performs poorly at the small mini-batch size. This may be caused by training with less

representative graph data in mega-batch when recycling a small batch.

30

Figure 2.4: The effect of mini-batch size on the performance of LazyGCN on the Yelp dataset.

2.4.3 Hyperparameter Study

In this section, we explore the effect of various parameters in GNS on the OGBN-products dataset.

Table 2.6 summarizes the test F1-score for different values of cache update period sizes P and cache

sizes. A cache size as small as 0.01% can still achieve fairly good accuracy. As long as the cache

size is sufficiently large (e.g., 1% · |V|), properly reducing the frequency of updating the cache (e.g.,

P = 1, 2, 5) does not affect performance. Note that it is better to get a .1% sample every epoch than

a single 1% sample every 10 epochs, and .01% sample every epoch that the 0.1% sample every 10

epochs.

2.5 Conclusions

In this chapter, we propose a new effective sampling framework to accelerate GNN mini-batch

training on giant graphs by removing the main bottleneck in mixed CPU-GPU training. GNS creates

a global cache to facilitate neighbor sampling and periodically updates the cache. Therefore, it

reduces data movement between CPU and GPU. We empirically demonstrate the advantages of the

proposed algorithm in convergence rate, computational time, and scalability to giant graphs. Our

proposed method has a significant speedup in training on large-scale datasets. We also theoretically

31

Table 2.6: GNS sensitivity to update period and

cache size.

cache update period size P

Size of cache P = 1 P = 2 P = 5 P = 10

|V| × 1% 78.34 78.40 78.17 77.54

|V| × .1% 78.04 77.31 76.16 74.71

|V| × .01% 76.29 72.83 71.60 71.21

Performance in terms of test-set F1-score for different cache

sizes and update periods.

analyze GNS and show that even with a small cache size, it enjoys a comparable convergence rate

as the node-wise sampling method.

32

CHAPTER 3

Partial Information Selection in Retrieval Augmented

Generation

3.1 Introduction

Retrieval Augmented Generation (RAG) [22] has improved many text generation problems. One

example is Open-Domain Question Answering (ODQA) [23] which involves answering natural

language questions without limiting the domain of the answers. RAG merges the retrieval and

answering processes, which improves the ability to effectively collect knowledge, extract useful

information, and generate answers. Even though it is successful in fetching relevant documents,

RAG is not able to utilize connections between documents. In the ODQA setting, this leads to the

model disregarding documents containing answers, a.k.a. positive documents, with less apparent

connections to the question context. We can identify these documents if we connect them with

positive documents whose context is strongly relevant to the question context.

To find connections between documents and select highly relevant ones, the reranking process

plays a vital role in further effectively filtering retrieved documents. A powerful reranker also

reduces the complexity of the reading process if it can successfully identify the positive documents.

Thus, this dissertation focuses on using reranking to improve RAG – as it is a fundamental bridge

between the retrieval and reading processes.

Pre-trained language models (LMs) like BERT [19], RoBERTa [24], and BART [25] have been

widely used to enhance reranking performance by estimating the relevant score between questions

and documents. Recently, the Abstract Meaning Representation (AMR) graph has been integrated

33

…

…

…

…

…

…

…

…

Q & P AMRs

find connections establish GNN

Document Graph Reranker

…

Figure 3.1: G-RAG uses two graphs for re-ranking documents: The Abstract Meaning Representa-

tion (AMR) graph is used as a feature for the document-level graph. A document graph is then used

to rerank the document.

with an LM to enhance the system’s ability to comprehend complex semantics [26]. While the

current rerankers exhibit admirable performance, certain limitations persist.

Firstly, as mentioned above, most of the current works fail to capture important connections

between different retrieved documents. Some recent work [27] tries to incorporate external knowl-

edge graphs to improve the performance of the reading process in RAG but at the cost of significant

memory usage for knowledge graph storage. The connection between documents has not been

considered in the reranking process yet. Secondly, even though the AMR graph improves the

understanding of the complex semantics, state-of-the-art [26] work integrates redundant AMR infor-

mation into the pre-trained language models. This extra information can cause potential overfitting,

in addition to increases of in computational time and GPU cost. Thirdly, current papers utilize

common pre-trained language models as rerankers which are insufficient given the fast pace of

LLM development. With the recent breakthroughs from LLM, researchers are curious about how

LLMs perform (without fine-tuning) on the reranking task.

To address these challenges and limitations, we propose a method based on document graphs,

where each node represents a document, and each edge represents that there are common concepts

34

between two documents. We incorporate the connection information between different documents

into the edge features and update the edge features through the message-passing mechanism. For

node features, even though we aim to add AMR information to compose a richer understanding of

complex semantics, we won’t overwhelmingly add all AMR-related tokens as node-level features.

Instead, we investigate the determining factor that facilitates the reranker to identify more relevant

documents and encode this key factor to node features.

Moreover, instead of using the cross-entropy loss function during the training, we apply pairwise

ranking loss in consideration of the essential aim of ranking. We also investigate the performance

of a publicly available LLM, i.e., PaLM 2 [28] with different versions, as a reranker on an ODQA.

According to the moderate performance of PaLM 2 on reranking tasks, we provide several potential

reasons and emphasize the irreplaceable role of reranker model design to improve RAG. The

framework of graph-based reranking in the proposed G-RAG is illustrated in Fig 3.1.

Our contributions can be summarized as follows:

1. To improve RAG for ODQA, we propose a document-graph-based reranker that leverages

connections between different documents. When the documents share similar information

with their neighbor nodes, it helps the reranker to successfully identify the documents

containing answer context that is only weakly connected to the question.

2. We introduce new metrics to assess a wide range of ranking scenarios, including those

with tied ranking scores. The metrics effectively evaluate this scenario by diminishing the

optimistic effect brought by tied rankings. Based on these metrics, our proposed method

outperforms state-of-the-art and requires fewer computational resources.

3. We assess the performance of a publicly available LLM (PaLM 2 [28]) as a reranker, exploring

variations across different model sizes. We find that excessive ties within the generated

ranking scores hinder the effectiveness of pre-trained large language models in improving

RAG through reranking.

35

3.2 Related Work

RAG in ODQA. RAG [29, 22] combines information retrieval (via Dense Passage Retrieval, DPR

[30]) and a reading process in a differentiable manner for ODQA. A line of literature focuses on

developing rerankers for further improving RAG. Approaches like monoT5 [31] and monoELEC-

TRA [32] use proposed pre-trained models. Moreover, [33] proposes a fine-tuned T5 version as

a reranker. More recently, [34] developed a reranker module by fine-tuning the reader’s neural

networks through a prompting method. However, the above approaches neglect to investigate the

connections among documents and fail to leverage this information during the reranking process.

These methods are prone to fail to identify the documents containing gold answers that may not

exhibit obvious connections to the question context. To address this issue, our proposed method

is based on document graphs and is more likely to identify valuable information contained in a

document if most of its neighboring document nodes in the graph share similar information.

Graphs in ODQA. Knowledge graphs, which represent entities and their relations, have been

leveraged in ODQA [27, 35, 36, 37] to improve the performance of RAG. However, KG-based

methods require large external knowledge bases and entity mapping from documents to the entities

in the knowledge graph, which would increase the memory cost. Our proposed method does not

depend on external knowledge graphs. While recent work by [26] uses AMR graphs generated from

questions and documents to construct embeddings, their focus remains on text-level relations within

a single document. In contrast, our approach uniquely leverages document graphs to characterize

cross-document connections, a novel application within the RAG reranking process.

Abstract Meaning Representation (AMR). AMR [38] serves as a promising tool for representing

textual semantics through a rooted, directed graph. In the AMR graph, nodes represent basic

semantic units like entities and concepts, while edges denote the connections between them. AMR

graphs have more structured semantic information compared to the general form of natural language

[39, 40]. A line of literature has integrated AMR graphs into learning models. Recently, [26] have

36

applied AMR to ODQA to deal with complex semantic information. Even though the performance

of the reranker and the reader is improved in [26], their method also increases the computational

time and GPU memory cost. This issue may arise by integrating all tokens of AMR nodes and

edges without conscientiously selecting the key factors. To address this issue, our method aims

to investigate the graph structure of AMR graphs and identify the key factors that improve the

performance of the reranker.

LLMs in Reranking. LLMs such as ChatGPT [41], PaLM 2 [28], LLaMA [42], and GPT4 [43],

have proven to be capable of providing answers to a broad range of questions due to their vast knowl-

edge repositories and chain-of-thought reasoning capability. With this breakthrough, researchers

are seeking to explore potential improvements that LLMs can bring to improve RAG in ODQA,

such as [44, 45]. At the same time, several studies [46, 47] have scrutinized the efficacy of LLMs in

Question-Answering. [46] indicates the superiority of the DPR [30] + FiD [48] approach over LLM

in ODQA. Despite these investigations, the potential of LLMs without fine-tuning as rerankers to

improve RAG remains unexplored, as existing studies often take pre-trained language models such

as BERT [19], RoBERTa [24], and BART [25] in the reranker role.

3.3 Proposed Method: G-RAG

G-RAG leverages the rich structural and semantic information provided by the AMR graphs to

enhance document reranking. 3.3.1 details how we use AMR graph information and build a graph

structure among the retrieved documents. 3.3.2 outlines the design of our graph neural network

architecture for reranking documents.

3.3.1 Establishing Document Graphs via AMR

In ODQA datasets we consider, one document is a text block of 100 words that come from

the text corpus. For each question-document pair, we concatenate the question q and document

37

p as “question:¡question text¿¡document text¿” and then exploit AMRBART [49] to parse the

sequence into a singular AMR graph. The AMR graph for question q and document p is denoted

as Gqp = {V,E}, where V and E are nodes and edges, respectively. Each node is a concept,

and each edge is denoted as e = (s, r, d) where s, r, d represent the source node, relation, and the

destination node, respectively. Our reranker aims to rank among the top 100 documents retrieved by

DPR [30]. Thus, given one question q and documents {p1, · · · , pn} with n = 100, we establish the

undirected document graph Gq = {V , E} based on AMRs {Gqp1 , · · · , Gqpn}. For each node vi ∈ V ,

it corresponds to the document pi. For vi, vj ∈ V , i ̸= j, if the corresponding AMR Gqpi and Gqpj

have common nodes, there will be an undirected edge between vi and vj (with a slight abuse in

notation) denoted as eij = (vi, vj) ∈ E . We remove isolated nodes in Gq. In the following, we will

construct the graph neural networks based on the document graphs to predict whether the document

is relevant to the question. Please refer to Appendix B.1 for AMR graph statistics, i.e., the number

of nodes and edges in AMR graphs, of the common datasets in ODQA.

3.3.2 Graph Neural Networks for Reranking

Following Section 3.3.1, we construct a graph among the n = 100 retrieved documents denoted as

Gq given the question q. We aim to exploit both the structural information and the AMR semantic

information to rerank the retrieved documents. To integrate the semantic information of documents,

the pre-trained language models such as BERT [19], and RoBERTa [24] are powerful tools to

encode the document texts as node features in graph neural networks. Even though [26] integrates

AMR information into LMs, it increases the computational time and GPU memory usage. To

address this, we proposed node and edge features for graph neural networks, which simultaneously

exploit the structural and semantic information of AMR but avoid adding redundant information.

38

3.3.2.1 Generating Node Features

Our framework applies a pre-trained language model to encode all the n retrieved documents in

{p1, p2, · · · , pn} given a question q. The document embedding is denoted as X̃ ∈ Rn×d where d is

the hidden dimension, and each row of X̃ is given by

x̃i = Encode(pi) for i ∈ {1, 2, · · ·n}. (3.1)

Since AMR brings more complex and useful semantic information, we intend to concatenate

document text and corresponding AMR information as the input of the encoder. However, if we

integrate all the information into the embedding process as the previous work [26] did, it would

bring high computational costs and may lead to overfitting. To avoid this, we investigate the

determining factor that facilitates the reranker to identify more relevant documents. By studying

the structure of AMRs for different documents, we note that almost every AMR has the node

“question”, where the word “question” is included in the input of the AMR parsing model, given by

“question:(question text)(document text)”. Thus, we can find the single source shortest path starting

from the node “question”. When listing every path, the potential connection from the question to the

answer becomes much clearer. By looking into the nodes covered in each path, both the structural

and semantic information can be collected. The embedding enables us to utilize that information to

identify the similarity between question and document context.

To better illustrate the structure of the shortest path, we also conduct some experiments to show

the statistic of the shortest path, see Fig B.2 in Appendix. We study the shortest single source

paths (SSSPs) starting from “question” in the AMR graphs of documents from the train set of

Natural Question (NQ) [50] and TriviaQA (TQA)[51] dataset. The analysis shows that certain

negative documents cannot establish adequate connections to the question context within their

text. Moreover, negative documents encounter another extreme scenario where paths contain an

abundance of information related to the question text but lack valuable information such as the gold

answers. This unique pattern provides valuable insight that can be utilized during the encoding

process to improve the reranker performance.

39

Thus, the proposed document embedding is given by X ∈ Rn×d and each row of X can be

given by, for i ∈ {1, 2, · · ·n}:

xi = Encode(concat(pi, ai)), (3.2)

where ai denotes the AMR information to the document pi. There are two steps to get the represen-

tation of ai: 1) find the shortest single source paths (SSSPs) starting from the node “question” in

AMR graph Gqpi and each path is not the subset of other paths, e.g., an example path is [‘question’,

‘cross’, ‘world-region’, ‘crucifix’, ‘number’, ‘be-located-at’, ‘country’, ‘Spain’]; 2) extract the node

concepts to construct ai, e.g, part of ai can be represented as ¡... question cross world-region crucifix

number be-located-at country Spain ...¿. X ∈ Rn×d (3.2) will be the initial node representation of

graph neural networks.

3.3.2.2 Edge Features

Besides the node features, we also adequately leverage edge features associated with undirected

edges in AMR {Gqp1 , · · · , Gqpn}. Let Ê ∈ Rn×n×l denote the edge features of the graph. Then,

Êij· ∈ Rl represents the l-dimensional feature vector of the edge between the node vi and node vj

i ̸= j, and Êijk denotes the k-th dimension of the edge feature in Êij·. In our framework, l = 2 and

Ê is given by: 
Êij· = 0, no connection between Gqpi and Gqpj ,

Êij1 = # common nodes between Gqpi and Gqpj ,

Êij2 = # common edges between Gqpi and Gqpj .

(3.3)

We then normalize the edge feature Ê to avoid the explosive scale of output node features when

being multiplied by the edge feature in graph convolution operations. Thus, our derived feature

E is normalized on the first and second dimension, respectively. Similar edge normalization has

also been considered in the paper [52]. E ∈ Rn×n×l will be the initial edge representation of graph

neural networks.

40

3.3.2.3 Representation Update

Based on the above initial node and edge representations, we arrive at updating representations in

the graph neural networks. Given a document graph G(V , E) with |V| = n, the input feature of

node v ∈ V is denoted as x0
v ∈ Rd, and the initial representation of the edge between node v and

u is given by e0uv ∈ Rl with l = 2. Let N (v) denote the neighbor nodes of the node v ∈ V . The

representation of node v ∈ V at layer ℓ can be derived from a GNN model given by:

xℓ
v = g(xℓ−1

v ,
⋃

u∈N (v)

f(xℓ−1
u , eℓ−1

uv)), (3.4)

where f ,
⋃

, and g are functions for computing feature, aggregating data, and updating node

representations, respectively. Specifically, the function f applies different dimensional edge features

as weights to the node features, given by

f(xℓ−1
u , eℓ−1

uv) =
l∑

m=1

eℓ−1
uv (m)xℓ−1

u . (3.5)

We choose mean aggregator [53] as the operation
⋃

. The parameterized function g is a non-

linear learnable function that aggregates the representation of the node and its neighbor nodes.

Simultaneously, the representation of edge starting from v ∈ V at layer ℓ is given by:

eℓv· = g(eℓ−1
v· ,

⋃
u∈N (v)

eℓ−1
u·). (3.6)

3.3.2.4 Reranking Score and Training Loss

Given a question q and its document graph Gq = {V , E}, we have the output node representations of

GNN, i.e., xL
v , where L is the number of GNN layers. With the same encoder in (3.2), the question

q is embedded as

y = Encode(q). (3.7)

The reranking score for each node vi ∈ V corresponding the document pi is calculated by

si = y⊤xL
vi
, (3.8)

41

for i = 1, · · · , n and |V| = n. The cross-entropy training loss of document ranking for the given

question q is:

Lq = −
n∑

i=1

yi log

(
exp(si)∑n
j=1 exp(sj)

)
(3.9)

where yi = 1 if pi is the positive document, and 0 for the negative document. The cross-entropy

loss may fail to deal with the unbalanced data in ODQA where the number of negative documents

is much greater than the number of positive documents. Besides the cross-entropy loss function, the

pairwise loss function has been a powerful tool for ranking [54]. Given a pair of scores si and sj ,

the ranking loss is given by :

RLq(si, sj, r) = max (0,−r (si − sj) + 1) , (3.10)

where r = 1 if document i should be ranked higher than document j, and vice-versa for r = −1.

We conduct experiments based on both loss functions and emphasize the advantage of the ranking

loss (3.10) over the cross-entropy loss (3.9).

3.4 Experiments

3.4.1 Setting

Datasets. We conduct experiments on two representative ODQA datasets Natural Questions(NQ)

[50] and TriviaQA (TQA) [51]. NQ is derived from Google Search Queries and TQA includes

questions from trivia and quiz-league websites. Detailed dataset statistics are presented in Table B.1

in Appendix B.1. Note that the gold answer lists in dataset NQ usually have much fewer elements

than the dataset TQA, which leads to a much smaller number of positive documents for each

question.

We use DPR [30] to retrieve 100 documents for each question and generate the AMR graph for

each question-document pair using AMRBART [49]. The dataset with AMR graphs is provided

42

by [26]1. Please refer to Appendix B.1 for more details on the AMR statistic information. We

conducted our experiments on a Tesla A100 40GB GPU, demonstrating the low computational

needs of G-RAG.

Model Details. For the GNN-based reranking models, we adopt a 2-layer Graph Convolutional

Network [53] with hidden dimension chosen from {8, 64, 128} via hyperparameter-tuning. The

dropout rate is chosen from {0.1, 0.2, 0.4}. We initialize the GNN node features using pre-trained

models, e.g, BERT [19], GTE [55], BGE [56], Ember [57]. We base our implementation of the

embedding model on the HuggingFace Transformers library [58]. For training our framework, we

adopt the optimizer AdamW [59] with the learning rate chosen from {5e− 5, 1e− 4, 5e− 4}. Batch

size is set to 5. We set the learning rate warm-up with 1, 000 steps. The number of total training

steps is 50k, and the model is evaluated every 10k steps.

3.4.1.1 Metrics

Even though Top-K accuracy, where the ground-truth ranking is based on DPR scores [30], is

commonly used in the measurement of reranking [60, 48], this metric is unsuitable for indicating

the overall reranking performance for all positive documents. Moreover, with the promising

development of LLM in learning the relevance between texts, DPR scores may lose their advantage

and fairness. To address this issue, other metrics such as Mean Reciprocal Rank (MRR) and

Mean Hits@10 (MHits@10) are used for measuring the reranking performance [26]. To be

specific, The Mean Reciprocal Rank (MRR) score of a positive document is given by MRR =

1
|Q|
∑

q∈Q(
1

|P+|
∑

p∈P+
1
rp
), where Q is the question set from the evaluating dataset, P+ is the

set of positive documents, and rp is the rank of document p estimated by the reranker. The

MHits@10 indicates the percentage of positive documents that are ranked in the Top 10, given by

MHits@10 = 1
|Q|
∑

q∈Q(
1

|P+|
∑

p∈P+ I(rp <= 10)), where the indication I(A) = 0 if the event A

is true, otherwise 0.

1https://github.com/wangcunxiang/Graph-aS-Tokens/tree/main

43

https://github.com/wangcunxiang/Graph-aS-Tokens/tree/main

The above metrics work well for most cases, however, they may fail to fairly characterize the

ranking performance when there are ties in ranking scores, which is common in relevant scores

generated by LLMs such as ChatGPT [41], PaLM 2 [28], LLaMA [42], and GPT4 [43]. Please refer

to Fig B.3 in the Appendix for the detailed prompt and results of relevant scores between questions

and documents. To address ties in the ranking scores, we propose variants of MRR and MHits@10.

Denote r(t)p as the rank of the document p with t ties. In other words, the relevant score between the

question and the document p is the same as other t− 1 documents. The variant of MRR for tied

ranking is named Mean Tied Reciprocal Ranking (MTRR), represented as

MTRR =
1

|Q|
∑
q∈Q

(
1

|P+|
∑
p∈P+

1

r
(t)
p

I(t = 1)

+
2

r
(t)
p + r

(t)
p + t− 1

I(t > 1)

)
. (3.11)

The metric MTRR addresses the tied rank r(t)p estimated by the reranker via averaging the optimistic

rank r(t)p and the pessimistic rank r(t)p + t−1. The metrics MRR and MTRR are the same when there

is no ranking tie. The variant of MHits@10 for tied ranking is Tied Mean Hits@10 (TMHit@10).

DenoteH(p) as the set that includes all the ranks {r(ti)pi } that are higher than the rank of document

p, i.e., r(τ)p . Based on these notations, we present the new metric as:

TMHits@10 =
1

|Q|
∑
q∈Q

 1

|P+|
∑
p∈P+

Hits@10(p)

 , (3.12)

where Hits@10(p) is defined as

0, if
∑

i ti > 10 for ∀ r(ti)pi ∈ H(p),

(10−
∑

i ti)/τ, if 0 <
∑

i ti < 10

for ∀ r(ti)pi ∈ H(p) and τ > 1,

10/τ, ifH(p) = ∅ and τ > 10,

1, otherwise.

If there are ties in the Top-10 ranking, the metric TMHit@10 diminishes the optimistic effect by

dividing the hit number (no greater than 10) by the number of ties.

44

3.4.2 Comparing Reranker Systems

We compare our proposed algorithm with baselines as follows with fixed hyper-parameter in the

absence of fine-tuning, where the hidden dimension is 8, the dropout rate is 0.1, and the learning

rate is 1e-4. w/o reranker: Without an additional reranker, the ranking score is based on the

retrieval scores provided by DPR [30]. BART: The pre-trained language model BART [25] severs

as the reranker. BART-GST: The method proposed by Wang et al. integrates graph-as-token into

the pre-trained model [26]. For each dataset, we use the best performance provided in the paper.

RGCN-S: It is introduced by [26] that stacks the RGCN model on the top of the transformer. Even

though this method is based on graph neural networks, it doesn’t rely on the document graphs but

constructs nodes in the graph model based on the text alignment in the question-document pair.

MLP: The initial node features are only based on document text as described in (3.1) with the BERT

[19] encoder. After the node features go through MLP, we get the relevant scores via (3.8) and

take the cross-entropy function (3.9) as training loss. GCN: Besides updating node representations

via GCN, the rest setting is the same as MLP. We also conduct experiments with different GNN

models. Please refer to Appendix B.2 for details. G-RAG: The initial node features are based on

document text and AMR information as described in (3.2). The rest of the setting is the same as

GCN. G-RAG-RL: Using the ranking loss function and keep the other setting the same as G-RAG.

NQ TQA

Strategy

/Metric

MRR dev

/MRR test

MH@10 dev

/MH@10 test

MRR dev

/MRR test

MH@10 dev

/MH@10 test

w/o reranker 20.2/18.0 37.9/34.6 12.1/12.3 25.5/25.9

BART 25.7/23.3 49.3/45.8 16.9/17.0 37.7/38.0

BART-GST 28.4/25.0 53.2/48.7 17.5/17.6 39.1/39.5

RGCN-S 26.1/23.1 49.5/46.0 — —

MLP 19.2/17.8 40.0/38.8 17.6/17.1 34.0/31.4

GCN 22.6/22.4 47.6/44.2 18.2/17.4 38.0/37.0

G-RAG 25.1/24.2 49.1/47.2 18.5/18.3 38.5/39.1

G-RAG-RL 27.3/25.7 49.2/47.4 19.8/18.3 42.9/39.4

Table 3.1: Results on the dev/test set of NQ and TQA without hyperparameter fine-tuning.

45

The results on MRR and MHits@10 on the NQ and TQA datasets are provided in Table 3.1.

Note that the results on NQ always outperform the results on TQA, this is due to a smaller number of

positive documents making it easy to put most of the positive documents into the Top 10. Generally

speaking, TQA is a more complex and robust dataset than NQ. Models with graph-based approaches,

such as GCN and G-RAG, show competitive performance across metrics. These methods have

advantages over the baseline models, i.e., without reranker and MLP. In conclusion, based on

the simulation results, the proposed method G-RAG-RL emerges as a strong model, indicating

the effectiveness of graph-based strategies and the benefit of pairwise ranking loss on identifying

positive documents. To effectively present the potential advantages of the proposed G-RAG over

state-of-the-art benchmarks, we conducted experiments across various embedding models with

fine-tuning parameters in the next section.

3.4.3 Using different LLMs as Embedding Models

The feature encoder always plays a vital role in natural language processing-related tasks. Better

embedding models are more likely to fetch similarities across contexts and help identify highly

relevant contexts. Besides the BERT model used in the state-of-the-art reranker, many promising

embedding models have been proposed recently. To evaluate the effectiveness of different embed-

ding models, i.e., BERT [19], GTE [55], BGE [56], Ember [57], we conduct the experiments under

the same setting as G-RAG-RL. The results are illustrated in Table 3.2. For the convenience of

comparison, we directly add two results from Section 3.4.2, i.e., BART-GST and BERT in Table 3.2.

It shows that Ember performs consistently well across both datasets and most evaluation metrics. In

conclusion, Ember appears to be the top-performing model, followed closely by GTE and BGE,

while BART-GST and BERT show slightly lower performance across the evaluated metrics. Thus

our fine-tuning result is based on G-RAG-RL with Ember as the embedding model. The grid search

setting for hyperparameter is introduced in Section 3.4.1. We only run 10k iterations for each setting

and pick up the one with the best MRR. The result with hyperparameter tuning, i.e., Ember (HPs-T),

is added in Table 3.2. Even though BART-GST demonstrates competitive performance in some

46

NQ TQA

Embedding

/Metric

MRR dev

/MRR test

MH@10 dev

/MH@10 test

MRR dev

/MRR test

MH@10 dev

/MH@10 test

BART-GST 28.4/25.0 53.2/48.7 17.5/17.6 39.1/39.5

BERT 27.3/25.7 49.2/47.4 19.8/18.3 42.9/39.4

GTE 29.9/26.3 52.6/47.7 19.2/19.3 41.8/40.3

BGE 28.7/27.4 52.1/48.2 18.7/18.3 43.4/40.7

Ember 29.0/26.1 52.9/48.0 19.8/18.6 44.3/42.0

Ember (HPs-T) 28.9/27.7 51.1/50.0 20.0/19.4 41.6/41.4

Table 3.2: G-RAG with changing the embedding model.

scenarios, it is prone to be overfitting especially in terms of MRR in the NQ dataset. However, the

proposed methods, i.e., Ember and Ember (HPs-T), are more likely to avoid overfitting and achieve

the highest values in all test sets.

3.4.4 Investigating PaLM 2 Scores

To evaluate the performance of large language models on the reranking task, we conduct zero-short

experiments on the dev & test sets of the NQ and TQA datasets. An example of an LLM-generated

relevance score is illustrated in Figure B.3 in the Appendix.

In general, we observe that scores generated by PaLM 2 are integers between 0 and 100 that

are divisible by 5. This often leads to ties in document rankings. To address the ties in the ranking

score, we use the proposed metrics MTRR (Eq. 3.11) and TMHits@10 (Eq. 3.12) to evaluate the

performance of reranker based on PaLM 2 [28]. For the convenience of comparison, we copy

w/o rerank, BART, and G-RAG results from Section 3.4.2. Since there is no tied ranking

provided by w/o rerank and BART, the MRR and MHits@10 have the same values as MTRR

and TMhits@10, respectively.

The performance results are provided in Table 3.3. The results demonstrate that LLMs with zero-

47

Strategy/Metric
NQ TQA

MTRR TMH MTRR TMH

dev test dev test dev test dev test

w/o reranker 20.2 18.0 37.9 34.6 12.1 12.3 25.5 25.9

BART 25.7 23.3 49.3 45.8 16.9 17.0 37.7 38.0

PaLM2 XS 14.9 14.0 34.1 34.2 11.6 12.5 29.1 31.6

PaLM2 L 18.6 17.9 40.7 39.7 12.7 12.9 34.7 35.6

G-RAG-RL 27.3 25.7 49.2 47.4 19.8 18.3 42.9 39.4

Table 3.3: Results of PaLM 2 being the reranker. Small embedding models outperform LLMs in this

setting. In comparison, G-RAG-RL considerably improves the results compared to both language

model types by leveraging connection information across documents. We use Tied Mean Hits@10.

shot learning do not do well in reranking tasks. This may be caused by too many ties in the relevance

scores, especially for small-size LLM where there are more of them. This result emphasizes the

importance of reranking model design in RAG even in the LLM era. More qualitative examples

based on PaLM 2 are provided in Appendix B.3.

We compare the results of both approaches with G-RAG which brings additional perspective

to these results. Leveraging the information about connections of entities across documents and

documents themselves brings significant improvements up to 7 percentage points.

3.5 Conclusions

Our proposed model, G-RAG, addresses limitations in existing ODQA methods by leveraging im-

plicit connections between documents and strategically integrating AMR information. Our method

identifies documents with valuable information significantly better even when this information is

only weakly connected to the question context. This happens because documents connected by

the document graph share information that is relevant to the final answer. We integrate key AMR

48

information to improve performance without increasing computational cost. We also proposed

two metrics to fairly evaluate the performance of a wide range of ranking scenarios including

tied ranking scores. Furthermore, our investigation into the performance of PaLM 2 as a reranker

emphasizes the significance of reranker model design in RAG, as even an advanced pre-trained

LLM might face challenges in the reranking task. There are more directions for future study. For

instance, designing more sophisticated models to better process AMR information and integrating

this information into node & edge features will bring further improvements in reranking. Further,

while a pre-trained LLM does not have impressive performance as a reranker itself, fine-tuning it

may be extremely useful for enhancing the performance of RAG systems.

49

CHAPTER 4

Exploration of Partial Information in Sparse Bandit Problems

4.1 Introduction

Bandit and reinforcement learning problems in real-world applications, e.g., autonomous driving

[61], healthcare [62], recommendation system [63], marketing and advertising [64], are challenging

due to the magnificent state/action space. To address this challenge, a function approximation

framework has been introduced, which first extracts feature vectors for state/action space and then

approximates the value functions of all policies in RL (or the reward functions of all actions in bandit

problems) with feature representations. In some real-world applications, feature representations may

not have vanilla linear mapping. In these scenarios, a linear feature representation can approximate

the value functions (or the reward functions) with a small uniform error known as misspecification.

Unfortunately, [65] shows that searching for an O(ε)-optimal action in these scenarios requires

pulling at least Ω(exp(d)) queries. However, if we relax the goal of finding O(ε)-optimal action,

there is still a chance. Instead, [66] find an action that is suboptimal with an error of at most O(ε
√
d)

within poly(d/ε) queries, where d is the dimension of the feature vectors.

By scrutinizing the novel result proposed by [66], the dependence on
√
d raises concern regarding

the potential blowup of the approximation error. We are modestly optimistic that some structural

patterns, such as sparsity, in feature representation schemes are beneficial to break the ε
√
d barrier.

This idea comes from a vast literature that studies high-dimensional statistics in sparse linear

regression [67, 68] and successfully applies it to sparse linear bandits [69, 70, 71, 72, 73, 74].

Moreover, the sparsity-structure in linear bandits are meaningful and crucial to many practical

50

applications where there are many potential features but no apparent evidence on which are relevant,

such as personalized health care and online advertising [75, 70]. The essential difference in sparse

linear bandits between this dissertation and state-of-the-art is the study of the possible model

misspecification, i.e., the ground truth reward means might be an ε error away from a sparse linear

representation for any action.

Model misspecification is widely seen in practice and has been widely studied only in the dense

model (also known as misspecified linear bandits) [76, 77, 78, 79], where the best polynomial-

sample algorithm suffers a O(ε
√
d) estimation error, which can be prominent when the feature

dimension d is sufficiently large. However, it is unexplored whether a structural sparsity assumption

on the ground-truth parameter could break the ε
√
d barrier. Additionally, there is little understanding

of the conditions when linear features are “useful” for bandit problems and reinforcement learning

with misspecification.

Contribution.

• We establish novel algorithms that obtain O(ε)-optimal actions by querying O(ε−sds) actions,

where s is the sparsity parameter. For fixed sparsity s, the algorithm finds an O(ε)-optimal

action with poly(d/ε) queries, breaking the O(ε
√
d) barrier. The ε−s dependence in the

sample bound can be further improved to Õ(s) if we allow an O(ε
√
s) suboptimality.

• We establish information-theoretical lower bounds to show that our upper bounds are nearly

tight. In particular, we show that any sound algorithms that can obtain O(∆)-optimal actions

need to query Ω(exp(mε/∆)) samples from the bandit environment, where the approximate

error ∆, defined in Definition 1, satisfies ∆ ≥ ε. Hence, for approximation error of the form

O(sδε), for any 0 < δ < 1, exp(s)-dependence in the sample complexity is not avoidable.

• We further break the exp(s) sample barrier by showing an algorithm that achieves O(sε)

sub-optimal actions while only querying poly(s/ε) samples in the regime the action features

possess specific benign structures (hence “good” features). We then relax the benign feature

51

requirement to arbitrary feature settings and propose an algorithm with efficient sample

complexity of poly(s/ε).

In summary, our results provide a nearly complete picture of how sparsity can help in misspeci-

fied bandit learning and provide a deeper understanding of when linear features are “useful” for the

bandit and RL with misspecification.

4.2 Related Work

This section summarizes the state-of-the-art in several areas of interest related to our work: function

approximation, misspecified feature representation, and sparsity in bandits and reinforcement

learning.

Function approximation in bandits and reinforcement learning Function approximation

schemes that approximate value functions in RL (reward function in bandit problem) with feature

representations are widely used for generalization across large state/action spaces. A recent line of

work studies bandits [80, 81, 82, 83] and RL with linear function approximation [84, 78, 85, 86, 87,

88]. Beyond the linear setting, there is a flurry line of research studying RL with general function

approximation [89, 90, 91] and bandits with general function approximation [92, 93, 94, 95, 96].

The regret upper bound O(poly(d)
√
n) can be achieved in the above papers, where d is the ambient

dimension (or complexity measure such as eluder dimension) of the feature space and n is the

number of rounds.

Misspecified bandits and reinforcement learning Recently, interest has been aroused in dealing

with the situation when the value function in RL (or the rewards functions in bandits) is approximated

by a linear function where the approximation error is at most ε, also known as the misspecified

linear bandit and reinforcement learning. The misspecification facilitates us to establish a more

complicated reward function than a linear function. For instance, it enables the characterization of a

52

reward function that may change over the rounds, which is common in real-world applications such

as education, healthcare, and recommendation systems [83].

The paper [65] showed that no matter whether value-based learning or model-based learning,

the agent needs to sample an exponential number of trajectories to find an O(ε)-optimal policy for

reinforcement learning with ε-misspecified linear features. This result shows that good features

(e.g., linear features with small misspecification) are not sufficient for sample-efficient RL if the

approximation error guarantee is close to the misspecification error. By relaxing the objective of

achieving O(ε)-optimality, [66] showed that poly(d/ε) samples are sufficient to obtain an O(ε
√
d)-

optimal policy (in the simulator model setting of RL), where d is the feature dimension, indicating

the same features are “good” in a different requirement. The hard instances used in both papers are

bandit instances and hence provide understanding for misspecified linear bandit problems as well.

Many works in the literature, such as [97, 98, 77, 99, 84], can also deal with misspecification

in linear bandits or RL with linear features. These algorithms can only achieve a O(ε
√
d) error

guarantee at best (when their regret bounds are translated to PAC bounds) with poly(d/ε) samples.

Sparse linear bandits and reinforcement learning In this section, we briefly review the literature

on the sparse linear bandits and RL, where no misspecification is considered. We also note that

these results are stated in regret bounds, which can be easily converted to PAC bounds.

The paper [70] proposed an online-to-confidence-set conversion approach which achieves a

regret upper bound of O(
√
sdn), where s is a known parameter on the sparsity. A matching lower

bound is given in [100][Chapter 24.3], which shows that polynomial dependence on d is generally

unavoidable without additional assumptions. To address this limitation, another line of literature

[101, 71, 72] studied the sparse contextual linear bandits where the action set is different in each

round and follows some context distribution. [101] developed a doubly-robust Lasso bandit approach

with an O(s
√
n) upper bound. [71] considered the scenario where each arm has an underlying

parameter and derived a O(Ks2(log(n))2) upper bound which was improved to O(Ks2 log(n))

by [72], where K is the number of arms. [69] proposed a structured greedy algorithm to achieve

53

an O(s
√
n) upper bound. [102] derived a Ω(n2/3) minimax regret lower bound for sparse linear

bandits where the feature vectors lack a well-conditioned exploration distribution.

There are many previous works studying feature selection in reinforcement learning. Specifi-

cally, [103, 104, 105, 106] proposed algorithms with ℓ1-regularization for temporal-difference (TD)

learning. [107] and [108] proposed Lasso-TD to estimate the value function in sparse reinforcement

learning and derived finite-sample MDP statistical analysis. [109] provided nearly optimal statisti-

cal analysis of high dimensional batch reinforcement learning (RL) using sparse linear function

approximation. [110] derived an O(d
√
n) regret bound in high-dimensional sparse linear quadratic

systems where d is the dimension of the state space. The hardness of online reinforcement learning

in fixed horizon has been studied by [111], which shows that linear regret is generally unavoidable

in this case, even if there exists a policy that collects well-conditioned data.

4.3 Preliminary

Throughout this chapter, f(n) = O(g(n)) denotes that there exists a constant c > 0 such that

|f(n)| ≤ c|g(n)| and Õ(·) ignores poly-logarithmic factors. f(n) = Ω(g(n)) means that there

exists a constant c > 0 such that |f(n)| ≥ c|g(n)|. In addition, the notation f(n) = Θ(g(n)) means

that there exists constants c1, c2 > 0 such that c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|. For a given integer n,

let [n] denote the set {1, · · · , n}. Let C > 0 denote a suitably universal large constant. For a matrix

A ∈ Rm×n, the set of rows is denoted by rows(A). Define an index setM⊆ [d] such that |M| = s.

Let ΦM ∈ Rk×s be the submatrix of Φ ∈ Rk×d and θM ∈ Rs be the sub-vector of θ ∈ Rd.

Consider a bandit problem where the expected rewards are nearly a linear function of their

associated features. Let Φ ∈ Rk×d denote the feature matrix whose rows are feature vectors

corresponding to k actions. In rounds t ∈ [n], the agent chooses actions (at)nt=1 with at ∈ rows(Φ)

and receives a reward

rat = ⟨at, θ∗⟩+ νat , (4.1)

where νat ∈ [−ε, ε], ε > 0 for t ∈ [n] and θ∗ ∈ Rd is an unknown parameter vector. We only

54

consider deterministic rewards as small unbiased noises from rewards that do not change the sample

complexity analysis of this chapter by much but complicate the presentation. In Appendix C.3, we

provide additional discussion on the noisy setting of the rewards.

We make the mild boundedness assumption for each element of the feature matrix such that

rows(Φ) ∈ Sd−1
B . The parameter vector θ∗ is assumed to be s-sparsity:

∥θ∗∥0 =
d∑

j=1

1{θ∗j ̸= 0} = s and ∥θ∗∥2 ≤ 1.

We also assume that ∀ x ∈ rows(Φ), there is ∥x∥2 ≤ 1.

4.4 Main Results

In this section, we first present an O(ε)-optimal algorithm that takes O(ε−sds) queries in Section

4.4.1 for ε-misspecified s-sparse linear bandit. Then we derive a nearly matching lower bound in

Section 4.4.2.

4.4.1 An Algorithm that Breaks the Ω(exp(d)) Sample Barrier

The core idea of our algorithm is based on an elimination-type argument. In particular, we would

guess an estimator θ̂ for θ∗ and a index setM⊂ [d]. Then for each guess of θ̂ andM, we check

the actions that have similar features restricting toM. Querying an action in this group allows us to

rule out the guess ofM and θ̂ if they were not correct. If the ground truth θ∗ is dense, this algorithm

would take Ω(exp(d)) queries. Fortunately, since |M| = s, we can establish an O(ε)-net with a

small size and eliminate the incorrect parameters efficiently. Below, we present the algorithm more

formally.

Define an index setM ⊆ [d] such that |M| = s. LetM∗ denote the non-zero subset of θ∗.

Denote N s as a maximal ε/2-separated subset of the Euclidean sphere Ss−1 with radius of 1 . The

set N s satisfies that ∥x − y∥2 ≥ ε/2, for all x, y ∈ N s, and no subset of Ss−1 containing N s

55

satisfies this condition. Thus, the size of N s is

|N s| ≤
(
4

ε
+ 1

)s

. (4.2)

For a setM, we denote an estimator as θ̂M ∈ N s to indicate the estimator which has only non-zero

coordinates atM.

For ∀w ∈ N s, we collect all x ∈ rows(Φ) close to w by the measurement |θ̂⊤M(xM−w)| where

xM ∈ Rs is the sub-vector of x ∈ Rd restricted to the index setM and define the set as

Rw
M(θ̂M) := {x ∈ rows(Φ) : |θ̂⊤M(xM − w)| ≤

ε

2
}. (4.3)

The above set is simply denoted asRw
M in the following proof if θ̂M is clear from the context. In

each round of the algorithm, we find x ∈ Rw
M and a setM′ (M′ ̸=M) such that θ̂⊤M′xM′ deviates

from θ̂⊤Mw (at least Ω(ε)). Then, we query such x and receive the corresponding reward rx. By

comparing the difference between rx and θ̂⊤Mw, we can know whether the subsetM orM′ of x

is more likely to determine the reward rx and rule out the incorrect parameters. For x ∈ Rw
M, let

[x]N s denote the vector v = argminw∈N s ∥w − xM∥2 where xM ∈ Rs is the sub-vector of x. Let

(∼,M, θ̂M) ∈ S denote all of the elements involving the index setM and θ̂M ∈ N s. We present

the full algorithm in Algorithm 2.

Theorem 2 After

O

((
1

ε

)s

·
(
d

s

))
number of queries, the outputs of Algorithm 2, θ̂L and L, satisfy |ra − ⟨aL, θ̂L⟩| ≤ O(ε) for all

a ∈ rows(Φ).

Proof: We first prove the correctness of the algorithm. Suppose for some (w,M, θ̂M) ∈ S, there

is x ∈ Rw
M such that ([xM′]N s ,M′, θ̂M′) ∈ S and |⟨xM′ , θ̂M′⟩ − ⟨w, θ̂M⟩| > 5ε/2 andM′ ̸=M.

Consider two cases in Lines 4-7 in Algorithm 2.

• Case 1: Suppose |rx − ⟨w, θ̂M⟩| ≤ 3ε/2, then we have that |rx − ⟨xM, θ̂M⟩| ≤ 2ε and

|rx−⟨xM′ , θ̂M′⟩| ≥ |⟨xM′ , θ̂M′⟩−⟨w, θ̂M⟩|−|rx−⟨w, θ̂M⟩| > ε. Thus after the iterations, for

56

Algorithm 2: Parameter Elimination

1

1: Input: feature matrix Φ ∈ Rk×d.

2: Initialize: S := {(w,M, θ̂M) : w ∈ N s,M ⊆ [d], |M| =

s, θ̂M ∈ N s}.

3: For each (w,M, θ̂M) ∈ S, establishRw
M as (4.3).

4: while there exit (w,M, θ̂M) ∈ S,M′ ⊆ [d], |M′| = s,M ≠

M′, and x ∈ Rw
M such that (∼,M′, θ̂M′) ∈ S, |⟨xM′ , θ̂M′⟩ −

⟨w, θ̂M⟩| > 5ε/2 do

5: Query the action x and receive a reward rx = ⟨x, θ∗⟩ + νx

where νx ∈ [−ε, ε].

6: If |rx − ⟨w, θ̂M⟩| > 3ε/2 then S = S\(∼,M, θ̂M), otherwise

S = S\(∼,M′, θ̂M′).

7: end while

8: Find a certain set L ⊆ [d], |L| = s and corresponding θ̂L ∈ N s

such that (∼,L, θ̂L) ∈ S.

9: Output: θ̂L and L

some (w,M, θ̂M) ∈ S and x ∈ Rw
M, we have |rx−⟨xM, θ̂M⟩| ≤ 2ε. We remove the elements

(∼,M′, θ̂M′) from S since there exists an x ∈ rows(Φ) such that |rx − ⟨xM′ , θ̂M′⟩| > ε.

• Case 2: Assume that |rx−⟨w, θ̂M⟩| > 3ε/2 for some x ∈ Rw
M. Then the elements (∼,M, θ̂M)

get removed from S since there exists an x ∈ rows(Φ) such that |rx − ⟨xM, θ̂M⟩| ≥ |rx −

⟨w, θ̂M⟩| − |⟨xM, θ̂M⟩ − ⟨w, θ̂M⟩| > ε.

Moreover, Algorithm 2 guarantees that

• The elements (∼,M∗, [θ∗M∗]N s) maintain in the set S, which involves the ground-truth

index set M∗ and [θ∗M∗]N s ∈ N s such that |rx − ⟨xM∗ , [θ∗M∗]N s⟩| ≤ ε. Algorithm 2

only eliminates elements (∼,M, θ̂M) involving the index set M and θ̂M such that |rx −

57

⟨xM, θ̂M⟩| > ε for some x ∈ rows(Φ).

• If no more pairs in the remaining set S satisfies the conditions on Line 4 in Algorithm 2, then

it must be the case that, for all (w,M, θ̂M) ∈ S with the remaining set S and ∀ x ∈ Rw
M,

|⟨xM∗ , [θ∗M∗]N s⟩ − ⟨w, θ̂M⟩| ≤ 5ε/2, and hence

|rx − ⟨w, θ̂M⟩| = |⟨x, θ∗⟩+ νx − ⟨w, θ̂M⟩|

≤|⟨xM∗ , [θ∗M∗]N s⟩ − ⟨w, θ̂M⟩|+ ε ≤ 7ε/2, (4.4)

Moreover,

|rx − ⟨xM, θ̂M⟩| ≤ |rx − ⟨w, θ̂M⟩|+ |θ̂⊤M(xM − w)| ≤ 4ε.

In summary, for a set L ⊆ [d], |L| = s and corresponding θ̂L ∈ N s such that (∼,L, θ̂L) in the

remaining set S, we can guarantee that

|rx − ⟨xL, θ̂L⟩| ≤ 4ε,

for ∀ x ∈ rows(Φ).

We arrive at the sample complexity analysis of the algorithm. If we find (w,M, θ̂M) ∈ S,

M′ ̸= M, x ∈ Rw
M satisfying the condition on Line 4 in Algorithm 2, we remove either the

elements either (∼,M, θ̂M) or (∼,M′, θ̂M′) after querying one action. The loop stops when the

condition on Line 4 is not satisfied. Thus, at most |N s|
(
d
s

)
queries are needed for the algorithm.

Recall |N s| (4.2), the number of queries in s-sparsity case can be bounded by

O

((
1

ε

)s

·
(
d

s

))
.

□

When s is a fixed constant, the above theorem demonstrates that poly(d/ε)-queries are sufficient

to learn an O(ε)-optimal action. This is in stark contrast to the Ω(exp(d)) lower-bound provided in

[65] and [66]. When s is not fixed, the dependence on exp(s) is undesirable. One may ask, whether

it is possible to achieve poly(s)-dependence for some cases, e.g., relaxed error sδε for some δ > 0.

Unfortunately, the next section provides a lower bound that rules out the possibility for δ < 1.

58

4.4.2 Lower Bound

In this section, we establish an information-theoretical lower bound to show that our upper bound

is nearly tight. The basic idea is by reduction to the INDEX-QUERY problem [65, 112] using

statistical analysis on sub-exponential random variables. More formally, it is shown [65] that if one

is given a vector of dimension n with only one non-zero entry, then it is necessary to query Ω(pn)

entries of the vector to output the index of the entry with probability p. In what follows, we can

show that for any algorithm that solves an s-sparse ε-misspecified linear bandit problem, we can use

it to solve the INDEX-QUERY problem of size Ω(exp(s)). The idea is to establish a set of sparse

vectors with sub-exponential random variables, such that the vector input to the INDEX-QUERY

problem can be embedded into the bandit instance (without any queries to the vector).

The next lemma is the key tool that will be useful in our lower-bound arguments. It shows that

there exists a sparse matrix Φ ∈ Rk×d with sufficiently large k where rows have unit norm and

sparsity s, and all non-equal rows are almost orthogonal.

Lemma 1 For 0 < δ < 1, c > 1 and C ′ = 2c3

(1+τ)
√
c2−1

with sufficiently small 0 ≤ τ < 1,

• if 0 < ε ≤ C′s
d

, by choosing k ≥
√
δ exp

(
d(1+τ)ε2

4C′

)
,

• if ε > C′s
d

, by choosing k ≥
√
δ exp

(
s(1+τ)ε

4

)
,

there exists a feature matrix Φ ∈ Rk×d with rows such that for all a, b ∈ rows(Φ) with a ̸= b,

∥a∥2 = 1, ∥a∥0 ≤ s, and |⟨a, b⟩| ≤ ε.

Proof:[Proof Sketch] The matrix is established by choosing each entry of the matrix Φ a small

probability (∼ s/d) to be non-zero and if it is non-zero, the entry follows a Gaussian distribution.

The formal proof is provided in Appendix C.1. □

As we will show shortly, the matrix in Lemma 1 can be used to agnostically embed an arbitrary

INDEX-QUERY problem to a sparse misspecified instance. To start with the formal reduction, we

59

introduce the definition of (η,∆)-sound algorithm for linear bandit problem, where the algorithm

returns an estimated optimal action â ∈ rows(Φ) and an estimation vector θ̂ ∈ Rd.

Definition 1 For any 0 < η < 1 and the approximation error ∆ ≥ ε, an algorithm A solving

linear bandit problem is called sound for (η,∆) if with probability at least 1 − η, algorithm A

returns the estimated optimal action â such that râ ≥ maxx rx −∆.

For any input vector v to the INDEX-QUERY problem (of dimension k) with some unknown index

j to be non-zero, we can simply take Φ as the feature matrix, and the j-th row of Φ to be the

ground-truth θ∗. Then we would have ∥v−Φθ∗∥∞ ≤ ε. Thus any (η,∆)-sound algorithm for some

appropriate ∆ would identify the non-zero index in v with good probability and thus inherits the

lower bound of INDEX-QUERY. The formal lower bound is presented in the following theorem.

Theorem 3 For any (η,∆)-sound linear bandit algorithmA, there exists an s-sparse ε-misspecified

linear bandit instance such that algorithm A takes at least

(1− η) exp
(
c0d ·

(ε
∆

)2)
, if 0 <

ε

∆
≤ C ′s

d
, (4.5)

(1− η) exp
(
c1s(1 + τ)ε

∆

)
, if

ε

∆
>
C ′s

d
, (4.6)

actions to halt, where c0, c1, C ′ are absolute constants.

Proof: We begin with the construction of the hard s-sparsity instances. Consider an INDEX-

QUERY problem with dimension k. Suppose the input vector with the i∗-index (unknown to the

algorithm) is non-zero, i.e., ei∗ . Here, ei is the standard unit vector with the i-th coordinate equaling

1. In our hard instance, we choose reward rx = 2∆ when x = ai∗ with i∗ ∈ [k], otherwise is 0.

Now we show that there exists a linear feature representation that approximates the reward vector

∆ei∗ ∈ Rk with a uniform error. Based on Lemma 1, let Φ be the matrix rows(Φ) = (ai)
k
i=1 such

that for all ai, aj ∈ rows(Φ) with i ̸= j, ∥ai∥2 = 1 and |⟨ai, aj⟩| ≤ ε/(2∆). With θ∗ = 2∆ai∗ , we

have Φθ∗ = (2∆a⊤1 ai∗ , . . . , 2∆a
⊤
i∗ai∗ , . . . , 2∆a

⊤
k ai∗)

⊤. By choice of Φ, the i∗-th component of Φθ∗

60

is ∆ and the others are all less than ε in absolute value. Hence, we can represent the reward vector

2∆ei∗ by 2∆ei∗ = Φθ∗ + ν for some ν ∈ [−ε, ε]k.

Then an (η,∆)-sound algorithm would identify an action a, such that with probability at least

1− η, a⊤θ∗ ≥ 2∆−∆ = ∆, which is only possible if a = ai∗ . Hence the algorithm would output i∗

with probability at least 1− η. By the lower bound of the INDEX query problem (e.g., Theorem A1

in [65]), the algorithm takes at least Ω((1− η)k) queries in the worst-case.

In the construction, we only need Lemma 1 to hold for k with the correct parameters. Hence we

have

• if 0 < ε ≤ C′s
d

, then k ≥
√
δ exp

(
d(1+τ)ε2

16C′∆2

)
, and

• if ε > C′s
d

, then k ≥
√
δ exp

(
s(1+τ)ε

8∆

)
,

for constant τ , δ, and C ′, completing the proof.

□

Remark 1 The above theorem shows that even if we relax the approximation error to sδε for some

0 < δ < 1, the exp(s) dependence is unavoidable. Hence our upper bound in the previous section

is nearly tight. However, this lower bound does not rule out the improvement in terms of ε−s and

efficient regimes when ∆ = Ω(sδε) for some δ ≥ 1. We will explore both settings in the rest of the

paper.

4.5 Improvement on the ε−s Dependence

Even though the dependence of ds is unavoidable, we can improve the upper bound in Theorem 2

by eluding the dependence of ε. The fundamental idea of the improved algorithm is based on a mix

of G-optimal design and elimination argument. Instead of guessing an estimator θ̂ for θ∗, we use

G-optimal design to estimate θ̂ concerning an index setM⊂ [d]. Then for each estimator θ̂ and

M, we check the actions that have similar features restricting toM. The rest of the elimination

61

argument is similar to Section 4.4.1. Yet the optimal G-optimal design only gives an error guarantee

of O(ε
√
s), which worsens our error guarantee. Below, we present the algorithm more formally.

We start with an essential theorem in G-optimal design which shows that there exists a near-

optimal design with a small core set.

Theorem 4 ([113]) Given a matrix A ∈ Rk×s and a probability distribution ρ : rows(A)→ [0, 1],

let G(ρ) ∈ Rs×s1 and g(ρ) ∈ R be given by

G(ρ) =
∑

a∈rows(A)

ρ(a)aa⊤ , g(ρ) = max
a∈rows(A)

∥a∥2G(ρ)−1 .

There exists a probability distribution ρ such that g(ρ) ≤ 2m and the size of the support of ρ is at

most 4s log log(s) + 16.

Remark 2 The distribution satisfying the results in Theorem 4 can be computed by the Frank-Wolfe

algorithm introduced in [113][Chapter 3] after O(ks2) computations.

Let S ⊂ [d]s be all the subsets of cardinality s. For each M ∈ S, suppose that ρM is a

probability distribution over rows(ΦM) satisfying the results of Theorem 4, where ΦM ∈ Rk×s is

the sub-matrix of Φ ∈ Rk×d. In the following, we use GM(ρM) to present G(ρ) defined in Theorem

4 with respect toM. We begin with querying actions to estimate θ̂M based on the support of ρM

and obtain rewards:

θ̂M = GM(ρM)−1
∑

a∈rows(ΦM),ρM(a) ̸=0

ρM(a)raa, (4.7)

With Theorem 4, we can show that, for all b ∈ rows(Φ) and ⌈4s log log(s) + 16⌉ queries, we

have

|⟨bM∗ , θ̂M∗⟩ − ⟨b, θ∗⟩| ≤ ε
√
2s, (4.8)

1Without loss of generality, we assume G(ρ) is invertible in the rest of the paper. If not, we can discard columns in Φ
until the Φ is full column rank.

62

where bM∗ ∈ Rs is the sub-vector of b ∈ Rd. ForM,M′ ∈ S, we try to find some x ∈ rows(Φ)

making θ̂⊤M′xM′ deviate from θ̂⊤MxM. We query such x and receive the corresponding reward rx. By

comparing the difference between rx and θ̂⊤MxM, θ̂⊤M′xM′ , we can know whether the subsetM or

M′ of x is more likely to determine the reward rx, and hence eliminate the incorrect parameter-set.

The full algorithm is presented in Algorithm 3.

Algorithm 3: (ε−s)-Free Algorithm

1

1: Input: feature matrix Φ ∈ Rk×d.

2: Initialize: S := {M :M⊆ [d], |M| = s}.

3: For eachM∈ S, estimate θ̂M based on (4.7).

4: while there exitM,M′ ∈ S,M ≠M′, and x ∈ rows(Φ) such

that |⟨xM′ , θ̂M′⟩ − ⟨xM, θ̂M⟩| > 2ε(1 +
√
2s) do

5: Query the action x and receive a reward rx = ⟨x, θ∗⟩ + νx

where νx ∈ [−ε, ε].

6: If |rx − ⟨xM, θ̂M⟩| ≤ ε(1 +
√
2s) then S = S\M′.

7: Otherwise S = S\M, if |rx−⟨xM′ , θ̂M′⟩| > ε(1+
√
2s) then

S = S\M′.

8: end while

9: Find a certain set L ⊆ [d], |L| = s such that L ∈ S and estimate

θ̂L ∈ Rs.

10: Output: θ̂L and L

Theorem 5 After

O

(
s log s ·

(
d

s

))
number of queries, the outputs of Algorithm 3, θ̂L and L, satisfy |ra − ⟨aL, θ̂L⟩| ≤ O(ε

√
s) for all

a ∈ rows(Φ).

Proof: We first prove the correctness of the algorithm. Suppose we find some M,M′ ∈ S,

63

M ̸= M′, and x ∈ rows(Φ) |⟨xM′ , θ̂M′⟩ − ⟨xM, θ̂M⟩| > 2ε(1 +
√
2s). Consider two cases in

Lines 4-8 in Algorithm 3.

• Case 1: Suppose we have |rx−⟨xM, θ̂M⟩| ≤ ε(1+
√
2s). We remove the elementM′ from S

since there exists an x ∈ rows(Φ) such that |rx−⟨xM′ , θ̂M′⟩| ≥ |⟨xM′ , θ̂M′⟩− ⟨xM, θ̂M⟩| −

|rx − ⟨xM, θ̂M⟩| > ε(1 +
√
2s).

• Case 2: Assume that |rx − ⟨xM, θ̂M⟩| > ε(1 +
√
2s), then the elementM gets removed from

S. We can also remove the other index setM′ from S if |rx − ⟨xM′ , θ̂M′⟩| > ε(1 +
√
2s).

Moreover, Algorithm 3 guarantees that

• The ground-truth index setM∗ maintains in the set S . According to (4.8), for all x ∈ rows(Φ),

we have |rx − ⟨xM∗ , θ̂M∗⟩| ≤ ε(1 +
√
2s). Algorithm 3 only eliminates M such that

|rx − ⟨xM, θ̂M⟩| > ε(1 +
√
2s) for some x ∈ rows(Φ). After each query, Algorithm 3

removes at least one element from S.

• If no more pair in the remaining set S satisfies the conditions on Line 4 in Algorithm 3,

then it must be the case that, for allM ∈ S with the remaining set S and ∀ x ∈ rows(Φ),

|⟨xM∗ , θ̂M∗⟩ − ⟨xM, θ̂M⟩| ≤ 2ε(1 +
√
2s). According to (4.8), we have

|rx − ⟨xM, θ̂M⟩|

≤|rx − ⟨xM∗ , θ̂M∗⟩|+ |⟨xM∗ , θ̂M∗⟩ − ⟨xM, θ̂M⟩|

≤3ε(1 +
√
2s). (4.9)

In summary, for a set L ⊆ [d], |L| = s in the remaining set S and the estimation θ̂L ∈ Rs, we

can guarantee that

|rx − ⟨xL, θ̂L⟩| ≤ 3ε(1 +
√
2s),

for ∀ x ∈ rows(Φ).

64

We arrive at the sample complexity analysis of the algorithm. The estimation on Line 3 in

Algorithm 3 takes ⌈4s log log(s) + 16⌉
(
d
s

)
queries. If we find M,M′ ∈ S, M ̸= M′, and

x ∈ rows(Φ) satisfying the condition on Line 4 in Algorithm 3, we remove at least one element

fromM,M′ after querying one action. The loop stops when the condition on Line 4 is not satisfied.

Thus, the number of queries in the s-sparsity case can be bounded by

O

(
s log s ·

(
d

s

))
.

□

4.6 A poly(s)-Query Algorithm for Benign Features

The lower bound derived in Section 4.4.2 does not rule out the possibility of exp(s)-free bound

when ∆ = O(sδε) for δ ≥ 1, which we attempt to achieve in this section. The core idea of

our algorithm is based on feature compression followed by action-elimination bandit learning.

Specifically, we compress the feature vectors and the sparse parameter vector to a lower dimensional

vector space, thus converting the sparse linear bandits to a dense case with much lower dimensional

features. Note that this compression is agnostic to the ground-truth parameters. Then we implement

action-elimination learning in compressed linear bandits. The detailed algorithm is provided in the

following.

We here consider the finite setting where the number of rows, k, in the feature matrix Φ is finite

(recall the definition in (4.1)). This argument is without loss of generality as we can always find an

ε-net to cover the actions if there are infinitely many. By Johnson-Linderstrauss lemma [114], we

have that for some p = Θ(log(k)/υ2), there is a function f : Rd → Rp that preserves inner product,

i.e., for each a ∈ rows(Φ),

⟨f(a), f(θ∗)⟩ = ⟨a, θ∗⟩ ± 2υ, (4.10)

for some error υ > 0. Such a function can be found efficiently using techniques in, e.g., [115].

Hence, we transform the previous sparse linear model ⟨a, θ∗⟩ where a, θ∗ ∈ Rd to a new linear

65

model ⟨f(a), f(θ∗)⟩ where f(a), f(θ∗) ∈ Rp with p < d. We apply G-optimal design mentioned

in (4.7) to get an estimation of f(θ∗), i.e., θ̂f . The detailed algorithm is illustrated in Algorithm 4

where C > 0 is a suitable large constant.

Algorithm 4: poly(s)-Query Algorithm for Benign Features

1

1: Input: feature matrix Φ ∈ Rk×d, function f : Rd → Rp (4.10),

the total time steps n.

2: Initialize: S := {f(a) ∈ Rp : a ∈ rows(Φ)}.

3: while number of queries is no greater than n do

4: Compute the probability distribution ρ : S → [0, 1] satisfying

the results of Theorem 4.

5: Compute θ̂f = G(ρ)−1
∑

a∈S ρ(a)raa where the reward ra is

received by querying the action a.

6: Update active action set:

S ←
{
a ∈ S : max

b∈S
⟨θ̂f , b− a⟩ ≤ C · (log k)

1
4
√
ε

}
.

7: end while

8: Output: θ̂f ∈ Rp

Theorem 6 Suppose there is a function f : Rd → Rp satisfied (4.10). After n ≥ O
(√

log k/ε
)

number of queries, the output of Algorithm 4 satisfies |ra − ⟨f(a), θ̂f⟩| ≤ O((log k))1/4
√
ε+ ε) for

all a ∈ rows(Φ).

Proof:[Proof Sketch] We start with the approximation error of f(θ∗).

Similar to the G-optimal design in Section 4.5, we have

|⟨f(a), θ̂f⟩ − ⟨a, θ∗⟩|

≤|⟨f(a), θ̂f⟩ − ⟨f(a), f(θ∗)⟩|+ |⟨f(a), f(θ∗)⟩ − ⟨a, θ∗⟩|, (4.11)

66

for ∀ a ∈ rows(Φ).

The first term in (4.11) can be termed as misspecified linear bandits in Rp. Similar to (4.8), the

first term in (4.11) can be bounded by

|⟨f(a), θ̂f⟩ − ⟨f(a), f(θ∗)⟩| ≤ C (ε
√
p) , (4.12)

with O(p log p) number of queries, where C > 0 is a suitably universal large constant. The second

term in (4.11) can be bounded by 2υ. Hence, we have

|⟨f(a), θ̂f⟩ − ⟨a, θ∗⟩| ≤ C (ε
√
p+ υ) , (4.13)

Recall that p = Θ(log(k)/υ2), thus C(ε
√
p+ υ) can be presented as an function with respect to υ

(υ > 0), given by

g(υ) = C(ε
√

log(k)/υ2 + υ).

By optimizing g(υ) with respect to υ, we have the approximation error of O((log k)
1
4
√
ε)

achieved by the number of queries O(
√
log k/ε).

We can derive the final approximate error as

|⟨f(a), θ̂f⟩ − ⟨a, θ∗⟩| ≤ C
(
(log k)

1
4
√
ε
)
. (4.14)

□

Corollary 1 Based on the notations in Theorem 6, if setting υ = O(sδε) for δ ≥ 1, the number of

queries O(s1+δ) can be achieved whenever log k ≤ ε2s2(1+δ). Additionally, the regret of Algorithm

4 is bounded by O(sδεn log n).

According to Corollary 1, when the coefficient sδ <
√
d, Algorithm 4 can break the ε

√
d barrier

with polynomial queries in all parameters if log k is small, which is achievable if the feature space

possesses certain benign structures. For instance, the features are (close to) sparse as the instance

in our lower bound construction. This also demonstrates that this result may not admit additional

improvement as it resolves the lower bound instance.

67

All results above focus on the noiseless case. We further give a discussion on the noisy cases in

Appendix C.3.

4.7 A poly(s)-Query Algorithm for General Features

Theorem 6 presents an algorithm with sample complexity dependent on log k where k is the number

of actions. Corollary 1 shows that it is possible to achieve sample complexity of poly(s) when

k satisfies the condition log k ≤ ε2s2(1+δ) for δ ≥ 1. However, to accommodate a wider range

of scenarios, we aim for a sample complexity with a better dependence. In the following section,

we will describe the method for achieving a sample complexity dependent on poly(s) for general

features leveraging the ideas in Section 4.6.

The core idea of our algorithm is to select a submatrix Ψ ∈ Rk′×d from the feature matrix

Φ ∈ Rk×d where k′ < k. The submatrix Ψ should contain enough representative actions, which we

obtain by using G-optimal design concerning all possible s-subsetM′ ⊂ [d] as (4.7) and collecting

the corresponding actions a ∈ Rd. Then, we apply the same compression process as Section 4.6 to

reduce the dimensionality of the feature matrix Ψ and the sparse parameter vector θ∗. Finally, we

estimate the s-sparsity parameter θ∗ based on the above information. This method consists of three

main steps:

1. G-optimal design: For each M′ ⊂ [d] such that |M′| = s, we first find a probability

distribution ρM′ over rows(ΦM′) that meets the conditions of Theorem 4. We then use this

distribution ρM′ to generate z := 4s log log(s) + 16 distinct feature vectors aM′ ∈ Rs. We

collect all the corresponding actions a ∈ Rd and denote them as Ψ ∈ R(
d
s)·z×d.

2. Compression: By Johnson-Linderstrauss lemma [114], we have that for some q = Θ(log(
(
d
s

)
·

z)/φ2), there is a function h : Rd → Rq that preserves inner product, i.e., for each a ∈

rows(Ψ) there is

⟨h(a), h(θ∗)⟩ = ⟨a, θ∗⟩ ± 2φ, (4.15)

68

for some error φ > 0.

3. Estimation: After inputting Algorithm 4 with the feature matrix Ψ, function h and the total

time steps z, we can estimate the compressed parameter θ̂h ∈ Rq. Based on θ̂h ∈ Rq and

Ψh ∈ R(
d
s)·z×q whose rows are h(a) for all a ∈ rows(Ψ), the s-sparsity estimator θ̂ ∈ Rd can

be computed via the convex optimization problem (4.16).

Using the above notations, the proposed algorithm is illustrated in Algorithm 5. The following

theorem presents the sample complexity of our method.

Algorithm 5: poly(s)-Query Algorithm for General Features

1

1: Input: feature matrix Φ ∈ Rk×d.

2: Compute ρM′ : rows(ΦM′) → [0, 1] satisfying the results of

Theorem 4 for each sub-index-setM′ ⊆ [d] with |M′| = s.

3: Based on {ρM′}, we collect representative action features as

Ψ ∈ R(
d
s)·z×d where z := 4s log log(s) + 16.

4: Find a function h : Rd → Rq satisfying (4.15).

5: Get θ̂h ∈ Rq and Ψh ∈ R(
d
s)·z×q via inputting (Ψ,h,z) to Algo-

rithm 4.

6: Estimate the parameter θ̂ ∈ Rd via the convex optimization prob-

lem

min
θ∈Rd

∥∥∥Ψθ −Ψhθ̂h

∥∥∥
∞

subject to ∥θ∥0 ≤ s. (4.16)

7: Output: θ̂ ∈ Rd

Theorem 7 Suppose there is a function h : Rd → Rq satisfied (4.15) for q = Θ(log(
(
d
s

)
· z)/φ2)

and φ = (s log d)1/4
√
ε. Then after n ≥ O(

√
s log d/ε) number of queries, the output of Algorithm

5 satisfies |ra − ⟨a, θ̂⟩| ≤ O((s log d)1/4
√
sε+ ε) for all a ∈ rows(Φ).

69

Proof:[Proof Sketch] We start with the approximation error of θ∗ ∈ Rd based on the feature matrix

Ψ ∈ Rk′×d. According to (4.13) in Section 4.6, we can apply G-optimal design to compute the

estimator θ̂h ∈ Rq satisfying

|⟨h(a), θ̂h⟩ − ⟨a, θ∗⟩| ≤ C ′ (ε
√
q + φ) , (4.17)

where C ′ > 0. Recall that q = Θ(log(
(
d
s

)
· z)/φ2) with z := 4s log log(s) + 16, thus C ′(ε

√
q + φ)

can be presented as a function with respect to φ (φ > 0), given by

g(φ) = C ′′(ε
√
s log(d)/φ2 + φ),

where C ′′ > 0. The minimum of g(φ) achieves when φ∗ = (s log d)1/4
√
ε such that

g(φ∗) = C
(
(s log d)1/4

√
ε
)
,

where C > 0. Hence, we have the approximation error, ∀ b ∈ rows(Ψ)

|⟨h(b), θ̂h⟩ − ⟨b, θ∗⟩| ≤ C
(
(s log d)1/4

√
ε
)
, (4.18)

which is achieved by the number of queries

O

(
log

((
d

s

)
· z
)/

(v∗)2
)

= O
(√

s log(d)/ε
)
.

For a ∈ rows(Ψ), the approximate error of estimator θ̂ in (4.16) can be bounded by∣∣∣⟨a, θ̂⟩ − ⟨a, θ∗⟩∣∣∣ ≤ ∣∣∣⟨a, θ̂⟩ − ⟨h(a), θ̂h⟩∣∣∣+ ∣∣∣⟨h(a), θ̂h⟩ − ⟨a, θ∗⟩∣∣∣
(a)

≤ max
a∈rows(Ψ)

∣∣∣⟨a, θ̂⟩ − ⟨h(a), θ̂h⟩∣∣∣+ C
(
(s log d)1/4

√
ε
)

(b)

≤ max
a∈rows(Ψ)

∣∣∣⟨a, θ∗⟩ − ⟨h(a), θ̂h⟩∣∣∣+ C
(
(s log d)1/4

√
ε
)

= O
(
(s log d)1/4

√
ε
)
, (4.19)

where step (a) and the last step come from (4.18) and step (b) derives due to the estimator θ̂ of the

problem (4.16).

70

From the estimator θ̂, we can get an index set M̂ := {i | θ̂i ̸= 0, i ∈ [d]}. LetM′ = M̂ ∪M∗,

we then have2

θ̂M′ = G−1
M′GM′ θ̂M′ = G−1

M′

∑
a∼ρM′

⟨aM′ , θ̂M′⟩aM′ , (4.20)

which helps us to bound the approximate error of θ∗ for ∀ b ∈ rows(Φ). Thus, there is

⟨b, θ̂⟩ − ⟨b, θ∗⟩ = ⟨bM′ , θ̂M′ − θ∗M′⟩

(a)
=

〈
bM′ , G−1

M′

∑
aM′∼ρM′

⟨aM′ , θ̂M′⟩aM′ − θ∗M′

〉

=

〈
bM′ , G−1

M′

∑
aM′∼ρM′

|⟨aM′ , θ̂M′⟩ − ⟨aM′ , θ∗M′⟩|aM′

〉

=
∑

aM′∼ρM′

|⟨aM′ , θ̂M′⟩ − ⟨aM′ , θ∗M′⟩|⟨bM′ , G−1
M′aM′⟩

(b)

≤ C
(
(s log d)1/4

√
ε
) ∑
aM′∼ρM′

|⟨bM′ , G−1
M′aM′⟩|

(c)

≤ C
(
(s log d)1/4

√
ε
)√ ∑

aM′∼ρM′

⟨bM′ , G−1
M′aM′⟩2

= C
(
(s log d)1/4

√
ε
)√
∥bM′∥2G−1

M′

(d)

≤ C
(
(s log d)1/4

√
ε
)√

gM′(ρM′)

= O
(
(s log d)1/4

√
sε
)
, (4.21)

where step (a) comes from the definition ofGM′ (4.20), step (b) derives from Holder’s inequality and

the inequality (4.19), step (c) is due to Cauchy–Schwarz inequality and step (d) follow the definition

of gM′(ρM′) in Theorem 4. Hence, we ensure that |rb − ⟨bM′ , θ̂M′⟩| ≤ O((s log d)1/4
√
sε+ ε) for

all b ∈ rows(Φ). □

The results in Theorem 7 do not depend on the number of actions k, unlike Theorem 6. This

is achieved by selecting representative actions and applying compression to get the submatrix Ψh,

2Same as Theorem 4, we assume GM′ is invertible. If not, we can discard columns in Φ until the ΦM′ is full column
rank.

71

followed by estimation based on the submatrix. In other words, this method works for general

features, not just benign ones introduced in Section 4.6. The following corollary restates Theorem

6. It shows the relaxed requirements on the sparse linear bandit model to achieve O(sε)-optimal

actions within O(s) queries, which present more general results compared to Corollary 1.

Corollary 2 Based on the notations in Theorem 7, if s = Ω(log(d)/ε2), O(sε)-optimal actions can

be achieved with the number of queries O(s).

4.8 Conclusions

We aim to utilize the sparsity in linear bandits to remove the ε
√
d barrier in the approximation error

in existing results [66] about the misspecified setting. We provide a thorough investigation of how

sparsity helps in learning misspecified linear bandits.

We establish novel algorithms that obtain O(ε)-optimal actions by querying O(ε−sds) actions,

where s is the sparsity parameter. For fixed sparsity s, the algorithm finds an O(ε)-optimal action

with poly(d/ε) queries, removing the dependence of O(ε
√
d). The ε−s dependence in the sample

bound can be further improved to Õ(s) if we instead find an O(ε
√
s) suboptimal actions. We

establish information-theoretical lower bounds to show that our upper bounds are nearly tight.

In particular, we show that any algorithms that can obtain O(∆)-optimal actions need to query

Ω(exp(sε/∆)) samples from the bandit environment. We further break the exp(s) sample barrier

by showing an algorithm that achieves O(sε) sub-optimal actions while only querying poly(s/ε)

samples.

Starting from our results on the general bound in misspecified sparse linear bandits, it is

interesting to explore results in different bandit learning settings, e.g., contextual bandit problems,

RL problems, and distributed/federated learning settings.

72

CHAPTER 5

Investigation into Partial Observation in Delay Bandit Problem

5.1 Introduction

In reinforcement learning (RL) environments, the agent aims to make sequential decisions based on

state and action spaces, to maximize its expected cumulative reward [116], which is known as the

Markov Decision Process (MDP). In real-world applications of modern RL, such as robotic control

[117], autonomous vehicles [118], and financial trading [119], the agent cannot make proper actions

solely based on the observation state due to the delayed feedback in the environment. In this chapter,

we consider the delay in receiving observations after taking actions, also known as observation delay.

At the current state of the environment, the agent possesses the observational state, i.e., a previous

environment state, and an action sequence. The inference of the current environment state from the

agent’s observation state and the action sequence inevitably meets the challenges of expansive state

and action spaces, commonly known as the curse of large state and action spaces. Although there

have been multiple methods based on feature mapping [120] targeting addressing the curse of large

state and action spaces in standard MDP, it is not clear how to address this problem in the delayed

MDP.

In this chapter, we develop provable RL algorithms for delayed MDPs (m time-step delay) with

feature mapping. Our proposed method enjoys regret bound that is independent of the size of the

state and action spaces, thereby addressing the curse of large state and action spaces. To achieve

this, we introduce a parameterized transition model depending on an observation state and an action

sequence. The connection between delayed MDP and standard MDP is established particularly in

73

scenarios where two continuous action sequences have m− 1 ‘overlapping’ actions.

However, these ‘overlapping’ actions bring challenges in regret analysis. This is due to the

intricate statistical dependence between model parameter estimation based on action sequences and

feature mapping disrupts the assumption of i.i.d. random variables crucial for establishing generic

bounds in random matrix theory. To rigorously establish the regret bound based on the estimated

value functions, we develop a novel mechanism to address the statistical issue of ‘overlapping’

actions. Specifically, we introduce a sequence of auxiliary parameter iterations that are close

surrogates of the original and are independent of the feature mapping vectors. In such cases, it is

much easier to control the estimation iterations’ incoherence w.r.t. feature mapping vectors to the

desired level, yielding a lower regret bound.

The regret of the proposed algorithm is bounded by Õ((d+2−γm)
√
T/(1−γ)2). In particular,

this regret bound is independent of the number of states and actions and is close to a lower bound

Ω(d
√
T/(1−γ) 3

2) where d is the dimension of feature, T is the total time steps and γ is the discount

factor.

Notation We introduce several notations used throughout this chapter. For a vector x ∈ Rd, we

denote by ∥x∥2 the Euclidean norm. For two sequences {f(n)} and {g(n)}, f(n) = O(g(n))

denotes that there exists a constant c > 0 such that |f(n)| ≤ c|g(n)|. Õ(·) is used to hide the

logarithmic factors. Additionally, f(n) = Ω(g(n)) means that there exists a constant c > 0 such

that |f(n)| ≥ c|g(n)|.

5.2 Related Work

MDP in delayed environments Previous work on delayed environments can be traced back to the

control theory with linear time-invariant systems [121, 122, 123, 124, 125]. Generally, the system

to control theory formulations can be represented by some known diffusion or stochastic differential

equation. Similarly, a line of literature has considered the MDP model with structural assumption

on the transition function or reward [84, 126, 65].

74

There are different types of delayed feedback in delayed environments, e.g., reward delay,

observation delay, and execution delay. Note that observation delay and execution delay are actually

equivalent and can thus be treated with the same models [127, 128]. Therein, the paper [129]

studied multi-armed bandits for deterministic and stochastic latencies to deal with reward delay.

The paper [130] proposed a Q-learning variant for solving MDPs with reward-delay that satisfies

a Poisson distribution. The paper [127] investigated three types of delay in MDP: observation,

execution, and reward. The paper [131] considered execution delay on multi-agent reinforcement

learning problem. The aforementioned papers on MDPs utilize an augmented approach to evaluate

the empirical model. Specifically, these empirical evaluations involve the degradation caused due to

the delay. In this augmentation approach, all pending action is integrated with the original state,

thereby mitigating the partial observability introduced by the delay. The main disadvantage of

this augmented approach is the exponential growth of the state-space concerning the delay value

[128, 131, 131].

To address the exponential-growth issue, the paper [128] proposed an efficient planning approach,

i.e., model-based simulation (MBS) algorithm, to solve MDPs with delayed observation delay.

Under the assumption of deterministic or mild stochastic probability transition function, the MBS

algorithm [128] plans an optimal policy based on a most likely present state estimate. The sample

complexity of MBS is Õ(|S|2|A|/((1 − γ)6ϵ3)). MBS is an offline algorithm that requires the

state space to be finite or discretized, which is inapplicable to large continuous domains. To

address the limitations of MBS, the paper [132] has recently proposed a Delayed-Q model-based

algorithm for learning and planning in MDPs with delayed execution without resorting to state-

augmentation. It proves that Markovian non-stationary policies in the original state space are

sufficient for achieving an optimal reward. Recently, the paper [133] proposed a delayed OPPO

algorithm to learn adversarial MDPs with delayed feedback.

Another line of work studied a concurrent control problem where a single action selection occurs

between two consecutive observations [134, 135]. Therefore, this control problem can be termed as

an MDP with an execution delay of m = 1. [131] further extended it to a generalized setting where

75

there are a multiple number of actions between two observations. [136] proposed a policy-based

method to handle a relatively low execution delay, i.e., m ≤ 3 in the braking control of autonomous

vehicles.

Although recent papers like [132, 133] offer experimental insights, their work lacks theoretical

results on regret bounds. Our work seeks to address this gap by providing theoretical analyses.

MDP with feature mapping Recent years have seen rapid growth of research on solving MDP

using reinforcement learning with feature mapping, especially linear function approximation, e.g.,

[91, 84, 137, 126, 78, 65]. There is a line of literature focusing on finite-horizon MDP with feature

mapping. For instance, [84] studied linear MDPs where both the transition probability and the

rewards are linear functions concerning a feature mapping ϕ : S ×A → Rd. The authors proposed

an efficient reinforcement learning algorithm to solve the linear MDPs with Õ(
√
d3H3T), where

H is the length of an episode. [126] assumed the probability transition kernel is bilinear in two

feature mappings in dimension d and d′, and proposed an algorithm with Õ(dH2
√
T) regret. Both

[65] and [88] provide a general view of solving linear MDPs under the episodic reinforcement

learning setting. Therein, [65] provided sharp thresholds for reinforcement learning, which implies

the conditions for constituting good function approximation. A parallel line of literature investigates

linear kernel MDPs of which probability transition function can be represented by a ternary feature

mapping ψ : S ×A× S → Rd [138, 85]. Besides linear function approximation, there are some

other function approximation settings of interest in finite-horizon MDP, such as general function

approximation with Eluder dimension [139, 79, 138] and kernel approximation [140].

Apart from finite-horizon MDP, significant efforts have been recently made to study discounted

MDP with feature mapping [141, 66, 142]. To be specific, [141] assumed that the probability

transition function can be parameterized by a d-dimensional feature mapping. They proposed a

phased parametric Q-Learning algorithm which achieves an ϵ-suboptimal policy with the optimal

sample complexity, i.e., Õ(d/((1 − γ)3ϵ2)). Furthermore, [66] studied stochastic bandits and

reinforcement learning with a generative model. Under this setting, the learner can approximate

the action-value functions for all policies via d-dimensional linear features. To solve this problem,

76

[66] proposed a phased elimination algorithm with Õ(d/((1 − γ)4ϵ2)) sample complexity. Both

[141] and [66] assumed the learner could access a generative model. Recently, based on the

feature mapping, [142] proposed an upper-confidence linear kernel reinforcement learning (UCLK)

algorithm without accessing the generative model. This algorithm solves RL for discounted MDPs

with a Õ(d
√
T/(1− γ)2) regret.

Before [142], there is also a line of literature focusing on learning discounted MDP without

accessing the generative model even though utilizing other technical arguments instead of feature

mapping [143, 144, 145, 146]. [143] proposed a delay-Q-learning algorithm that achieves near

optimal performance, i.e., Õ(|S||A|/((1− γ)8ϵ4)) sample complexity of exploration. MoRmax al-

gorithm was proposed by [144] requiring Õ(|S||A|/((1−γ)6ϵ2)) sample complexity of exploration.

[145] proposed upper confidence reinforcement learning algorithm (UCRL) algorithm which obtains

Õ(|S|2|A|/((1 − γ)3ϵ2)) sample complexity of exploration. [146] proposed Infinite Q-learning

with UCB that achieves Õ(|S||A|/((1− γ)7ϵ2)) sample complexity of exploration.

However, existing state-of-the-art approaches have not considered MDP environments with

delayed feedback. Analyzing delayed MDPs poses theoretical challenges due to their intricate

statistical dependencies between actions in the pending action sequence.

To achieve the regret bound independent of the size of the state and action spaces in delayed

settings, we first introduce a parameterized transition model that serves as a bridge between

delayed MDP and standard MDP. This connection is established particularly in scenarios where

two consecutive action sequences have m− 1 overlapping actions. To further address the statistical

challenges brought by ‘overlapping’ action, we develop an effective mechanism to decouple the

dependence between the model parameter estimate and the feature mapping. This mechanism

enables us to derive desirable regret bounds.

77

5.3 Preliminaries

An infinite-horizon discounted MDP is denoted by a tuple ⟨S,A, γ, r,P⟩, where S is a countable

state space (could be finite or infinite), A is the action space, γ : 0 ≤ γ < 1 is the discount factor,

r : S × A → [0, 1] is the reward function. For simplicity, we assume the reward function r is

deterministic. P(s′|s, a) is the transition probability function which denotes the probability for

state s to transfer to state s′ given action a. A policy π : S → A maps states s to actions a. Let

{st, at}∞t=1 be states and actions deduced by P and π. We denote the action-value function Qπ
t (s, a)

and value function V π
t (s) as follows

Qπ
t (s, a) = r(s, a) + γEs′∼P(·|s,a)V

π
t (s

′),

V π
t (s) = E

[∞∑
i=0

γir(st+i, π(st+i))

∣∣∣∣st = s

]
.

We define the optimal value function V ∗ and the optimal action-value function Q∗ as V ∗(s) =

supπ V
π(s) and Q∗(s, a) = supπQ

π(s, a). For simplicity, for any function V : S → R, we denote

[PV](s, a) = Es′∼P(·|s,a)V (s′). Therefore we have the following Bellman equation, as well as the

Bellman optimality equation:

Q∗
t (st, at) = r(st, at) + γ[PV ∗](st, at).

Based on the above notations, we introduce a constant-delay MDP as a tuple ⟨S,A, γ, r,P,m⟩

where m is a non-negative integer indicating the number of timesteps between the current state of

the environment and the last state observed by the agent. When m = 0, the CDMDP becomes a

regular MDP; otherwise, we assume that the agent observes its initial state in response to each of its

first m actions. This assumption is based on the intuition that one would not expect an agent in a

delayed environment to act before making at least a starting observation.

To avoid the sample complexity depending on the size of the state and action spaces, we develop

the structured CDMDP. In this case, the unknown probability transition function is modeled with

a linear parametrization P =
∑

i θiPi, where P1,P2, · · · ,Pd represent known basis models, and

θ = (θ1, ..., θd) represents the unknown parameters.

78

5.4 Problem Formulation

In the subsequent discussion, we employ the term ‘current observation state’ to denote the last

state known by the agent. The environment state is considered to be the state that is m-time-step

following the current observation state. At t-th time step, define st as the current observation state

and the pending action sequence a⃗t = (at−m, · · · , at−1). The action at is selected according to

at ← π(st). At t-th time step, action at−m will be executed on state st independently of the present

action selection, thereby yielding a new observation state st+1. It arrives at the new pending action

sequence a⃗t+1 = (at−m+1, · · · , at). Given the current observation state st and the action sequence

a⃗t, the action-value function with action sequence Qπ
m(st, at, a⃗t) and value function with action

sequence V π
m(st, a⃗t) are denoted as follows,

Qπ
m(st, at, a⃗t) = r(st, at−m) + γEs′V

π
m(s

′, a⃗t+1),

V π
m(st, a⃗t) = E

[m−1∑
i=0

γir(si, at+i−m)+

∞∑
i=m

γir(si, π(si−m))

∣∣∣∣s0 = st

]
. (5.1)

Thus, the Bellman optimality equation is given as:

Q∗
m(st, at, a⃗t) = r(st, at−m) + γ[PV ∗

m](st, at−m, a⃗t+1),

where [PVm](s, a, a⃗) = Es′∼P(·|s,a)Vm(s
′, a⃗) and the optimal value function is given by V ∗

m(s, a⃗) =

maxπ V
π
m(s, a⃗).

We aim to estimate the optimal value function with an efficient algorithm in which sample

complexity is independent of the size of the state and action spaces. To achieve this goal, the use of

a structured probability transition model becomes essential. This approach is widely adopted in

real-world applications, where different state-action features may demonstrate inherent correlations

with each other, influencing the determination of the probability transition function. In this work,

we consider the parameterized-transition CDMDPs, where the transition probability function can

be represented as a linear function of a given feature mapping ϕ : S ×A× S → Rd.

79

Definition 2 ⟨S,A, γ, r,P,m⟩ is called a parameterized-transition CDMDP if there exist a known

feature mapping ϕ(s′|s, a) : S × A× S → Rd and an unknown vector θ ∈ Rd with ∥θ∥2 ≤
√
d,

such that

• For any state-action-state triplet (s, a, s′) ∈ S ×A×S , we have P(s′|s, a) = ⟨ϕ(s′|s, a),θ⟩;

• For any augmented state, Im = (s, a−m, · · · , a−1) ∈ S × Am, the transition probabilities

used in the augmented approach can be defined:

P′ (I′m|Im, a) =


⟨ϕ(s′|s, a−m),θ⟩,

if I′m = (s′, a−m+1, · · · , a−1, a) ;

0, otherwise

• For any bounded function Vm : S × Am → [0, 1] and the tuple (si, ai−m, a⃗i+1) ∈ S × A×

Am, we have ϕVm(si, ai−m, a⃗i+1) =
∑

s′ ϕ(s
′|si, ai−m)Vm(s

′, a⃗i+1) ∈ Rd, where a⃗i+1 =

(ai−m+1, · · · , ai−1, ai).

Note that if the next augmented state I′m have overlap action sequence, i.e., (a−m+1, · · · , a−1)

as the current augmented state Im, we can simply the augmented transition probability model to

P(s′|s, a−m). This means that the next state s′ is determined by the current state s and previous

action a−m, and we put the new action a into the action sequence, i.e., (a−m+1, · · · , a−1, a). This

intuition establishes a connection between delayed MDP and standard MDP, playing a crucial role

in our method. However, this ‘overlap’ introduces significant challenges in theoretical analysis,

particularly in distinguishing the i.i.d. random variable in the proof. More details on technical

novelties will be explained in the next section.

In online learning, the agent observes the starting state s1 along with pending action sequence

(a1−m, · · · , a0) at the beginning. The goal is to design a policy π such that the expected discounted

return at step t is close to the optimal expected return V ∗
m(st). We formalize this goal as minimizing

the regret, which can be defined as follows.

80

Definition 3 For any policy π, we define its regret on CDMDP ⟨S,A, γ, r,P,m⟩ in the first T

rounds as

Regret(T) =
T∑
t=1

V ∗
m(st, a⃗t)− V π

m(st, a⃗t), (5.2)

where the action sequence is given by a⃗t = (at−m, · · · , at−1).

The regret (Definition 3) in the delayed environment reflects the difference between the cumulative

reward obtained by the learning algorithm and the cumulative reward that could have been achieved

by an optimal policy. In contrast to regret definitions without considering delays, this formulation

acknowledges that the algorithm must deal with the uncertainty and delayed consequences of its

actions.

5.5 Value-Targeted Model Regression for Delayed MDP

Our algorithm, i.e., Algorithm 6, solves the discounted Markov Decision Processes with delayed

feedback. The proposed algorithm is a model-based algorithm that exploits the empirical value-

target model concerned with delayed feedback. The key insight is to embed the effect of delayed

feedback into the value-target model, followed by estimating the model based on experiences.

5.5.1 Confidence Set Construction for Value-Targeted Model with Delayed Feedback

Confidence set construction is essential in value-targeted model estimation because it quantifies

uncertainty, ensures robustness, aids optimal decision-making, controls errors, and allows for the

incorporation of prior information. In this section, under the delayed feedback, we first present the

close form of the model parameter θ̂k estimation, followed by the confidence set construction.

At t-th time step, it occurs a transition involving (st, at−m, st+1) where st+1 ∼ P(·|st, at−m),

thus we receive information on the probability transition function P. Instead of regression onto

a fixed target, e.g., probabilities, we focus on estimating the model via regression and taking the

estimated value functions concerned with delayed feedback as the target.

81

Algorithm 6: Value-Targeted Model Regression for Delayed MDP

1

Require: Regularization parameter λ, confidence radius βk, ∀ k (5.6), number of

inner iteration rounds α (5.7), time horizon T

1: Observe s1 and the pending action sequence a⃗1 = (a1−m, · · · , a0)

2: Set t← 1, Σ1 ← λI, b1 = 0, Qk
m(·, ·, a⃗1) = 1/(1− γ),∀ k

3: for k = 0, . . . do

4: Set tk ← t, θ̂k ← Σ−1
tk

btk

5: Set the confidence set as Dk = {θ : ∥Σ1/2
tk

(θ − θ̂k)∥22 ≤ βk}

6: if det(Σt) ≤ 2det(Σtk) and t− tk ≤ α then

7: Set Qk
m(·, ·, a⃗t) based on the action sequence a⃗t = (at−m, · · · , at−1) as

follows:

Vm(·)← max
a∈A

Qk
m(·, a, a⃗t),

Qk
m(st, a, a⃗t)← r(st, at−m)+

max
θ∈Dk

∑
s′

⟨ϕ(s′|st, at−m),θ⟩V k
m(s′, a⃗t+1) (5.3)

8: Set at = argmaxa∈A Qk
m(·, a, a⃗t) and update a new action sequence as

a⃗t+1 = (at−m+1, · · · , at−1, at), we have

V k
m(·, a⃗t+1)← maxa∈A Qk

m(·, a, a⃗t),

9: Receive st+1 ∼ P(·|st, at−m) where P(·|s, a) = ⟨ϕ(·|s, a), θ̂k⟩

10: Set ϕV k
m
(st, at−m, a⃗t+1) =

∑
s′ ϕ(s

′|st, at−m)V k
m(s′, a⃗t+1)

11: Set Σt+1 ← Σt + ϕV k
m
(st, at−m, a⃗t+1)ϕV k

m
(st, at−m, a⃗t+1)

⊤

12: Set bt+1 ← bt + V k
m(st+1, a⃗t+1)ϕV k

m
(st, at−m, a⃗t+1)

13: t← t+ 1

14: end if

15: end for

82

Denote the action sequence as a⃗i = (ai−m, · · · , ai−1). Based on the above idea, the model

parameter θ̂k can be estimated by

argmin
θ∈Rd

k−1∑
j=0

tj+1−1∑
i=tj

[〈
θ,ϕV k

m
(si, ai−m, a⃗i+1)

〉
−

V k
m(si+1, a⃗i+1)

]2
+ λ∥θ∥22. (5.4)

The above regression problem (5.4) has a closed-form solution. To calculate the solution of problem

(5.4), we first present ϕV k
m
(si, ai−m, a⃗i+1) based on Definition 2 (see line 10 in Algorithm 6) and

recursively calculate estimation of the ground-truth θ♮ via line 11 and line 12 in Algorithm 6). Thus,

the estimated θ̂k can be easily obtained by θ̂k = Σ−1
tk
btk (refer to line 4). Note that during the

recursive iterations of regression, as the accuracy of value estimations increases, the regret target is

still dynamic. This is opposed to general supervised learning for estimating models.

To establish a confidence set, we consider a set, of which the center is θ̂k. Given a parameter θ,

the distance between θ̂k and θ is denoted as

Lk(θ, θ̂k)

=
k−1∑
j=0

tj+1−1∑
i=tj

(〈
⟨θ − θ̂k,ϕ(·|si, ai−m)⟩, V k

m(·, a⃗t+1)
〉)2

+ λ∥θ − θ̂k∥22

=(θ − θ̂k)
⊤Σtk(θ − θ̂k). (5.5)

Based on (5.5) and the confidence radius parameter β, Algorithm 6 constructs the confidence set of

θ♮ as Dk := {θ : ∥Σ1/2
tk

(θ − θ̂k)∥22 ≤ β}.

5.5.2 Value Iteration

During k-th iteration in Algorithm 6, the confidence set Dk induces various plausible MDPs with

delayed feedback. Then Algorithm 6 searches for the action-value function for the near-optimal

MDP among these MDPs. At each iteration of Algorithm 6, given the observation state st and the

83

action sequence a⃗t = (at−m, · · · , at−1), we perform one-step optimal value iteration to obtain the

new action-value function Qk
m(st, ·, a⃗t). This is achieved by selecting the best possible MDP among

all plausible MDPs induced by Dk to maximize the Bellman optimality equation over the value

function V k
m. This is represented as line 7 in Algorithm 6.

After calculating Qk
m, Algorithm 6 arrives at selecting a policy, taking action, collecting obser-

vations, and updating parameters. To be specific, at t-time step, the algorithm selects the optimal

action at induced by Qk
m and update the action sequence as a⃗t+1 = (at−m+1, · · · , at−1, at). The

action at−m is executed on the environment followed by observing the new state st+1. Then Al-

gorithm 6 computes vector ϕV k
m
(st, at−m, a⃗t+1) according to Definition 2 and the value function

at st+1, i.e., V k
m(st+1, a⃗t+1). The parameter Σt and bt are updated based on ϕV k

m
(st, at−m, a⃗t+1).

Corresponding to the stopping rule in the [147], the inner loop in k-th iteration of Algorithm 6

repeats until det(Σt) > 2det(Σtk) or t− tk ≤ α where α is given by (5.7).

5.6 Theoretical Analysis

In this section, we develop the theoretical analysis of Algorithm 6, which efficiently solves rein-

forcement learning with value-targeted regression for discounted parameterized CDMDP.

The following theorem provides an upper bound of the regret for Algorithm 6.

Theorem 8 Consider a parameterized-transition CDMDP ⟨S,A, γ, r,P,m⟩ with the underlying

vector θ♮. Set βk and α in Algorithm 6 as follows:

βk =
8

(1− γ)2
log
(
dδ−1

)
+ 4

√
2

(1− γ)2
t2k log(2tk(tk + 1)δ−1)

+m2tk + 4dtk + λd. (5.6)

84

and

α =

⌈
log [(mT)/(1− γ)])

1− γ

⌉
+m, (5.7)

then with probability exceeding 1− δ, we have

Regret(T) ≤ 1 +
6

1− γ

√
dβTT log

λ+ T/(1− γ)2
λ

+
(2− γm)

√
T log δ−1

(1− γ)2
+
γ(1 + γm)

(1− γ)2

·min

{
2d log

λ+ Td

λ(1− γ)2
, α

}
.

(5.8)

Theorem 8 suggests that the regret of Algorithm 6 is in the order of Õ((d+2−γm)
√
T/(1−γ)2).

The regret bound enjoys its independence from the size of the state and action space. Notably,

Algorithm 6 has been wisely designed for handling delayed feedback. This strategic design

empowers the agent to continuously improve decision-making, ensuring that the regret bound

remains reasonably bound even in the face of delayed information. Under this approach, the regret

bound of the algorithm not only avoids the dependence on the size of the state and action spaces but

also mitigates the adverse effects of delayed feedback

Additionally, we analyze a lower bound to learn a parameterized CDMDP in the following

theorem.

Theorem 9 Consider a parameterized-transition CDMDP ⟨S,A, γ, r,P, 1⟩ with the underlying

vector θ♮. Choosing ψ = d
√
1− γ/(66

√
2T) and δ = 1− γ such that 3ψ/2 ≤ δ ≤ 1/5, then the

regret with respect to any policy π satisfies that

E[Regret(T)] ≥ γd
√
T

2640
√
log 2(1− γ) 3

2

− γ

(1− γ)2
. (5.9)

Importantly, it is noteworthy that our upper bound regret, as dictated by the regret bound Õ((d+

2 − γm)
√
T/(1 − γ)2), closely aligns with the lower bound Ω(d

√
T/(1 − γ) 3

2). This proximity

underscores the efficacy of our proposed method, affirming its ability to not only navigate the

intricacies of large state and action spaces but also substantially narrow the gap between the upper

bound and the lower bound.

85

5.7 Proof of the Main Theorem

In this section, we provide the proof sketch of the main theorem. Let NT − 1 be the number of

epochs when Algorithm 6 executes t = T rounds, and tNT
= T + 1. The outline of proof is

summarized as follows. To begin with, we construct the confidence set Dk for each k iteration. In

Lemma 2, we show that the underlying vector θ♮ satisfies θ♮ ∈ Dk for all 0 ≤ k ≤ NT − 1. Based

on this condition, Lemma 3 further shows that the estimated Q-value functions corresponding to

CDMDP, i.e., Qk
m, are optimistic estimates of optimal Q-value functions corresponding to CDMDP,

i.e., Q∗
m. Utilizing this fact, we can bound Regret(T) (5.2) via the sum of V k

m(st, a⃗t)− V π
m(st, a⃗t),

which can be decomposed into different terms and bounded separately. The proof of Theorem 8

is completed. Finally, we can transform the constructed regret bound to the sample complexity of

exploration, which is illustrated in Theorem 10.

5.7.1 Confidence Set Construction

We first introduce several notations and definitions. θ̂k in Algorithm 6 can be represented as

θ̂k =

(
λI+

k−1∑
j=0

tj+1−1∑
i=tj

ΦΦ⊤
)−1

·

(k−1∑
j=0

tj+1−1∑
i=tj

V k
m(si+1, a⃗i+1)Φ

)
,

86

where Φ = ϕV k
m
(si, ai−m, a⃗i+1). Additionally, for any 0 ≤ j ≤ k − 1 and tj ≤ i ≤ tj+1 − 1 and

the pending action sequence a⃗i+1 = (ai+1−m, · · · , ai),

[PV k
m](si, ai−m, a⃗i+1)

=
∑
s′

P(s′|si, ai−m)V
k
m(s

′, a⃗i+1)

=
∑
s′

⟨ϕ(s′|si, ai−m),θ
♮⟩V k

m(s
′, a⃗i+1)

=
〈∑

s′

ϕ(s′|si, ai−m)V
k
m(s

′, a⃗i+1),θ
♮
〉

=⟨ϕV k
m
(si, ai−m, a⃗i+1),θ

♮⟩. (5.10)

For βk > 0, we construct the confidence set as

Dk(βk) =

{
θ :

k−1∑
j=0

tj+1−1∑
i=tj

(
⟨ϕV k

m
(si, ai−m, a⃗i+1),θ⟩

− ⟨ϕV k
m
(si, ai−m, a⃗i+1), θ̂k⟩

)2

+ λ∥θ − θ̂k∥22 ≤ βk

}
. (5.11)

Lemma 2 Set βk in Algorithm 6 as

βk =
8

(1− γ)2
log
(
dδ−1

)
+

4

√
2

(1− γ)2
t2k log(2tk(tk + 1)δ−1) +m2tk + 4dtk + λd, (5.12)

then with probability exceeding 1− δ, for all 0 ≤ k ≤ NT − 1 where 0 ≤ tk ≤ T , there is θ♮ ∈ Dk

with non-empty Dk.

Lemma 2 suggests that in every epoch of Algorithm 6, θ♮ is contained in the confidence sets

{Dk}NT−1
k=0 with a high probability.

5.7.2 Optimism

Lemma 3 Assume that the conditions in Lemma 2 hold. Then for all 0 ≤ k ≤ NT − 1, we have

1/(1− γ) ≥ Qk
m(s, a, a⃗t) ≥ Q∗

m(s, a, a⃗t) for any (s, a) ∈ S ×A with the action pending sequence

87

a⃗t = (at−m, · · · , at−1).

Lemma 3 suggests that in every epoch of Algorithm 6,Qk
m(s, a) found by (5.3) is an upper bound

for the optimal action-value function Q∗
m(s, a, a⃗t). Recall that the goal is to find the action-value

function Qk corresponding to the optimal MDP inMk, which satisfies the following optimality

condition

Qk
m(s, a, a⃗t) = r(st, at−m)+

max
θ∈Dk

∑
s′

⟨ϕ(s′|st, at−m),θ⟩V k
m(s

′, a⃗t+1),

where the action pending sequence is a⃗t+1 = (at−m+1, · · · , at−1, a).

However, it is impossible to find the exact optimal value function since there is constant delay

and only a finite number of iterations are performed. The following lemma characterizes the error

to the constant delay m and the number of iterations.

5.7.3 Regret Decomposition

The regret can be decomposed as follows:

Regret(T) =
NT−1∑
k=0

tk+1−1∑
t=tk

[
V ∗
m(st, a⃗t)− V π

m(st, a⃗t)
]

≤
NT−1∑
k=0

tk+1−1∑
t=tk

[
V k
m(st, a⃗t)− V π

m(st, a⃗t)
]
, (5.13)

where the inequality holds due to Lemma 3 and the update rule in line 8 of Algorithm 6.

tk+1−1∑
t=tk

[
V k
m(st, a⃗t)− V π

m(st, a⃗t)
]

88

can be further bounded as follows by Bellman equation and Lemma 11.

tk+1−1∑
t=tk

[
V k
m(st, a⃗t)− V π

m(st, a⃗t)
]

≤

[
tk+1−1∑
t=tk

1

1− γ
〈
θt − θ♮,ϕV k

m
(st, at−m, a⃗t+1)

〉
+ ξt

]

+
m

1− γ
(tk+1 − tk)γtk+1−tk−m+1 + 1 +

1

(1− γ)2
, (5.14)

where ξt =
[
P(V k

m−V π
m)
]
(st, at−m, a⃗t+1)−

(
V k
m(st+1, a⃗t+1)−V π

m(st+1, a⃗t+1)
)
/(1−γ). Computing

the summation of (5.14) from k = 0 to NT − 1, we derive the upper bound as follows

tk+1−1∑
t=tk

[
V k
m(st, a⃗t)− V π

m(st, a⃗t)
]

≤
NT−1∑
k=0

tk+1−1∑
t=tk

1

1− γ
〈
θt − θ♮,ϕV k

m
(st, at−m, a⃗t+1)

〉
+

NT−1∑
k=0

tk+1−1∑
t=tk

ξt +
[2 + (1− γ)mγα−m]NT

(1− γ)2
,

where α (5.7) is defined in Theorem 8. The upper bound of the first term on the right-hand side

can be derived from Azuma-Hoeffding inequality and the definition of the value function (5.1),

i.e., Õ((2− γm)
√
T/(1− γ)2), the second term can be bounded by Õ(d

√
T/(1− γ)2) by Lemma

2, the last term can be bounded by min{Õ(d/(1 − γ)2), O(α/(1 − γ)2)} by Lemma 16 and the

selection of α (5.7). Combining the upper bounds above, the regret of Algorithm 6 is bounded in

the order of Õ((d+ 2− γm)
√
T/(1− γ)2). In analyzing regret bounds using random matrix theory

such as Azuma-Hoeffding inequality, undelayed scenarios typically rely on i.i.d. random variables.

However, delays introduce complex statistical dependence among pending actions, causing overlaps

in sequences. To address the problem caused by the statistical dependence, we construct a variant

of the target random variable, asymptotically approaching to the original variable by excluding

a single datum. This “decoupling” effectively mitigates intricate dependencies induced by the

pending action sequence. Our method excels in overcoming delay-related challenges, yielding a

near-optimal regret bound and eliminating dependence on the state and action space size.

89

5.7.4 Transform between Sample Complexity of Exploration and Regret

A popular quantity used for measuring discounted MDPs is sample complexity of explorationN(ϵ, δ)

[145, 128, 144]. In our case, the sample complexity of exploration is defined as the number of time

steps t where V ∗
m(st, a⃗t)− V π

m(st, a⃗t) is greater than ϵ with probability at least 1− δ. We transform

the regret derived in Theorem 8 to the sample complexity of exploration for constant-delay MDP,

presented in the following Theorem.

Theorem 10 Consider a parameterized-transition CDMDP ⟨S,A, γ, r,P,m⟩ with the underlying

vector θ♮. For some ϵ, δ > 0 and d < ϵ−1, the non-stationary policy determined by Algorithm 6 in

environments with delayed feedback is ϵ-optimal except in

Õ

(
d+ 2− γm

ϵ2(1− γ)3

)
. (5.15)

time steps during the whole run of the algorithm, with probability exceeding 1− δ.

Proof: Assume that an algorithm has Õ(Cdϵ
−a) sample complexity of exploration, where Cd is

a constant that depends on the parameters of parameterized-CDMDP model, i.e., γ, d,m. Then

with probability at least 1 − δ, it requires at least Õ(Cdϵ
−a) number of time steps t to arrive

at V ∗
m(st, a⃗t) − V π

m(st, a⃗t) ≤ ϵ. Denote the set Bk as the collection of time step tk such that

Bk = {tk|V ∗
m(stk , a⃗tk) − V π

m(stk , a⃗tk) ≥ ϵ}. Thus, for T time steps, with probability exceeding

1− δ, we have

Regret(T) =
NT−1∑
k=0

tk+1−1∑
t=tk

[
V ∗
m(st, a⃗t)− V π

m(st, a⃗t)
]

=

NT−1∑
k=0

[∑
t∈Bk

[
V ∗
m(st, a⃗t)− V π

m(st, a⃗t)
]
+

∑
t/∈Bk

[
V ∗
m(st, a⃗t)− V π

m(st, a⃗t)
]]

(a)

≤
NT−1∑
k=0

|Bk| · 1/(1− γ) + (tk+1 − tk) · ϵ

(b)
= Õ(Cdϵ

−a/(1− γ) + ϵT), (5.16)

90

where the inequality (a) holds due to the fact that 0 ≤ V ∗(st, a⃗t), V
π
t (st, a⃗t) ≤ 1/(1 − γ),

and the equality (b) derives based on the definition of Bk and NT . The regret (5.16) can be

minimized by Regret(T) = Õ(C
1/(a+1)
d (1 − γ)−1/(a+1)T a/(a+1)), which is achieved by choosing

ϵ = T−1/(a+1)(1− γ)1/(a+1)C
−1/(a+1)
d .

To be specific, the regret of Algorithm 6 provided in Theorem 8 is Õ((d+2− γm)
√
T/(1− γ)2)

and it implies a sample complexity of exploration of

Õ

(
(d+ 2− γm)2

ϵ(1− γ)3

)
. (5.17)

As presented in Theorem 10, the sample complexity becomes Õ((d+ 2− γm)/(ϵ2(1− γ)3)) when

d < ϵ−1.

□

5.8 Conclusion

We proposed a provably efficient algorithm for solving parameterized-transition CDMDPs called

value-targeted model regression for delayed MDP. The regret is proved to be upper bounded by

Õ((d + 2 − γm)
√
T/(1 − γ)2). We also proved a lower bound Ω(d

√
T/(1 − γ)

3
2) for solving

parameterized-transition CDMDPs, which is close to our upper regret bound. Theoretical analysis

demonstrates the effectiveness of our proposed algorithm in addressing the negative influence of

delayed feedback on the agent’s decision-making. Additionally, it results in a regret bound that

remains independent of the size of the state and action spaces.

While our regret bound is indicative of the algorithm’s efficiency, there is potential for further

research to explore tighter regret bounds. Investigating refinements or alternative approaches that

can yield regret bounds with smaller constants or dependencies on the problem parameters may

contribute to a deeper understanding of the algorithm’s performance. Additionally, extending the

algorithm’s capabilities to generalize across different types of MDPs or relaxing certain assumptions

on the delay structure could enhance its versatility and widen its scope of application.

91

CHAPTER 6

SGD-based Method for Partial Gradient Information

6.1 Introduction

Online stochastic bandits represent a class of sequential decision-making problems where an agent

makes actions and receives uncertain rewards. The applications in wireless communication range

from client scheduling [148] to channel selection [149, 150, 151]. The goal of the agent is to

maximize the cumulative rewards over n time steps by strategically selecting actions based on

streaming data. A line of literature has developed effective algorithms for online stochastic bandits.

Compared with the common methods, such as the upper confidence bound (UCB) bandit algorithm

[147, 81] and online mirror descent (OMD) [152, 153], the SGD-based methods [154, 80, 155]

can effectively reduce computational complexity by avoiding the matrix inverse operations when

estimating the model parameter. However, several limitations persist in the current SGD-based

methods for online stochastic bandits.

Firstly, existing online algorithms predominantly focus on linear models, while the general

parametric model is unexplored. Secondly, prior SGD-based approaches only focused on expected

regret bounds and did not tackle high probability bounds, leaving uncertainties about their algorithms

in achieving desirable regret bounds when involving too many sub-optimal actions. Thirdly, current

SGD-based approaches introduce bias in their estimators. This bias arises from a greedy action

selection strategy at each time step, deviating from the conventional SGD approach that uniformly

samples from all available data points. The presence of bias implies a larger divergence between

the estimation and the ground truth, potentially compromising result robustness. In other words,

92

different datasets may yield significantly different estimation results.

To address the above limitations, we consider SGD-based stochastic bandit problems with a

general parametric model, emphasizing performance guarantees that hold high probability, an aspect

lacking in current literature due to the considerable technical effort and modifications required to

establish such guarantees. Specifically, the general parametric models usually involve complex

optimization problems. It is vital to make reasonable but not strict assumptions about the model to

guarantee feasible solutions. Furthermore, the statistical analysis associated with general parametric

models requires precisely establishing corresponding i.i.d. random variables, necessitating the

utilization of random matrix theory thorough analysis.

The contributions can be summarized as follows:

1. General framework. Our proposed method applies to stochastic bandits with a general

parametric reward functions.

2. High probability bound. The proposed algorithm endows with a high probability regret-

bound guarantee.

3. Unbiased Action-elimination strategy. We design a strategy to eliminate sufficiently sub-

optimal actions gradually. The proposed algorithm uniformly selects the action from the

current action subset at random. This strategy guarantees an unbiased estimation of model

parameters, yielding a robust and desirable upper regret bound.

6.1.1 Related Work

UCB for linear bandit Auer et al. [156] provided the first analysis of linear bandit problem.

They established a confidence set for the model parameter of the linear function. At each time step,

the algorithm chooses an estimate from the confidence set and selects an action to maximize the

cumulated reward. In other words, this estimate-action pair is chosen optimistically. The work

93

[156] achieves a regret bound of Õ((log |A|)3/2poly(d)
√
n)1 where d is the feature dimension, n

is the number of time steps, and |A| is the number of feasible actions. Dani et al. [82] developed

variants of the algorithm based on upper confidence bounds (UCB) in [156]. It improves the regret

bound to Õ(d
√
n). The main idea is to calculate the estimator of the model parameter at each time

step, and then find the upper confidence bound of linear reward-function estimates. The same idea

has been applied to web advertisement by Li et al. [157, 92] and Chu et al. [83]. Although UCB can

effectively solve linear bandit problems, the time complexity of the algorithm depends quadratically

on both d and n, i.e., O(nd2), because it needs to calculate the matrix inverse at every time step to

estimate the model parameter. It turns out to be impractical when dealing with high-dimensional

features.

TS for linear bandit Thompson Sampling (TS) has been a popular scheme for logistic bandit

[158, 159, 160, 161], where the basic idea is to estimate the posterior of the model parameter based

on new observation at each time step. TS is also successfully applied to linear bandit problem

[80, 81]. Recently, Kveton et al. [93] proposed TS-based algorithms for the generalized linear

model (GLM) of which linear bandit is a special case, enjoying Õ(d
√
n) total regret, where d is the

feature dimension, n is the number of time steps. The essential idea in [93] is to draw a random

sample from the approximated posterior distribution and select the action with the best estimates

of this posterior. For the linear bandit problem, this algorithm has the time complexity of O(nd2)

since it needs to calculate the matrix inverse to estimate the posterior and the covariance matrix of

the posterior requires to be reweighed based on previous observations.

Online linear optimization with bandit feedback Online linear optimization with bandit feed-

back was originally introduced in [162, 163]. Dani et al. [164] firstly obtain optimal O(d
√
n) regret

bounds by using the Exp2 (Expanded Exp) strategy. However, it still requires finding the estimates

via the matrix inverse calculations. Following the Exp2 strategy, algorithms based on online mirror

1Õ ignores poly-logarithmic factors.

94

descent were investigated to reduce the time complexity. Mirror descent was pioneered in [165]

as an off-line convex optimization method. The first application of mirror descent to online linear

bandit was proposed by Abernethy et al. [166]. Abernethy et al. developed the first computationally

efficient strategy and obtained a O (d2
√
n) regret. Bubeck et al. [153] further improved the regret

bound to O (d
√
n). Unfortunately, matrix inverse operations are still required in OMD-based

algorithms. For more details, please refer to [167, 100].

SGD-based algorithm for bandit problem To overcome the time complexity issue of the above

algorithms, online stochastic gradient descent (SGD) is verified as an efficient optimization algorithm

for the model parameter estimation in stochastic linear bandit model by Kordaet et al. [154]. Even

though the algorithm in [154] achieves an improvement of order O(d) in time complexity, the regret

performance suffers a loss of O(log4 n), which is precisely given by O(d log4 n ·
√
n).

Besides stochastic linear bandit, a line of literature has applied SGD-based algorithm in contex-

tual bandit problem [168, 80, 155, 169]. Although the above algorithms can be practically modified

to solve stochastic bandits without contexts, the theoretical analysis of contextual bandits cannot

directly be extended to the setting concerned in this chapter. The primary distinction lies in the fact

that contextual bandits incorporate context information for optimizing decision-making problems.

In contrast, stochastic bandits without contexts operate in a different version of action-reward

feedback. This substantial difference involves varied forms of optimization when estimating the

reward function. Moreover, these papers lack consideration for high probability bounds, leaving

uncertainty about the achievability of their proposed regret bound with high confidence. Our work

aims to explore the high probability bound of stochastic bandit problems.

Concentration analysis for SGD For the SGD-based bandit problem, concentration analysis for

SGD plays an essential role in regret bound. In other words, the tight concentration analysis leads to

a tight regret bound. Most of the literature (see e.g., [170, 171, 172, 173, 174]) on the performance

of SGD focuses on the expected error rate which supports the regret analysis of SGD-based bandit

95

problem in [80, 155]. Herein, the averaged SGD (ASGD) proposed by Polyak and Juditsky [172] is

a popular method that averages iterates and establishes the asymptotic normality of the estimate.

Under certain regularity assumptions, it can achieve the optimal rate O(1/
√
n) due to the central

limit theorem (CLT), after n time steps of SGD.

Apart from the guarantees in the expected error rate, practitioners usually prefer high confidence

guarantees, i.e., high-probability error bounds in the form of P(∥θ̂ − θ⋆∥2 ≥ ϵ) ≤ δ, where

ϵ > 0, δ ∈ (0, 1) can be arbitrarily small, and θ̂ is the estimator of θ⋆. As pointed out by Lou et

al. [175], bounds in expected error rate are typically too conservative to derive high-probability

guarantees. Additionally, the confidence intervals derived from the CLT only remain asymptotically

when the number of samples goes to infinity and cannot be used to provide rigorous sample

complexity when δ goes to zero. Hence, further tail probability analyses (non-asymptotic) are

needed.

Some widely known high-probability results include [173] by Rakhlin et al. who showed that

for the strongly convex setting under sub-Gaussian noise assumptions, the estimator of T -round

averaged SGD achieves ∥θ̂T − θ⋆∥2 ≤ O(
√

log(log(T)/δ)/T) with high probability. Recently, the

above bound has been improved to O(
√

log(1/δ)/T) by a line of literature, e.g., [176, 177, 178,

179, 180] and [181]. Most recently, Lou et al. [175] provided a similar bound under heavy-tailed

noise assumptions, which is a more general case. Moreover, the best known state-of-the-art high

probability bound of SGD-based algorithm isO(d
√
n log(n log n/δ)) for contextual bandit problem

[155]. However, these investigations are confined to the linear setting, lacking generalizability. This

chapter seeks to fill this gap by undertaking a comprehensive examination of SGD-based algorithms

within a broader bandit problem framework, delving into both theoretical and empirical dimensions.

The comparison between our result and state-of-the-art is illustrated in Table 6.1. The first four

papers lack consideration for high probability bounds. In contrast to [147], our bound demonstrates

an improvement by a multiplicative factor of approximately
√

log(n). Notably, our method not

only attains a near-optimal bound akin to [81] but also enjoys low computational complexity.

96

Table 6.1: Comparison of our main result and state-of-the-art.

Paper Model Algorithm Regret
Computational

complexity

[153] Linear OMD-based O(d
√
n log(n)) O(nd2)

[80] Linear SGD-TS O(d
√
n log(n)) O(nd)

[155] Linear SGD-based O(d
√
n log(n log(n))) O(nd)

[154] Linear SGD-based O(d log4 n ·
√
n) O(nd)

[147] Linear UCB
O

(
d log(n)

√
n

+

√
dn log

(n
δ

)) O(nd2)

[81] General parametric UCB O(d
√
n log(n/δ)) O(n2d2)

Theorem 11 General parametric SGD-based O(d
√

nlog(n/δ)) O(nd)

6.2 Preliminaries

Let D ⊂ Rd be a compact set of decisions the environment decides. At each time t, the learning

algorithm determines a subset At ⊆ D and the agent selects an action xt ∈ At, after which the

agent observes a reward yt.

We denoteHt as the history (A1, x1, y1, . . . , At−1, xt−1, yt−1,At) of observations available to

the agent when choosing an action xt. After choosing the action xt, the agent receives a reward yt

that is a function with respect to a certain parameter θ⋆ ∈ Rd, i.e., for all xt ∈ D, yt = r(θ⋆, xt) + ϵt

where ϵt denotes the noise. Generally, the vector θ⋆ is unknown, though fixed.

We begin with two standard assumptions for most bandit problems [156]. The first assumption

sets the range of the reward function.

Assumption 2 (Reward function) Define a function r : Rd × D → R. The reward function for

bandit problem is represented as r(θ⋆, x) for all x ∈ D and a certain parameter θ⋆ ∈ Rd where

97

∥θ⋆∥2 ≤ S for S > 0.

Our second assumption ensures that observation noise is light-tailed. A wide range of noise,

e.g., Gaussian and sub-Gaussian noise, is covered by this assumption.

Assumption 3 (Noise assumption) For all t ∈ [n], ϵt = yt − r(θ⋆, x) conditioned onHt is σ-sub-

Gaussian, i.e., E[exp(λϵt)] ≤ exp (λ2σ2/2) almost surely for all λ.

We let x∗ ∈ argmaxx∈D r(θ⋆, x) denote the optimal action. The n period cumulative regret is

Reg(n) =
∑n

t=1 [r(θ⋆, x
∗)− r(θ⋆, xt)] where {xt : t ∈ [n]} denote the actions.

6.3 Algorithm

We present our proposed algorithm in this section. To begin with, we need to estimate the model

parameter in the bandit problem. The efficient estimation is intractable for a general function

r(θ, x) unless we consider the bandit problem under some reasonable and mild assumptions. These

assumptions ensure that stochastic gradient descent can efficiently and effectively apply to model

parameter estimation. Before presenting assumptions, we start with the representation of the loss

function in estimation.

Suppose that decisions x1, . . . xn ∈ D have been made, corresponding rewards are y1, . . . , yn ∈

R. The loss function at i-th step is defined as ℓi(r(θ, xi), yi), ∀ θ ∈ Rd, i ∈ [n], which depends on

data pair (xi, yi) and the reward function r(θ, xi). To guarantee efficient and effective parameter

estimation, we consider the problem of minimizing a smooth and convex function by stochastic gra-

dient descent. Specifically, we make the following assumptions on the loss function ℓi(r(θ, xi), yi).

We abuse the notation ℓi(θ) to represent ℓi(r(θ, xi), yi) in the following.

Assumption 4 (Loss function) We assume that the loss function ℓi(θ) (6.3) with i ∈ [n] satisfies,

for some Lipschitz constants L,LG, LH > 0, convexity constant µ > 0 and any points θ, θ′ ∈ Rd

98

• Convexity and smoothness:

ℓi(θ
′)− ℓi (θ)− ⟨∇ℓi (θ) , θ′ − θ⟩ ≥

µ

2
∥θ′ − θ∥22 ,

∥∇ℓi (θ′)−∇ℓi(θ)∥2 ≤ LG ∥θ′ − θ∥2 ,

|r(θ′, xi)− r(θ, xi)| ≤ L ∥θ′ − θ∥2 .

In other words, ℓi(θ) is LG-smooth with respect to θ, and r(θ, xi) is L-smooth with respect to

θ.

• Hessian-Smoothness: ∥∇2ℓi (θ
′)−∇2ℓi(θ)∥2 ≤ LH ∥θ′ − θ∥2, which is equivalent to∥∥∇ℓi (θ′)−∇ℓi(θ)−∇2ℓi(θ) (θ

′ − θ)
∥∥
2

≤LH

2
∥θ′ − θ∥22 . (6.1)

• Bounded gradient: For the model parameter θ⋆ in Assumption 2, we have E[∥∇ℓi(θ⋆)∥2] ≤

µ ∥θ⋆∥2.

Assumption 4 can be easily satisfied by a wide range of loss functions under various scenarios. An

example of stochastic linear bandit problems that satisfies Assumption 4 is presented in Example 1

in Section 6.4.

Based on Assumption 4, we update the estimator of the model parameter via the mini-batch

averaged SGD [172]. Additionally, we design an action-elimination strategy to gradually eliminate

sufficiently sub-optimal actions in the learning process and maintain near-optimal actions. At each

round of mini-batch averaged SGD, we uniformly and randomly select the action from the current

action subset to guarantee the corresponding feature vectors are i.i.d. The details on designing proper

action subsets are presented in Section 6.4, which is our main argument to guarantee near-optimal

regret bound.

According to the above discussions, the algorithm is presented as follows. An estimate θ̂ to the

ground-truth vector θ⋆ can be constructed by

θ̂ := arg
θ

min L(θ), where L(θ) := 1

n

n∑
i=1

ℓi(θ) (6.2)

99

where ℓi(θ) is the loss function.

We apply the mini-batch SGD to estimate the model parameter. Initialized at θ0, the t-th iteration

is computed by the mini-batch SGD with step size ηt. We define B as the mini-batch size and step

sizes ηt will be discussed in our proposed algorithm. In each round t, the agent randomly selects an

action xt ∈ At. The proposed SGD for general bandit is illustrated in Algorithm 7.

Our algorithm (Algorithm 7) is an exploration-exploitation modification of mini-batch averaged

SGD, where the action-elimination strategy realizes the exploration-exploitation balancing. At a

high level, each round consists of one inner loop over all mini-batch sizes B. Before initiating

the inner loop, an action subset (referenced in line 4) is established. In line 4, the objective is to

filter out actions from At−1 whose rewards deviate significantly from the maximum action reward

within At−1 by solving the optimization problem (6.3). The remaining actions are then defined as

At. In the case of a nonconvex reward function, the problem (6.3) becomes intractable in general.

However, when the reward function adheres to suitable statistical models (e.g., low-rank matrix),

straightforward first-order methods are assured to discover a local minimum with a minimal number

of iterations. This approach can still achieve low computational and sample complexities.

After getting an action setAt, the inner loop (line 5-9) uniformly and randomly selects an action

from the action set At to guarantee the i.i.d. property of the action xi and the reward yi. It ensures

the unbiased estimation of stochastic gradient. Subsequently, the inner loop (line 5-9) updates the

stochastic gradient gt that is used to form the iterate, i.e., θt. The analysis of our proposed algorithm

is provided in the next section.

6.4 Main Theory

In this section, we present our main result, Theorem 11, which provides the sample complexity

guarantee for Algorithm 7 in the general bandit problem under mild assumptions.

100

Algorithm 7: SGD-based Algorithm for General Stochastic Bandits

1

Require: Neighborhood radius βt, ∀ t ∈ {1, 2, · · · , T}, number of

outer iteration rounds T , mini-batch size B, step-size ηt = η0t
−α

where α ∈ (0, 1).

1: Initialize θ0 ∈ Rd such that ∥θ0∥2 ≤ S, θ̄0 = 0 ∈ Rd, A0 = D,

β0 = S.

2: for t = 1 to T do

3: Initial gt = 0 ∈ Rd.

4: Update action set as

At :={x ∈ At−1| max
a∈At−1

r(θ̄t−1, a)

− r(θ̄t−1, x) ≤ 2Lβt−1}, (6.3)

where L is defined in Assumption 4.

5: for i = (t− 1)B + 1 to tB do

6: Uniformly at random select an action xi ∈ At.

7: Observe the reward yi.

8: Update gt = gt +
1
B
∇ℓi(θt−1).

9: end for

10: Update θt = θt−1 − ηtgt.

11: Compute θ̄t = t−1(θt + (t− 1)θ̄t−1)

12: end for

13: Output: θ̄T

101

We begin with notations used in the main theorem. Let

Ψχ,α =

∫ ∞

1

exp

(
−χ
∫ z

1

x−αdx

)
dz ≤ Cχ,α, (6.4)

where Cχ,α > 0, χ > 0, and 0 < α ≤ 1. We define λ∗ = maxt λmax(∇2ℓt(θ⋆)), t ∈ [T] in the

following. In Theorem 11, let σ > 0 denote the standard deviation of noise for the gradient caused

by the noise {ϵt} under Assumption 3.

Theorem 11 Under Assumptions 2, 3, and 4, we set

βt = C ′′
χ,α

√
16dL2

H

tµ3
log

(
t

δ

)
, t ∈ [T], (6.5)

α = 1/2, the mini-batch size B = µσ2d/L2
H , and the initial step-size η0 ≤ 1/λ∗, Algorithm 7

achieves the following regret with probability at least 1− δ,

Reg(n) ≤ 2µσ2SLd

L2
H

+ 32 · σC ′′
χ,αdL

√
n

µ2
log
(n
δ

)
, (6.6)

where n = TB and C ′′
χ,α ≍ Cχ,α with Cχ,α derived from (6.4) with χ = µη0/2 and α = 1/2.

The first term of the regret bound (6.6) comprises a constant determined by the parameters. Specifi-

cally, a more concentrated tail distribution, reflected by a smaller σ2, results in a diminished upper

regret bound. If the slope (first-order derivative) and the curvature (second-order derivative) of the

loss function don’t change too rapidly across its domain, reflected by a smaller L and a larger LH ,

the upper regret bound will be reduced. The dominant factor in the regret bound (6.6) is the second

part. If the loss function’s curvature changes more gradually (rapidly) across its domain, reflected

by a larger µ, this leads to a reduced upper bound on regret. Thus, there is a trade-off between the

first and second terms of the regret bound (6.6).

Example 1 (Linear Bandits) Consider linear bandits where the function r(θ, x) = θ⊤x is 2-

smooth with respect to θ ∈ Rd for a fixed x ∈ D since ∇θr(θ, x) = x. The loss function of

estimating θ can be given by

ℓi(θ) =
1

2n

(
θ⊤xi − yi

)2
+
µ

2
∥θ∥22 (6.7)

102

for i ∈ [n] and µ > 0. Let µ = 1, Algorithm 7 solves linear bandits and achieves the following

regret with probability at least 1− δ,

Reg(n) ≤ 4σ2Sd

L2
H

+ 64 · σC ′′
χ,αd

√
n log

(n
δ

)
,

where n = TB and C ′′
χ,α ≍ Cχ,α with Cχ,α defined in (6.4), which is comparable to the result for

linear bandit in [147] O(d
√
n log(n/δ)).

6.5 Proof Sketch

This section overviews several key mechanisms behind the regret bound in Theorem 11. We defer

the full proof of Theorem 11 to Appendix E.2. Our analysis depends on the following three key

steps.

Step 1: Confident set construction. Define the confidence region at round t to be

Bt :=
{
ν :
∥∥ν − θ̄t∥∥2 ≤ βt.

}
(6.8)

According to the choice of βt (6.5) in Bt (6.8), we show that θ⋆ always remains inside this region

for all times t, with high probability. Please refer to Lemma 4 for details of choosing proper βt. It

ensures that the averaged iterate θ̄t converges to the ground truth θ⋆. The value of βt (6.5) plays an

important role in bounding the regret.

Step 2: Action set selection. We further show that ∀t ∈ N the set At (6.3) contains the optimal

action x∗ with high probability. Please refer to Lemma 5 for details. It guarantees that our proposed

algorithm chooses near-optimal action and eliminates actions that are sufficiently suboptimal as

time goes by. At each t-round of Algorithm 7, the regret of action xi ∈ At is bounded by βt−1 with

a positive constant, which facilitates regret analysis in the next step.

Step 3: Regret bound. Combining the above two steps, the total regret can be bounded by the

sum of the regrets for each selected action. At each t-round of SGD-Ridge, an action is selected

from the action set At that is updated at the beginning of the inner loop. Herein, the regret of action

xi ∈ At is bounded by 4Lβt−1.

103

Confident set construction. To prove the main theorem, the first step is to show that the confidence

region is appropriate. To be specific, θ⋆ always remains inside this region for all times t, with high

probability.

Lemma 4 Let δ > 0 and the choice of βt (6.5) in Bt (6.8), we have P (∀t ∈ N, θ⋆ ∈ Bt) ≥ 1− δ.

Lemma 4 implies that ∥∥θ̄t − θ⋆∥∥2 ≤ βt, (6.9)

with probability at least 1− δ, which facilitates to regret analysis in Proposition 1.

Proof: Please refer to Appendix E.2 for details. □

Action set selection. The following lemma shows that ∀t ∈ N the set At (6.3) contains the

optimal action x∗ with high probability.

Lemma 5 Let δ > 0 and recall the action set At (6.3), we have

P (∀t ∈ N, x∗ ∈ At) ≥ 1− δ.

Proof: Please refer to Appendix E.3 for details.

□

Regret bound. We provide regret analysis in the following proposition.

Proposition 1 Set the batch-size as B = 16L4d/λ. Let regi = θ⊤⋆ x
∗ − θ⊤⋆ xi denote the instanta-

neous regret of xi ∈ At acquired by the Algorithm 7 on round t. With probability at least 1− δ, the

regret achieves Reg(TB) =
∑T

t=1

∑tB
i=(t−1)B+1 regi ≤ 16 ·

(
2dSL5

λ
+ Cα · dSL3

√
6TB log(TB/δ)

λ

)
,

where C > 0 depends on α where α ∈ (0, 1).

Proof: Please refer to Appendix E.8 for details.

□

104

6.6 Simulation Results

In this section, we provide the experimental results with industry-standard synthetic datasets for

both linear and logistic bandit.

• Linear bandit: We set the number of rounds T = 1000 and conduct simulations on the

parameter: K = 30 (K is the number of action) and d = 2. We build linear bandit models,

where the feature vectors {xi} and the true model parameter θ⋆ are drawn i.i.d. from Gaussian

distribution N (0, Id) and normalize to ∥xi∥2 = 1, ∥θ⋆∥2 = 1. The loss function for a linear

bandit is the form of (6.7) with the regularization parameter µ.

• Logistic bandit: We set the number of rounds T = 10000 and conduct simulations on the

parameter: K = 40 and d = 2. We draw {xi} and the true model parameter θ⋆ iid from

uniform distribution in the interval of [− 1√
d
, 1√

d
]. We build a logistic model on the dataset and

draw random rewards yt from a Bernoulli distribution with mean 1/(1 + exp(x⊤i θ
∗)). The

loss function for logistics is the form of

ℓi(θ) =
1

2n

((
1 + exp(θ⊤xi)

)−1 − yi
)2

+
µ

2
∥θ∥22 (6.10)

for i ∈ [n] and µ, which satisfies Assumption 4.

0 200 400 600 800 1000
Timestep

0

200

400

600

800

1000

1200

C
um

ul
at

iv
e

R
eg

re
t

(Proposed) SGD-Ridge
EPS-Greedy
GLOC
SGD-LDP
SGD-TS
UCB

(a) Linear bandit (b) Logistic bandit

Figure 6.1: The cumulative regret vs. time-step of different algorithms.

To ensure a fair comparison, we evaluate SGD-Ridge (for linear bandit) and SGD-Proposed

(for logistic bandit) alongside established methods including ϵ-greedy [156, 182], GLOC [95],

105

0 20 40 60 80 100
Time (sec)

0
100
200
300
400
500
600
700

C
um

ul
at

iv
e

R
eg

re
t

(Proposed) SGD-Ridge
EPS-Greedy
GLOC
OLS
SGD-LDP
SGD-TS
UCB

Figure 6.2: The cumulative regret vs. computational time of different algorithms.

SGD-LDP [155], SGD-TS [80], and UCB [92], with their codes available publicly. We standardize

noise levels, considering both privacy noise [155] and reward noise.

Parameter tuning is conducted uniformly across all algorithms. For GLOC and UCB-GLM,

we explore exploration rates in 0.01, 0.1, 1, 5, 10. The exploration probability of ϵ-greedy is set

as c√
t

at the t-th iteration, with c selected from 0.01, 0.1, 1, 5, 10. For SGD-based algorithms, we

set mini-batch size B = 16d/λ, with λ tuned in 0.01, 0.1, 1, 5, 10. The parameter βt (6.5) is set

as
√

4d log(t
10−3)/t. Step size ηt is η0/

√
t, where η0 is chosen from 0.01, 0.05, 0.1, 0.5, 1, 5, 10.

Regularization parameter µ for each algorithm is searched from 0.01, 0.05, 0.1, 0.15.

We perform experiments 30 times and plot the mean and standard deviation of their regrets,

which are illustrated in Fig 6.1 and Fig 6.2. It shows that our proposed algorithms outperform state-

of-the-art approaches. The beneficial performance is due to a good balance between exploitation

and exploration via an action-elimination strategy and efficient estimation via the mini-batch SGD

method. Moreover, random selection during each mini-batch guarantees an unbiased gradient,

which outperforms greedy selection used by Han et al. [155].

All the algorithms are required to solve similar optimization problems as (6.3) which aims to

find the proper arm to pull. The advantage of our proposed algorithm on computational time mostly

comes from the efficiency of estimating parameters via SGD.

We further provide simulated experiments in industry-standard synthetic datasets for both linear

106

0 200 400 600 800 1000
Timestep

0
100
200
300
400
500
600
700

C
um

ul
at

iv
e

R
eg

re
t

(Proposed) SGD-Ridge
EPS-Greedy
GLOC
SGD-LDP
SGD-TS
UCB

(a) Linear bandit: K = 10, d = 2

0 200 400 600 800 1000
Timestep

0

200

400

600

800

1000

1200

C
um

ul
at

iv
e

R
eg

re
t

(Proposed) SGD-Ridge
EPS-Greedy
GLOC
SGD-LDP
SGD-TS
UCB

(b) Linear bandit: K = 30, d = 2

(c) Logistic bandit: K = 20, d = 2 (d) Logistic bandit: K = 40, d = 2

Figure 6.3: Cumulative regret of different algorithms for linear and logistic bandits for timestep. (a)

and (b) illustrate linear bandits with K = 10 and K = 30, respectively. (c) and (d) illustrate logistic

bandits with K = 20 and K = 40, respectively.

107

and logistic bandit. We plot the mean and standard deviation of their regrets, which are illustrated in

Fig 6.3. Our proposed algorithms outperform state-of-the-art approaches and maintain advantages

with largerK in both linear and logistic bandits. The beneficial performance is due to a good balance

between exploitation and exploration via an action-elimination strategy. Moreover, random selection

during each mini-batch guarantees an unbiased gradient, which outperforms greedy selection used

by Han et al. [155].

6.7 Conclusion

In this chapter, we present the SGD-based algorithm for generalized stochastic bandits, focusing

on regret-bound guarantees that hold with high probability. In addition to theoretical validation,

we conducted experiments to showcase the practical effectiveness of our proposed algorithm. The

results highlight the improved performance and versatility of our approach in handling stochastic

bandits with general parametric reward functions. By addressing the identified limitations of current

works, our algorithm presents a promising advancement in the application of SGD to stochastic

bandit problems, paving the way for more robust and efficient solutions in real-world scenarios. In

addition to the stochastic bandit problems addressed in this chapter, it is interesting to investigate

more complex and general reward models, such as neural networks in the future.

108

APPENDIX A

Proofs for Chapter 2

A.1 Proof of Theorem 1

By extending Lemma 4 in [13], we conclude that E[∥∇J(θ̂)∥2] depends on 1
T

∑T
t=1 E[∥∇J̃B(θt)−

∇J(θt)∥2]. We first present a few vital lemmas to complete the proof of theorem 1. To be specific,

Lemma 6 characterizes the bounds on 1
T

∑T
t=1 E[∥∇J̃B(θt)−∇J(θt)∥2].

Lemma 6 Denote N i
ℓ as the number of the neighborhood nodes concerning i ∈ V sampling

uniformly at random at ℓ-th layer. The cached nodes in the set C with the size of |C| are sampled

without replacement according to pcache
v . The dimension of the node feature is denoted as n and

the size of the min-batch is denoted as B. Define C̃ = |C|/|V| and Cd =
∑

vi∈V deg(vi)/|V| with

the constant c > 0. Under Assumption 1, the expected mean-square error of stochastic gradient

∇J̃B(θ) derived from Algorithm 1 to the full gradient is bounded by

MSE :=
1

T

T∑
t=1

E
[∥∥∥∇J̃B(θt)−∇J(θt)

∥∥∥ 2
]

≤O
(
L

′2
f

log(4n/δ) + 1/2

B

)
+O

(
L

′2
f L

4
g

log(4n/δ) + 1/2

cC̃CdN
j
1N

i
2

)

+O

(
L

′2
g L

2
f

log(4n/δ)

cC̃CdN
j
1N

i
2

)
. (A.1.1)

Proof: According to the inequality, ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2, MSE (A.1.1) can be decomposed

109

into two parts:

MSE :=
1

T

T∑
t=1

E
[∥∥∥∇J̃B(θt)−∇J(θt)

∥∥∥ 2
]

≤ 2

T

T∑
t=1

E
[∥∥∥∇J̃B (θt)−∇JB (θt)

∥∥∥2]

+
2

T

T∑
t=1

E
[
∥∇JB (θt)−∇J (θt)∥2

]
(A.1.2)

Two terms in (A.1.2) are bounded by Lemma 7 and 8, respectively. □

Lemma 7 Based on the notations in Lemma 6, with probability exceeding 1− δ we have

E[∥∇J̃B(θ)−∇JB(θ)∥2]

≤128L′2
f L

4
g

log(4n/δ) + 1/2

cC̃CdN
j
1N

i
2

+ 64L
′2
g L

2
f

log(4n/δ)

cC̃CdN
j
1N

i
2

. (A.1.3)

Proof: The proof of Lemma 7 is provided in Appendix A.2. □

Lemma 8 Based on the notations in Lemma 6, with probability exceeding 1− δ we have

E[∥∇JB(θ)−∇J(θ)∥2] ≤ 128L
′2
f

log(4n/δ) + 1/2

B
. (A.1.4)

Proof: Besides the definition of∇JB(θ) (A.2.1),∇J(θ) is given as

∇J(θ) = 1

|V|
∑
i∈V

Ai
1A

i
2, (A.1.5)

where Ai
1, A

i
2 are represented by (A.2.2) and (A.2.3), respectively.

For simplicity, we denote

EVB∼V
[
Ej∼N (i),∀i∈VB [Ek∼N (j),∀j∈N (i)[·]]

]
as E[·].

E[∥∇JB(θ)−∇J(θ)∥2]

≤E

[∥∥∥∥∥ 1B ∑
i∈VB

Ai
1A

i
2 −

1

|V|
∑
i∈V

Ai
1A

i
2

∥∥∥∥∥ 2

]
,

≤128L′2
f

log(4n/δ) + 1/2

cC̃CdN
j
1N

i
2

, (A.1.6)

110

where the last inequality comes from Lemma 9. □

A.2 Proof of Lemma 7

To bound E[∥∇J̃B(θ)−∇JB(θ)∥2], we begin with the definition of∇J̃B(θ) and∇JB(θ), which is

given by

∇JB(θ) =
1

B

∑
i∈VB

Ai
1A

i
2, (A.2.1)

where

Ai
1 = ∇fi

 1

|N (i)|
∑

j∈N (i)

1

|N (j)|
∑

k∈N (j)

gjk(θ)

 , (A.2.2)

Ai
2 =

1

|N (i)|
∑

j∈N (i)

1

|N (j)|
∑

k∈N (j)

∇gjk(θ). (A.2.3)

∇J̃B(θ) =
1

B

∑
i∈VB

Bi
1B

i
2 (A.2.4)

where

Bi
1 = ∇fi

 1

|N C
2 (i)|

∑
j∈NC

2 (i)

1

|N C
1 (j)|

∑
k∈NC

1 (j)

p
(1)
k gjk(θ)

 , (A.2.5)

Bi
2 =

1

|N C
2 (i)|

∑
j∈NC

2 (i)

1

|N C
1 (j)|

∑
k∈NC

1 (j)

p
(1)
k ∇gjk(θ). (A.2.6)

For simplicity, we denote

EVB∼V
[
Ej∼N (i),∀i∈VB [Ek∼N (j),∀j∈N (i)[·]]

]
as E[·].

Based on the inequalities
∥∥ 1
n

∑n
i=1 ai

∥∥ ≤ 1
n

∑n
i=1 ∥ai∥, ∥a+ b∥2 ≤ 2∥a∥+2∥b∥, and ∥ab∥ ≤

111

∥a∥∥b∥, we arrive

E[∥∇J̃B(θ)−∇JB(θ)∥2]

=2E
[∥∥Bi

1

∥∥2]E [∥∥Bi
2 − Ai

2

∥∥2]
+ 2E

[∥∥Bi
1 − Ai

1

∥∥2]E [∥∥Ai
2

∥∥2] . (A.2.7)

We shall bound two terms in (A.2.7).

1. The first term: for E
[
∥Bi

1∥
2
]
, we have

E
[∥∥Bi

1

∥∥2] ≤ L2
f . (A.2.8)

In terms of E
[
∥Bi

2 − Ai
2∥

2
]
, we have

E
[∥∥Bi

2 − Ai
2

∥∥2]
=L

′2
f E

[∥∥∥∥ ∑
j∈NC

2 (i)

∑
k∈NC

1 (j)

p
(1)
k

N i
C2N

j
C1

∇gjk(θ)

−
∑

j∈N (i)

∑
k∈N (j)

1

(N i)2
∇gjk(θ)

∥∥∥∥2
]

≤64L′2
g

log(4n/δ)

cC̃CdN
j
1N

i
2

, (A.2.9)

where the last inequality comes from Lemma 9.

2. The second term: for E
[
∥Ai

2∥
2
]
, we have

E
[∥∥Ai

2

∥∥2] ≤ L2
g. (A.2.10)

112

In terms of E
[
∥Bi

1 − Ai
1∥

2
]
, we have

E
[∥∥Bi

1 − Ai
1

∥∥2]
=L

′2
f E

[∥∥∥∥ ∑
j∈NC

2 (i)

∑
k∈NC

1 (j)

p
(1)
k

N i
C2N

j
C1

gjk(θ)

−
∑

j∈N (i)

∑
k∈N (j)

1

(N i)2
gjk(θ)

∥∥∥∥2
]

≤128L2
gL

′2
f

log(4n/δ) + 1/2

cC̃CdN
j
1N

i
2

, (A.2.11)

where the last inequality comes from Lemma 9.

By integrating inequalities (A.2.8), (A.2.11), (A.2.10), (A.2.9), it yields

E[∥∇J̃B(θ)−∇JB(θ)∥2]

≤128L′2
f L

4
g

log(4n/δ) + 1/2

cC̃CdN
j
1N

i
2

+ 64L
′2
g L

2
f

log(4n/δ)

cC̃CdN
j
1N

i
2

. (A.2.12)

Lemma 9 Based on the notations in Lemma 6, with probability 1− δ we have

E

[∥∥∥∥ ∑
j∈NC

2 (i)

∑
k∈NC

1 (j)

p
(1)
k

N i
C2N

j
C1

gjk(θ)

− Ej∼N (i),k∼N (j)[gjk(θ)]

∥∥∥∥2
]

≤8
√
2Lg

√
log(4n/δ) + 1/2

cC̃CdN
j
1N

i
2

∀ i ∈ V (A.2.13)

E

[∥∥∥∥ ∑
j∈NC

2 (i)

∑
k∈NC

1 (j)

p
(1)
k

N i
C2N

j
C1

∇gjk(θ)

− Ej∼N (i),k∼N (j)[∇gjk(θ)]
∥∥∥∥2
]

≤8L′
g

√
log(4n/δ)

cC̃CdN
j
1N

i
2

∀ i ∈ V , (A.2.14)

where Cd =
∑

vi∈V deg(vi)/|V| with the constant c > 0.

113

Proof: The proof is derived from the proof of Lemma 6 in [183] and Lemma 10 and 11 in [13].

Based on the definition of p(1)k , for i ∈ V , we have

E

 ∑
j∈NC

2 (i)

∑
k∈NC

1 (j)

p
(1)
k

N i
C2N

j
C1

gjk(θ)


=Ej∼N (i),k∼N (j)[gjk(θ)]. (A.2.15)

Similarly, there is

E

 ∑
j∈NC

2 (i)

∑
k∈NC

1 (j)

p
(1)
k

N i
C2N

j
C1

∇gjk(θ)


=Ej∼N (i),k∼N (j)[∇gjk(θ)]. (A.2.16)

The value of N j
C1 and N j

C2 depend on the predefined number of neighborhood nodes sampled

uniformly at random in each layer, i.e., N i
2, N

j
1 , the ratio of cached nodes to the whole graph

nodes, i.e., C̃ = |C|/|V| and the sampling probability P . Thus, N j
C1 can be approximated by

N j
C1 = cC̃CdN

j
1 where Cd =

∑
vi∈V deg(vi)/|V| with the constant c > 0. Based on the above, the

proof can be completed by extending the proof of Lemma 10 and 11 in [13].

Given the sampled set S1,S2 and

VS(θ) =
1

|S1| · |S2|
∑
i∈S1

∑
j∈S2

Vij(θ),

where Vij(θ) ∈ Rn is Lv-Lipschitz continuous for all i, j, the proof can be completed via Bernstein’s

bound with a sub-Gaussian tail, given by we have

P (∥VS(θ)− E[VS(θ)]∥ ≥ ϵ)

≤4n · exp
(
−ϵ

2|S1| · |S2|
64L2

v

+
1

2

)
, (A.2.17)

where ϵ ≤ 2Lv.

Finally, let δ as the upper bound of Bernstein’s inequality

δ = 4n · exp
(
−ϵ

2|S1| · |S2|
64L2

v

+
1

2

)
. (A.2.18)

114

Therefore, we have

ϵ = 8
√
2Lv

√
log(4n/δ) + 1/2

|S1| · |S2|
. (A.2.19)

The inequality (A.2.14) can be clarified similarly. □

115

APPENDIX B

Supplementary for Chapter 3

B.1 Dataset Statistics

Train Dev Test

Natural Questions 79168 8757 3610

TriviaQA 78785 8837 11313

Table B.1: Dataset Statistics.

In Fig. B.1, we illustrate the AMR graph statistics in Natural Questions (NQ) and TriviaQA

datasets. To better illustrate the structure of the shortest path, we also conduct some experiments to

show the statistic of the shortest path in the AMR graph, see Fig B.2. We analyze the shortest single

source paths (SSSPs) in the AMR graphs of documents and try to establish the connection between

question contexts and document contexts. The analysis reveals a notable trend in the AMR graphs

of documents, indicating that certain negative documents cannot establish adequate connections

to the question context within their text. This pattern brings insights into the encoding process to

enhance reranking performance.

B.2 Simulation Results with Different GNN Models.

Besides the GCN [53] model considered in the main manuscript, we compare the simulation results

with different GNN models in this section. Specifically, under the same setting as the GCN model in

116

Figure B.1: Number of nodes and edges in AMR graphs in train/dev/test set of dataset NQ and

TQA.

Ember (HPs-T) from Table 3.2, we use GAT [184] with additional parameter number of heads being

8, GraphSage [185] with the aggregation choice being ‘lstm’, and GIN [186] with the aggregation

choice being ‘mean’. The comparison results are illustrated in Table B.2.

For the convenience of comparison, we directly add two results from Section 3.4.2, i.e., BART-

GST and GCN (i.e., Ember (HPs-T) in Table 3.2). It shows that the GCN model still outperforms

in most cases. This may be due to the document graphs considered in our paper being very small,

while the advanced GNN model usually targets handling thousands, or millions of nodes in the

graph. Besides, our model has already taken the edge feature into consideration, which may lead to

117

Figure B.2: Number of SSSPs AMR graphs in train set of dataset NQ and TQA.

overfitting if introducing more weight parameters.

B.3 Qualitative Examples

We take the ranking scores given by palm 2 L as a baseline to investigate how the graph-based model

benefits reranking in Open-Domain Question Answering. Since TQA is a much more complex

dataset with more positive documents, we take an example from TQA.

118

NQ TQA

Embedding/Metric MRR dev MRR test MH dev MH test MRR dev MRR test MH dev MH test

BART-GST 28.4 25.0 53.2 48.7 17.5 17.6 39.1 39.5

GCN 28.9 27.7 51.1 50.0 20.0 19.4 41.6 41.4

GAT 28.1 27.1 52.3 47.2 19.1 18.9 43.0 41.0

GraphSage 29.8 26.5 52.3 47.2 19.6 18.4 42.9 39.7

GIN 28.4 27.8 50.2 48.5 19.7 18.9 42.2 39.3

Table B.2: Results of G-RAG with difference GNN models. We use Mean Hits @ 10.

Question: Ol’ Blue Eyes is the nickname of?

Gold Answer: [‘Sinatra (film)’, ‘Biography of Frank Sinatra’, ‘Columbus Day Riot’, ‘Life

of Frank Sinatra’, ‘A Voice in Time: 1939–1952’, ‘Sinatra’, ‘Biography of frank sinatra’,

‘Ol’ Blue Eyes’, ‘A Voice in Time: 1939-1952’, ‘Political beliefs of frank sinatra’, ‘Franck

Sinatra’, ‘Old Blue Eyes’, ‘Frank Sinatra’, ‘Frank Sinatra I’, ‘Francis Albert Frank Sinatra’,

‘Francis A. Sinatra’, ‘Frank Sinatra, Sr.’, ‘Francis Albert Sinatra’, ‘Political beliefs of Frank

Sinatra’, ‘Old blue eyes’, ‘Frank sanatra’, ‘Frank sinatra’, ‘Frank senatra’, ‘FBI Files on

Frank Sinatra’, ‘Francis Sinatra’]

Number of Positive documents: 24 positive documents out of 100 documents

The following are the Top-10 documents given by the proposed GNN-based reranker. Each

document is accompanied by relevant information about its AMR graph, including the number

of nodes and edges, as well as the count of single-source shortest paths (SSSPs) originating from

the node labeled “question”. If the node “question” is not present in the AMR graph, the SSSPs

count is noted as 0. Additionally, we present the corresponding score assigned by palm 2-L and its

rank based on the palm 2 reranker. The ranking assigned by the retriever DPR is also provided for

reference. [30].

119

1st: Sinatra in 1998, for example, the building was bathed in blue light to represent the

singer’s nickname ”Ol’ Blue Eyes”. After actress Fay Wray, who starred in ”King Kong”,

died in September 2004, the building lights were extinguished for 15 minutes. The floodlights

bathed the building in red, white, and blue for several months after the destruction of the

World Trade Center in September 2001, then reverted to the standard schedule. On June 4,

2002, the Empire State Building donned purple and gold (the royal colors of Elizabeth II), in

thanks for the United Kingdom playing the Star Spangled Banner

- -

AMR graph information: # nodes: 51, # edges 82, # SSSP: 32

Score by palm 2: 50/100, Rank by palm 2: 9/100

Rank by DPR: 5/100

2nd: and actively campaigned for presidents such as Harry S. Truman, John F. Kennedy, and

Ronald Reagan. In crime, the FBI investigated Sinatra and his alleged relationship with the

Mafia. While Sinatra never learned how to read music, he had an impressive understanding of

it, and he worked very hard from a young age to improve his abilities in all aspects of music.

A perfectionist, renowned for his dress sense and performing presence, he always insisted

on recording live with his band. His bright blue eyes earned him the popular nickname ”Ol’

Blue Eyes”. Sinatra led a colorful personal life, and

- -

AMR graph information: # nodes: 53, # edges 75, # SSSP: 34

Score by palm 2: 100/100, Rank by palm 2: 1/100

Rank by DPR: 1/100

120

3rd: claimed that Sinatra had grown ”tired of entertaining people, especially when all

they wanted were the same old tunes he had long ago become bored by”. While he was

in retirement, President Richard Nixon asked him to perform at a Young Voters Rally in

anticipation of the upcoming campaign. Sinatra obliged and chose to sing ”My Kind of

Town” for the rally held in Chicago on October 20, 1972. In 1973, Sinatra came out of his

short-lived retirement with a television special and album. The album, entitled ”Ol’ Blue

Eyes Is Back”, arranged by Gordon Jenkins and Don Costa,

- -

AMR graph information: # nodes: 52, # edges 85, # SSSP: 19

Score by palm 2: 20/100, Rank by palm 2: 27/100

Rank by DPR: 8/100

4th: State Police would attend, searching for organized crime members in the audience.

During a 1979 appearance in Providence, Mayor Buddy Cianci named Sinatra an honorary

fire chief, complete with a helmet bearing the name ”F. SINATRA” with nickname ”Ol’ Blue

Eyes” beneath. David Bowie’s concert on May 5, 1978 was one of three recorded for his live

album ”Stage”. The Bee Gees performed two sold-out concerts here on August 28–29, 1979

as part of their Spirits Having Flown Tour. The Kinks recorded much of their live album and

video, ”One for the Road” at the Civic Center September 23, 1979.

- -

AMR graph information: # nodes: 54, # edges 67, # SSSP: 0

Score by palm 2: 50/100, Rank by palm 2: 9/100

Rank by DPR: 6/100

121

5th: illness). Pasetta was the producer of the Elvis Presley concert special, ”Aloha from

Hawaii Via Satellite” in January 1973. The show still holds the record for the most watched

television special in history; viewing figures are between 1 and 1.5 billion live viewers

worldwide. 1973 also saw Pasetta direct ”Magnavox Presents Frank Sinatra” (also known as

”Ol’ Blue Eyes Is Back”), the television special that marked Frank Sinatra’s comeback from

retirement. Pasetta died in a 2015 single-car accident. The vehicle driven by Keith Stewart

collided with Pasetta shortly after Stewart had allowed his passengers to disembark. Marty

Pasetta Martin Allen

- -

AMR graph information: # nodes: 39, # edges 59, # SSSP: 39

Score by palm 2: 50/100, Rank by palm 2: 9/100

Rank by DPR: 3/100

6th: him feel wealthy and important, and that he was giving his very best to the audience.

He was also obsessed with cleanliness—while with the Tommy Dorsey band he developed

the nickname ”Lady Macbeth”, because of frequent showering and switching his outfits. His

deep blue eyes earned him the popular nickname ”Ol’ Blue Eyes”. For Santopietro, Sinatra

was the personification of America in the 1950s: ”cocky, eye on the main chance, optimistic,

and full of the sense of possibility”. Barbara Sinatra wrote, ”A big part of Frank’s thrill was

the sense of danger that he exuded, an underlying, ever-present tension only

- -

AMR graph information: # nodes: 44, # edges 81, # SSSP: 30

Score by palm 2: 100/100, Rank by palm 2: 1/100

Rank by DPR: 2/100

122

7th: where his suite and those of his entourage were on the 23rd floor. His tour, his first in

Australia in 15 years and billed as ”Ol’ Blue Eyes Is Back,” was scheduled to include two

shows in Melbourne, followed by three in Sydney. In his first show, according to news reports

from 1974, Sinatra referred on stage to the media as ”parasites” and ”bums” and to women

specifically as ”the broads of the press, the hookers of the press,” then adding, ”I might offer

them a buck and a half, I’m not sure.” The character of Rod Blue in the

- -

AMR graph information: # nodes: 32, # edges 61, # SSSP: 32

Score by PaLM 2: 50/100, Rank by palm 2: 9/100

Rank by DPR: 11/100

8th: RLPO, BBC Concert Orchestra (for ”Friday Night Is Music Night”), Lahti Symphony

Orchestra, Northern Sinfonia, the Melbourne Symphony Orchestra, the Adelaide Symphony

Orchestra for the Adelaide Cabaret Festival and the RTÉ Concert Orchestra. His most popular

show is the interactive ”Sinatra Jukebox” where, ”instead of an hour of songs and anecdote,

halfway through members of the audience were invited to fill in request forms”. Reviewing

the show, ”Cabaret Scenes” said, ”I can think of no other singer to better pay homage to Ol’

Blue Eyes on his 100th birthday.” In 2014 he performed on BBC Radio 2 with the BBC

- -

AMR graph information: # nodes: 51, # edges 57, # SSSP: 20

Score by palm 2: 20/100, Rank by palm 2: 27/100

Rank by DPR: 14/100

123

9th: as his tribute to ”The Great American Songbook”. The album has Oleg’s vocals and

arrangements by a big band leader Patrick Williams (a late period Frank Sinatra recording

associate) and sound engineering by Al Schmitt, whose 60-year career yielded 150 gold

and platinum albums, 20 Grammy awards and who also recorded Ol’ Blue Eyes. ”Bring

Me Sunshine” was produced at the legendary Capitol Records studios in Hollywood, CA.

Songwriter, Charles Strouse quoted: ””The Great American Songbook, to which I am proud

to be a contributor, is one of our greatest cultural exports, Oleg is a living example of what an

- -

AMR graph information: # nodes: 52, # edges 68, # SSSP: 12

Score by palm 2: 50/100, Rank by palm 2: 9/100

Rank by DPR: 27/100

10th: first place wins The Founding Director is Ben Ferris (2004+). Sydney Film School

runs two courses: The Diploma of Screen & Media and The Advanced Diploma of Screen

& Media. Some of the accolades afforded to Sydney Film School graduates for their work

include: Best Student Documentary Film at Antenna Film Festival: ”Ol’ Blue Eyes”, Matt

Cooney Finalist at Bondi Short Film Festival: ”Letters Home”, Neilesh Verma Industry

Advisory Board (IAB) Pitch Competition winner: ”Lotus Sonny”, Gary Sofarelli Opening

Night screening; Best Australian Animation & Best Australian Composer at World of Women

WOW Film Festival, 2012: ”Camera Obscura”, Marta Maia

- -

AMR graph information: # nodes: 58, # edges 69, # SSSP: 35

Score by palm 2: 0/100, Rank by palm 2: 30/100

Rank by DPR: 39/100

By analyzing the above result, we note that documents (such as 1st, 2nd, and 4th) containing

exact words from the question (i.e., these words are “Ol’ Blue Eyes” and “nickname” in our example)

124

are prioritized at the top by most rankers. However, if a document includes word variations or lacks

sufficient keywords, it poses a challenge for the baseline reranker to identify its relevance, see the

9th and 10th documents. To address this issue, the AMR graph of documents is used in our method

to comprehend more intricate semantics. The SSSPs from the ‘question’ node in the AMR graph

also play the crucial role in uncovering the underlying connections between the question and the

words in the documents.

Another challenging scenario for the baseline reranker arises when several keywords or even

gold answers are present in the documents but are weakly connected, making recognition difficult.

For example, in the 7th, 8th, and 9th documents there are both “Ol’ Blue Eyes” and “Sinatra” which

are gold answers, yet these words are not directly linked as the sentence: “Ol’ Blue Eyes is the

nickname of “Sinatra”. Instead, the connection between these two words is very loose. Luckily,

the 7th, 8th, and 9th documents are connected to the 1st document in the document graph due to

common nodes like ’Sinatra’ and ’Ol Blue Eyes.’ The 1st document stands out as more easily

identifiable as a positive document, given its incorporation of all keywords from the questions.

These words not only have a strong connection but also collectively contribute to a cohesive answer

to the question. Leveraging this information and employing a message-passing mechanism, we

can enable the 7th, 8th, and 9th document to adeptly discern potential keywords. Consequently,

this approach enhances their ranking, based on the insights derived from the well-connected and

information-rich 1st document.

B.4 Examples of LLM-generate Relevant Score

Some examples of LLM-generate relevant score are illustrated in Fig B.3.

125

To what extent is the following passage relevant to the
given question? Please provide a score on a scale of 0 to
100.

Question: who sings does he love me with reba

Text: Red Sandy Spika dress of Reba McEntire … during
a duet performance of "Does He Love You" with Linda
Davis…won entertainer of the year

Input:

Output: 75

To what extent is the following passage relevant to the
given question? Please provide a score on a scale of 0 to
100.

Question: where do the great lakes meet the ocean

Text: nations maintain coast guard vessels in the Great
Lakes. During settlement… canals an all-inland water
route was provided between New York City

Input:

Output: 40

To what extent is the following passage relevant to the
given question? Please provide a score on a scale of 0 to
100.

Question: what is the smallest prime number that is
greater than 30

Text: Euclid number …the first three primes are 2, 3, 5;
their product is 30… celebrated proof of the infinitude.

Input:

Output: 20

Figure B.3: Examples of LLM-generate relevant score.

126

APPENDIX C

Proofs for Chapter 4

C.1 Proof of Lemma 1

Let P = {a1, a2, · · · , ak} be a set of k independent random vectors in Rd. For ∀i ∈ [k], ai =

[ai1, ai2, · · · , aid]⊤ ∈ Rd, we have

aiℓ :=


aiℓ ∼ N (0, 1

s
) with probability s

d
,

0 otherwise.
(C.1.1)

Thus, we have the following properties

E[⟨ai, ai⟩] = 1, ∀i ∈ [k],

E[⟨ai, aj⟩] = 0, ∀i, j ∈ [k], i ̸= j,

E[∥ai∥0] = s, ∀i ∈ [k].

Based on the above definitions, three steps achieve the proof of Lemma 1:

1. Prove that under certain condition, for any i, j ∈ [k] with i ̸= j, with probability at least

1− 2δ
k2

, we have |⟨ai, aj⟩| ≤ ε. With probability at least 1− δ
k
, we have | ∥ai∥22 − 1| ≤ τ and

∥ai∥0 ≤ s+ τ for any i ∈ [k]. This is provided in Lemma 10.

2. By a union bound over all the
(
k
2

)
= k(k − 1)/2 possible pairs of (i, j) mentioned in Step 1,

it concludes that for all i, j ∈ [k] with i ̸= j, we have |⟨ai, aj⟩| ≤ ε with probability at least

127

1 − δ. We also have | ∥ai∥22 − 1| ≤ τ and ∥ai∥0 ≤ s + τ for all i ∈ [k] with probability at

least 1− δ by a union bound over all i ∈ [k].

3. We normalize ∀ ai ∈ P and get P̃ = {ã1, ã2, · · · , ãk} where ∥ãi∥2 = 1 with i ∈ [k]. From

∥ai∥0 ≤ s + τ and 0 ≤ τ < 1 mentioned in Step 2, we can bound ∥ãi∥0 ≤ s with s ∈ [k].

Based on Lemma 10 and normalized set P̃ , Theorem 2 presents the condition where the

feature matrix Φ ∈ Rk×d in Lemma 1 can be constructed by setting rows(Φ) = (ãi)
k
i=1.

Lemma 10 Let 0 < δ < 1. Consider the set P = {a1, a2, · · · , ak} described in (C.1.1).

If 0 < ε ≤ C2s
d

, by choosing k ≥
√
δ exp

(
dε2

4C2

)
, we have

for any i, j ∈ [k], i ̸= j, |⟨ai, aj⟩| ≤ ε with probability at least 1− 2δ/k2. (C.1.2)

If ε > C2s
d

, by choosing k ≥
√
δ exp

(
sε
4

)
, we have

for any i, j ∈ [k], i ̸= j, |⟨ai, aj⟩| ≤ ε with probability at least 1− 2δ/k2. (C.1.3)

For sufficiently small τ , 0 ≤ τ < 1, by choosing k ≥ δ
2
eτ

2/8, we have

for any i ∈ [k],
∣∣∥ai∥22 − 1

∣∣ ≤ τ with probability at least 1− δ/k. (C.1.4)

Moreover, by choosing k ≥ δe2τ
2/d, we have

for any i ∈ [k], ∥ai∥0 ≤ s+ τ with probability at least 1− δ/k. (C.1.5)

Proof: Please refer to Section C.2 for detailed proof. □

Proposition 2 Let 0 < δ < 1, 0 ≤ τ < 1, c > 1 and C ′ = 2c3

(1+τ)
√
c2−1

. Consider the normalized set

P̃ = {ã1, ã2, · · · , ãk} derived from P (C.1.1). For sufficiently small τ , we have

for all i, j ∈ [k] i ̸= j, |⟨ãi, ãj⟩| ≤ ε, ∥ãi∥0 ≤ s with probability at least 1− δ, (C.1.6)

128

by choosing k ≥
√
δ exp

(
d(1+τ)ε2

4C′

)
if 0 < ε ≤ C′s

d
. If ε > C′s

d
, we choose k ≥

√
δ exp

(
s(1+τ)ε

4

)
to achieve (C.1.6).

Therefore, with probability at least 1−δ, the normalized set P̃ satisfies that for all i, j ∈ [k], i ̸=

j, ⟨ãi, ãj⟩ ≤ ε, ∥ãi∥0 ≤ s. Hence, the feature matrix Φ ∈ Rk×d in Lemma 1 can be established by

choosing rows(Φ) = (ãi)
k
i=1 where ãi ∈ P̃ when k is sufficiently large according to Proposition 2.

C.2 Proof of Lemma 10

We first introduce some existential definitions and propositions which are helpful to our proof.

Definition 4 A random variableX with mean µ = E[X] is sub-exponential if there are non-negative

parameters (v, α) such that

E
[
eλ(X−µ)

]
≤ e

v2λ2

2 , ∀ |λ| < 1

α
.

Proposition 3 (Sub-exponential tail bound) Assume that X is sub-exponential with parameters

(v, α). Then

P[|X − µ| ≥ t] ≤


2e−

t2

2v2 , 0 ≤ t ≤ v2

α
,

2e−
t
2α , t > v2

α
.

For ∀ a ∈ P , each element of a can be taken as the product of two independent random variables,

i.e., one is from the Bernoulli distribution and the other is from the Gaussian distribution. Hence, the

individual term, i.e., aiℓajℓ, of ⟨ai, aj⟩ =
∑d

ℓ=1 aiℓajℓ with ∀ai, aj ∈ P , i ̸= j can be represented

by a random variable Zℓ. Specifically, Zℓ = PℓXℓQℓYℓ where ℓ ∈ [d] is the product of independent

random variables. Herein, Pℓ and Qℓ are independent Bernoulli random variables which take the

value 1 with probability s/d and the value 0 with probability 1− s/d. Xℓ and Yℓ are independent

129

Gaussian random variables drawn from N (0, 1/s). For |λ| < m, we have

E[eλZℓ] =
∑

pq∈{0,1}

P[PℓQℓ = pq] · s
2π

∫ ∞

−∞

∫ ∞

−∞
eλ(pq)xy · e−s(x2+y2)/2dxdy

=
s

2π

∫ ∞

−∞

∫ ∞

−∞
eλxy · e−s(x2+y2)/2dxdy ·

(s
d

)2
+

s

2π

∫ ∞

−∞

∫ ∞

−∞
e−s(x2+y2)/2dxdy ·

(
1−

(s
d

)2)
(i)

≤ s

2π
· 2π√

s2 − λ2
·
(s
d

)2
+

s

2π
· 2π
s

(
1−

(s
d

)2)
≤ s3

d2
√
s2 − λ2

+ 1

(ii)
=

c3λ2

d2
√
c2 − 1

+ 1

(iii)

≤ e
c3λ2

d2
√

c2−1 (C.2.1)

where step (i) comes from ∫ ∞

−∞

∫ ∞

−∞
eλ(xy)e−s(x2+y2)/2dxdy

=

∫ ∞

−∞

∫ ∞

−∞
e−s(x−λ

s
y)2/2eλ

2y2/(2s)e−sy2/2dxdy

=

√
2π

s

∫ ∞

−∞
eλ

2y2/(2s)e−s2y2/(2s)dy

=

√
2π

s

∫ ∞

−∞
e−y2(s2−λ2)/(2s)dy

=
2π√
s2 − λ2

, (C.2.2)

step (ii) is derived by choosing s = c|λ|, c > 1, and step (iii) is due to the fact x+ 1 ≤ ex.

Following (C.2.1) and Definition 4, we find that

E[eλZℓ] ≤ e
c3λ2

d2
√

c2−1 = e
v2λ2

2 , for all |λ| < m and v2 =
2c3

d2
√
c2 − 1

, c > 1, (C.2.3)

which shows that Zℓ is sub-exponential with parameters (vℓ, αℓ) = (C/d, 1/s) where C =
√

2c3√
c2−1

and c > 1. Furthermore, the variable
∑d

ℓ=1 (Zℓ − E[Zℓ]) is sub-exponential with the parameters

(v∗, α∗), where

130

α∗ := max
ℓ=1,...,n

αℓ =
1

s
and v∗ :=

√√√√ d∑
ℓ=1

v2ℓ .

Based on the fact E[Zℓ] = 0, the tail bound can be derived from Proposition 3,

P

[∣∣∣∣∣
d∑

ℓ=1

Zℓ

∣∣∣∣∣ ≥ t

]
≤


2e

− t2

2v2∗ , 0 ≤ t ≤ v2∗
α∗
,

2e−
t

2α∗ , t > v2∗
α∗
.

(C.2.4)

Thus, we have for two vectors ai, aj ∈ P and i ̸= j,

P [|⟨ai, aj⟩| ≥ t] ≤


2e−

dt2

2C2 , 0 ≤ t ≤ C2s
d
,

2e−
mt
2 , t > C2s

d
,

(C.2.5)

where C =
√

2c3√
c2−1

and c > 1. By setting 2e−
dt2

2C2 = 2δ/k2, we have t =
√

2C2

d
log(k

2

δ
). We

choose k ≥
√
δ exp

(
dε2

4C2

)
such that t ≥ ε. Hence, we conclude P [|⟨ai, aj⟩| ≥ ε] ≤ 2δ/k2, which

implies the statement (C.1.2) when 0 < ε ≤ C2s
d

in Lemma 10. Similar arguments can be applied to

the proof of the statement (C.1.3) when ε > C2s
d

in Lemma 10. The proof of the statement (C.1.4)

can also be completed by following similar but simpler arguments of proving the statement (C.1.2)

and (C.1.3).

We are left to the proof of statement (C.1.5). For ∀ a ∈ P , the random variable ∥a∥0 obeys

the binomial distribution with parameters d and s/d, i.e., B(d, s/d). It is the discrete probability

distribution of the number of d independent Bernoulli trials which return Boolean-valued outcome:

the ℓ-th (ℓ ∈ [d]) element of a is non-zero (with probability s/d) or zero (with probability 1− s/d).

According to the book by Ross [187], we first introduce several properties of the binomial

distribution. The cumulative distribution function of binomial distributionB(n, p) can be represented

by

F(k;n, p) = P[X ≤ k] =

⌊k⌋∑
i=0

(
n

i

)
pi(1− p)n−i,

where we also have F(n−k;n, 1−p) = 1−F(k;n, p). Based on Hoeffding’s inequality, F (k;n, p)

131

can be bounded by

F(k;n, p) ≤ exp

(
−2n

(
p− k

n

)2
)
.

Hence, the upper tail bound for the random variable ∥a∥0 is given by

P[∥a∥0 ≥ m+ τ] = F(d− s− τ ; d, 1− s

d
) ≤ exp

(
−2τ 2

d

)
, (C.2.6)

where 0 ≤ τ < 1. By choosing k ≥ δ exp(2τ 2/d), it yields P[∥a∥0 ≥ s + τ] ≤ δ
k
≤ exp

(
−2τ2

d

)
.

Thus, we completed the proof of statement (C.1.5).

C.3 poly(s)-Query Algorithm for s-sparsity Case with Noise

All results above focus on the noiseless case. We briefly discuss the noisy cases. Consider the

stochastic misspecified sparse linear bandits where a feature matrix Φ ∈ Rk×d, xt ∈ rows(Φ), and

the reward

rxt = ⟨xt, θ∗⟩+ νxt + ηt (C.3.1)

where νxt ∈ [−ε, ε] and {ηt} is a sequence of independent 1-subgaussian random variables.

Based on the reward function (C.3.1) and the notation in Algorithm 4, we start with the

approximation error of f(θ∗):

|⟨f(a), θ̂f⟩ − ⟨a, θ∗⟩|

≤|⟨f(a), θ̂f⟩ − ⟨f(a), f(θ∗)⟩|+ |⟨f(a), f(θ∗)⟩ − ⟨a, θ∗⟩|,

≤

∣∣∣∣∣f(a)⊤G(ρ)−1
∑
bt∈S

ρ(bt)νbtbt + f(a)⊤G(ρ)−1
∑
bt∈S

ρ(bt)btηt

∣∣∣∣∣+ 2υ

≤

∣∣∣∣∣f(a)⊤G(ρ)−1
∑
bt∈S

ρ(bt)νbtbt

∣∣∣∣∣+
∣∣∣∣∣f(a)⊤G(ρ)−1

∑
bt∈S

ρ(bt)btηt

∣∣∣∣∣+ 2υ (C.3.2)

for ∀ a ∈ rows(Φ).

132

The first term in (C.3.2) can be bounded as∣∣∣∣∣f(a)⊤G(ρ)−1
∑
bt∈S

ρ(bt)νbtbt

∣∣∣∣∣ ≤ ε
∑
bt∈S

ρ(bt)
∣∣f(a)⊤G(ρ)−1bt

∣∣
≤ε

√√√√(∑
bt∈S

ρ(bt)

)
f(a)⊤

∑
bt∈S

ρ(bt)G(ρ)−1btb⊤t G(ρ)
−1f(a)

=ε

√∑
bt∈S

ρ(bt) ∥f(a)∥2G(ρ)−1

≤2ε√p , (C.3.3)

where is derived from Jensen’s inequality and the fact that ∥f(a)∥2G−1 ≤ 2p/t for t-th time step in

Algorithm 4. The second term in (C.3.2) can be bounded by standard concentration bounds: with

probability at least 1− 2/(kn),∣∣∣∣∣f(a)⊤G(ρ)−1
∑
bt∈S

ρ(bt)btηt

∣∣∣∣∣ ≤ ∥f(a)∥G−1

√
2 log (kn)

≤
√

4p

t
log (kn). (C.3.4)

Combining (C.3.2), (C.3.3), (C.3.4), we have

|⟨f(a), θ̂f⟩ − ⟨a, θ∗⟩| ≤ 2ε
√
p+

√
4p

t
log (kn) + 2υ. (C.3.5)

Similarly to the analysis in Section 4.6, we can derive the final approximate error as

|⟨f(a), θ̂f⟩ − ⟨a, θ∗⟩|

≤C
(
(log(k))

1
4
√
ε+

√
p

t
log (kn)

)
. (C.3.6)

Based on (C.3.6), the active action set in Algorithm 4 in the noise case should be

S ←
{
a ∈ S : max

b∈S
⟨θ̂f , b− a⟩ ≤ C

(
(log(k))

1
4
√
ε+

√
p

t
log (kn)

)}
.

133

APPENDIX D

Proofs for Chapter 5

D.1 Proof of Lemma 2

We begin with the following definition:

Definition 5 A random variable X is σ-subgaussian if for all τ ∈ R, it holds that E[exp(τX)] ≤

exp (τ 2σ2/2).

Based on the definitions of θ♮ and θ̂k in Section 5.7.1, for any 0 ≤ j ≤ k − 1 and tj ≤ i ≤ tj+1 − 1

with the action pending sequence (ai−m, · · · , ai−1), since 0 ≤ V k
m(s, a⃗) ≤ 1/(1 − γ) for any s,

then {V k
m(si+1, a⃗i+1)− ⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩} is a sequence of 1/(1− γ)-subgaussian random

variables. Define Zi,m as

Zi,m = V k
m(si+1, a⃗i+1)− ⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩, (D.1.1)

where 0 ≤ j ≤ k − 1 and tj ≤ i ≤ tj+1 − 1. Thus {Zi,m} is a sequence of 1/(1− γ)-subgaussian

random variables.

134

Based on the definition of Zi,m (D.1.1), we thus have

k−1∑
j=0

tj+1−1∑
i=tj

((
V k
m(si+1, a⃗i+1)− ⟨ϕV k

m
(si, ai−m, a⃗i+1),θ⟩

)2
−
(
V k
m(si+1, a⃗i+1)− ⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩
)2)

=
k−1∑
j=0

tj+1−1∑
i=tj

(
⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩ − ⟨ϕV k
m
(si, ai−m, a⃗i+1),θ⟩

)2

+ 2Zi,m

(
⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩

− ⟨ϕV k
m
(si, ai−m, a⃗i+1),θ⟩

)
(D.1.2)

By reformulating the first term in (D.1.2), we arrive

1

2

k−1∑
j=0

tj+1−1∑
i=tj

(
⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩ − ⟨ϕV k
m
(si, ai−m, a⃗i+1),θ⟩

)2
=

k−1∑
j=0

tj+1−1∑
i=tj

(
V k
m(si+1, a⃗i+1)− ⟨ϕV k

m
(si, ai−m, a⃗i+1),θ⟩

)2
−
(
V k
m(si+1, a⃗i+1)− ⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩
)2

+Wi,m(θ) (D.1.3)

where

Wi,m(θ) =−
1

2

(
⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩ − ⟨ϕV k
m
(si, ai−m, a⃗i+1),θ⟩

)2
+ 2Zi,m

(
⟨ϕV k

m
(si, ai−m, a⃗i+1),θ⟩ − ⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩
)
. (D.1.4)

Recall that θ̂k (5.4). Substituting θ̂k into (D.1.3), we have

1

2

k−1∑
j=0

tj+1−1∑
i=tj

(
⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩ − ⟨ϕV k
m
(si, ai−m, a⃗i+1), θ̂k⟩

)2
≤

k−1∑
j=0

tj+1−1∑
i=tj

Wi,m(θ̂k),

(D.1.5)

135

where the inequality holds due to

k−1∑
j=0

tj+1−1∑
i=tj

(
V k
m(si+1, a⃗i+1)− ⟨ϕV k

m
(si, ai−m, a⃗i+1), θ̂k⟩

)2
≤

k−1∑
j=0

tj+1−1∑
i=tj

(
V k
m(si+1, a⃗i+1)− ⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩
)2
. (D.1.6)

We move to bound
∑k−1

j=0

∑tj+1−1
i=tj

Wi,m(θ̂k) in (D.1.5). Let G := {θ ∈ Rd|∥θ∥2 =
√
d}. We

have

k−1∑
j=0

tj+1−1∑
i=tj

Wi,m(θ̂k) =
k−1∑
j=0

tj+1−1∑
i=tj

Wi,m(θ̂k)−Wi,m(ρ) +Wi,m(ρ)

≤
k−1∑
j=0

tj+1−1∑
i=tj

Wi,m(θ̂k)−Wi,m(ρ) + max
ρ̃∈G

Wi,m(ρ̃) (D.1.7)

We can bound two terms in (D.1.7) separately.

• For the first term in (D.1.7), we have

k−1∑
j=0

tj+1−1∑
i=tj

Wi,m(θ̂k)−Wi,m(ρ)

(a)
=

k−1∑
j=0

tj+1−1∑
i=tj

1

2

(
⟨ϕV k

m
(si, ai−m, a⃗i+1),ρ⟩ − ⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩
)2

− 1

2

(
⟨ϕV k

m
(si, ai−m, a⃗i+1), θ̂k⟩ − ⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩
)2

+ 2Zi,m

(
⟨ϕV k

m
(si, ai−m, a⃗i+1), θ̂k⟩ − ⟨ϕV k

m
(si, ai−m, a⃗i+1),ρ⟩

)
(b)

≤
k−1∑
j=0

tj+1−1∑
i=tj

1

2

(
⟨ϕV k

m
(si, ai−m, a⃗i+1),ρ⟩ − ⟨ϕV k

m
(si, ai−m, a⃗i+1), θ̂k⟩

)
·

(
2⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩+ ⟨ϕV k
m
(si, ai−m, a⃗i+1),ρ⟩+ ⟨ϕV k

m
(si, ai−m, a⃗i+1), θ̂k⟩

)
+ 2|Zi,m| · |⟨ϕV k

m
(si, ai−m, a⃗i+1), θ̂k⟩ − ⟨ϕV k

m
(si, ai−m, a⃗i+1),ρ⟩|, (D.1.8)

where the equality (a) holds due to the definition of Zi,m (D.1.1), and the inequality (b) is

derived based on Cauchy-Schwartz inequality. Furthermore, for any θ and bounded function

136

V in Definition 2 such that ∥θ∥2 ≤
√
d and ∥ϕV (s, a)∥2 ≤

√
d, we have√√√√k−1∑

j=0

tj+1−1∑
i=tj

∣∣⟨ϕV k
m
(si, ai−m, a⃗i+1),θ⟩

∣∣2 ≤ d
√
tk, (D.1.9)

where the inequality holds via Cauchy-Schwartz inequality. Hence, we can bound the first

term in (D.1.8) with 2dtk via Cauchy-Schwartz inequality. By reformulating (D.1.8), we

arrive

k−1∑
j=0

tj+1−1∑
i=tj

Wi,m(θ̂k)−Wi,m(ρ) ≤ 2dtk + 2

√√√√k−1∑
j=0

tj+1−1∑
i=tj

|Zi,m|2 ·
√
tk, (D.1.10)

where the inequality holds due to the selection of ρ

ρ = argmin
ρ̃∈Θ

(
max

j=0,··· ,k−1
max

i=tj ,··· ,tj+1−1

∣∣∣⟨ϕV k
m
(si, ai−m, a⃗i+1), θ̂k⟩

− ⟨ϕV k
m
(si, ai−m, a⃗i+1), ρ̃⟩

∣∣∣) (D.1.11)

such that√√√√k−1∑
j=0

tj+1−1∑
i=tj

∣∣∣⟨ϕV k
m
(si, ai−m, a⃗i+1), θ̂k⟩ − ⟨ϕV k

m
(si, ai−m, a⃗i+1),ρ⟩

∣∣∣2 ≤ √tk. (D.1.12)

It remains to bound
√∑k−1

j=0

∑tj+1−1
i=tj

|Zi,m|2. Recall the definition of the sequence of 1/(1−

γ)-subgaussian random variables, i.e., Zi,m (D.1.1), we have

P
(
Zi,m ≥

1

1− γ
√

2 log(δ−1)

)
≤ δ, (D.1.13)

Note that for V π
m(s) (5.1) where

∑m−1
i=0 γir(st+i, at−m+i) < m, {r(st+i, at−m+i)}m−1

i=0 depends

on both the deterministic action pending sequence a⃗t = (at−m, · · · , at−1) and next obser-

vation states instead of depending on statistical state-action pairs {(st+i, π(st−m+i))}m−1
i=0 ,

thereby may yielding extra difference between V k
m(si+1, a⃗i+1) and ⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩.

Therefore, with probability exceeding 1− δ, we have√√√√k−1∑
j=0

tj+1−1∑
i=tj

|Zi,m|2 ≤

√
2

(1− γ)2
tk log(2tk(tk + 1)δ−1) +m2, (D.1.14)

137

which derives from the union bound and the inequality (D.1.13). Recall the selection of ρ

(D.1.11), that with probability 1− δ, we have

k−1∑
j=0

tj+1−1∑
i=tj

Wi,m(θ̂k)−Wi,m(ρ) ≤ 2dtk + 2

√
2

(1− γ)2
t2k log(2tk(tk + 1)δ−1) +m2tk.

(D.1.15)

• We continue to bound the second term in (D.1.7). Given θ satisfying the conditions in

Definition 2, by Definition 5, we can conclude that

k−1∑
j=0

tj+1−1∑
i=tj

2Zi,m

(
⟨ϕV k

m
(si, ai−m, a⃗i+1),θ⟩ − ⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩
)

(D.1.16)

is ζ-subgaussian where ζ = 2|⟨ϕV k
m
(si, ai−m, a⃗i+1),θ⟩ − ⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩|/(1− γ).

Therefore, for any 0 ≤ j ≤ k − 1 and tj ≤ i ≤ tj+1 − 1, given the action sequence

a⃗i = (ai−m, · · · , ai−1), with probability at least 1− δ, we have

k−1∑
j=0

tj+1−1∑
i=tj

Wi,m(θ)

≤
k−1∑
j=0

tj+1−1∑
i=tj

−1

2

(
⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩ − ⟨ϕV k
m
(si, ai−m, a⃗i+1),θ⟩

)2
+ τ

2|⟨ϕV k
m
(si, ai−m, a⃗i+1),θ⟩ − ⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩|2

(1− γ)2
+

1

τ
log

(
1

δ

)
(a)
=

4

(1− γ)2
log
(
δ−1
)
, (D.1.17)

where the equality (a) holds by selecting τ = (1− γ)2/4.

Thus, based on the definition of G := {θ ∈ Rd|∥θ∥2 =
√
d} and the union bound, the second

term in (D.1.7) can be bounded by

max
ρ̃∈G

Wi,m(ρ̃) ≤
4

(1− γ)2
log
(
dδ−1

)
, (D.1.18)

with probability exceeding 1− δ.

138

Given (D.1.5), (D.1.7) and (D.1.15), by using the union bound, we have

k−1∑
j=0

tj+1−1∑
i=tj

(
⟨ϕV k

m
(si, ai−m, a⃗i+1),θ

♮⟩ − ⟨ϕV k
m
(si, ai−m, a⃗i+1), θ̂k⟩

)2
+ λ∥θ♮ − θ̂k∥22

≤ 8

(1− γ)2
log
(
dδ−1

)
+ 4

√
2

(1− γ)2
t2k log(2tk(tk + 1)δ−1) +m2tk + 4dtk + λd, (D.1.19)

with probability exceeding 1− δ, for any 0 ≤ j ≤ k − 1 and tj ≤ i ≤ tj+1 − 1.

D.2 Proof of Lemma 3

We use induction to prove this lemma. We only need to prove that for all 0 ≤ t ≤ T , Qk
m ≥ Q∗

m.

We have

1

1− γ
= Q0

m(s, a, a⃗1) ≥ Q∗
m(s, a, a⃗1),

where the inequality holds due to the fact that Q∗(s, a) ≤ 1/(1 − γ) caused by 0 ≤ r(s, a) ≤ 1.

Assume that the statement holds for t − 1 with the action sequence a⃗t−1 = (at−1−m, · · · , at−2),

then Qk
m(s, a, a⃗t−1) ≥ Q∗

m(s, a, a⃗t−1), which leads to

Vm(s) = max
a∈A

Qk
m(s, a, a⃗t−1) ≥ max

a∈A
Q∗

m(s, a, a⃗t−1) = V ∗
m(s). (D.2.1)

The action sequence at t becomes a⃗t = (at−m, · · · , at−1) where at−1 = argmaxa∈AQ
k
m(·, a, a⃗t−1).

Furthermore, we have

Qk
m(s, a, a⃗t)− r(s, at−m)

= γmax
θ∈Dk

∑
(st+1,··· ,st+m,s′)

⟨ϕ(st+1|st, at−m),θ⟩ · · · ⟨ϕ(s′|st+m, a),θ⟩Vm(s′)

≥ γ
∑

(st+1,··· ,st+m,s′)

⟨ϕ(st+1|st, at−m),θ
♮⟩ · · · ⟨ϕ(s′|st+m, a),θ

♮⟩Vm(s′)

= γ[PV π
m](s, at−m, a⃗t+1), (D.2.2)

139

where the action sequence is a⃗t+1 = (at−m+1, · · · , at−1, a). Additionally, we can bound

Qk
m(s, a, a⃗t) by

Qk
m(s, a, a⃗t) = r(s, at−m) + γ

∑
(st+1,··· ,st+m,s′)

⟨ϕ(st+1|st, at−m),θ
♮⟩ · · · ⟨ϕ(s′|st+m, a),θ

♮⟩Vm(s′)

≤ 1 +
γ

1− γ
=

1

1− γ
,

where the inequality satisfied since Vm(s) ≤ 1/(1− γ). We thus arrive at that

Qk
m(s, a, a⃗t)

(a)

≥r(s, at−m) + γ
∑

(st+1,··· ,st+m,s′)

⟨ϕ(st+1|st, at−m),θ
♮⟩ · · · ⟨ϕ(s′|st+m, a),θ

♮⟩Vm(s′)

(b)

≥r(s, at−m) + γ
∑

(st+1,··· ,st+m,s′)

⟨ϕ(st+1|st, at−m),θ
♮⟩ · · · ⟨ϕ(s′|st+m, a),θ

♮⟩V ∗
m(s

′)

=Q∗
m(s, a, a⃗t),

where the inequality (a) derives based on (D.2.2), and the inequality (b) derives based on (D.2.1).

Therefore, for the action sequence a⃗t = (at−m, · · · , at−1), the statement in Lemma 3, i.e.,

Qk
m(s, a, a⃗t) ≥ Q∗

m(s, a, a⃗t)

can be satisfied for all time step t. The proof is thus completed.

D.3 Proof of Theorem 8

To prove Theorem 8, we begin with the following lemma.

Lemma 11 Suppose the conditions in Lemma 2 are satisfied. Consider the action sequence

a⃗t = (at−m, · · · , at−1), for any 0 ≤ k ≤ NT − 1 and tk ≤ t ≤ tk+1 − 1, there exists a θt ∈ Dk

such that

Qk
m(st, at, a⃗t) ≤ r(st, at−m) + γ

〈
θt,ϕV k

m
(st, at−m, a⃗t+1)

〉
+mγt−tk−m+1. (D.3.1)

140

Proof: The proof is provided in Appendix D.5. □

Next, we prove Theorem 8.

Denote NT − 1 as the number of epochs when Algorithm 7 occupied at T -th time step, thus

there is tNT
= T + 1. Given the action sequence a⃗t = (at−m, · · · , at−1), we have

Regret(T) =
NT−1∑
k=0

tk+1−1∑
t=tk

[
V ∗
m(st, a⃗t)− V π

m(st, a⃗t)
] (a)

≤
NT−1∑
k=0

tk+1−1∑
t=tk

[
V k
m(st, a⃗t)− V π

m(st, a⃗t)
]

(b)

≤
NT−1∑
k=0

tk+1−1∑
t=tk

Qk
m(st, at, a⃗t)− V π

m(st, a⃗t)

(D.3.2)

where the inequality (a) can be derived under the conditions of Lemma 3, and the equality (b) holds

due to the update rule V k
m(·, a⃗t+1)← maxa∈AQ

k
m(·, a, a⃗t) and the reward value is no less that zero.

Implied By Lemma 11, for tk ≤ t ≤ tk+1 − 1, Qk
m(st, at, a⃗t) calculated on Line 7 of Algorithm

7 holds that

Qk
m(st, at, a⃗t) ≤ r(st, at−m) + γ

〈
ϕV k

m
(st, at−m, a⃗t+1),θt

〉
+mγt−tk−m+1

≤ r(st, at−m) + γ
〈
ϕV k

m
(st, at−m, a⃗t+1),θt

〉
+mγtk+1−tk−m

≤ r(st, at−m) + γ
〈
ϕV k

m
(st, at−m, a⃗t+1),θt

〉
+mγα−m, (D.3.3)

where α denotes maxk tk+1 − tk. By selecting α =

⌈
log((mT)/(1−γ))

1−γ

⌉
+m, (D.3.3) can be reformu-

lated as

Qk
m(st, at, a⃗t) ≤ r(st, at−m) + γ

〈
ϕV k

m
(st, at−m, a⃗t+1),θt

〉
+

1− γ
T

. (D.3.4)

Given the action sequence a⃗t = (at−m, · · · , at−1), it yields from the Bellman equation, given by

V π
m(st, a⃗t) = r(st, at−m) + γ[PV π

m](st, at−m, a⃗t+1)

(a)
= r(st, at−m) + γ

∑
s′∈S

〈
ϕ(s′|st, at−m),θ

♮
〉
V π
m(s

′, a⃗t+1)

(b)
= r(st, at−m) + γ

〈
ϕV π

m
(st, at−m, a⃗t+1),θ

♮
〉
, (D.3.5)

141

where the equality (a) and equality (b) are satisfied due to the assumption on the parameterized-

CDMDP, i.e., Definition 2. Substituting (D.3.3) and (D.3.5) into (D.3.2), it yields

NT−1∑
k=0

tk+1−1∑
t=tk

[
V k
m(st, a⃗t)− V π

m(st, a⃗t)
]

≤
NT−1∑
k=0

tk+1−1∑
t=tk

(
γ
〈
ϕV k

m
(st, at−m, a⃗t+1),θt

〉
− γ
〈
ϕV π

m
(st, at−m, a⃗t+1),θ

♮
〉
+

1− γ
T

)
=γ

NT−1∑
k=0

tk+1−1∑
t=tk

(〈
ϕV k

m
(st, at−m, a⃗t+1),θt

〉
−
〈
ϕV k

m
(st, at−m, a⃗t+1),θ

♮
〉)

+ γ

NT−1∑
k=0

tk+1−1∑
t=tk

〈
ϕV k

m
(st, at−m, a⃗t+1)− ϕV π

m
(st, at−m, a⃗t+1),θ

♮
〉
+ (1− γ)

=J1 + J2 + J3 + (1− γ), (D.3.6)

where

J1 = γ

NT−1∑
k=0

tk+1−1∑
t=tk

(〈
ϕV k

m
(st, at−m, a⃗t+1),θt

〉
−
〈
ϕV k

m
(st, at−m, a⃗t+1),θ

♮
〉)
,

J2 = γ

NT−1∑
k=0

tk+1−1∑
t=tk

{[
P(V k

m − V π
m)
]
(st, at−m, a⃗t+1)−

(
V k
m(st+1, a⃗t+1)− V π

m(st+1, a⃗t+1)
)}
,

J3 = γ

NT−1∑
k=0

tk+1−1∑
t=tk

(
V k
m(st+1, a⃗t+1)− V π

m(st+1, a⃗t+1)
)
.

The three terms J1, J2, and J3 can be bounded separately, which is presented in the following.

142

• In terms of J1, we have

J1
(a)

≤ γ

NT−1∑
k=0

tk+1−1∑
t=tk

∣∣∣∣〈ϕV k
m
(st, at−m, a⃗t+1),θt − θ♮

〉∣∣∣∣
(b)

≤
NT−1∑
k=0

tk+1−1∑
t=tk

(∥∥Σ1/2
t (θt − θ̂k)

∥∥
2

+
∥∥Σ1/2

t (θ̂k − θ♮)
∥∥
2

)
·
∥∥Σ−1/2

t · ϕV k
m
(st, at−m, a⃗t+1)

∥∥
2

(c)

≤ 2

NT−1∑
k=0

tk+1−1∑
t=tk

(∥∥Σ1/2
tk

(θt − θ̂k)
∥∥
2

+
∥∥Σ1/2

tk
(θ̂k − θ♮)

∥∥
2

)
·
∥∥Σ−1/2

t · ϕV k
m
(st, at−m, a⃗t+1)

∥∥
2

(d)

≤ 4

NT−1∑
k=0

tk+1−1∑
t=tk

βk
∥∥Σ−1/2

t · ϕV k
m
(st, at−m, a⃗t+1)

∥∥
2
, (D.3.7)

where the inequality (a) holds due to the fact 0 ≤
〈
ϕV k

m
(st, at−m, a⃗t+1),θ

♮
〉
≤ 1/(1 − γ),

the inequality (b) derived based on the Cauchy-Schwarz inequality and triangle inequality,

the inequality (c) holds because det(Σt) ≤ 2 det(Σtk) and Lemma 15, and the inequality (d)

holds since θt ∈ Dk derided from Lemma 2.

Additionally, based on the fact that 0 ≤ V ∗
m ≤ 1/(1− γ), we have

〈
ϕV k

m
(st, at−m, a⃗t+1),θt

〉
− ⟨ϕV k

m
(st, at−m, a⃗t+1),θ

♮
〉
≤ 1

1− γ
. (D.3.8)

Combining (D.3.7) and (D.3.8), we can bound J1 as

J1 ≤
NT−1∑
k=0

tk+1−1∑
t=tk

min

{
1

1− γ
, 4βk

∥∥Σ−1/2
t · ϕV k

m
(st, at−m, a⃗t+1)

∥∥
2

}
(a)

≤ 4

NT−1∑
k=0

tk+1−1∑
t=tk

βk min

{
1, ∥Σ−1/2

t · ϕV k
m
(st, at−m, a⃗t+1)

∥∥
2

}
(b)

≤ 4

(
T

NT−1∑
k=0

tk+1−1∑
t=tk

βk min

{
1, ∥Σ−1/2

t · ϕV k
m
(st, at−m, a⃗t+1)

∥∥2
2

}) 1
2

, (D.3.9)

143

where the inequality (a) holds due to the fact 1/(1− γ) ≤ β, the inequality (a) holds derived

from Cauchy-Schwarz inequality. Combining the fact ∥ϕV k
m
(st, at−m, a⃗t+1)∥2 ≤

√
d/(1− γ)

deduced by Definition 2 and the fact |V k
m| ≤ 1/(1− γ) implied by Lemma 3, we can utilize

Lemma 14 to generate that

NT−1∑
k=0

tk+1−1∑
t=tk

min

{
1, ∥Σ−1/2

t · ϕV k
m
(st, at−m, a⃗t+1)

∥∥2
2

}}
≤ 2d log

λ+ T/(1− γ)2

λ
.

(D.3.10)

Substituting (D.3.10) into (D.3.9), we have

J1 ≤ 6

√
dTβT log

λ+ T/(1− γ)2
λ

. (D.3.11)

• In terms of J2, we begin with defining several vital notations and corresponding value

functions. For any 0 ≤ k ≤ NT − 1, tk ≤ t ≤ tk+1 − 1 and random action sequence

a⃗t = (at−m, · · · , at−1), Let Hm be the trajectory generated by the random sample path

{(st′ , at′−m)}t′≤t and the state sequence as s⃗t = (st−m, · · · , st−1). We further define

V̆ π
m(s, s⃗t) = E

[∞∑
i=0

γir(st+i, π(st−m+i))

∣∣∣∣st = s

]
, (D.3.12)

V̆m(·) = max
a∈A

Q̆k
m(·, a, a⃗t), (D.3.13)

Q̆k
m(st, a, a⃗t) = r(st, πk(st−m))

+ max
θ∈Dk

∑
(st+1,··· ,st+m,s′)
at−m···at−1∈A

⟨ϕ(st+1|st, at−m),θ⟩ · · · ⟨ϕ(s′|st+m, a),θ⟩V̆m(s′), (D.3.14)

V̆ k
m(·, a⃗t+1) = max

a∈A
Q̆k

m(·, a, a⃗t). (D.3.15)

Recall V π
m(s) (5.1) and the update rule of V k

m on Line 8 in Algorithm 7.

ηπm = [PV π
m](st, at−m, a⃗t+1)− V̆ π

m(st+1, s⃗t+1),

ηkm = [PV k
m](st, at−m, a⃗t+1)− V̆ k

m(st+1, a⃗t+1). (D.3.16)

144

Therefore, we have

|ηkm|, |ηπm| ≤
1

1− γ
, (D.3.17)

where due to the assumption of the reward r ∈ [0, 1]. We can verify that E[ηkm|Hm] = 0 since

st+1 are sampled according to the distribution P(·|st, at−m). Likewise, we have E[ηπm|Hm] =

0, which implies that

E[ηkm − ηπm|Hm] = 0 (D.3.18)

Given V π
m(s, a⃗t+1) (5.1) where a⃗t+1 = (at−m+1, · · · , at−1, at) and V̆ π

m(s, s⃗t+1) (D.3.12), the

difference between these two terms yields due to the deterministic action sequence

a⃗t+1 = (at−m+1, · · · , at−1, at)

and the stochastic action sequence (π(st−m+1), · · · , π(st−1), π(st)). Meanwhile, the differ-

ence between V k
m(s) with a certain action sequence a⃗t+1 = (at−m+1, · · · , at−1, at) and V̆ k

m(s)

(D.3.13) yields when computing Qk
m(s, a, s⃗t) and Q̆k

m(s, a, s⃗t) based on the deterministic

action sequence and the stochastic action sequence. Both of differences depend on the sum of

the first m rewards, e.g.,
m−1∑
i=0

γir(st+1+i, π(st+1−m+i))− γir(st+1+i, at+1−m+i),

thus we have

E
[(
V̆ k
m(st+1, a⃗t+1)− V k

m(st+1, a⃗t+1)
)
−
(
V̆ π
m(st+1, s⃗t+1)− V π

m(st+1, a⃗t+1)
) ∣∣Hm

]
= 0,

(D.3.19)

and |V̆ k
m(st+1, a⃗t+1) − V k

m(st+1, a⃗t+1)| ≤ 1/(1− γ), |V̆ π
m(st+1, s⃗t+1) − V π

m(st+1, a⃗t+1)| ≤

1/(1− γ). Combining (D.3.18) and (D.3.19), it yields that

E
[[
P(V k

m − V π
m)
]
(st, at−m, a⃗t+1)−

(
V k
m(st+1, a⃗t+1)− V π

m(st+1, a⃗t+1)
)∣∣Hm

]
=E
[
ηkm − ηπm +

(
V̆ k
m(st+1, a⃗t+1)− V k

m(st+1, a⃗t+1)
)
−(

V̆ π
m(st+1, s⃗t+1)− V π

m(st+1, a⃗t+1)
) ∣∣Hm

]
=0. (D.3.20)

145

Hence, we conclude that

∣∣[P(V k
m − V π

m)
]
(st, at−m, a⃗t+1)−

(
V k
m(st+1, a⃗t+1)− V π

m(st+1, a⃗t+1)
)∣∣

≤|V k
m|+ |V π

m|+ |V̆ k
m(st+1, a⃗t+1)− V k

m(st+1, a⃗t+1)|+ |V̆ π
m(st+1, s⃗t+1)− V π

m(st+1, a⃗t+1)|

=
4

1− γ
. (D.3.21)

Thus,
[
P(V k

m− V π
m)
]
(st, at−m, a⃗t+1)−

(
V k
m(st+1, a⃗t+1)− V π

m(st+1, a⃗t+1)
)

establishes a mar-

tingale difference sequence. Moreover, Lemma 3 implies that 0 ≤ |V k
m(s) − V π

m(s)| ≤

1/(1 − γ) + (1 − γm)/(1 − γ), which can be combined with the update rule in line 7 of

Algorithm 7, yielding∣∣∣∣[P(V k
m − V π

m)
]
(st, at−m, a⃗t+1)−

(
V k
m(st+1, a⃗t+1)− V π

m(st+1, a⃗t+1)
)∣∣∣∣ ≤ 2− γm

1− γ
.

Hence, we can derive the bound of J2 based on Azuma-Hoeffding inequality in Lemma 13,

J2 = γ

NT−1∑
k=0

tk+1−1∑
t=tk

[
P(V k

m − V π
m)
]
(st, at−m, a⃗t+1)−

(
V k
m(st+1, a⃗t+1)− V π

m(st+1, a⃗t+1)
)

≤2− γm

1− γ

√
T ln

1

δ
. (D.3.22)

• In terms of J3, we arrive

J3 = γ

NT−1∑
k=0

tk+1−1∑
t=tk

(
V k
m(st+1, a⃗t+1)− V π

m(st+1, a⃗t+1)
)

= γ

NT−1∑
k=0

[tk+1−1∑
t=tk

(
V k
m(st, a⃗t)− V π

m(st, a⃗t)
)
−
(
V k
m(stk , a⃗tk)− V π

m(stk , a⃗tk)
)

+
(
V k
m(stk+1

, a⃗tk+1
)− V π

m(stk+1
, a⃗tk+1

)
)]

(a)

≤ γ

NT−1∑
k=0

[
tk+1−1∑
t=tk

(
V k
m(st, a⃗t)− V π

m(st, a⃗t)
)
+

1 + γm

1− γ

]

= γ

NT−1∑
k=0

tk+1−1∑
t=tk

(
V k
m(st, a⃗t)− V π

m(st, a⃗t)
)
+
NTγ(1 + γm)

1− γ
, (D.3.23)

146

where the inequality (a) holds due to the fact that 0 ≤ |V k
m(s, a⃗t)− V π

m(s, a⃗t)| ≤ 1/(1− γ),

0 ≤ |V k
m(s, a⃗t)− V π

m(s, a⃗t)| ≤ γm/(1− γ) implied by Lemma 3 and the update rule in line

7 of Algorithm 7.

Substituting (D.3.11), (D.3.22) and (D.3.23) into (D.3.6), we conclude

NT−1∑
k=0

tk+1−1∑
t=tk

[
V k
m(st, a⃗t)− V π

m(st, a⃗t)
]

≤6
√
dTβT log

λ+ T/(1− γ)2
λ

+
2− γm

1− γ

√
T ln

1

δ
+ γ

NT−1∑
k=0

tk+1−1∑
t=tk

[
V k
m(st, a⃗t)− V π

m(st, a⃗t)
]

+
NTγ(1 + γm)

1− γ
+ (1− γ). (D.3.24)

By summarizing the above inequalities, we have

NT−1∑
k=0

tk+1−1∑
t=tk

[
V k
m(st, a⃗t)− V π

m(st, a⃗t)
]

≤1 + 6

1− γ

√
dTβT log

λ+ T/(1− γ)2
λ

+
2− γm

(1− γ)2

√
T ln

1

δ
+
NTγ(1 + γm)

(1− γ)2
. (D.3.25)

Substituting βT and (D.3.25) into (D.3.2) and reorganizing it, we have

Regret(T) ≤ 6

1− γ

√
dT log

λ+ T/(1− γ)2
λ

·
(

8

(1− γ)2
log
(
dδ−1

)
+ 4

√
2

(1− γ)2
t2k log(2tk(tk + 1)δ−1) +m2tk + λd

)1/2

+ 1 +
2− γm

(1− γ)2

√
T ln

1

δ
+
NTγ(1 + γm)

(1− γ)2

≤ 6

1− γ

√
dT log

λ+ T/(1− γ)2
λ

(
8

1− γ

√
log

λ(1− γ)2 + Td

δλ(1− γ)2
+
√
λd

)
+ 1 +

(2− γm)
√
T log δ−1

(1− γ)2
+
γ(1 + γm)

(1− γ)2
min

{
2d log

λ+ Td

λ(1− γ)2
,

log [(mT)/(1− γ)]
1− γ

+m

}
, (D.3.26)

where the inequality (a) derives from Lemma 16. The proof is completed by taking the union bound

of Lemma 2 and Lemma 13.

147

D.4 Proof of Theorem 9

Given a parameter vector θ, we consider the two-state parameterized-CDMDP (S,A, γ, r,Pθ, 1).

Specifically, there are two states, i.e., the initial state x0 and another state x1. For each action a ∈ A,

define a deterministic rewards, i.e., r(x0, a) = 0, r(x1, a) = 1. Moreover, the probability transition

function is given by Pθ(x0|x0, a) = 1 − δ − ⟨a,θ⟩,Pθ(x1|x0, a) = δ + ⟨a,θ⟩,Pθ(x0|x1, a) =

δ,Pθ(x1|x1, a) = 1− δ.

In the CDMDP (S,A, γ, r,Pθ, 1) with the constant delay m = 1, from an observation state, we

can utilize probability transition function Pθ and the action sequence (ω) where ω ∈ A to simulate

the outcome of the next time step which is the current but unobserved state. Then the optimal policy

is to choose an action aθ = [sgn(θi)]d−1
i=1 based on this approximated current state. Hence, based on

the optimality Bellman equation, V ∗
m(x0) and V ∗

m(x1) can be approximately represented by

V ∗
m(x0) = r(x0, ω) + γEs∼Pθ(·|x0,ω)

s′∼Pθ(·|s,aθ)

V ∗
m(s

′), V ∗
m(x1) = r(x1, ω) + γEs∼Pθ(·|x1,ω)

s′∼Pθ(·|s,aθ)

V ∗
m(s

′). (D.4.1)

We define

ς0 = (1− δ − ⟨aθ,θ⟩)2 + δ(δ + ⟨ω,θ⟩), (D.4.2)

ς1 = δ(1− δ − ⟨aθ,θ⟩) + δ(1− δ), (D.4.3)

and then substitute aforementioned r and Pθ into (D.4.1), yielding the following equations,

V ∗
m(x0) =

γ(1− ς0)
(1− γ)(γ(ς1 − ς0) + 1)

, V ∗
m(x1) =

1− γς0
(1− γ)(γ(ς1 − ς0) + 1)

. (D.4.4)

Based on Lemma 17, it yields

ERegret(T) ≥ E
[T∑

t=1

[
V ∗
m(st, a⃗t)−

1

1− γ
r(st, at−1)

]
− γ

(1− γ)2

]
.

Note that the lower bound can be represented by E[N1] due to r(x0, a) = 0 and r(x1, a) = 1. It

yields that

1

|Γ|
∑
θ

E[N1] ≤
T

2
+

1

2δ

ψ

(d− 1)|Γ|

d−1∑
j=1

∑
θ

[
Eθ′ [N0] +

√
log 2T

2

√
dKL(P ′∥P)

]
, (D.4.5)

148

where the j-th coordinates of θ′ and θ are different and the rest are same. An upper bound

of (D.4.5) can be derived from Lemma 18 and 19, which depends on ψ and δ. By choosing

ψ = d
√
1− γ/(66

√
2T) and δ = 1− γ, the final result can be derived.

Finally, we consider the expectation of regret for different θ and sum these expectations over all

possible θ, given by:

1

|Γ|
∑
θ

[
ERegret(T) +

γ

(1− γ)2

]

≥ 1

|Γ|
∑
θ

E
[
N0V

∗
m(x0) +N1V

∗
m(x1)−

1

1− γ

T∑
t=1

r(st, at−1)

]
(a)
=

1

1− γ
1

|Γ|
∑
θ

E
[
N0

γ(1− ς0)
(1− γ)(γ(ς1 − ς0) + 1)

+N1

(
1− γς0

(1− γ)(γ(ς1 − ς0) + 1)
− 1

)]
=

1

1− γ
1

|Γ|
∑
θ

E
[
T

γ(1− ς0)
(1− γ)(γ(ς1 − ς0) + 1)

+N1
γ(γς1 − γς0 − ς1 + 1)

(1− γ)(γ(ς1 − ς0) + 1)

]
=T

γ(1− ς0)
(1− γ)2(γ(ς1 − ς0) + 1)

+
γ(γς1 − γς0 − ς1 + 1)

(1− γ)2(γ(ς1 − ς0) + 1)

1

|Γ|
∑
θ

E[N1], (D.4.6)

where the equality (a) derives from the definitions of V ∗
m(x0), V

∗
m(x1) (D.4.4) and the fact that

r(x1, a) = 1 and r(x0, a) = 0. By Lemma 18, we can bound |Γ|−1
∑

θ E[N1] as

1

|Γ|
∑
θ

E[N1] ≤
T

2
+

5ψT

22δ
+

3

2

√
log 2

2

ψ2T
3
2

dδ
3
2

. (D.4.7)

149

Substituting (D.4.7) into (D.4.6), it yields

1

|Γ|
∑
θ

[
ERegret(T) +

γ

(1− γ)2

]

≥T γ(1− ς0)
(1− γ)2(γ(ς1 − ς0) + 1)

+
γ(γς1 − γς0 − ς1 + 1)

(1− γ)2(γ(ς1 − ς0) + 1)

(
T

2
+

5ψT

22δ
+

3

2

√
log 2

2

ψ2T
3
2

dδ
3
2

)
(a)

≥ 1

(1− γ)2(γ(ς1 − ς0) + 1)

[
(1− ς0)γT

2
+ γ(γς1 − γς0 − ς1 + 1)

(
5ψT

22δ
+

3

2

√
log 2

2

ψ2T
3
2

dδ
3
2

)]
(b)

≥ 1

2(1− γ)2

[
(1− ς0)γT

2
+ γ(γς1 − γς0 − ς1 + 1)

(
5ψT

22δ
+

3

2

√
log 2

2

ψ2T
3
2

dδ
3
2

)]
(c)

≥ 1

2(1− γ)2

[
ψγT

2
− γ 10δψT

22δ
− γ3

√
log 2

2

ψ2δT
3
2

dδ
3
2

]
(d)

≥ γd
√
T

2640
√
log 2(1− γ)1.5

,

where the inequality (a) holds due to the fact γ(ς1 − ς0) + 1 ≤ 2, the inequality (b) holds since

0 ≤ ς0, ς1 ≤ 1 and ς0 ≤ 1−ψ, ς1 ≤ 2δ, the inequality (c) holds due to the fact that 3ψ/2 < δ ≤ 1/5,

the inequality (d) holds under the condition of ψ = d
√
1− γ/(66

√
2T) and δ = 1− γ. Thus, there

exists θ ∈ Γ such that

ERegret(T) ≥ γd
√
T

2640
√
log 2(1− γ) 3

2

− γ

(1− γ)2
. (D.4.8)

Hence, we can conclude the proof by selecting θ̃ = (θ⊤, 1)⊤ ∈ Rd.

D.5 Proof of Lemma 11

Suppose for any 0 ≤ k ≤ NT − 1, tk ≤ t ≤ tk+1 − 1, action sequence for both Qk
m and Q̃k

m is

a⃗t = (a−m, · · · , a−1), where Q̃k
m(s, a, a⃗t) for any (s, a) ∈ S ×A is defined as

E
[m−1∑

i=0

γir(st−(m+1)+i, a−m+i) +
∞∑

i=m

γir(st−(m+1)+i, π
k(st−(2m+1)+i))

∣∣∣∣st−(m+1) = s

]
.

We begin with bounding Qk
m(s, a, a⃗t)− Q̃k

m(s, a, a⃗t).

150

By the update rule in Algorithm 7, we denote V (t−1)
m (·) = maxa∈AQ

k
m(·, a, a⃗t), thus have

Qk
m(s, a, a⃗t) = r(s, a−m) + γmax

θ∈Dk

∑
(st+1, · · · , st+m, s

′)

⟨ϕ(st+1|s, a−m),θ⟩ · · · ⟨ϕ(s′|st+m, a),θ⟩V (t−1)
m (s′),

Q̃k
m(s, a, a⃗t) = r(s, a−m) + γmax

θ∈Dk

∑
st−m · · · st−1, s

′ ∈ S

⟨ϕ(st−m|s, a−m),θ⟩ · · · ⟨ϕ(s′|st−1, a),θ⟩V (t−m)
m (s′).

Hence for any (s, a) ∈ S ×A and an action sequence a⃗t = (a−m, · · · , a−1), we have∣∣∣Qk
m(s, a, a⃗t)− Q̃k

m(s, a, a⃗t)
∣∣∣

=γ

∣∣∣∣max
θ∈Dk

∑
(st+1,··· ,st+m,s′)

⟨ϕ(st+1|s, a−m),θ⟩ · · · ⟨ϕ(s′|st+m, a),θ⟩V (t−1)
m (s′)

−max
θ∈Dk

∑
st−m···st−1,s′∈S

⟨ϕ(st−m|s, a−m),θ⟩ · · · ⟨ϕ(s′|st−1, a),θ⟩V (t−m)
m (s′)

∣∣∣∣
(a)

≤γmax
θ∈Dk

∣∣∣∣∣∣
∑

s1···sm,s′∈S

⟨ϕ(s1|s, a−m),θ⟩ · · · ⟨ϕ(s′|sm, a),θ⟩
[
V (t−1)
m (s′)− V (t−m)

m (s′)
]∣∣∣∣∣∣

(b)
=γ

∣∣∣∣∣∣
∑

s1···sm,s′∈S

⟨ϕ(s1|s, a−m), θ̃⟩ · · · ⟨ϕ(s′|sm, a), θ̃⟩
[
V (t−1)
m (s′)− V (t−m)

m (s′)
]∣∣∣∣∣∣ (D.5.1)

where the inequality (a) derives based on the upper bound of max function, and the equation (b)

holds since θ̃ is the solution of the maximum optimization problem. We can further bound (D.5.1)

as follows:

γ

∣∣∣∣∣∣
∑

s1···sm,s′∈S

⟨ϕ(s1|s, a−m), θ̃⟩ · · · ⟨ϕ(s′|sm, a), θ̃⟩
[
V (t−1)
m (s′)− V (t−m)

m (s′)
]∣∣∣∣∣∣

(a)

≤γmax
s′∈S

∣∣∣V (t−1)
m (s′)− V (t−m)

m (s′)
∣∣∣

(b)

≤γmax
s′∈S

∣∣∣max
a′∈A

Qk
m(s

′, a′, a⃗t−1)−max
a′∈A

Q̃k
m(s

′, a′, a⃗t−1)
∣∣∣

≤γ max
(s′,a′)∈S×A

∣∣∣Qk
m(s

′, a′, a⃗t−1)− Q̃k
m(s

′, a′, a⃗t−1)
∣∣∣, (D.5.2)

151

where action sequence is a⃗t−1 = (a−m−1, a−m, · · · , a−2). Here, the inequality (a) holds since∣∣∣⟨ϕ(s′|s, a−m), θ̃⟩ · · · ⟨ϕ(s′|sm, a), θ̃⟩f(s, a)
∣∣∣ ≤ max

s′∈S
|f(s′)|

for any (s, s′, a) with the action sequence (a−m, · · · , a−1), the inequality (b) is derived based

on the contraction property of max function. Substituting (D.5.2) into (D.5.1) and maximizing

|Qk
m(s, a, a⃗t)− Q̃k

m(s, a, a⃗t)| over (s, a), it yields

max
(s,a)∈S×A

∣∣∣Qk
m(s, a, a⃗t)− Q̃k

m(s, a, a⃗t)
∣∣∣

≤γ max
(s,a)∈S×A

∣∣∣Qk
m(s, a, a⃗t−1)− Q̃k

m(s, a, a⃗t−1)
∣∣∣.

≤γt−tk−m+1 max
(s,a)∈S×A

∣∣∣Qk
m(s, a, a⃗m−1)− Q̃k

m(s, a, a⃗m−1)
∣∣∣

≤γt−tk−m+1 max
(s,a)∈S×A

∣∣∣∣r(s, a−m) +
m−1∑
i=1

r(sm−1+i, a−m+i)−
1

1− γ

∣∣∣∣
(a)

≤mγt−tk−m+1, (D.5.3)

where the inequality (a) holds since 0 ≤ r(s, a) ≤ 1 for all (s, a). HenceQk
m(s, a, a⃗t)−Q̃k

m(s, a, a⃗t)

can be bounded via Qk
m(s, a, a⃗t)− Q̃k

m(s, a, a⃗t) ≤ mγt−tk−m+1.

152

Recall that Vm(·) = maxa∈AQ
k
m(·, a, a⃗t), we thus have

Qk
m(st, a, a⃗t)

= r(st, at−m) + γmax
θ∈Dk

∑
(st+1, · · · , st+m, s

′)⟨ϕ(st+1|st, at−m),θ⟩ · · ·

⟨ϕ(s′|st+m, a),θ⟩Vm(s′)
(a)
= r(st, at−m) + γ

∑
(st+1,··· ,st+m,s′)

⟨ϕ(st+1|st, at−m), θ̃⟩ · · · ⟨ϕ(s′|st+m, a), θ̃⟩Vm(s′)

= r(st, at−m) + γ
∑

(st+1,··· ,st+m,s′)

⟨ϕ(st+1|st, at−m), θ̃⟩ · · ·

⟨ϕ(s′|st+m, a), θ̃⟩V k
m(s

′, a⃗t+m+1)

+ γ
∑

(st+1, · · · , st+m, s
′)⟨ϕ(st+1|st, at−m), θ̃⟩ · · ·

⟨ϕ(s′|st+m, a), θ̃⟩[Vm(s′)− V k
m(s

′, a⃗t+m+1))]

(b)

≤ r(st, at−m) + γP̃V k
m(st, at−m, a⃗t+1)

+ γP̃[Ṽ k
m − V k

m](st, at−m, a⃗t+1)

(c)

≤ r(st, at−m) + γP̃V k
m(st, at−m, a⃗t+1)

+ γmax (s, a) ∈ S ×A
∣∣∣Qk

m(s, a, a⃗t)− Q̃k
m(s, a, a⃗t)

∣∣∣
(d)

≤ r(st, at−m) + γP̃V k
m(st, at−m, a⃗t+1) +mγt−tk−m+1 (D.5.4)

where the equation (a) holds since θ̃ is the solution of the maximum optimization problem,

P̃(s′|st, at−m) = ⟨θ̃,ϕ(s′|st, at−m)⟩. Additionally, the action sequence is denoted as

a⃗t+1 = (at−m+1, · · · , at−1, a).

Specifically, Ṽ k
m(s

′, a⃗t+1) denotes as

E
[m−1∑

i=0

γir(st−m+i, at−m+1+i) +
∞∑

i=m

γir(st−m+i, π
k(st−2m+i))

∣∣∣∣st−m = s′
]
.

The inequality (b) holds based on the fact that the reward r ∈ [0, 1]. The inequality (c) can

be derived since |P̃f(st, at−m, a⃗t)| ≤ maxs′∈S |f(s′, a⃗t)| and maxs |P̃V k
m(s, a⃗t) − P̃V k

m(s, a⃗t)| ≤

153

maxs,a |Qk
m(s, a, a⃗t) − Q̃k

m(s, a, a⃗t)|, the inequality (d) derives from (D.5.3). The proof can be

completed by taking θt = θ̃.

D.6 Proof of Lemma 18

Based on the initial state x0 ∈ S and action sequence (ω), it yields

EN1 =
T∑
t=2

P(st = x1)

= Pθ(s2 = x1|s1 = x0, a1 = ω)

+
T∑
t=3

P(st = x1|st−1 = x1, st−2 = x1)P(st−1 = x1|st−2 = x1)P(st−2 = x1)︸ ︷︷ ︸
I1

+
T∑
t=3

P(st = x1|st−1 = x0, st−2 = x1)P(st−1 = x0|st−2 = x1)P(st−2 = x1)︸ ︷︷ ︸
I2

+
T∑
t=3

P(st = x1, st−1 = x1, st−2 = x0)︸ ︷︷ ︸
I3

+
T∑
t=3

P(st = x1, st−1 = x0, st−2 = x0)︸ ︷︷ ︸
I4

(D.6.1)

In terms of I1, since P(st = x1|st−1 = x1) = 1− δ regardless of action, we have

I1 = (1− δ)2
T∑
t=3

P(st−2 = x1) = (1− δ)2EN1 − (1− δ)2P(sT−1 = x1)− (1− δ)2P(sT = x1).

(D.6.2)

Likewise, I2 can be decomposed as

I2 = δ(1− δ)EN1 − δ(1− δ)P(sT−1 = x1)− δ(1− δ)P(sT = x1) (D.6.3)

154

To bound I3, we can decompose I3 as follows:

I3 = P(s3 = x1|s2 = x1)Pθ(s2 = x1|s1 = x0, a1 = ω)

+
T∑
t=4

∑
a

P(st = x1|st−1 = x1)P(st−1 = x1|st−2 = x0, at−2 = a)P(st−2 = x0, at−2 = a)

= (1− δ)Pθ(s2 = x1|s1 = x0, a1 = ω) +
T∑
t=4

∑
a

(1− δ)(δ + ⟨a,θ⟩)P(st−2 = x0, at−2 = a)

= (1− δ)Pθ(s2 = x1|s1 = x0, a1 = ω)

+
∑
a

(1− δ)(δ + ⟨a,θ⟩)
[
ENa

0 − P(sT−1 = x0, aT−1 = a)− P(sT = x0, aT = a)
]
.

(D.6.4)

Similarly, I4 can be decomposed as

I4 = Pθ(s2 = x0|s1 = x0, a1 = ω)
∑
a

(δ + ⟨a,θ⟩)

+
∑
a

(δ + ⟨a,θ⟩)(1− δ − ⟨a,θ⟩)
[
ENa

0 − P(sT−1 = x0, aT−1 = a)− P(sT = x0, aT = a)
]

(D.6.5)

Substituting (D.6.2)-(D.6.5) into (D.6.1) and reorganizing it, we have

EN1 =
∑
a

(1 + ⟨a,θ⟩/δ)(1− δ − ⟨a,θ⟩)ENa
0 +

∑
a

(1 + ⟨a,θ⟩/δ)Pθ(s2 = x0|s1 = x0, a1 = ω)

−
[
1− δ
δ

(P(sT−1 = x1) + P(sT = x1)) +
∑
a

(1 + ⟨a,θ⟩/δ)(2− 2δ − ⟨a,θ⟩)

· (P(sT−1 = x0, aT−1 = a) + P(sT = x0, aT = a))

]
(D.6.6)

≤
∑
a

(1 + ⟨a,θ⟩/δ)ENa
0 + δ−1

∑
a

⟨a,θ⟩ENa
0

= EN0 + δ−1
∑
a

⟨a,θ⟩ENa
0 , (D.6.7)

where the last term in (D.6.6) is non-negative due to the fact ⟨a,θ⟩ ≥ −ψ ≥ −δ. From (D.6.7), we

have

EN1 ≤ T/2 + δ−1
∑
a

⟨a,θ⟩ENa
0 . (D.6.8)

155

Denote the last term in (D.6.6) as υ, we arrive at bounding EN0. By (D.6.7), we have

EN1

(a)

≥ (1− δ)EN0 + (1− δ)/δ
∑
a

⟨a,θ⟩ENa
0 − υ

(b)

≥ (1− δ)(1− ψ/δ)EN0 −
1− δ
δ

[P(sT−1 = x1) + P(sT = x1)]

− 2

(
1 +

ψ

δ

)
[P(sT−1 = x0) + P(sT = x0)]

= (1− δ)(1− ψ/δ)EN0 − 1/δ +
1− 3δ − 2ψ

δ
[P(sT−1 = x0) + P(sT = x0)]

(c)

≥ (1− δ)(1− ψ/δ)EN0 − (1− δ)/δ, (D.6.9)

where the inequality (a) holds since ⟨a,θ⟩ ≤ ψ ≤ δ and the inequality (b) holds due to the fact

that ⟨a,θ⟩ ≤ ψ, the inequality (c) holds since P(sT−1 = x0) > 0,P(sT = x0) > 0 and δ ≤ 1/5.

(D.6.9) implies that

EN0 ≤
T + (1− δ)/δ

(1− δ)(1− ψ/δ) + 1

(a)

≤ 10

11
T,

where the inequality (a) holds since 3ψ/2 ≤ δ ≤ 1/5 and (1− δ)/δ < T/11.

D.7 Technical Lemmas

Lemma 12 Based on the definitions of θ♮ and θ̂k in Section 5.7.1, for any 0 ≤ j ≤ k − 1 and

tj ≤ i ≤ tj+1 − 1 with the action pending sequence (ai−m, · · · , ai−1), we have for any τ > 0, with

probability at least 1− δ,
k−1∑
j=0

tj+1−1∑
i=tj

Zi,m <
1

τ
log

(
1

δ

)
+ τ

tk(1− γ)2

2
. (D.7.1)

Lemma 13 (Azuma-Hoeffding inequality) Consider a real-valued martingale sequence

{Xn}∞n=0 satisfying that |Xn −Xn−1| ≤ µ for ∀n ∈ N where the constant µ ≥ 0. Then for n ≥ 1,

we have

|Xn −X0| ≤ 2µ
√
n log δ−1, (D.7.2)

with probability exceeding 1− δ.

156

Lemma 14 (Lemma 11 in [147]) Consider a sequence {xn}Tn=1 ⊂ Rd satisfying that ∥xn∥2 ≤ µ.

Then with A0 = λI and At = A0 +
∑t−1

n=1 xnx
⊤
n , we have

T∑
n=1

min
{
1, ∥A−1

n−1xn∥22
}
≤ 2d log

dλ+ Tµ2

dλ
.

Lemma 15 (Lemma 12 in [147]) Consider positive definite matrices A,B ∈ Rd×d satisfying that

A ⪰ B. Then for any x ∈ Rd, we have

∥Ax∥2 ≤ ∥Bx∥2 ·
√

det(A)/ det(B).

Lemma 16 Recall NT defined in Section 5.7 and the selection of α (5.7), we have

NT ≤ min

{
2d log[(λ+ dT)/(λ(1− γ)2)], log [(mT)/(1− γ)]

1− γ
+m

}
.

Lemma 16 shows that NT = Õ(d) times are required for Algorithm 7 to update its policy until

converging to the optimal policy.

Proof: Theorem 10 can be proved based on the transformation between sample complexity of

exploration and regret bound. The details are deferred to Appendix 5.7.4. □

D.8 Proof of Theorem 9

The essential argument used in the proof of Theorem 9 is to construct a class of hard-to-learn

CDMDPs. The construction of these CDMDPs is briefly introduced here and the details on the

proof are provided in Appendix D.4.

Given a vector θ, we consider the CDMDP (S,A, γ, r,Pθ, 1). Specifically, the state space S

contains two states, i.e., the initial state x0 and another state x1. The action space A contains

2d−1 vectors a ∈ {−1, 1}d−1. For each action a ∈ A, we define a deterministic rewards, i.e.,

r(x0, a) = 0, r(x1, a) = 1. Moreover, the probability transition function is given by Pθ(x0|x0, a) =

1 − δ − ⟨a,θ⟩,Pθ(x1|x0, a) = δ + ⟨a,θ⟩,Pθ(x0|x1, a) = δ,Pθ(x1|x1, a) = 1 − δ. Here, θ

157

has dimension of (d − 1) such that θ ∈ Γ, Γ = {−ψ/(d − 1), ψ/(d − 1)}d−1, where 0 < δ,

0 < ψ ≤ d− 1 are pre-defined parameters. Note that CDMDP (S,A, γ, r,Pθ, 1) can be represented

as a parameterized-CDMDP with the parameter vector Θ = (θ⊤, 1)⊤ ∈ Rd and corresponding

feature mapping ϕ(s′|s, a) such that Pθ(s
′|s, a) = ⟨ϕ(s′|s, a),Θ⟩.

Selecting ψ = d
√
1− γ/(66

√
2T) and δ = 1 − γ. Without loss of generality, we consider

a deterministic policy π, since the regret for a stochastic policy π is no less than the one for the

deterministic policy. For the trajectory of states in T time steps, suppose the initial observation state

s1 = x0 with the action sequence (a0) where a0 ∈ A, we have st+1 ∼ Pθ(·|st, at−1), at is further

decided by πt.

Let P denote the distribution over ST , which depends on the random variable θ, where

s1 = x0. Let E denote the expectation w.r.t. distribution P . Suppose we have an CDMDP

M(S,A, γ, r,Pθ, 1). During this proof, the starting state s1 is set to be x0. For simplicity, let

Regret(T) denote the regret of M(S,A, γ, r,Pθ, 1) with the policy π within the duration T .

To achieve the goal, we begin with several fundamental lemmas.

Lemma 17 Consider a parameterized-transition CDMDP (S,A, γ, r,Pθ, 1) with action sequence

a⃗t = (at−1), the regret Regret(T) holds that

ERegret(T) ≥ E
[T∑

t=1

[
V ∗
m(st, a⃗t)

− 1

1− γ
r(st, at−1)

]
− γ

(1− γ)2

]
.

Theorem 17 implies that we can compute the lower bound of regret via the lower bound of

V ∗
m(st, a⃗t) − r(st, at−1)/(1 − γ). Therein, the calculation of V ∗

m(x0) and V ∗
m(x1) are provided in

Appendix D.4. Moreover, the reward function r(st, at−1) for t = 1, · · · , T can be characterized

by the total number of visiting the state x1 due to the assumption on the reward function such that

r(x0, a) = 0, r(x1, a) = 1.

Denote N0 as the total number of visits to the state x0, while denote N1 as the total number of

visits to the state x1. Define Na
0 as the total number of visiting the state x0 followed by executing

158

action a. The relation between three notations E[N1], E[Na
0] and E[N0] is presented in the following

lemma.

Lemma 18 Assume that 3ψ/2 ≤ δ ≤ 1/5 and (1 − δ)/δ < T/11, then for E[N1] and E[N0], we

have

E[N1] ≤
T

2
+

1

δ

∑
a

⟨a,θ⟩E[Na
0], and E[N0] ≤ 10T/11.

Proof: The proof is provided in Appendix D.6. □

Additionally, Next lemma gives the bound for KL divergence, which can be derived based on

Lemma 13 in [188].

Lemma 19 Consider two parameterized-transition CDMDPs (S,A, γ, r,Pθ, 1) and

(S,A, γ, r,Pθ′ , 1). Assume that θ and θ′ only differs from j-th element, 3ψ/2 ≤ δ ≤ 1/5. Then, for

P w.r.t θ and P ′ w.r.t θ′, the KL divergence between P ′ and P is given by:

dKL(P ′∥P) ≤ 36ψ2

(d− 1)2δ
EN0.

Based on Lemma 19 and Lemma 18, we can represent the upper bound of E[N1] for ψ and δ. Thus,

the lower bound of the regret can be characterized by the representations of V ∗
m(x0), V

∗
m(x1) and

the upper bound of E[N1]. The details on the proof are deferred to Appendix D.4.

D.9 Details on Implementation of Algorithm 7

In implementing Algorithm 7, a key focus is the efficient computation of ϕV k
m
(st, at−m, a⃗t+1) and

⟨ϕ(st+1|st, at−m),θ⟩ · · · ⟨ϕ(s′|st+m, a),θ⟩Vm(s′). Monte Carlo integration is one approach, and its

details are outlined below. As Algorithm 7 is an online reinforcement learning algorithm, it updates

the action sequence and avoids caching all past observations. Consequently, it incurs only O(d2)

space complexity to store a vector bt and a matrix Σt, along with O(kn) for the action sequence

where a ∈ A and a ∈ Rn.

159

Algorithm 7 offers a versatile framework for addressing model-based reinforcement learning

in delayed feedback environments. This algorithm seamlessly integrates with regression meth-

ods and planning algorithms from [128], sidestepping stringent assumptions on the Markovian

dynamics, such as deterministic or mildly stochastic probability transition functions. The proposed

parameterized-transition assumption is more general than the state-of-the-art assumption in [128],

encompassing a broader class of nontrivial and vital Markov Decision Processes (MDPs).

Focusing on the reinforcement learning discounted parameterized-transition Constrained Markov

Decision Process (CDMDP) with delayed feedback, our algorithm leverages two primary strategies:

associating the value function with the pending action sequence and employing a parameterized

probability transition function P to simulate outcomes for k time steps based on the action sequence.

Optimistic planning, generally computationally intractable, becomes particularly challenging

in delayed feedback environments. Fortunately, randomized approaches like [189, 190] and ap-

proximate dynamic programming methods offer tractable and good approximations. Theoretical

guarantees demonstrate that approximation errors have a mild impact on regret [191].

Next, we delve into the efficient computation of the integration ϕV k
m
(st, at−m, a⃗t+1) via Monte

Carlo integration. We explore a special case of the parameterized transition setting outlined in

[126], adapting it to the delayed feedback setting. For simplicity, we consider the scenario where

|A| is finite and define the feature mapping ϕ(s′|s, a) as the element-wise product of two feature

mappings Ψ(s) and Φ(s, a), where |
∑

s′ [Ψ(s′)]j| ≤ C ′, |[Φ(s, a)]j| ≤ 1, and C ′ > 0 is a constant.

In terms of ϕV k
m

, Monte Carlo integration can be used to approximate ϕV k
m
(st, at−m, a⃗t+1) up to

ϵ-accuracy from ϕ̂V k
m
(st, at−m, a⃗t+1) with sample complexity of Õ(1/ϵ2). Here, the j-th coordinate

of the integration [ϕ̂V k
m
(st, at−m, a⃗t+1)]j is represented as

[ϕ̂V k
m
(st, at−m, a⃗t+1)]j =

1

D

∑
s′∈S

[Ψ(s′)]j · [Φ(st, at−m)]j ·
D∑
i=1

V k
m(sij, a⃗t+1) (D.9.1)

with sij generated via sij ∼ [Ψ(·)]j/
∑

s′∈S [Ψ(s′)]j, i = 1, . . . , D.

For ⟨ϕ(st+1|st, at−m),θ⟩ · · · ⟨ϕ(s′|st+m, a),θ⟩Vm(s′), we begin with several definitions and

160

notations. Given the observation state st and the action sequence a⃗t = (at−m, · · · , at−1) and have

⟨ϕm
Vm

(st, a, a⃗t),θ
m⟩ =

∑
(st+1,··· ,st+m,s′)

⟨ϕ(st+1|st, at−m),θ⟩ · · · ⟨ϕ(s′|st+m, a),θ⟩Vm(s′), (D.9.2)

where the state trajectory (st+1, · · · , st+m, s
′) is simulated by probability transition function and

derived from st by executing the action sequence (at−m, · · · , at−1, a). We can further decompose as

[
ϕm

Vm
(st, a, a⃗t)

]
j
=
∑
s′∈S

Vm(s
′)[Ψm(s

′)]j[Φm(st, a, a⃗t)]j, (D.9.3)

where

[Ψm(s
′)]j =

∑
(st+1,··· ,st+m,s′)

[Ψ(st+1)]j, · · · , [Ψ(st+m)]j[Ψ(s′)]j, (D.9.4)

and

[Φm(st, a, a⃗t)]j =
∑

(st+1,··· ,st+m,s′)

[Φ(st, at−m)]j · · · [Φ(st+m−1, at−1)]j[Φ(st+m, a)]j. (D.9.5)

Hence, Monte Carlo integration can be exploited to evaluate
∑

s′∈S Vm(s
′)[Ψm(s

′)]j and achieve

a uniform accurate estimation for all (st, a) with the action sequence a⃗t = (at−m, · · · , at−1). Based

on the above definitions, it yields the following proposition, which shows that we can approximate

ϕm
Vm

(st, a, a⃗t) up to ϵ-accuracy by ϕ̂m
Vm

(st, a, a⃗t) (D.9.6) using D ∼ Õ(1/ϵ2) samples.

Proposition 4 Consider Vm defined in Line 7 in Algorithm 7, which can be bounded by 1/(1− γ).

For i = 1, · · · , D, j = 1, · · · , d, based on equations (D.9.4) and (D.9.5), we denote:

[
ϕ̂m

Vm
(st, a, a⃗t)

]
j
=

1

D

∑
s′∈S

[Ψm(s
′)]j · [Φm(st, a, a⃗t)]j

D∑
i=1

Vm(sij), (D.9.6)

where sij is drawn according to the distribution of [Ψm(·)]j/
∑

s′∈S [Ψm(s
′)]j , then with probability

exceeding 1− δ, for the action sequence a⃗t = (at−m, · · · , at−1) and (st, a) ∈ S ×A, we have∣∣∣[ϕm
Vm

(st, a, a⃗t)
]
j
−
[
ϕ̂m

Vm
(st, a, a⃗t)

]
j

∣∣∣ ≤ C ′ log(δ−1)√
D(1− γ)

.

161

Intuitively, we may require to experience values of Qk
m over all (Im, a) ∈ (S × Am) × A

with Im = (st, at−m, · · · , at−1), which leads to a |S||A|m space complexity. The complexity can

be remarkably diminished via Monte Carlo integration, which is presented as follows. Recall α

(5.7), we begin with randomly collecting αdD samples stij, t ∈ [α], i = 1, · · · , D, j = 1, · · · , d

via s··,j ∼ [Ψm(·)]j/
∑

s′∈S [Ψm(s
′)]j . For k ≤ NT , t ≤ α− 1, we can compute the value function

V
(t)
m (stij, a⃗t) based on V (t−1)

m (st−1
ij , a⃗t−1) through the following induction rule:

V (t)
m (stij, a⃗t) = max

a∈A
r(stij, at−m) + γm max

θ∈Dk

〈
ϕ̂m

V
(t−1)
m

(stij, a, a⃗t−1),θ
m

〉
, (D.9.7)

where ϕ̂m

V
(t−1)
m

(stij, a, a⃗t−1) can be calculated via (D.9.6). The optimization problem (D.9.7) can

be termed as a maximization problem constrained on the convex set Dk, which can be efficiently

solved by projected gradient methods [192]. Based on the above discussions, denote

[ϕ̂m

V
(t−1)
m

(st, a, a⃗t−1)]j =
1

D

∑
s′∈S

[Ψm(s
′)]j · [Φm(st, a, a⃗t)]j

D∑
i=1

V (t−1)
m (st−1

ij , a⃗t−1), (D.9.8)

then Qk
m(st, a, a⃗t) can be calculated as

Qk
m(st, a, a⃗t) = r(st, at−m) + γmax

θ∈Dk

〈
ϕ̂m

V
(t−1)
m

(st, a, a⃗t−1),θ
m

〉
. (D.9.9)

Note that when calculating Qk
m(st, a, a⃗t), only an action sequence a⃗t = (at−m, · · · , at−1) and

dD value functions V (t−1)
m (st−1

ij , a⃗t−1), i = 1, · · · , D, j = 1, · · · , d need to be stored, which takes

O(d/ϵ2 + m|A|) space. According to Proposition 4, Qk
m(st, a, a⃗t) can be approximated up to

ϵ-accuracy with the sample complexity of Õ(1/ϵ2). Furthermore, we study the computational

complexity of each k iteration of Algorithm 7. Given st and the action sequence the action sequence

a⃗t = (at−m, · · · , at−1), it takes αmd|S| time complexity to obtain Ψm(s
′) (D.9.4). Based on

Ψm(s
′), it arrives at solving the maximization problem. Recall the definition of α (5.7), it requires

αdD|A| of time complexity to solve the maximization problem maxθ∈Dk
⟨ϕ̂m

V
(t−1)
m

(st, a, a⃗t−1),θ
m⟩

for any a ∈ A. Next, it needs αdD|A| time complexity to calculate V (t−1)
m (st−1

ij , a⃗t−1), i =

1, · · · , D, j = 1, · · · , d. After computing V (t−1)
m (st−1

ij , a⃗t−1), we need dD|A| time complexity to

obtain Qk
m(st, a, a⃗t) for any (st, a) ∈ S ×A.

162

APPENDIX E

Proofs for Chapter 6

E.1 Summary of Appendix

We provide the proof of Lemma 4 and Lemma 5 in Appendix E.2 and Appendix E.3, respectively.

In Appendix E.2, the proof is based on three lemmas, i.e., Lemma 20-22, and the proofs of these

lemmas are provided in Appendix E.4-Appendix E.6, respectively. In Appendix E.5, it involves

Lemma 23 which is proven in Appendix E.7. Moreover, the proof of Proposition 1 is provided in

Appendix E.8. Some technical lemmas are introduced in Appendix E.9. Some further discussions

on Experimental results regret results for finite actions, and reward & loss function examples are

provided in the last sections.

E.2 Proof of Lemma 4

In this section, we prove that the ground-truth θ⋆ always remains inside the neighborhood of the

averaged iterate θ̄t for all times t, ∥∥θ̄t − θ⋆∥∥2 ≤ βt, (E.2.1)

with high probability. Here, the parameter βt = Õ(1/
√
t) (6.5) implies that the averaged iterate θ̄t

is closed to the ground-truth step by step. The derivation of the form of βt (6.5) is provided in the

following proof.

In summary, the proof can be achieved via three steps:

1. For t = 0, we have θ⋆ ∈ Bt, because ∥θ⋆ − θ̄0∥2 ≤ S = β0 where θ̄0 = 0 ∈ Rd, under

163

Assumption 2.

2. For t ≥ 1, we aim to prove ∥θ̄t − θ⋆∥2 ≤ βt with high probability.

3. We finish the proof by applying a union bond.

E.2.1 Technical Overview for the Second Case (t ≥ 1)

Recall that ĝt(θt−1) and g(θt−1) = E[ĝt(θt−1)]. At the t-th round, stochastic gradient descent update,

i.e., θt = θt−1 − ηtĝt (θt−1) with t ≥ 1 can be reorganized by

θt = θt−1 − ηtĝt (θt−1)

= θt−1 − ηtĝt (θt−1) + ηtg(θt−1)− ηtg(θt−1), (E.2.2)

where the gradient is g and the stochastic gradient is ĝt.

We derive from (E.2.2):

θt − θ⋆ = θt−1 − θ⋆ − ηtĝt (θt−1) + ηtg(θt−1)− ηth(θ⋆)∆t−1 + ηth(θ⋆)∆t−1 − ηtg(θ⋆), (E.2.3)

where

h(θ⋆) = E[∇2ℓi(θ⋆)], (E.2.4)

g(θ⋆) = E[∇ℓi(θ⋆)]. (E.2.5)

Let ∆t := θt − θ⋆ and At := h(θ⋆), (E.2.3) can be represented as

∆t = (I − ηtAt)∆t−1 + ηtzt − ηtbt, (E.2.6)

where

zt = g(θt−1)− ĝt(θt−1), (E.2.7)

bt = g(θt−1)− g(θ⋆)− h(θ⋆) ·∆t−1. (E.2.8)

164

Here, zt (E.2.7) can be considered as the gradient noise. Note that zt is a martingale difference

sequence since E (zt) = 0, which plays a vital role in the proof. To obtain sharp high-probability

bounds, we study the detailed structure of the martingale differences and use inequalities that are

nearly sharp under our assumptions. The proof is based on the arguments used in [193, 175, 181].

In the following, we sketch the proof of our main results under the step size regime ηt = η0t
−α

with α ∈ (0, 1). From (E.2.6) we can represent (∆t)t≥1 as

∆t =
t∏

ℓ=1

(Id − ηℓAℓ)∆0 +
t∑

m=1

t∏
ℓ=m+1

(Id − ηℓAℓ) ηmzm −
t∑

m=1

t∏
ℓ=m+1

(Id − ηℓAℓ) ηmbm (E.2.9)

Let ST = T
(
θ̄T − θ

)
=
∑T

t=1∆t which is further decomposed as ST = S⋆
T + Sz

T + Sb
T , where

S⋆
T =

T∑
t=1

t∏
ℓ=1

(Id − ηℓAℓ)∆0, (E.2.10)

Sz
T =

T∑
t=1

t∑
m=1

t∏
ℓ=m+1

(Id − ηℓAℓ) ηmzm, (E.2.11)

Sb
T =

T∑
t=1

t∑
m=1

t∏
ℓ=m+1

(Id − ηℓAℓ) ηmbm. (E.2.12)

To bound the target ω⊤ST/T for any ω ∈ Sd−1, we deal with S⋆
T , Sz

T and Sb
T separately, which

is illustrated in the following three lemmas. Before lemmas, we begin with an assumption that will

be used in lemmas and helpful to the proof.

Lemma 20 Recall the definition of Ψχ,α (6.4). For any vector ω ∈ Sd−1 and x > 0, we have

P
(∣∣ω⊤S⋆

T

∣∣ > x
)
≤
∥θ0 − θ⋆∥2Ψµη0/2,α

x

Proof: Please refer to Appendix E.4 for details. □

Lemma 21 Under Assumptions 2, 3, and 4, for any vector ω ∈ Sd−1 and x > 0, we have

P
(∣∣ω⊤Sz

T

∣∣ > x
)
≤ 2 exp

(
−
C ′

χ,αBµ
2x2

4Tσ2

)
,

where C ′
χ,α ≍ C−2

χ,α and Cχ,α is defined in (6.4) with χ = µη0/2 and σ > 0 denotes the standard

deviation of noise in Assumption 3.

165

Proof: Please refer to Appendix E.5 for details. □

Lemma 22 Under Assumptions 2, 3, and 4, for any vector ω ∈ Sd−1, α ∈ (0, 1) and x > 0, we

have

P

(
ω⊤Sb

T > x+
2Cµη0/2,αLH

µ3

T∑
m=1

m−2α

)
≤ 2 exp

{
−
C ′

χ,αz
2µ3

4TL2
H

}
,

where Cχ,α is defined in (6.4) with χ = µη0/2, and C ′
χ,α ≍ C−2

χ,α.

Proof: Please refer to Appendix E.6 for details. □

Combining Lemma 20 - 22, we observe that for any ω ∈ Sd−1, x > 0 and α = 1/2, we have

P
(∣∣ω⊤ (θ̄T − θ⋆)∣∣ > x+

10Cµη0/2,αLH

µ3
√
T

)
≤
∥θ0 − θ⋆∥2Ψµη0/2,α

Tx
+ 2 exp

(
−
C ′

µη0/2,α
TBµ2x2

4σ2

)
+ 2 exp

(
−
C ′

µη0/2,α
Tx2µ3

4L2
H

)
(E.2.13)

For any x ≳ T−1/2, we have

∥θ0 − θ⋆∥2Ψµη0/2,α

Tx
≤ exp

(
−
C ′

µη0/2,α
Tx2µ3

4L2
H

)
(E.2.14)

as long as ∥θ0 − θ⋆∥2 ≤ 2
√
T exp

(
−

C′
µη0/2,α

µ3

4L2
H

)
/Ψµη0/2,α, which is a mild condition on θ0.

Consequently, (E.2.13) implies that

P
(∣∣ω⊤ (θ̄T − θ⋆)∣∣ > x+

10Cµη0/2,αLH

µ3
√
T

)
≤ 2 exp

(
−
C ′

µη0/2,α
TBµ2x2

4σ2

)

+ 4 exp

(
−
C ′

µη0/2,α
Tx2µ3

4L2
H

)
. (E.2.15)

By choosing

x = O

(√
d

T
log

(
d

δ

))
,

166

we have
x√
d
≍

10Cµη0/2,αLH

µ3
√
T

.

Together with P
(∥∥θ̄T − θ⋆∥∥2 > 2x

)
≤
∑d

j=1 P
(∣∣θ̄T,j − θ⋆,j∣∣ > x√

d
+

10Cµη0/2,α
LH

µ3
√
T

)
, it implies that

P
(∥∥θ̄T − θ⋆∥∥2 > 2x

)
≤2d exp

(
−
C ′

µη0/2,α
TBµ2x2

4dσ2

)
+ 4d exp

(
−
C ′

µη0/2,α
Tx2µ3

4dL2
H

)
. (E.2.16)

By choosing B ≥ µσ2/L2
H , we have

exp

(
−
C ′

µη0/2,α
TBµ2x2

4dσ2

)
≤ exp

(
−
C ′

µη0/2,α
Tx2µ3

4dL2
H

)
.

Thus, inequality (E.2.16) can be rearranged to

P
(∥∥θ̄T − θ⋆∥∥2 > 2x

)
≤ 6d exp

(
−
C ′

µη0/2,α
Tx2µ3

4dL2
H

)
(E.2.17)

By choosing

x = C ′′
µη0/2,α

√
4dL2

H

Tµ3
log

(
1

δ

)
,

we get ∥∥θ̄T − θ⋆∥∥2 ≤ C ′′
µη0/2,α

√
16dL2

H

Tµ3
log

(
T 2

δ

)
,

with probability at least 1 − δ/T 2, where C ′′
χ,α ≍ Cχ,α and Cχ,α is defined in (6.4). Finally, we

apply a union bound to arrive at

∥∥θ̄t − θ⋆∥∥2 ≤ C ′′
χ,α

√
16dL2

H

tµ3
log

(
t

δ

)
, (E.2.18)

for ∀ t ∈ [N] and C ′′
χ,α ≍ Cχ,α where χ = µη0/2, with probability at least 1− δ.

E.3 Proof of Lemma 5

In this section, we prove that ∀t ∈ N the set At (4.3) contains the optimal action x∗ with high

probability.

167

1. For t = 0, A0 = D, thus x∗ ∈ At is satisfied obviously.

2. For t ≥ 1, let xtmax = argmaxa∈At−1 r(θ̄t−1, a) we have

r(θ̄t−1, x
t
max)− r(θ̄t−1, x

∗) = r(θ̄t−1, x
t
max)− r(θ⋆, x∗) + r(θ⋆, x

∗)− r(θ̄t−1, x
∗)

≤ r(θ̄t−1, x
t
max)− r(θ⋆, xtmax) + r(θ⋆, x

∗)− r(θ̄t−1, x
∗)

≤ |r(θ̄t−1, x
t
max)− r(θ⋆, xtmax)|+ |r(θ⋆, x∗)− r(θ̄t−1, x

∗)|
(a)

≤
∥∥θ̄t−1 − θ⋆

∥∥
2
· L+

∥∥θ̄t−1 − θ⋆
∥∥
2
· L

= 2L ·
∥∥θ̄t−1 − θ⋆

∥∥
2

(b)

≤ 2Lβt−1 (E.3.1)

Here, step (a) comes from the first condition in Assumption 4 and step (b) is based on (6.9)

derived from Lemma 4. From (E.3.1), we know that x∗ ∈ At.

By combining the above two cases, we complete the proof.

E.4 Proof of Lemma 20

In this section, we prove the tail bound on the quantity |ω⊤S⋆
T | with S⋆

T (E.2.10). First, we can

bound ∥Id − ηℓAℓ∥ by

∥Id − ηℓAℓ∥
(a)

≤ 1− µηℓ +
µ

2
ηℓ

= 1− µ

2
ηℓ, (E.4.1)

for each ℓ ≥ 1, where step (a) comes from Assumption 4. Consequently, by the triangle inequality,

we have ∣∣ω⊤S⋆
T

∣∣ ≤ ∥θ0 − θ⋆∥2 T∑
t=1

t∏
ℓ=1

(
1− µ

2
ηℓ

)
≤ ∥θ0 − θ⋆∥2Ψµ

2
η0,α,

where Ψχ,α is defined in (6.4). Then, based on Markov’s inequality, it arrives at

P
(∣∣ω⊤S⋆

T

∣∣ > x
)
≤
∥θ0 − θ⋆∥2Ψµη0/2,α

x
.

168

E.5 Proof of Lemma 21

In this section, we prove the tail bound on the quantity |ω⊤Sz
T | with Sz

T (E.2.11).

Recall that Sz
T =

∑T
t=1

∑t
m=1

∏t
ℓ=m+1 (Id − ηℓAℓ) ηmzm, where zm = g(θm−1) − ĝm(θm−1).

For any ω ∈ Sd−1,

ω⊤Sz
T =

1

B

T∑
m=1

mB∑
i=(m−1)B+1

ηmω
⊤Hm (∇f(θt−1)−∇ℓi(θt−1)) ,

where Hm =
T∑

t=m+1

t∏
ℓ=m+1

(Id − ηℓAℓ) .

Thus, ω⊤Sz
T is a sum of independent zero-mean random variables conditional on

Fx,n = S {x1, x2, . . . , xn}

where n = TB. We denote S as σ-algebra to avoid confusion of noise-related parameter σ. For

x > 0, by Chernoff-Hoeffding inequality in Lemma 24, we have

P
(∣∣ω⊤Sz

T

∣∣ > x | Fx,n

)
≤ 2 exp

(
−B

2x2

DT

)
, (E.5.1)

where

DT = σ2

T∑
m=1

mB∑
i=(m−1)B+1

η2mω
⊤HmH

⊤
mω

= Bσ2

T∑
m=1

η2mω
⊤HmH

⊤
mω =: Bσ2

T∑
m=1

η2mξm. (E.5.2)

To complete the proof, we need to bound the DT in (E.5.1) conditional on

Fx,n = S {x1, x2, . . . , xn} ,

which is presented in the following lemma.

Lemma 23 For z > 0, we have

P (|DT − E (DT)| > z) ≤ 2 exp

{
−Cz

2µ4

TB2

}
where C > 0 depends on the convexity parameter µ, α, and the initial step size η0.

169

Proof: Please refer to Appendix E.7 for details. □

Thus, by Lemma 23, we have

P
(
DT > E (DT) +

x2

log x

)
≤ exp

{
− Cx4µ4

(log x)2TB2

}
.

By a similar argument as that of (E.7.17), we get E (DT) ≤ C2
µη0/2,α

TBσ2/µ2. Hence, we have

P
(∣∣ω⊤Sz

T

∣∣ > x
)
≤ 2 exp

(
−Bx2µ2

C2
µη0/2,α

Tσ2 + x2/ log x

)
≤ 2 exp

(
−
C ′

χ,αBx
2µ2

4Tσ2

)
,

where C ′
χ,α ≍ C−2

χ,α is positive constant depending on with χ = µη0/2 and α.

E.6 Proof of Lemma 22

In this section, we prove the tail bound on the quantity |ω⊤Sb
T | with Sb

T (E.2.12).

Recall that Sb
T =

∑T
t=1

∑t
m=1

∏t
ℓ=m+1 (Id − ηℓAℓ) ηmbm where bm = g(θt−1)−g(θ⋆)−h(θ⋆) ·

∆m−1 with h(θ⋆) = E[∇2ℓi(θ⋆)]. For any ω ∈ Sd−1,

|ω⊤Sb
T | =

∣∣∣∣∣
T∑

m=1

ηmω
⊤Hmbm

∣∣∣∣∣ (a)≤
∣∣∣∣ηmω⊤Hmω ·

LH

2
∥∆m−1∥2

∣∣∣∣ , (E.6.1)

where Hm =
∑T

t=m+1

∏t
ℓ=m+1 (Id − ηℓAℓ) , and step (a) comes from (6.1) in Assumption 4. Thus,

we turn to bound

Db :=
T∑

m=1

ηmω
⊤Hmωm ·

LH

2
∥∆m−1∥22 :=

T∑
m=1

ηmζm, (E.6.2)

Thus, Db is a sum of random variables. We need to address the dependence between {Aℓ} inHm. To

achieve this, we utilize the same argument as that of Lemma 23 and introduce the K-approximation

of Db as

Db,K =
T∑

m=1

ηmE (ξm | GA,m+K) , (E.6.3)

170

where GA,k = S {A1, A2, . . . , Ak} for ∀k ≥ 1. Note that Db,K is the sum of independent random

variables, and E (Db) = E (Db,K). Thus, |Db − E (Db)| can be bounded by

P (|Db − E (Db)| > z) ≤ P (|Db −Db,K | > z/2)︸ ︷︷ ︸
J1

+P (|Db,K − E (Db,K)| > z/2)︸ ︷︷ ︸
J2

. (E.6.4)

• Proof of J1 Recall the projection operator defined in (E.7.6)

PA,k(·) = E (· | GA,k)− E (· | GA,k−1) ,

and Hm/k defined in (E.7.7), i.e.,

Hm/k = H (Am+1, Am+2, . . . , Ak−1, A
⋆
k, Ak+1, . . . , AT) ,

for ∀m+ 1 ≤ k ≤ T .

From ζm := ω⊤Hmω
LH

2
· ∥∆m−1∥22, we have

PA,k (ζm)

=
LH

2

[
E
(
ω⊤Hmω ∥∆m−1∥22 | GA,k

)
− E

(
ω⊤Hmω ∥∆m−1∥22 | GA,k−1

)]
=
LH

2

[
E
(
ω⊤Hmω ∥∆m−1∥22 | S {A1, A2, . . . , Ak}

)
− E

(
ω⊤Hmω ∥∆m−1∥22 | S {A1, A2, . . . , Ak−1}

)]
=
LH

2

[
EAk+1,...,AT

(
ω⊤Hmω ∥∆m−1∥22 | A1, . . . , Ak

)
− EAk+1,...,AT

[
EAk

(
ω⊤Hmω ∥∆m−1∥22 | A1, . . . , Ak−1

)]]
=
LH

2

(
EA⋆

k

[
EAk+1,...,AT

(
ω⊤ (Hm −Hm/k

)
ω ∥∆m−1∥22 | A1, . . . , Ak

)])
:=
LH

2
· E
[
ω⊤ (Hm −Hm/k

)
ω · ∥∆m−1∥22

]
(E.6.5)

Consequently, we can bound |PA,k (ζm) | by

|PA,k (ζm) | ≤
LH

2
E
[∣∣Hm −Hm/k

∣∣] · E[∥∆m−1∥22]
(a)

≤ SLHηk

4
Cηm−1

∫ ∞

k

exp

(
−µη0

2

∫ z

m+1

x−αdx

)
dz

(b)

≤ SLHCη
2
m

4
Ψµη0/2,α (E.6.6)

171

which step (a) comes from (E.7.11), Assumption 2 and E[∥θt − θ⋆∥22] ≤
C
µ
ηt with C > 0 in

Lemma 25. Moreover, step (b) is based on (6.4).

Consequently, we have

|Db −Db,K | =

∣∣∣∣∣
T∑

m=1

ηmE (ζm | GA,T)−
T∑

m=1

ηmE (ζm | GA,m+K)

∣∣∣∣∣
=

∣∣∣∣∣
T∑

m=1

ηm

T−h∑
h=K+1

PA,m+h (ζm)

∣∣∣∣∣
≤

T−1∑
h=K+1

{
T−h∑
m=1

ηm ∥PA,m+h (ζm)∥2
}1/2

≤SLHCT
1+α

(µ/2)2 ·Kα
exp

(
− µη0K

2α+1Tα

)
(a)

≤Cµη0/2,α · T− 1
2 , (E.6.7)

where step (a) can be derived by choosing

K ≍ (
4SLH

µ2η0
) log

(
ST 1+α/µ

)
.

Then, based on Markov’s inequality, it arrives at

P (|Db −Db,K | > z/2) ≤
2Cµη0/2,α

zT 1/2
. (E.6.8)

• Proof of J2

Based on Chernoff-Hoeffding inequality in Lemma 24, we have

P (|Db,K − E (Db,K)| > z/2) ≤ 2 exp

(
−2(z/2)2∑T

m=1

(
ηmE

∣∣ω⊤Hmω
LH

2
∥∆m−1∥22

∣∣)2
)

(E.6.9)

Based on (E.7.12) and (E.6.3) and Lemma 25, we can bound

T∑
m=1

η2mE
∣∣∣∣ω⊤Hmω

LH

2
∥∆m−1∥22

∣∣∣∣2

172

by

T∑
m=1

η2mE
∣∣∣∣ω⊤Hmω

LH

2
∥∆m−1∥22

∣∣∣∣2 ≤ T∑
m=1

η2m
L2
H

4
· E(∥Hm∥2)E[∥∆m−1∥22]

≤
T∑

m=1

η2m
L2
H

4
· E(∥Hm∥2)

C

µ
ηm−1

≤
C2

µη0/2,α
TL2

H

4(µ/2)3
= 2C2

µη0/2,α
TL2

H/µ
3. (E.6.10)

Combining (E.6.9) and (E.6.10), we conclude

P (|Db,K − E (Db,K)| > z/2) ≤ 2 exp

{
−
C ′

χ,αz
2µ3

4TL2
H

}
, (E.6.11)

where C ′
χ,α ≍ C−2

χ,α are positive constants depending on χ = µη0/2 and α.

Together with (E.6.8) and (E.6.11), we complete the proof via

P (|Db − E (Db)| > z) ≤
2Cµη0/2,α

zT 1/2
+ 2 exp

{
−
C ′

µη0/2,α
z2µ3

4TL2
H

}
≤ 4 exp

{
−
C ′

µη0/2,α
z2µ3

4TL2
H

}
,

(E.6.12)

where the last inequality can be satisfied. Hence, we get

P (Db > E (Db) + z) ≤ 2 exp

{
−
C ′

µη0/2,α
z2µ3

4TL2
H

}
.

To complete the proof, we remain to bound E (Db). Based on Lemma 25, we have

E (Db) =
T∑

m=1

ηmE
(
ω⊤Hmω

LH

2
∥∆m−1∥22

)
≤

T∑
m=1

LH

2
ηm · E (∥Hm∥)E(∥∆m−1∥22)

≤ LH

2

C

µ
· Cµη0/2,α ·

T∑
m=1

(m−α · 2
µ
)2

=
2Cµη0/2,αLH

µ3

T∑
m=1

m−2α. (E.6.13)

173

E.7 Proof of Lemma 23

Recall that

DT = Bσ2

T∑
m=1

η2mω
⊤HmH

⊤
mω =: Bσ2

T∑
m=1

η2mξm, (E.7.1)

where Hm =
T∑

t=m+1

t∏
ℓ=m+1

(Id − ηℓAℓ) , and (E.7.2)

Aℓ =
1

B

ℓB∑
i=(ℓ−1)B+1

∇2ℓi(θ⋆). (E.7.3)

To bound (E.7.1), we need to address the dependence between {Aℓ} in Hm (E.7.2). To achieve this,

we introduce the G-approximation of DT as

DT,G = Bσ2

T∑
m=1

η2mE (ξm | GA,m+G) , (E.7.4)

where GA,k = S {A1, A2, . . . , Ak} for ∀k ≥ 1. Note that DT,G is the sum of independent random

variables, and E (DT) = E (DT,G). Thus, |DT − E (DT)| can be alternatively bounded by

P (|DT − E (DT)| > z) ≤ P (|DT −DT,G| > z/2)︸ ︷︷ ︸
J1

+P (|DT,G − E (DT,G)| > z/2)︸ ︷︷ ︸
J2

. (E.7.5)

• Proof of J1

First, we define the projection operator

PA,k(·) = E (· | GA,k)− E (· | GA,k−1) , (E.7.6)

and denote Hm = H (Am+1, Am+2, . . . , AT). For ∀m+ 1 ≤ k ≤ T , define

Hm/k = H (Am+1, Am+2, . . . , Ak−1, A
⋆
k, Ak+1, . . . , AT) , (E.7.7)

where A⋆
t are i.i.d. random matrix with A⋆

t having the same distribution as At for t ≥ 1. Note

that

Hm −Hm/k =
T∑

j=k

k−1∏
ℓ=m+1

(Id − ηℓAℓ)

j∏
ℓ=k+1

(Id − ηℓAℓ) ηk (Ak − A⋆
k) . (E.7.8)

174

From ξm := ω⊤HmH
⊤
mω, (E.7.6) and (E.7.8), we have

PA,k (ξm) = E
(
ω⊤HmH

⊤
mω | GA,k

)
− E

(
ω⊤HmH

⊤
mω | GA,k−1

)
= E

(
ω⊤HmH

⊤
mω | S {A1, A2, . . . , Ak}

)
− E

(
ω⊤HmH

⊤
mω | S {A1, A2, . . . , Ak−1}

)
= EAk+1,...,AT

(
ω⊤HmH

⊤
mω | A1, . . . , Ak

)
− EAk+1,...,AT

[
EAk

(
ω⊤HmH

⊤
mω | A1, . . . , Ak−1

)]
= EA⋆

k

[
EAk+1,...,AT

(
ω⊤HmH

⊤
mω − ω⊤Hm/kH

⊤
m/kω | A1, . . . , Ak

)]
= EA⋆

k

[
EAk+1,...,AT

[(
ω⊤H1/2

m − ω⊤H
1/2
m/k

)
(
ω⊤H1/2

m + ω⊤H
1/2
m/k

) ∣∣∣∣A1, . . . , Ak

]]
= EA⋆

k

[
EAk+1,...,AT

[
ω⊤ (Hm +Hm/k

) (
Hm −Hm/k

)⊤
ω

∣∣∣∣A1, . . . , Ak

]]
:= E

[
ω⊤ (Hm +Hm/k

) (
Hm −Hm/k

)⊤
ω
]

(E.7.9)

Consequently, we can bound |PA,k (ξm) | by

|PA,k (ξm) | ≤ 2E
[∥∥Hm −Hm/k

∥∥ · ∥Hm∥
]

(a)

≤ µηk · E (∥Hm∥)
∫ ∞

k

exp

(
−µη0

2

∫ z

m+1

x−αdx

)
dz. (E.7.10)

Here, step (a) is derived from the fact that

E
(∥∥Hm −Hm/k

∥∥) ≤ T∑
j=k

ηk ∥Ak − Σk∥
j∏

ℓ=m+1

(
1− µ

2
ηℓ

)
≤µ
2
ηk

∫ ∞

k

exp

(
−µ
2
η0

∫ z

m+1

x−αdx

)
dz, (E.7.11)

where the first inequality is based on (E.4.1). We further bound E (∥Hm∥) by

E (∥Hm∥) = E

(∥∥∥∥∥
T∑

t=m+1

t∏
ℓ=m+1

(Id − ηℓAℓ)

∥∥∥∥∥
)

≤
∫ ∞

m+1

exp

(
−µ
2
η0

∫ z

m+1

x−αdx

)
dz

(a)

≤ Ψµη0/2,α

(b)

≤ Cµη0/2,α (E.7.12)

175

where steps (a) and (b) are based on (6.4). Combining (E.7.14), (E.7.10) and (E.7.12), we

have

|DT −DT,G| =

∣∣∣∣∣Bσ2

T∑
m=1

η2mE (ξm | GA,T)−Bσ2

T∑
m=1

η2mE (ξm | GA,m+G)

∣∣∣∣∣
=

∣∣∣∣∣Bσ2

T∑
m=1

η2m

T−h∑
h=G+1

PA,m+h (ξm)

∣∣∣∣∣
≤Bσ2

T−1∑
h=G+1

{
T−h∑
m=1

η2m ∥PA,m+h (ξm)∥2
}1/2

(a)

≤
4Cµη0/2,αBσ

2T 1+α

µ2Gα
exp

(
− µη0G

2α+1Tα

)
(b)

≤Cµη0/2,αT
−1/2, (E.7.13)

where step (a) comes from (E.7.10), (E.7.11), and (E.7.12), and step (b) is derived by choosing

G as

G ≍ 2Tα

λη0
log

(
4Bσ2T 1+α

µ2

)
(E.7.14)

Then, based on Markov’s inequality, it arrives at

P (|DT −DT,G| > z/2) ≤
2Cµη0/2,α

zT 1/2
. (E.7.15)

• Proof of J2

Based on Chernoff-Hoeffding inequality in Lemma 24, we have

P (|DT,G − E (DT,G)| > z/2) ≤ 2 exp

 −2(z/2)2

(Bσ2)2
∑T

m=1

(
η2mE |ω⊤Hm|2

)2
 . (E.7.16)

Based on (E.7.4) and (E.7.12), we can bound
∑T

m=1 η
4
mE
∣∣ω⊤Hm

∣∣4 by

T∑
m=1

η4mE
∣∣ω⊤Hm

∣∣4 ≤ T∑
m=1

η4m · E(∥Hm∥4) ≤
16C4

µη0/2,α
T

µ4
. (E.7.17)

176

Combining (E.7.16) and (E.7.17), we conclude

P (|DT,G − E (DT,G)| > z/2) ≤ 2 exp

{
−C̃χ,αz

2µ4

TB2

}
, (E.7.18)

where C̃χ,α > 0 depends on χ = µη0/2 and α.

Together with (E.7.15) and (E.7.18), we complete the proof via

P (|DT − E (DT)| > z) ≤
2Cµη0/2,α

zT 1/2
+ 2 exp

{
−C̃χ,αz

2µ4

TB2

}
≤ 2 exp

{
−Cz

2µ4

TB2

}
, (E.7.19)

where C > 0 depends on µ, α, and the initial step size η0.

E.8 Proof of Proposition 1

In this section, we derive the regret bound for the proposed algorithm.

1. At the first round, for all xi ∈ At, regret regi = r(θ⋆, x
∗)− r(θ⋆, xi) ≤ 2SL.

2. At t-th (t ≥ 2) round, for all xi ∈ At, regret regi = r(θ⋆, x
∗)− r(θ⋆, xi) can be bounded by

regi = r(θ⋆, x
∗)− r(θ⋆, xi)− Lβt−1 − Lβt−1 + 2Lβt−1

= r(θ⋆, x
∗)− Lβt−1 − (r(θ⋆, xi) + Lβt−1) + 2Lβt−1

(a)

≤ r(θ⋆, x
∗)− r(θ̄t−1, xi) + 2Lβt−1

(b)

≤ r(θ̄t−1, x
t
max)− r(θt−1, xi) + 2Lβt−1

(c)

≤ 2Lβt−1 + 2Lβt−1

≤ 4Lβt−1 (E.8.1)

Here, step (a) comes from |r(θ̄t−1, x)− r(θ⋆, x)| ≤ Lβt−1 based on (6.9)∥∥θ̄t − θ⋆∥∥2 ≤ βt, (E.8.2)

177

and the first condition in Assumption 4, step (b) is due to xtmax = argmaxa∈At r(θ̄t−1, a), and

step (c) is based on the fact xi ∈ At.

Thus, by selecting βt (6.5), with probability at least 1− δ, we get

Reg(TB) =
T∑
t=2

tB∑
i=(t−1)B+1

regi ≤ 4Lβt−1 = 4BLC ′′
χ,α

√
16dL2

H

µ3
log

(
TB

δ

)
·

T∑
t=2

1√
t

(a)

≤ 32
√
BLCχ,α

√
dL2

HTB

µ3
log

(
TB

δ

)
(b)

≤ 32 · σC ′′
χ,αdL

√
TB

µ2
log

(
TB

δ

)
. (E.8.3)

Here, step (a) comes from the fact that
∑T

t=2
1√
t
≤ 2
√
T , and step (b) is derived by setting

the batch-size as B = µσ2d/L2
H .

Combining the above two cases, we finally get

Reg(n) = B · 2SL+
T∑
t=2

tB∑
i=(t−1)B+1

regi

≤ 2µσ2SLd

L2
H

+ 32 · σC ′′
χ,αdL

√
n

µ2
log
(n
δ

)
(E.8.4)

where for n = TB and B = µσ2d/L2
H .

E.9 Technical Lemmas

In this section, we summarize several technical lemmas that support the proof.

Lemma 24 (Chernoff-Hoeffding Inequality) Consider a set of r independent random variables

{x1, . . . , xr}. If we know ai ≤ xi ≤ bi, then let vi = bi − ai. Let M =
∑r

i=1 xi. Then for any

α ∈ (0, 1/2)

P[|M −E[M]| > α] ≤ 2 exp

(
−2α2∑r
i=1 v

2
i

)
, and

P[M −E[M] > α] ≤ exp

(
−2α2∑r
i=1 v

2
i

)
.

178

Lemma 25 For some C > 0, we have E[∥θt − θ⋆∥22] ≤
C
µ
ηt.

Proof: For i ∈ [(t−1)B+1, tB], let∇ℓi(θt) denote the sub-optimality ℓi(θt)−E[ℓi(θ⋆)]. According

to the second-order Taylor approximation, we have

ℓi(θt) =ℓi(θt−1 − ηtĝt (θt−1))

=ℓi(θt−1)− ηt∇ℓi(θt−1)
⊤ĝt (θt−1) +

η2t
2
ĝt (θt−1)

⊤∇2ℓi(θt−1)ĝt (θt−1)

(a)

≤ℓi(θt−1)− ηt∇ℓi(θt−1)
⊤ĝt (θt−1) +

LG

2
∥ηtĝt (θt−1)∥22 , (E.9.1)

where step (a) derives from LG-Lipschitz of loss function in Assumption 4.

Recall that g(θ) and ĝt(θ) are the gradient and stochastic gradient respectively in (E.2.2). From

(E.9.1), we have

E [∇ℓi(θt)] = E [ℓi(θt)− E[ℓi(θ⋆)]]

≤ E[∇ℓi(θt−1)]− ηt |∇f (θt−1)|2

+ E
[
LG

2
|ηtĝt (θt−1)|2

]
≤ E[∇ℓi(θt−1)]− ηt |∇f (θt−1)|2

+
LGηt

2 |g (θt−1)|2

2

+
LGη

2
t

2
E
[
|g(θt−1)− ĝt(θt−1)|2

]
≤ E[∇ℓi(θt−1)]− ηt · 2µE[∇ℓi(θt−1)]

+
LGη

2
t · 2LGE[∇ℓi(θt−1)]

2

+
LGη

2
t

2
· c′
(
|θt−1 − θ⋆|2

)
≤ E[∇ℓi(θt−1)]− ηt · 2µE[∇ℓi(θt−1)]

+
LGη

2
t · 2LGE[∇ℓi(θt−1)]

2

+
c′LGη

2
t

2
· 4S2, (E.9.2)

179

where step (a) comes from the inequalities

2µ (f(θ)− E[ℓi(θ⋆)]) ≤ ∥∇ℓi(θ)∥22 ≤ 2LG (ℓi(θ)− E[ℓi(θ⋆)]) ,

and step (b) comes from ∥θ⋆∥2 ≤ S in Assumption 2. Rearranging the inequality (E.9.2), we get

E [∇ℓi(θt)] ≤
(
1 + L2

Gη
2
t − 2µηt

)
E[∇ℓi(θt−1)] + 2LGS

2 · η2t , (E.9.3)

which is equivalent to

E [∇ℓi(θt)]
ηt

≤ ηt−1 (1 + L2
Gη

2
t − 2µηt)

ηt

E[∇ℓi(θt−1)]

ηt−1

+ 2LGS
2 · ηt

(a)

≤ ηt−1 (1− µηt)
ηt

E[∇ℓi(θt−1)]

ηt−1

+ 2LGS
2 · ηt, (E.9.4)

where step (a) can be derived by L2
Gη

2
t ≤ µηt as ηt = η0t

−α → 0.

In the following, we verity that E [∇ℓi(θt)]/ηt converges with ηt = η0t
−α, i.e.,

sup1≤t≤∞
E [∇ℓi(θt)]

ηt
<∞, (E.9.5)

which is achieved by contradiction.

Suppose that sup1≤t≤∞E [∇ℓi(θt)]/ηt =∞. Consider a sequence {Bt} defined as

Bt =
ηt−1 (1− µηt)

ηt
Bt−1 + 2LGS

2ηt.

Note that Bt ≥ E [∇ℓi(θt)] /ηt for all l. Based on the assumption sup1≤t≤∞E [∇ℓi(θt)]/ηt = ∞,

we have sup1≤t≤∞Bt =∞. Now, we get

Bt =
ηt−1 (1− µηt)

ηt
Bt−1 + 2LGS

2ηt =

(
1 +

ηt−1 − ηt
ηt

)
(1− µηt)Bt−1 + 2LGS

2ηt

= (1− (µ− c) ηt)Bt−1 + 2LGS
2ηt

= Bt−1 −
[
(µ− c)Bt−1 − 2LGS

2
]
ηt, (E.9.6)

for some constant c > 0.

180

Thus, once Bt ≥ (1 + c)2LGS
2/µ for some t ∈ [n]. Thus this sequence can not diverge. By

contradiction, we verify (E.9.5) which is equivalent to

E[ℓi(θt)− E[ℓi(θ⋆)]] ≤
C

2
ηt, (E.9.7)

for some constant C > 0. According to strong convexity in Assumption 4, we have

E[ℓi(θt)− E[ℓi(θ⋆)]] ≥
µ

2
∥θt − θ⋆∥22 . (E.9.8)

Combining (E.9.7) and (E.9.8), it yields

E[∥θt − θ⋆∥22] ≤
C

µ
ηt, (E.9.9)

for some C > 0. □

E.10 Regret Result for Finite Actions

To better characterize the relationship between the regret bound and the number of actionsK := |D|,

we state the upper regret bound dependent on K in the following proposition.

Proposition 5 Under the same condition of Theorem 11, if the action space is finite with K := |D|,

Algorithm 7 achieves the following regret, with probability at least 1− δ,

Reg(n) ≤ 32C ′′
χ,α

√
ndKL2L2

H

µ3
log
(n
δ

)
,

where n = TB and C ′′
χ,α ≍ Cχ,α with Cχ,α defined in (6.4).

Define ∆i = r(θ⋆, x
∗)− r(θ⋆, xi). From (E.8.1), we conclude that a sub-optimal action xi ∈ D

is eliminated when

∆i = r(θ⋆, x
∗)− r(θ⋆, xi) ≥ 4Lβt (E.10.1)

holds with probability at least 1− δ. Equivalently, it reaches a time 2 ≤ ti ≤ n such that

ti ≥ (C ′′
χ,α)

2256dL
2L2

H

∆2
iµ

3
log
(n
δ

)
. (E.10.2)

181

Thus the regret concerning sub-optimal action xi is

regxi
≤ (C ′′

χ,α)
2256dL

2L2
H

∆iµ3
log
(n
δ

)
. (E.10.3)

To elude arbitrarily small ∆i in the denominator, we decompose the regret to actions into two parts:

action xi ∈ D with ∆i ≤ ∆ and action xi ∈ D with ∆i > ∆ where ∆ > 0. Combining these two

parts, we can get

Reg(n) ≤ n∆+ (C ′′
χ,α)

2256dKL
2L2

H

∆µ3
log
(n
δ

)
. (E.10.4)

By choosing ∆ = C ′′
χ,α

√
256dKL2L2

H

nµ3 log
(
n
δ

)
, we get the regret bound as

Reg(n) ≤ 32C ′′
χ,α

√
ndKL2L2

H

µ3
log
(n
δ

)
. (E.10.5)

E.11 Reward and Loss Functions for Different Models

Several reward functions and loss functions are presented in the following. Our paper includes but

is not limited to these examples.

• The function r(θ, x) = (θ⊤x)2 is 2 ∥x∥22-smooth with respect to θ ∈ Rd for a fixed x ∈ D

since∇θr(θ, x) = 2θ⊤x · x. The loss function of estimating θ can be given by

ℓi(θ) =
1

2n

(
(θ⊤xi)

2 − yi
)2

+
µ

2
∥θ∥22 (E.11.1)

for i ∈ [n] and µ > 0, which obeys Assumption 4.

• The function r(θ, x) = log
(
1 + eθ

⊤x
)

is 1
4
∥x∥22-smooth with respect to θ ∈ Rd for a fixed

x ∈ D since∇θr(θ, x) =
x

1+e−θ⊤x
and

∇2
θr(θ, x) =

e−θ⊤x · xx⊤(
1 + e−θ⊤x

)2 =
xx⊤(

1 + e−θ⊤x
) (

1 + eθ⊤x
) ⪯ 1

4
∥x∥22 Id.

The loss function of estimating θ can be given by

ℓi(θ) =
1

2n

(
log(1 + eθ

⊤x)− yi
)2

+
µ

2
∥θ∥22 (E.11.2)

for i ∈ [n] and µ > 0, which obeys Assumption 4.

182

• The loss functions in (E.11.1) and (E.11.2) are used for minimizing mean squared error (MSE)

between the prediction reward r(θ, xi) and the observation reward yi, where the regularized

terms ensure the strong convexity. Besides, mean squared error, there are other measurement

metrics such as mean squared logarithmic error (MSLE), i.e.,

1

2n

n∑
i=1

(log(yi)− log (r(θ, xi)))
2 , (E.11.3)

and the LogCosh loss [194], i.e.,

n∑
i=1

log

(
ezi + e−zi

2

)
, where zi = r(θ, xi)− yi, (E.11.4)

which computes the logarithm of the hyperbolic cosine of the prediction error. Corresponding

to different bandit models, loss functions satisfying Assumption 4 can be established via

choosing proper measurement metrics with the reasonable domain of parameters. Moreover,

regularized terms can guarantee strong convexity of loss functions.

183

REFERENCES

[1] J. Dong, D. Zheng, L. F. Yang, and G. Karypis, “Global neighbor sampling for mixed cpu-
gpu training on giant graphs,” in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 289–299, 2021.

[2] J. Dong and L. Yang, “Does sparsity help in learning misspecified linear bandits?,” in
International Conference on Machine Learning, pp. 8317–8333, PMLR, 2023.

[3] J. Dong, J. Wang, and L. F. Yang, “Delayed mdps with feature mapping,” in 2024 Interna-
tional Joint Conference on Neural Networks (IJCNN), IEEE, 2024.

[4] J. Dong, J. Wang, and L. F. Yang, “Provably correct sgd-based exploration for general-
ized stochastic bandit problem,” in 2024 International Conference on Smart Applications,
Communications and Networking (SmartNets), pp. 1–6, IEEE, 2024.

[5] J. Dong, B. Fatemi, B. Perozzi, L. F. Yang, and A. Tsitsulin, “Don’t forget to connect!
improving rag with graph-based reranking,” arXiv preprint arXiv:2405.18414, 2024.

[6] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-
works,” in 5th International Conference on Learning Representations (ICLR-17), 2017.

[7] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention
networks,” in 6th International Conference on Learning Representations (ICLR-18), 2018.

[8] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA,
pp. 1025–1035, 2017.

[9] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graphsaint: Graph sampling
based inductive learning method,” arXiv preprint arXiv:1907.04931, 2019.

[10] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph convolutional networks via
importance sampling,” in 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

[11] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu, “Layer-dependent importance sampling
for training deep and large graph convolutional networks,” in Advances in Neural Information
Processing Systems, pp. 11249–11259, 2019.

[12] Z. Liu, Z. Wu, Z. Zhang, J. Zhou, S. Yang, L. Song, and Y. Qi, “Bandit samplers for
training graph neural networks,” Advances in Neural Information Processing Systems, vol. 33,
pp. 6878–6888, 2020.

184

[13] M. Ramezani, W. Cong, M. Mahdavi, A. Sivasubramaniam, and M. Kandemir, “GCN meets
GPU: Decoupling “when to sample” from “how to sample”,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

[14] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y. Gai,
T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep graph library: A graph-centric,
highly-performant package for graph neural networks,” arXiv preprint arXiv:1909.01315,
2019.

[15] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch geometric,” CoRR,
vol. abs/1903.02428, 2019.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[17] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

[18] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang, and G. Karypis,
“DistDGL: Distributed graph neural network training for billion-scale graphs,” arXiv preprint
arXiv:2010.05337, 2020.

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional
transformers for language understanding,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), (Minneapolis, Minnesota), pp. 4171–4186,
Association for Computational Linguistics, June 2019.

[20] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec, “Open graph
benchmark: Datasets for machine learning on graphs,” arXiv preprint arXiv:2005.00687,
2020.

[21] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer: Extraction and mining
of academic social networks,” in Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, (New York, NY, USA), 2008.

[22] S. Siriwardhana, R. Weerasekera, E. Wen, T. Kaluarachchi, R. Rana, and S. Nanayakkara,
“Improving the domain adaptation of retrieval augmented generation (rag) models for open
domain question answering,” Transactions of the Association for Computational Linguistics,
vol. 11, pp. 1–17, 2023.

[23] E. M. Voorhees and D. M. Tice, “The TREC-8 question answering track,” in Proceedings
of the Second International Conference on Language Resources and Evaluation (LREC’00)
(M. Gavrilidou, G. Carayannis, S. Markantonatou, S. Piperidis, and G. Stainhauer, eds.),
(Athens, Greece), European Language Resources Association (ELRA), May 2000.

185

[24] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov, “RoBERTa: A robustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

[25] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and
L. Zettlemoyer, “BART: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension,” in Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, (Online), pp. 7871–7880, Association for
Computational Linguistics, July 2020.

[26] C. Wang, Z. Xu, Q. Guo, X. Hu, X. Bai, Z. Zhang, and Y. Zhang, “Exploiting Abstract
Meaning Representation for open-domain question answering,” in Findings of the Association
for Computational Linguistics: ACL 2023 (A. Rogers, J. Boyd-Graber, and N. Okazaki, eds.),
(Toronto, Canada), pp. 2083–2096, Association for Computational Linguistics, July 2023.

[27] D. Yu, C. Zhu, Y. Fang, W. Yu, S. Wang, Y. Xu, X. Ren, Y. Yang, and M. Zeng, “KG-FiD:
Infusing knowledge graph in fusion-in-decoder for open-domain question answering,” in
ACL, (Dublin, Ireland), pp. 4961–4974, Association for Computational Linguistics, May
2022.

[28] Google, R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shakeri,
E. Taropa, P. Bailey, Z. Chen, E. Chu, J. H. Clark, L. E. Shafey, Y. Huang, K. Meier-Hellstern,
G. Mishra, E. Moreira, M. Omernick, K. Robinson, S. Ruder, Y. Tay, K. Xiao, Y. Xu, Y. Zhang,
G. H. Abrego, J. Ahn, J. Austin, P. Barham, J. Botha, J. Bradbury, S. Brahma, K. Brooks,
M. Catasta, Y. Cheng, C. Cherry, C. A. Choquette-Choo, A. Chowdhery, C. Crepy, S. Dave,
M. Dehghani, S. Dev, J. Devlin, M. Dı́az, N. Du, E. Dyer, V. Feinberg, F. Feng, V. Fienber,
M. Freitag, X. Garcia, S. Gehrmann, L. Gonzalez, G. Gur-Ari, S. Hand, H. Hashemi,
L. Hou, J. Howland, A. Hu, J. Hui, J. Hurwitz, M. Isard, A. Ittycheriah, M. Jagielski, W. Jia,
K. Kenealy, M. Krikun, S. Kudugunta, C. Lan, K. Lee, B. Lee, E. Li, M. Li, W. Li, Y. Li,
J. Li, H. Lim, H. Lin, Z. Liu, F. Liu, M. Maggioni, A. Mahendru, J. Maynez, V. Misra,
M. Moussalem, Z. Nado, J. Nham, E. Ni, A. Nystrom, A. Parrish, M. Pellat, M. Polacek,
A. Polozov, R. Pope, S. Qiao, E. Reif, B. Richter, P. Riley, A. C. Ros, A. Roy, B. Saeta,
R. Samuel, R. Shelby, A. Slone, D. Smilkov, D. R. So, D. Sohn, S. Tokumine, D. Valter,
V. Vasudevan, K. Vodrahalli, X. Wang, P. Wang, Z. Wang, T. Wang, J. Wieting, Y. Wu, K. Xu,
Y. Xu, L. Xue, P. Yin, J. Yu, Q. Zhang, S. Zheng, C. Zheng, W. Zhou, D. Zhou, S. Petrov,
and Y. Wu, “Palm 2 technical report,” 2023.

[29] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t.
Yih, T. Rocktäschel, et al., “Retrieval-augmented generation for knowledge-intensive nlp
tasks,” NeurIPS, vol. 33, pp. 9459–9474, 2020.

[30] V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-t. Yih,
“Dense passage retrieval for open-domain question answering,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), (Online),
pp. 6769–6781, Association for Computational Linguistics, 2020.

186

[31] R. Nogueira, Z. Jiang, R. Pradeep, and J. Lin, “Document ranking with a pretrained sequence-
to-sequence model,” in Findings of the Association for Computational Linguistics: EMNLP
2020, pp. 708–718, 2020.

[32] R. Pradeep, Y. Liu, X. Zhang, Y. Li, A. Yates, and J. Lin, “Squeezing water from a stone: a
bag of tricks for further improving cross-encoder effectiveness for reranking,” in European
Conference on Information Retrieval, pp. 655–670, Springer, 2022.

[33] H. Zhuang, Z. Qin, R. Jagerman, K. Hui, J. Ma, J. Lu, J. Ni, X. Wang, and M. Bendersky,
“Rankt5: Fine-tuning T5 for text ranking with ranking losses,” in SIGIR, pp. 2308–2313,
2023.

[34] E. Park, S.-M. Lee, D. Seo, S. Kim, I. Kang, and S.-H. Na, “Rink: reader-inherited evidence
reranker for table-and-text open domain question answering,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 37-11, pp. 13446–13456, 2023.

[35] M. Ju, W. Yu, T. Zhao, C. Zhang, and Y. Ye, “GRAPE: Knowledge graph enhanced passage
reader for open-domain question answering,” in Findings of Empirical Methods in Natural
Language Processing, 2022.

[36] A. Asai, K. Hashimoto, H. Hajishirzi, R. Socher, and C. Xiong, “Learning to retrieve
reasoning paths over wikipedia graph for question answering,” in 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,
OpenReview.net, 2020.

[37] J. O. Costa and A. Kulkarni, “Leveraging knowledge graph for open-domain question
answering,” in 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI),
pp. 389–394, IEEE, 2018.

[38] L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob, K. Knight,
P. Koehn, M. Palmer, and N. Schneider, “Abstract Meaning Representation for sembanking,”
in Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse,
(Sofia, Bulgaria), pp. 178–186, Association for Computational Linguistics, Aug. 2013.

[39] X. Bai, Y. Chen, L. Song, and Y. Zhang, “Semantic representation for dialogue modeling,” in
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), (Online), pp. 4430–4445, Association for Computational Linguistics, Aug.
2021.

[40] T. Naseem, A. Blodgett, S. Kumaravel, T. J. O’Gorman, Y.-S. Lee, J. Flanigan, R. F. Astudillo,
R. Florian, S. Roukos, and N. Schneider, “DocAMR: Multi-sentence AMR representation
and evaluation,” in North American Chapter of the Association for Computational Linguistics,
2021.

[41] OpenAI, “ChatGPT.” https://openai.com/research/chatgpt.

187

https://openai.com/ research/chatgpt.

[42] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, et al., “Llama: Open and efficient foundation language
models,” arXiv preprint arXiv:2302.13971, 2023.

[43] OpenAI, “GPT-4.” https://openai.com/gpt-4.

[44] D. Huang, Z. Wei, A. Yue, X. Zhao, Z. Chen, R. Li, K. Jiang, B. Chang, Q. Zhang, S. Zhang,
et al., “DSQA-LLM: Domain-specific intelligent question answering based on large language
model,” in International Conference on AI-generated Content, pp. 170–180, Springer, 2023.

[45] X. Ma, L. Wang, N. Yang, F. Wei, and J. Lin, “Fine-tuning llama for multi-stage text
retrieval,” in Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2421–2425, 2024.

[46] C. Wang, S. Cheng, Z. Xu, B. Ding, Y. Wang, and Y. Zhang, “Evaluating open question
answering evaluation,” arXiv preprint arXiv:2305.12421, 2023.

[47] Y. Tan, D. Min, Y. Li, W. Li, N. Hu, Y. Chen, and G. Qi, “Can ChatGPT replace traditional
KBQA models? an in-depth analysis of the question answering performance of the GPT
LLM family,” in International Semantic Web Conference, pp. 348–367, Springer, 2023.

[48] G. Izacard and É. Grave, “Leveraging passage retrieval with generative models for open
domain question answering,” in Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume, pp. 874–880, 2021.

[49] X. Bai, Y. Chen, and Y. Zhang, “Graph pre-training for AMR parsing and generation,” in
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), (Dublin, Ireland), pp. 6001–6015, Association for Computational
Linguistics, May 2022.

[50] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein,
I. Polosukhin, J. Devlin, K. Lee, et al., “Natural questions: a benchmark for question
answering research,” Transactions of the Association for Computational Linguistics, vol. 7,
pp. 453–466, 2019.

[51] M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer, “TriviaQA: A large scale distantly supervised
challenge dataset for reading comprehension,” in Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers) (R. Barzilay
and M.-Y. Kan, eds.), (Vancouver, Canada), pp. 1601–1611, Association for Computational
Linguistics, July 2017.

[52] L. Gong and Q. Cheng, “Exploiting edge features for graph neural networks,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9211–9219,
2019.

188

https://openai.com/gpt-4

[53] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-
works,” in ICLR, 2017.

[54] Y. Li, Y. Song, and J. Luo, “Improving pairwise ranking for multi-label image classification,”
in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3617–
3625, 2017.

[55] Z. Li, X. Zhang, Y. Zhang, D. Long, P. Xie, and M. Zhang, “Towards general text embeddings
with multi-stage contrastive learning,” arXiv preprint arXiv:2308.03281, 2023.

[56] S. Xiao, Z. Liu, P. Zhang, N. Muennighoff, D. Lian, and J.-Y. Nie, “C-pack: Packaged
resources to advance general chinese embedding,” arXiv preprint arXiv:2309.07597, 2023.

[57] Z. Liu and Y. Shao, “RetroMAE: Pre-training retrieval-oriented transformers via masked
auto-encoder,” arXiv preprint arXiv:2205.12035, 2022.

[58] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al., “Huggingface’s transformers: State-of-the-art natural language process-
ing,” arXiv preprint arXiv:1910.03771, 2019.

[59] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
OpenReview.net, 2019.

[60] M. Glass, G. Rossiello, M. F. M. Chowdhury, A. Naik, P. Cai, and A. Gliozzo, “Re2G:
Retrieve, rerank, generate,” in Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
(Seattle, United States), pp. 2701–2715, Association for Computational Linguistics, July
2022.

[61] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez,
“Deep reinforcement learning for autonomous driving: A survey,” IEEE Transactions on
Intelligent Transportation Systems, 2021.

[62] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui,
G. Corrado, S. Thrun, and J. Dean, “A guide to deep learning in healthcare,” Nature medicine,
vol. 25, no. 1, pp. 24–29, 2019.

[63] D. Bouneffouf, A. Bouzeghoub, and A. L. Gançarski, “A contextual-bandit algorithm for mo-
bile context-aware recommender system,” in International conference on neural information
processing, pp. 324–331, Springer, 2012.

[64] E. M. Schwartz, E. T. Bradlow, and P. S. Fader, “Customer acquisition via display advertising
using multi-armed bandit experiments,” Marketing Science, vol. 36, no. 4, pp. 500–522,
2017.

189

[65] S. S. Du, S. M. Kakade, R. Wang, and L. F. Yang, “Is a good representation sufficient
for sample efficient reinforcement learning?,” in International Conference on Learning
Representations, 2020.

[66] T. Lattimore, C. Szepesvari, and G. Weisz, “Learning with good feature representations in
bandits and in rl with a generative model,” in International Conference on Machine Learning,
pp. 5662–5670, PMLR, 2020.

[67] P. Bühlmann and S. Van De Geer, Statistics for high-dimensional data: methods, theory and
applications. Springer Science & Business Media, 2011.

[68] M. J. Wainwright, High-dimensional statistics: A non-asymptotic viewpoint, vol. 48. Cam-
bridge University Press, 2019.

[69] V. Sivakumar, S. Wu, and A. Banerjee, “Structured linear contextual bandits: A sharp and
geometric smoothed analysis,” in International Conference on Machine Learning, pp. 9026–
9035, PMLR, 2020.

[70] Y. Abbasi-Yadkori, D. Pal, and C. Szepesvari, “Online-to-confidence-set conversions and
application to sparse stochastic bandits,” in Artificial Intelligence and Statistics, pp. 1–9,
PMLR, 2012.

[71] H. Bastani and M. Bayati, “Online decision making with high-dimensional covariates,”
Operations Research, vol. 68, no. 1, pp. 276–294, 2020.

[72] X. Wang, M. Wei, and T. Yao, “Minimax concave penalized multi-armed bandit model with
high-dimensional covariates,” in International Conference on Machine Learning, pp. 5200–
5208, PMLR, 2018.

[73] Y. Su, M. Dimakopoulou, A. Krishnamurthy, and M. Dudı́k, “Doubly robust off-policy
evaluation with shrinkage,” in International Conference on Machine Learning, pp. 9167–
9176, PMLR, 2020.

[74] T. Lattimore, K. Crammer, and C. Szepesvári, “Linear multi-resource allocation with semi-
bandit feedback,” Advances in Neural Information Processing Systems, vol. 28, 2015.

[75] A. Carpentier and R. Munos, “Bandit theory meets compressed sensing for high dimensional
stochastic linear bandit,” in Artificial Intelligence and Statistics, pp. 190–198, PMLR, 2012.

[76] I. Bogunovic and A. Krause, “Misspecified gaussian process bandit optimization,” Advances
in Neural Information Processing Systems, vol. 34, pp. 3004–3015, 2021.

[77] K. Takemura, S. Ito, D. Hatano, H. Sumita, T. Fukunaga, N. Kakimura, and K.-i.
Kawarabayashi, “A parameter-free algorithm for misspecified linear contextual bandits,”
in International Conference on Artificial Intelligence and Statistics, pp. 3367–3375, PMLR,
2021.

190

[78] A. Zanette, A. Lazaric, M. Kochenderfer, and E. Brunskill, “Learning near optimal poli-
cies with low inherent Bellman error,” in International Conference on Machine Learning,
pp. 10978–10989, PMLR, 2020.

[79] R. Wang, R. R. Salakhutdinov, and L. Yang, “Reinforcement learning with general value func-
tion approximation: Provably efficient approach via bounded Eluder dimension,” Advances
in Neural Information Processing Systems, vol. 33, pp. 6123–6135, 2020.

[80] Q. Ding, C.-J. Hsieh, and J. Sharpnack, “An efficient algorithm for generalized linear bandit:
Online stochastic gradient descent and thompson sampling,” in International Conference on
Artificial Intelligence and Statistics, pp. 1585–1593, PMLR, 2021.

[81] D. Russo and B. Van Roy, “Eluder dimension and the sample complexity of optimistic
exploration,” Advances in Neural Information Processing Systems, vol. 26, 2013.

[82] V. Dani, T. P. Hayes, and S. M. Kakade, “Stochastic linear optimization under bandit
feedback,” in COLT, pp. 355–366, 2008.

[83] W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual bandits with linear payoff functions,”
in Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pp. 208–214, 2011.

[84] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan, “Provably efficient reinforcement learning with
linear function approximation,” in Conference on Learning Theory, pp. 2137–2143, PMLR,
2020.

[85] Q. Cai, Z. Yang, C. Jin, and Z. Wang, “Provably efficient exploration in policy optimization,”
in International Conference on Machine Learning, pp. 1283–1294, PMLR, 2020.

[86] A. Zanette, A. Lazaric, M. J. Kochenderfer, and E. Brunskill, “Provably efficient reward-
agnostic navigation with linear value iteration,” Advances in Neural Information Processing
Systems, vol. 33, pp. 11756–11766, 2020.

[87] A. Agarwal, S. Kakade, A. Krishnamurthy, and W. Sun, “Flambe: Structural complexity
and representation learning of low rank MDPs,” Advances in neural information processing
systems, vol. 33, pp. 20095–20107, 2020.

[88] G. Neu and C. Pike-Burke, “A unifying view of optimism in episodic reinforcement learning,”
Advances in Neural Information Processing Systems, vol. 33, 2020.

[89] Y. Wang, R. Wang, S. S. Du, and A. Krishnamurthy, “Optimism in reinforcement learning
with generalized linear function approximation,” in International Conference on Learning
Representations, 2020.

[90] I. Osband and B. Van Roy, “Model-based reinforcement learning and the eluder dimension,”
Advances in Neural Information Processing Systems, vol. 27, 2014.

191

[91] N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire, “Contextual
decision processes with low Bellman rank are PAC-learnable,” in International Conference
on Machine Learning, pp. 1704–1713, PMLR, 2017.

[92] L. Li, Y. Lu, and D. Zhou, “Provably optimal algorithms for generalized linear contextual
bandits,” in Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 2071–2080, JMLR. org, 2017.

[93] B. Kveton, M. Zaheer, C. Szepesvari, L. Li, M. Ghavamzadeh, and C. Boutilier, “Random-
ized exploration in generalized linear bandits,” in International Conference on Artificial
Intelligence and Statistics, pp. 2066–2076, 2020.

[94] S. Filippi, O. Cappe, A. Garivier, and C. Szepesvári, “Parametric bandits: The generalized
linear case,” in Advances in Neural Information Processing Systems, pp. 586–594, 2010.

[95] K.-S. Jun, A. Bhargava, R. Nowak, and R. Willett, “Scalable generalized linear bandits:
Online computation and hashing,” in Advances in Neural Information Processing Systems,
pp. 99–109, 2017.

[96] D. Foster, A. Rakhlin, D. Simchi-Levi, and Y. Xu, “Instance-dependent complexity of contex-
tual bandits and reinforcement learning: A disagreement-based perspective,” in Conference
on Learning Theory, pp. 2059–2059, PMLR, 2021.

[97] D. J. Foster, C. Gentile, M. Mohri, and J. Zimmert, “Adapting to misspecification in contextual
bandits,” Advances in Neural Information Processing Systems, vol. 33, pp. 11478–11489,
2020.

[98] D. Vial, A. Parulekar, S. Shakkottai, and R. Srikant, “Improved algorithms for misspecified
linear markov decision processes,” in International Conference on Artificial Intelligence and
Statistics, pp. 4723–4746, PMLR, 2022.

[99] C.-Y. Wei, C. Dann, and J. Zimmert, “A model selection approach for corruption robust rein-
forcement learning,” in International Conference on Algorithmic Learning Theory, pp. 1043–
1096, PMLR, 2022.

[100] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge University Press, 2020.

[101] G.-S. Kim and M. C. Paik, “Doubly-robust lasso bandit,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[102] B. Hao, T. Lattimore, and M. Wang, “High-dimensional sparse linear bandits,” Advances in
Neural Information Processing Systems, vol. 33, pp. 10753–10763, 2020.

[103] J. Z. Kolter and A. Y. Ng, “Regularization and feature selection in least-squares temporal
difference learning,” in Proceedings of the 26th annual international conference on machine
learning, pp. 521–528, 2009.

192

[104] M. Geist and B. Scherrer, “ℓ1-penalized projected bellman residual,” in European Workshop
on Reinforcement Learning, pp. 89–101, Springer, 2012.

[105] C. Painter-Wakefield and R. Parr, “Greedy algorithms for sparse reinforcement learning,” in
Proceedings of the 29th International Coference on International Conference on Machine
Learning, pp. 867–874, 2012.

[106] B. Liu, S. Mahadevan, and J. Liu, “Regularized off-policy td-learning,” Advances in Neural
Information Processing Systems, vol. 25, 2012.

[107] M. Ghavamzadeh, A. Lazaric, R. Munos, and M. Hoffman, “Finite-sample analysis of
lasso-td,” in International Conference on Machine Learning, 2011.

[108] M. Geist, B. Scherrer, A. Lazaric, and M. Ghavamzadeh, “A dantzig selector approach
to temporal difference learning,” in Proceedings of the 29th International Coference on
International Conference on Machine Learning, pp. 347–354, 2012.

[109] B. Hao, Y. Duan, T. Lattimore, C. Szepesvári, and M. Wang, “Sparse feature selection makes
batch reinforcement learning more sample efficient,” in International Conference on Machine
Learning, pp. 4063–4073, PMLR, 2021.

[110] M. Ibrahimi, A. Javanmard, and B. Roy, “Efficient reinforcement learning for high dimen-
sional linear quadratic systems,” Advances in Neural Information Processing Systems, vol. 25,
2012.

[111] B. Hao, T. Lattimore, C. Szepesvári, and M. Wang, “Online sparse reinforcement learning,”
in International Conference on Artificial Intelligence and Statistics, pp. 316–324, PMLR,
2021.

[112] A. C.-C. Yao, “Probabilistic computations: Toward a unified measure of complexity,” in 18th
Annual Symposium on Foundations of Computer Science (sfcs 1977), pp. 222–227, IEEE
Computer Society, 1977.

[113] M. J. Todd, Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.

[114] W. B. Johnson and Lindenstrauss, “Extensions of lipschitz mappings into a hilbert space,”
Contemp. Math., vol. 26, pp. 189–206, 1984.

[115] D. M. Kane and J. Nelson, “Sparser johnson-lindenstrauss transforms,” Journal of the ACM
(JACM), vol. 61, no. 1, pp. 1–23, 2014.

[116] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[117] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” The
International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013.

193

[118] N. Li, D. W. Oyler, M. Zhang, Y. Yildiz, I. Kolmanovsky, and A. R. Girard, “Game theoretic
modeling of driver and vehicle interactions for verification and validation of autonomous
vehicle control systems,” IEEE Transactions on control systems technology, vol. 26, no. 5,
pp. 1782–1797, 2017.

[119] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct reinforcement learning for
financial signal representation and trading,” IEEE transactions on neural networks and
learning systems, vol. 28, no. 3, pp. 653–664, 2016.

[120] D. P. Bertsekas, “Feature-based aggregation and deep reinforcement learning: A survey and
some new implementations,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 1, pp. 1–31,
2018.

[121] A. Bar-Ilan and A. Sulem, “Explicit solution of inventory problems with delivery lags,”
Mathematics of Operations Research, vol. 20, no. 3, pp. 709–720, 1995.

[122] L. Dugard and E. I. Verriest, Stability and control of time-delay systems, vol. 228. Springer,
1998.

[123] J.-P. Richard, “Time-delay systems: an overview of some recent advances and open problems,”
automatica, vol. 39, no. 10, pp. 1667–1694, 2003.

[124] E. Fridman, Introduction to time-delay systems: Analysis and control. Springer, 2014.

[125] B. Bruder and H. Pham, “Impulse control problem on finite horizon with execution delay,”
Stochastic Processes and their Applications, vol. 119, no. 5, pp. 1436–1469, 2009.

[126] L. Yang and M. Wang, “Reinforcement learning in feature space: Matrix bandit, kernels, and
regret bound,” in International Conference on Machine Learning, pp. 10746–10756, PMLR,
2020.

[127] K. V. Katsikopoulos and S. E. Engelbrecht, “Markov decision processes with delays and
asynchronous cost collection,” IEEE transactions on automatic control, vol. 48, no. 4,
pp. 568–574, 2003.

[128] T. J. Walsh, A. Nouri, L. Li, and M. L. Littman, “Learning and planning in environments with
delayed feedback,” Autonomous Agents and Multi-Agent Systems, vol. 18, no. 1, pp. 83–105,
2009.

[129] P. Joulani, A. Gyorgy, and C. Szepesvári, “Online learning under delayed feedback,” in
International Conference on Machine Learning, pp. 1453–1461, 2013.

[130] J. S. Campbell, S. N. Givigi, and H. M. Schwartz, “Multiple model q-learning for stochastic
asynchronous rewards,” Journal of Intelligent & Robotic Systems, vol. 81, no. 3-4, pp. 407–
422, 2016.

194

[131] B. Chen, M. Xu, Z. Liu, L. Li, and D. Zhao, “Delay-aware multi-agent reinforcement
learning,” arXiv preprint arXiv:2005.05441, 2020.

[132] E. Derman, G. Dalal, and S. Mannor, “Acting in delayed environments with non-stationary
markov policies,” in International Conference on Learning Representations, 2021.

[133] T. Lancewicki, A. Rosenberg, and Y. Mansour, “Learning adversarial markov decision
processes with delayed feedback,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36-7, pp. 7281–7289, 2022.

[134] S. Ramstedt and C. Pal, “Real-time reinforcement learning,” in Advances in Neural Informa-
tion Processing Systems, pp. 3073–3082, 2019.

[135] T. Xiao, E. Jang, D. Kalashnikov, S. Levine, J. Ibarz, K. Hausman, and A. Herzog, “Thinking
while moving: Deep reinforcement learning with concurrent control,” in International
Conference on Learning Representations, 2020.

[136] T. Hester and P. Stone, “Texplore: real-time sample-efficient reinforcement learning for
robots,” Machine learning, vol. 90, no. 3, pp. 385–429, 2013.

[137] A. Modi, N. Jiang, A. Tewari, and S. Singh, “Sample complexity of reinforcement learn-
ing using linearly combined model ensembles,” in International Conference on Artificial
Intelligence and Statistics, pp. 2010–2020, PMLR, 2020.

[138] A. Ayoub, Z. Jia, C. Szepesvari, M. Wang, and L. Yang, “Model-based reinforcement
learning with value-targeted regression,” in International Conference on Machine Learning,
pp. 463–474, PMLR, 2020.

[139] R. Wang, R. Salakhutdinov, and L. F. Yang, “Provably efficient reinforcement learning with
general value function approximation,” arXiv preprint arXiv:2005.10804, 2020.

[140] Z. Yang, C. Jin, Z. Wang, M. Wang, and M. I. Jordan, “On function approximation
in reinforcement learning: Optimism in the face of large state spaces,” arXiv preprint
arXiv:2011.04622, 2020.

[141] L. Yang and M. Wang, “Sample-optimal parametric Q-learning using linearly additive
features,” in International Conference on Machine Learning, pp. 6995–7004, PMLR, 2019.

[142] D. Zhou, J. He, and Q. Gu, “Provably efficient reinforcement learning for discounted MDPs
with feature mapping,” in International Conference on Machine Learning, PMLR, 2021.

[143] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman, “PAC model-free reinforce-
ment learning,” in Proceedings of the 23rd international conference on Machine learning,
pp. 881–888, 2006.

195

[144] I. Szita and C. Szepesvari, “Model-based reinforcement learning with nearly tight exploration
complexity bounds,” in International Conference on Machine Learning, pp. 1031–1038,
2010.

[145] T. Lattimore and M. Hutter, “PAC bounds for discounted MDPs,” in International Conference
on Algorithmic Learning Theory, pp. 320–334, Springer, 2012.

[146] Y. Wang, K. Dong, X. Chen, and L. Wang, “Q-learning with ucb exploration is sample
efficient for infinite-horizon mdp,” in International Conference on Learning Representations,
2019.

[147] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Improved algorithms for linear stochastic ban-
dits,” in Proceedings of the 24th International Conference on Neural Information Processing
Systems, pp. 2312–2320, 2011.

[148] W. Xia, T. Q. Quek, K. Guo, W. Wen, H. H. Yang, and H. Zhu, “Multi-armed bandit-based
client scheduling for federated learning,” IEEE Transactions on Wireless Communications,
vol. 19, no. 11, pp. 7108–7123, 2020.

[149] A. Slivkins et al., “Introduction to multi-armed bandits,” Foundations and Trends® in
Machine Learning, vol. 12, no. 1-2, pp. 1–286, 2019.

[150] S. Maghsudi and S. Stańczak, “Channel selection for network-assisted d2d communication
via no-regret bandit learning with calibrated forecasting,” IEEE Transactions on Wireless
Communications, vol. 14, no. 3, pp. 1309–1322, 2014.

[151] F. Li, D. Yu, H. Yang, J. Yu, H. Karl, and X. Cheng, “Multi-armed-bandit-based spectrum
scheduling algorithms in wireless networks: A survey,” IEEE Wireless Communications,
vol. 27, no. 1, pp. 24–30, 2020.

[152] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games. Cambridge university
press, 2006.

[153] S. Bubeck, N. Cesa-Bianchi, and S. M. Kakade, “Towards minimax policies for online linear
optimization with bandit feedback,” in Conference on Learning Theory, pp. 41–1, JMLR
Workshop and Conference Proceedings, 2012.

[154] N. Korda, L. Prashanth, and R. Munos, “Fast gradient descent for drifting least squares
regression, with application to bandits,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29-1, 2015.

[155] Y. Han, Z. Liang, Y. Wang, and J. Zhang, “Generalized linear bandits with local differential
privacy,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[156] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit
problem,” Machine learning, vol. 47, no. 2-3, pp. 235–256, 2002.

196

[157] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit approach to personalized
news article recommendation,” in Proceedings of the 19th international conference on World
wide web, pp. 661–670, 2010.

[158] M. Abeille, A. Lazaric, et al., “Linear thompson sampling revisited,” Electronic Journal of
Statistics, vol. 11, no. 2, pp. 5165–5197, 2017.

[159] S. Dong, T. Ma, and B. V. Roy, “On the performance of thompson sampling on logistic
bandits.,” in COLT, pp. 1158–1160, 2019.

[160] O. Chapelle and L. Li, “An empirical evaluation of thompson sampling,” in Advances in
neural information processing systems, pp. 2249–2257, 2011.

[161] D. Russo and B. Van Roy, “Learning to optimize via posterior sampling,” Mathematics of
Operations Research, vol. 39, no. 4, pp. 1221–1243, 2014.

[162] B. Awerbuch and R. D. Kleinberg, “Adaptive routing with end-to-end feedback: Distributed
learning and geometric approaches,” in Proceedings of the thirty-sixth annual ACM sympo-
sium on Theory of computing, pp. 45–53, 2004.

[163] H. B. McMahan and A. Blum, “Online geometric optimization in the bandit setting against
an adaptive adversary,” in International Conference on Computational Learning Theory,
pp. 109–123, Springer, 2004.

[164] V. Dani, S. M. Kakade, and T. Hayes, “The price of bandit information for online optimiza-
tion,” Advances in Neural Information Processing Systems, vol. 20, 2007.

[165] A. S. Nemirovskij and D. B. Yudin, Problem complexity and method efficiency in optimization.
Wiley-Interscience, 1983.

[166] J. D. Abernethy, E. Hazan, and A. Rakhlin, “Competing in the dark: An efficient algorithm
for bandit linear optimization.,” in COLT, pp. 263–274, Citeseer, 2008.

[167] S. Bubeck, N. Cesa-Bianchi, et al., “Regret analysis of stochastic and nonstochastic multi-
armed bandit problems,” Foundations and Trends® in Machine Learning, vol. 5, no. 1,
pp. 1–122, 2012.

[168] A. Bietti, A. Agarwal, and J. Langford, “A contextual bandit bake-off,” Journal of Machine
Learning Research, vol. 22, no. 133, pp. 1–49, 2021.

[169] C. Riquelme, G. Tucker, and J. Snoek, “Deep bayesian bandits showdown: An empirical
comparison of bayesian deep networks for thompson sampling,” in International Conference
on Learning Representations, 2018.

[170] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceedings
of COMPSTAT’2010, pp. 177–186, Springer, 2010.

197

[171] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of the trade,
pp. 421–436, Springer, 2012.

[172] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approximation by averaging,”
SIAM journal on control and optimization, vol. 30, no. 4, pp. 838–855, 1992.

[173] A. Rakhlin, O. Shamir, and K. Sridharan, “Making gradient descent optimal for strongly
convex stochastic optimization,” in Proceedings of the 29th International Conference on
International Conference on Machine Learning, pp. 1571–1578, 2012.

[174] M. Zinkevich, M. Weimer, L. Li, and A. Smola, “Parallelized stochastic gradient descent,”
Advances in neural information processing systems, vol. 23, 2010.

[175] Z. Lou, W. Zhu, and W. B. Wu, “Beyond sub-gaussian noises: Sharp concentration analysis
for stochastic gradient descent,” Journal of Machine Learning Research, vol. 23, pp. 1–22,
2022.

[176] N. J. Harvey, C. Liaw, Y. Plan, and S. Randhawa, “Tight analyses for non-smooth stochastic
gradient descent,” in Conference on Learning Theory, pp. 1579–1613, PMLR, 2019.

[177] E. Hazan and S. Kale, “Beyond the regret minimization barrier: optimal algorithms for
stochastic strongly-convex optimization,” The Journal of Machine Learning Research, vol. 15,
no. 1, pp. 2489–2512, 2014.

[178] H. Cardot, P. Cénac, and A. Godichon-Baggioni, “Online estimation of the geometric median
in hilbert spaces: Nonasymptotic confidence balls,” The Annals of Statistics, vol. 45, no. 2,
pp. 591–614, 2017.

[179] P. Jain, D. Nagaraj, and P. Netrapalli, “Making the last iterate of sgd information theoretically
optimal,” in Conference on Learning Theory, pp. 1752–1755, PMLR, 2019.

[180] V. Feldman and J. Vondrak, “High probability generalization bounds for uniformly stable
algorithms with nearly optimal rate,” in Conference on Learning Theory, pp. 1270–1279,
PMLR, 2019.

[181] W. Mou, C. J. Li, M. J. Wainwright, P. L. Bartlett, and M. I. Jordan, “On linear stochastic ap-
proximation: Fine-grained polyak-ruppert and non-asymptotic concentration,” in Conference
on Learning Theory, pp. 2947–2997, PMLR, 2020.

[182] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning, vol. 135. MIT press
Cambridge, 1998.

[183] J. M. Kohler and A. Lucchi, “Sub-sampled cubic regularization for non-convex optimization,”
in International Conference on Machine Learning, pp. 1895–1904, 2017.

[184] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention
networks,” in International Conference on Learning Representations, 2018.

198

[185] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”
Advances in neural information processing systems, vol. 30, 2017.

[186] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?,” in
International Conference on Learning Representations, 2018.

[187] S. M. Ross, Introduction to probability models. Academic press, 2014.

[188] T. Jaksch, R. Ortner, and P. Auer, “Near-optimal regret bounds for reinforcement learning.,”
Journal of Machine Learning Research, vol. 11, no. 4, 2010.

[189] I. Osband, B. Van Roy, D. J. Russo, and Z. Wen, “Deep exploration via randomized value
functions.,” Journal of Machine Learning Research, vol. 20, no. 124, pp. 1–62, 2019.

[190] I. Osband, B. Van Roy, and Z. Wen, “Generalization and exploration via randomized value
functions,” in International Conference on Machine Learning, pp. 2377–2386, PMLR, 2016.

[191] Y. Abbasi-Yadkori and C. Szepesvari, “Bayesian optimal control of smoothly parameterized
systems,” in Uncertainty in Artificial Intelligence: Proceedings of the 31st Conference, UAI
2015, pp. 2–11, AUAI Press (Association for Uncertainty in Artificial Intelligence), 2015.

[192] E. G. Birgin, J. M. Martı́nez, and M. Raydan, “Nonmonotone spectral projected gradient
methods on convex sets,” SIAM Journal on Optimization, vol. 10, no. 4, pp. 1196–1211,
2000.

[193] A. Anastasiou, K. Balasubramanian, and M. A. Erdogdu, “Normal approximation for stochas-
tic gradient descent via non-asymptotic rates of martingale clt,” in Conference on Learning
Theory, pp. 115–137, PMLR, 2019.

[194] S. Jadon, “A survey of loss functions for semantic segmentation,” in 2020 IEEE Conference on
Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7,
IEEE, 2020.

199

	1 Introduction
	1.1 Notation
	1.2 Graph Neural Networks
	1.2.1 Graph Representation
	1.2.2 Message Passing
	1.2.3 Graph Convolution

	1.3 Stochastic Linear Bandit
	1.4 Finite-horizon Markov Decision Process

	2 Efficient Sampling for Graph Neural Network Training
	2.1 Introduction
	2.2 Background
	2.2.1 Existing GNN Training Algorithms
	2.2.2 Mixed CPU-GPU Training

	2.3 Global Neighbor Sampling (GNS)
	2.3.1 Overview of GNS
	2.3.2 Sample Cache
	2.3.3 Sample Neighbors with Cache
	2.3.4 Importance Sampling Coefficient
	2.3.5 Theoretical Analysis
	2.3.6 Summary and Discussion

	2.4 Experiments
	2.4.1 Datasets and Setup
	2.4.2 Experiment Results
	2.4.3 Hyperparameter Study

	2.5 Conclusions

	3 Partial Information Selection in Retrieval Augmented Generation
	3.1 Introduction
	3.2 Related Work
	3.3 Proposed Method: G-RAG
	3.3.1 Establishing Document Graphs via AMR
	3.3.2 Graph Neural Networks for Reranking

	3.4 Experiments
	3.4.1 Setting
	3.4.2 Comparing Reranker Systems
	3.4.3 Using different LLMs as Embedding Models
	3.4.4 Investigating PaLM 2 Scores

	3.5 Conclusions

	4 Exploration of Partial Information in Sparse Bandit Problems
	4.1 Introduction
	4.2 Related Work
	4.3 Preliminary
	4.4 Main Results
	4.4.1 An Algorithm that Breaks the ((d)) Sample Barrier
	4.4.2 Lower Bound

	4.5 Improvement on the -s Dependence
	4.6 A poly(s)-Query Algorithm for Benign Features
	4.7 A poly(s)-Query Algorithm for General Features
	4.8 Conclusions

	5 Investigation into Partial Observation in Delay Bandit Problem
	5.1 Introduction
	5.2 Related Work
	5.3 Preliminaries
	5.4 Problem Formulation
	5.5 Value-Targeted Model Regression for Delayed MDP
	5.5.1 Confidence Set Construction for Value-Targeted Model with Delayed Feedback
	5.5.2 Value Iteration

	5.6 Theoretical Analysis
	5.7 Proof of the Main Theorem
	5.7.1 Confidence Set Construction
	5.7.2 Optimism
	5.7.3 Regret Decomposition
	5.7.4 Transform between Sample Complexity of Exploration and Regret

	5.8 Conclusion

	6 SGD-based Method for Partial Gradient Information
	6.1 Introduction
	6.1.1 Related Work

	6.2 Preliminaries
	6.3 Algorithm
	6.4 Main Theory
	6.5 Proof Sketch
	6.6 Simulation Results
	6.7 Conclusion

	A Proofs for Chapter 2
	A.1 Proof of Theorem 1
	A.2 Proof of Lemma 7

	B Supplementary for Chapter 3
	B.1 Dataset Statistics
	B.2 Simulation Results with Different GNN Models.
	B.3 Qualitative Examples
	B.4 Examples of LLM-generate Relevant Score

	C Proofs for Chapter 4
	C.1 Proof of Lemma 1
	C.2 Proof of Lemma 10
	C.3 poly(s)-Query Algorithm for s-sparsity Case with Noise

	D Proofs for Chapter 5
	D.1 Proof of Lemma 2
	D.2 Proof of Lemma 3
	D.3 Proof of Theorem 8
	D.4 Proof of Theorem 9
	D.5 Proof of Lemma 11
	D.6 Proof of Lemma 18
	D.7 Technical Lemmas
	D.8 Proof of Theorem 9
	D.9 Details on Implementation of Algorithm 7

	E Proofs for Chapter 6
	E.1 Summary of Appendix
	E.2 Proof of Lemma 4
	E.2.1 Technical Overview for the Second Case (t1)

	E.3 Proof of Lemma 5
	E.4 Proof of Lemma 20
	E.5 Proof of Lemma 21
	E.6 Proof of Lemma 22
	E.7 Proof of Lemma 23
	E.8 Proof of Proposition 1
	E.9 Technical Lemmas
	E.10 Regret Result for Finite Actions
	E.11 Reward and Loss Functions for Different Models

	References

