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Regularization of Wavelets Approximations�

Anestis Antoniadis Jianqing Fan

December 9, 1999

Abstract

In this paper, we introduce nonlinear regularized wavelet estimators for estimating nonpara-

metric regression functions when sampling points are not uniformly spaced. The approach can

apply readily to many other statistical contexts. Various new penalty functions are proposed.

The hard-thresholding and soft-thresholding estimators of Donoho and Johnstone (1994) are

speci�c members of nonlinear regularized wavelet estimators. They correspond to the lower

and upper bound of a class of the penalized least-squares estimators. Necessary conditions for

penalty functions are given for regularized estimators to possess thresholding properties. Ora-

cle inequalities and universal thresholding parameters are obtained for a large class of penalty

functions. The sampling properties of nonlinear regularized wavelet estimators are established,

and are shown to be adaptively minimax. To eÆciently solve penalized least-squares problems,

Nonlinear Regularized Sobolev Interpolators (NRSI) are proposed as initial estimators, which

are shown to have good sampling properties. The NRSI is further ameliorated by Regularized

One-Step Estimators (ROSE), which are the one-step estimators of the penalized least-squares

problems using the NRSI as initial estimators. Two other approaches, the graduated noncon-

vexity algorithm and wavelet networks, are also introduced to handle penalized least-squares

problems. The newly introduced approaches are also illustrated by a few numerical examples.

Anestis Antoniadis is Professor, Laboratoire de Mod�elisation et Calcul, Universit�e Joseph Fourier, 38041 Grenoble

CEDEX 9, France. Jianqing Fan is Professor, Department of Statistics, University of California, Los Angeles, CA

90095-1554 and The Chinese University of Hong Kong. Fan's research was partially supported by NSF grant DMS-

9804414. The major part of the research was conducted while Fan visited the Universit�e Joseph Fourier. He is

grateful to the generous support of the University.
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1 Introduction

Wavelets are a family of orthogonal bases that can e�ectively compress signals with possible irreg-

ularities. They are good bases for modeling statistical functions. Various applications of wavelets

in statistics have been made in the literature. See, for example, Donoho and Johnstone (1994),

Antoniadis et al. (1994), Hall and Patil (1995), Neumann and Spokoiny (1995), Antoniadis (1996)

and Wang (1996). Further references can be found in the recent survey papers by Donoho et al.

(1995) and Antoniadis (1997) and recent books by Ogden (1997) and Vidakovic (1999). Yet, wavelet

applications to statistics are hampered by the requirements that the designs are equispaced and

the sample size should be a power of 2. Various attempts have been made to relax these require-

ments. See for example the interpolation method of Hall and Turlach (1997), the binning method

of Antoniadis et al. (1997), the transformation method of Cai and Brown (1997), and the isometric

method of Sardy et al. (1998). However, it poses some challenges to extend these methods to other

statistical contexts such as generalized additive models and generalized ANOVA models.

In an attempt to make genuine wavelet applications to statistics, we approach the denoising

problem from a statistical modeling point of view. The idea can be extended to other statistical

contexts. Suppose that we have noisy data at irregular design points ft1; � � � ; tng:

Yi = f(ti) + "i; "i
i:i:d:� N(0; �2);

where f is the unknown regression to be estimated from the noisy sample. Without loss of generality,

assume that the function f is de�ned on [0; 1]. Assume further that ti = ni=2
J for some ni and some

�ne resolution J that is determined by users. Usually, 2J � n so that the approximation errors

by moving nondyadic points to dyadic points are negligible. Let f be the underlying regression

function collected at all dyadic points fi=2J ; i = 0; � � � ; 2J�1g. LetW be a given wavelet transform

and � =Wf be the wavelet transform of f . Since W is an orthogonal matrix, f =W
T
�.

From a statistical modeling point of view, the unknown signals are modeled by N = 2J parame-

ters. This is an over parameterized linear model, which aims at reducing modeling biases. One can

not �nd a reasonable estimate of � by using the ordinary least-squares method. Since wavelets are

used to transform the regression function f , its representation in wavelet domain is sparse, namely,

many components of � are small, for the function f in a Besov space. This prior knowledge enables

us to reduce e�ective dimensionality and to �nd reasonable estimates of �.

To �nd a good estimator of �, we apply a penalized least-squares method. Denote the sampled

data vector by Yn. Let A be n � N matrix whose ith row corresponds to the row of the matrix

W
T for which signal f(ti) is sampled with noise. Then, the observed data can be expressed as a

linear model

Yn = A� + �; � � N(0; �2In); (1.1)
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where � is the noise vector. The penalized least-squares problem is to �nd � to minimize

2�1kYn �A�k2 + �

NX
i=1

p(j�ij); (1.2)

for a given penalty function p and regularization parameter � > 0. The penalty function p is

usually nonconvex on [0;1) and irregular at point zero in order to produce sparse solutions. See

Theorem 1 for necessary conditions. It poses some challenges to optimize such a high-dimensional

nonconvex function.

Our over parameterization approach is complementary to the over-complete wavelet library

methods of Chen et al. (1998) and Donoho et al. (1998). Indeed, even when the sampling points

are equispaced, one can still choose a large N, (N = O(n log n), say), to have better ability to

approximate unknown functions. Our penalized method in this case can be viewed as a subbasis

selection from an over-complete family of non-orthogonal bases, consisting of N columns of the

matrix A.

When n = 2J , the matrix A becomes a square orthogonal matrix WT . This corresponds to

the canonical wavelet denoising problems studied in the seminal paper by Donoho and Johnstone

(1994). The penalized least-squares estimator (1.2) can be written as

2�1kWYn � �k2 + �

NX
i=1

p(j�ij):

The minimization of this high-dimensional problem reduces to componentwise minimization prob-

lems and can be easily found. Theorem 1 gives necessary conditions for the solution to be unique

and to be continuous in wavelet coeÆcients. In particular, the soft-thresholding rule and hard-

thresholding rule correspond respectively to the penalized least-squares estimators with the L1

penalty and the hard-thresholding penalty (2.8) discussed in Section 2. These penalty functions

have some unappealing features and can be further ameliorated by the smoothly clipped absolute

deviation (SCAD) penalty function and the transformed L1 penalty function. See Section 2.3 for

more discussions.

The hard-thresholding and soft-thresholding estimators play no monopoly role in choosing an

ideal wavelet subbasis to eÆciently represent an unknown function. Indeed, for a large class of

penalty functions, we show in Section 3 that the resulting penalized least-squares estimators per-

form within a logarithmic factor to the oracle estimator in choosing an ideal wavelet subbasis.

The universal thresholding parameters are also derived. They can easily be translated in terms of

regularization parameters � for a given penalty function p. The universal thresholding parameter

given by Donoho and Johnstone (1994) is usually somewhat too large in practice. We expand the

thresholding parameters up to the second order, allowing users to choose smaller regularization pa-

rameters to reduce modeling biases. The work on the oracle inequalities and universal thresholding
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is a generalization of the pioneering work of Donoho and Johnstone (1994). It allows statisticians

to use other penalty functions with the same theoretical backup.

The risk of the oracle estimator is relatively easy to compute. Since the penalized least-squares

estimators perform comparably with the oracle estimator, following the similar but easier calcula-

tion as that of Donoho et al. (1995), we can show that the penalized least-squares estimators are

adaptively minimax for the Besov class of functions, for a large class of penalty functions.

Finding a meaningful local minima to the general problem (1.2) is not easy, because it is a

high-dimensional problem with a nonconvex target function. One possible method is to apply

graduated nonconvexity (GNC) algorithm introduced by Blake and Zisserman (1987) and Blake

(1989) and ameliorated by Nikolova (1999a) and Nikolova et al. (1999) in the imaging analysis

context. The algorithm contains good ideas in optimizing high-dimensional nonconvex functions,

but its implementation depends on a number of tuning parameters. It is reasonably fast, but not

nearly as fast as canonical wavelet denoising. See Section 6 for details. To have a fast estimator, we

impute the unobserved data by using regularized Sobolev interpolators. This allows one to apply

coeÆcient-wise thresholding to obtain an initial estimator. This yields a viable initial estimator,

called nonlinear regularized Sobolev interpolators (NRSI). This estimator is shown to have good

sampling properties. Using this NRSI to create synthetic data and apply the one-step penalized

least-squares procedure, we obtain a regularized one-step estimator (ROSE). See Section 4. Another

possible approach to denoise non-equispaced signals is to design adaptively non-orthogonal wavelets

to avoid overparameterizing problems. A viable approach is the wavelet networks proposed by

Mallat et al. (1999). We will briey discuss this in Section 6.

An advantage of our penalized wavelet approach is that it can readily be applied to other

statistical contexts such as likelihood based models in a similar manner to smoothing splines. One

can simply replace the normal likelihood in (1.2) by a new likelihood function. Further, it can

be applied to high-dimensional statistical models such as generalized additive models. Details of

these require a lot of new work and hence are not discussed here. Penalized likelihood methods have

been successfully used by Tibshirani (1996), Barron et al. (1999) and Fan and Li (1999) for variable

selections. Thus, they should also be viable for wavelet applications to other statistical problems.

While there is no conceptual diÆculty of applying the penalized wavelet method to other statistical

problems, the dimensionality involved is usually very high. Its fast implementations require some

new ideas and the GNC algorithm o�ers a generic numerical method.

The paper is organized as follows. In section 2, we introduce Sobolev interpolators and penalized

wavelet estimators. Section 3 studies the properties of penalized wavelet estimators when the data

are uniformly sampled. Implementations of penalized wavelet estimators in general setting are

discussed in Section 4. Section 5 gives numerical results of our newly proposed estimators. Two

other possible approaches are discussed in Section 6. Technical proofs are relegated in the appendix.
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2 Regularization of wavelet approximations

The problem of signal denoising from nonuniformly sampled data arises in many contexts. The

signal recovery problem is ill-posed and smoothing can be formulated as an optimization problem

with side constraints to narrow down the class of candidate solutions.

We will �rst briey discuss on wavelet interpolation by using a regularized wavelet method.

This will serve as a crude initial value to our proposed penalized least-squares method. We will

then discuss the relation between this and nonlinear wavelet thresholding estimation when the data

are uniformly sampled.

2.1 Regularized wavelet interpolations

Assume for the moment that the signals are observed with no noise, i.e., � = 0 in (1.1). The

problem becomes an interpolation problem, using a wavelet transform. Being given signals only at

the nonequispaced points fti; i = 1; � � � ; ng necessarily means that we have no information at other

dyadic points. In terms of the wavelet transform, this means that we have no knowledge about the

scaling coeÆcients at points other than ti's. Let

fn = (f(t1); � � � ; f(tn))T

be the observed signals. Then from (1.1) and the assumption � = 0, we have

fn = A�: (2.1)

Since this is an underdetermined system of equations, there exist many di�erent solutions for �

that match the given sampled data fn. For the minimum Sobolev solution, we choose the f that

interpolates the data and minimizes the weighted Sobolev norm of f . This would yield a smooth

interpolation to the data. The Sobolev norms of f can be simply characterized in terms of the

wavelet coeÆcients �. For this purpose, we use double array sequence �j;k to denote the wavelet

coeÆcient at the j-th resolution level and k-th dyadic location (k = 0; � � � ; 2j�1). A Sobolev norm

of f with degree of smoothness s can be expressed as

k�k2S =
X
j

22sjk�j:k2;

where �j: is the vector of the wavelet coeÆcients at the resolution level j. Thus, we can restate this

problem as a wavelet-domain optimization problem: Minimize k�k2
S
subject to constraint (2.1).

The solution (see Rao) is what is called the normalized method of frame whose solution is given by

� = DA
T (ADAT )�1fn;

where D = Diag(2�2sji) with ji denoting the resolution level that �i is associated with. An

advantage of the method of frame is that it does not involve the choice of regularization parameter.
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When s = 0, � = A
T
fn by orthogonality. In this case, the interpolator is particularly easy to

compute.

(a) true curve
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Figure 1: Illustration of wavelet interpolations by the method of frame. As degrees of smoothness

s gets larger, the interpolated functions get smoother. (a) The target function and sampling points

(tick marks); (b) { (d) wavelet interpolations with s = 0:5, s = 1:4 and s = 6:0.

As an illustration of how the regularized wavelet interpolations work, we took a hundred data

points (located at the tick marks) from the function depicted in Figure 1(a). Figures 1 (b){(d) show

how the method of frame works for di�erent values of s. As s increases, the interpolated functions

get smoother and smoother. In fact, for a large range of values of s, the wavelet interpolations do

not create excessive biases.

2.2 Regularized wavelet estimators

Assume now that the observed data follow model (1.1). The traditional regularization problem can

be formulated in the wavelet domain as follows: Find the minimum of

2�1kYn �A�k2 + �k�k2S; (2.2)
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This leads a regularized linear estimator. In general, one can replace the Sobolev norm by other

penalty functions, leading to minimizing

`(�) = 2�1kYn �A�k2 + �
X
i�i0

p(j�ij); (2.3)

for a given penalty function p(�) and given value i0. This corresponds to penalizing wavelet co-

eÆcients above certain resolution level j0. Here, to facilitate the presentation, we have changed

the notation �j;k from a double array sequence into a single array sequence �i. The problem (2.3)

produces stable and sparse solutions for functions p satisfying certain properties. The solutions are

in general nonlinear. See the results of Nikolova (1999b) and Section 3 below.

2.3 Penalty functions and nonlinear wavelet estimators

The regularized wavelet estimators are an extension of the soft and hard thresholding rules of

Donoho and Johnstone (1994). When the sampling points are equally spaced and n = 2J , the

design matrix A in (2.1) becomes the inverse wavelet transform matrix WT . In this case, (2.3)

becomes

2�1
nX

i=1

(zi � �i)
2 + �

X
i�i0

p(j�ij); (2.4)

where zi is the i
th component of the wavelet coeÆcient vector z = WYn. The solution to this

problem is a componentwise minimization problem, whose properties are studied in the next section.

To reduce abuse of notation, and since p(j�j) is allowed to depend on �, we use p� to denote the

penalty function �p in the following discussion.

For the L1-penalty (Figure 2(a)),

p�(j�j) = �j�j; (2.5)

the solution is the soft-thresholding rule (Donoho, Johnstone, Hock and Stern, 1992). A clipped-L1

penalty

p(�) = �min(j�j; �) (2.6)

leads to a mixture of soft and hard thresholding rule (Fan, 1997):

�̂j = (jzj j � �)+Ifjzj j � 1:5�g + jzj jIfjzj j > 1:5�g: (2.7)

When the penalty function is given by

p�(j�j) = �2 � (j�j � �)2I(j�j < �); (2.8)
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(see Figure 2(b)) the solution is the hard-thresholding rule (Antoniadis, 1997). This is a smoother

penalty function than p�(j�j) = j�jI(j�j < �) + �=2I(j�j � �) suggested by Fan (1997) and the

entropy penalty p�(j�j) = 2�1�2Ifj�j 6= 0g, which lead to the same solution. The hard-thresholding

rule is discontinuous, while the soft-thresholding rule shifts the estimator by an amount of � even

when jzij stands way out of noise level, which creates unnecessary bias when � is large. To amelio-

rate these two drawbacks, Fan (1997) suggests using the following quadratic spline penalty, called

smoothly clipped absolute deviation (SCAD) penalty (see Figure 2(c)):

p0�(�) = I(� � �) +
(a�� �)+

(a� 1)�
I(� > �); for � > 0 and a > 2 (2.9)

leading to the piecewise linear thresholding

�̂j =

8>><
>>:

sgn(zj)(jzj j � �)+ when jzj j � 2�
(a�1)zj�a�sgn(zj)

a�2
when 2� < jzj j � a�

zj when jzj j > a�

(2.10)

In Fan and Li (1999), it is recommended to use a = 3:7 based on a Bayesian argument. This

thresholding estimator is in the same spirit to that in Gao and Bruce (1997). This penalty function

does not over penalize large values of j�j and hence does not create excessive biases when the

wavelet coeÆcients are large. Recently, Nikolova (1999b) suggests the following transformed L1-

penalty function (see Figure 2(d))

p�(jxj) = �bjxj(1 + bjxj)�1; for some b > 0: (2.11)

This penalty function behaves quite similarly to the SCAD suggested by Fan (1997). Both of them

are concave on [0;1) and do not intend to over penalize large j�j. Other possible loss functions

include Lp penalty

p�(j�j) = �j�jp; (p � 0): (2.12)

As to be shown in Section 3.1, the choice p � 1 is a necessary condition for the solution to be

a thresholding estimator, while p � 1 is a necessary condition for the solution to be continuous

in z. Thus, the L1-penalty function is the only member in this family that yields a continuous

thresholding solution.

Finally, we would like to note that the regularization parameter � for di�erent penalty functions

has a di�erent scale. For example, the value � in the L1-penalty function is not the same as that in

the Lp-penalty (0 � p < 1). Figure 2 depicts some of these penalty functions. Their componentwise

solutions to the corresponding penalized least-squares problem (2.4) are shown in Figure 3.

3 Oracle inequalities and universal thresholding

As mentioned in Section 2.3, there are many competing thresholding policies. They provide statisti-

cians and engineers a variety of choices of penalty functions to estimate functions with irregularities
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Figure 2: Examples of typical penalty functions that preserve sparsity. (a) Lp penalty with p = 1

(long dash), p = 0:6 (short dash) and p = 0:2 (solid); (b) Hard-thresholding penalty (2.8); (c)

SCAD (2.9) with a = 3:7; (d) Transformed L1-penalty (2.11) with b = 3:7.

and to denoise images with sharp features. However, there have not been systematically studied

yet. We �rst study the properties of penalized least-squares estimators and then examine the extent

to which they can mimic oracle in choosing a subset of wavelet bases.

3.1 Characterization of penalized least-squares estimators

Let p(�) be a nonnegative, nondecreasing and di�erentiable function on (0;1). The clipped-L1

penalty function (2.6) does not satisfy this condition and will be excluded in the study. All other

penalty functions satisfy this condition. Consider the following penalized least-squares problem:
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Figure 3: Examples of penalized least-squares estimators that possess thresholding properties. (a)

The penalized Lp estimators with p = 1 (solid) and the hard-thresholding estimator (dashed); (b)

the penalized Lp estimator with p = 0:6; (c) the penalized SCAD estimator (2.10); (d) the penalized

transformed L1 estimator with b = 3:7.

Minimize with respect to �

`(�) = (z � �)2=2 + p�(j�j); (3.1)

for a given penalty parameter �. This is a componentwise minimization problem of (2.4). Note that

the function in (3.1) tends to in�nity as j�j ! 1. Thus, minimizers do exist. Let �̂(z) be a solution.

The following theorem gives the necessary conditions (indeed they are suÆcient conditions too) for

the solution to be a thresholding, to be continuous and to be approximately unbiased when jzj is
large.

Theorem 1 Let p�(�) be a nonnegative, nondecreasing and di�erentiable function in (0;1). Fur-

ther, assume that the function ���p0
�
(�) is strictly unimodal on (0;1). Then we have the following
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results.

(i) The solution to the minimization problem (3.1) exists and is unique. It is anti-symmetric:

�̂(�z) = ��̂(z).

(ii) The solution satis�es

�̂(z) =

(
0; if jzj � p0

z � sgn(z)p0
�
(j�̂(z)j); if jzj > p0

;

where p0 = min��0f� + p0
�
(�)g. Moreover, j�̂(z)j � jzj.

(iii) If p0
�
(�) is nonincreasing, then for jzj > p0, we have

jzj � p0 � j�̂(z)j � jzj � p0
�
(jzj):

(iv) When p0
�
(�) is continuous on (0;1), the solution �̂(z) is continuous if and only if the mini-

mum of j�j+ p0
�
(j�j) is attained at point zero.

(v) If p0
�
(jzj)! 0, as jzj ! +1, then

�̂(z) = z � p0�(jzj) + o(p0�(jzj)):

We now give the implications of the above results. When p0
�
(0+) > 0, p0 > 0. Thus, for

jzj � p0, the estimate is thresholded to zero. For jzj > p0, the solution has a shrinkage property. The

amount of shrinkage is sandwiched between the soft-thresholding and hard-thresholding estimators,

as shown in (iii). In other words, the hard and soft thresholding estimators of Donoho and Johnstone

(1994) correspond to the extreme cases of a large class of penalized least-squares estimators. We

would like to add that di�erent estimator �̂ may require di�erent thresholding parameter p0 and

hence the estimator �̂ is not necessarily sandwiched by the hard and soft thresholding estimators

using di�erent thresholding parameters. Further, the amount of shrinkage gradually tapes o� as

jzj gets large when p0
�
(jzj) goes to zero. For example, the penalty function p�(j�j) = �r�1j�jr for

r 2 (0; 1] satis�es this condition. The case r = 1 corresponds to the soft-thresholding: When

0 < r < 1,

p0 = (2� r)f(1� r)r�1�g1=(2�r);

and when jzj > p0, �̂(z) satis�es the equation

�̂ + ��̂r�1 = z:

In particular, when r ! 0,

�̂! �̂0 � (z +
p
z2 � 4�)=2 = z=(1 + �z�2) +O(z�4):
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The procedure corresponds basically to the Garotte estimator in Breiman (1995). When the value

of jzj is large, one is quite certain that the observed value jzj is not noise. Hence one does not

wish to shrink the value of z, which would result in underestimating �. Theorem 1 (iv) shows that

this property holds when p�(j�j) = �r�1j�jr for r 2 (0; 1). This ameliorates the property of the

soft-thresholding rule, which always shifts the estimate z by an amount of Æ. However, by Theorem

1(iii), the solution is not continuous.

3.2 Risks of penalized least-squares estimators

We now study the risk function of the penalized least-squares estimator �̂ that minimizes (3.1).

Assume Z � N(�; 1). Denote by

Rp(�; p0) = Ef�̂(Z)� �g2:

For wavelet applications, the thresholding parameter p0 will be in the order of magnitude of the

maximum of the Gaussian errors. Thus, we only consider the situation where the thresholding level

is large.

In the following Theorem, we give risk bounds for penalized least-squares estimators for general

penalty functions. The bounds are quite sharp because they are comparable with those for the hard-

thresholding estimator given by Donoho and Johnstone (1994). A shaper bound will be considered

numerically in the following section for a speci�c penalty function.

Theorem 2 Suppose that p satis�es conditions in Theorem 1 and p0
�
(0+) > 0. Then

(i) Rp(�; p0) � 1 + �2.

(ii) If p0
�
(�) is nonincreasing, then

Rp(�; p0) � p20 +
p
2=�p0 + 1:

(iii) Rp(0; p0) �
p
2=�(p0 + p�10 ) exp(�p20=2).

(iv) Rp(�; p0) � Rp(0; �) + 2�2.

Note that properties (i) { (iv) are comparable with those for the hard-thresholding and soft-

thresholding rules given by Donoho and Johnstone (1994). The key improvement here is that the

results hold for a larger class of penalty functions.
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3.3 Oracle inequalities and universal thresholding

Following Donoho and Johnstone (1994), when the true signal � is given, one would decide whether

to estimate the coeÆcient or not, depending on the value of j�j. This leads to an ideal oracle

estimator �̂o = ZI(j�j > 1), which attains the ideal L2-risk min(�2; 1). In the following discussions,

the constant n can be arbitrary. In our nonlinear wavelet applications, the constant n will be the

sample size.

When p0 =
p
2 log n, the universal thresholding proposed by Donoho and Johnstone (1994), by

property (iii) of Theorem 2,

Rp(0; p0) �
p
2=�f(2 log n)1=2 + 1g=n; when p0 � 1;

which is larger than the ideal risk. To bound the risk of nonlinear estimator �̂(Z) by that of the

oracle estimator �̂o, we need to add an amount cn�1 for some constant c to the risk of the oracle

estimator since it has no risk at point � = 0. More precisely, we de�ne

�n;c;p0(p) = sup
�

Rp(�; p0)

cn�1 +min(�2; 1)

and denote �n;c;p0(p) by �n;c(p) for the universal thresholding p0 =
p
2 log n. Then, �n;c;p0(p) is a

sharp risk upper bound for using the universal thresholding. That is,

Rp(�; p0) � �n;c;p0(p)fcn�1 +min(�2; 1)g: (3.2)

Thus, the penalized least-squares estimator �̂(Z) performs comparably with the oracle estimator

within a factor of �n;c;p0(p). Likewise, let

��n;c(p) = inf
p0

sup
�

Rp(�; p0)

cn�1 +min(�2; 1)

and

pn = the largest constant attaining ��n;c(p):

Then, the constant ��n;c(p) is the sharp risk upper bound using the minimax optimal thresholding

pn. Necessarily,

Rp(�; pn) � ��n;c(p)fcn�1 +min(�2; 1)g: (3.3)

It is noted by Donoho and Johnstone (1994) that the universal thresholding is somewhat too

large. This is also observed in practice. In this section, we propose a new universal thresholding

policy, which takes the second order into account. This gives a lower bound under which penalized

least-squares estimators perform comparably with the oracle estimator. We then establish the

oracle inequalities for a large variety of penalty functions. Implications of these on the regularized

wavelet estimators are given in the next section.
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By theorem 2 (ii), for any penalized least-squares estimator, we have

Rp(�; p0) � 2 log n+
p
4=�(log n)1=2 + 1; (3.4)

provided that p0 �
p
2 log n. This is a factor of logn order larger than the oracle estimator. The

extra logn term is necessary because thresholding estimators create biases of order p0 at j�j � p0.

The risk in [0; 1] can be better bounded using the following lemma.

Lemma 1 If the penalty function satis�es conditions of Theorem 1 and p0
�
(�) is nonincreasing and

p0
�
(0+) > 0, then

Rp(�; p0) � (2 log n+ 2 log1=2 n)fc=n+min(�2; 1)g;

for the universal thresholding

p0 =
p
2 log n� log(1 + d log n); 0 � d � c2;

with n � 4 and c � 1 and p0 > 1:14.

The results in Donoho and Johnstone (1994) correspond to the case c = 1. In this case, one

can take the new universal thresholding as small as

p0 =
p
2 log n� log(1 + logn): (3.5)

Letting c = 16, we can take

p0 =
p
2 log n� log(1 + 256 log n): (3.6)

This new universal thresholding rule works better in practice.

A consequence of Lemma 1 is that

�n;c(p)
� � �n;c(p) � 2 log n+ 2 log1=2 n: (3.7)

Thus, the penalized least-squares perform comparably with the oracle estimator within a logarith-

mic order. We would like to remark that this conclusion holds for the thresholding parameter

p0 =
p
� logn for any � � 2. The constant factor in (3.7) depends on the choice of �, but the order

of magnitude does not change.

The SCAD penalty leads to an explicit shrinkage estimator. The risk of the SCAD estimator of

� can be found analytically. To better gauge its performance, Table 1 presents the minimax risks

for the SCAD shrink estimator, using the optimal thresholding and the new universal thresholding

(3.5) and (3.6) for c = 1 and c = 16 and for several sample sizes n. The numerical values in Table

14



c = 1

n pn a
y

n;c (2 log n)1=2 ��n;c ��n(DJ) �n;c;an b
z

n;c

64 1.501 2.584 2.884 3.086 3.124 7.351 12.396

128 1.691 2.817 3.115 3.657 3.755 8.679 14.110

256 1.881 3.035 3.330 4.313 4.442 10.004 15.800

512 2.061 3.234 3.532 5.013 5.182 11.329 17.472

1024 2.241 3.434 3.723 5.788 5.976 12.654 19.129

2048 2.411 3.619 3.905 6.595 6.824 13.978 20.772

c = 16

n pn a
y

n;c (2 log n)1=2 ��n;c ��n(DJ) �n;c;an b
z

n;c

64 0.791 1.160 2.884 1.346 3.124 1.879 12.396

128 0.951 1.606 3.115 1.738 3.755 3.046 14.110

256 1.121 1.957 3.330 2.153 4.442 4.434 14.800

512 1.311 2.258 3.532 2.587 5.182 5.694 17.472

1024 1.501 2.526 3.723 3.086 5.976 7.055 19.129

2048 1.691 2.770 3.905 3.657 6.824 8.411 20.772

yan = (2 log n� log(1 + c2 logn))1=2 | the new thresholding parameter;

zbn = 2 log n+ 2(log n)1=2 | the upper bound of minimax risk.

Table 1: CoeÆcient pn and related quantities for the SCAD penalty for several values of c and

n. The coeÆcient ��n(DJ) is the one computed by Donoho and Johnstone in their Table 2 for the

soft-thresholding estimator using the universal thresholding p0.

1 were computed using a grid search over p0 with increments 0:001. For a given p0, the supremum

over � was computed using a Matlab nonlinear minimization function.

Table 1 reveals that the new universal thresholding an;c is much closer to the minimax thresh-

olding pn than that of the universal thresholding. This is particularly the case for c = 16. Further,

the sharp minimax risk bound ��n;c;an with c = 16 is much smaller than the one with c = 1, used

in Donoho and Johnstone (1994). The minimax upper bound �n;c;an produced by new universal

thresholding with c = 16 is closer to ��n;c. All of these bounds are much sharper than the up-

per bound bn;c. For c = 1, ��n;c for the SCAD estimator is somewhat smaller than that of the

soft-thresholding estimator ��n(DJ).

3.4 Performance of regularized wavelet estimators

The above oracle inequalities can directly be applied to the regularized wavelet estimators de�ned

via (2.3) when the sampling points are equispaced and n = 2J . Suppose that the data are collected
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from model (1.1). For simplicity of presentation, assume that � = 1. Then, the wavelet coeÆcients

Z =WYn � N(�; In). Let

Rp(f̂p; f) = n�1
nX

i=1

ff̂p(ti)� f(ti)g2

be the risk function of the regularized wavelet estimator f̂p. Let R(f̂o; f) be the risk of the oracle

wavelet thresholding estimator, which selects a term to estimate, depending on the value of unknown

wavelet coeÆcients. Namely, f̂o is the inverse wavelet transform of the ideally selected wavelet

coeÆcients fZiI(j�ij > 1)g. This is an ideal estimator and serves as benchmark of our comparison.

For simplicity of presentation, we assume that i0 = 1.

By translating the problem in the function space into the wavelet domain, using the oracle

inequalities (3.3) and (3.7), we have the following results:

Theorem 3 With the universal thresholding p0 =
p
2 log n, we have

Rp(f̂p; f) � �n;c(p)fcn�1 +R(f̂o; f)g:

With the minimax thresholding pn, we have the sharper bound:

Rp(f̂p; f) � ��n;c(p)fcn�1 +R(f̂o; f)g:

Further, �n;c(p) and ��n;c(p) are bounded by (3.7)

The risk of the oracle estimator is relatively easy to compute. Assume that the signal f is in

a Besov ball. Because of simple characterization of this space via the wavelet coeÆcients of its

members, the Besov space ball Br
p;q(C) can be de�ned as

Br

p;q =

8<
:f 2 Lp :

X
j

�
2j(r+1=2�1=p)k�j�kp

�q
< C

9=
; ; (3.8)

where �j� is the vector of wavelet coeÆcients at the resolution level j. Here, r indicates the degree

of smoothness of the underlying signal f . Note that the wavelet coeÆcients � in the de�nition of

the Besov space are continuous wavelet coeÆcients. They are approximately a factor of n1=2 larger

than the discrete wavelet coeÆcients Wf . This is equivalent to assume that the noise level is of

1=n. By simpli�ed calculations of Donoho, Johnstone, Kerkyacharian and Picard (1995), we have

Theorem 4 Suppose that the penalty function satis�es the conditions of Lemma 1 and r + 1=2 �
1=p > 0. Then, the maximum risk of the penalized least-squares estimator f̂p over the Besov ball

Br
p;q(C) is of rate O(n

�2r=(2r+1) logn) when the universal thresholding

p
2n�1 log n is used. It also

achieves the rate of convergence O(n�2r=(2r+1) log n) when the minimax thresholding pn=
p
n is used.

Thus, as long as the penalty function satis�es conditions of Lemma 1, regularized wavelet

estimators are adaptively minimax.
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4 Penalized least-squares for nonuniform designs

The Sobolev wavelet interpolators introduced in section 2, could be further regularized by a

quadratic penalty in analogy with what being done with smoothing splines. However, the esti-

mators derived in this way, while easy to compute, are linear. They tend to oversmooth sharp

features such as jumps and short aberrations of regression functions and will not in general recover

such important attributes of regression functions. In contrast, nonlinear regularization methods

such as the ones studied in the previous sections can recover eÆciently such attributes. Our purpose

in this section is to naturally extend the results of the previous sections to the general situation, in

which the design matrix is not anymore orthonormal.

Finding a solution to the minimization problem (2.3) cannot be done by using classical opti-

mization algorithms, since the penalized loss `(�) to be minimized is nonconvex, nonsmooth and

high-dimensional. In this section, we introduce a regularized one-step estimator (ROSE) to solve

approximately the minimization problem (2.3). It is related to one-step likelihood estimator and

hence is supported by statistical theory (Bickel, 1975; Robinson, 1988).

4.1 Regularized One-step Estimator

The following technique is used to avoid minimizing high-dimensional nonconvex functions and to

take advantages of the orthonormality of the wavelet matrix W. Let us consider again equation

(1.1) and let us collect the remaining rows of the matrixWT that were not collected into the matrix

A into the matrix B of size (N �n)�N . Then, the penalized least-squares in expression (2.3) can

be written as

`(�) = 2�1kY� �W
T
�k2 +

X
i�i0

p�(j�ij);

where Y� = (YT
n ; (B�)T )T . By orthonormality of the wavelet transform,

`(�) = 2�1kWY
� � �k2 +

X
i�i0

p�(j�ij): (4.1)

If Y� were given, this minimization problem can be easily solved by componentwise minimizations.

However, we don't know � and one possible way is to iteratively optimize (4.1). While this is a

viable idea, we are not sure if the algorithm will converge. A one-step estimation scheme avoids

this problem and its theoretical properties can be understood. Indeed, in a completely di�erent

context, Fan and Chen (2000) show that the one-step method is as eÆcient as the fully-iterative

method both empirically and theoretically, as long as the initial estimators are reasonably good.

In any case, some good estimates of � are needed either using fully iterative method or one-step

method.

We now use our Sobolev wavelet interpolators to produce an initial estimate for � and hence
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for Y�. Recall that �̂ = DA
T (ADAT )�1Yn was obtained via wavelet interpolation. Let

Ŷ
�

0 = (YT

n ; (B�̂)T )T

be the initial synthetic data. By the orthonormality of W, it is easy to see that

�̂
�

=WŶ
�

0 � N(��; �2V): (4.2)

where

V = DA
T (ADAT )�2AD; and �

� = DA
T (ADAT )�1A�:

is the vector of wavelet coeÆcients. We will call the components of WŶ
�

0 the empirical synthetic

wavelet coeÆcients. Note that �� is the wavelet interpolation of the signal fn. It does not create

any bias for the function f at observed data points and the biases at other points are small (see

Figure 1).

The empirical synthetic wavelet coeÆcients are nonstationary with a known covariance structure

V. Componentwise component thresholding should be applied. Details are given in x4.2. Let �̂�1 be
the resulting componentwise thresholding estimator. The resulting estimate f̂1 = W

T
�̂
�

1 is called

Nonlinear Regularized Sobolev Interpolator (NRSI).

As noted in Section 2, when s = 0, �̂ = A
T
Yn is easy to compute. In this case, the covariance

matrix V = A
T
A is also easy to compute. Its diagonal elements can also be approximated by

using the properties of wavelets.

As to be shown in x4.3, the NRSI possess good sampling properties. One can also regard this

estimator �̂1 as an initial estimator and use it to create the synthetic data

Ŷ
�

1 = (YT

n ; (B�̂1)
T )T :

With the synthetic data, one can now minimize the penalized least-squares

`(�) = 2�1kWŶ
�

1 � �k+
X
i�i0

p�(j�ij) (4.3)

by componentwise minimization technique. The resulting procedure is a one-step procedure with

a good initial estimator. This procedure will be called a Regularized One-Step Estimator (ROSE).

According to Bickel (1975), Robinson (1988) and Fan and Chen (2000), such a procedure is as

good as fully-iterated procedure when the initial estimators are good enough. Formal technical

derivations of the statement is beyond the scope of this paper.

4.2 Thresholding for nonstationary noise

As shown in (4.2), the noise in the empirical synthetic wavelet coeÆcients is not stationary, but

their covariance matrix is known up to a constant. Thus, we can employ coeÆcient-dependent
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thresholding penalties to the empirical synthetic wavelet coeÆcients. This is an extension of method

in Johnstone and Silverman (1997), who have recently extended wavelet thresholding estimators

for data with stationary correlated Gaussian noise. In their situation the variances of the wavelet

coeÆcients at the same level are identical, so that they threshold the coeÆcients level by level with

thresholds of the order
p
2 logN�j, where �j is a robust estimate of noise level at the jth resolution

of the wavelet coeÆcients.

Let vi be the ith diagonal element of the matrix V. Then, by (4.2), the ith synthetic wavelet

coeÆcient, denoted by Z�

i
, is distributed as

Z�

i � N(��i ; vi�
2): (4.4)

The coeÆcient-dependent thresholding wavelet estimator is to apply

pi =
p
2vi logn �

to the synthetic wavelet coeÆcient Z�

i
. This coeÆcient-dependent thresholding estimator corre-

sponds to the solution of (2.3) with the penalty function
P

N

i�i0
p�i(j�ij), where the regularization

parameter �i is chosen such that pi is the thresholding parameter for the i-th coeÆcient:

min
��0

f� + p0�i(�)g = pi:

Invoking the oracle inequality with c = 1, the risk of this penalized least-squares estimator is

bounded by

E(�̂i � ��i )
2 � (2 log n+ 2 log1=2 n)[c�2vi=n+min(��2i ; �

2vi)]; (4.5)

Averaging these over i, we obtain a similar oracle inequality to that of Donoho and Johnstone

(1998) in the uniform design setting.

In the above thresholding, one can also take pi =
p
2vi logN �. The result (4.5) continues to

hold. The constant 2 in pi can also replaced by any constant that is no smaller than 2.

In practice, the value of �2 is usually unknown and needs to be estimated. In the complete

orthogonal case, Donoho et al. (1995) have suggested the estimation of the noise level by taking

the median absolute deviation of the coeÆcients at the �nest scale of resolution, and dividing it by

0.6745. However in our setting it is necessary to divide each synthetic wavelet coeÆcient by the

square root of its variance vi. Moreover it can happen that some of these variances are close to

zero due to large gap in the design leading to values of synthetic wavelet coeÆcients that are also

close to zero. Taking these into account we suggest and have used the following estimator

�̂ = MADfZ�

J�1;k=
p
vJ�1;k : vJ�1;k > 0:0001g=0:6745;

where Z�

J�1;k is the synthetic wavelet coeÆcients at the highest resolution level J � 1 and vJ�1;k is

its associated variance.
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4.3 Sampling properties

The performance of regularized wavelet estimators is assessed by the mean-squared risk:

Rp(f) = n�1
nX

i=1

Eff̂p(ti)� f(ti)g2:

In terms of the wavelet transform for the NRSI, it can be expressed as

Rp(f) = n�1EfkA�̂1 �A�k2g = n�1EfkA�̂1 �A�
�k2g � n�1Ek�̂1 � �

�k2: (4.6)

By (4.5), the mean-squared errors are bounded as follow:

Theorem 5 Assume that the penalty function p satis�es the condition in Lemma 1. Then, the

NRSI with coeÆcient-dependent thresholding satis�es

Rp(f) � n�1 (2 log n+ 2 log1=2 n)[c�2tr(V)=n+
X

min(��2i ; �
2vi)];

where tr(V) is the trace of matrix V.

Note that when s = 0, the matrix V = A
T
A � IN . Hence, tr(V) � N and vi � 1.

The NRSI was used only as an initial estimator to the penalized least-squares estimator (1.2).

We consider its performance over the Besov space Br
p;q for the speci�c case with s = 0. To this end,

we need some technical conditions. First of all, we assume that N=n = O(loga n) for some a > 0.

Let Gn be the empirical distribution function of the design points ft1; � � � ; tng. Assume that there

exists a distribution function G(t) with density g(t), which is bounded away from zero and in�nity

such that

Gn(t)! G(t); for all t 2 (0; 1) as n!1:

Assume further that g(t) has rth bounded derivative. When r is not an integer, we assume that

the [r] derivative of g satis�es the Lipschitz condition with the exponent r � [r], where [r] is the

integer part of r.

To ease the presentation, we now use double indices to indicate columns of the wavelet matrix

W. Let Wj;k(i) be the element in the ith row and the (j; k)th column of wavelet matrixWT , where

j is the resolution level and k is the dyadic location. Let  be the mother wavelet associated with

the wavelet transform W. Assume that  is bounded with a compact support and has �rst r � 1

vanishing moments. Then,

Wj;k(i) � 2�(J�j)=2 (2ji=N � k);

for i; j; k not too close to their boundaries. To avoid unnecessary technicality, which does not

provide us insightful understanding, we assume

Wj;k(i) = 2�(J�j)=2 (2ji=N � k); 8i; j; k:

As in Theorem 4, we assume that �2 = n�1.
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Theorem 6 Suppose that the penalty function satis�es the conditions of Lemma 1 and r + 1=2 �
1=p > 0. Then, the maximum risk of the nonlinear regularized Sobolev interpolator over a Besov

ball Br
p;q is of rate O(n

�2r=(2r+1) logn) when the universal thresholding rule is used. It achieves the

rate of convergence O(n�2r=(2r+1) log n) when the minimax thresholding pn=
p
n is used.

5 Numerical Examples

In this section, we illustrate our penalized least-squares method by using two simulated data sets

and two real data examples. The NRSI is used as an initial estimate. The ROSE method is

employed with the SCAD penalty.
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Figure 4: Estimates by using ROSE for two simulated data. (a) and (c) Simulated data and true

regressions; (b) and (d) Estimate by using ROSE (solid curve) and true regressions (dashed curves).

For simulated data, we use the functions \heavisine" and \blocks" in Donoho and Johnstone

(1994) as testing functions. The noise level is increased so that the signal-to-noise ratio is around

4. This corresponds to taking � = 0:5 for the heavisine function and � = 0:3 for the \blocks"

function. A random sample of size 100 is simulated from model (1.1). The design points are

uniformly distributed on [0; 1], but they are not equispaced. The simulated data and the testing
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functions are shown in Figures 4(a) and 4(c). The ROSE estimates were computed using the

symmlets of order 6 and s = 3 for the heavisine function and the Haar wavelets and s = 0:5 for the

\blocks" function. As one can see from the �gures, the \blocks" data are very sensitive to small

gaps in the design because they have a lot of discontinuities. On the other hand, the �t for the

\heavisine" case is much smoother and better. Note however the bias in the discontinuous parts of

the heavisine function due to the wavelet NRSI initial estimate with s = 3.
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Measurement of Exhaust from Burning Ethanol

Figure 5: Measurements of exhaust from burning ethanol: observed data (points) and ROSE

estimates (solid curve).

We now apply our regularized wavelet estimators to the ethanol data. This data set has also

been discussed extensively by Brinkman (1981) and Chambers and Hastie (1992). The data which

are displayed in Figure 5 consist of 88 measurements from an experiment in which ethanol was

burned in a single cylinder automobile test engine. The concentration of the sum of nitric oxide

(NO) and nitrogen dioxide (NO2) in engine exhaust, normalized by the work done by the engine, is

related to equivalent ratio, a measure of the richness of the air/ethanol mix. To analyze this data

set we have used a wavelet interpolation with symmlets of order 6, N = 128 and a smoothness

index s = 1:5. The resulting estimate by our procedure is plotted on the �gure as a solid line and

seems to �t the data well, despite the fact that the variance of the data does not appear to be

constant (the data exhibit more variation for smaller equivalence ratios).
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The next �gure shows another data set that has been analyzed extensively in the �eld of non-

parametric regression. It has been discussed by Silverman (1985) and consists of 133 observations

from a crash test and shows the acceleration of a motorcyclist's head during a crash. Classical

wavelet thresholding or the interpolation method of Hall and Turlach (1997) for unequally spaced

data produce wiggly estimates like those in the �rst row of Figure 5. In both cases VisuShrink was

applied and Symmlets of order six were used. Both estimates exhibit large high frequency phe-

nomena. The second row in Figure 6 displays a robust estimate obtained by cleaning �rst the data

from outliers and extreme observations by median-�ltering and then using wavelet thresholding on

linearly interpolated data on a regular grid as suggested by Kovac and Silverman (1999) and the

ROSE estimate on the same data set with a 256 point Sobolev interpolation with Symmlets of

order 6, s = 3 and a SCAD penalty. Both estimates are obviously less disturbed by the outliers in

the crash data set. There are not anymore high frequency phenomena. This example shows that

ROSE by itself is quite robust to outliers.
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(d) ROSE estimation with s=3

Figure 6: Crash data with several wavelet estimates
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6 Other approaches

In this section, we o�er two alternative approaches to estimate regression functions from nonequi-

spaced samples. The �rst approach is to use the graduated nonconvexity (GNC) algorithm to �nd

a local minimum of the penalized least-squares problem (2.3). This method is more computation-

ally intensive than the NRSI and ROSE and its implementations depend on a number of tuning

parameters. Nevertheless, it o�ers nice ideas for optimizing high-dimensional nonconvex functions.

The second approach is to design a nonorthogonal wavelet, called wavelet networks, that adapts to

nonuniform designs.

6.1 Graduated nonconvexity algorithm

The graduated nonconvexity algorithm was developed in the image processing context (see Blake

and Zisserman 1987, Blake 1989). It is capable of minimizing a broad range of nonconvex functions.

Basically, the GNC algorithm can be seen as a deterministic relaxation technique (Blake 1989)

which substitutes a sequence of local minimizations along a sequence of approximate (relaxed)

functions `rk for the minimization of `. Here, frkgKk=0 is an increasing sequence of positive relaxation

parameters which are similar to the \cooling temperatures" in the simulated annealing. The �rst

relaxed objective function `r0 is strictly convex and hence its minimization can be found by using

standard techniques. A local minimizer of `rk(�) serves as the initial value for minimization of

`rk+1(�). The last one �ts the function `, which is the object that we really want to minimize.

The GNC algorithm requires the family of relaxed functions `r, depending on a parameter

r 2 (0; 1) to satisfy the following conditions:

(a) the functions `r(�) are C
1-continuous in � and continuous in r;

(b) the concavity of `r is relaxed monotonously when r decreases;

(c) there exists r0 > 0 such that `r is strictly convex for any r � r0;

(d) limr!1 `r(�) = `(�).

Thus, the function `r has a unique minimum for r � r0. When r increases to one, the local minima

progressively approaches a local minima of the object function `.

The implementation of the algorithm depends on the choice of relaxation sequence frkgKk=0.

The GNC minimization starts from calculating the unique minimum �̂r0 of `r0 . Afterwards, for

each rk an \intermediate minimum" �̂rk of `rk is calculated by a local descent method in a vicinity

of previously obtained \intermediate minimum", namely �̂rk is obtained by iterating a local decent

algorithm with the initial value �̂rk�1 . The �nal estimate is �̂rK .

24



The closeness of the ultimate estimate �̂rK to the global minimum of ` depends critically on

the sequence of relaxed functions. It is therefore reasonable to require that the relaxed functions

`r closely approximate the original functional `.

6.2 Applications to penalized least-squares

The success of a GNC optimization to compute estimates corresponding to nonsmooth penalties in

x2.3 is closely dependent on the pertinence of the approximation involved in the relaxed penalized

functions. An extension of the GNC algorithm to ill-posed linear inverse problems and a systematic

way to calculate initializations for which a local minimization of ` provides meaningful estimates has

been given recently by Nikolova et al. (1999). Below we briey summarize key ideas in Nikolova

et al. (1999) and extend the GNC algorithm to our case. To facilitate notation, we drop the

dependence of notation � and rewrite (2.3) as

`(�) = 2�1kYn �A�k2 +
X
i�i0

p(j�ij): (6.1)

In our applications, the nonconvexity comes from nonconvexity penalties. Hence, we need only

to relax the penalized term in (6.1). Penalty functions satisfying the conditions of Theorem 1

have strictly concave parts but their concavity vanishes at in�nity, namely, the second derivative at

in�nity is non-negative. They usually reach their maximum concavity at some �nite point. More

precisely, let

p00(t) = lim
"!0

"�2fp(t+ ") + p(t� ")� 2p(t)g; for t > 0

and T be the largest minimizer of p00(�) over t > 0. That is, T is the location where the maximum

concavity inft2R+ p
00(t) of the function p occurs. Given such a penalty function, a relaxed penalty

pr should satisfy the following conditions (Nikolova et al. 1999):

(a) the functions pr(jtj) are C1-continuous in t and for any t �xed they are continuous in r;

(b) pr(jtj) should not stray too much from p(jtj) for each r and limr!1 pr(jtj) = p(jtj);

(c) the maximum concavity of pr(jtj), occurring at Tr, is required to increase continuously and

strictly monotonously towards 0 as r ! r0 so that pr0 is a convex function.

An appropriate choice of a relaxed penalty is usually based on the closeness of Tr to the original T

and the way Tr decreases towards T as r increases towards 1. One way to construct such relaxed

penalties pr is to �t splines in the vicinity of the points where p is not di�erentiable and nonconvex.

This technique was proposed in Blake and Zisserman (1987) for the relaxation of a clipped quadratic

penalty.
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In order to ensure the convexity of initial approximation

`r(�) = 2�1kYn �A�k2 +
X
i�i0

pr(j�ij);

it is necessary to �nd a r such that the Hessian matrix of `r is nonnegative de�nite for any �:

ATA+ P 00

r (�) > 0; for all �;

where Pr(�) =
P

i�i0
pr(j�ij) and P 00

r (�) is its corresponding Hessian matrix. Since the matrix

AT A is singular and pr has its concave parts, such a condition is diÆcult to ful�ll. Thus, some

modi�cations on family of relaxation pr for r near r0 are needed. A possible way to do this is to

render convexity of the initial relaxed penalty pr, as it is done in Nikolova et al. (1999).

Take a number � 2 (r0; 1). With slight abuse of notation, modify the de�nition of Pr for

r 2 [r0; �] as

Pr(�) = P�(�) +
�� r

�� r0
Q(�);

where Q(�) =
P

i
q(j�ij) for a convex function q. In order to ensure the convexity of Pr0 , Q has to

compensate for the nonconvex parts of P� and at the same time Q should not deform P� too much.

The auxiliary penalty q should be C1-continuous and symmetric with q(0) = 0. A possible choice

of the function q is given by

q(jtj) = fp�(u�)� p�(jtj) + (jtj � u�) _p�(u�)gI(jtj � u�); (6.2)

where u� > 0 is such that p� is strictly convex over the interval jtj < u�.

An an illustration, let us consider the transformed L1 penalty function (2.11), which has been

used in the context of image processing for restoring blurred images by Nikolova et al. (1999). For

this type of penalty, the maximum concavity occurs at T = 0 with the minimum of the second

derivative �2b2. Consider the family of relaxed functions

pr(jtj) =
(

brt
2

1+crt
2 if jtj < 1�r

r
;

bjtj

1+bjtj
if jtj � 1�r

r
;

(6.3)

with br =
2rb
1�r

and cr =
r(r+2b�2br)

(1�r)2
. The penalty and its relaxed form are depicted in Figure 7(c).

The constants br and cr are determined by the C1-continuity of the function pr. The maximum

concavity occurs at Tr =
1
cr
< 1�r

r
with the minimum of the second derivative �rb=(1 � r). This

initial choice of relaxed functions are not convex for all r > 0. Thus, we appendix a convex term

according to (6.3):

q(jtj) =
(

0 if jtj < u�;

b�

4c�
� p�(jtj) + (jtj � u�)g if jtj � u�;

where u� =
1p
3c�

and g =
9b�

8
p

3c�
. As an illustration of the GNC algorithm, we simulated 100 data

points from the heavisine function with a signal-to-noise ratio about 3. The data and the true
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regression function are shown in Figure 7(a). We apply the GNC algorithm with the number of

relaxing steps K = 40 to solve the penalized least-squares problem (2.3) with � = 6 and penalty

function (2.11) with b = 3:7. The GNC algorithm found a reasonably good estimate, which is

superimposed as a solid line to the true function (dashed curve) in Figure 7(b).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−5

0

5

(a) True curve and noisy data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−5

0

5

(b) True curve (dashed) and GNC estimate (solid)

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8
 (c) Original concave penalty and its relaxed form (r=0.5)

Figure 7: Illustration of the GNC algorithm. (a)The data (points) and the true regression function

(solid curve) (b) The unknown function is computed by solving (2.3) using the GNC algorithm;

dashed curve { the true function; solid curve { estimated function; (c) Relaxing the concave penalty

(2.11) with b = 3:7 (solid curve) by using a relaxing function pr with r = 0:5 (dashed curve) de�ned

by equation (6.3).
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6.3 Wavelet networks

Another possible approach to handle irregular designs is to interpolate the original data by a wavelet

network interpolator as the one described in Bernard et al. (1998). The algorithm can be divided

into two main parts. The �rst part of the algorithm is designed to choose a subfamily from a triadic

wavelet basis of same cardinality as the number of observations. This step depends only on the

design points and allows us to approximate the data by an interpolation of the form A� where this

time A is an n�n invertible square sparse matrix, while � is the vector of wavelet coeÆcients that

are retained through the interpolation. The second part of the algorithm consists in regularizing

the estimation of � with our penalization method and is closely related to the method derived by

Fan and Li (1999) for penalized model selection.

References

Antoniadis, A. (1996), \Smoothing noisy data with tapered coiets series", Scand. J. Statist., 23,

313{330.

Antoniadis, A. (1997), \Wavelets in Statistics: A Review" (with discussion), Italian Jour. Statist.,

to appear.

Antoniadis, A., Gr�egoire, G. and McKeague, I. (1994), \Wavelet methods for curve estimation",

J. Am. Statist. Ass., 89, 1340{1353.

Antoniadis, A., Gr�egoire, G. and Vial, P. (1997), \Random design wavelet curve smoothing",

Statistics & Probability Letters, 35, pp. 225{232.

Barron, A., Birg�e, L. and Massart, P. (1999), \Risk bounds for model selection via penalization",

Probab. Theory Related Fields, 113, 301{413.

Brinkman, N. D. (1981), \Ethanol{A single-cylinder engine study of eÆciency and exhaust emis-

sions", SAE Transactions, 90, 1410{1424.

Bernard, C., Mallat, S. and Slotine, J. J. (1999), \Wavelet Interpolation Networks", Preprint,

Centre de Math�ematiques Appliqu�ees, Ecole Polytechnique, France.

Bickel, P.J. (1975), \One-step Huber estimates in linear models", J. Amer. Statist. Assoc., 70,

428{433.

Blake A. (1989), \Comparison of the eÆciency of deterministic and stochastic algorithms for visual

reconstruction", IEEE Trans. on Pattern Analysis and Machine Intelligence, 11, 2{12.

Blake, A. and A. Zisserman (1987), Visual reconstruction, MIT Press, Cambridge.

28



Breiman, L. (1995), \Better subset regression using the nonnegative garotte", Technometrics, 37,

373{384.

Cai, T. T. and Brown, L. D. (1998), \Wavelet Shrinkage for nonequispaced samples", The Annals

of Statistics, 26, 1783{1799.

Chambers, J.M. and Hastie, T.J. (1992), Statistical models in S, Wadsworth and Brooks, Paci�c

Grove.

Chen, S. C, Donoho, D. L and Sanders, M. A. (1998). Atomic decomposition by basis pursuit.

SIAM J. Sci. Comput., 20, 1, 33{61.

Donoho, D.L. and Johnstone, I.M. (1994), \Ideal spatial adaptation by wavelet shrinkage", Biometrika,

81, 425{455.

Donoho, D.L. and Johnstone, I.M. (1998), \Minimax estimation via wavelet shrinkage", The

Annals of Statistics, 26, 879-921.

Donoho, D.L., Johnstone, I.M., Hock, J.C. and Stern, A.S. (1992), \Maximum entropy and the

nearly black object (with discussions)", J. Roy. Statist. Soc. Ser. B, 54, 41-81.

Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1995). \ Wavelet shrinkage:

asymptopia? (With discussion.)", J. Roy. Statist. Soc. Ser. B , 57, 301{369.

Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1995), \Density estimation

by wavelet thresholding", Annals of Statistics, 24, 508-539.

Donoho, D. L., Vetterli, M., DeVore, R. A. and Daubechies I. (1998). Data compression and

harmonic analysis. Technical report, Department of Statistics, Stanford University.

Fan, J. (1997), \Comment on `Wavelets in Statistics: A Review' by A. Antoniadis", Italian Jour.

Statist., to appear.

Fan, J. and Chen, J. (2000), \One-step local quasi-likelihood estimation", J. Roy. Statist. Soc.

Ser. B , to appear.

Fan, J. and Li, R. (1999), \Variable selection via penalized likelihood", Technical report, Depart-

ment of Statistics, UCLA.

Gao, H. Y. and Bruce, A. G. (1997), \WaveShrink with �rm shrinkage", Statistica Sinica, 7,

855{874.

Hall, P. and Patil, P. (1995). \Formulae for mean integrated squared error of nonlinear wavelet-

based density estimators", Ann. Statist., 23, 905{928.

29



Hall, P. and Turlach, B.A. (1997), \Interpolation methods for nonlinear wavelet regression with

irregularly spaced design", The Annals of Statistics, 25, 1912{1925.

Johnstone, I. M. and Silverman, B. W. (1997), \Wavelet threshold estimators for data with cor-

related noise", J. Roy. Statist. Soc. Ser. B , 59, 319{351.

Kovac, A. and Silverman, B. W. (1998), \Extending the scope of wavelet regression methods by

coeÆcient-dependent thresholding", Technical report, Department of Statistics, University of

Bristol.

Neumann, M.H. and Spokoiny, V.G. (1995), \On the eÆciency of wavelet estimators under arbi-

trary error distributions", Math. Methods Statist., 4, 2, 137{166.

Nikolova, M. (1999a). \Markovian reconstruction using a GNC approach", IEEE Transactions on

Image Processing, 8, 9, 1204{1220.

Nikolova (1999b). \Local strong homogeneity of a regularized estimator", To appear in SIAM.

Nikolova, M., Idier, J. and Mohammad-Djafari, A. (1999), \Inversion of large-support ill-posed

linear operators using a piecewise Gaussian MRF", to appear in IEEE Image Processing.

Ogden, T. (1997). Essential wavelets for statistical applications and data analysis. Birkhauser

Boston, Boston.

Rao, C.R. (1973), Linear Statistical Inference and Its Applications (2nd ed.), John Wiley & Sons,

New York.

Robinson, P.M. (1988), \The stochastic di�erence between econometric and statistics", Econo-

metrica, 56, 531-547.

Sardy, S., Percival, D. B., Bruce A., G., Gao, H.-Y. and Stuelzle, W. (1998) \Wavelet shrinkage

for unequally spaced data", Mathsoft research report 41, to appear in JCGS.

Silverman, B. W. (1985), \Some aspects of the spline smoothing approach to nonparametric

regression curve �tting (with discussion)", J. Roy. Statist. Soc. Ser. B , 47, 1{52.

Tibshirani, R. (1995), \Regression shrinkage and selection via the lasso", J. Roy. Statist. Soc.

Ser. B , 57, 267{288.

Vidakovic, B. (1999), Statistical Modeling by Wavelets. Wiley, New York.

Wang, Y. (1996), \Function estimation via wavelet shrinkage for long-memory data", The Annals

of Statistics, 24, 466{484.

30



Appendix: Proofs

A.1 Proof of Theorem 1

The existence of the solution has already been noted. When z = 0, it is clear that �̂(z) = 0 is the

unique minimizer. Without loss of generality, assume that z > 0. Then, for all � > 0, `(��) > `(�).

Hence, �̂(z) � 0. Note that

`0(�) = � � z + p0�(�):

When z < p0, the function ` is strictly increasing on (0;1) because the derivative function is

positive. Hence, �̂(z) = 0. When the function `0(�) is strictly increasing, there is at most one zero

crossing and hence the solution is unique. Thus, we only need to consider the case that `0(�) has a

valley on (0;1) and z > p0. In this case, there are two possible zero-crossings for the function `0 on

(0;1). The larger one is the minimizer because the derivative function at that point is increasing.

Hence the solution is unique and satis�es

�̂(z) = z � p0�(�̂(z)) � z: (A.1)

Thus, �̂(z) � z � p0
�
(z) when p0

�
(�) is nonincreasing. Let �0 be the minimizer of � + p0

�
(�) over

[0;1). Then, from the above argument, �̂(z) > �0 for z > p0. If p
0

�
(�) is nonincreasing, then

p0�(�̂(z)) � p0�(�0) � �0 + p0�(�0) = p0:

This together with (A.1) prove (iii). It is clear that continuity of the solution �̂(z) at the point

z = p0 if and only if the minimum of the function j�j+ p0
�
(j�j) is attained at zero. The continuity

at other location follows directly from the monotonicity and continuity of the function �+ p0
�
(�) in

the interval (0;1). The last conclusion follows directly from (A.1). This completes the proof.

A.2 Proof of Theorem 2

First of all, Rp(�; p0) is symmetric about zero by Theorem 1 (i). Thus, we can assume without loss

of generality that � � 0. By Theorem 1 (i) and (ii),

E(�̂ � �)2 � E(Z � �)2I(�̂ 62 [0; �]) + �2P (�̂ 2 [0; �]) � 1 + �2: (A.2)

To prove (ii), we note that

E(�̂ � �)2 = 1 + 2E(Z � �)(�̂ � Z) +E(�̂ � Z)2:

For Z > �, we have �̂ � Z by Theorem 1 (iii), which implies that

(Z � �)(�̂ � Z) � 0:
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Similarly for Z < 0,

(Z � �)(�̂ � Z) � 0:

Thus,

E(�̂ � �)2 � 1 + 2E(� � Z)(Z � �̂)I(0 � Z � �) +E(�̂ � Z)2:

By Theorem 1(iii),

j�̂ � Zj � p0:

Thus,

E(�̂ � �)2 � 1 + 2p0E(� � Z)I(Z � �) + p20

� 1 + p0
p
2=� + p20:

This establishes (ii).

The result in (iii) follows directly from the fact that

Rp(0; p0) � EZ2IfjZj � p0g:

To show (iv), using the fact that R0

p(0; p0) = 0 due to symmetry, we have by the Taylor expansion

that

Rp(�; p0) � Rp(0; p0) +
1

2
sup

0���1

R00

p(�; p0)�
2; for � 2 [�1; 1]: (A.3)

We now compute the second derivative. Let �(�) be the standard normal density. Then, by simple

calculation, we have

R0

p(�; p0) =

Z
1

�1

(� + z � 2�̂)�(z � �)dz = 2� � 2

Z
1

�1

�̂�(z � �)dz:

and

R00

p(�; p0) = 2 + 2E�̂(� � Z):

Using the same arguments as those in the proof of (ii), we have for � > 0

R00

p(�; p0) � 2 + 2E�̂(� � Z)I(0 � Z � �):

Noticing that �̂ = 0 for jZj � p0, we have for p0 � 1,

R00

p(�; p0) � 2:

For the general case, using the fact that j�̂j � jZj, we have for � 2 [0; 1],

R00

p(�; p0) � 2 + 2�E(� � Z)I(0 � Z � �)

= 2 +
p
2=��(1� exp(��2=2)) � 4:

By (A.3), the result (iv) follows for � 2 [�1; 1]. For � outside this interval, (iv) follows from (A.2).

This completes the proof.
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A.3 Proof of Lemma 1

For j�j > 1, by (3.4), we have for n � 4

Rp(�; p0) � 2 log n+ 2(log n)1=2:

Thus, we need to show that the inequality holds for � 2 [0; 1]. First of all, by Theorem 2 (iv),

Rp(�; p0) � Rp(0; �) + 2�2:

Let

g(�) = (Rp(0; p0) + 2�2)=(c=n + �2):

If Rp(0; p0) � 2c=n, then

g(�) � 2 � 2 log n:

Hence the result holds. When Rp(0; p0) > 2c=n, g(�) is monotonically decreasing and hence

g(�) � g(0) = c�1nRp(0; p0):

By Theorem 2 (iii), we have

g(�) � nc�1p0(1 + p�20 )
p
2=� exp(�p20=2)

� 2��1=2c�1(1 + p�20 )(log n)1=2(1 + d1=2(log n)1=2):

Using the fact that for p0 > 1:14,

��1=2(1 + p�20 ) � 1:

we conclude that

g(�) � 2c�1d1=2(log n) + 2c�1(log n)1=2:

A.4 Proof of Theorem 4

Write Z = (Zj;k) and � = (�j;k), j = 0; � � � ; J �1, k = 1; � � � ; 2j , where Zj;k and �j;k are the wavelet

coeÆcients at the jth resolution level. Then, Zj;k � N(�j;k; n
�1). By Theorem 3, we need only to

compute the maximum risk of the oracle estimator �̂o
j;k

= Zj;kI(jZj;kj > n�1). Note that under the

n1=2-scale transform between the discrete and continuous wavelet coeÆcients, the risk function for

the oracle estimator becomes

R(f̂o; f) =

J�1X
j=1

2jX
k=1

E(�̂oj;k � �j;k)
2
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Now the risk for the componentwise oracle estimator is known to be

E(�̂oj;k � �j;k)
2 = min(�2j;k; n

�1) = n�1fmin(
p
nj�j;kj; 1)g2: (A.4)

Choose an integer J0 such that 2J0 = n1=(2r+1). Then, it follows from (A.4) that

J0X
j=0

X
k

E(�̂oj;k � �j;k)
2 � 2J0+1=n = O(n�2r=(2r+1)): (A.5)

For p � 2, by (A.4), we have

J�1X
j=J0+1

X
k

E(�̂oj;k � �j;k)
2 � n�1

J�1X
j=J0+1

X
k

(
p
nj�j;kj)p:

By the de�nition of the Besov ball, the last expression is bounded by

Cp=qn�1+p=2
J�1X

j=J0+1

2�jap = O(n�1+p=22�J0ap) = O(n�2r=(2r+1)); (A.6)

where a = r + 1=2� 1=p. Combination of (A.5) and (A.6) yields

Rp(f̂p; f) =

J�1X
j=0

X
k

E(�̂oj;k � �j;k)
2 = O(n�2r=(2r+1));

uniformly for all � 2 Br
p;q(C). We now need only to deal with the case p > 2. Note that k�j�k2 �

2(1=2�1=p)jk�j�kp, since �j� has 2j elements. It follows from this Br
p;q � Br

2;q. The conclusion follows

from the result for the case p = 2.

A.4 Proof of Theorem 6

As one naturally expects, rigorous proof of this theorem involves a lot of technicalities, such as

approximating discrete summations by their continuous integrations for wavelet coeÆcients below

certain resolution level. In fact, some of these approximations at high resolution levels are not valid

and one can modify the estimator slightly without estimating wavelet coeÆcients above certain

level. For above reasons, we will only outline the key ideas of the proof without taking care of

non-intrinsic parts of technicalities. Hence, the key ideas and the intrinsic parts of the proofs are

highlighted.

As noted before, vj;k � 1 since V � IN . By Theorem 5 and noting the factor n�1=2 di�erence

between the discrete and continuous wavelet coeÆcients, we have

Rp(f) � [2 log n+ 2(log n)1=2][N=n2 +

J�1X
j=1

2jX
k=1

min(��2j;k; n
�1): (A.7)
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Thus, we need only to show that �� 2 Br
p;q. Note that �

� = A
T
fn. Thus,

��j;k = 2�J=2

Z 1

0

 j;k(t)f(t)dGn(t)

= 2�J=2

Z 1

0

 j;k(t)f(t)g(t)dt(1 + o(1)):

Since f is in the Besov ballBr
p;q(C) and g is continuously di�erentiable with a derivative bounded

away from 0, it follows that fg also belongs to a Besov ball Br
p;q(C

0) with C 0 � C. The factor 2�J=2

is the di�erence between the discrete and continuous wavelet coeÆcients. Therefore, �� 2 Br
p;q(C

0).

By (A.7) , we have

Rp(f) = O(log n)[N=n2 +
X
j;k

min(��2j;k; n
�1)]:

The result follows from the proof of Theorem 4.
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