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List of Figures

1.1 Comparing animal cell and plant cell cytokinesis (Image Credit [5], Cre-

ative Commons License). Animal cell cytokinesis involves pinching and

reforming the cell membrane boundary via the action of a contractile ring.

Plant cell cytokinesis requires orchested vesicle transport and polysaccha-

ride deposition at the division plane due to the needs of the development

of a new cell wall [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Describing principal curvatures using maximum and minimum curvature

sections [17] (Open Access). The principal curvatures are the reciprocal of

the local radii of curvature of the lines of intersection between the surface

and the minimum and maximum curvature planes as shown. . . . . . . . 5

1.3 Example of a course grained membrane parameterization in a two-dimensional

Monte-Carlo simulation used illustrate interactions between a membrane

(blue) and a self-avoiding polymer (orange) [19] (Reprinted with Permis-

sion from APS, License No. RNP/22/MAY/053417). . . . . . . . . . . . 6
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2.1 Schematic representation of cell plate development stages and the poten-

tial role of a spreading force in cell plate maturation. A-D, Cell plate

development occurs centrifugally in multiple stages. A, During the first

stage (I), cytokinetic vesicles guided by the phragmoplast accumulate at

the center of the dividing cells, at the cell plate assembly matrix. B,

Vesicles undergo fusion and fission and conformational changes resulting

in TVN (Stage II). C, Interconnected membrane structures transition to

a TN. At this stage high callose deposition occurs (Stage III). D, The

membrane network further expands to an almost continuous fenestrated

membrane sheet (PFS) (Stage IV). Deposition of additional polysaccha-

rides helps transition to a new cell wall, separating the two daughter cells.

Note that different stages can occur simultaneously, images are not to

scale. This simplified representation emphasizes on cell plate membranes

[8, 7]. E–H, Schematic representation of cell plate development describ-

ing the role of a spreading force. E, Early stages of vesicle accumulation

and fusion and F, TVN and TN structures are shown. Two different

possibilities are projected for stage transition (1) Incomplete/arrested cell

plate G. In the absence of a spreading force G, tubular and fenestrated

structures accumulate, and there is a lack of maturation towards a single,

complete cell plate structure. (2) Normal cell plate transition H. In our

calculations, we discover that for expansion/maturation to occur as in D,

the presence of a spreading force is required, along with the decrease of

spontaneous curvature to a threshold value. This allows for a sheet-like

cell plate (SCP) structure to form. The structures in this schematic de-

scription are adapted from data collected from EM tomography [8] with

bars in E–G=50nm, H=0.25µm. Dark blue vesicles denote those labeled

by the mathematical naming schema as described in Fig.2.2. Whereas in

E, 2×1×0 denotes two oblate spheroids, one tubular connection, and zero

holes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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2.2 Approximating cell plate structures using a variational approach. A–D,

Examples of membrane structure parameterizations used for modeling. A,

Cross-section of an oblate spheroid through the polar axis. The major axis

radius is labeled a and the minor axis radius is labeled c. This structure

is used to model vesicles, or mature cell plate structures in the case where

a�c .B, Cross-section of an elliptic hyperboloid at its center, showing the

skirt radii. The hyperboloid can be parameterized by its length l and its

skirt radius in the equatorial plane ah , the skirt radius in the axial plane

is given by bh , which can be written as a function of the other parameters

listed as shown in Eq.2.4. C, An example of a tubulo-vesicular structure

parameterized by two oblate spheroids connected by a single elliptic hy-

perboloid (referred to as a 2x1x0 structure). Only the top view is shown.

D, An example of a 4x4x1 conformation that models a transition to a fen-

estrated network with genus g = 1 (one gap) .E, Evolution of single oblate

spheroid parameters in the presence of a spreading force. In the presence

of a spreading force, the thickness of the oblate spheroid remains in the

40–80nm range despite the increase in area. This reflects the thicknesses

and growth patterns found in intermediate cell plate stages [7]. Here,

hos = 2c(aos, c shown in A), represents the overall height, or thickness, of

the oblate spheroid. In the absence of a spreading force, hos , or the thick-

ness, is estimated to grow in values that are not observed experimentally.

For reference, an area of 104nm2 is roughly equal to that of a single vesicle. 13

viii



2.3 Stability tests to determine the role of a spreading force in different shape

conformations. A and B, Stability tests determined by ∆Emin versus area

for different conformations compared to a single oblate spheroid at the

labelled area. A positive value of ∆Emin indicates relative stability of the

labelled conformation as compared to a single oblate spheroid (1×0×0).

A, Relative stability of tubular (2×1×0, 5×4×0, 7×6×0) and fenestrated

(4×4×1, 6x7x2) structures in the absence of a spreading force with a finite

spontaneous curvature. B, Stability of a single oblate spheroid over tubu-

lar and fenestrated structures in the presence of a spreading force and with

zero spontaneous curvature. Note that in (B) a decrease of spontaneous

curvature to a threshold value close to 0.015nm−1 yields similar results.

C and D, Stability test for multiple 2x1x0 structures compared to a sin-

gle oblate spheroid at the labeled area. C, Relative stability of multiple

2x1x0 structures compared to a single oblate spheroid in the absence of

a spreading force. At a labeled area, a larger number of structures have

collectively a higher, more positive value of ∆Emin , thereby indicating

that in the absence of a spreading force, tubular, as well as emerging fen-

estrated/network structures (as inferred by the results of A and B) are

energetically favorable and tend to accumulate as shown in Fig.2.1G. D,

Stability of a single oblate spheroid compared to multiple 2×1×0 struc-

tures in the presence of a spreading force and with zero spontaneous cur-

vature. In the presence of a spreading force, at a labeled area, a larger

number of structures have a lower, more negative value of ∆Emin collec-

tively, thereby indicating the energetic favorability of structures fusing to

form larger, more mature structure(s). . . . . . . . . . . . . . . . . . . . 18
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2.4 Progression of the cell plate in the presence and absence of callose. A–D,

Cell plate progression in the presence of callose. (A), It shows an early

stage cell plate before the accumulation of callose, while (B–D) represent

later cell plate stages including SCP as indicated in Fig.2.1D. FM4–64

staining (magenta) is used to stain plasma membrane and the cell plate,

while Aniline Blue fluorochrome (green) staining shows callose accumu-

lation. Note the transient accumulation of callose in later stages leading

to the maturation of cell plate during normal cytokinesis (B–D). C and

D represent two snapshots of a time series. C, Two cell plates can be

observed, and as maturation continues to D, callose is eliminated from

one cell plate indicating its transient nature. Arrows indicate callose ac-

cumulation at the cell plate. E–G, Progression of cytokinesis under ES7

treatment for 2 h that inhibits callose deposition. Note that early cell

plate development is not affected with ES7 treatment as shown in earlier

studies [14] (E). However, in late stages of cell plate development under

ES7 treatment, the absence of callose prevents the transition into a stable

mature single structure, leading to characteristic “cell plate stubs” (F and

G). CP indicates cell plate, SCP indicates SCP as depicted in 2.4. CW

indicates cell wall. Yellow arrowheads denote lack of callose at cell plate

breakage points. Dotted lines in F, G outline the position where callose

should be deposited. Images are 3D reconstructions from Z-stacks of live

confocal imaging and show single timepoints. C and D are snapshots of a

time series. Figures are representative of root tips from a minimum of 10

Arabidopsis seedlings. A schematic representation on the right indicates

the accumulation of callose in relation to cell plate development. White

gaps at the bottom indicate cell plate fragmentation. Bars=3µm. . . . . 20
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2.5 Comparison of chemical inhibitors of cellulose, callose and myosin on cy-

tokinesis. A–L, Evaluation of cytokinesis inhibition under 5 day chemi-

cal treatment in Arabidopsis root tips. Under control DMSO treatment

normal cytokinesis is observed (A–D). Under ES7 treatment typical cy-

tokinesis defects are observed with the cytokinesis marker RABA2a (E),

multinucleate cells (F) are shown by DAPI staining. Under IXB treatment

cell plate progression was observed (I) without discernable cytokinetic de-

fects in the form of binucleate cells (J) or cell plate stubs (I, K, and L).

Please note cell swelling under IXB treatment. The cytokinesis marker

RABA2a is shown in green, while FM4–64 staining of plasma membrane

is shown in magenta. Nuclei staining by DAPI are indicated in blue.

Samples were stained with FM4–64FX, fixed and stained post fixation for

DAPI. Results were observed in at least six roots for each drug treatment.

Samples are single scans of fixed cells. Bars=10µm. M–X, Effect of 2 h

short-term (50µM) ES7 and the putative myosin inhibitor 2,3-butanedione

2-monoxime (20 mM BDM) treatment in cytokinesis. Under DMSO con-

trol treatment normal progression of cytokinesis is observed (M–O). Under

ES7 treatment, characteristic cell plate stubs were observed with RABA2a

and the plasma membrane stain FM4–64 (P–R). Under BDM treatment,

a reduction of RABA2a signal was observed with increase in cytoplasmic

pattern (S–X). The cytokinesis marker RABA2a is shown in green, while

FM4–64 staining of plasma membrane is shown in magenta. Samples are

single scans of live cell confocal imaging. Results were observed in at least

six roots for each drug treatment. Bars=5µm. . . . . . . . . . . . . . . . 21
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2.6 Parameters visualized on a representative 2x1x0 structure. To enforce

continuity between an oblate spheroid of given parameters (a, c) and an

elliptic hyperboloid with parameters (ah, bh, ch), we can calculate d and bh

since they are dependent variables, a full conformation can be described by

the type of conformation and the parameter set (a, c, ah, l), or equivalently

(a, c, ah, ch). The perpendicular arrows show the respective axes of the

conformation. A, shows the top view of the conformation, while B, shows

the side view of the same conformation. . . . . . . . . . . . . . . . . . . 34

2.7 Effect of a spreading force visualized in a 8x10x3 conformation. The pa-

rameters shown here were extracted after energy minimization calcula-

tions on an 8x10x3 structure with parameter restrictions in place. In the

absence of a spreading force, larger fenestrations, and narrower tubular

connections are predicted, as shown in a top view in A. This structure

has an area of 2x105nm2, while the parameters (a, c, ah, l) are given by

(52, 31.5, 20, 25.8)nm. As a spreading force is turned on and the spon-

taneous curvature is decreased, the tubular connections widen, thereby

shrinking the fenestration sizes, as shown in a top view in B. For the

same area, the parameters change to (58, 24, 33.5, 25.41)nm. If we re-

lax the imposed parameter restrictions in the presence of a spreading

force, the resulting structure would reach a single oblate spheroid with

a = 173nm, c = 25nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 Evolution of single oblate spheroid parameters in the presence of a spread-

ing force. Results with extremal values of the bending modulus are shown

in A and B. Despite the increasing area, the height (h) remains in the 40-

80nm region. With a smaller bending modulus, as in A, a smaller value

of the spreading force parameter λ and pressure difference ∆P is required

to maintain the height within the desired region for the specified areas.

With a larger bending modulus, as in B, larger values of λ and ∆P are

required. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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2.9 Stability tests of various configurations under different bending modulus

in the absence of a spreading force. A, Stability tests for a small value of

bending modulus while B shows calculations for a larger value of bending

modulus. A positive value of ∆Emin indicates relative stability of the la-

belled conformation as compared to a single oblate spheroid. Note that

in the absence of a spreading force and finite spontaneous curvature, in-

creasingly tubular and fenestrated structures are more stable as compared

to a single oblate spheroid. The different values of ∆p and λ arise due to

the constraints on structure thickness as shown in Fig. 2.2 and Fig.2.3. . 36

2.10 Stability tests of various configurations under different bending modulus

in the presence of a spreading force and with zero spontaneous curvature.

A, Stability tests for a lower value of bending modulus and B higher

value of bending modulus. Note that with the presence of a spreading

force and with zero spontaneous curvature, increasingly tubular and fen-

estrated structures (i.e.7x6x0) are increasingly unstable as compared to a

single oblate spheroid, indicating the energetic favorability for cell plate

structures to mature to a disk like shape. A positive value of ∆Emin in-

dicates relative stability of the labelled conformation as compared to a

single oblate spheroid. The different values of ∆p and λ arise due to the

constraints on structure thickness as shown in Fig.2.2 and Supplemental

Fig.2.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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2.11 Stability tests of multiple 2x1x0 structures as compared to a single oblate

spheroid in the absence of a spreading force and with finite spontaneous

curvature. ∆Emin of multiple 2x1x0 structures as compared to a single

oblate spheroid under for a low value of bending modulus A and high

value of bending modulus B are shown. Note that in the absence of a

spreading force and with finite spontaneous curvature, tubular structures

are energetically favorable in these conditions, thereby modeling a mem-

brane network stage. A positive value of ∆Emin indicates relative stability

of the labelled conformation as compared to a single oblate spheroid. The

different values of ∆P and λ arise due to constrains on structure thickness

as shown in Fig.2.7 and 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.12 Stability tests of multiple 2x1x0 structures as compared to a single oblate

spheroid in the presence of a spreading force and with zero spontaneous

curvature. In the presence of a spreading force and with zero spontaneous

curvature, tubular structures are unstable compared to a single oblate

spheroid, thereby indicating the energetic favorability of structures fusing

to form larger, more mature structure(s). A, shows results for a small

value of bending modulus while B, shows results for a larger value of

bending modulus. A positive value of ∆Emin indicates relative stability

of the labelled conformation as compared to a single oblate spheroid. The

different values of ∆p and λ arise due to the limitations on structure

thickness as shown in Fig.2.2 and 2.8. . . . . . . . . . . . . . . . . . . . . 38
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2.13 Stability tests of tubular/fenestrated structures as compared to a sin-

gle oblate spheroid in the absence of a spreading force. In the absence

of a spreading force, and with finite spontaneous curvature, fenestrated

and tubular structures are, in general, more stable than a single oblate

spheroid. This relative stability is magnified with the increase in area par-

ticularly for heavily tubular structures (10x13x4 in A, 6x9x4 in B), con-

sistent with observations at tubular network/very early fenestrated sheet

stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.14 Stability tests of tubular/fenestrated structures as compared to a single

oblate spheroid in the presence of a spreading force. A, B, In the presence

of a spreading force, and with decreased spontaneous curvature, a single

oblate spheroid is more stable compared to larger, tubular, fenestrated

structures. This indicates the necessity of a spreading force to incur a

transition from a tubular/ fenestrated sheet stage to a single mature cell

plate structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.15 Evolution/transition of a cell plate structure in the absence of a spreading

force as predicted by the model. Still image from Supplemental Video S1

[25]. As membrane area increases in the absence of a spreading force (with

the same parameters as in Fig.2.3A), a vesicle eventually transitions to an

oblate until a tube (shown in red, modeled by elliptical hyperboloids as

shown in Fig.2.2B) forms in between, after which the tubular regions grows

longer and narrower, taking away membrane material from the oblate

regions (blue, modeled by oblate spheroids as in Fig.2.2A). Here, we see a

transition from a 1x0x0 structure to a 2x1x0 structure in the absence of a

spreading force. If the area were to continue increasing in the absence of a

spreading force, we would likely see the formation of more tubes (structures

like 3x2x0, 4x3x0) as well as fenestrations in some cases (4x4x1, 6x7x2..),

as predicted in Fig.2.3B. Scale (x,y,z) (300nmx300nmx300nm). For full

animation please see supplemental video S1 [25] . . . . . . . . . . . . . . 40
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2.16 Evolution/transition of a final cell plate structure from Fig. S10 in the

presence of a spreading force as predicted by the model. Still Image from

Supplemental Video S2 [25]. As membrane area increases in the presence of

a spreading force (starting from the shape in Fig.2.16, now using the same

parameters as in Fig. 2.3B), the tubular regions (shown in red, modeled

by elliptical hyperboloids as shown in 2.2B) fatten and widen until the

structure is fully oblate. Here, we show a transition from a 2x1x0 to a

1x0x0 structure. We note that such a transition is not possible without a

planar spreading/stabilizing force. If we were to start from a more tubular

or fenestrated configuration with the same area, we would ultimately arrive

at the same final shape (1x0x0). Scale (500nmx500nmx500nm). For full

animation please see supplemental video S2 [25] . . . . . . . . . . . . . . 41
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2.17 Effect of isoxaben (IXB) and Endosidin ES7 on cellular organization and

root growth A – I, Cellular organization of Arabidopsis root tips in 7 nM

IXB and 10 µM ES7. Arabidopsis root tips from 5 day old seedlings grown

under chemical treatments. A -C, DMSO treated seedlings display reg-

ular cellular organization without cytokinetic defects. D – F, Treatment

with ES7 leads to cytokinetic defects in the form of discontinuous cell

walls, indicated by a star. G – I, Treatment with IXB leads to a swollen

cell phenotype. The cytokinesis marker RABA2a is shown in green, while

FM4-64 staining of plasma membrane is shown in magenta. Samples are

single scans of live cell confocal imaging. Bars = 10µm. J. Quantification

of the discontinuous cell wall phenotype showed a 27% in ES7 treatment

with no discernable phenotype in DMSO or IXB treatment. Data rep-

resent quantification of 5-10 seedlings per treatment K, Germination of

Arabidopsis seedlings in 7 nM IXB and 10 µmM ES7 5 and 7 Days af-

ter germination (DAG). The root growth inhibition is significantly higher

under IXB treatment compared to ES7. Letters assigned by LS means, p

= 0.05. (5 day/ 7 days). DMSO 7DAG n = 212, DMSO5DAG n =110,

ES7 5DAG n = 356, ES7 7DAG n = 145, IXB 7nM 5DAG n = 324, IXB

7nM 5DAG n =136, IXB 5DAG 10nM n = 289,IXB 7DAG n=125. Indi-

vidual data points of root length were plotted in box-whisker plot. Boxes

indicate the median and interquartile range. Whiskers show 1.5 times the

interquartile range. L- N, Root tips of Arabidopsis seedlings 7 days after
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Abstract

Studies in Computational Biophysics: SARS-CoV-2

and Plant Cell Plate Maturation

This dissertation is split into two parts. In part 1, we discuss plant cytokinesis, a funda-

mental process of plant life which involves de novo formation of a “cell plate” partitioning

the cytoplasm of dividing cells. Cell plate formation is directed by orchestrated delivery,

fusion of cytokinetic vesicles, and membrane maturation to form a nascent cell wall by

timely deposition of polysaccharides. During cell plate maturation, the fragile membrane

network transitions to a fenestrated sheet and finally a young cell wall. Here, we ap-

proximated cell plate sub-structures with testable shapes and adopted the Helfrich-free

energy model for membranes, including a stabilizing and spreading force, to understand

the transition from a vesicular network to a fenestrated sheet and mature cell plate. Reg-

ular cell plate development in the model was possible, with suitable bending modulus,

for a two-dimensional late stage spreading force of 2–6pN/nm, an osmotic pressure dif-

ference of 2–10kPa, and spontaneous curvature between 0 and 0.04nm−1. With these

conditions, stable membrane conformation sizes and morphologies emerged in concor-

dance with stages of cell plate development. To reach a mature cell plate, our model

required the late-stage onset of a spreading/stabilizing force coupled with a concurrent

loss of spontaneous curvature. Absence of a spreading/stabilizing force predicts failure of

maturation. The proposed model provides a framework to interrogate different players in

late cytokinesis and potentially other membrane networks that undergo such transitions.

Callose, is a polysaccharide that accumulates transiently during cell plate maturation.

Callose-related observations were consistent with the proposed model’s concept, suggest-

ing that it is one of the factors involved in establishing the spreading force.

In part 2, we discuss three different in-silico studies of SARS-CoV-2. These studies

involve the use of molecular dynamics simulations, endpoint free-energy estimates, as well

as predictive neural networks (AlphaFold). In Chapter 4, we present binding strength

estimates of three critical fitness parameters (RBD/ACE2 binding, furin enzyme binding,

xxv



antibody escape) of the SARS-CoV-2 omicron variant. We show that our results align with

the preliminary observations noted with the variant, i.e. weakened RBD/ACE2 binding,

but increased antibody escape. In Chapter 5, we present an in-depth analysis of the most

commonly observed sequences in the Furin Cleavage Domain (FCD) and their interaction

with the furin enzyme. We show that the Delta variant exhibits the strongest possible

binding with the furin enzyme, and we identify key observed and unobserved sequences

that could exhibit the same binding strength. In Chapter 6, we present a computational

design of a humanized ACE2 decoy to be used as a possible therapeutic or diagnostic

agent based on the principles of competitive binding. We show that our design binds

favorably well to multiple SARS-CoV-2 target RBDs, including the delta and omicron

variants.
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Chapter 1

Introduction to Part 1: Physical
Models of Biological Membranes

1.1 Background and Motivation
Biological membranes exhibit a wide variety of physical characteristics that are of spe-

cial interest to soft matter physicists. They are stable against most thermal fluctuations,

yet are soft enough to deformed by embedded protein action or external environmental

factors. They serve as the main barrier to entry to a plethora of cells, yet are capable of

self assembly to macroscopic length scales [1]. They also serve as an anchor for a num-

ber of proteins, including antigens, ion channels, receptors, and many others. Membrane

fission and fusion events are both incredibly common yet extraordinarily complex, in-

volving fascinating mechanisms that are studied by a variety of analytical, experimental,

and computational methods. Needless to say, they also attract a significant amount of

attention from biologists due to their prevalence in almost every biological system.

Despite significant research efforts being redirected into both animal and plant cell

cytokinesis, there are still gaps in the understanding of the exact interplay of the bio-

physical forces that lead to cell fission [2]. In animal cells, cell fission occurs due to the

cell membrane being ’pinched’ along a division plane via the action of a contractile ring

(Fig. 1.1, which ultimately results in the parent cell dividing into two separate daughter

cells. The molecular mechanisms behind this pinching, in addition to the pathways that

organize the proteins involved in the assembly and disassembly of the contractile ring
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Figure 1.1: Comparing animal cell and plant cell cytokinesis (Image Credit [5], Creative
Commons License). Animal cell cytokinesis involves pinching and reforming the cell
membrane boundary via the action of a contractile ring. Plant cell cytokinesis requires
orchested vesicle transport and polysaccharide deposition at the division plane due to the
needs of the development of a new cell wall [6].

are still questions open to research [2]. However, several biophysical models have been

proposed to explain the physics behind animal cell cytokinesis, some of which that have

been successfully compared to experimental data [3, 4].

Since plant cells need to form a rigid cell wall, the contractile ring and membrane fission

model no longer applies. Rather, scores of vesicles accumulate and fuse at the division

plane to form a structure called the cell plate which then expands centrifugally [7, 8, 9, 10].

The development of the cell plate takes place in morphologically defined stages (Fig. 2.1).

Eventually, as the gaps (resulting from a network of fused vesicles) in the cell plate sheet

are gradually closed, a young cell wall which is originally sandwiched between two parallel

plasma membranes fuses with the parental cell wall (Fig.2.1D) [7, 8], thereby resulting

in two daughter cells. Electron tomography studies are used to study the transport of

membrane material, as well as the evolution of different stages in the development of the
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cell plate [8]. These cell walls are vitally important to the plant’s survival. They are

required for mechanical support with the added responsibility of providing resistance to

excessive turgor pressure, as well as regulating diffusion and limiting excessive water loss.

In the seed phase, they also serve as an important source of carbohydrates [7].

As in animal cells, a number of studies have investigated membrane dynamics in plant

cells [11]. However, few reports exist on polysaccharide deposition and its explicit role

during cell plate maturation. The delivery and deposition of cell wall materials to the

cell plate has been primarily studied with electron and fluorescence microscopy utilizing

polysaccharide-specific antibodies. It is currently believed that, matrix polysaccharides

such as hemicellulose and pectins are transported through unidentified secretory vesicles

to the expanding and maturing cell plate [12, 13, 6]. One such polysaccharide, a β−1−3

polymer called callose, is transiently synthesized (at the plasma membrane) and incorpo-

rated for mechanical support during the middle and late stages of cell plate formation, but

ultimately replaced by cellulose, for a more rigid luminal network [7]. However, neither

the temporal incorporation of callose or cellulose into the cell plate, nor their biosynthetic

pathways during cell plate maturation have been fully elucidated [11, 14]. Furthermore,

from a biophysical perspective, the process of incorporating callose only to be replaced by

cellulose in the later stages is energetically expensive. The current hypothesis for callose

deposition is that it provides an essential intermediate spreading and stabilizing force that

is necessary for cell plate maturation [7, 8]. However, it is not clear whether there is a

need of this spreading and stabilizing force in the first place. To our knowledge, Chapter

2 of this work is one of the first attempts at a biophysical model that shows an explicit

need for this force. Furthermore, we reinforce our predictions for both the absence and

the presence of this force by comparing our results with microscope images of plant cells

undergoing cytokinesis in the presence of chemical inhibitors of cellulose, callose, and

myosin. We also make this comparison with past studies of electron microscopy studies

[8, 7] that shows detailed vesicular shapes and structures at various cell plate development

stages.
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1.2 Understanding membrane biophysics using ana-
lytical and computational tools

Landmark works in the physics of biological membranes were published in the early 1970’s

by Helfrich and Canham [15, 16]. They were able to provide a theory of membrane

behaviour and elasticity based on geometric free energy descriptions while bolstering

their claims with experimental evidence. Canham was able to show that his free energy

description could explain the biconcave shape of a red blood cell by focusing on membrane

bending deformations [16]. Helfrich expanded on that work with a more general free

energy that addressed membrane tilt, stretching, curvature (including the effects of local

curvature), and membrane responses to osmotic pressure differences and external magnetic

fields [15]. The Helfrich free energy was adopted and aptly named the ”shape equation”.

Helfrich derived the Euler-Lagrange equations with axisymmetric constraints, which were

non-linear, fourth-order, partial differential equations that were incredibly difficult to

solve. Given the complexity of solving these equations for the axisymmetric case and,

especially, the general case, there were several attempts to provide a family of solutions

using numerical and perturbation theory methods. In the modern computational age,

finite-element methods and monte-carlo simulations are frequently used to study the global

behavior of membranes and often provide great insights [1].

Briefly, the Helfrich Free Energy is commonly expressed as:

E =
KB

2

∮
(H1 +H2 − co)

2dA+

∫
∆pdV +

∫
γdA+ 4πKG(1− g) (1.1)

The first term defines the energy penalty due to bending deformations of the mem-

brane. KB is the bending modulus for the membrane surface, H1 and H2 are the principal

curvatures at a point on the surface, and co is the spontaneous curvature, or the preferred

curvature for the membrane. The next term is the pressure energy which results from the

difference in osmotic pressure between the inside and the outside of the cell plate, such

that δp = pout − pin. The third term is the energy associated with the surface tension of

the membrane which is given by the integral of the surface tension γ over the membrane

surface. The fourth term is the Gaussian bending energy term which is simplified here due
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Figure 1.2: Describing principal curvatures using maximum and minimum curvature sec-
tions [17] (Open Access). The principal curvatures are the reciprocal of the local radii of
curvature of the lines of intersection between the surface and the minimum and maximum
curvature planes as shown.

to the Gauss-Bonnet Theorem. Fig. 1.2 describes how principle curvatures are calculated

on a general membrane surface. The spontaneous curvature co can be non-zero due to

multiple reasons, including protein action, membrane lipid profile, and non-homogenous

bilayer distributions.

Further analytical work included the intensive derivations of membrane torque and

stress tensors from first principles [18], which enabled predictions about membrane re-

sponses to an applied force (one that is often experimentally explored via atomic force

microscopy), or the behaviour of two separate membranes adhering to one another [1].

Examples of computational approaches to descriptive membrane physics include monte-

carlo simulations [19], local stress and torque tensor analysis, finite element and surface

triangulation methods [20], as well as course-grained molecular dynamics simulations.

These approaches, while computationally expensive, provide remarkable insight to the

behavior of membranes in a variety of physical circumstances.

1.3 Objectives of Part 1
In Chapter 2, we explore the hypothesis that a spreading force is needed for successful

cell plate maturation to a complete cell wall via a semi-quantitative approach. We model
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Figure 1.3: Example of a course grained membrane parameterization in a two-dimensional
Monte-Carlo simulation used illustrate interactions between a membrane (blue) and a
self-avoiding polymer (orange) [19] (Reprinted with Permission from APS, License No.
RNP/22/MAY/053417).

this force by adding a phenomenological “areal pressure” term to the Helfrich model free

energy [15] for the cell plate surface. We looked for energy minima within a parameterized

restrictive geometry basis set, thereby adopting a restricted variational approach within

testable approximated structures. The quasi-equilibrium is constantly redefined as vesicles

are added at the cell plate boundary. The advantages of this approach are two-fold. It

simplifies the modeling of a rapidly changing geometry that would be exhausting to define

via traditional surface triangulation or course-grained molecular dynamics simulation. It

also circumvents the demands of expensive computational time that the aforementioned

systems demand. Finally, implementing a spreading force via a phenomenological ”areal

pressure” term within a parameterized restrictive geometry basis set is significantly easier

to implement. Similar examples of restricted variational approaches are explored in [21,

22]

In addition, we provide the range of polysaccharide synthesis rates required to generate
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the speculated required spreading force. These rates are postulated by using results from

Flory self-avoiding polymer theory in two-dimensions [23]. We also show, compared to

in-vitro results, that these rates are within reasonable bounds [24]. Finally, we find

that for the spreading force hypothesis to work within our model, successful cell plate

maturation also requires a concurrent decrease in spontaneous (or preferred) curvature

up to a threshold value. In conclusion, we explore the possible biological mechanisms

behind the required spreading force and concurrent decrease of spontaneous curvature.
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Chapter 2

A Biophysical Model for Plant Cell
Plate Maturation Based on the
Contribution of a Spreading Force

This chapter appears as an article published in Plant Physiology in collaboration with

Rosalie Sinclair, Vincent Bulone, Daniel Cox, and Georgia Drakakaki [25]

2.1 Introduction
Cytokinesis is a fundamental process of plant life that is different from animal cell cy-

tokinesis. In plants, formation of a cell plate develops into the new cell wall, partitioning

the cytoplasm of the dividing cell. Cell plate formation involves highly orchestrated vesi-

cle accumulation, fusion, and membrane transformation concurrent with the time-specific

deposition of polysaccharides such as callose, cellulose, and cross-linking glycans along

with glycoproteins (Fig. 2.1). This development requires choreographed accumulation of

post-Golgi vesicles via the phragmoplast, an assembly of microtubules and microfilaments

that help organize vesicle delivery to the cell plate assembly matrix, at the division plane

[10].

Cell plate expansion is centrifugal, led by the accumulation and fusion of cytokinetic

vesicles to the leading edge and maturation of the membrane network from the center

[7, 8, 9, 10]. Cell plate development takes place in morphologically defined stages (Fig.

2.1). It starts with the initial fusion of Golgi vesicles stage, in which cytokinetic vesicles are
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Figure 2.1: Schematic representation of cell plate development stages and the potential
role of a spreading force in cell plate maturation. A-D, Cell plate development occurs cen-
trifugally in multiple stages. A, During the first stage (I), cytokinetic vesicles guided by
the phragmoplast accumulate at the center of the dividing cells, at the cell plate assembly
matrix. B, Vesicles undergo fusion and fission and conformational changes resulting in
TVN (Stage II). C, Interconnected membrane structures transition to a TN. At this stage
high callose deposition occurs (Stage III). D, The membrane network further expands to
an almost continuous fenestrated membrane sheet (PFS) (Stage IV). Deposition of ad-
ditional polysaccharides helps transition to a new cell wall, separating the two daughter
cells. Note that different stages can occur simultaneously, images are not to scale. This
simplified representation emphasizes on cell plate membranes [8, 7]. E–H, Schematic
representation of cell plate development describing the role of a spreading force. E, Early
stages of vesicle accumulation and fusion and F, TVN and TN structures are shown. Two
different possibilities are projected for stage transition (1) Incomplete/arrested cell plate
G. In the absence of a spreading force G, tubular and fenestrated structures accumulate,
and there is a lack of maturation towards a single, complete cell plate structure. (2) Nor-
mal cell plate transition H. In our calculations, we discover that for expansion/maturation
to occur as in D, the presence of a spreading force is required, along with the decrease of
spontaneous curvature to a threshold value. This allows for a sheet-like cell plate (SCP)
structure to form. The structures in this schematic description are adapted from data
collected from EM tomography [8] with bars in E–G=50nm, H=0.25µm. Dark blue vesi-
cles denote those labeled by the mathematical naming schema as described in Fig.2.2.
Whereas in E, 2×1×0 denotes two oblate spheroids, one tubular connection, and zero
holes.
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guided by the phragmoplast to the cell plate assembly matrix (Fig.2.1A). Fused vesicles

are transformed into dumbbells that undergo conformational changes to form a tubulo-

vesicular network (TVN) (Fig.2.1B), which transitions to a tubular network (TN) (2.1C).

The TN expands into a planar fenestrated sheet (PFS). As the gaps in the fenestrated

sheet are gradually closing, this leads to the formation of the young cell wall sandwiched

between two parallel plasma membranes that fuses with the parental cell wall (Fig.2.1D)

[7, 8]. Excess membrane material is recycled concurrently, along with the accumulation

of different polysaccharide materials. Based on elegant electron tomography studies, it

is estimated that 70% of membrane material is removed during the transition of the

cell plate from TVN to TN and PFS [8]. Analysis of vesicle dynamics support electron

microscopy studies showing an initial vesicle delivery with fast expansion, followed by

slower expansion phase [26]. It is notable that the multiple stages exist simultaneously

(Fig.2.1), adding complexity in dissecting them [6].

During cell plate expansion and maturation, membrane remodeling and network ex-

pansion are highly coordinated with the deposition of polysaccharides, providing an op-

portunity to study membrane morphology changes. The molecular basis of vesicle de-

livery at the cell plate has been extensively studied [27, 28, 29] with key components

such as RAB GTPases, soluble N-ethylmaleimide-sensitive factor attachment protein re-

ceptor, tethering complexes, dynamin rings, and accessory proteins receiving attention

[27, 9, 29]. However, the factors contributing to stage transition from a vesicular network

to a fenestrated sheet, leading to cell plate maturation, are largely unknown. Dynamin

rings and clathrin coated vesicles contribute to recycling of excess material [27], while

the deposition of polysaccharides likely contributes to transition into a mature cell plate.

Hemicelluloses and pectins are deposited via Golgi derived vesicles. Callose and cellulose

are directly synthesized at the cell plate [11, 30]. Callose, a β−1−3 glucan is a dominant

polysaccharide transiently synthesized at the cell plate. Structural glycoproteins such as

extensins are part of the newly formed cell plate [31] and can contribute to cell plate

maturation. Given the complexity of cell plate development and the concurrent presence

of different stages, a biophysical model can be used as a framework for interrogation of
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individual components that can provide insights and guide future research.

In this study, we used biophysical modeling to dissect the transition between the

vesicular network stage to a fenestrated sheet and a mature cell plate. We tested the

hypothesis that a time-dependent spreading and stabilizing force is necessary for cell plate

maturation. We could model this force by adding a phenomenological “areal pressure”

term to the Helfrich model free energy [15] for the cell plate surface. Furthermore, we

monitored its influence by adopting a variational approach to locally minimize the model

free energy in time, assuming the process is sufficiently slow to consider the system close

to thermodynamic equilibrium. The quasi-equilibrium is constantly redefined as vesicles

are added at the cell plate boundary. This enables us to use the total cell plate surface

area as a proxy for time. We demonstrate semi-quantitatively that by assuming a late

time onset of this spreading and stabilizing force, followed by the reduction of membrane

spontaneous curvature, we can reproduce the observed morphological time dependent

transition of the cell plate morphology.

2.2 Results
We took a modeling approach to generate tools to dissect better membrane network tran-

sition during cell plate maturation. Due to the complexity of cell plate development, we

decided to look for energy minima within a parameterized restrictive geometry basis set,

thereby adopting a restricted variational approach within testable approximated struc-

tures. We found that existing general adaptive mesh approaches, such as Surface Evolver,

while in principle more accurate, were not amenable for application in our study, due to

their inability to incorporate the spreading/stabilizing force into such a large-scale system

[20].

2.2.1 Shape Approximation
First, we approximated subcellular structures with testable shapes that could be used in a

model. As shown in 2.1, the cell plate, during its different transitional stages, contains cy-

tokinetic vesicles, fused vesicles stretched to dumbbells, TVNs and fenestrated structures

that finally mature to a complete cell plate and a new cell wall. These structures can be
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modeled using a combination of oblate spheroids and elliptical hyperboloids (Fig.2.1 and

2.2). Namely, cytokinetic vesicles can be approximated using oblate spheroids, where the

two defining radii can be used as variational parameters as shown in Fig.2.2A. The oblate

spheroid can also be used to model the expanded/late-stage cell plate close to completion,

as a very large oblate spheroid with a�c .

Similarly, structures found within the fenestrated sheet and the TVN stages can be

approximated using a combination of elliptic hyperboloids and oblate spheroids, such that

the hyperboloids are continuous at the oblate spheroid boundaries. These elliptic hyper-

boloids can be parameterized by their length, hereafter referred to as l , and their skirt

radius in the equatorial plane, hereafter referred to as ah. The other parameters needed

to define an elliptic hyperboloid can be written as a function of these two parameters due

to boundary conditions that arise from mandating continuity. Fig.2.2B shows a cross-

section of an elliptic hyperboloid, while Fig.2.2C shows an example of two vesicles joined

by a single tube.

2.2.2 Naming convention of different approximated conforma-
tions

The naming convention for different conformations follows the example: A shape that is

labeled as 6×7×2, represents a conformation that has six oblate spheroids (or vesicles),

seven hyperboloids (or tubes), and two gaps (or fenestrations, with g = 2). 2×1×0 confor-

mation, can approximate dumbbell structures found in early TNs, where two vesicles join

via a single tube (2.2C). An example of a 4×4×1 conformation with a single fenestration,

which can be used to approximate early fenestrated structures, is shown in Fig.2.2D.

2.2.3 Energy minimization
The area of any given conformation was calculated by numerical integration methods, and

a corresponding parameter space of a given area was found. For simplicity, we analyzed

conformations that shared the same parameters for each of the oblate spheroids, and

each of the hyperboloids with examples shown in Fig. 2.2. We found a four-dimensional

parameter space (a, c, ah, l) that corresponded to a given area up to an error tolerance
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Figure 2.2: Approximating cell plate structures using a variational approach. A–D,
Examples of membrane structure parameterizations used for modeling. A, Cross-section
of an oblate spheroid through the polar axis. The major axis radius is labeled a and the
minor axis radius is labeled c. This structure is used to model vesicles, or mature cell plate
structures in the case where a�c .B, Cross-section of an elliptic hyperboloid at its center,
showing the skirt radii. The hyperboloid can be parameterized by its length l and its skirt
radius in the equatorial plane ah , the skirt radius in the axial plane is given by bh , which
can be written as a function of the other parameters listed as shown in Eq.2.4. C, An
example of a tubulo-vesicular structure parameterized by two oblate spheroids connected
by a single elliptic hyperboloid (referred to as a 2x1x0 structure). Only the top view is
shown. D, An example of a 4x4x1 conformation that models a transition to a fenestrated
network with genus g = 1 (one gap) .E, Evolution of single oblate spheroid parameters
in the presence of a spreading force. In the presence of a spreading force, the thickness
of the oblate spheroid remains in the 40–80nm range despite the increase in area. This
reflects the thicknesses and growth patterns found in intermediate cell plate stages [7].
Here, hos = 2c(aos, c shown in A), represents the overall height, or thickness, of the oblate
spheroid. In the absence of a spreading force, hos , or the thickness, is estimated to grow in
values that are not observed experimentally. For reference, an area of 104nm2 is roughly
equal to that of a single vesicle.
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(< 0.01%) for each conformation of interest, and then calculated the energies of Eq.2.1

within that parameter space. The energy minimum was then extrapolated from that

parameter space. Additional information about the four-dimensional parameter space as

well as the calculation of the area elements used in the numerical integration methods is

given in the supplemental information (Eq.2.2 –2.5, 2.11, 2.12), and the full list of the

parameters involved are shown in Fig. 2.6.

2.2.4 Modified Helfrich energy
In order to identify contributing factors for cell plate maturation beyond the vesicle net-

work stage, we modeled the free energy for the cell plate surface by adopting the Hel-

frich energy [15] with the addition of a novel term to model the presence of a spread-

ing/stabilizing force. The free energy is defined as follows:

E = Ebending + Epressure + Etension + Egaussian + Espreading (2.1)

Each of the components is described in detail in the supplemental information corre-

sponding to Eqs.2.6–2.10.

The terms describe (1) the bending energy over the closed membrane surface(s) of

the cell plate, which depends on the local curvature or the spontaneous curvature of the

membrane, given by co , and the bending modulus, given by KB, (2) the pressure energy

which results from the difference in osmotic pressure between the inside and the outside

of the cell plate, represented by ∆p, (3) the energy associated with the surface tension of

the membrane, which depends on the local surface tension, given by γ , (4 the Gaussian

bending energy, and (5 the novel term of spreading/stabilizing force.

The novel spreading force term is analogous to a two-dimensional pressure acting

against the periphery of the cell plate structure along the equatorial plane. It is dependent

on λ , which parameterizes the spreading/stabilizing force, having units of force/length.

We allow for λ to be time-dependent, which would represent the “turning on” of polymer

production in an expanding plate. We also allow for co to be time-dependent, account-

ing for differences in spontaneous curvature that may arise from changes in membrane

composition during cell plate evolution.
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This methodology can also be used to provide a basis for the quantitative assessment

of membrane structures found in the endoplasmic reticulum and the Golgi apparatus

which are so far limited in a large-scale view using Helfrich theory. Earlier work [32]

examined possible morphologies as a function of curvature modifying proteins using full

minimization of the free energy via the Surface Evolver finite element approach [20]. How-

ever, these finite element methods were unable to consider the spreading/stabilizing force

required in Eq. 2.7 - 2.10 in any such available code. To establish a testable and func-

tional model, we adopted the variational approach including multiple connected surfaces

with negative curvature tubulations as a reasonable compromise approach to explore the

quasi-equilibrium stabilities of different morphologies that are fully representative of the

observed structures.

2.2.5 Model parameter ranges and the need of a spreading force
We first minimized the modified Helfrich energy (Eq. 2.1) for multiple conformations

(vesicular, tubular, and fenestrated) to determine a range of parameters that would match

the experimentally observed cell plate sizes/thicknesses. From electron tomography cryo-

EM images of developing cell plates, we determined that the thickness of a cell plate in

various stages of development was �40–120nm [8]. Therefore, we tuned the free parameters

in our energy model such that conformations’ thickness across the equatorial plane was

in the range of 40–120nm. We determined that, depending on the choice of the bending

modulus, the allowed values of the spreading/stabilizing force parameter � should be

between 0.0 and 6.0pN/nm, the spontaneous curvature co between 0 and 0.04nm−1 , and

a finite pressure difference∆p around 2–10kPa . A deviation from these ranges results in

structures that are either too thick or too thin to exist in intermediate stages of cell plate

development based on literature. An example of how we tuned the parameters to fit the

experimental sizes and shapes is given in 2.2E, in which a single oblate spheroid evolves

with the area increase with given parameter values while maintaining the experimentally

observed thickness. It is notable that a spreading force is necessary to achieve the desired

values. A summary of the full range of parameter values are given in 2.1 and a full

description of these parameters is provided in the supplemental information.
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Parameter Value

Bending modulus KB 62.5− 200pNnm

Spontaneous curvature co 0− 0.04nm−1

Pressure difference ∆P 2− 10kPa

Spreading force parameter λ 2− 6pN/nm

Surface tension parameter γ 1.6pN/nm

Gaussian bending modulus KG −0.8KB

Table 2.1: Model parameter ranges

Although the range of values for the pressure difference and the planar spreading force

parameter were phenomenologically determined, they are within reasonable bounds. For

instance, the solute concentration difference between the interior and the exterior of the

cell plate by employing the van’t Hoff equation, which yields a solute concentration differ-

ence between 8×10–4mol/l and 4×10–3mol/l , comparable to protein solute concentration

differences in higher plant cells. The spreading force required for cell plate maturation

over a length of a nanometer is around 2–6pN , which is comparable to the polymerization

ratchet forces of a microtubule [33].

2.2.6 A spreading force is required for cell plate maturation
while its absence energetically favors the accumulation of
tubular and vesicular networks

Our goal was to assess within the modeled free energy of Eq. 2.1, whether a spreading force

is essential for the necessary transitions from a combination of TVN to a fenestrated sheet

and finally to a single mature cell plate structure. Applying Equation 2.1, we compared

the energy minima compared to that of a mature cell plate (Fig.2.3A). From an energy

perspective, we identified that in the absence of a spreading force, tubulo-vesicular and

fenestrated structures have a lower value of energy at minima and are more stable than a

single late-stage cell plate structure (resembled by a single oblate spheroid) of the same

area. Fig.2.3A shows the energy minima of tubular and fenestrated structures (7x6x0,…)
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compared to those of a single oblate spheroid (1x0x0). ∆Emin represents the difference of

the energy minima value of the labelled structure with that of a single oblate spheroid,

so that ∆Emin(2x1x0) = Emin(1x0x0)−Emin(2x1x0). Thus, positive ∆Emin indicate the

relative stability of the labelled conformation. Our simulations indicate that in the absence

of a spreading force, increased tubularity is preferred with the increase in area (Fig. 2.1G

and 2.3A). Furthermore, in the absence of a spreading force, some fenestrated structures

(4x4x1, 6x7x2) are also energetically stable and are therefore likely to accumulate.

We then examined the possibility of a transition from TVNs to a single oblate spheroid

or a fully mature cell plate in the presence of a spreading force (Fig.2.3B). Within the

theory and the variational approach, we find that this is possible if the spontaneous

curvature decreases to a threshold value (�0.015nm−1 with larger cell plate area, that is, in

the presence of a spreading force. From an energy perspective, this suggests that TVNs,

TNs, as well as fenestrated sheets, should be unstable as compared to a single oblate

spheroid, and thus transition of their morphology to one without tubes or fenestrations.

While a finite spontaneous curvature is necessary to explain the origin of stability of

the incoming vesicles [34], a change in the spontaneous curvature of the membrane is

predictable due to the expected changes in membrane composition and protein activity

that occurs during cell plate development [35].

Fig.2.3B shows the relative instability of selected tubular and fenestrated structures

compared to a single oblate spheroid in the presence of a spreading force and zero spon-

taneous curvature. Less tubular structures are now energetically favorable than highly

tubular or fenestrated structures, with a single, complete structure being the most fa-

vorable. For structures without fenestrations or gaps (such as 2x1x0 or 3x2x0), we can

also map a path to a single oblate spheroid if we relax the parameter restrictions that

were initially imposed during the variational calculation. Fig.2.3B shows results with the

parameter restrictions in place. Fig.2.7 shows data for a fenestrated structure in the ab-

sence (Fig.2.7A) and the presence (Fig.2.7B) of a spreading/stabilizing force, leading to

gap shrinkage with the parameter restrictions in place.

To better represent a biological system, we compared an ensemble of 2x1x0 structures
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Figure 2.3: Stability tests to determine the role of a spreading force in different shape
conformations. A and B, Stability tests determined by ∆Emin versus area for different
conformations compared to a single oblate spheroid at the labelled area. A positive
value of ∆Emin indicates relative stability of the labelled conformation as compared to a
single oblate spheroid (1×0×0). A, Relative stability of tubular (2×1×0, 5×4×0, 7×6×0)
and fenestrated (4×4×1, 6x7x2) structures in the absence of a spreading force with a
finite spontaneous curvature. B, Stability of a single oblate spheroid over tubular and
fenestrated structures in the presence of a spreading force and with zero spontaneous
curvature. Note that in (B) a decrease of spontaneous curvature to a threshold value close
to 0.015nm−1 yields similar results. C and D, Stability test for multiple 2x1x0 structures
compared to a single oblate spheroid at the labeled area. C, Relative stability of multiple
2x1x0 structures compared to a single oblate spheroid in the absence of a spreading force.
At a labeled area, a larger number of structures have collectively a higher, more positive
value of ∆Emin , thereby indicating that in the absence of a spreading force, tubular, as
well as emerging fenestrated/network structures (as inferred by the results of A and B)
are energetically favorable and tend to accumulate as shown in Fig.2.1G. D, Stability
of a single oblate spheroid compared to multiple 2×1×0 structures in the presence of
a spreading force and with zero spontaneous curvature. In the presence of a spreading
force, at a labeled area, a larger number of structures have a lower, more negative value
of ∆Emin collectively, thereby indicating the energetic favorability of structures fusing to
form larger, more mature structure(s).
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(approximating accumulated fused vesicles forming a network) to a single oblate spheroid

of the same combined area. Similar to our earlier calculations, we find that in the absence

of a spreading force, a single oblate spheroid is less stable, as shown in Fig.2.3C. The

relative instability is magnified with the increase of area, and with the increase in the

number of tubular structures. In the presence of a spreading force and a decreased spon-

taneous curvature, as in Fig.2.3D, the inverse is true, favoring fewer complex structures.

When comparing multiple structures to a single mature structure of the same area, there

is no need to enforce the decrease in spontaneous curvature. However, for consistency,

results with a zero spontaneous curvature in the presence of a spreading force, and a finite

spontaneous curvature in the absence of a spreading force are shown.

To better represent a biological system, we compared an ensemble of 2x1x0 structures

(approximating accumulated fused vesicles forming a network) to a single oblate spheroid

of the same combined area. Similar to our earlier calculations, we find that in the absence

of a spreading force, a single oblate spheroid is less stable, as shown in Fig.2.3C. The

relative instability is magnified with the increase of area, and with the increase in the

number of tubular structures. In the presence of a spreading force and a decreased spon-

taneous curvature, as in Fig.2.3D, the inverse is true, favoring fewer complex structures.

When comparing multiple structures to a single mature structure of the same area, there

is no need to enforce the decrease in spontaneous curvature. However, for consistency,

results with a zero spontaneous curvature in the presence of a spreading force, and a finite

spontaneous curvature in the absence of a spreading force are shown.

2.2.7 Exploring polysaccharide deposition as a contributing fac-
tor to cell plate maturation and model prediction

There are several potential contributing factors during cell plate maturation including cell

wall polysaccharides. Given that the model examines the specific transition between TN

to a fenestrated sheet and a mature cell plate, the timing of the contributing sources at

the lagging zone is critical. Among the different polysaccharides we first examined callose.

Live staining of callose in dividing Arabidopsis thaliana roots showed a prominent

and transient accumulation of the polysaccharide at the lagging zone, starting from the
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Figure 2.4: Progression of the cell plate in the presence and absence of callose. A–D, Cell
plate progression in the presence of callose. (A), It shows an early stage cell plate before
the accumulation of callose, while (B–D) represent later cell plate stages including SCP as
indicated in Fig.2.1D. FM4–64 staining (magenta) is used to stain plasma membrane and
the cell plate, while Aniline Blue fluorochrome (green) staining shows callose accumula-
tion. Note the transient accumulation of callose in later stages leading to the maturation
of cell plate during normal cytokinesis (B–D). C and D represent two snapshots of a time
series. C, Two cell plates can be observed, and as maturation continues to D, callose
is eliminated from one cell plate indicating its transient nature. Arrows indicate callose
accumulation at the cell plate. E–G, Progression of cytokinesis under ES7 treatment for
2 h that inhibits callose deposition. Note that early cell plate development is not affected
with ES7 treatment as shown in earlier studies [14] (E). However, in late stages of cell
plate development under ES7 treatment, the absence of callose prevents the transition
into a stable mature single structure, leading to characteristic “cell plate stubs” (F and
G). CP indicates cell plate, SCP indicates SCP as depicted in 2.4. CW indicates cell wall.
Yellow arrowheads denote lack of callose at cell plate breakage points. Dotted lines in F,
G outline the position where callose should be deposited. Images are 3D reconstructions
from Z-stacks of live confocal imaging and show single timepoints. C and D are snapshots
of a time series. Figures are representative of root tips from a minimum of 10 Arabidopsis
seedlings. A schematic representation on the right indicates the accumulation of callose
in relation to cell plate development. White gaps at the bottom indicate cell plate frag-
mentation. Bars=3µm.
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Figure 2.5: Comparison of chemical inhibitors of cellulose, callose and myosin on cy-
tokinesis. A–L, Evaluation of cytokinesis inhibition under 5 day chemical treatment in
Arabidopsis root tips. Under control DMSO treatment normal cytokinesis is observed
(A–D). Under ES7 treatment typical cytokinesis defects are observed with the cytokinesis
marker RABA2a (E), multinucleate cells (F) are shown by DAPI staining. Under IXB
treatment cell plate progression was observed (I) without discernable cytokinetic defects
in the form of binucleate cells (J) or cell plate stubs (I, K, and L). Please note cell swelling
under IXB treatment. The cytokinesis marker RABA2a is shown in green, while FM4–64
staining of plasma membrane is shown in magenta. Nuclei staining by DAPI are indicated
in blue. Samples were stained with FM4–64FX, fixed and stained post fixation for DAPI.
Results were observed in at least six roots for each drug treatment. Samples are single
scans of fixed cells. Bars=10µm. M–X, Effect of 2 h short-term (50µM) ES7 and the
putative myosin inhibitor 2,3-butanedione 2-monoxime (20 mM BDM) treatment in cy-
tokinesis. Under DMSO control treatment normal progression of cytokinesis is observed
(M–O). Under ES7 treatment, characteristic cell plate stubs were observed with RABA2a
and the plasma membrane stain FM4–64 (P–R). Under BDM treatment, a reduction of
RABA2a signal was observed with increase in cytoplasmic pattern (S–X). The cytokinesis
marker RABA2a is shown in green, while FM4–64 staining of plasma membrane is shown
in magenta. Samples are single scans of live cell confocal imaging. Results were observed
in at least six roots for each drug treatment. Bars=5µm.
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center (2.4, B–D). Treatment with Endosidin7 (ES7), which inhibits cytokinetic callose

deposition [14], caused failure of the cell plate to mature into a cross wall. 2.4, E–G

shows an example of arrested cell plate development in the absence of callose, in contrast

to normal gradual cell plate maturation concomitant with callose deposition as in 2.4,

A–D. This is consistent with the model’s prediction in the absence of a spreading force,

where planar fenestrated and tubular structures accumulate, but do not mature into a

stable cross-wall like structure.

Given the loadbearing role of cellulose, we then examined the effect of cellulose com-

pared to callose inhibition in our experimental conditions. Cellulose inhibition by isoxaben

(IXB) treatment led to strong reduction of root growth [36, 37] and a root swollen phe-

notype compared to ES7 (Supplemental 2.17). However, while cytokinesis defects in the

form of cell plate stubs, were observed with ES7 treatment (2.5, E and Supplemental 2.17,

E and J), this effect was not detectable in IXB treatment (2.5 and Supplemental 2.17, G–

J). ES7 treatment caused binucleate cells as a result of failed cytokinesis (2.5F); however,

this phenotype was not pronounced in the IXB treatment (2.5J).

We then included a treatment with the myosin inhibitor 2,3-butanedione monoxime

(BDM), interfering with actin-based organelle transport [38, 39, 40]. Unlike ES7 (2.5, P–

R), a 20mMBDM treatment for 2hrs led to inhibition of RABA2a trafficking 2.5, S–X,

but not cell plate fragmentation, showing an effect on endomembrane trafficking, that in

turn could impact cell plate development.

2.2.8 Estimating the required polysaccharide synthesis rates for
a stabilizing/spreading force

We note that the spreading/stabilizing force can be described by the mean square end-

to-end excursion within the Flory self-avoiding polymer theory in two-dimensions [23]. If

we assume reasonable values of polymer persistence length and areal density, we require

a rate of polysaccharide synthesis close to dN/dt ∼ 1.75x106s−1 to obtain the spreading

force parameter of λ = 4pN/nm . The modeled dN/dt is biologically achievable given an

estimated cellular value of 1.8×105s−1 based on in vitro callose synthase activity ([24])

and an average protein concentration in eukaryotic cells ([41, 42]). However, in-vitro ex-
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perimental systems of the relevant polymer(s) synthase(s) in artificial vesicles are required

to test this hypothesis. A full description of this derivation is given in the supplemental

information corresponding to Eqs. 2.13 - 2.12.

2.3 Discussion
Although several proteins have been identified that regulate cell plate formation [27, 9, 43],

the mechanisms underlying the complex transition from a vesicle membrane network (TN)

to a fenestrated sheet and a mature cell plate are not well understood.

To circumvent these hurdles and to better dissect cell plate maturation, we used

biophysical modeling. We developed a model based on the Helfrich free energy for the

cell plate surface with the incorporation of a spreading/stabilizing force as an “areal

pressure” (force per unit length). From an energy minimization analysis, we have shown

that a planar spreading/stabilizing force is vital for cell plate to transition from vesicle

membrane network to a fenestrated sheet and late stage/mature cell plate. We also show

that in the absence of a spreading/stabilizing force, the addition of membrane material

yields stable TN structures, but that those structures are unable to mature beyond this

stage. As shown by different simulations, the need for this spreading/stabilizing force is

magnified when we compare a single mature cell plate to multiple smaller vesicle network

structures of the same total area. We do not have the detailed molecular scale mechanisms

behind the spreading/stabilizing force, but we show that a simple model based upon the

expansion of a quasi-two-dimensional self-avoiding polymer captures the correct form.

To reach a mature cell plate, our model requires the late-stage onset of the spreading

force coupled with a concurrent loss of spontaneous curvature. This raises the intriguing

possibility of a common origin to the decrease in spontaneous curvature and onset of a

spreading/stabilizing force. In the model, the spreading force is relevant when there is

sufficient connection of individual oblate spheroidal vesicles, and it is at this stage that

we shut off the spontaneous curvature. The nanoscale surface topography can potentially

serve as a direct biochemical signal to activate this process [44]. The possible tethering

of polysaccharides or glycoproteins to the membrane could concomitantly induce spread-
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ing and reduce spontaneous curvature by modifying the membrane mechanics. Notably,

inhibition of long chain fatty acid affects cell plate maturation [45]. It is plausible that

membrane microdomains control both spontaneous curvature and the onset of a spreading

force at the cell plate.

Curvature-stabilizing proteins are active at the cross-sections of tubules and sheet

edges of endoplasmic reticulum [32, 46]. While force generating proteins are involved in

the tubulation and membrane material recycling processes [47, 48], no proteins have been

identified with properties of membrane expansion at the cell plate.

The phragmoplast-driven vesicle delivery is a dynamic and complex process [49] that

with the aid of motor proteins can be considered as a spreading/stabilizing force during

cell plate maturation. For example, Myosin VIII plays a role in guiding phragmoplast

expansion [50], while several kinesins are involved in the functional organization of the

phragmoplast [49]. Microtubule directed vesicle delivery occurs at the leading edge; how-

ever, it is followed by microtubule depolymerization at the lagging zone, which is the

transitional stage that the model describes [51]. Furthermore, inhibition of myosin causes

a broader effect on cell plate expansion, as it is involved in general vesicle delivery (2.5).

Therefore, it is challenging to assign a specific function of motor proteins to cell plate

maturation at the lagging zone. Time-lapse experiments directed at the role of motor

proteins at the lagging zone will shed light on their contribution to the stabilizing and

spreading force that the model predicts.

It is plausible that polysaccharide deposition serves as this stabilizing and spreading

role. The matrix polysaccharides hemicellulose and pectin are synthesized in the Golgi

apparatus and delivered via vesicles from the beginning of cytokinesis [13, 12, 52]. Thus,

these classes of polysaccharides are unlikely the major players as they do not overlap with

the predicted onset of the spreading/stabilizing force, although experimental verification

awaits. Callose and cellulose are synthesized directly at the plasma membrane and are

excellent candidates for exploration. Our data showed that pharmacological inhibition

of cellulose at the root tip inhibited cell elongation in general, while inhibition of cal-

lose deposition led to cytokinesis defects consistent with the conformations predicted by
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the model in the absence of a spreading force. Callose accumulation peaks at the in-

termediate TN stage, a transitional stage that coincides with loss of membrane volume

[7, 8]. The timing of callose deposition in late stages when the overall cell plate membrane

network “flattens” [7, 8] is consistent with the need of callose in providing a lateral spread-

ing/stabilizing force. Furthermore, the predicted required values of callose deposition are

within biological thresholds [24, 53]. Notably, a study by Thiele et al. [54] indicates

that callose is required to establish the connection between the nascent cross-wall and the

parental cell wall, rather than stabilizing the young cell plate, so that further analysis on

the role of callose in the proposed model awaits verification. It is plausible that callose

could serve as a scaffold into which other more permanent polysaccharides and proteins

are later deposited [55, 24]. Potential transient interaction with cellulose or other glucans

[11, 56, 57] can contribute to a composite that supports the stability of the cell plate

and helps the attachment to the parental cell wall. Structural glycoproteins such as ex-

tensins [31] can provide a scaffold for polysaccharide deposition, and these altogether can

generate the desired spreading/stabilizing force proposed by the model. Further (challeng-

ing) experiments are necessary to determine how the possible conformations of different

polysaccharides and proteins or their combinations, synthesized in vitro in an artificial

membrane setup, can contribute to different magnitudes of spreading/stabilizing force in

lipid vesicle networks.

A unique element in the study was the approximation of cellular compartments with

testable shapes such as vesicles and complete cell plates with oblate spheroids, fused

vesicles and tubular structures with elliptical hyberboloids and their combination in a

network. Approximating vesicles, tubulations and their networks in the current model has

the potential of a wider application and can be adopted during quantitative assessment

of membrane dynamics. It can be used as a basis for addressing the equilibrium of

vesiculation (oblate spheroids) and tubulation (elliptic hyperboloids) and applied to ER-

intermediate compartments, Golgi, and endosomes in all eukaryotic cells.

In conclusion, our model provides a framework for understanding how membrane

structures evolve in the presence of a spreading/stabilizing force and will likely shed light
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in such transitions that occur beyond cytokinesis.

2.4 Supplemental Information
2.4.1 Materials and Methods
2.4.1.1 Parameter Setup

To implement energy minimization on a parameterized basis set defined at a particular

surface area, we first identified the parameter space for a given conformation that yielded

the desired area. For a single oblate spheroid, only two parameters are needed, namely,

the radius along the major axis, ′a′, and the radius along the minor axis, ′c′. However, for

the consolidated tubular networks and emerging fenestrated structures, one must account

for continuity between the oblate spheroid and the elliptic hyperboloid, while also making

the relevant corrections in area. This continuity can be achieved by matching the slopes of

the elliptical hyperboloid with the oblate spheroid along the primary axes, while enforcing

contact.A normal one-sheeted elliptical hyperboloid centered at a distance ′d′ along the x

axis can be described by the following equation:

y2

a2h
+

z2

b2h
− (x− d)2

c2h
= 1 (2.2)

Here, ah is the skirt radius along the xy- plane, bh is the skirt radius on the xz-plane,

and ch describes the elongation along the y-axis, where the xy-plane defines the equatorial

plane, and the z-axis is the polar axis. Fig. 2.6 shows these parameters for a hyperboloid

in a 2x1x0 structure. By enforcing continuity with an oblate spheroid at the origin, we

can derive the following relationships for d and bh such that:

d =
1

2

√
a2 − a2h

√
a2 − c2h

b = ah
c

a

(2.3)

Using this, the length of the hyperboloid l is given by:

l = 2d(1− a2h
a2h + c2h

) (2.4)
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Using these restrictions, we can form connected structures of oblate spheroids and

hyperboloids to form approximate representations of tubular and fenestrated structures.

Additional demands that are placed by specific conformations such as in complex emerging

fenestrated structures (for example 6x9x3) were taken into account by eliminating choices

of hyperboloids that would cause clashes. Thus, our complete parameter space for a

given conformation at a particular area is given by a list of values of (a, c, ah, l) where

the corresponding area is calculated by numerical integration methods up to an error

tolerance of 0.01%, taking into account spatial constraints.

2.4.1.2 Energy Minimization

For our energy minimization calculations, we treat the membrane boundary of the cell

plate as an incompressible two-dimensional surface to a first approximation, with certain

defined characteristics. In reality, each lipid bilayer has a finite thickness of 4-6 nm [58],

however, it is justified to treat the surface of the cell plate as two-dimensional due to the

smallness of its thickness compared to the sizes of the overall structures in the cell plate.

It can also be shown that lipid bilayers present a high level of incompressibility due to

the energy penalty associated with areal stretching being significantly higher compared

to membrane deformations due to bending [59]. This is similar to the approach taken by

Choksi et al. and Sarasij et al. [22, 21]. At a specified area, we define a free energy of our

membrane surface that is essentially the Helfrich energy (Helfrich, 1973) with the addition

of a novel term to model the spreading force, possibly due to polysaccharide deposition,

as given in 2.1. We discuss the possible origin of this spreading force within a simple

model elsewhere. Finally, we consider the surface area of the cell plate as a proxy for cell

plate development stage/time and then we minimize this energy for a given surface area.

2.4.1.3 Modified Helfrich Energy

The modified Helfrich energy [15] is described as follows:

E = Ebending + Epressure + Etension + Egaussian + Espreading (2.5)

The first term describes the bending energy over the closed membrane surface(s) of

the cell plate. It is given by:
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KB

2

∮
(H1 +H2 − co)

2dA (2.6)

Where KB is the bending modulus for the membrane surface, H1 and H2 are the

principal curvatures at a point on the surface, and co is the spontaneous curvature, or

the preferred curvature for the membrane. For simplicity, we assume that the bending

modulus is time independent. We allow for the spontaneous curvature, co, to be time

dependent, which reflects potential differences in membrane composition during cell plate

evolution.

The next term is the pressure energy which results from the difference in osmotic

pressure between the inside and the outside of the cell plate, such that ∆p = pout − pin.

It is given by:

Epressure =

∫
∆pdV (2.7)

The third term is the energy associated with the surface tension of the membrane,

given by:

Etension =

∫
γdA (2.8)

We assume that the surface tension given by γ is a constant. Since we assume that

our system locally equilibrates in time at a constant area, this term only adds a constant

energy equal to the area at that time, multiplied with the surface tension.

The fourth term is the Gaussian bending energy term, given by:

Egaussian = 4πKG(1− g) (2.9)

Here, KG is the Gaussian bending modulus, and g is the genus of the surface. This is

a result of the Gauss-Bonnet theorem [60]. We consider the surface area of the cell plate

as a proxy for cell plate development time and then we minimize this energy for a given

surface area.

Finally, we introduce the novel element of a spreading force, which is analogous to a

two-dimensional pressure that acts against the periphery of the cell plate structure along

28



the equatorial plane. In this interpretation, λ as units of force/length, with the energy

representation as follows:

Espreading =

∫
λdA (2.10)

It is important to note that the integral in Eq. 2.10 is over the equatorial plane of

closed cell plate surfaces. Therefore, fenestrations are not integrated over.

As with spontaneous curvature, we allow for the spreading force coefficient λ to be

time dependent, representing, e.g., the “turning on” of callose production in an expanding

plate.

We use established values for the bending modulus KB [61], as well as the Gaussian

bending modulus KG [62], and the surface tension γ [63]. However, the pressure difference

∆p was phenomenologically determined. The bending modulus is sensitive to the envi-

ronment of the cell as well as the membrane type and conformation [61], and therefore

there is a range of available literature values. We decided to test over the full range of

literature values ranging from about 62.5pNnm to 200pNnm (roughly corresponding to

a range of 15kbT to 50kbT . Note that we have excluded a line tension term from Eq. 2.1.

Such a term gives the wrong morphological sequence in time for the plate, and requires

unphysically large values to stabilize the mature, genus0 plate structure.

2.4.1.4 Calculation of area elements

To calculate the mean curvature and the area elements of the parameterized structures,

we employed the following methods:

H =
1

2
(H1 +H2) =

eG− 2fF + gE

2(EG− F 2)

dA =
√
EG− F 2

(2.11)

Where E,F, and G are coefficients of the first fundamental form (line element) and

e, f, and g are coefficients of the second fundamental form (shape tensor), and u and

g parameterize the surface. The selection of E,F,G are based standard practices as

described in [64]. Thus, we can calculate the Ebending from Eq. 2.1 for any conformation

given the conformation type and its corresponding parameter space.
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The code used to calculate the bending energies and the surface areas of the afore-

mentioned conformations are given in the following public github repository:

https://github.com/zaki92/Bending_Energy_Calculations

2.4.1.5 Plant Growth

Arabidopsis thaliana seedlings of Col-0 were used in this study. Seeds were sterilized

using 30% (v/v) sodium chlorate in ethanol (absolute) with 0.06% (v/v) of Triton X-

100 (Sigma-Aldrich). Seeds were plated on 0.25 Murashige and Skoog medium (1.15

g L−1 Murashige and Skoog minimal organics salt, 10 gL−1 Suc, 5 g L−1 Phytagel

(Sigma-Aldrich), and cold vernalized for 48 h at 4°C in the dark, after which plates were

transferred to a plant growth chamber for seedling growth. Plants were grown in tem-

perature and photoperiod-controlled environments, set to long-day (16-h-light/8-h-dark

cycle) conditions, using fluorescent light (at 100 to 150 mmol quanta photosynthetically

active radiation (PAR) m–2s–1) at 22 to 24°C.

2.4.1.6 Chemical treatment and Imaging

Four day old Arabidopsis seedlings were treated with 50 µM Endosidin7 (ES7), 20 mM

2,3-Butanedione monoxime (BDM) and Dimethylsulfoxide (DMSO) in 0.25 MS medium

for two hours as previously described [14, 26]. A Leica SP8 or Zeiss 710 confocal mi-

croscope was used for imaging. Aniline blue fluorochrome (Biosupplies Australia) was

used to detect callose deposition, while the lipophilic membrane dye FM4-64 (10 µM)

(ThermoFisher Scientific) was used to stain the plasma membrane and the developing

cell plate and DAPI was used for nuclei staining. For DAPI staining FM4-64FX stained

seedlings were fixed in 4% PFA [14] and post fixation was stained with1 µg mL−1 4�,6-

diamidino-2-phenylindole (DAPI). 6-10 seedlings were imaged per individual treatment.

Fluorescence signals of callose stained by Aniline blue fluorochrome and DAPI (excitation

405 nm, emission 415-500 nm), FM4-64 (excitation 510nm, emission 620-759nm), YFP-

RABA2a (excitation 510nm, emission 520-570nm) were collected with 40x (water), 63x

(oil) objectives. Z stacks were generated across the volume of full cell and were subse-

quently deconvolved with Huygens (SVI). 3D reconstructions were prepared using Imaris,

Bitplane and figures were assembled using Affinity Designer. Four day- chemical treat-
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ments were performed on seedling germinated in 0.25 MS agar media supplemented with

the indicated inhibitors:7 or 10 nM isoxaben (IXB), 10 µM ES7 and DMSO. Root length

was quantified using Image J [65] as previously described [37]. Multi- factor analysis of

variance (ANOVA) was performed using R x 64 version 4.0.3 (R Core Team, 2017) in

Rstudio (RStudio, PBC), version 1.3.1093 with the basic ANOVA function. Least square

means (LS means) analysis was performed using the emmeans package (version 1.5.3)

and the multcomp package (version 1.4- 15) in R and the p-value adjusted for multiple

comparison using the Tukey method. The graphs were generated using ggplot2 package

(version 3.3.3) and the emmeans package. Letters assigned by LS means, p = .05.

2.4.2 Supplemental Results
2.4.2.1 Results with full range of bending moduli

The data in Supplemental Fig.2.8-2.12 show additional calculations in a range of bending

moduli. A bending modulus of 62.5pN − nm (about 15kBT ) corresponds to the lower

range of bending moduli, consistent with published data (Dimova, 2014), while a bending

modulus of 200pN − nm (about 50kBT ) corresponds to the higher range. It is important

to note that the key outcome remains the same, a finite spreading force coupled with a

decrease in spontaneous curvature is essential for a transition to a single, complete cell

plate structure, regardless of the choice of bending modulus.

2.4.2.2 Fenestrated structures data at higher areas

The supplemental data in Fig.2.13, 2.14, show ∆Emin calculations for different types of

emerging fenestrated structure conformations at larger cell plate areas. In the absence of a

spreading force, and with finite spontaneous curvature, larger, more tubulated fenestrated

structures are more stable than a single cell plate. In the presence of a spreading force and

with decreased spontaneous curvature, a transition to a single, mature cell plate structure

is energetically favorable. Fig.2.7 shows the effect of the spreading force when restricted

to a parameter basis set for a chosen structure, which in Fig.2.7 is 8x10x3. When these

parameter restrictions are removed, we see structures change conformation types, as seen

in Supplemental Videos S1, S2 [25].
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2.4.2.3 Emergence of Spreading Force from Two-Dimensional Self-Avoiding
Polymer Physics

As a finite thickness polymer, the mean square extent of a polysaccharide polymer is

subject to the law of self-avoiding polymers, viz.

< R2 >= b2N2ν (2.12)

with, as per flory theory [23]

ν =
3

2 + d
(2.13)

obtained from a balancing of two entropic effects of self-avoidance and entropic springi-

ness (high probability of zero to end-to-end distance). Here, b is the size of a polymer link,

of the order of the persistence length. In two dimensions, ν = 3
4
. Hence, as a potential

polymer r is deposited forming a network with other polysaccharides or glycoproteins in

the lumen of the cell plate and potentially tethers to each membrane side of the inner cell

plate, a radial pressure can be exerted at the edge (Fig.2.15). The radial growth speed

vF is given by:

vF =
1

2πR

d < R2 >

dt
=

3

2

b2

2πR
N

1
2 (
dN

dt
) (2.14)

and the rate of change of area is

dA

dt
= π

d < R2 >

dt
=

3π

2
b2N

1
2 (
dN

dt
) (2.15)

Hence, the magnitude of the radial force acting on the edge of the plate is (mc is the

mass of a constituent monomer i.e., glucose, and σc is the areal density of the polymer in

the plate):

dp

dt
= mcσc

dA

dt
vF =

9π

8
b4
mc]sigmacN

πR
(
dN

dt
)2 (2.16)

The spreading force λ or areal pressure is the total work done per unit area in expand-

ing the plate a radial distance dR so:
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λ =
d|W |
dA

=
dp

dt

1

R
=

9π

8
b4mcσ

2
c (
dN

dt
)2 (2.17)

Hence, in this simple model, the spreading force is directly related to the production

rate of a polymer in the cell plate. Interestingly callose deposition with the size of a

polymer b ∼ 200nm [24, 53] and a reasonable value for σc, provides an estimate of dN
dt

∼

1.75X106s−1 for λ = 4 pN
nm

which aligns well with the model.

We recognize two important assumptions entering this two-dimensional picture of the

spreading force: 1) the only way to generate such a quasi-two-dimensional force from a

self-avoiding polymer network is by breaking the symmetry. There is already a symmetry

breaking to the nascent cell plate via the phragmoplast guided vesicle delivery which

aligns arriving vesicles and vesicle diameter sets the basic cell plate thickness. To prevent

a 3D self-avoiding polymer growth, we must assume there is confinement of the growth

which necessitates tethering of the polymer network to each side of the new cell wall. 2)

Because of the out of equilibrium dynamics of polysaccharide production and the absence

of equilibration from the cytosol to the interior of the cell plate, we are approximating the

areal pressure at the edge of the cell plate using Newton’s second law and relating that

to potential polysaccharide production rates. This contrasts the usual energy supplied

polymer ratchet model of actin or microtubules which assumes energy supply by ATP

or GTP hydrolysis and a steady state of monomers and polymers, with force generation

arising from monomers added at the leading edge of the polymer and removed from the

trailing end [66].

2.4.2.4 Line Tension

We additionally considered the notion of a line tension at the membrane boundary ly-

ing on the equatorial plane. The energy of such a line tension would be Espreading =

−intboundarytdl, where t would have units of force, and dl is the line element along the

boundary of a cell plate structure. However, we found that a line tension was unable to

reflect the tendency of the spreading force to widen and expand tubular networks and

it rather tended to proliferate the length of the membrane boundary instead. This re-

sulted in the increase of the sizes of the fenestrations in fenestrated structures. Attempts
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Figure 2.6: Parameters visualized on a representative 2x1x0 structure. To enforce conti-
nuity between an oblate spheroid of given parameters (a, c) and an elliptic hyperboloid
with parameters (ah, bh, ch), we can calculate d and bh since they are dependent variables,
a full conformation can be described by the type of conformation and the parameter set
(a, c, ah, l), or equivalently (a, c, ah, ch). The perpendicular arrows show the respective
axes of the conformation. A, shows the top view of the conformation, while B, shows the
side view of the same conformation.

to recreate experimentally observed structures of genus zero using this form of the line

tension such as those found in Fig.2.2E resulted in unrealistic values for t (upwards of

200pN). Additionally, this would be nonzero for a tangential force at the boundary,

where the spreading force is anticipated to be normal to the boundary. We concluded,

therefore, that a spreading force that is analogous to a two-dimensional pressure acting

at the boundary of the equatorial plane is best represented by Eq.2.10.
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Figure 2.7: Effect of a spreading force visualized in a 8x10x3 conformation. The param-
eters shown here were extracted after energy minimization calculations on an 8x10x3
structure with parameter restrictions in place. In the absence of a spreading force,
larger fenestrations, and narrower tubular connections are predicted, as shown in a top
view in A. This structure has an area of 2x105nm2, while the parameters (a, c, ah, l) are
given by (52, 31.5, 20, 25.8)nm. As a spreading force is turned on and the spontaneous
curvature is decreased, the tubular connections widen, thereby shrinking the fenestra-
tion sizes, as shown in a top view in B. For the same area, the parameters change to
(58, 24, 33.5, 25.41)nm. If we relax the imposed parameter restrictions in the presence
of a spreading force, the resulting structure would reach a single oblate spheroid with
a = 173nm, c = 25nm.
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Figure 2.8: Evolution of single oblate spheroid parameters in the presence of a spreading
force. Results with extremal values of the bending modulus are shown in A and B.
Despite the increasing area, the height (h) remains in the 40-80nm region. With a smaller
bending modulus, as in A, a smaller value of the spreading force parameter λ and pressure
difference ∆P is required to maintain the height within the desired region for the specified
areas. With a larger bending modulus, as in B, larger values of λ and ∆P are required.

Figure 2.9: Stability tests of various configurations under different bending modulus in
the absence of a spreading force. A, Stability tests for a small value of bending modulus
while B shows calculations for a larger value of bending modulus. A positive value of
∆Emin indicates relative stability of the labelled conformation as compared to a single
oblate spheroid. Note that in the absence of a spreading force and finite spontaneous
curvature, increasingly tubular and fenestrated structures are more stable as compared
to a single oblate spheroid. The different values of ∆p and λ arise due to the constraints
on structure thickness as shown in Fig. 2.2 and Fig.2.3.
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Figure 2.10: Stability tests of various configurations under different bending modulus in
the presence of a spreading force and with zero spontaneous curvature. A, Stability tests
for a lower value of bending modulus and B higher value of bending modulus. Note that
with the presence of a spreading force and with zero spontaneous curvature, increasingly
tubular and fenestrated structures (i.e.7x6x0) are increasingly unstable as compared to
a single oblate spheroid, indicating the energetic favorability for cell plate structures to
mature to a disk like shape. A positive value of ∆Emin indicates relative stability of the
labelled conformation as compared to a single oblate spheroid. The different values of
∆p and λ arise due to the constraints on structure thickness as shown in Fig.2.2 and
Supplemental Fig.2.8.
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Figure 2.11: Stability tests of multiple 2x1x0 structures as compared to a single oblate
spheroid in the absence of a spreading force and with finite spontaneous curvature. ∆Emin

of multiple 2x1x0 structures as compared to a single oblate spheroid under for a low value
of bending modulus A and high value of bending modulus B are shown. Note that in
the absence of a spreading force and with finite spontaneous curvature, tubular structures
are energetically favorable in these conditions, thereby modeling a membrane network
stage. A positive value of ∆Emin indicates relative stability of the labelled conformation
as compared to a single oblate spheroid. The different values of ∆P and λ arise due to
constrains on structure thickness as shown in Fig.2.7 and 2.8

Figure 2.12: Stability tests of multiple 2x1x0 structures as compared to a single oblate
spheroid in the presence of a spreading force and with zero spontaneous curvature. In the
presence of a spreading force and with zero spontaneous curvature, tubular structures are
unstable compared to a single oblate spheroid, thereby indicating the energetic favorability
of structures fusing to form larger, more mature structure(s). A, shows results for a small
value of bending modulus while B, shows results for a larger value of bending modulus.
A positive value of ∆Emin indicates relative stability of the labelled conformation as
compared to a single oblate spheroid. The different values of ∆p and λ arise due to the
limitations on structure thickness as shown in Fig.2.2 and 2.8.
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Figure 2.13: Stability tests of tubular/fenestrated structures as compared to a single
oblate spheroid in the absence of a spreading force. In the absence of a spreading force,
and with finite spontaneous curvature, fenestrated and tubular structures are, in general,
more stable than a single oblate spheroid. This relative stability is magnified with the
increase in area particularly for heavily tubular structures (10x13x4 in A, 6x9x4 in B),
consistent with observations at tubular network/very early fenestrated sheet stages.

Figure 2.14: Stability tests of tubular/fenestrated structures as compared to a single
oblate spheroid in the presence of a spreading force. A, B, In the presence of a spreading
force, and with decreased spontaneous curvature, a single oblate spheroid is more stable
compared to larger, tubular, fenestrated structures. This indicates the necessity of a
spreading force to incur a transition from a tubular/ fenestrated sheet stage to a single
mature cell plate structure.
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Figure 2.15: Evolution/transition of a cell plate structure in the absence of a spreading
force as predicted by the model. Still image from Supplemental Video S1 [25]. As mem-
brane area increases in the absence of a spreading force (with the same parameters as in
Fig.2.3A), a vesicle eventually transitions to an oblate until a tube (shown in red, modeled
by elliptical hyperboloids as shown in Fig.2.2B) forms in between, after which the tubu-
lar regions grows longer and narrower, taking away membrane material from the oblate
regions (blue, modeled by oblate spheroids as in Fig.2.2A). Here, we see a transition from
a 1x0x0 structure to a 2x1x0 structure in the absence of a spreading force. If the area
were to continue increasing in the absence of a spreading force, we would likely see the
formation of more tubes (structures like 3x2x0, 4x3x0) as well as fenestrations in some
cases (4x4x1, 6x7x2..), as predicted in Fig.2.3B. Scale (x,y,z) (300nmx300nmx300nm).
For full animation please see supplemental video S1 [25]
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Figure 2.16: Evolution/transition of a final cell plate structure from Fig. S10 in the
presence of a spreading force as predicted by the model. Still Image from Supplemental
Video S2 [25]. As membrane area increases in the presence of a spreading force (starting
from the shape in Fig.2.16, now using the same parameters as in Fig. 2.3B), the tubular
regions (shown in red, modeled by elliptical hyperboloids as shown in 2.2B) fatten and
widen until the structure is fully oblate. Here, we show a transition from a 2x1x0 to a
1x0x0 structure. We note that such a transition is not possible without a planar spread-
ing/stabilizing force. If we were to start from a more tubular or fenestrated configuration
with the same area, we would ultimately arrive at the same final shape (1x0x0). Scale
(500nmx500nmx500nm). For full animation please see supplemental video S2 [25]
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Figure 2.17: Effect of isoxaben (IXB) and Endosidin ES7 on cellular organization and root
growth A – I, Cellular organization of Arabidopsis root tips in 7 nM IXB and 10 µM ES7.
Arabidopsis root tips from 5 day old seedlings grown under chemical treatments. A -C,
DMSO treated seedlings display regular cellular organization without cytokinetic defects.
D – F, Treatment with ES7 leads to cytokinetic defects in the form of discontinuous cell
walls, indicated by a star. G – I, Treatment with IXB leads to a swollen cell phenotype.
The cytokinesis marker RABA2a is shown in green, while FM4-64 staining of plasma
membrane is shown in magenta. Samples are single scans of live cell confocal imaging.
Bars = 10µm. J. Quantification of the discontinuous cell wall phenotype showed a 27%
in ES7 treatment with no discernable phenotype in DMSO or IXB treatment. Data
represent quantification of 5-10 seedlings per treatment K, Germination of Arabidopsis
seedlings in 7 nM IXB and 10 µmM ES7 5 and 7 Days after germination (DAG). The root
growth inhibition is significantly higher under IXB treatment compared to ES7. Letters
assigned by LS means, p = 0.05. (5 day/ 7 days). DMSO 7DAG n = 212, DMSO5DAG
n =110, ES7 5DAG n = 356, ES7 7DAG n = 145, IXB 7nM 5DAG n = 324, IXB 7nM
5DAG n =136, IXB 5DAG 10nM n = 289,IXB 7DAG n=125. Individual data points of
root length were plotted in box-whisker plot. Boxes indicate the median and interquartile
range. Whiskers show 1.5 times the interquartile range. L- N, Root tips of Arabidopsis
seedlings 7 days after germination in media supplemented with DMSO (L), 10µm ES7
(M) and 7 nM IXB (N). Note the prominent root swelling in IXB compared to the other
treatments.
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Chapter 3

Introduction to Part 2: In Silico
Studies of SARS-CoV-2

3.1 Background and Motivation
In December 2019, a novel virus that is now referred as severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) was detected in Wuhan, China. The virus triggered a global

pandemic which, at the time of writing, resulted in close to half a billion reported cases,

in addition to about six and a half million deaths [67, 68]. The virus triggered several

lockdowns that led to severe social and economic disruption. The resulting stoppages in

supply chain networks caused severe food and resource shortages, triggering extraordinary

ripple effects that the global economy has yet to recover from [69].

Scientists around the world rallied together to coordinate a joint response (Fig. 3.1. A

complete genome was published within two months of detection [70, 71]. X-ray diffraction

and electron microscope studies revealing the virus’s spike protein crystal structure were

published shortly after [72, 73], followed by crystal structures of bound antibody-spike

protein complexes [74, 75, 76]. Extensive databases for reporting cases, genome data,

and phylogenetic analysis were set up [77], and finally, mRNA and traditional vaccine

candidates were available to the public in record time [78].

The aforementioned experimental advances were vital to the global response to the

pandemic. However, as with any experimental approach, the time taken to collect and

analyze experimental data continues to be a limiting factor. The immobilization of man-
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power caused by countrywide lockdowns further exasperated experimental efforts to study

the virus. In silico approaches to study molecular interactions are often used to guide

experiments and thereby address experimental limiting factors. These approaches have

become more and more relevant due to the exponential rise in computational power, as

well as data management. These advances have been vital in our attempts to understand

large scale molecular interactions, for example, protein-folding [79].

Together with experimental approaches, a tremendous amount of resources were al-

located to studying the virus in silico. Countless important developments were made,

including but not limited to, in silico studies of possible therapeutic agents [81], drug-

discovery screens [82], model vaccine efficacy testing [83], molecular dynamics and binding

strength estimates of critical receptor-ligand sites [84] among many others.

In this work, we will explore, using existing genomic and predicted data [71], a critical

cleavage event that significantly increases the probability of the SARS-CoV-2 primary

virus-cell entry mechanism [85]. We will also study receptor and antibody interactions of

the SARS-CoV-2 omicron variant [84].

3.2 Methods: Studying molecular interactions using
in silico approaches

In chapters 4, 5, and 6 of our work, we primarily use data from classical molecular

dynamics simulations and we make binding strength estimates using a variety of statistical

methods. A brief overview of the techniques used in chapters 4-6 is given below.

3.2.1 Classical Molecular Dynamics
Classical molecular dynamics (MD), as the name suggests, are a class of simulation tech-

niques that are used to study the dynamics of systems with a large number of atoms. This

is primarily done by numerically solving for the coordinates of atoms in discrete time steps

using their equations of motions. The resulting trajectory coordinates are obtained by

using an integrator that takes as an input the initial coordinates of the system, as well as

a general expression for the potential energy of the system, through which the equations

of motion are obtained.
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Figure 3.1: A timeline of COVID-19 research milestones [80] (Creative Commons License)

MD simulations depend on a vast array of initial conditions. These include, in no

particular order of importance, the potential energy description of a general atom (the

choice of this description is colloquially known as a force-field), the initial coordinates

of the system, the choice of defining the solvent explicitly or implicitly, the time-step

used, the ensemble conditions (such as temperature, pressure, volume, and energy), as
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well as a model for the solvent. They are run for biologically relevant timescales (often

ns−µs) depending on system size and equilibrium configurations, and therefore generate

a tremendous amount of data which is then used to make conclusions for the system of

interest.

A general potential energy for an atom in a system comprises of contributions resulting

from non-bonded interactions (such as leonard-jones potentials, electrostatic coloumb po-

tentials) and bonded interactions (bonded potentials, stretching/twisting, dihedral, and

angular potentials). The exact choice of the parameters, cut-off distances, approxima-

tions, and atomistic models used in these potentials constitute a ’force-field’. Force-field

developers obtain and tune these parameters by comparing the results of their simula-

tions to vast libraries of experimental data. The primary force field used in this work is

AMBER14 [86].

Figure 3.2: AMBER force-field potential proposed in 1995 [87]. The first term approx-
imates the energy of covalent bonds using a harmonic potential. This assumes that co-
valently bonded atoms are close to equilibrium bond length. The second term represents
the energy due to the geometry of electron orbitals involved in covalent bonding. The
third term, also known as the torsion energy, represents the energy due to bond twisting.
The fourth term models van der Waals interactions using a functional form similar to the
Lennard Jones potential. The fifth term represents the energy due to electrostatics. The
last two terms are referred to as non-bonded interactions.

Algorithms such as the particle mesh Ewald method [88], and use of cut-off distances

for fast diminishing energies together with the implementation of efficient leap-frog inte-

grators [89] are used to decrease computational load. An important consideration is the

integration timestep used. A timestep that is too long risks exorbitant changes in energies

and velocities that may be unphysical, while a timestep that is too short results in a higher

computational load. Most MD simulations will employ a timestep that is at least a fifth

of the the smallest period of oscillation which for most molecular interactions, tends to
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be about 10-12fs for a single hydrogen bond [90]. Therefore, most MD simulations tend

to use a timestep between 1-2fs.

3.2.2 Estimating binding free energy using MM/GBSA
A cornerstone of our work is using data from molecular dynamics simulations to predict

the binding strength of protein-protein interactions. Multiple techniques can be used to

achieve these estimates computationally. These include alchemical methods, free-energy

perturbation methods, poisson-boltzmann surface area approximations, and Generalized

Born surface area approximations [91]. The first two methods, while in principle more

accurate, are very taxing computationally. We ultimately chose the Generalized Born

surface area (MM/GBSA) method due to the relative speed of computation and flexibility.

The binding free energy change for a protein receptor and ligand to form a complex

is usually expressed as [91]:

∆Gbind = ∆H − T∆S ≈ ∆EMM +∆Gsol − T∆S (3.1)

−T∆S is the conformational entropy change upon binding. ∆EMM is referred to as

the gas phase molecular mechanics energy and can be further decomposed into:

∆EMM = ∆Einternal +∆Eelectrostatic +∆Evdw (3.2)

Here, ∆Einternal refers to energy changes due to bond, angle, and dihedral energies.

∆Eelectrostatic and ∆Evdw refer to electrostatic and van der Waals energies respectively.

The calculation of ∆Eelectrostatic and ∆Evdw is dependant on the choice of force field used

and so will not be discussed here.

∆Einternal is normally ignored because when snapshots are taken from molecular dy-

namics simulations of the complex directly, the contributions from the receptor, ligand,

and the receptor-ligand complex cancel out to zero in principle [91].

Finally, ∆Gsolv can be broken down as the sum of changes due to nonpolar (∆GSA

and electrostatic contributions to energy (∆Gel).

∆Gsol = ∆GSA +∆Gel (3.3)
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∆GSA is approximated by using the change in solvent accessible surface area in a

method known as the LCPO method [92]:

∆GSA = 0.0072X(SAcomplex− (SAreceptor + SAligand)) (3.4)

Finally, (∆Gel is approximated using Generalized Born methods. A common func-

tional form approximating (∆Gel is [92]:

∆Gel ≈ ∆GGB = −1

2

∑
ij

qiqj
fGB(rij, Ri, Rj)

(1− e−κfGB
ij

ϵw
) (3.5)

Where rij is the distance between atoms i and j, and Ri and Rj are the effective Born

radii of atoms i and j. fGB is a scaling factor, a common choice of which is expressed as:

fGB = [r2ij +RiRjexp(−
r2ij

4RiRj

)]0.5 (3.6)

The effective Born radius is interpreted as the degree of burial of an atom in a molecule.

For reference, a common choice of a Born radius of an isolated atom is its van der waal

radius. For sufficiently buried atoms, the choice of how to calculate the Born radius is

sufficiently model and assumption dependent. A detailed review of commonly used models

is given in [91, 92, 93, 94].

Normally, one stays consistent with the choice of Born radius model used between a

set of simulations. Furthermore, MM/GBSA is averaged over a large number of snapshots

taken across an MD simulation in an attempt to reduce noise.

3.2.3 Hbond Count
In chapter 4, we show that there is a strong correlation between the GBSA binding energy

and the HBond count for cases which are generally well shielded from water molecules

(Fig. 5.5). This Hbond count is obtained using a distance and angle approximation

described in [95] (example shown in Fig. 3.3. This simplification means that salt bridges

of proximate residues are effectively counted as H-bonds between basic side chain amide

groups and acidic side chain carboxyl groups. Thus, for bound complexes, we will refer

to the Hbond count as a proxy for the binding strength of a complex.
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Figure 3.3: Example of detected Hbonds (yellow) between receptor (green) and ligand
(red) using a distance and angle approximation [95].

3.3 Objectives of Part 2
In Chapter 4, we present binding strength estimates of three critical fitness parameters of

the SARS-CoV-2 omicron variant [96] . These parameters are 1) Spike protein and human

receptor binding (RBD/ACE2), 2) Furin binding to the virus’s furin cleavage domain,

and 3) key antibody interactions. We show that our results align with the preliminary

observations noted with the variant, i.e. weakened RBD/ACE2 binding, but increased

antibody escape.

In Chapter 5, we present an in-depth analysis of the most commonly observed se-

quences in the Furin Cleavage Domain (FCD) and their interaction with the furin en-

zyme. We show that the Delta variant exhibits the strongest possible binding with the

furin enzyme, and we identify key observed and unobserved sequences that could exhibit

the same binding strength. We also use the AlphaFold [97, 98] suite to predict bind-

ing modes between the furin cleavage domain and the furin enzyme, while verifying our

predictions with observed crystal structures of furin inhibitors and furin complexes.

In Chapter 6, we present a computational design of a humanized ACE2 decoy to be

used as a possible therapeutic or diagnostic agent based on the principles of competitive

binding. We show that our design binds favorably well to multiple SARS-CoV-2 target

RBDs, including the newer delta and omicron variants.
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Chapter 4

SARS-CoV-2 Omicron simulations:
broad antibody escape, weakened
ACE2 binding, modest Furin
cleavage

This chapter appears as a preprint at biorxiv [84] and is undergoing the peer review

process at the time of writing. This work was in collaboration with Avinash Baidya,

Rustin Mahboubi-Ardakani, Richard Davis, and Daniel Cox.

4.1 Introduction
The omicron variant of the SARS-CoV-2 virus was first detected publicly in Nov. 2021

[99], and traced back to variants which appeared in mid 2020. Because the variant contains

a large number of mutations relative to the original strain, including three relevant regions

of the viral surface spike protein (the receptor binding domain (RBD), the furin cleavage

domain (FCD), and the n-terminal domain (NTD)), the variant is of great concern. There

is preliminary evidence that it has overtaken the predominant delta variant in South Africa

where it was first detected [96].

The fitness of a particular variant depends upon several factors. First, strong bind-

ing to surface receptors is of critical importance, and the SARS-CoV-2 RBD binds with

high affinity to the ACE2 protein on human cells [100]. This contrasts with likely weaker
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binding of coronaviruses associated with the common cold such as OC43 which binds

more weakly to sialic acid groups on the cell [101]. Second, escaping the background an-

tibody (Ab) spectrum can confer relative fitness to the dominant variant. Third, efficient

membrane fusion and transmission is apparently strongly regulated by the FCD. It has

been shown, for example, that ferrets inoculated with a WT SARS-CoV-2 with the FCD

deleted can become infected but fail to transmit to other ferrets [102]. The high viral

load of the delta variant has been clearly associated with the mutation P681R of the FCD

[103] and has led to the current dominance of 96% of SARS-CoV-2 sequences worldwide

[104].

Given the time lag in carrying out protein synthesis, structure determination of bound

complexes, determining protein binding affinities, and measuring viral neutralization by

Abs for new variants, there is clearly a role for rapid computational studies that can assess

the differences of new variants relative to background variants as they arise.

In this Letter, we point out here that computational ab initio molecular dynamics

studies of omicron RBD-ACE2, RBD-antibody (AB), FCD-Furin, and NTD-antibody are

consistent with: 1) robust antibody escape in all regions compared to wild type (WT) and

delta, 2) FCD binding to Furin intermediate between WT and delta, and 3) weaker binding

to the ACE2 than WT or delta. The Ab escape can confer transmissibility advantages for

a population with a prevalent delta variant Ab spectrum, but the weaker binding to ACE2

and modest enhancement of furin binding are likely to lead to weaker transmissibility than

delta. This work uses ColabFold’s [105] implementation of AlphaFold-Multimer [98] to

generate structures for FCD-furin binding.

4.2 Materials and Methods
4.2.1 Molecular Models
We drew our starting structures for RBD-ACE2 binding from PDB file 7A94 [72] reference

for the WT and delta variants, and PDB file 6M0J [73] for the omicron variant. For Class

I ABs, which bind in the same region of the RBD as the ACE2, we used 7CJF [75] and

7KVF [74], while as a representative class III Ab that binds to the RBD away from the
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ACE2 interface, we used 6YOR [76]. For an NTD-Ab we used 7C2L [106].

The antibodies chosen do not comprehensively portray all neutralizing Abs for the

SARS-CoV-2 spike protein, but are representative of the spectrum of antibodies that

neutralize the SARS-CoV-2 virus. This study does not account for t-cell binding sites

[107]. Fig. 4.1 shows the structures of the different complexes studied in this paper.

Figure 4.1: Structures of WT spike protein complexes studied A) ACE2(red)-
RBD(blue) binding. B) Binding of RBD(red) to Class I Ab C1A-B12 (binds in ACE2
interface region; heavy chain green, light chain cyan) and Class III Ab CR3022 (binds away
from ACE2; heavy chain magenta, light chain yellow). C) Binding of NTD to 4A8 Ab
(heavy chain green, light chain cyan). D) Binding of FCD (blue) to furin (red). Blowup
highlighting position of fifth residue R5 (R685 for WT SARS-CoV-2) with proximate
aspartic acid residues D151, D199 of the furin enzyme.

4.2.2 Molecular Dynamics
To simulate the protein-protein interactions, we used the molecular-modelling package

YASARA [89] to substitute individual residues and to search for minimum-energy confor-

mations on the resulting modified structures of the complexes listed in Table 4.1. For all

of the structures, we carried out an energy-minimization (EM) routine, which includes

steepest descent and simulated annealing (until free energy stabilizes to within 50 J/mol)
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minimization to remove clashes. All molecular-dynamics simulations were run using the

AMBER14 force field with [108] for solute, GAFF2 [109] and AM1BCC [110] for ligands,

and TIP3P for water. The cutoff was 8 Å for Van der Waals forces (AMBER’s default

value [111]) and no cutoff was applied for electrostatic forces (using the Particle Mesh

Ewald algorithm [112]). The equations of motion were integrated with a multiple timestep

of 1.25 fs for bonded interactions and 2.5 fs for non-bonded interactions at T = 298 K

and P = 1 atm (NPT ensemble) via algorithms described in [95]. Prior to counting

the hydrogen bonds and calculating the free energy, we carry out several pre-processing

steps on the structure including an optimization of the hydrogen-bonding network [113]

to increase the solute stability and a pKa prediction to fine-tune the protonation states

of protein residues at the chosen pH of 7.4 [95]. Insertions and mutations were carried

out using YASARA’s BuildLoop and SwapRes commands [95] respectively. Simulation data

was collected every 100ps after 1-2ns of equilibration time, as determined by the solute

root mean square deviations (RMSDs) from the starting structure.

The hydrogen bond (HBond) counts were tabulated using a distance and angle ap-

proximation between donor and acceptor atoms as described in [113]. Note that in this

approach, salt bridges of proximate residues, are effectively counted as H-bonds between

basic side chain amide groups and acidic side chain carboxyl groups.

4.2.3 Endpoint Free Energy Analysis
We calculated binding free energy for the energy-minimized structure using the molecular

mechanics/generalized Born surface area approximation [91, 94, 114], which is imple-

mented by the HawkDock server [93]. While the MM/GBSA approximations overestimate

the magnitude of binding free energy relative to in-vitro methods, the obtained values

correlate well with H-bond counts. For each RBD-ACE2, RBD-AB, and NTD-Ab bind-

ing pair we average over five snapshots of equilibrium conformations. For each FCD-furin

pair, we average over ten snapshots of equilibrium conformations.
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4.2.4 Use of ColabFold/AlphaFold for Furin binding domain
We will present a complete description of the use of ColabFold/AlphaFold for modeling the

FCD-furin binding separately [85]. Full details of this method are provided in [97, 98, 105].

In brief, we used the heterocomplex prediction method known as AlphaFold-Multimer

[97, 98] as implemented within ColabFold[105] to predict the best bound structure to

the furin enzyme of the six residue FCD from the WT protein. The delta and omicron

structures were then obtained by mutation from the predicted WT FCD-furin structure.

4.3 Results
4.3.1 Binding Strengths: HBond and Binding Free Energy
Our main results for interfacial HBonds are summarized in Table 4.1. We find weaker

binding to the ACE2 receptor in contrast to a recent quantum calculation[115], which

should moderate infectivity, and significant antibody escape of the omicron for all three

regions (Class I, Class III, and NTD) considered. This escape is measured by the reduction

in hydrogen bond count between the antibodies and the spike protein. For the FCD-Furin

binding, six residues fit into the binding pocket, which we argue elsewhere to begin with

residue 681 for WT, alpha, and delta. For omicron, we consider the possibility of leading

with the N679K mutation or P681H mutation. The latter is the same as the alpha variant.

We see that the expected binding to the FCD is at best the same as the alpha variant,

and significantly less than the delta variant.

The binding energies from the GBSA analysis of molecular dynamics equilibrium con-

formations are shown in Table 4.2. The same PDBs are utilized. Evidently the trend of

binding energies tracks well with the easier to estimate interfacial HBond count, with the

lone exception of the Class III Ab binding to the delta variant.

4.3.2 Mutations leading to Ab Escape and weaker ACE2 binding
Fig. 4.2 illustrates the key mutations leading to differences in binding for the delta and

omicron variants relative to WT.

ACE2 For ACE2 binding, four key mutations weaken the ACE2 binding for omicron:

1) K417N removes the K417(RBD)-D30(ACE2) salt bridge. 2) Q493K removes hydrogen
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Bound Pair WT delta omicron PDB

RBD-ACE2 8.43±1.69 8.32±1.46 5.06±1.20
7A94(WT,delta)

6M0J

RBD-P4A1

(Class I)
17.76±2.0 17.61±2.03 13.9±1.89 7CJF

RBD-C1A-B12

(Class I)
19.23±1.87 14.94±2.66 11.41±2.49 7KFV

RBD-CR3022

(Class III)
12.59±1.82 12.0±1.53 10.85±1.43 6YOR

NTD-4A8 9.62±1.78 7.48±1.49 4.73±1.63 7C2L

FCD-Furin 10.93±1.72 15.36±1.86
8.65±1.59 (K679)

12.05±1.68
NA

Table 4.1: Interfacial hydrogen bonds between proteins for WT, delta, and omicron. Last
column: reference PDB structure

Bound Pair WT delta omicron

RBD-ACE2 -62.9±6.8 -64.3±3.6 -55.5±4.5

RBD-P4A1

(Class I)
-115.9±7.0 -110.2±7.5 -75.6±9.5

RBD-C1A-B12

(Class I)
-77.9±8.0 -70.3±8.4 -50.8±5.6

RBD-CR3022

(Class III)
-95.4±2.5 -111.7±7.8 -84.1±13.3

NTD-4A8 -88.9±17.9 -81.1±5.7

FCD-Furin -83.6±8.4 -117.3±4.8
-63.5±3.6 (K679)

-93.2±3.8

Table 4.2: GBSA Binding free energy estimate in kcal/mole
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Figure 4.2: Overview of binding changes for delta and omicron variants relative
to WT Color coding is the same for all charts. For the FCD to furin binding, R1-R6
correspond to 681-686, except for the alternate omicron sequence 679-684. For clarity,
RBD binding to P4A1 and CR3022 Abs are not shown.

bonding between the glutamine side chain and residues K31 and E35 on the ACE2 driven

by K-K coulomb repulsion. 3) Q498R removes hydrogen bonding between the glutamine

side chain and K353 of the ACE2 driven by R-K Coulomb repulsion. 4) Y505H removes

hydrogen bonding between the Y505 sidechain where the O acts as a donor and the E37

sidechain of the ACE2.

Class I Abs For Class I antibodies, the following mutations are critical to reducing

binding strength: For binding to P4A1, 1) the Y455 binding to Y33.HC of the Ab heavy

chain (HC) is removed. 2) The Q493K, G496S, and Q498R mutations lead to removal of

bonds with E101.HC, W32.LC of the Ab light chain, and S67.LC. 3) The Y505H mutation

removes bonds to S93.LC. For binding to C1A-B12, 1) the K417N mutation removes a

salt bridge to D96.HC, a side chain bond to S98.HC, and weakens a side chain bond

to Y52.HC. 2) The mutations Q493K, G496S, and Q498R remove bonds to R100.HC,

S30.HC, and S67.HC. 3) The N501Y and Y505H mutations weaken bonds in the 501-505

region to G28.LC, S30.LC, and S93.LC.
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Class III Ab For the Class III antibody CR3022, the most noticeable differences com-

pared to WT are 1) the absence of binding at N370 to Y27.HC. This appears to be driven

by the hydrophobic substitution S371L, which pulls the asparagine at 370 out of bonding

distance from Y27.HC. 2) Weakened bonding of T385 to S100.HC.

NTD Ab For the NTD Ab 4A8, we find that the notable differences of omicron com-

pared to WT are 1) weakened binding at 145-152 presumably due to the deletion at

142-145 relative to WT, and 2) significantly weakened bonding at 246-254 driven by

the EPE insertion at 214 and the deletion at 211. Both the 142-145 deletion and the

211 deletion with EPE insertion disrupt the epitope positionings at 145-152 and 246-254

respectively.

4.3.3 Mutations in the FCD
As we will discuss in more detail elsewhere, for the generic 681-686 sequence of the FCD,

the most critical residue apears to be the 685. In the WT, the arginine is able to form

a salt bridge in the interior pocket with D199 of the furin, and bond additionally with

S146, W147, D151, A185, and S261. This tendency is illustrated in Fig. 4.2. These bonds

are all strengthened for delta and omicron. For the alternate KSHRRA sequence of the

omicron, beginning at 679, the position of the arginine in the binding pocket allows only

the salt bridge formation with D199.

As shown in Fig. 4.3, we observe that the binding strength, which is determined to

a large degree by the binding of the fifth residue of the FCD, correlates inversely with

the root mean square fluctuation (RMSF) of the backbone Cα of the first FCD residue

at 681. This suggests that locking the 681 Cα as happens for P681R is a key to lowering

the fluctuation spectrum of the 685 residue allowing for stronger binding at this site.

Evidently, the gain in binding enthalpy offsets any advantages in conformational entropy

for the FCD.

4.4 Discussion
The binding strength of Furin to the FCD appears to correlate well with the fluctuations

of the initial residue at 681. The lower the fluctuation of the backbone carbon, the lower
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Figure 4.3: Correlation of FCD-furin interfacial HBond count with RMSF of
first residue in FCD The higher the RMSF of the first residue in the FCD, the harder
it is to bind to the furin, especially for the critical fifth residue which inserts into the furin
pocket as shown in Fig. 4.1D. R1 is residue 681 for all but the alternate omicron sequence
which starts at residue 679.

the fluctuation of the backbone carbon for residue 685, which dominates the bonding to

the furin. The P681R mutation provides the lowest Cα RMSF observed amongst the

four FCD examples considered here, and the alternate K679 starting point for omicron

provides the largest Cα RMSF.

The lower severity of omicron versus delta is related to the Furin Cleavage Domain.

Once a corona virus is bound to a human cell, disease severity is regulated by furin cleavage

of the spike protein. After initial binding to the human ACE2 protein, Furin protease

cleavage breaks the spike to facilitate cell wall fusion[103] and viral reproduction. The

higher the furin-FCD HBond binding count, the more efficient the fusion at the molecular

level, and ultimately, higher viral load on the host.

In summary, a consistent picture of omicron in comparison to the delta strain is

emerging. Hospitalization data points to higher disease transmissibility but lower severity

for the omicron strain compared to delta[116]. Our simulations see lower interfacial HBond

counts for omicron for known RBD and NTD binding regions consistent with this, as well
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as weaker ACE2 binding and furin binding than the delta variant. Against an immunity

background tuned to the delta variant, omicron will be more transmissible. (Note that

two other studies suggest stronger ACE2 binding from omicron[115, 117].) Experimental

studies of the binding of the RBD to ACE2 and the FCD to furin will be needed to confirm

these predictions.
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Chapter 5

Computational study of the furin
cleavage domain of SARS-CoV-2:
delta binds strongest of extant
variants

This chapter appears as a preprint at biorxiv [85] and is undergoing the peer review

process at the time of writing. This work was in collaboration with Avinash Baidya, Sofia

Jakovcevic, Jacob Lusk, Rustin Mahboubi-Ardakani, Nathan Solomon, Georgina Gonzalez,

Javier Arsuaga, Mariel Vazquez, Richard Davis, and Daniel Cox.

5.1 Introduction
While the spike protein of the SARS-CoV-2 virus is similar to SARS-CoV-1, a key dif-

ference is a polybasic insertion beginning at P681 in the spike protein[68]. It has been

shown that this insertion is critical to the higher transmissibility of SARS-CoV-2[118, 102]

over SARS-CoV-1, and that the mutations P681H for the alpha and omicron variants and

P681R for the delta variant play a large role in increased transmissibility of the variants

over the wild type (WT)[103]. Similar polybasic furin cleavage domains (FCDs) occur

in other human coronaviruses OC43, HUK1, 229E, MERS, and NL63[119], and in many

other viruses including H5N1 influenza[120].

The FCD of SARS-CoV-2 has not been well studied for at least two reasons. First,
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the FCD belongs to a rapidly fluctuating random coil region of the protein which has not

been resolved by structural probes (see, e.g., Ref. [72], PDB structure 7A94, for which

residues 677-688 are unresolved) . Second, because the furin rapidly cleaves the protein

at this domain, there are no bound structures available. The absence of structural data

has limited computational studies of the binding domain.

A number of small peptides that can act as furin inhibitors have been studied else-

where. It is known that the four amino acid inhibitor RVKR, suitably terminated, is

a potent inhibitor of furin activity[121]. Right handed hexa-arginine and nona-arginine

peptides are potent inhibitors of furin also[122]. Additionally, the peptide Arg-Arg-Arg-

Val-Arg-4-aminomethyl-benzamidine (RRRVR-Amba, I1 peptide)[123], is similar to the

delta variant FCD RRRARS, and binds to furin with pM affinity. This leads to the

conjecture that the FCDs of SARS-CoV-2 and other coronaviruses may bind in similar

fashion to the furin enzyme. For SARS-CoV-2, the insertion that begins with P681 for the

WT, alpha, delta, and omicron variants commences a six residue sequence (through 686)

that hijacks the furin enzyme from its useful physiological functions to assisting the virus.

We have focused on several six amino acid FCDs for SARS-CoV-2 and other viruses.

In the absence of structural data for the FCD, we turned to the deep learning based

AlphaFold program[97]. We used AlphaFold Multimer[98], as implemented within the Co-

labFold environment[105], to generate candidate structures for the FCD-furin complexes.

We find that AlphaFold accurately predicts the furin structure and the backbone of the

bound furin-I1 structure (Figs. 5.1A,B), so it is natural to attempt binding to the FCD,

shown for WT in Fig 5.4C. We have used AlphaFold Multimer as the only way to generate

a de novo structure for the WT FCD to furin binding. With this hypothesis, we can either

generate de novo structures from AlphaFold Multimer, or assume the WT is well repre-

sented by the AlphaFold candidate structure, and mutations from that structure can be

used to assess the binding of the FCDs for variants and other viruses. We simulate these

structures with molecular dynamics to assess equilibrium binding strength, characterized

by two quantities, interfacial hydrogen bonds between the furin and FCD (FCD-furin

HBonds), and Generalized Born Surface Area (GBSA) binding energies. Details of the
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simulation protocols are in the Supplementary Materials and Methods section 0.4. The

AlphaFold approach reaches different conclusions about the FCD-furin bound structure

than an earlier approach based upon docking[124].

Figure 5.1: A) Comparison of structure of furin from Ref. [124] and PDB file 6EQX
with the structure from AlphaFold[97] using the ColabFold environment[105]. Clearly,
the agreement is excellent (RMSD of 1.79Å). B) Comparison of structure of furin with
RRRVR-Amba inhibitor from Ref. [123] with structure generated for the similar sequence
RRRVRY by AlphaFold Multimer[98] using ColabFold[105]. The Amba is buried in the
furin S1 pocket[123] for the inhibitor, while AlphaFold predicts burial of the R at po-
sition 5. The backbone RMSD between the I1 and RRRVRY peptides is 2.77Å . C)
Predicted structure by AlphaFold Multimer[98] for the WT PRRARS sequence of SARS-
CoV-2 compared to Furin-I1 structure. D) Close up of binding pocket for fifth residue of
PRRARS (WT FCD). Furin backbone in yellow, FCD backbone in green, R5 from FCD
is blue, D258,D306 from furin in red.

In the I1 sequence, the sixth (Amba) residue, a nonstandard amino acid, binds most
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strongly to furin as we discuss below. When we mutate that nonstandard residue to the

structurally similar tyrosine, the binding pocket is occupied by the arginine at sequence

position 5. Accordingly, we hypothesize that insertion of the residue at position 5 into

the furin S1 pocket is the most important for FCD binding to furin. We confirm this

hypothesis by simulating dozens of observed sequences. In 93% of observed SARS-CoV-2

FCD sequences starting from aligned position 681, the fifth amino acid is arginine.

We obtain a number of important results. First, per Fig. 5.2, the delta variant

has the strongest binding of existing extant SARS-CoV-2 variants, and only two rare or

unobserved FCD sequences bind as strongly within statistical accuracy. This dominance

of the delta variant FCD extends to other coronaviruses and the H5N1 influenza virus.

Second, as made clear in the heat map of Fig. 5.3, the most important residue is the fifth

residue, which binds in the S1 pocket of furin[123] containing two aspartic acid residues.

In particular, this pocket matches structurally to arginine better than lysine as discussed

below. Third, we find that there is mechanistic predictive power in three quantities

that help explain the differences between delta and other variants and viruses: (1) the

strength of the binding strongly correlates inversely with the root mean square fluctuation

(RMSF) of the first residue. This suggests that the more the backbone outside the pocket

fluctuates, the less likely the arginine at position 5 can bind well to the furin. (2) The

number of FCD-furin hydrogen bonds between residue 5 and the furin strongly predicts

the total binding strength, even though it only represents a plurality of the HBonds. (3)

The maximum mean number of FCD-furin HBonds for a given number of basic residues

peaks at 15.7 hydrogen bonds for 4.06 basic residues.

5.2 Results
To avoid confusion between the conventional N-to-C terminal sequence numbering of pep-

tides and proteins vs. the reverse numbering used in the Furin Data Base (FurinDB)[125]

and other references[122, 121, 123], we will refer to the FCD residues as positions 1-6,

which for all viral sequences considered here will correspond to the FurinDB notation

P5-P4-P3-P2-P1-P1’, with the cleavage site between P1 and P1’. For example, in the WT
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SARS-CoV-2 FCD sequence PRRARS, the R at position 5 corresponds to P1, the S to

position P1’. We will note the FurinDB identification parenthetically.

We first applied AlphaFold[97] through the ColabFold[105] environment to examine

how well we could match the folded structure of furin. The result is shown in Fig. 5.1A.

The AlphaFold structure for furin matches that from the PDB entry 6EQX[123] to within

a root mean square deviation of 1.79Å. Next, we included the furin inhibitor RRRVR-4-

aminomethyl-benzamidine (RRRVR-Amba) from Ref. [123] into the AlphaFold Multimer

program[98], but because we could not enter the nonstandard residue Amba into the

AlphaFold search we substituted tyrosine, which is similar to Amba away from the side

chain terminus. As shown in Fig. 5.1b, this produces a structure substantially similar

to furin with bound RRRVR-Amba, except that the S1 pocket, which binds the position

6(P1) Amba nonstandard residue, accepts the position 5(P2) arginine for RRRVRY. In

essence, the Y for Amba substitution shifts the sequence to P5-P4-P3-P2-P1-P1’. The

RMSD deviation of the RRRVR-Amba backbone from the RRRVRY backbone in the

binding position is 2.77Å, which is relatively small and reasonable given the different

placement of the Amba vs. arginine in the S1 pocket.

This sequence is very similar to the SARS-CoV-2 delta sequence commencing with

arginine at 681, namely, RRRARS. It is known that the furin cleaves between the arginine

at 685 and serine at 686. Hence, we hypothesize that the fifth residue(P1) enters the

furin S1 pocket. When we utilize AlphaFold Multimer to explore the binding of the WT

sequence (beginning at 681) PRRARS, we do find that the fifth arginine(P1) enters the

furin S1 pocket, and binds strongly to two aspartic acid residues at positions 258 near the

pocket entry, and 306 at the interior end of the pocket (Fig. 5.1D). We note that the last

arginine in the RVKR sequence of Ref. [121] also has close proximity to D258 and D306.

The RMSD deviation of the RRRVR-Amba backbone from the PRRARS backbone of the

FCD for SARS-CoV-2 from AlphaFold Multimer is 4.1Å. This is not surprising given the

large sequence difference.

Arginine is particularly well suited for this binding, with its three side chain nitrogens

in contrast to the single nitrogen in lysine. A lysine at the fifth position (P1) is only able
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Figure 5.2: A) FCD-furin hydrogen bond counts between furin and SARS-CoV-2 binding
sequences at 681-686 of the spike protein. The first four bars are prevalent forms (WT,
delta, omicron/alpha, and alt omicron where we assume the sequence starts at position
679. The blue sequences are rare but observed in the GISAID[71] database; of these
HRRARN and SRRARS bind as strongly to furin with in statistical accuracy as the
delta sequence (RRRARS). The two unobserved sequences require double base mutations
from existing extant codons, but bear watching because of their strong binding to furin.
B) FCD-furin hydrogen bond counts between furin and other viruses. The SARS-CoV-2
delta variant shows the strongest binding of any human coronavirus and exceeds the H5N1
influenza cleavage site.

to bind to the D306. Of all 62 observed sequences identified from GISAID for SARS-

CoV-2, 58 have an arginine at position 5 (P1). For the other human coronaviruses, four

(MERS, OC42, HUK1a,b) have an arginine at this position. NL63 and 229E have serines

at this position, and the H5N1 flu has lysine.

There is also a strong bias towards a hydrophobic residue at position 4(P2) in the
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SARS-CoV-2 sequences. Alanine arises there in 46 of 62 sequences, and valine in 4 of

62. The alanine side chain carbon is within 5Å of side chain carbons on W147 and L120

from the furin in the delta structure. Of the other viruses, MERS and 229E have valine

at position 4, while the others have arginine (OC43, HUK1a,b) or serine (NL63) at this

position. The H5N1 flu has lysine at this position.

Given a starting structure, we can simulate and measure characteristics of the binding,

such as counting FCD-furin HBonds, calculating the binding energy of the complex, or

measuring the interfacial surface area, defined as half the difference between the solvent

accessible surface area of the separated furin and FCD vs the solvent accessible surface

area of the complex. We utilize the YASARA molecular modeling program[89], simulating

each bound FCD-furin complex for at least 10 ns past energy minimization and equili-

bration. We then count interfacial protein hydrogen bonds using the criteria outlined for

YASARA[113]. For computing the binding free energy, we use the Generalized Born Surface

Area (GBSA) endpoint free energy calculation from the HawkDock server [93]. Because

the binding interface is tight, there is essentially no water entry between the peptide and

furin. As shown in the supplemental information, we obtain a strong correlation between

the GBSA binding energy and the FCD-furin HBond count (Fig. 5.5). For the rest of this

paper, we shall use the FCD-furin HBond count as a proxy for binding strength. Note that

in this approach, salt bridges of proximate residues, are effectively counted as H-bonds

between basic side chain amide groups and acidic side chain carboxyl groups. Hence, the

R685 residue of the spike protein FCD forms a salt bridge with the D306 residue of the

furin protein, but this is counted in FCD-furin HBonds in this approach.

We have used AlphaFold as the only way to generate a candidate structure for the

binding of the WT peptide to furin. With the other sequences we have a choice of using

AlphaFold or using the mutation approach within YASARA. We generally find that there

are small differences in favor of the mutation approach as we discuss in detail in the

supplemental information (Fig. 5.2).

We have surveyed a total of 62 observed six member SARS-CoV-2 furin FCD sequences

at 681-686 for this paper drawn from from the GISAID database[71, 126, 127], out of which
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Figure 5.3: Heat map of interfacial hydrogen bonds from furin to the six residue peptide by
residue number (vertical) for various observed SARS-CoV-2 along with two unobserved,
and for other human coronaviruses and H5N1. Clearly, the key residue for binding is the
fifth.

the delta sequence RRRARS is the top binder to within statistical significance. Those used

in this paper are acknowledged in Supplemental Table 1. Fig. 2A shows the FCD-furin

HBond counts for the prevalent 681-686 sequences WT(PRRARS), delta (RRRARS),

and omicron/alpha (HRRARS). We have also included KSHRRA as an alternate omicron

sequence in view of the N679K mutation. Additionally, we include seven observed but

rare sequences found from GISAID chosen either for their frequency of occurrence or

their high FCD-furin HBond count. Finally, we include two sequences (PRRDRS and

KRRARS) which can be arrived at by two base mutations from either the WT or delta

variants. The prevalent codon at position 684 cannot swap by a single base to obtain D,

and the prevalent codon at position 681 cannot swap by a single base to obtain K. By

performing pairwise t-tests within GraphPad, we find that the FCD-furin HBond count for

the delta variant sequence binding to furin exceeds all but one of the observed sequences

with statistical significance (p < 0.05) or extreme (p < 0.0001) statistical significance,

and differences are statistically insignificant in comparison to the observed SRRARS and

unobserved PRRDRS and KRRARS sequences (p > .1 for each).

A similar picture emerges compared to other human coronaviruses and the H5N1 flu

as shown in Fig. 5.2B. The candidate sequences for OC43, NL63, HUK1a,b, 229E, and

MERS were obtained by homology alignment of the spike proteins using BLAST[128]. The
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FCD-furin HBond count difference between the delta variant and these viral sequences

is extremely significant (p < 0.0001). We note that the binding is strongest for the cold

viruses HUK1a,b and OC43.

To assess the importance of the different residues in the six member peptide to binding

strength, we analyzed the hydrogen bonding patterns in detail. We display a heat map in

Fig. 5.3 for many of the sequences shown in Fig. 5.2. We find in nearly every case that the

strongest binding, representing a significant plurality of the binding strength, is for the

position 5(P1) residue, with arginine the preferred amino acid there. Notably, the H5N1

sequence with a K at position 5, and the trial sequence PKKAKS where all arginines are

replaced by lysines, fare poorly at position 5(P1) compared to the other sequences.

In searching for an understanding for these observations, we have uncovered three

correlations, two of which that can independently explain nearly 50% of the variation

between SARS-CoV-2 sequences and separately between viruses. First, by examining the

root mean square fluctuation of the backbone C-alpha of the first residue (P5), compared

to the FCD-furin HBond counts of the observed sequences with at least 50 appearances in

the GISAID tables for SARS-CoV-2, we see in Fig. 5.4A that this backbone fluctuation

correlates inversely with the binding strength with a linear regression coefficient of R2 =

0.53. Fig. 5.4B shows the correlation between the FCD-furin HBond count and the

RMSF of the first alpha carbon (CA) atom for delta, the six other human coronaviruses

with homology in this region, and the H5N1 flu virus. The linear regression coefficient

is r2 = 0.49. The best fit slope of -2.74±1.25 FCD-furin HBonds/Å is less than that

for SARS-CoV-2 (-4.33± 1.54 FCD-furin Hbonds/Å), but the difference is statistically

insignificant. Second, by examining the number of FCD-furin HBonds associated with

the residue at position 5(P1), we observe (Figs. 5.4C,D) that there is a high degree of

correlation with the total FCD-furin HBond count. For the observed higher frequency

furin binding sequences, the best fit slope is 1.41±.38 with R2 = 0.59, and for comparison

of delta to other viruses, the slope is similar 1.77±.51 with R2 = 0.66. Third, as shown

in Fig. 5.4E, the number of basic residues (H,K, or R) in the six residue sequence helps

determine the maximum number of FCD-furin HBonds. Fitting the maximum envelope
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of the plot to a quadratic, as in Fig. 5.4F, gives

Hbonds = −0.66(NB − 4.06)2 + 15.7 (5.1)

where NB is the number of bases. The nonlinear regression coefficient is R2=0.98. This

suggests that the maximum number of FCD-furin HBonds is 16, for four basic residues

(as per the delta variant), and to within statistical accuracy, no sequence exceeds delta

in the number of FCD-furin HBonds to furin.

5.3 Discussion
The most important results of this paper are: 1) by using AlphaFold Multimer[98] we have

validated by comparison to the binding of furin with a known six residue inhibitor, we are

able to predict bound structures for over 60 observed FCD sequences of SARS-CoV-2 (at

residues 681-686 of the spike protein and two alternate sequences for omicron) and eight

other viruses (six human coronaviruses (OC43, HUK1a, HUK1b, MERS, NL63, 299E),

the H5N1 influenza, and Epstein-Barr virus). From among these, the delta variant FCD

of SARS-CoV-2 has the strongest binding to furin within statistical accuracy, with 15.3

mean FCD-furin hydrogen bonds. 2) Within these sequences we find selection for arginine

at position 5 (P1), which fits into a furin S1 pocket having aspartic acids at the entrance

and within. The structure of arginine allows binding to both aspartic acids, while lysine’s

structure does not. 3) There is also bias towards a hydrophobic residue at position 4(P2)

of the six residue FCD, which appears to interface favorably with W147 and L120 of

the furin. 4) We find that two features of the sequences each predict about half of the

binding strength: (i) the backbone fluctuation of the first residue in the binding sequence

correlates inversely with the overall binding strength as measured by FCD-furin HBonds,

and (ii) the number of hydrogen bonds associated with the binding of residue 5(P1) in

the furin S1 pocket correlates positively with FCD-furin HBond count. This residue never

accounts for more than a plurality of the FCD-furin HBonds so it is somewhat surprising

that it correlates with the observed trend of binding. (iii) By considering the variation

of the FCD sequence with the number of basic residues, we conclude that no more than

16 FCD-furin HBonds are possible, and within statistical accuracy delta achieves the
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maximum value. We conjecture that the physical basis for this is a tradeoff between

binding efficacy of the basic residues (especially arginine) and Coulomb repulsion as more

are added.

In conclusion, we find that spike FCD-furin binding depends critically upon insertion

of arginine in the fifth position (P1) of the FCD in a furin pocket that includes D258

at the opening and D306 at the interior end. This prediction emerges uniquely from the

application of AlphaFold Multimer[98] to predict the bound structure, and contrasts with

earlier work that employed a docking program for interface prediction[124]. It is therefore

critical to have experimental structural biology test of this prediction.

Note that the omicron FCD sequence is the same as alpha, and alternate FCD se-

quences (KSHRRA, beginning at K679, or QTQTKS, with K679 at position 5(P1)) have

fewer FCD-furin HBonds than any observed variants, consistent with the observed milder

impact of omicron on the lungs[130, 131, 84].

We conclude that it is quantitatively unlikely that any SARS-CoV-2 variant, or any

other virus can bind significantly more strongly to the furin protease than the delta

variant. This is based on a survey of a large number of observed SARS-CoV-2 spike

sequences new SARS-CoV-2 spike sequences not yet observed, other human coronaviruses,

H5N1 influenza, and Epstein-Barr virus. The basic model for viral infection is that after

spike RBD binding to ACE2, furin cleavage at the FCD regulates fusogenicity leading to

syncytia and viral reproduction. Our theoretical studies indicate that furin-FCD driven

fusogenicity is at its worst with the delta variant among all observed SARS-CoV-2 variants

of interest or concern. Of concern and cause for caution are some rarely observed or

unobserved FCD sequences which could be just as consequential for furin cleavage as

delta (observed: SRRARS, RRRARN,HRRVRS; unobserved: PRRDRS, KRRARS).
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Figure 5.4: A) Correlation of the backbone fluctuation from Residue 1 of the sequence
with the total number of FCD-furin HBonds between the binding sequence and furin for
SARS-CoV-2 sequences observed at least 50 times. B) Correlation of the residue 1 back-
bone fluctuation for delta and other viruses. C) Correlation of the interfacial HBonds for
Residue 5 with the total number of HBonds for observed SARS-CoV-2 sequences of A).
D) Correlation of the FCD-furin HBonds for Residue 5 with total number of FCD-furin
HBonds for delta and other viruses. E) The number of HBonds for a given number of basic
FCD residues plotted for 56 sequences. F) The maximum FCD-furin HBonds envelope as
a function of the number of basic residues. This is fit with R2=0.98 by Eq. (1) of the main
text. The sequences for the peak values are for 1-6 respectively: PRNSVY (229E coro-
navirus), PRQARS (SARS-CoV-2), SRRARS (SARS-CoV-2), KRRARS (SARS-CoV-2,
unobserved), RRRRRD (Epstein-Barr, ref. [129]), RRRRRR (unobserved).
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5.4 Supplementary Information
5.4.1 Materials and Methods
5.4.1.1 Molecular Models

For the furin structure and for furin binding to the inhibitor RRRVR-Amba, we used

PDB entry 6EQX[123].

5.4.1.2 Sequence Alignment for Other Coronaviruses

To identify homology in the furin cleavage domain for the other coronaviruses OC43,

NL63, 229E, MERS, HUK1a, HUK1b, we utilized BLAST[128] at the National Center for

Biotechnology Information. We compared entire spike sequences and zoomed in on the

furin cleavage domain based upon the PRRARS sequence for SARS-CoV-2.

5.4.1.3 Identification of other SARS-CoV-2 sequences using GISAID: Ge-
nomic Data Set and Sequence Pre-Processing

We obtained SARS-CoV-2 sequences for this study from the GISAID database on Nov 11,

2020 [132]. Our data set contains FASTA files for every complete human SARS-CoV-2

nucleotide sequence (from all geographical locations) available in GISAID between and

12/1/19 and 7/11/2021. The sequences were then aligned using ClustalOmega with the

default parameters [133]. We found that ClustalOmega ran faster on our data set than

common alternatives like ClustalW [134] and MUSCLE [135].

After aligning the sequences, we extracted the spike protein by comparing the aligned

sequence with the NCBI’s SARS-CoV-2 reference sequence (NC_045512.2; “WT”) [50]

and tabulated the frequencies of different furin binding domain inserts.

Table ST1 includes accession numbers and acknowledgements for the first of each 111

unique nucleotide sequences referenced in this paper as they appear in GISAID.

5.4.1.4 Molecular Dynamics

To simulate the protein-protein interactions, we used the molecular-modelling package

YASARA [89] to substitute individual residues and to search for minimum-energy confor-

mations on the resulting modified structures of the FCD-furin. For all of the structures,

we carried out an energy-minimization (EM) routine, which includes steepest descent and

simulated annealing (until free energy stabilizes to within 50 J/mol) minimization to re-
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move clashes. All molecular-dynamics simulations were run using the AMBER14 force

field with [108] for solute, GAFF2 [109] and AM1BCC [110] for ligands, and TIP3P for

water. The cutoff was 8 Å for Van der Waals forces (AMBER’s default value [111]) and

no cutoff was applied for electrostatic forces (using the Particle Mesh Ewald algorithm

[112]). The equations of motion were integrated with a multiple timestep of 1.25 fs for

bonded interactions and 2.5 fs for non-bonded interactions at T = 298 K and P = 1

atm (NPT ensemble) via algorithms described in [95]. Prior to counting the FCD-furin

hydrogen bonds and calculating the free energy, we carry out several pre-processing steps

on the structure including an optimization of the hydrogen-bonding network [113] to in-

crease the solute stability and a pKa prediction to fine-tune the protonation states of

protein residues at the chosen pH of 7.4 [95]. Insertions and mutations were carried out

using YASARA’s BuildLoop and SwapRes commands [95] respectively. Simulation data

was collected every 100ps after 1-2ns of equilibration time, as determined by the solute

root mean square deviations (RMSDs) from the starting structure. For all bound struc-

tures, we ran for at least 10 ns post equilibrium, and verified stability of time series for

FCD-furin hydrogen bond counts and root mean square deviation (RMSD) from these

starting structure. Because of concerns about the validity of short time simulations, and

more variability for the weaker binding for the omicron RBD-ACE2 complex, we ran for

40 ns postequilibration in that case.

The FCD-furin hydrogen bond (HBond) counts were tabulated using a distance and

angle approximation between donor and acceptor atoms as described in [113]. Note that

in this approach, salt bridges of proximate residues, are effectively counted as H-bonds

between basic side chain amide groups and acidic side chain carboxyl groups. Hence, the

R685 residue of the spike protein FCD forms a salt bridge with the D306 residue of the

furin protein, but this is counted in HBonds in this approach.

Note that in view of the likely ambient pH for cell surface or endosomal furin cleavage,

and the polybasic environment of the FCD, we have assumed all histidines to be singly

protonated at the delta site. Choosing the epsilon site makes little difference. For the

alpha sequence, doubly protonated histidine binds more strongly, but for the alternate
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omicron sequence, there is little difference among the three protonation states.

5.4.1.5 Endpoint Free Energy Analysis

We calculated binding free energy for the energy-minimized structure using the molecu-

lar mechanics/generalized Born surface area (MM/GBSA) method [91, 94, 114], which is

implemented by the HawkDock server [93]. While the MM/GBSA approximations over-

estimate the magnitude of binding free energy relative to in-vitro methods, the obtained

values correlate well with H-bond counts. For each RBD-ACE2, RBD-AB, and NTD-

Ab binding pair we average over five snapshots of equilibrium conformations. For each

FCD-furin pair, we average over ten snapshots of equilibrium conformations.

5.4.1.6 Use of ColabFold/AlphaFold for Furin binding domain

Full details of this method are provided in [97, 98, 105]. In brief, we used the hetero-

complex prediction method known as AlphaFold-Multimer[97, 98] as implemented within

ColabFold[105] to predict the best bound structure to the furin enzyme of the six residue

FCD from the WT protein. We inferred the ordering of this sequence by comparison

with a very similar six residue peptide inhibitor of furin with the sequence RRRVR-

aminomethyl-benzamidine (RRRVR-Amba) [123]. In this case the backbone of the WT

FCD aligns well with that of the inhibitor, but the arginine at residue 5 enters the furin S1

pocket[123] while the Amba enters the furin S1 pocket for the inhibitor. The serine is in

proper cleavage position for furin. Most other structures were then obtained by mutation

from the predicted WT FCD-furin structure.

5.4.1.7 Statistical Analysis and Graphics

We computed the statistical significance of pairwise differences using the GraphPad un-

paired t-test calculator. Regression analysis for Fig. 5.4, Fig. 5.5 was carried out using

the GraphPad Prism (v. 9) package. Structural images for Fig. 5.1 were created in

YASARA. Figs. 2,4, S1, S2 were created with GraphPad Prism (v. 9). Fig. 5.2 was

created with Seaborn (v. 0.11.2), a Python data visualization library.
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5.4.2 Supplementary Text
5.4.2.1 Correlation of FCD-furin HBonds and MM/GBSA binding energy

estimates

Fig. 5.5 summarizes the correlation between FCD-furin HBonds and the MM/GBSA

estimates for binding energy in kcal/mole. Note that MM/GBSA usually overestimates

binding energy strength significantly but is good for producing binding energy trends.

The regression coefficient is R2 = 0.61, and the best fit slope is -.107 Hbonds/(Kcal/mole)

with 95% confidence intervals of -.110 to -.1042. Clearly, the correlation is strong between

FCD-furin HBonds and binding energy.

5.4.2.2 Differences between simulations with AlphaFold and mutation

While we must take the WT FCD-furin structure from AlphaFold[97, 98], we can mutate

using the Swap command in YASARA from there to obtain other starting structures for

molecular dynamics simulations. In general, AlphaFold produces structures with slightly

less binding strength than mutating from the WT, with a few exceptions, the delta variant

being one. This is demonstrated for five sequences in Fig. 5.6. Accordingly, because the

resultant binding is stronger we have used the mutant results where possible to provide a

more accurate starting point for the equilibration runs in molecular dynamics.

5.4.2.3 Examples of sequence frequency and codons

Fig. 5.7 shows a table of FCD sequences used in the figures as well as one synony-

mous/silent mutation based upon the consensus codons for WT, alpha, and delta. The

last two entries are for unobserved but potentially potent FCD sequences. Mutation to

those would require two base swaps from either WT or delta.
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Figure 5.5: Correlation of FCD-furin HBond counts with MM/GBSA Binding
Energy FCD-furin HBond counts are estimates from YASARA[113, 89] simulations,
while MM/GBSA Binding Energy comes from the HawkDock server[93]. Regression anal-
ysis using GraphPad Prism 9 provides the straight line fit (see text for details).
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Figure 5.6: Differences in equilibrated FCD-furin HBond counts between Al-
phaFold generated starting FCD-furin structures and starting structures mu-
tated from the AlphaFold WT structure In general, after equilibration the Al-
phaFold structures have slightly less binding strength, with a few exceptions such as the
delta variant where AlphaFold misses dramatically. For comparison, the p-values for
AlphaFold vs mutant in this plot are RRRVRY- p=0.0035 (very significant); RRRARS
(delta)- p<0.000001 (extremely signficant); HRRARS (alpha/omicron)- p=0.181 (not sig-
nificant); PRRARY - p=0.00094 (very significant); RRRDRY - p=0.0164 (very significant)

Figure 5.7: Examples of FCD sequences from GISAID for analysis here with
codons The observed frequencies of sequences between 12/1/19 and 7/11/21 appear
at left, and the predominant codons for each position are tabulated. Row 4 shows a
synonymous/silent mutation to the alpha variant, while the rest show missense mutations.
The last two sequences are unobserved (requiring double codon swaps relative to either
WT or delta) but bind as strongly to furin as the delta FCD. Note that over this entire
pre-omicron time frame that delta (RRRARS) has less accumulated percentage of the
sequences than WT (PRRARS) or alpha (HRRARS).
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Chapter 6

Computational design of a novel
decoy therapeutic agent for
SARS-CoV-2 using truncated human
angiotensin converting enzyme 2.

6.1 Introduction
The surge of recent SARS-CoV-2 infections, due in part to the emergence of recent variants

such as omicron [99] and delta [104], render the need for safe and potent therapeutic

agents. Furthermore, due to the diversity of observed sequences and the potential of new

variants [85], the need for the development of a variant-resistant therapeutic agent is high.

All variants of SARS-CoV-2 feature a receptor binding domain (RBD) that binds

with high affinity to the angiotensin converting enzyme 2 (ACE2) protein on human cells

[100]. This binding is of critical importance for virion cellular entry, and its inhibition is

a potential defense against infection. A possible route to a variant-resistant therapeutic

agent is a decoy protein that effectively models the interaction region of the ACE2. The

decoy competitively binds to the RBD, which decreases the number of available RBDs

that can bind to human cells. Since ACE2 is always the target of the spike RBD regardless

of the SARS-CoV-2 variant, the decoy would, therefore, be just as effective against newer

and potentially different variants. Decoy proteins also need to be safe to administer due
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to the possibility of immunogenicity.

Previous computational designs of potential protein decoy therapeutic agents feature

the helix-turn-helix region (HTH) of the ACE-2 [136], which is studied extensively due to

the large number of residues that participate in binding from the ACE2 [100]. Other com-

putational approaches include engineered proteins that replicate the RBD-ACE2 binding

interface [137], in addition to approaches which use other fragments of the ACE2 as decoys

with minor modifications [138].

Rapid computational studies provide an avenue to study potential decoy designs and

their interactions with the target protein. Here, we draw our motivation for the decoy

design using computational binding data from wildtype (WT) ACE2-RBD simulations.

Since most of the residues that take part in interfacial bonds between the ACE2 and

the RBD lie on the HTH region of the ACE2 and the beta loop that carries K353,

we engineered a HTH decoy with a cut at the hairpin that makes space for the K353

loop as shown in Fig.6.1. We then independently test possible folded structures of the

decoy using AlphaFold, a deep learning approach used to predict folded protein structures

implemented within the ColabFold suite, and we found that the desired decoy shapes were

reasonably attainable. We then present binding data from molecular dynamics simulations

of the decoy while bound to RBD configurations from 6vw1 [139]. We show that the

decoy binds to the RBDs with strength comparable to the ACE2-RBD interaction, as

measured by interfacial hydrogen bonds, in addition to binding free energy estimates

using Generalized Born Surface Area approximations. By mutating target residues from

pdb files, we are also able to present results from potential omicron and delta RBD-decoy

interactions.

Materials and Methods
6.1.1 Molecular Models
We drew our starting structures for RBD-ACE2 binding from PDB file 6vw1 [139]. We

computationally built the decoy from the PDB file using the molecular modelling package

YASARA [95], where we used the SwapRes, DelRes, and BuildLoop functions to build our

79



Figure 6.1: (a) Shows the ACE2 (blue)- RBD (red) complex from 6vw1[139]. The residues
that were selected for computational decoy design are highlighted in yellow. This design
includes all but one of the key residues in RBD-ACE2 bind as shown in Fig.6.1(a). (b)
Shows the decoy (yellow) in complex with the RBD (red), this was done by superposing the
decoy on ACE2 using the MUSTANG algorithm [140] and was used as the starting structure
for all decoy-RBD simulations pre-equilibration. (c) Shows the alignment between the
computational decoy design (yellow) and the top ColabFold prediction (blue) [105] for
the same sequence.

decoy and to find the best docking configuration that closely matches the ACE2-RBD

configuration. We also used the MUSTANG algorithm for structural alignments [].

The decoy is built using truncated sections from ACE2. Namely, the first helix from

residues 19-52, which contains the residues that participate in the majority of the bonds

between the ACE2 and the RBD [100]. At the hairpin between the two helices at residue

52, we attach the beta loop from residues 340-366, which contains the majority of the

remaining ACE2-RBD bonds. To this, we then attach the second helix from residue

54-91 for decoy stability.

6.1.2 Molecular Dynamics
To simulate the protein-protein interactions, we used the molecular-modelling package

YASARA [89] to substitute individual residues and to search for minimum-energy confor-

mations on the resulting modified structures of the complexes listed in 6.2. For all of the
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structures, we carried out an energy-minimization (EM) routine, which includes steepest

descent and simulated annealing (until free energy stabilizes to within 50 J/mol) mini-

mization to remove clashes. All molecular-dynamics simulations were run using the AM-

BER14 force field with [108] for solute, GAFF2 [109] and AM1BCC [110] for ligands, and

TIP3P for water. The cutoff was 8 Å for Van der Waals forces (AMBER’s default value

[111]) and no cutoff was applied for electrostatic forces (using the Particle Mesh Ewald al-

gorithm [112]). The equations of motion were integrated with a multiple timestep of 1.25

fs for bonded interactions and 2.5fs for non-bonded interactions at T = 298 K and P = 1

atm (NPT ensemble) via algorithms described in [95]. Prior to counting the hydrogen

bonds and calculating the free energy, we carry out several pre-processing steps on the

structure including an optimization of the hydrogen-bonding network [113] to increase the

solute stability and a pKa prediction to fine-tune the protonation states of protein residues

at the chosen pH of 7.4 [95]. Insertions and mutations were carried out using YASARA’s

BuildLoop and SwapRes commands [95] respectively. Simulation data was collected every

100ps after an appropriate amount of equilibration time, as determined by the solute root

mean square deviations (RMSDs) from the starting structure. For all bound structures,

we ran for at least 25ns post equilibrium, and verified stability of time series for hydrogen

bond counts and root mean square deviation (RMSD) from the starting structure.

The hydrogen bond (HBond) counts were tabulated using a distance and angle ap-

proximation between donor and acceptor atoms as described in [113]. Note that in this

approach, salt bridges of proximate residues are effectively counted as H-bonds between

basic side chain amide groups and acidic side chain carboxyl groups.

6.1.3 Endpoint Free Energy Analysis
We calculated binding free energy for the energy-minimized structure using the molecu-

lar mechanics/generalized Born surface area (MM/GBSA) method [91, 94, 114], which is

implemented by the HawkDock server [93]. While the MM/GBSA approximations over-

estimate the magnitude of binding free energy relative to in-vitro methods, the obtained

values correlate well with H-bond counts as shown in a previous publication [85]. For each

RBD-ACE2 and RBD-decoy binding pair, we average over twenty snapshots of equilib-
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rium conformations.

6.1.4 Use of ColabFold/AlphaFold for decoy structure predic-
tion

While we designed the decoy computationally from experimentally determined structures

of ACE2, we also predicted the folded states of the decoy using AlphaFold as implemented

within ColabFold to provide additional evidence for the stability of the decoy within the

desired shape. Full details of this method are provided in [97, 98, 105].

6.2 Results
6.2.1 Binding Strengths: HBond and Binding Free Energy
We find that the number of interfacial hydrogen bonds in the WT decoy-RBD binding pair

is comparable to the ACE2-RBD binding pair. These results are summarized in Fig.2.

We also include binding energy estimates from GBSA analysis of molecular dynamics

equilibrium conformations in Fig.6.2(a). The comparable strength of the decoy-RBD

binding pairs as compared to the ACE2-WT RBD pair suggests that this decoy is a

strong candidate for competitive binding. With the exception of E329 on the ACE2,

the decoy includes all of the residues that are involved in the ACE2 - WT RBD binding

interface. The trend of binding energies tracks well with the easier to estimate interfacial

HBond count. The specific binding pairs as calculated by YASARA’s Hbond algorithm [113]

are given in the supplementary information. We also summarize the key residue positions

involved in Fig. 6.3.

We find the binding strength of the decoy to the omicron RBD to be slightly weaker

compared to delta and WT RBDs. This is in agreement with our previous computational

work [84] where we show that the omicron spike exhibits weaker receptor binding but

with significant reduction of antibody binding strength corresponding to escape.

In 6.3 we see that the number and strength of the interactions between the WT RBD

and ACE2 (6.3(a)) as compared to WT RBD and decoy (6.3(b)) are roughly similar with

the exception of E329 interactions due to its absence in the decoy design. We observe that

most of the interactions involve the helix-turn-helix region (residues 19-85 in ACE2) and
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Figure 6.2: (a) Average total interfacial hbonds post equilibration for the complexes shown
with 95% confidence intervals. The decoy is within 2 hbonds of the WT-ACE2 interactions
in all simulations except for the Decoy-Omicron simulation. (b) Average ∆G(kcal/mol)
values calculated using an MM/GBSA method implemented within HawkDock [91, 114].

that the K353 beta hairpin plays an important role as shown by the variety and number

of interactions by K353, D355, and N330. For the delta variant (6.3(c)) we see a slight

improvement in the D38-Y449 interaction, which is possibly introduced by the L452R mu-

tation. Furthermore, we also see S445 and T446 from the RBD interacting with Q42 from

the decoy, which was unobserved in the ACE2/Decoy-RBD WT simulations. For the omi-

cron variant (6.3(d)), we see that the K353-R498 interaction completely disappears. This

is explained due to the Q498R mutation which leads to electrostatic repulsion. The K493

mutation is also important as it interacts with the D38 from the decoy. These variations

are expected and in line with our current understanding of ACE2-RBD interactions.

6.2.2 Decoy structure predictions using AlphaFold
In 6.3, we show the AlphaFold’s top ranking predicted folded structure superposed to the

desired equilibrium structures obtained using YASARA [97, 140]. The main features of the
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Figure 6.3: Heat map of interfacial hbonds averaged over the full simulations from ACE2
to RBD (vertical) (a), and decoy (b-d) to RBD as labelled by default residue positions in
6vw1 [139]. The key residues identified in (a) are mostly involved in decoy-RBD binding
as shown in (b-d).
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decoy are intact with the main fluctuations originating from the linkers (residues 340-350,

346-366) connecting the beta hairpin to the helices.

6.3 Discussion
We present a computational design of a novel decoy therapeutic agent that has the po-

tential to limit the severity of infection via competitive binding to the receptor binding

domain. Compared to helix based decoys mentioned in [136, 137], this decoy includes all

the major residues involved in RBD-ACE2 binding, in particular the lysine in the beta

hairpin at position 353 of the ACE2.

A key advantage of this computational design is the usage of truncated ACE2 se-

quences. This confers an advantage in the lowered chance of a human immune response

due to the truncated ACE2 sequences having human origins [141]. The work of Basit et

al. prefers a similar approach in the usage of the HTH sequence [136], albeit missing the

beta hairpin that includes the key lysine residue at position 353. The usage of primarily

human sequences are hoped to be effective against future variants due to their ability to

mimic the binding pocket of the ACE2. Recent work demonstrating the efficacy of this

approach includes the use of s-ACE2 molecules with engineered mutations [142], where

experimental evidence of improved survival rates and reduced symptoms was obtained

against four variants of concern in mice.
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Chapter 7

Conclusion

In part 1 of our work, we make progress on a number of questions that are important in

plant cytokinesis and the biophysical understanding of membrane networks. We show,

using a modified Helfrich free energy, that a spreading force coupled with a decrease in

the membrane’s spontaneous curvature is essential for cell plate maturation, and we rein-

force our findings with experimental data from light microscopy. Using our experimental

data, We suggest possible sources of this spreading force and concurrent decrease in spon-

taneous curvature, whilst noting that it is highly probabable that callose synthesis at

the cell plate is a key determinant to both effects. We also provide theoretical synthesis

rates for polysaccharides using flory’s self avoiding polymer theory in two dimensions. We

also introduced membrane shape approximations using a parameterized geometric basis

set (vesicles and complete cell plates with oblate spheroids, fused vesicles and tubular

structures with elliptical hyberboloids and their combination in a network). As noted

in Chapter 2, this has the potential of wider applications pertaining to the quantitative

assessment of membrane dynamics. It can also be used as a basis for addressing the

equilibrium and quantitative analysis of vesiculation, tubulation, ER-intermediate com-

partments, Golgi, and endosomes in all eukaryotic cells. We also provide the python code

that can calculate the relevant Helfrich free energies in a fast, computationally efficient

manner.

Possible future directions include a microscopic model with a mechanistic understand-

ing of the spreading force and concurrent decrease in spontaneous curvature. One possible
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way to understand this is by designing an appropriate Monte-Carlo simulation of a trian-

gulated membrane surface coupled to a tethered, growing self avoiding polymer (motivated

by works such as Chen et al [19]). We also indicate the need of time-lapse experiments

directed at the role of motor proteins which can possibly shed light on their contribution

to the stabilizing and spreading force that the model predicts.

In part 2 of our work, we study various aspects of SARS-CoV-2 in silico, primarily

using a combination of molecular dynamics simulations, generalized Born surface area

approximations, and predictive neural networks such as AlphaFold. In Chapter 4, we

comment on three separate fitness parameters of the omicron variant. In Chapter 5, we

present an in-depth analysis of the Furin Cleavage Domain, an area that is difficult to

study due to lack of experimental data on the domain’s crystal structure. In Chapter 6,

we present a novel computational design of a humanized competitive inhibitor based on

the virus’s target receptor, ACE2.

At the time of writing, SARS-CoV-2 averages close to half a million cases a day. It

remains the research focus of a significant percentage of scientists worldwide and will con-

tinue to do so until until it poses minimal threat to the human and wildlife population. As

the first pandemic of the 21st century, one hopes that the lessons and research method-

ologies learned in response to SARS-CoV-2 are used to minimize the risk of potential

future pandemics.
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