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The ability to have a good understanding of and to manipulate electromag-

netic fields has been increasingly important for many hardware technologies. There

is a strong need for advanced numeric algorithms that yield fast and accuracy-

controllable solvers for electromagnetic and micromagnetic simulations.

The first part of the dissertation presents methods constituting the core

of the high-performance simulator FastMag. FastMag derives its high speed from

three aspects. First, it leverages the state-of-the-art graphics processing unit com-

putational architectures, which can be hundreds of times faster than a single central

processing unit. Moreover, efficient and and accurate implementations of numeric

quadrature was invoked. Thirdly, we provide an analytic method for Jacobian-

xviii



vector products. Some advanced features are provided in FastMag. Quadratic

basis functions are used to provide better accuracy. Hexahedral elements were

also implemented because they are more accurate, consume less memory.

The second part of the dissertation is devoted to electromagnetic scattering

problems. We developed new algorithms that significantly improved the traditional

methods. First of all, potential volume integral equations were implemented, where

the potential quantities (vector and scalar potential). Another important contribu-

tion of this disertation is quadrilateral barycentric basis functions (QBBFs). The

QBBFs can serve as a fundamental block for primary basis functions (PBFs) and

dual basis functions (DBFs). The PBFs and DBFs, when applied in combination

into traditional electric and magnetic field integral equations (EFIE and MFIE),

give rise to accurate and robust results. Moreover, the DBFs make the famous

Calderón preconditioner multiplicative.
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Chapter 1

Introduction

In this chapter, we review the background of the research, the state-of-the-

art of the areas of micromagnetic and electromagnetic modeling.

1.1 Computational micromagnetics and electro-

magnetics

Many of the physical phenomena are governed by fundamental laws in the

form of ordinary differential equations (ODEs) or partial differential equations

(PDEs) [1, 2, 3]. In particular, the areas of micromagnetism and electromag-

netism are fully characterized by PDEs. In Micromagnetics, the main equations

are modifications of the Landau-Lifshitz-Gilbert equation (LLGE), which describe

non-linear magnetization dynamics in magnetic materials [1]. In Electromagnetics,

the phenomena of radiation, propagation, and scattering are described by various

modifications of Maxwell’s equations [2]. A plethora of modern technologies such

as telecommunications, data storages, microelectromechanical systems, are built

upon our understanding and applications of these equations.

Solutions of the equations are of great importance to the development of

modern technologies. However, solving the ODEs and PDEs to analyze highly

complex physical and engineering systems often is an involved process. Tradition-

ally, mathematicians and physicists sought closed form analytic solutions to ODEs

1
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and PDEs, which, however, are limited to simple initial and boundary conditions

and geometric structures. In the engineering world such as magnetic recording sys-

tems, microwave and optical circuits [4, 5, 6, 7], the geometries can be so complex

that pure analytic methods can barely be successfully used. Therefore, a more

general method that yields controllably accurate solutions is ubiquitously needed.

To overcome the restrictions of the analytic methods, many numerical meth-

ods have been invented and are run on digital computers. The computer-aided

solutions are applicable to a wide range of configurations.

1.2 Numerical methods for micromagnetics and

electromagnetics

This section reviews three of the most widely used frameworks for compu-

tational micromagnetics and electromagnetics. The advantages and limitations of

each method are discussed.

1.2.1 Finite difference time domain method

The idea of using finite differences (FDs) to approximate derivatives has a

long history. The finite difference time domain (FDTD) was for solving Maxwell’s

equations was proposed in 1966 [8, 9, 10]. It utilizes a regular grid of rectangular

cuboids where the differential operators are numerically approximated by centeral

differences. The fields are updated at every discrete time step. The size of a spatial

cell (brick) is ∆x ×∆y ×∆z. The time step size is ∆t is dictated by the spatial

discretization, through the Courant-Friedrichs-Lewy stability criterion [11]:√
1

∆x2
+

1

∆y2
+

1

∆z2
≤ 1

c∆t
, (1.1)

where c is the speed of light. FDTD is matrix-free, therefore it does not require

complex data structures or algorithms [12]. FDTD is easy to implement and

parallelize. As a widely used time domain method, the FDTD yields an animation

like simulation result and can be applied to nonlinear problems [13]. FDTD has
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great successes in simulating antennas, microwave circuits, light scattering from

many plasmonic objects, periodic structures with multiple incident angles [14, 15,

16]. Moreover, the FDTD-like methods has also been investigated extensively in

micromagnetics, fluid dynamics and other fields of study.

While having achieved a significant success [17], the applications of FDTD

are hindered by a few factors. First, it is difficult to model complexly shaped

structures with many fine geometrical features, because the regular cubic grids

are intrinsically inefficient to approximate curved structures. Second, it needs

absorbing boundary conditions (ABCs) [18] or perfect matched layers (PMLs) [19]

to truncate the computational domains since the electromagnetic field permeates

the whole space. The ABCs or PMLs are artificial and they may compromise

accuracy and increase complexity. Third, it is difficult to handle low frequency

problems efficiently using FDTD. It is observed from Eq. (1.1) that FDTD would

require that ∆t be proportional to ∆x, resulting in very small step size (compared

to a period) and a very large number of steps. Although the advantages of FDTD

are pronounced, its limitations make it not efficient for a set of problems [20].

1.2.2 Brief review of finite element methods

FEM is a general framework for solving PDEs over arbitrarily-shaped do-

mains [21]. Both FDTD and FEM are based on differential equations, but FEMs

are more suited for arbitrarily shaped objects. The flexibility of FEM roots in

its ability to use many types of geometric “elements” to approximate a geometric

structure. In comparison, the FDTD employs only bricks. Therefore, FEM is a

super set of FDTD.

The basic idea of FEM emerged in 1940s [22] while the realistic applications

became possible after the advent of digital computers in 1950s [23, 24]. Various

FEM formulations for many areas of computational physics have been develope-

d and successfully used. For example, researchers proposed hexahedrons, prims,

pyramids and even curved elements other than simple elements such as triangles

and tetrahedrons. Moreover, scalar basis functions (s-BFs) were extended from

lower order to higher order to achieve high accuracy by multiplying some poly-
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nomials to increase the smoothness [25, 26, 27]. Each s-BF is tied to a node, so

the s-BF is sometimes termed node element. Many physical quantities are vectors

in nature, s-BFs are insufficient and result in very large errors [21]. A major in-

novation, unveiled in 1980s, was the vector basis functions (v-BFs) proposed by

Nédélec [28]. The v-BF is assigned to an edge, therefore, it is often referred to

as edge element. The 1990s witnessed a wide range applications of v-BFs in var-

ious problems including electromagnetics. Since then the v-BFs have become the

mainstream in the FEM community [29, 30].

Figure 1.1: Common elements for two dimensional meshes. From left to right,
they are triangle, quadrilateral, curvilinear triangle and quadrilateral.

Figure 1.2: Common elements for three dimensional meshes. From left to right,
they are tetrahedron, hexahedron, prism and pyramid.

The curvilinear elements are capable of high fidelity geometric modeling

of general structures [31, 32]. Such elements are more difficult to implement.

The implementations in this disertation are based on straight 2D or 3D element

shapes, but the general ideas can be extended to curvilinear elements without

major modifications.

Different than the FDTD, FEM requires matrix inversion operations for

most problems [21, 33]. The matrices in FEM are sparse and often ill-conditioned.



5

How to accelerate the speed of matrix inversions has been the major topic of

FEM. The FEM has also been used to micromagnetics since 1990s. While the

FEM has achieved a noticeable success in solving Maxwell and Landau-Lifshitz-

Gilbet (LLG) equations, there are still a number of limitations. For example, in

micromagnetics traditionally the demagnetization field was obtained by solving the

Poisson equation with artificial boundary conditions (ABCs). The ABCs introduce

extra errors in the magnetic potentials. Moreover, this method requires a robust

preconditioner, which may be memory and computational time costly.

1.2.3 History of integral equation methods for electromag-

netic simulations

Integral equations(IEs) are an alternative approach to solving various com-

putational physics problems [34, 35]. Typically, a linear PDE with proper boundary

conditions gives rise to a Green’s function, which represents an impulse response

of the physical system, e.g. it is the field radiated by a point current in electro-

magnetic systems. It is the kernel of an integral equation that is mathematically

equivalent to the original PDE. The Green’s functions can take into account the

boundary conditions of the equations. For instance, an array of antennas or pho-

tonic structures can be modeled by periodic Green’s functions [36]. Moreover, an

object immersed in a layered media can be analyzed by the layered Green’s func-

tion [37, 38]. The mathematical equivalence between the integral- and differential

equations, however, does not translate into a computational equivalence. Numeri-

cal solution of IEs relies on a mesh similar to that in FEM. Similar to FEM, IEs

also require a structure be discretized into simple geometric elements such as tri-

angles, quadrilaterals, tetrahedrons, hexahedrons. The unknown quantities such

as electric and magnetic currents are expanded as a summation of known v-BFs

weighted by some coefficients. In the solution process, there are many types of

integrals, very few of which can be computed analytically, so numeric quadratures

are used.

The IEs have attracted a long interest among the mathematics, physics and

engineering communities for their unique features. The mathematical foundations
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of integral equations for microwave engineering were established in the beginning

of 1940s. The earliest numerical solutions on computers seems to appear in 1960s.

Different from the FEM, IEs give rise to a full matrix in discretization. It would

cost O(N2) memory space in the traditional method (Here N is the size of the

matrix) [39], which is very high for large scale computational systems. The large

scale applications were not possible until 1980s when the first “fast” algorithm

“Fast Multipole Method” was invented [40]. Later many other fast algorighms

have been proposed such as precorrected Fast Fourier Transform (pFFT), non-

uniform grid interpolation method (NGIM), and hierarchical matrices [41, 42, 43].

The fast algorithms do not explicitly generate the matrix, rather, they can calculate

the matrix vector products in O(N lnN) or even O(N) time.

In the context of electromagnetics [44], IE methods have been a particular

attraction because of three reasons. (1) IEs directly utilize the Green’s functions

which describe the propagation properties of waves, and do not need ABCs, they

can avoid dispersion error and have better accuracy over differential equation-based

methods. (2) The IEs yield a smaller number of unknowns because the ambient free

space does not need to be discretized, and only the “source” regions are meshed.

(3) The condition number of the matrices from IEs can be smaller than that from

FEMs, and give rise to a faster convergence and hence a smaller complexity.

1.3 Linear equations in numerical methods

One of the major challenges for both FEM and IEs is how to solve a linear

equation of the form:

Ax = b, (1.2)

where A is an N×N matrix, x and b are column vectors of length N . Eq. (1.2) is a

very classical problem in mathematics. Gaussian elimination is a direct method, it

has a complexity of O(N3), making it very slow when N is large. Additional direct

methods, e.g. lower-uppper (LU) decomposition or singular value decomposition

(SVD) all have similar complexity restrictions.

An alternative is to use the iterative methods [45, 46, 47, 48]. Such iterative
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methods represent an optimization process. Starting from an initial guess x0, the

iterative method reduces the norm of the error |Ax̃ − b| to a small value ε in

finite steps. Here x̃ is an approximate solution to x. Each optimization requires

at least one evaluation of matrix vector product (MVP): z = Ay, where y is a

column vector provided by the optimizer, and z is the MVP. The cost of an MVP,

tMV P is proportional to the number of nonzero elements in A. If it is a sparse

matrix, as the case in FEM, the cost is O(N). On the other hand, in IEs, the

cost is usually O(N2) by definition. Fortunately, many of the“fast” algorithms can

reduce the cost from O(N2) to O(N log(N)) or even O(N) [49, 50, 51]. The total

time is ttotal = tMV PNiter, where Niter is the number of iterations. The time tMV P

is almost optimal in the sense that the cost is linear or quasilinear. However, Niter

is difficult to predict and control, it is related to the condition number of A:

cond(A) =

√
σmax(A†A)

σmin(A†A)
, (1.3)

where A† is the transpose conjugate of A, σmax(A†A) and σmin(A†A) are the largest

and smallest eigenvalues of A†A. The larger the condition number, the more

difficult the problem is. A common practice to make Eq. (1.2) more tractable is

to use a precondtioner matrix P of size N ×N :

P · Ax = P · b. (1.4)

The preconditioner is constructed such that cond(P · A)�cond(A). Ideally, P is

close to the inverse of A. The choice of P is an art and a science.

1.4 Numerical errors

Errors of numerical differentiation can be significant in FEM and IEs. The

most commonly used differential operators are: ∂
∂x
, ∂
∂y
, ∂
∂z
, ∂
∂t
, ∂

2

∂t2
, ∇ = x̂ ∂

∂x
+ ŷ ∂

∂y
+

ẑ ∂
∂z
,∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. These operators give rise to errors in numerical methods.

The errors from the differential operators are very sensitive to the mesh size, mesh

quality and elemental shapes. In general, reducing the mesh size yields better

accuracy, but it is not always true. Moreover, in FEM, the quality of a triangular
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or quadrilateral mesh is important. One should avoid small angles in these elements

to reduce error. Moreover, in FEM, it is generally believed that hexahedrons can

be better than tetrahedrons in terms of accuracy.

Another major source of error exists extensively in all kinds of numeri-

cal integrals. FEMs and IEs produce a large amount of integrals, most of which

do not have a closed analytic solution, although there are exceptions. These in-

tegrals can be one-, two- or three dimensional. The higher the dimension, the

more difficult to evaluate. Some higher dimensional integrals are reducible to one

dimensional by integral formulas. Some typical integrals are:
´ x2
x1
e−
√
−1
√
x2+a2dx,´ 1

0
dx
´ 1

0
dy e

√
−1
√

(x−c)2+(dy−e)2√
(x−a)2+(by−c)2

,
´ 1

0
dx
´ 1

0
dy
´ 1

0
dz 1√

(x−a)2+(by−c)2+(dz−e)2
, here a, b, c, d, e

are constants. The one dimensional integrals can be evaluated by Gaussian quadra-

ture. In the recent years, the double exponential quadrature draws intensive at-

tention [52]. The basis idea of these quadrature methods is the approximation:´ 1

0
f(x)dx ≈

∑n=NQ
n=1 wnf(xn), where NQ is the number of quadrature points, wn

is the weight, xn is the abscissa. The quadrature rules [53, 54] cannot work well if

the integrands have singularties1.

1.5 Outline and contributions of this work

The dissertation is divided into six chapters. Chapter 1 introduces back-

ground and motivation of the research. Chapter 2 is a detailed discussion of the

tetrahedral element based implementation in Micromagetics and gives implemen-

tation details of the FastMag micromagnetic solver. Chapter 3 presents Jacobian

matrix free implementation of the Jacobian matrix vector products required in

implicit micromagnetic solvers. Chapter 4 is dedicated to discretization of surface

integral equations for Electromagnetics, including new quadrilateral-based basis

and testing functions. Chapter 5 applies the basis functions in a variety of prob-

lems. Chapter 6 presents formulations of volume integral equations and their

applications.

1A singularity in a function is a point where the value of the function blows up and tends to
infinity.



Chapter 2

FastMag: a fast and accurate

micromagnetic solver

Micromagnetic solvers for the LLGE have a significant predictive power

and are important for the ability to analyze and design magnetic systems [55, 56].

Micromagnetic simulations of large-scale and complex structures, however, may

be very time consuming or impossible and their acceleration methods are of high

importance. Currently available micromagnetic solvers are based on the finite-

difference method (FDM) or finite-element method (FEM) [57, 58, 59, 60]. FDMs

can be efficient for problems of regular shape discretized uniformly, but they are less

suited for general problems with complex geometrical and material composition-

s. FEMs provide flexible tools for micromagnetic simulations of complex general

structures, but their efficient implementations for large-scale structures are yet to

be shown.

This chapter starts with a brief introduction to the physics of magnetic

materials. Then, it presents details of the implementation of an efficient micro-

magnetic solver, which is a foundation of the FastMag simulator. FastMag is a fast

and accurate micromagnetic solver well-suited for large scale simulations. It solves

the Landau-Lifshitz-Gilbert equation (LLGE) and can handle multiscale problems

with a high computational efficiency.

9
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2.1 Landau-Lifshitz-Gilbert equation

2.1.1 Energies in magnetic materials

All materials are magnetic to some extent [61, 62]. Most materials respond

weakly to an external magnetic field, they are paramagnetic or diamagnetic. Fer-

romagnetic materials [63, 64], including transition metals Fe, Co, Ni and many of

their compounds, can create strong force to be felt. Net spontaneous magnetiza-

tion can exist in these materials even without the external magnetic field. The

spin and orbital momentums of the 3d electrons in the outer shells of the atoms of

these elements result in magnetic dipole moments. In micromagnetics the discrete

atomistic moments are represented as a continuous magnetization vector:

M = x̂Mx + ŷMy + ẑMz. (2.1)

M is measured in amperes per meter in SI units. Let m̂ = M
|M| = x̂mx + ŷmy +

ẑmz,m
2
x +m2

y +m2
z = 1. m̂ is a unit vector, denoting the direction of M.

A magnetic domain, denoted as Ω, has associated total energy ETotal:

ETotal =

˚
Ω

(εa + εani + εex + εm)dV, (2.2)

where the energy density components are:

• εa = −µ0M ·Ha, the Zeeman energy, Ha is the applied or external field. εa

is minimal while M is parallel to the Ha, and it is maximal when they are

antiparallel.

• εani = −1
2
KU(m̂ · k̂)2, the uniaxial anisotropy field, k̂ is a unit vector called

easy axis. Here KU is the magnetocrystalline anistropy energy density. The

uniaxial anisotropic energy εani is small when M points along the easy axis

k̂, and it is large when it is perpendicular to k̂.

• εex = A|∇m̂|2 = A[(∇mx)
2 + (∇my)

2 + (∇mz)
2] is the exchange energy,

where A is exchange constant. The exchange energy tends to make M as

uniform as possible. The exchange energy is largely responsible for keeping

the magnetization in order.
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• εm = −1
2
µ0M ·Hm is the demagnetization energy. The magnetic flux density

B = µ0(Hm + M). Hm, produced by M, is called dipolar or magnetostatic

field. The dipolar energy εm tries to make M behave randomly to shrink B.

This is the simplest model for energies in magnetic materials. Other terms

such as the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions [65] and the

spin transfer torques (STTs) [66], may also appear in the LLGE. The magnetization

tries to align in a way such that the total energy is minimized [67]. The competence

between the different energies decides the temporal evolution of M.

2.1.2 Effective field

The different energies influence the temporal evolution of M by exerting an

effective field, indicated by Heff:

Heff = − 1

µ0

δεTotal
δM

. (2.3)

where εTotal = εa+εani+εex+εm is the total energy density, Heff has four components:

Heff , Ha + Hani + Hex + Hm, (2.4)

where Ha = − 1
µ0

δεa
δM

is the applied field. Hani = − 1
µ0

δεani
δM

, HK(m̂ · k̂)k̂ is the

anistropy field, k̂ is the uniaxial axis, HK is the strength of the uniaxial anisotropy.

Hex = l2ex∇2M is the exchange field, where lex is the exchange length. Hm =

∇∇ ·
˝

Ω
M(r′) 1

4π|r−r′|dr
′ is the demagnetization field.

Evaluating Heff is a critical part of the numeric LLGE simulator. Since Ha

is given, there is no need to evaluate it. The evaluation of Hani is direct, as it is

simply an algebraic function. The difficulties are pertinent to the other two field

components. Hex utilizes a differential operator, and Hm employs both differential

and integral operators. These operators are bottlenecks of accuracy and speed of

the simulators.

Here we list a few examples. Two parallel infinitely large planar plates are

located at z = 0 and z = d. If M = ẑM cos(θ) + x̂M sin(θ), here θ is a constant,

the dipolar field between the plates is Hm = −ẑM cos(θ). Outside the plates the

field is zero. Another case is a unit sphere. If the magnetization is M = ẑ, inside
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Figure 2.1: Magnetic field generated by a magnetic dipole. The ⊕ symbols
denote positive magnetic charge, The 	 symbols depict the negative. The arrows
show the direction of the magnetic field lines.

the sphere Hm = −1
3
ẑ. If M = x̂x + ŷy + ẑz, one has Hm = −x̂x − ŷy − ẑz.

Clearly we observe that the dipolar field tries to align anti-parallel to the original

magnetization vector.

2.1.3 Dynamic equation

The temporal evolution of the magnetization is best described by the LLGE:

∂M

∂t
= −

(
γM× µ0Heff − α

M

MS

× ∂M

∂t

)
, (2.5)

where MS is the saturation magnetization. α and MS are constants that depend

on temperature and material compositions. Eq. (2.5) is an implicit form, since ∂M
∂t

appears on both sides of the equation. It has an explicit form:

∂M

∂t
= − γµ0

1 + α2

[
M×Heff +

α

MS

M× (M×Heff)

]
. (2.6)

Let T1 = M×Heff,T2 = M× (M×Heff). T1 is a magnetic torque. Since

T1 ·Heff = 0, this torque makes M to rotate about Heff. It represents a precessional

process. Since T2 = (M ·Heff)M− (M ·M)Heff, clearly T2 has a component along
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Figure 2.2: Illustration of the precessional and damping terms in the LLGE. The
precessional term T1 makes m̂ rotate about Heff. On the other hand, the damping
torque T2 makes the m̂ attracted to the axis of Heff.

the direction of Heff. Thus it makes the M to follow the direction of Heff. It

indicates the energy dissipation mechanisms in the magnetic materials.

Eq. (2.6) is an explicit form because ∂M
∂t

appears only on the left side of the

equation. Multiplying M· on both sides of Eq. (2.6) yields

M · ∂M

∂t
= 0. (2.7)

It indicates that ∂
∂t

(M ·M) = 0. As a result, the magnitude of the magnetization

is always a constant in time, i.e. |M| = MS. Therefore, the LLGE is often more

compactly and conveniently written in a normalized form:

∂m̂

∂t
= − γ

1 + α2
[m̂×Heff + αm̂× (m̂×Heff)] , (2.8)

where m̂ = M/MS is a unit vector. Eq. (2.8) is a time domain ODE. Its right-

hand side (RHS) depends on the evaluation of Heff. In numerical solutions, we

have a mesh of tetrahedrons or hexahedrons, and the number of vertices is V . m̂

is interpolated by scalar basis functions:

m̂(r) ≈
n=V∑
n=1

bn(r)m̂n. (2.9)

where bn is a scalar basis function (BF) associated with the nth vertex. It is

interesting to see that, although m̂ is a vector and it seems more reasonable to use

the v-BFs, however, the norm-preserving property of m̂ makes it more convenient

to use the s-BFs.
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2.2 Finite element discretizations

In this part we show how to solve the LLGE by using FEM by using tetra-

hedral discretization [50, 68, 69, 70, 71]. Tetrahedrons are preferred in FEM due

to their excellent flexibility in modeling geometries. As a very graceful and conve-

nient tool, the simplex coordinates are introduced for triangles and tetrahedrons.

Triangles model the surface of many complex bodies. The tetrahedrons are used

to mesh the volume of a three dimensional structure. While triangles are not used

directly in LLGE, they are important in the sense that, the boundary of any tetra-

hedral mesh, is actually a triangular mesh. In micromagnetics, many phenomena

are due to surface interactions such as anti-ferromagnetic coupling, and interlayer

exchange coupling.

2.2.1 Simplex coordinates for triangles

A triangle has three vertices A,B,C, their Cartesian coordinates are r1, r2, r3,

respectively. They must satisfy |(r1 − r2)× (r3 − r2)| > 0.

Figure 2.3: A triangle is formed by three vertices ABC. P is an arbitrary point
inside ABC, and divides it into three smaller triangular elements. The area of
ABC is S0.

It is possible to use the Cartesian frame (x, y, z) to denote a point inside

the triangle, or to define functions over it. However, it is very inconvenient since

each tetrahedron is different from any other one. The alternative way is to use
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simplex coordinates, which are ξ1, ξ2, ξ3:

ξ1 =
SA
S0

, ξ2 =
SB
S0

, ξ3 =
SC
S0

. (2.10)

where S0, SA, SB, SC are the areas of triangles ABC,PBC,PCA,PAB, respec-

tively. Since S0 = SA + SB + SC , it follows immediately the partition of unity:

ξ1 + ξ2 + ξ3 = 1. (2.11)

Therefore, any triangle is can be regarded as a linear transform from a parameter

space ξ1, ξ2 ≤ 1, ξ1 + ξ2 ≤ 1 (which is actually a right isosceles triangle) to its

real space. The parameter space constitutes an isosceles triangle. By using the

parameters, the position vector of P takes a form:

ρ = r1ξ1 + r2ξ2 + r3ξ3. (2.12)

These simplex coordinates are nonnegative linear functions of ρ, where ρ is a point

on the triangle. ξ1 = 1 at point A. Similarly, ξ2 = 1 at point B, ξ3 = 1 at point

C. We say that ξ1 is associated with vertex A.

Figure 2.4: A triangle is formed by three vertices ABC. The three unit vectors
û1, û2, û3 satisfy û1 ⊥ AB, û2 ⊥ BC, û3 ⊥ CA.
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Let û1, û2, û3 be unit vectors pointing outwards to the edges (see the green

arrows in the above figure). Moreover, AB ⊥ CE, BC ⊥ AF, CA ⊥ BG. The

gradient of the simplex coordinates is:

∇Sξ1 = − û2

|AF|
,∇Sξ2 = − û3

|BG|
,∇Sξ3 = − û1

|CE|
. (2.13)

In a triangular mesh, a vertex O is surrounded by a number of triangles. Hence,

the domain of a simplex coordinate ξi also spans the same triangles. Fig. 2.5 shows

the magnitude of a simplex coordinate on an assemble of triangles.

Figure 2.5: A “hat” function for the center vertex, which is surrounded by some
triangles. The hat function has a value of 1 at the center, and tapers to zero at
the boundary.

The surface gradient of the simplex coordinates are constant vectors. There-

fore, we can reformulate the position vector ρ as:

ρ = ∇Sξi · (ρ− ri) + 1, 1 ≤ i ≤ 3. (2.14)

Eq. (2.14) is very useful for convolutional integrals of the Green function and the

BFs. Since the most commonly used BFs are polynomials, their integrations over

a triangle is very important.
¨

∆

ξi1ξ
j
2ξ
k
3dS =

2S0i!j!k!

(2 + i+ j + k)!
, (2.15)

where i, j, k are nonnegative integers. ξ1, ξ2, ξ3 are completely symmetric in (2.15),

which is also a manifest of the advantage of simplex coordinates. To make the

accuracy as good as possible, the triangles should avoid having sharp angles.
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2.2.2 Simplex coordinates for tetrahedrons

Four non-coplanar points form a tetrahedron [21]. The cartesian coordi-

nates of these vertices are denoted as ri = x̂xi + ŷyi + ẑzi, (1 ≤ i ≤ 4). Any point

inside the tetrahedron can be expressed as r = x̂x + ŷy + ẑz, but it is in gen-

eral inconvenient since it depends on each specific tetrahedron. A more common

practice is to use simplex coordinates, which are a normalized coordinate system

independent of a concrete tetrahedron. There are four simplex coordinates, i.e.

ξi, (1 ≤ i ≤ 4).

Figure 2.6: A tetrahedron is formed by four vertices ABCD. P is an arbitrary
point inside ABCD, and divides it into four smaller tetrahedral elements.

Let the vertices A,B,C,D be r1 through r4, they form the original tetra-

hedron T0, whose volume is V0. V0 is a mixed product of vectors:

V0 =
1

6
|(B−A)× (C−A) · (D−A)|. (2.16)

r denotes the coordinate of an arbitrary point P inside the tetrahedron. Clearly, T0

is divided into four smaller tetrahedrons: PBCD,PCDA,PDAB,PABC, which

are numbered TA, TB, TC , TD, respectively. The simplex coordinates are:

ξ1 =
VA
V0

, ξ2 =
VB
V0

, ξ3 =
VC
V0

, ξ4 =
VD
V0

. (2.17)

These coordinates are a linear combination of x, y, z, and are nonnegative and have

a simple partition of unity relation:

ξ1 + ξ2 + ξ3 + ξ4 =
VA
V0

+
VB
V0

+
VC
V0

+
VD
V0

= 1. (2.18)
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Eq. (2.18) is important to ensure the completeness of the basis functions. A

point r inside the tetrahedron is r =
∑n=4

n=1 rnξn. A general formula for integrating

the polynomials of the simplex coordinates is:˚
T0

ξi1ξ
j
2ξ
k
3ξ

l
4dV =

6V0i!j!k!l!

(i+ j + k + l + 3)!
, (2.19)

where i, j, k, l are integers. The simplex coordinates are used to define functions

over a tetrahedral region. Clearly, the simplex coordinates are independent of

any specific tetrahedron, and it is very convenient to use. The gradient of the

functions ξi is a constant vectors. In a tetrahedron, if the magnetization vectors

are known only at the four vertices. The magnetization vector inside the volume

is interpolated linearly as

M(r) ≈
i=4∑
i=1

Miξi(r). (2.20)

Eq. (2.20) defines a continuous and first order differentiable function. High-

er order basis functions, which are polynomials of ξ1, ξ2, ξ3, ξ4, are smoother and

can make the numeric method more accurate at the price of a higher computational

cost. The quadratic basis functions are also investigated.

2.3 Field evaluation

2.3.1 Evaluation of the applied field

IHapp is a given function or it might need to be solved based on other

quantities such as current. For example, Happ generated by a coil current I is

given by the Biot-Savart formula:

Happ(r) = ∇×
˛
Coil

I

4π|r− r′|
dr′ =

I

4π

˛
Coil

r− r′

|r− r′|3
× dr′. (2.21)

The coil is formed by a number of line segments, represented by Nc points. The co-

ordinates of the points are r1, . . . , rNc . The integral in Eq. (2.21) is then converted

into some summations:

Happ(r) ≈ I

4π

i=Nc−1∑
i=1

ri+ri+1

2
− r

|ri+ri+1

2
− r|3

× (ri+1 − ri). (2.22)
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2.3.2 Evaluation of exchange field with a tetrahedral mesh

Hex is modeled by the Laplacian operator, i.e. Hex = MSl
2
ex∇2m̂, where

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, lex is the exchange length. ∇2 is essentially a linear and

symmetric operator, its dicretization leads to a symmetric matrix. Hex is approxi-

mated by the values of m̂ at surrounding vertices. To compute the value of Hex at

boundary nodes, an artificial boundary condition is used throughout the chapter:

∂m̂

∂n̂
= 0. (2.23)

The influence of Hex is to make adjacent magnetizations to point to the same or

similar directions. It seems intuitive to just put the ∇2 operator in front of Eq. 2.9,

and move it onto the s-BFs, yielding:

∇2m̂(r) ≈ ∇2

n=V∑
n=1

bn(r)m̂n =
n=V∑
n=1

∇2bn(r)m̂n. (2.24)

This method, however, does not work. Since here we have taken ξi as

the s-BFs, which are linear functions. Then it follows ∇2bn = 0, indicating that

these functions are insufficient to be differentiated twice. A common approach

to overcome this problem is to use a carefully chosen testing function (TF) such

that each function (either BF or TF) is differentiated only once. There are a few

constraints on the choice of tf . First of all, the number of TFs should be exactly

the same as the BFs, otherwise we cannot get a square matrix to represent ∇2.

Second, the TFs must be linearly independent and complete. Thirdly, the TFs

should be as simple as possible to facilitate implementation. ∇2f is assumed to be

a slowly varying function in a small domain VP , but the TF is a rapidly changing

function in VP . For an internal vertex P , surrounded by a volume VP that consists

of a number of tetrahedrons (typically 10-20), tf much vanish at the boundary of

the VP . Second, tf should be a positive function such that
˜
∂VP

tfdS > 0. In this

way, ∇2 can be approximated as:

∇2f ≈
˝

Ω
tf∇2fdV˝
Ω
tfdV

= −
˝

Ω
∇tf · ∇fdV˝

Ω
tfdV

, (2.25)

where tf is a testing function chosen by the programmers, f can be Mx,My, orMz.
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Figure 2.7: Illustration of the box method for a planar triangular mesh. The “�”
symbol in the center is the i-th node. The “◦” symbols are the surrounding nodes.

As a natural choice, the simplex coordinates are used as BFs and TFs. This

has been the most widely adopted formulation for exchange field evaluation in

tetrahedral meshes. Let L ∈ RN×N be the discretized stiffness matrix, its element

is Lmn =
˝

T
∇ξm ·∇ξndV . Inside a tetrahedron, both ∇ξm and ∇ξn are constant

vectors, their dot product is also a constant, the integration is straightforward.

The ratio Lmax
Lmin

is a critical factor that influences the speed of FastMag. Here Lmax

and Lmin are the longest and shortest edge lengthes in the mesh. For this reason,

if possible, the mesh should be uniformly discretized. We note that the exchange

field, is one of the main reasons for the inaccuracy in numerical solutions. It is

also responsible for the slowness in the time stepping of LLGE. The reason is due

to the fact that the eigenvalues of L span from 0 to +∞.

2.3.3 Evaluation of magnetostatic potential

We discuss three approaches for demagnetization field, all of which are

mathematically equivalent.

Method I. This is to directly use the tensor Green function G = ∇∇ 1
4π|r−r′| . The
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demagnetization is written as:

Hm(r) =

˚
Ω

G ·M(r′)dr′. =

˚
Ω

∇∇ 1

4π|r− r′|

=

˚
Ω

[
1

4π|r− r′|3
− (r− r′)(r− r′)

4π|r− r′|5

]
·M(r′)dr′.

(2.26)

Furthermore, it has a matrix form.
Hm,x

Hm,y

Hm,z

 =

˚
Ω


Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz



Mx

My

Mz

 dr′, (2.27)

where Guv = ∂2G
∂u∂v

, u and v are any two of x, y, z. Eq. (2.26) directly trans-

forms an input M into the demagnetization field. It is direct, and it has

been used extensively in FDMs because the integrals on a cubic grid have a

simple closed form. For FEMs, Eq. (2.26) is quite complex due to the high

order singularity of G which absorbs double gradient operators ∇∇. Since

the matrix has nine elements, the evaluation could be implemented by nine

times MVPs. If FFT is used, the FFTs of Guv = ∂2G
∂u∂v

have been precomputed

and stored, it would still require three FFT evaluations for Mx,My,Mz, and

three inverse FFTs. Moreover, in this method the dyadic Green function is

hypersingular and it requires corrections for the near field interactions, which

takes a large amount of time and memory. To sum up, this method is very

suited for FDMs but it is not an efficient candidate for FEMs.

Method II. This method relies on the scalar potential φ(r):

φ(r) =

˚
Ω

∇′ ·M(r′)

4π|r− r′|
dr′ −

‹
∂Ω

n̂(r′) ·M(r′)

4π|r− r′|
dr′. (2.28)

This method employs the volume charge ρV = ∇ ·M and surface charge

ρS = −n̂ ·M. When the linear BFs are used, ρV is a piecewise constant and

ρS is a linear function. The charge is a scalar quantity, and its convolution

with the Green function needs only one FFT evaluation for the charge, and

one inverse FFT. A drawback of this method is that it needs to differentiate

the boundary nodes from the interior ones, bringing in an inconvenience.
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Moreover, the volume charge obtained from numerical differentiation may

have a poor accuracy if the magnetization vector has large spatial variations.

Although it has been widely used, it was found to be numerically unstable for

ultrathin plate problems, where the accuracy of the integrals is very crucial.

Method III. The scalar potential has another form:

φ(r) =

˚
Ω

M(r′) · ∇′
(

1

4π|r− r′|

)
dr′, (2.29)

where φ(r) is the potential. The field is the gradient of the potential: Hm =

−∇φ, therefore it can be cast as:

Hm(r) = ∇
˚

Ω

M(r′) · ∇ 1

4π|r− r′|
dr′. (2.30)

Let Gx = ∂G
∂x
, Gy = ∂G

∂y
, Gz = ∂G

∂z
, since ∇G ·M = GxMx +GyMy +GzMz, it

seems that Eq. (2.30) must be carried out by three FFTs for Mx, My, Mz and

one inverse FFT for the potential. Moreover, Gx, Gy, Gz are more singular

than G, so it is quite cumbersome to evaluate the integrals in Eq. (2.30)

in FEMs. However, if we assume that the magnetization vector inside each

tetrahedral element is a constant, Eq. (2.30) can be simplified.

The rest of this subsection is devoted to the third method, which is simple,

accurate and robust. The geometry is formed by a number of tetrahedrons, i.e.

Ω =
⋃n=N
n=1 Tn, where Tn is the n-th tetrahedron. Inside each tetrahedron, the

magnetization is assumed to be uniform, and the magnetization vector is:

mC =
1

4

n=4∑
n=1

m̂n, (2.31)

where m̂n is the magnetization vector at the n-th vertex of the tetrahedron. Note

that mC is generally not a unit vector. Then it follows for the far field˚
Tet

m̂(r) · ∇′ 1

|r− r′|
dr′ ≈mC ·

˚
Tet

∇′ 1

|r− r′|
dr′ = mC ·

‹
∂Tet

n̂′

|r− r′|
dr′.

(2.32)

Note that the boundary of a tetrahedron consists of four triangles. The integral

over a triangle can be executed as follows:
¨

∆

m̂(r)

|r− r′|
dr′ ≈ mCS∆

3

n=3∑
n=1

1

|r− rn|
, (2.33)
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Figure 2.8: A comparison of the three methods for evaluating the demagnetiza-
tion field in FEMs. The quantities contained in the dashed boxes such as magnetic
charge and potential are fictitious.

where S∆ is the area of a triangle. In the integration, the original vertices of

the mesh are used as quadrature points, which is not only convenient but also

very economic. Since each vertex is shared by 10 to 20 tetrahedrons, this method

leads to a large saving. Experimental results show that this method is very stable

and accurate enough for our applications. It should be mentioned that there are

many alternative quadrature rules that result in better accuracy. However, these

rules require a much larger number of quadrature points. The small improvement

in the accuracy is counteracted by a much larger computational time (at least

20 times larger). For this reason, we do not use the more complex and accurate

quadrature rules [72, 73]. Besides, this approach does not require one to distinguish

the boundary nodes from the other vertices, so it is more convenient.

Another advantage of this method is related to the analytic integrals for the

near field corrections. Since the integrals are all two dimensional surface integrals in

this method, they are much easier to handle than the three dimensional volumetric

counterparts. A common drawback associated with MethodII and MethodIII is

that when the potential is known, the field, defined with a gradient operator, has to

be evaluated numerically with the mesh. Therefore, the overall accuracy critically
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depend on the quality of the mesh. Moreover, at the boundary Hm is discontinuous

in the normal direction. Therefore, it is not well-defined. Empirically, this gradient

operator is not the major source of error.

2.4 Fast algorithms for field evaluations

In the preceding subsection, the vertices of the mesh are used as quadrature

nodes [74, 75]. Suppose vertex i, whose position is ri takes a collocated charge qi.

The potential at i is evaluated as:

ψi =

j=N∑
j=1,j 6=i

qj
4π|ri − rj|

, 1 ≤ i ≤ N. (2.34)

Obviously, formula (2.34) indicates an O(N2) complexity computation.

When N is a small number, it is not slow. But when N is much larger, it be-

comes slow. There have been a number of algorithms that attacks this classical

problem. The methods are in two categories. The famous Fast Multipole Method

(FMM) and the Non-uniform Grid Interpolation (NGIM) are in the first class

[41, 76, 77, 78, 40], which relies on a hierarchical decomposition of the compu-

tational domain. An octal tree is used to represent the structure. This kinds of

methods employs the fact that the potential of the form 1
|r−r′| decays slowly when

r and r′ are well-separated.

Algorithms in the other category are purely algebraic, such as Fast Fourier

Transform. The idea lies in the fact that the integral in Eq. (2.29) is a convolution,

in which the Green function is translational invariant.

The correction is based on the analytic evaluation of an analytic integral

I(r) =
˜

∆
1

|r−r′|dr
′, where ∆ denotes a triangle. A vertex in a the mesh represents

a spatial domain (ΩV ) formed by all tetrahedrons that share the vertex. Let dmax

be the longest length of all edges that start from from V. Moreover two parameters

are used, RangeParameter(βRP ) and ErrorControl(εc). All the vertices in enclosed

by the sphere centered at V with a radius of βRPdmax are called near points. The

number of near points is directly related to βRP . The number of near points

significantly influences the memory costs and accuracy. In practice we found that
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βRP = 2.0 would be sufficient. Moreover, not all near points need to be accounted

for, we only choose the points that result in an error that is smaller than a threshold

εc. In the implementation, the first step is to identify the a list of “near” points

for every vertex. Two methods are presented here in the following subsection.

2.4.1 Analytic integrals for singularity extraction

All the integrals encountered in the singularity extraction can be reduced

to the following form:

I(r) :=

¨
∆

1

|r− r′|
dS ′. (2.35)

The surface integral is difficult to handle, and what we can solve directly is line

integrals. The idea is to find a vector function f = (ρ′−ρ)|r′−r|m|ρ′−ρ|n, where

m and n are integers to be determined. The surface divergence of the function

should satisfy:

∇′S · f =
1

|r′ − r|
(2.36)

To identify m and n, one has:

∇′S · f =∇′S · [(ρ′ − ρ)|r′ − r|m|ρ′ − ρ|n]

=(n+ 2)|r′ − r|m|ρ′ − ρ|n +m|r′ − r|m−2|ρ′ − ρ|n+2
(2.37)

Comparing Eq. (2.36) with Eq. (2.37), one must have m = 1, n = −2. So the

result is of the form:

∇′S ·
|r− r′|
|ρ− ρ′|2

(ρ− ρ′) =
1

|r− r′|
, (2.38)

where ∇′S is a surface divergence operator that affects the primed quantities. By

using surface divergence theorem and integration by parts, I(r) is transformed into

three line integrals, finally it has a closed form:

I(r) =
i=3∑
i=1

[
di ln

s+
i +

√
(s+
i )2 + d2

i + h2

s−i +
√

(s−i )2 + d2
i + h2

]

− h
i=3∑
i=1

tan−1 dis
+
i

d2
i + (s+

i )2 + h
√

(s+
i )2 + d2

i + h2

+ h
i=3∑
i=1

tan−1 dis
−
i

d2
i + (s−i )2 + h

√
(s−i )2 + d2

i + h2
.

(2.39)
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The meanings of the quantities are listed in Eq. (2.40). In Fig. 2.9, A,B,C form

Figure 2.9: A triangle formed by ABC, D is the observation point.

Figure 2.10: Accuracy of the proposed methods versus the mesh size. The unit
sphere is uniformly polarized, i.e. m̂ = ẑ. The potential is φ = z

3
. It shows that

the error in the potential is proportional to the square of the mesh size

a triangle, r is the coordinate of the observation point. ρ is the projection of r

onto the plane formed by the triangle. r′ is the integration point, since r is on the

plane, it is also written as ρ′. The quantities that are used in the analytic integrals
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Figure 2.11: Accuracy of the proposed methods versus the mesh size. The thin
plate is uniformly polarized, i.e. m̂ = ẑ.

are: 

n̂ = (B−A)×(C−B)
|(B−A)×(C−B)| , ŝ1 = B−A

|B−A| , ŝ2 = C−B
|C−B| , ŝ3 = A−C

|A−C| ,

û1 = ŝ1 × n̂, û2 = ŝ2 × n̂, û3 = ŝ3 × n̂,

s+
1 = (B−D) · ŝ1, s

−
1 = (A−D) · ŝ1,

s+
2 = (C−D) · ŝ2, s

−
2 = (B−D) · ŝ2,

s+
3 = (A−D) · ŝ3, s

−
3 = (C−D) · ŝ3,

h = |(A−D) · n̂|,
d1 = (A−D) · û1, d2 = (B−D) · û2, d3 = (C−D) · û3.

(2.40)

The quantities s±i and di can be positive or negative or zero. When s±i < 0,

the expression s±i +
√

(s±i )2 + h2 + d2
i may result in a big cancellation error, in this

scenario it is wiser to use:

s±i +
√

(s±i )2 + h2 + d2
i =

h2 + d2
i

−s±i +
√

(s±i )2 + h2 + d2
i

. (2.41)

Eq. (2.41) avoids cancellation errors and it is hence more reliable. The procedure

described here is used for triangles, but it extends automatically to general planar

polygons.
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To further confirm the accuracy, we computed the magnetic potential and

field inside a unit sphere with a magnetization distribution M = x̂x + ŷy +

ẑz. For a mesh of average size 0.1, 0.06, 0.04, the error in the potential was

0.35%, 0.12%, 0.05%, and the error in the field was 2.88%, 1.47%, 0.87%, respec-

tively.

2.5 Some examples

There are four standard micromagnetic simulation problems [79]. For prob-

lem 3, with the discretizatoin of about 20 nodes per dimension, the transition be-

tween the flower and vortex states was obtained at the cube edge length 8.5lex. The

average magnetizaton vectors are 〈m〉y = 0.35 in the vortex state, and 〈m〉z = 0.97

in the flower state, which is in a good agreement with other reported results. We

also ran many simulations, including reversal in magnetic particles and arrays, do-

main wall motion in wires or rings, magnetic write head switching, and arrays of

spin transfer torque oscillators, and found the magnetization dynamics behavior

correct and robust with respect to the mesh density. Next we applied FastMag into

simulating magnetic recording heads, which are large and complex structures that

are used in every hard drive [80]. They have many fine features and need many

rounds of numerical simulations in the design process. It has a trapezoidal pole

tip, a wrap-around shield, and a soft underlayer. The size is 5µm× 5µm× 5µm.

The pole tip is tapered from a rectangular shape of 150nm × 460nm to

a trapezoidal form of 60nm × 80nm × 30nm nanometers over a throat height of

150nm. The pole tip has a small uniaxial anisotropy along the cross track direction

of HK = 1.6× 103A/m, and µ0MS = 1.6T, and Aex = 1.3× 10−11J/m.

We used a set of four meshes, with different discretization sizes.

• M0 was a mesh in which the maximal discretization of 6nm was set on the

interface surface of the pole tip/air bearing surface, on the surface around

the gap in the shield, and on the surface of the soft underlayer (SUL) that is

below over the shield. The rest of the surfaces and volumes had the maximal

discretization of 150nm. The generated mesh was nonuniform to smoothly
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Figure 2.12: The structure of a magnetic recording head. Its dimensions are
5µm× 5µm× 3µm. The two small figures in the right side show the shield

Table 2.1: Four meshes used in the recording head simulation.

Mesh Number of nodes Number of tetrahedrons

M0 83K 283K
M1 156K 552K
M1NS 75K 296K
M2 1M 5.3M
M3 4M 23M

transition from the denser to coarser discretization where needed. This mesh

was considered as a typical mesh that might be used to provide guidance for

qualitative head dynamics behavior.

• M1 was a refinement of Mesh 0. The surface criteria of 6nm around the pole

tip of Mesh 0 were kept. Mesh 1 had the largest element size of 12nm in

the volume of the pole tip, shield, and the part of the SUL below the shield.

The rest of the geometry had the largest element size of 150nm. M1 was

for a writer design without shield (single pole) and the discretization was

similar to M1. Meshes M1 and M1NS were chosen as they sometimes may

be considered as adequate for obtaining the dynamic field near the pole tip.
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Figure 2.13: Magnetization distribution on the surface of the recording head.

• M2 had all denser parts discretized as in M1. In addition, it had the largest

elements size of 24nm in the volume of the bottom part of main pole, 30nm

in the volume of the top part of the main pole, and 45nm in the rest of the

bulk of the head (i.e. the yoke, the return pole, and entire SUL).

• M3 had all denser parts discretized as in M1. The maximum element size

used in the rest of the head was 24nm.

Using the high-performance FastMag micromagnetic simulator, we studied

the magnetization and magnetic field dynamics of a realistic recording head model.

The dynamics was considered as a function of the mesh density for different switch-

ing rates and current waveforms. Improper discretization may result in incorrect

magnetization behavior.

2.6 Quadratic basis functions

The linear BF (LBF) is very robust, and yield very good results that have

been shown in the preceding sections. However, one concern is that the exchange

field may not be accurate enough. Quadratic basis functions (QBFs) are imple-

mented for solving the LLGE via the FEM. This involves the introduction of a set

of special TFs compatible with the QBFs for evaluating the Laplacian operator.
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The results by using QBFs are significantly more accurate than those via linear

basis functions. QBF approach leads to significantly more accurate results than

conventionally used approaches based on linear basis functions. Importantly QBFs

allow reducing the error of computing the exchange field by increasing the mesh

density for structured and unstructured meshes. Numerical examples demonstrate

the feasibility of the method.

2.6.1 Ten QBFs on a tetrahedrons

We showed that ξ1, ξ2, ξ3, ξ4 are four linear BFs for a tetrahedron, which are

complete to 1, x, y, z. The QBFs must be complete six more functions x2, y2, z2,

xy, yz, zx. So there are ten QBFs for a tetrahedron. The standard choice of these

ten QBFs are:

q1 = (2ξ1 − 1)ξ1, q2 = (2ξ2 − 1)ξ2, q3 = (2ξ3 − 1)ξ3, q4 = (2ξ4 − 1)ξ4,

q5 = 4ξ1ξ2, q6 = 4ξ1ξ3, q7 = 4ξ1ξ3, q8 = 4ξ2ξ3, q9 = 4ξ2ξ4, q10 = 4ξ3ξ4.
(2.42)

The completeness of these QBFs lies in the fact that
∑i=10

i=1 qi = 1. The first

four BFs q1, q2, q3, q4 are associated with the original vertices of the mesh (called

T1 nodes), can have negative values, the minimum value is −1
8
. The other six BFs

correspond to the medians of the six edges of a tetrahedron, they are referred to

as T2 nodes.

Figure 2.14: Two kinds of QBFs defined on a triangle. The first is tied to an
original vertex, the second is associated with the median of an edge.

To evaluate the Laplacian, one might choose the QBFs as the TFs. This
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testing approach works well for non-boundary nodes. However, for the boundary

nodes, a problem appears. The surface integral should be non-vanishing to enforce

the boundary condition ∂f
∂n

= 0. However, for the T1 nodes located at the bound-

ary,
˜
Triangle

(2ξi − 1)ξidS = 0 the surface integral is conducted over a boundary

triangle. Therefore, there is an imbalance between T1 and T2 nodes. Physical-

ly this phenomenon should not occur and we attribute it to the improper use of

testing functions in the Galerkin approach for this case. We propose a method to

overcome this problem, following two guidelines in choosing a set of TFs.

• For an internal (non-boundary) node, the TF is nonzero at the point itself,

and it tapers to zero at the boundary of a “box”.

• The ratio of the integrals
˜
tidS/

˝
tidV , should be the same for both types

of nodes on a boundary triangle S and the corresponding tetrahedron V .

There are several candidates that can serve as testing functions. The par-

ticular set of TFs implemented here is:

t1 = ξ5
1 , t2 = ξ5

2 , t3 = ξ5
3 , t4 = ξ5

4 ,

t5 = (ξ1ξ2)2.5, t6 = (ξ1ξ3)2.5, t7 = (ξ1ξ3)2.5,

t8 = (ξ2ξ3)2.5, t9 = (ξ2ξ4)2.5, t10 = (ξ3ξ4)2.5.

(2.43)

Let i′, j′, k′, l′ be either integer or half integer1. When the integrand is of

the form ξi
′

1 ξ
j′

2 ξ
k′
3 ξ

l′
4 , formula (2.19) still holds. But the definition of factorials for

half integers must be specified. Let i′ be a half integer and i = i′+ 1
2
. The factorial

of the half integers is defined as [81]:

i′! =

(
i− 1

2

)
! = Γ

(
i+

1

2

)
=
√
π

j=i−1∏
j=0

(
j +

1

2

)
, (2.44)

√
π appears in Eq. (2.44) because of Γ

(
1
2

)
=
√
π. There are two reasons

why these TFs are chosen. First, they are convenient to implement. Second, the

numerical values of the Laplacian at the boundary nodes are consistent with the

values obtained when using LBFs. The error of using the QBFs via this approach

1i′ is a half integer if and only if i′ − 1
2 is an integer.
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decreases linearly with h for unstructured meshes, and it is much smaller than that

obtained when using LBFs.

When QBFs are taken, one still needs to handle the near field correction for

the close point interactions. But in this case the problem is becoming even more

challenging. The integrals used for QBFs are put in the appendix.

The presented higher-order accurate approach for evaluating the exchange

field is verified via two examples, including a test case for the field itself and a

solution of a micromagnetic problem. The first example is to test the approach

by computing a given function with known Laplacian. Specifically, the following

function is chosen f = ex
2+y−2z2 , with ∇2f = (4x2 − 1 + 4z2)ex

2+y−2z2 . A cube

with a dimension of 1 × 1 × 1 is considered, with structured and unstructured

meshes of different density. For structured meshes both LBF and QBF approaches

yield error = O(h2). On the other hand for unstructured meshes, much higher

errors are obtained for LBFs and this error does not scale with h, indicating error

error = O(1). QBFs on the other hand lead to a low error, with error = O(h) for

unstructured mesh. Similar behavior is observed for many arbitrary structures and

functions using unstructured meshes. These results are shown in Fig. 2.15. Next,

the accuracy of the presented QBF approach is tested with a complete LLG solver,

which is a higher-order extension of the FastMag micromagnetic simulator. We

consider a rectangular domain, with a dimension of 100nm×10nm×10nm with the

following parameters HK = 0,MS = 5 × 105A/m, lex = 8nm, α = 0.2. The initial

state of the magnetization is m̂ = ẑ, an external field of Happ = (−x̂100− ẑ1000) A
m

is applied to the region 0 ≤ x ≤ 10nm to reverse the magnetization. The average

values of the x-component of the magnetization components 〈m〉x is compared for

structure and unstructured meshes with LBFs and QBFs. To demonstrate effects of

the exchange field the solutions were obtained without the magnetostatic field. The

unstructured mesh for QBFs (Mesh M1) has 331 vertices and 1339 tetrahedrons.

To make fair comparisons between LBFs and QBFs, each tetrahedron of M1 is

divided into 8 smaller tetrahedrons, by adding medians of edges of M1 to the

mesh. Then the unstructured mesh for the LBFs (Mesh M2) has 2145 vertices and

10712 tetrahedrons. We also show the results of LBFs with M1. From Fig. 2.16,



34

Figure 2.15: Root-Mean-Square (RMS) error in the numerical evaluation of
Laplacian operator using LBFs and QBFs, over structured and unstructured mesh-
es of different edge lengths.

clear discrepancies in the dynamic behavior are observed, which are due to the

differences in the exchange field.

2.7 Conclusion

This chapter has presented the algorithms in FastMag, a fast micromagnetic

simulator for solving the LLG equation. FastMag discretizes a general computa-

tional domain into tetrahedral elements. The differential operators are calculated

similar to conventional FEM method. The magnetostatic field is computed by

superposition principles in the computational domain parts. Efficient quadrature

rules and analytical integration for overlapping elements with a singular integral

kernel are used to discretize the superposition integral. The discretized integral-

s are computed using precorrected FFT with the computational complexity of

O(N ln(N)). The simulator is implemented on GPUs, which offer massive paral-
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Figure 2.16: Comparisons in the 〈m〉x for dynamic magnetization in a rod for
LBFs with M1 and M2 and for QBFs with M1.

lelization at a low cost, converting a simple desktop to a powerful machine matching

performance of a CPU cluster.
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Chapter 3

Jacobian vector product methods

The Landau-Lifshitz-Gilbert equation (LLGE) describes the temporal evo-

lution of the magnetization. It is posed as an initial value problem. Given an initial

state at time t = 0, one wants to see what the magnetization behaves in a later

time t = tout. Therefore, the time integration is an important topic for numer-

ical solution of LLGE. An efficient method is introduced that enables analytical

calculations of Jacobian vector products (JVPs) in the context of a Jacobian-free

Newton-Krylov (JFNK) framework [82, 83] for solving the nonlinear equations that

arise from the LLGE, which is nonlinear in nature. For example, to obtain the

steady state of a magnetic system, one has to solve an equation:

M×
[
Happ + l2exM +

HK

MS

(M · k̂)k̂ +∇∇ ·
˚

Ω

M(r′)

4π|r′ − r|
dr′
]

= 0. (3.1)

Such an equation is quadratic in terms of M. The discretization of Eq. (3.1)

gives rise to a large number of coupled equations, which are very challenging. The

general idea is to use Newton methods.

3.1 Newton methods

The Newton method was first developed for one-variable nonlinear equation

of the form f(x) = 0, x ∈ R, whose solution has no simple closed form. The

function f(x) is assumed to be smooth. Let x∗ be the “exact” solution. In an

iterative process, we starts from an initial guess x0, and suppose we have a solution

36
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xn. To get the next value xn+1, one approximates the derivative by using a first

order finite difference (FD):

f(xn+1) = f(xn) + f ′(xn)(xn+1 − xn) + higher order terms. (3.2)

It is expected that 0 ≈ |f(xn+1)| < |f(xn)|, and we simply omit the higher order

terms to obtain:

xn+1 = xn −
f(xn)

f ′(xn)
. (3.3)

The processed is iterated and it is terminated when |f(xn+1)| < ε, where ε is a pre-

scribed accuracy level. One of the key steps in the Newton methods is to calculate

the derivative of f(x), which is a scalar function for one-variable functions. The

Newton method is extendable to a multivariable system without major modifica-

tions. However, the concept of “derivative” must be modified. Consider a system

of N coupled nonlinear equations:

F(x) =


F1(x1, x2, . . . , xN)

F2(x1, x2, . . . , xN)
...

FN(x1, x2, . . . , xN)

 = 0, (3.4)

where F,x,0 ∈ RN . The first order “derivative” is a Jacobian matrix J:

J =


∂F1

∂x1

∂F1

∂x2
. . . ∂F1

∂xN
∂F2

∂x1

∂F2

∂x2
. . . ∂F2

∂xN
...

...
. . .

...
∂FN
∂x1

∂FN
∂x2

... ∂FN
∂xN

 . (3.5)

With J, the iteration format of this multi-variable system becomes:

xn+1 = xn − [J(xn)]−1F(xn), (3.6)

where [J(xn)]−1 is the inverse of J(xn). Let ∆xn = xn−xn+1, Eq. (3.6) is equivalent

to solve a linear equation:

J(xn)∆xn = F(xn). (3.7)

In this way, we have converted the original intractable nonlinear equations

into a series of linear system problems. Before solving Eq. (3.7), one must know
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how to represent the matrix J(xn). Evaluation of F(xn) requires an O(N) memory

space and anO(N logN) complexity. It is expected that J(x0) should cost no more.

Henceforth, one should not compute J(xn) elementwise since it would cost O(N2)

time if J(xn) is a dense matrix. If J(x0) is a sparse matrix with only O(N) nonzero

elements.

Here is a simple example. Let F1(x1, x2) = x1x2 +x2
2−0.1 = 0, F2(x1, x2) =

x2
1 + 3x2

2− 0.4 = 0, (x1, x2 > 0). The Jacobian is J =
(
x2 x1+2x2
2x1 6x2

)
. The exact solu-

tion is xexact = (x1, x2)T =
(

2+
√

5
5+
√

5
, 1

5+
√

5

)T
= (0.5854, 0.1382)T . Starting from the

initial guess x1 = 0.2, x2 = 0.3, the Newton method reaches x4 = (0.5859, 0.1380)T

in just a 4 iterations such that |x4−xexact|
|xexact| < 10−3.

3.2 Krylov methods

As is mentioned in the first chapter, it is hard to solve a large linear matrix

problem. Iterative methods are a common option. They are projection methods

for solving Ax = b using the Krylov subspace:

Km(A, b) = span(b,Ab,A2b, . . . ,Am−1b), (3.8)

where A ∈ RN×N is a matrix, x, b ∈ RN are column vectors. The Krylov-

based methods only need matrix-vector products in the iterations. Therefore, the

Krylov methods can be “free” from any matrices. Most widely used Krylov solver-

s include generalized minimal residual method (GMRES), Transpose-free quasi-

minimal residual(TFQMR), Biconjugate gradient stabilized (BiCGstab), etc. The

iterative solvers only requires a “black box” function, which takes an input col-

umn vector y, and outputs a column vector z. This function implements z = Ay
internally and implicitly.

GMRES approaches the exact solution of Ax = b by the vector xn that min-

imizes the Euclidean norm of the residual rn = Axn−b. The vectors b,Ab, . . . ,Abm−1

in Km(A, b) are almost linearly dependent. Consequently, they should not be tak-

en as basis vectors. Instead, an Arnoldi iteration is applied to orthogonalize the

vectors: q0, q1, . . . , qm−1. The GREMS solver then minimizes the residual errors

in the subspaces spanned by the orthogonalized vectors.
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3.3 Time integration for LLGE

The Landau-Lifshitz-Gilbert equation (LLGE) models dynamical magne-

tization phenomena in micro- and nano-meter scales. For its predictive power,

solutions of LLGE provide detailed (otherwise unavailable) information for the

analysis, design of a variety of magnetic devices such as magnetic write/read head-

s, bit patterned media, spin-transfer torque (STT) [84] magnetic random access

memories (MRAMs). For example, obtaining hysteresis loops of nanoparticles is a

simple application of LLGE. As a time domain (TD) partial differential equation

(PDE), the LLGE describes the dynamics of magnetization as a result of com-

peting forces between applied field, anisotropic field, demagnetization field and

exchange field. Unfortunately, due to the presence of the last two fields and its

high nonlinearity, LLGE cannot be solved analytically even for very simple geo-

metric structures such as cubes and spheres. Therefore, numerical methods are

unavoidably demanded. A set of arbitrary ODEs with N equations take a form

ẏ :=
dy

dt
= f(y, t). (3.9)

where y is a column vector, representing a set of N variables. f denotes N func-

tions. Eq. (3.9) is the most general form of a system of ODEs. For example, in

LLGE, y can be the magnetization vector.

After the Heff has been computed by applying the FEM, the LLGE is cast

into an ODE problem, provided by an initial condition. Numerical methods for

solving initial value problems (IVPs) typically fall into two classes: linear multistep

methods, or Runge-Kutta methods. The methods can also be divided as either

explicit or implicit. Explicit methods in the category of linear multistep methods

include Adams-Bashforth methods. For instance, we can have implicit linear mul-

tistep methods, and backward differentiation formulas (BDFs), and many types of

implicit Runge-Kutta methods. A rule of thumb states that stiff ODEs require

implicit methods, whereas non-stiff problems could be solved more efficiently with

explicit methods.

For simplicity, we use a linear sequence of time tn = t0 +nh, where t0 is the

starting time, h is the time step.
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3.3.1 Explicit methods

In the explicit methods, y is updated by its previous values, using only

RHS evaluations. For instance, the Euler method approximates the derivative by

a forward difference:

ẏ(t) ≈ y(t+ h)− y(t)

h
, (3.10)

which follows:

y(t+ h) ≈ y(t) + hf(y(t), t). (3.11)

Eq. (3.11) is usually applied recursively at the discrete time steps to yield:

yn+1 = yn + hf(yn, tn). (3.12)

It is seen that the explicit methods employ the previous information of y

to get its value at future steps. The cost in the addition and multiplication in

Eq. (3.12) is negligible, the dominant cost is the evaluation of RHS. However, this

approach becomes less stable when the problem is stiff.

3.3.2 Stiffness of ODEs

The term stiffness has been mentioned multiple times. But what is exactly

stiffness? There exists no simple or general definition. Roughly speaking, an

ODE is stiff if the solution being sought is varying slowly, but there are close

solutions that vary quickly. For simplicity, consider a linear constant coefficient

inhomogeneous system:

ẏ = Ay + e(t). (3.13)

where A ∈ RN×N , e(t) ∈ RN is an excitation vector. Let λi, 1 ≤ i ≤ N be the

eigenvalues of A. λi determines the eigen modes of the solutions in y. For a

physical problem, <(λi) ≤ 0, otherwise the system would be unstable. If |<(λi)|
is large, then the mode exp(λit) decays quickly. Otherwise, the decay is slow. A

stiffness ratio can be defined as:

SR =
|<(λ)|
|<(λ)|

, (3.14)



41

where |<(λ)| ≤ |<(λi)| ≤ |<(λ)|. The stiffness is related to the differences between

the eigen modes with the fastest and slowest decay.

The real problems, the matrix size is large and it has many eigenvalues. It

is inevitable to have a large stiffness. Especially, the Jacobian matrix from FEM

discretization of the LLGE is stiff.

3.3.3 Implicit methods

The presented analytic Jacobian vector product (AJVP) methods are geared

to avoid explicitly forming the fully-populated Jacobian matrices, thus achieving

a low memory cost. The AJVP method is based on the definition of a linear op-

erator L, which is a dense matrix. Employing L, the AJVP needs only a single

evaluation of the right-hand side and cross product operations with an O(N) or

O(N logN) (N is the degrees of freedom) complexity if fast algorithms (e.g. fast

Fourier transform, fast multipole method) are used to compute the magnetostatic

field. AJVP makes more accurate, reliable and faster evaluations of matrix vector

products in iterative linear solvers. The performance of the proposed AJVP was

demonstrated in our finite element-based micromagnetic simulator FastMag. Ex-

amples show that AJVPs used in backwards differentiation formulas provide much

larger time steps than do explicit methods. By using FastMag, numerical simu-

lations of recording head systems discretized into 4 million tetrahedral elements

verified the effectiveness of the AJVP methods.

Explicit methods in principle can handle stiff problem, at a very slow speed.

To overcome this problem, implicit methods should be adopted. A simple example

of implicit method is backward Euler method:

ẏ(t+ h) ≈ y(t+ h)− y(t)

h
, (3.15)

which has discrete the form:

yn+1 = yn + hf(yn+1, tn+1). (3.16)

Since yn+1 appears in both sides of Eq. (3.16), it has to be solved. Thus

solving a system of equations is a typical requirement for implicit methods.
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If f is a nonlinear function of y, then solutions to Eq. (3.16) become quite

complicated. It is at this point that the Newton methods should be used. The

first one to linearize the nonlinear problem. Eq. (3.16) can be linearized as:

[I− hJ(ymn+1)]︸ ︷︷ ︸
A

(ym+1
n+1 − ymn+1)︸ ︷︷ ︸

x

= −ymn+1 − hf(ymn+1, tn+1) + yn︸ ︷︷ ︸
b

. (3.17)

where ymn+1 is the known result in the m−th iteration for yn+1 in the nonlinear

iterations. The unknown is ym+1
n+1 , which requires the solutions to Eq. (3.17), which

is a linear equation. Let A = I − hJ(ymn+1), x = ym+1
n+1 − ymn+1, b = −ymn+1 −

hf(ymn+1, tn+1) + yn. Then the linear equation is Ax = b.

3.4 Jacobian free Newton Krylov

In a Krylov solver for Eq. (3.17), one needs to provide Jacobian vector

products (JVPs):

u = Av = v − hJ(ymn+1) · v, (3.18)

where u,v are column vectors. The näıve definition of JVP takes O(N2) opera-

tions, which is too prohibitive and as a result it is rarely used and an alternative

method is used instead:

u = lim
δ→0

f(y + δv, t)− f(y, t)

δ
, (3.19)

where δ is a real parameter. One can simply use a forward finite difference based

on formula (3.19):

u ≈ f(y + δv, t)− f(y, t)

δ
, (3.20)

alternatively, the central difference method can also be used:

u ≈ f(y + δv, t)− f(y − δv, t)
2δ

, (3.21)

where δ is a carefully chosen constant. It cannot be too large since it should ap-

proach zero; it cannot be too small either, otherwise the substraction in Eq. (3.20)

causes a very big error. There has been many papers [82] that discussed how to

choose δ to make the solution accurate and fast.
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In LLGE, y = m1, and f(y, t) = − 1
1+α2 [m×Heff + αm× (m×Heff)]. Heff

is a linear operator times m plus an applied field Happ, i.e.

Heff = Lm + Happ, (3.22)

where the linear operator L is

[L(m)] (r) = HK(k̂ ·m)k̂+MSl
2
ex∇2m+MS∇

˚
Ω

∇′ 1

4π|r− r′|
·m(r′)dr′. (3.23)

The function f(m, t) is nonlinear, but it is the product and summation of linear

operators. The linear operator L is an important abstraction of the effective field

in the computations, which plays a major role in the analytic approach. Any linear

operator has two fundamental properties:

L(u + v) = L(u) + L(v),

L(au) = aL(u),
(3.24)

where a is a real constant, u,v are arbitrary vectors.

3.4.1 JVP for the precessional torque

The precessional torque in the LLGE is:

Tp(m) := m× [L(m) + Happ] . (3.25)

According to Eq. (3.19), the corresponding JVP is

Jp(m) · v = lim
δ→0

(m + δv)× [L(m + δv) + Happ]−m× [L(m) + Happ]

δ
. (3.26)

The numerator of Eq. (3.26) is quadratic in terms of δ, is expanded:

(m + δv)× [L(m + δv) + Happ]−m× [L(m) + Happ]

=δ [v ×Heff(m) + m× Lv] + δ2v × Lv.
(3.27)

Inserting Eq. (3.27) into Eq. (3.26), one immediately has:

Jp(m) · v = v ×Heff(m) + m× Lv. (3.28)

1Here we do not use m̂ since in the time integration, the m cannot be kept as a unit vector.
Moreover, the results of this chapter are not dependent on whether it is unitary or not.
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Eq. (3.28) shows that the JVP depends on m, since the Jacobian matrix is not a

constant. This result is no surprising, since the precessional torque is intrinsically

a quadratic functional of m. The differentiation operation in the Jacobian matrix

reduces the power of m.

3.4.2 JVP for the damping torque

The damping torques in the LLGE reads:

Td(m) := m×m× [L(m) + Ha] . (3.29)

The corresponding JVP is

Jd(m) · v

= lim
δ→0

(m + δv)× (m + δv)× [L(u + δv) + Happ]−m×m× [L(m) + Happ]

δ
.

(3.30)

The numerator in Eq. (3.30) is expanded in terms of polynomials of δ:

(m + δv)× (m + δv)× [L(m + δv) + Happ]−m×m× [L(m) + Happ]

=δ [m× v ×Heff(m) + v ×m×Heff(m) + m× m̂× Lv] +

δ2 [v × v ×Heff(m) + m× v × Lv + v ×m× Lv] +

δ3v × v × Lv.

(3.31)

Inserting Eq. (3.31) into Eq. (3.30) gives the AJVP:

Jd(m) · v = m× v ×Heff(m̂) + v ×m×Heff(m̂) + m×m× Lv. (3.32)

There are three terms, this because the damping torque is a cubic functional of m.

Assume that we have known Jp, then Eq. (3.32) becomes:

Jd(m) · v = m× [Jp · v] + v ×m×Heff(m). (3.33)

The result Eq. (3.32) is quadratic in terms of m, since the Jacobian ma-

trix Jp is actually a quadratic form. To further reduce the computational cost,

Eq. (3.32) utilizes Jp(m) · v, which is already known. The JVP of the classical

LLGE thus has 5 terms in total.
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3.4.3 JVP for the STT

In the presence of an impressed current density j that passes through a

magnetic film, there is an induced spin-transfer torque (STT), which changes the

states of m̂, which are:

T1(m) = m× j · ∇m.

T2(m) = m× (m× j · ∇m) .
(3.34)

The JVPs for these two parts take the form:

JT1 · v = v × (j · ∇m) + m× (j · ∇v) .

JT2 · v = v × (m× j · ∇m) + m× (v × j · ∇m) + m× (m× j · ∇v) .
(3.35)

From Eq. (3.35), one has JT2 · v = m × (JT1 · v) + v × (m× j · ∇m). Similar to

the precessional and damping torques, these two torques are also quadratic and

cubic, respectively. The resulting JVP also contains 5 terms.

3.5 JVPs for differential algebraic equations

The LLGE has multiple forms. One of the popular forms is a differential

algebraic equation:

F(t,m, ṁ) = ṁ + m× [γHeff(m)− αṁ] = 0. (3.36)

In this implicit equation, F(t,m, ṁ) is still nonlinear in terms of m. But the

nonlinearity is only quadratic, which is simpler than the explicit form. Moreover,

this equation is linear in terms of ṁ. Here we need two kinds of AJVP:

Jm · v =
∂F

∂m
· v = v × (γHeff − αṁ) + m× L(v), (3.37)

Jṁ · v =
∂F

∂ṁ
· v = v −m× αv. (3.38)

These two formulas are used in IDA solvers. It was found that the IDA and the

CVODE solvers give rise to the same time stepping results. For this reason, the

IDA solver is not indispensable for the LLGE.
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Table 3.1: Information for the meshes

Mesh M1 M2 M3 M4 M5
Discretization 30 15 10 7.5 6
No. tets 2021 15490 50087 95747 188887
No. vertices 631 3678 10808 20112 38085
No. time steps(1) 4640 8133 11266 18488 23123
CPU time(1) 20 98 627 2459 9961
No. time steps(2) 2559 3675 5245 5139 4229
CPU time(2) 26 115 691 1038 2387

3.6 Examples

The proposed AJVP approach has been applied extensively in FastMag.

The correctness and efficiency of the AJVP was used in the simulation of com-

plex recording heads. In this section we present some simpler examples. A thin

magnetic film of dimensions 30nm × 300nm × 600nm is considered. We use five

sets of meshes, M1, M2, M3, M4 and M5. The corresponding discretization h

ranges from 30nm to 6nm. In this simulation, lex = 10nm,MS = 106 A
m

, there is

no anistropic or applied field. A damping constant α = 0.2 was assumed. The

simulations were terminated at tend = 10ns. We list the timings of three methods:

(1) explicit method, (2) implicit method with approximate Jacobian, and (3) im-

plicit method with JVP. The initial magnetization state is 1√
3
(1, 1, 1). Table 3.1

infers that the total CPU time of JVP is larger than total CPU time of explicit

(texp) method when N is smaller than 11 thousand. In these cases, h is larger

than lex, and the resulting ODEs are not stiff. The JVP does not derive benefits.

However, as h becomes smaller than lex, texp grows approximately quadratically

with N , however, JAP increases only linearly. Consequently, the JVP can signif-

icantly. Fig. 3.1 compares the average magnetization vector between the results

from two the explicit method and the JVP. There are no observable differences

between them. This validates the correctness of the proposed procedures.

We can see the timing results in Table 3.1. The explicit requires a fast

increasing number of time steps. On the other hand, the JVP method requires an

almost fixed number of time steps. Consequently, the total simulation is almost

linear with respect to the problem size.
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Figure 3.1: Comparison of the average mx in M5.

3.7 Conclusion

A new operator-based analytic method for computing JVPs encountered in

implicit time integration of LLGE was proposed. The linear operator L plays a

critical role in the implementation of AJVP. The AJVP is highly accurate because

it uses no approximation. Its accuracy is of the same level as that of the RHS

evaluations. The presented approaches are also cost-effective, without increasing

memory consumption or extra RHS evaluations. Numerical examples validate our

methods. Moreover, they are applicable for many other simulations.

The proposed methods can also be useful in preconditioning. For example,

we can discard the magnetostatic field in the AJVPs, and use them as a precon-

ditioner to the original dense system. We can also apply the AJVPs to nonlinear

differential equations (i.e. M ×Heff = 0) to solve for equilibrium states from the

LLGE. Further research includes providing an efficient preconditioning for solving

the linear equations associated with the Jacobian matrix. For instance, we could

formulate explicitly the Jacobian matrix for a small region of the mesh which is

densely discretized, and invert the blockwise Jacobians with brute forces such as
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Table 3.2: List of analytic formulas for JVPs

Name Function Jacobian-vector product
Precessional term m× (Lm + Happ) v× (Lm + Happ) + m×Lv
Damping term m× [m× (Lm + Happ)] v×[m×(Lm̂+Happ)]+m̂×

[v×(Lm+Happ)]+m×(m×
Lv)

Nnonadiabatic term m× j · ∇m v × j · ∇m + m× j · ∇v
The other term m× (m× j · ∇m) v ×m× j · ∇m̂ + m× v ×

j · ∇m + m×m× j · ∇v
Normalization m

|m|
v
|m| −

m·v
|m|3 m

Advection term m · ∇m v · ∇m + m · ∇v

Gaussian elimination. The stiffness of the whole problem may be greatly relieved

and higher speed-ups can be achieved. The commonly used functions in the LLGE

is listed in Table 3.2.



Chapter 4

New basis functions for surface

integral equations

Surface integral equations (SIEs) are a powerful tool for modeling a myriad

of electromagnetic related problems such as scattering, diffraction, reflection and

transmissions. The SIEs assume that electric and magnetic currents are present

on the surfaces [34, 85]. Traditional approach to solving SIEs models a surface by

discretizing it into a number of triangles.

In this chapter, we present a framework for solving surface integral equa-

tion on quadrilateral, triangular, and mixed quadrilateral-triangular meshes. A

quadrilateral basis function (QBF) is defined for each edge that separates two

quadrilaterals. The QBF seems to be impertinent to the triangular mesh. The

initial meshes are represented in terms of quadrilateral barycentric meshes (QBM-

s), which are obtained by partitioning each initial quadrilateral and triangle into

four and three barycentric quadrilaterals, respectively. After the barycentric re-

finement, each “small” edge is associated with a QBF (To distinguish it from the

original QBF, the QBF on the barycentric mesh is termed bQBF).

The bQBFs serve a dual role. First, they allow forming primary basis

functions (PBFs) [86], which are well suited for representing surface currents on

quadrilateral, triangular and mixed meshes. Second, the bQBFs are used to con-

struct dual basis function (DBFs), which are natural for using in conjunction with

Calderón multiplicative preconditioners (CMPs). These bQBFs, PBFs, and DBFs

49
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result in a substantial reduction in the number of nonzero elements in the sparse

projection matrices for PBFs and DBFs as well as reduction of unknowns and

quadrature points. When these PBFs and DBFs are used in CMPs, they reduce

the number of iterations and eliminate the dense mesh breakdown of the surface

electric field integral equation. Numerical examples demonstrate the efficiency of

using the introduced bQBFs with associated PBFs and DBFs for solving electro-

magnetic surface electric field integral equations on quadrilateral, triangular, and

mixed meshes.

4.1 Introduction to surface integral equations

Electromagnetic scattering is a universal phenomena. The reflection, trans-

mission, dispersion of lights are all special cases of scattering. The scattering

theory assumes that the total field (E,H) has two parts [87]. The first one is the

incident field (Einc,Hinc), which are generated by some sources at an angular fre-

quency of ω. A time convention exp (iωt)(i =
√
−1) is assumed and suppressed. If

the sources are far away from the scatterer, the incident field is a plane wave. The

corresponding wavenumber is k = 4π2c
ω

, where c is the speed of light. The second

part is the scattered one (Esc,Hsc), which is induced by the incident field inside

the scatterers. The relation is simply:

E = Einc + Esc,H = Hinc + Hsc. (4.1)

Surface integral equations (SIEs) are extensively used for analyzing electro-

magnetic radiation and scattering from perfect electric conducting (PEC) struc-

tures and homogeneous dielectric materials [88]. Two kinds of SIEs or their com-

binations are frequently used: electric field integral equation (EFIE) and magnetic

field integral equation (MFIE), which are obtained by enforcing boundary condi-

tions for tangential electric and magnetic fields, respectively.

Consider a surface Γ, which supports a surface electric current J, and a
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Figure 4.1: Scattering of electromagnetic field from a PEC surface. The scatterer
is PEC. There is an induced electric current J flowing on the surface of the PEC.

surface magnetic current M. The relationship is simply put:

A(r) =

‹
Γ

exp(−ik|r− r′|)
4π|r− r′|

J(r′)dr′,

F(r) =

‹
Γ

exp(−ik|r− r′|)
4π|r− r′|

M(r′)dr′.

(4.2)

The scattered fields generated by the potentials are written as

Esc =
i

k
(∇∇ ·+k2)A− η∇× F,

Hsc =
i

k
(∇∇ ·+k2)F +

1

η
∇×A.

(4.3)

4.1.1 EFIE and MFIE operators

Consider a PEC surface Γ, which supports a surface current distribution J

induced by an incident time harmonic electric field Einc [89]. The magnetic current

is absent, i.e. M = 0. The scattered and the incident fields are related through

T (J) = n̂× Esca/η = −n̂× Einc/η (4.4)

where η is the wave impedance and T is the EFIE operator which is split into its

singular and hypersingular parts: T = Ts + Th.

[Ts(J)](r) = ikn̂×
‹

Γ

exp (−ik|r− r′|)
4π|r− r′|

J(r′)dr′, (4.5)
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Table 4.1: Comparisons between T and K
EFIE T MFIE K
Easy to implement Difficult to implement
Discontinuous operator Compact/bounded operator
Applies to open structure Applies only to closed surface
Numerically more accurate Numerically less accurate

[Th(J)](r) =
i

k
n̂×∇

‹
Γ

exp (−ik|r− r′|)
4π|r− r′|

∇′S · J(r′)dr′. (4.6)

The same phenomena can be describe by enforcing the boundary conditions

for the magnetic field [90], yielding the MFIE:

J

2
−K(J) = n̂×Hinc, (4.7)

where the MFIE operator is:

[K(J)](r) = n̂×∇×
‹

Γ

exp(−ik|r− r′|)
4π|r− r′|

J(r′)dr′. (4.8)

T and K are the most commonly used integral operators in electromagnetics

[34, 85]. They have quite different characteristics although they are closely related

to each Computational Methods for Electromagneticsother. The properties of

these two operators are summarized in Table 4.1.

T is an ill-posed operator. While the singular values of Ts cluster around

the origin, that of Th gather at infinity. As a result, T has two branches of singular

values 1, one at zero and the other at infinity, and its condition number approaches

infinity when densely discretized. K is a compact operator for smooth geometries,

which means that its singular values are concentrated around zero. Consequently,

I
2
±K is well-conditioned and gives fast convergence in an iterative solver. Here I

is an identity operator on Γ.

Resonances happen when the operators have a nontrivial nullspace:

T (J) = 0,

(
I
2
−K

)
(J) = 0. (4.9)

1It is noteworthy to mention the differences between singular values and eigenvalues for an
operator T . There are no necessary relationships between the two, since the singular values of
T are the square root of eigenvalues of T †T , where T † is the conjugate transpose of T .
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where J is a nonzero function. Sometimes the resonance is physical, because

the fields are bouncing back and forth inside the closed structure. However, the

resonance is often fictitious. In this case, the solutions to either EFIE or MFIE are

not unique. To make sure that unique solution exists, the combined field integral

equation (CEIE) is used:

Cα(J) = αT (J) + (1− α)

(
I
2
−K

)
(J) = α

n̂× Einc

η
+ (1− α)n̂×Hinc. (4.10)

where α is a constant in the range of 0 < α < 1.

4.1.2 Calderón identities

Both EFIE and MFIE are mathematical abstractions of the electromag-

netic scattering phenomena. They can be solved separately or simultaneously.

There must some relationships between them, which are best characterized by the

Calderón identities [91, 92, 93, 94]:

T 2 −K2 = −I
4
, T K +KT = O. (4.11)

It has been suggested that T can be regularized into a second kind integral

operator as a direct consequence of the Calderón identities. Based on the fact

that K and K2 are compact operators, it follows from Eq. (4.11) that T 2 has

a bounded singular value spectrum clustered at −1
4

[95]. Consequently, T 2 has

better spectrum properties than T . However, the discretization of T 2 is more

complicated than that of T because there is no closed form for T 2. From the

identity ∇S · (n̂ × ∇φ) ≡ 0, where φ is an arbitrary scalar function defined on

Ω, it follows that square of Th always vanishes, i.e. T 2
h = O, which is necessary

for implementing CMP [95]. Any Calderón based preconditioner must satisfy this

property. Since T 2 = T 2
s +TsTh +ThTs, one may just drop the term T 2

h in numeric

solutions, but in this way the preconditioner is not multiplicative and it is very

complicated, suffered from low accuracy and speed issues.

This working mechanism of a preconditioner based on the Calderón identi-

ties is closely related to the properties of surface current and the v-BFs.
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4.2 Vector basis functions on surfaces

The representation of currents on a surface is important for calculating J

and/or M. To accommodate for numerical computations in numerical methods,

current can be modeled on the meshed elements, where basis functions (BFs) are

defined and are used to expand J and M.

Rao-Wilton-Glisson (RWG) [39] BFs on are among the most popular divergence-

conforming vector BFs for triangular meshes. In this section, we focus on defining

v-BFs on a quadrilateral mesh.

4.2.1 Parameterized quadrilaterals

The of RWG-BFs seem to be quite simple. However, the definition of v-BFs

on quadrilateral meshes is more involved. Early work already handled the case of

rooftop BFs on rectangular elements. However, QBFs on an arbitrary quadri-

lateral mesh were proposed much later. To describe such an element, we must

borrow the language of differential geometry. A quadrilateral is formed by four

non-overlapping vertices, which are not necessarily coplanar. Any quadrilateral

Figure 4.2: Via a bilinear transformation, a square is projected into a quadri-
lateral GBPM. t̂GB, t̂BP, t̂PM and t̂MG are unit vectors normal to the boundary
edges and perpendicular to n̂.
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can be viewed as a mapping from a parametric square to the physical space [21]:

r = N0(u, v)G +N1(u, v)B +N2(u, v)P +N3(u, v)M, (4.12)

where u, v ∈ [−1, 1], N0(u, v), N1(u, v), N2(u, v), N3(u, v) are s-BFs:

N0(u, v) =
(1− u)(1− v)

4
, N1(u, v) =

(1 + u)(1− v)

4
,

N2(u, v) =
(1 + u)(1 + v)

4
, N3(u, v) =

(1− u)(1 + v)

4
.

(4.13)

Two natural basis vectors tangential to the quadrilateral are [96]:

ru =
∂r

∂u
=

1

4
[(1− v)(B−G) + (1 + v)(P−M)] ,

rv =
∂r

∂v
=

1

4
[(1− u)(M−G) + (1 + u)(P−B)] .

(4.14)

Furthermore, we have ruu = ∂2r
∂u2

= 0, rv = ∂2r
∂v2

= 0, ruv = ∂2r
∂u∂v

= 1
4
(P+G−

B −M). If ruv = ∂2r
∂u∂v

6= 0, the quadrilateral has a negative curvature. A unit

vector normal to the surface is n̂ = ru× rv/|ru× rv|. The determinant of Jacobian

is det(j) = ru × rv · n̂ = |ru × rv|. An arbitrary vector function is applied on the

surface:

f(r) =
f1(u, v)ru + f2(u, v)rv

det(j)
, (4.15)

where f1(u, v), f2(u, v) are arbitrary differentiable functions. The surface diver-

gence of f(r) is

∇S · f(r) =
1

det(j)

(
∂f1

∂u
+
∂f2

∂v

)
. (4.16)

Consider a special vector field on this quadrilateral:

f(r) =
(1 + u)ru

det(j)
. (4.17)

As shown in Fig. 4.2, GBPM. t̂GB, t̂BP, t̂PM and t̂MG are outward pointing unit

vectors normal to the four edges and also to n̂. According to Eq. (4.14), on the

edge MG, u = −1 and f(u, v) = 0. On the edge GB, v = −1 and ru = (G−B)/2,

which indicates that f(u, v) · t̂GB = 0. Similarly, it is found f(u, v) · t̂PM = 0.

Finally, on the edge BP, u = 1 and rv = (P−B)/2. One has

f(u, v) · t̂BP =
2ru

det(j)
· 2rv × n̂

LBP

=
4

LBP

, (4.18)
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where LBP is the length of edge BP. It is therefore clear that f(u, v) has ze-

ro normal components on edges GB,BP, and MG, it has a constant normal

component on BP. In accordance to (4.16), the surface divergence of (4.17) is

∇S · f(u, v) = 1
det(j)

. It follows from (4.16) that the total charge on the surface is˜
Q
∇S · jdS =

˜
Q

1
det(j)

dS =
´ 1

−1
du
´ 1

−1
dv = 4. This result is totally independent

of the shape or size of the quadrilateral.

4.2.2 Quadrilateral basis function

The QBF described here is the 0th order BFs defined on quadrilaterals

in reference, it [25] is also a generalization of the rooftop BF on rectangles [87].

Similar to the RWG defined on two adjacent triangles, the QBF is supported over

a pair of adjacent quadrilaterals (Fig. 4.3). The first quadrilateral, Q1, is formed

by vertices G,B,P,M and the second quadrilateral, Q2, is formed by the vertices

B,H,N,P, The quadrilaterals are parameterized as

r =

{
N0(u1, v1)G +N1(u1, v1)B +N2(u1, v1)P +N3(u1, v1)M, r ∈ Q1,

N0(u2, v2)B +N1(u2, v2)H +N2(u2, v2)N +N3(u2, v2)P, r ∈ Q2,
(4.19)

where u1, u2 ∈ [−1, 1]. Similar to (4.14), on each quadrilateral, two natural tangen-

tial vectors are given by rui = ∂r
∂ui
, rvi = ∂r

∂vi
, a unit normal vector is n̂i = rui×rvi

|rui×rvi| ,

the determinant of the Jacobian is det(ji) = n̂i · rui × rvi [97]. A divergence con-

forming BF associated with BP is

bQBFBP (r) =

 (1 + u1) ru1
det(j1)

, r ∈ Q1,

(1− u2) ru2
det(j2)

, r ∈ Q2.
(4.20)

bQBFBP (r) represents a current starting from edge GM, crossing BP, and

terminating at HN. It effectively depicts a current perpendicular to BP. It is

parallel to edges GB, BH, NP and PM and has a constant normal component

on the edge BP equal to 4
LBP

. There is no fictitious line charge along any edge. As

indicated by (4.16), the surface divergence of bQBFBP (r) is

∇S · bQBFBP (r) =

 1
det(j1)

, r ∈ Q1,

−1
det(j2)

, r ∈ Q2.
(4.21)
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Figure 4.3: A QBF representing a current flow across edge BP. It has a postive
charge density on Q1 and negative charge density on Q2.

The quadrilateral Q1 has a positive charge density, and the total charge is

4. The quadrilateral Q2 has a negative charge density, and the total charge is −4,

making the charge conservation automatically enforced. Unlike RWG-BFs on tri-

angles, the charge density on a quadrilateral is generally not uniform, except when

it is a parallelogram. The charge density is inversely proportional to det(ji). How-

ever, Eq. (4.16) indicates that the charge is uniform in the parameter space (u, v),

which eases numerical integrations. It is further noted that the BF (4.20) has units

of inverse length. This definition is chosen to make the Gram matrix dimensionless

and well-conditioned for the CMP implemented in this chapter. Eq. (4.20) can also

be normalized to become dimensionless. The QBFs defined on QBMs serve here

as a building-block for constructing new sets of PBFs and DBFs as well as for

implementing a CMP for quadrilateral, triangular, and mixed meshes. The QBFs

can also be used to discretize the EFIE and MFIE for an all-quadrilateral mesh.

4.2.3 Matrix equation for SIEs

Once the surface is meshed and we have proper v-BFs. One can define two

column vectors I = [I1, I2, . . . , INE ]T ,V = [V1, V2, . . . , VNE ]T . I and V denote the
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vectors for the electric current and excitation, respectively. The unknown surface

current J(r) is expanded in terms of the v-BFs on a polygonal mesh:

J(r) ≈
n=NE∑
n=1

Infn(r). (4.22)

Here In is a complex-valued coefficient of the m-th v-BF. With these for-

mulas in hand, the impedance matrix Z can be written as

ZEFIEmn = i

¨
Sm

dr

¨
Sn

dr′
e−ik|r−r

′|

4π |r− r′|

[
kfm(r) · fn(r′)− ∇S · fm(r)∇′S · fn(r′)

k

]
.

(4.23)

The matrix ZEFIE is complex-valued and symmetric. The BF fn(r′) residing on a

pair of polygons P+
n , P

−
n is the source, and the TF fm(r) residing on another pair

of triangles P+
m , P

−
m is the receiver. Therefore, the BF and TF can be regarded

as transmitter and receiver antennas respectively. As a four-fold integral, ZEFIEmn

is difficult to evaluate. Our approach is to first calculate the vector and scalar

potentials, and then integrate the potentials using standard quadrature.

As to the MFIE, the discretized matrix equation becomes:

1

2

n=NE∑
n=1

Infn(r)− n̂×∇×
n=NE∑
n=1

In

‹
Γ

e−ik|r−r
′|

4π |r− r′|
fn(r′)dr′ ≈ n̂×Hinc. (4.24)

The next procedure is to test Eq. (4.24). The choice of test functions is not obvious

[98, 99]. Traditional approach used the Galerkin methods:

n=NE∑
n=1

〈
fm,

1

2
fn(r)− n̂×∇×

‹
Γ

e−ik|r−r
′|

4π |r− r′|
fn(r′)dr′

〉
In ≈

〈
fm, n̂×Hinc

〉
. (4.25)

The above equation has a matrix form:

ZMFIEI = H , (4.26)

where ZMFIE is an NE × NE matrix, H = [H1, H2, . . . , HNE ]T is the excitation

vector. In Eq. (4.25), unfortunately, the curl operator ∇× cannot be moved to

either the fm or fn. Therefore, one has to handle the hypersingular integrand

∇Gk(r, r
′). Although both EFIE and MFIE can be solved using the v-BFs, in

practice, it was found that the EFIE formulation gives rise to a much more accurate

solution than Eq. (4.26) [100, 98, 101].
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4.3 Necessity of dual basis functions

The electric and magnetic currents are quasi-orthogonal to each other on

surfaces. Therefore, two sets of BFs are needed for their representation, namely

primary basis functions (PBFs) and dual basis functions (DBFs). Combined appli-

cations of PBFs and DBFs can yield well-conditioned discretized matrix systems

and suppress fictitious resonances for homogeneous dielectric scattering problems

[102, 103, 104, 105]. DBFs are indispensable not only for dielectric but also for

PEC structures where only electric currents are present. For instance, the EFIE

operator T is known to give rise to ill-conditioned impedance matrices upon dis-

cretization. Based on Calderón identities [106, 107, 108], Calderón multiplicative

preconditioners (CMPs) [95, 109] were proposed to attack this problem, where

operator product T T is involved. DBFs are needed to properly implement the

CMPs. Moreover, the MFIE has poor accuracy if RWG is used as both expansion

function and testing function (TF). The accuracy can be greatly improved if DBFs

of RWG-BFs are used as TFs [110, 101, 111, 112]. To meet these requirements

[102], DBFs should (i) lead to no fictitious line charge, (ii) have the same number

as that of PBFs, (iii) be divergence-conforming and quasi-curl conforming, (iv) be

quasi-orthogonal to PBFs, (v) yield well-conditioned Gram matrix, (vi) and ensure

cancellation of the square of the hypersingular part of the EFIE operator.

4.4 Quadrilateral Barycentric Meshes

This section defines QBMs for quadrilateral, triangular and mixed meshes

and describes the parameterization of barycentric quadrilaterals. Then, it defines

bQBFs based on two adjacent quadrilaterals. These bQBFs are used for construct-

ing PBFs and DBFs.

We start by defining QBM for quadrilaterals, proceed with triangles, and

complete with mixed quadrilateral-triangle combinations. Consider a mesh consist-

ing of NQ convex quadrilaterals. Shown in Fig. 4.4 are two adjacent quadrilaterals

Q1(ABEF) and Q2(BCDE).

A QBM is constructed by partitioning each quadrilateral into four barycen-
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tric quadrilaterals, which is accomplished by connecting its centroid with its edges

midpoints. In Fig. 4.4, M = A+B+E+F
4

is the centroid of Q1,G,P,K,L are the

midpoints of edges AB,BE,EF, and FA. Similarly, N = B+C+D+E
4

is the centroid

of Q2,H, I,J,P are the midpoints of edges BC,CD,DE, and EB, respectivley.

Dividing Q1 yields four barycentric quadrilaterals α,β,γ, δ and Q2 also gives rise

to four barycentric quadrilaterals ε, ζ,η,θ. These barycentric quadrilaterals form

a QBM, and the total number of barycentric quadrilaterals is 4NQ. Now consider

a triangular mesh having NT triangles. Shown in Fig. 4(a) are two adjacent tri-

angles T1(ABD) and T2(BCD). The total number of bQBFs in a mixed mesh is

2NE + 3NT + 4NQ.

Dividing an original mesh into smaller quadrilaterals seems to increase the

complexity. However, the purpose is to develop new BFs that have superior prop-

erties for both EFIE and MFIE. With more v-BFs, one can combine the bQBFs

to get new PBF and their DBFs.

4.5 New Primal basis functions

This section introduces PBFs for quadrilateral, triangular, and mixed mesh-

es. Each PBF is associated with an edge separating two elements, and the PBF

denotes a current flow that is approximately perpendicular to the edge.

4.5.1 Quadrilateral meshes

Consider the two quadrilaterals in Fig. 4.4. A PBF is designated for edge

BE that separates the two quadrilaterals and is expressed as a linear combination

of six bQBFs:

fBE = c1(b1 + b2) + c2(b3 + b4 + b5 + b6), (4.27)

where b1 through b6 are bQBFs defined in Eq. (4.20) associated with the barycen-

tric edges 1 through 6 belonging to the two quadrilaterals in Fig. 4.4. The edges

LM,MP,PN,NI are not included since their directions are approximately per-

pendicular to the edge BE. The other edges such as AG,GB,BH,HC,CI, ID,

DJ,JE,EK,KF,FL,LA are not used. The coefficients for b1 and b2 must be
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Figure 4.4: A PBF associated with edge BE, resides on two adjacent initial
quadrilaterals Q1 and Q2. It is a linear combination of six bQBFs (b1 through b6)
denoted by red arrows.

equal because the two are symmetric. Similarly, the coefficients of b3, b4, b5, b6

must be identical. We simply let c1 = 1
2
. The remaining question is to determine

c2. The charge quadrilaterals α,β,γ, δ should be equal, i.e. c1 − c2 = c2. So one

has c2 = 1
4
. The expression is therefore:

fBE =
b1 + b2

2
+

b3 + b4 + b5 + b6

4
. (4.28)

The divergence of fBE is ∇S · fBE(r) = ±1
4 det(jx)

, where “+” is adopted for r ∈
θ, ε,η, ζ with x referring to any of the eight barycentric quadrilaterals.Each of

the barycentric quadrilaterals α,β,γ, δ contains a charge of value 1, and each of

the barycentric quadrilaterals r ∈ θ, ε,η, ζ has a charge of value −1. The PBF

denotes a current flow starting from edge AF, passing BE and terminating at CD.

It gives no fictitious line charge, therefore, it is suitable for representing surface

current densities on quadrilaterals. It is noted that for purely quadrilateral meshes,

if DBFs are not invoked, Eq. (4.27) could be substituted by BFs defined on initial

quadrilaterals. However, Eq. (4.27) is very useful when the impedance matrix for

the bQBFs is available.
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Figure 4.5: A PBF in a quadrilateral mesh. The color shows the magnitude of
the PBF. Red color denotes larger values and blue color indicates smaller values.

4.5.2 Triangular meshes

Here we define a BF that is very similar to RWG, yet it is slightly different.

fDB = c3(b1 + b2) + c4(b3 + b4 + b5 + b6), (4.29)

where b1 through b6 are bQBFs defined in Eq. (4.20) associated with the barycen-

tric edges 1 through 6 belonging to the two triangles in Fig. 4.6, and the red arrows

denote their directions. The edges IK,KJ are not used because they are perpen-

dicular to DB. The other edges such as AE,EB,BF,FC,CG,GD,DH,HA are

not included. The coefficients of b1 and b2 have to be equal due to symmetry. We

simply let c3 = 1
2
. The coefficients of b3,b4,b5,b6 are also identical. To determine

c4, we can enforce the condition that the quadrilaterals α,β have the same charge,

i.e. c3 − c4 = 2c4. So, c4 = 1
6
. The whole expression is then:

fDB =
b1 + b2

2
+

b3 + b4 + b5 + b6

6
. (4.30)

The divergence is ∇S · fDB(r) = ±1
3 det(jx)

, where “+” is adopted for r ∈ α, β, γ and

“−” is for r ∈ δ, ε, ζ with x referring to six barycentric quadrilaterals. The PBF

is divergence conforming. It has a constant normal component on DB and zero

normal components on the boundary edges AB, BC, CD, DA. Different from
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Figure 4.6: A PBF associated with BD, resides on two adjacent initial triangles
T1(ABD) and T2(BCD), which are divided into barycentric quadrilaterals. It is
a linear combination of six QBFs (b1 through b6) denoted by red arrows.

their counterparts on quadrilaterals, each barycentric quadrilateral on triangles

has charge 4
3

or −4
3
. Similar to PBFs on quadrilaterals 4.4, the total charge on

the triangle T1 and T2 is 4 and −4, respectively. The PBF Eq. (4.29) possesses

properties making it suitable to represent currents on triangulated surfaces.

It is very similar to a pRWG associated with edge DB. However, there are

also some differences. First, the RWG-BFs cannot be reconstructed by using the

QBFs in Fig. 4.6. This can be observed from the fact that the divergence of a

pRWG is a constant, but the divergence of the new PBF depends on the Jacobian,

which is not a constant even for barycentric quadrilaterals on equilateral triangles.
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Figure 4.7: A PBF in a triangular mesh.

Second, there are discontinuities in the new PBF within each triangle. However,

since the discontinuities only occur along tangential directions, fictitious line charge

is absent. We indeed verified that the errors of using our PBFs and RWG-BFs in

representing surface currents are very similar. We further note that the purpose of

the new PBFs on triangles is not to replace the RWG-BFs but to enable efficient

handling of mixed meshes and to facilitate implementation of CMP techniques for

such meshes.

4.5.3 Mixed meshes

Combining the definitions of PBFs for pure quadrilaterals and triangles

leads to the definition of PBFs on mixed meshes. This is possible because in

either quadrilateral or triangular elements the normal component has a constant

value on the shared boundary edge. The definition of PBFs from bQBFs can be

accomplished by using an Nb × NE sparse projection matrix P1, which has six

nonzero elements in each column. The expression for the edge BD reads:

fBD =
b1 + b2

2
+

b3 + b4

4
+

b5 + b6

6
(4.31)

where b1 through b6 are bQBFs defined in Eq. (4.20) associated with the barycen-

tric edges 1 through 6 belonging to the two triangles in Fig. 4.9.
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Figure 4.8: A PBF in a mixed mesh. The quadrilateral is ABDE, the triangle
is BCD. The quadrilateral is divided into four smaller quadrilaterals.

We have discussed the how to construct PBFs using the barycentric mesh

resulting from dividing a polygon into multiple quadrilaterals. The bQBFs give

rise to a larger degree of freedom. The benefits are not clear until the DBFs are

invoked.

4.6 Dual basis functions

Dual basis functions (DBFs) are discussed in this section. There are three

types of DBFs, which are shown below.

4.6.1 Definition of DBFs

In defining DBFs, we do not need to distinguish whether the initial mesh

comprises triangular, quadrilateral, or mixed elements because in every scenario

the barycentric mesh contains only barycentric quadrilaterals. Henceforth, the

DBFs can be defined uniformly for all situations. The DBF for a quadrilateral

mesh is shown in Fig. 4.10. The DBT are supported by two polygons. The first

polygon is ONABCDEFGH, the second is OHIJKLMN, they are separated by

two edges NO and HO, which are indicated by dashed lines. In this case Ni1 = 5,

Ni2 = 4.
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Figure 4.9: A PBF in a mixed mesh. The PBF resides on a quadrilateral patch
and a triangle.

Consider the i-th internal edge O1O2. O1 is the left vertex and O2 is

the right vertex. The numbers of initial elements around the two vertices are

Ni1 and Ni2, respectively. The reference PBF fO1O2(r) is perpendicular to the

edge O1O2, the DBF should be orthogonal to it; therefore, we need to form a

vector function that is parallel to O1O2. To satisfy this condition, the bQBFs

f bQBFOO1
, f bQBFOO2

must be discarded, and f bQBFOH and f bQBFON should be included. All

other edges indicated by the blue thick lines are not contained. The DBF is exactly

the aforementioned PBF defined on the two polygons. The bQBFs are numbered

in Fig. 4.11, and oriented counterclockwisely. The DBF can be partitioned into

two parts, i.e. Fi = Fleft
i + Fright

i .

Fleft = b0+ +

k=Ni1−1∑
k=1

(
1− 2k

Ni1

)
bk,

Fright = −b0− −
k=−1∑

k=−(Ni2−1)

(
1 +

2k

Ni2

)
bk.

(4.32)

The coefficients are chosen by enforcing the total charge inside each barycentric

quadrilateral to be a constant, while maintaining a symmetry. If Ni1 or Ni2 is an

even number, there is a coefficient whose value is 0. Fig. 4.11 shows a DBF on a
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Figure 4.10: Two polygons on a quadrilateral mesh. The black thin lines form
the original quadrilateral mesh. The referenced edge is O1O2. The thick blue lines
form two polygons.

quadrilateral mesh, it can be written as

FDBF
Quad = b0+ +

3

5
b1 +

1

5
b2 −

1

5
b3 −

3

5
b4 − b0− −

1

2
b−1 −

0

4
b−2 +

1

2
b−3. (4.33)

Eq. (4.33) is a DBF that satisfies all the conditions. The vector plot of this DBF

is also shown in Fig. 4.11.

The DBF on a triangular mesh is not very different from that on a quadri-

lateral mesh. The triangles in Fig. 4.12 has eight triangles in the left polygon

(Ni1 = 8), and seven triangles in the right polygon (Ni1 = 7). The left polygon is

formed by vertices O0ABCDEFGHIJKLMNO, its center is O1. The right poly-

gon is centered at O2, formed by vertices O0OPQRSTUVWXYZA. The two

polygons are separated by edges O0A and O0O. The DBF follows the expression
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Figure 4.11: A DBF on a quadrilateral mesh. The DBF is approximated parallel
to the referenced edge O1O2 (This edge has been shown in Fig. 4.10). This DBF
is the summation of eight bQBFs. The coefficient of the bQBF numbered −2 is
zero.

Eq. (4.33), and it is written as:

FDBF
Tri = b0+ +

3

4
b1 +

1

2
b2 +

1

4
b3 +

0

8
b4 −

1

4
b5 −

1

2
b6 −

3

4
b7

−b0− −
5

7
b−1 −

3

7
b−2 −

1

7
b−3 −

1

7
b−4 +

3

7
b−5 +

5

7
b−6.

(4.34)

This DBF has 15 bQBFs, but one of them has a zero coefficient. The

coefficients ensures that each quadrilateral in the right polygon has equal positive

charge, and that in the left polygon has equal negative charge. This DBF is

very interesting in the sense that, although the original mesh is triangular, but

the ingredient of this DBF is not RWG-BFs but the bQBF. The RWG-BFs can

form the DBF, but the number of RWG-BFs is 30, which is more complex and

difficult to implement. On the other hand, the quadrilateral can be divided into

eight triangles, where RWG-BFs can be used to define the DBFs. But this way

makes the implementation much more complex, and loses the good properties of

the QBFs. The same procedure applies to a mixed mesh, shown in Fig. 4.14. The

left polygon is formed by vertices O0ABCDEFGHI, its center is O1. The right

polygon is formed by vertices O0IJKLMNA, its center is O2. The two polygons
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Figure 4.12: Two polygons on a triangular mesh. The triangles are denoted by
solid black thin lines. The referenced edge is O1O2. The polygons formed by
dividing each triangle into three quadrilaterals are indicated by blue thick lines.

are separated by edges O0A and O0I. In the following case, the DBF reads:

FDBF
Mixed = b0+ +

3

5
b1 +

1

5
b2 −

1

5
b3 −

3

5
b4 − b0− −

2

4
b−1 −

0

4
b−2 +

2

4
b−3. (4.35)

The subdivided quadrilaterals that form a polygon are not necessarily copla-

nar. In the really cases, almost no polygon is planar for the curved surfaces.

4.6.2 Discussions on DBFs

We have seen that the idea of DBF relies on the polygons. The original

elements (e.g. triangles and quadrilaterals) have no overlaps. Similarly, the poly-

gons, formed by barycentrically dividing the original mesh, have no collisions. We

can see the combination of the polygons is identical to the collection of the original
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Figure 4.13: A DBF on a triangular mesh. The vector plots shows the direction
and magnitude of the DBF, which is parallel to the referenced edge.

triangles and quadrilaterals: ∪n=NT
n=1 Tn ∪

n=NQ
n=1 Qn = ∪n=V

n=1 Pn. The number of edges

in the polygonal mesh2 is the same as that in the original mesh.

Each internal edge is assigned a PBF and a DBF. While the PBF is ap-

proximately perpendicular to reference edge, the DBF denotes a current flow quasi-

parallel to it. The support of a DBF is divided into two polygons separated by the

two barycentric edges 0+ and 0−. The left polygon contains only negative charge

and the right one has positive charge. The total charges in the left and right poly-

gons are −8 and 8 respectively. Each barycentric quadrilateral in the left polygon

has charge − 8
Ni1

and that in the right polygon has 8
Ni2

. Each RWG or new PBF

straddles two adjacent initial elements. In contrast, each of the new introduced

DBF is supported by two polygons formed by barycentric triangles or quadrilat-

erals, respectively. On a large smooth surface, if meshed into triangles, most of

the vertices have six surrounding triangles. On the other hand, if meshed into

quadrilaterals, each vertex has about four vertices. Therefore, roughly speaking,

the duals of triangles are hexagons, and the duals of quadrilaterals are still quadri-

laterals. In particular, for a planar mesh consisting of identical parallelograms,

the polygons for DBFs are still parallelograms of the same shape. As an exam-

2The number of edges in a polygon is defined as the number of elements that the polygon
resides on. This definition seems slightly strange. For instance, the left polygon in Fig. 4.10
seems to have 10 edges, but in our definition, it has only 5 edges, because the edges such as OH
and ON occur simultaneously.
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Figure 4.14: Two polygons on a mixed mesh. The original triangles and quadri-
laterals are denoted by black thin lines. The polygons formed by dividing each
triangle into three quadrilaterals are indicated by blue thick lines.

ple, the DBF of a rooftop BF is still rooftop. The introduced DBFs for triangles

are built on the same polygons as BCBFs. However, BCBFs require polygons to

be partitioned into barycentric triangles, and the new DBFs need polygons to be

divided into barycentric quadrilaterals. This is ascribed to the introduced QBMs

and QBBFs. The introduced DBFs on triangular meshes can be used as duals

not only for the PBFs (29), but also for RWG-BFs. Applying Eulers polyhedral

formula for a simply connected closed surface, one has NV +NT +NQ −NE = 2,

where NT and NQ are the numbers of triangles and quadrilaterals, respectively.

Pure triangular or quadrilateral meshes can be regarded as special cases of mixed

meshes by letting NQ = 0 or NT = 0. According to the Loop-Star decomposition

definitions [113, 114, 108], the total number of independent loop (solenoidal) BF-

s comprised of PBFs is NV − 1, and the total number of independent loop BFs

composed of DBFs is NT +NQ−1. Therefore we have (5.9) automatically enforced.

Consider a closed surface of area S. Suppose the surface is meshed into
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Figure 4.15: A DBF on a mixed mesh. The left polygon is residing on three
triangles and two quadrilaterals, the right polygon is defined over one triangle and
three quadrilaterals.

triangles only, with an average mesh size of δ, leading to NE ≈ 2
√

3S
δ2

, Nb ≈ 12
√

3S
δ2

.

For the same structure discretized into an all-quadrilateral mesh, one has NE ≈ 2S
δ2

,

Nb ≈ 8
√

3S
δ2

. On a typical quadrilateral mesh, each vertex is surrounded by 4 quadri-

laterals and, accordingly, most of the DBFs contain only 6 QBBFs. On the other

hand a typical BCBF consists of 24 bRWG-BFs. Therefore, using quadrilateral

meshes results in a substantially reduced number of PBFs, DBFs, and barycentric

BFs.

Each initial triangle, if divided into three barycentric quadrilaterals, needs

at least three equally weighted quadrature points; whereas if partitioned into six

barycentric triangles, it requires at least six quadrature points. The reduction in

the number of quadrature nodes reduces the computational cost of CMPs.

Overlapped RWG and BCBFs on triangles cannot achieve exact orthogo-

nality, even for equilateral triangles. However, rectangles as special quadrilaterals

yield the exact orthogonality, and for large smooth surface most of the quadrilat-

erals can have a nearly perfect rectangular shape.
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4.7 Helmholtz decompositions of vector field on

a surface

Suppose j is a tangential vector field on a closed and simply connected

smooth surface Γ, j may have three components:

j = jS + jI + jH , (4.36)

where jS (∇S ·jS = 0,∇S×jS 6= 0) is the solenoidal part, jI (∇S ·jI 6= 0,∇S×jI = 0)

is the irrotational part, and jH (∇S · jH = 0,∇S × jH = 0) is the harmonic com-

ponent. Eq. (4.36) is very similar to the Helmholtz decomposition for volumetric

vector fields. But there are also appreciable differences. For instance, the curl

operator in three dimensional space is a vector operator intrinsically since the re-

sulting vector can point to any direction. The surface unit normal vector is n̂.

The surface curl ∇S× only points in n̂ direction. So ∇S× is essentially a scalar

operator. It can be verified:

∇S · (n̂× jS) = n̂ · ∇S × jS,∇S × (n̂× jS) = 0,

∇S · (n̂× jI) = 0,∇S × (n̂× jI) = (∇S · jI)n̂,
(4.37)

From Eq. (4.37), it follows that jS and jI are completely dual to each other. They

can be converted by rotating 90 degrees through the n̂× operation. The Helmholtz

decomposition is important, since in the EFIEs, the surface charge density is relat-

ed to the divergence of the current, i.e. ∇S ·j = iωρS. Since ∇S ·j = ∇S ·jI , the two

components jS and jH have no contribution to the surface charge. On a planar sur-

face, f1 = x̂x+ŷy is an irrotational part, since∇S ·f1(r) = 2,∇S×f1(r) = 0. On the

other hand, f2 = −x̂y+ŷx is a solenoidal part, since ∇S ·f2(r) = 0,∇S×f2(r) = 2ẑ.

The curl of an RWG-BF is always zero. But the curl of an QBF is zero only if it

is a parallelogram.

Consider a mixed triangular and quadrilateral mesh with E edges, F faces

and V vertices [115, 116, 117]. If the number of genera is g, the number of inde-

pendent harmonic fields is 2g. The number of PBFs or DBFs is E. To represent

JI , JS and JH , the v-BFs are combined to form star BFs (SBFs), Local Loop BFs

(LLBFs) and Global Loop BFs (GLBFs). There are F−1 SBFs, V −1 LLBFs, and
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2g GLBFs, corresponding to jI , jS, and jH , respectively. Each SBF is associated

Figure 4.16: Vector plot of the SBF associated with a triangle, fSBF =∑i=3
i=1 fRWG

i . The color denotes the magnitudes of the vector fields.

Figure 4.17: Vector plot of the SBF associated with a quadrilateral, fSBF =∑i=4
i=1 bQBFi . The color denotes the magnitudes of the vector fields.

with a patch (i.e. a triangle or a quadrilateral), and has three or four v-BFs. The

physical meaning of an SBF is a radial current flowing out of the referenced patch

[118, 115]. An integer matrix S ∈ NE×(F−1) is used to map the BFs onto the SBFs.

Each column of S has only three or four nonzero elements whose values can be only

±1. Moreover, let DS = STS, it is the graph Laplacian. DS is a high sparse, positive
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definite, and ill-conditioned matrix. Its off-diagonal nonzero elements are −1. Its

diagonal elements are positive integers. If the ith patch is a triangle, (DS)ii = 3.

Otherwise if it is a quadrilateral, (DS)ii = 4. As a diagonal dominant matrix. DS

is positive definite, and its condition number scales O(1/h2), where h is the mesh

size. Although DS has bad conditioning for large problems, an iterative solution

of a linear equation DSx = b (x, b ∈ C(F−1)×1) takes only an O(E) cost by using

efficient multigrid preconditioners.

Figure 4.18: Vector plot of the LLBF associated with a quadrilateral. The color
denotes the magnitudes of the vector fields.

Each LLBF is associated a vertex. It represents a current flowing around

a vertex. Define an integer matrix L ∈ NE×(V−1) that projects the BFs onto the

LLBFs. Similar to S, L is very sparse and its nonzero elements can be only 1 or

−1. The rank of L is V − 1. It can be verified that LTS = O, indicating that

each SBF is completely independent of any LLBF. Furthermore, let DL = DT
LL,

it is the Laplacian of the dual graph, which has similar properties as DS. If the

ith vertex has Vi triangular or quadrilateral elements around it, then (DL)ii = Vi.

The RWG-BFs could be equally represented by the SBFs and LLBFs if there is no

GLBF.

The DBFs can also form the SBFs or LLBFs. A SBF is formed by a several

DBFs that share a common vertex. So the number of SBFs is V − 1. It denotes a

current flowing out of the vertex. The DBFs also adopts a loop-star decomposition.

The Star DBF is represented by a sparse matrix, and the number of independent
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Figure 4.19: A SBF formed by five DBFs. The star BF represents a radial
shaped current flowing out of the central polygon. This SBF is the summation of
five DBFs that share the central polygon.

Star DBF is V − 1. The Star DBFs yield a graph Laplacian. It is the same as

DL. In this sense, the SBF formed by the DBFs is dual to the LLBF of the PBFs.

Around each triangle or quadrilateral there is a LLBF. The number of independent

LLBFs formed by DBFs is F−1. The Local loop DBF is also indicated by a sparse

matrix. The corresponding graph Laplacian is DL.

The LLBF formed by the DBFs is dual or “orthogonal” to the SBFs con-

structed by the PBFs. The DBFs and the PBFs mutually complement each other’s

ability to expand electric or magnetic currents. These BFs seem to be quite com-
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Figure 4.20: A loop BF formed by four DBFs. The loop BF depicts a circulating
current flowing around the central quadrilateral. The divergence of the DBF is
zero.

plex. But they are useful in accelerating the integral equations and improving the

accuracy.

4.8 Global loop basis functions

The GLBF is not obvious, it does not exist on a plane or a sphere sur-

face. But it can exist on a torus. A torus can be seen as a circular tube,

whose cross section is a circle of radius r. The torus is parameterized as r =

x̂(R + r cosu) cos v + ŷ(R + r cosu) sin v + ẑr sinu, where R is the distance from

the center of the torus to the center of the tube, 0 ≤ u ≤ 2π, 0 ≤ v ≤ π. T-

wo natural vectors are ru = ∂r
∂u

= −x̂r sinu cos v − ŷr sinu sin v + ẑr cosu and
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rv = ∂r
∂v

= −x̂(R + r cosu) sin v + ŷ(R + r cosu) cos v. The determinant of the

Jacobian is det(j) = |ru× rv| = r(R+ r cosu). A unit vector normal to the surface

is n̂ = x̂ cosu cos v+ŷ cosu sin v+ẑ sinu. Let b1 = ru
det(j)

,b2 = r
R+r cosu

rv
det(j)

. These

two vector functions are harmonic field, i.e. ∇S ·(c1b1 +c2b2) = 0,∇S · [n̂×(c1b1 +

c2b2)] = 0, where c1 and c2 are arbitrary constants. Moreover, b1 ·b2 = 0. On the

torus, there can be only two independent harmonic fields, all others are a linear

combination of ru and rv.

We have observed that, SBF and LLBF are associated with a vertex or a

patch. One intriguing question is whether a GLBF is related to some geometric

element of a mesh. Before answering this question, we first classify two kinds of

circles on a surface. A circle on a surface mesh is a set of consecutive edges that

form a closed loop. Here we consider only simple circles. A circle is simple in the

sense that it does not intersect with itself. A simple circle on the mesh can be

viewed as a set of N consecutive of edges. A circle C can be expressed as a column

vector c of length E, each of c’s element can be only 0, or ±1.

4.8.1 Contractible Circles

If c is a contractible circle, it holds

LTc = 0. (4.38)

As shown in Fig. 4.21, the green edges numbered 1, 2, 3, 4, 5 form a contractible

circle. These edges are oriented such that they point outwards. The edges indicated

by dashed arrows together with edges 4, 5 constitute an LLBF. The overlapping

between the circle and the LLBF includes edges 4, 5. In the contractible circle,

the coefficients of these two edges are both 1, but in the LLBF, the coefficient

of edge 4 is 1, and that of edge 5 is −1. Consequently, the coefficient vector

for this LLBF is orthogonal to that for the contractible circle. Eq. (4.38) is an

orthogonality relationship, which can be verified easily. One can assert that circles

are independent of the LLBFs. On the other hand,

STc 6= 0. (4.39)
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Figure 4.21: The Green lines numbered 1, 2, 3, 4, 5 form a contractible circle. The
dashed edge are used in an LLBF.

Eq. (4.39) dictates that the circle c may not be independent of SBFs. To see

that if C is contractible, c is a linear combination of column vectors of S, we

observe that if all the SBFs associated with elements inside c have a coefficient

1, then the coefficients of the edges inside c vanishes, and only the boundary

edges survive. Alternatively, we can let the coefficients of all SBFs associated with

elements outside c to be 1, we get the same result.

4.8.2 Non-Contractible Circles

If C is a non-contractible circle, it cannot divide a surface into two discon-

nected parts, and it cannot be a linear combination of SBFs or LLBFs. Indeed, the

non-contractible circles contain new information other than the SBFs. This can be

proved by contradiction. If C is formed by NC edges, c has NC nonzero elements,

assume that it is expressible as a sum of columns of matrix S, i.e. c = Sa, where

a ∈ R(F−1)×1 is a nonzero column vector. Since all the other edges have a zero coef-
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Figure 4.22: Contractible and Non-contractible circles. The Green line denotes
a contractible circle, the red line indicates a non-contractible circle.

ficient, as a result, the SBFs on two sides of C have identical coefficients. Moreover,

since all elements are connected, it follows that all SBFs in the mesh have identical

coefficients, which can be 1. However, if this is true, the edges representing the

non-contractible circles should also have zero coefficients, i.e. c is a zero vector,

which is in a contradiction to our assumption. Therefore, c is not in the column

span of S. There are many kinds of non-contractible loops on a torus. For instance,

Figure 4.23: Non-contractible circles on the surface of a 3-torus. The red circles
are used for poloidal GLBFs and the yellows are for toroidal GLBFs.

r(t) = x̂(R+ r cos(mt)) cos(nt)+ ŷ(R+ r cos(mt)) sin(nt)+ ẑr sin(mt), 0 ≤ t < 2π,

where m,n are integers.

Ideal GLBFs are both (i) divergence-free and (ii) curl-free. In practice,

when a vector field is represented by the curl-conforming v-BFs, they can strictly

satisfy (i) but not (ii). Let fGLBF denote a GLBF. It is a summation of the v-

BFs, i.e. fGLBF (r) =
∑n=NE

n=1 gnbn(r). Here g = [g1, g2, . . . , gNE ]T is a real-valued
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column vector containing the coefficients of the v-BFs that form a GLBF. It has

two fundamental properties:

STg = 0,LTg = 0, (4.40)

Then g is in the nullspace of P:

P = S(STS)−1ST + L(LTL)−1LT . (4.41)

Eq. (4.41) points out one way to calculate g, but the matrix inversions are not

possible because of there prohibitively high cost O(N3). We have noticed that

the non-contractible circles has new information that is not contained by S or L.

Therefore, it is instrumental in determining the GLBFs. Here P is a dense and

real-valued matrix. It is quite different from the matrices S and L, which are are

sparse and integer valued.

4.8.3 Algorithm

There are 2g independent non-contractible circles, which are denoted by an

integer matrix K ∈ NE×2g. The nonzeros of K are only ±1. The equation that

determines a GLBF is: 
LT

ST

KT

 g =


0L

0S

eK

 , (4.42)

where 0L and 0S are zero column vectors of length V − 1 and F − 1, eK is a

column vector of length 2g with only 1 nonzero element. Let g = [L,S,K]x.

Here x = [xTL ,x
T
S ,x

T
K]. xL,xS,xK are column vectors of length V − 1, P − 1, 2g,

respectively. it follows 
LTL O O
O STS STK
O KTS KTK

x =


0L

0S

eK

 . (4.43)

In Eq. (4.43), the off-diagonal blocks in the first row and column are zero, and the

first block in the RHS is also zero. As a result, xL = 0. It can be removed from
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the equation to get Eq. (4.44), which also indicates that the GLBFs only depends

on the SBFs and the non-contractible circles.(
STS STK
KTS KTK

)(
xS

xK

)(
0S

eK

)
. (4.44)

Let G = KTK − KTS (DS)
−1 STK. Eq. (4.44) can be solved and the results are

xK = G−1eK, xS = − (DS)
−1 STK · xK. Finally, one has

g = S · xS + K · xK. (4.45)

The matrix G is a 2g×2g matrix. When the number of genera is small, this

matrix can be directly computed by 2g times solving graph Laplacian equations.

Since the cost of each Laplacian equation is on the order of O(NE), as a result,

the total complexity of the solution is O(g2NE). Furthermore, this matrix can be

stored in O(g2) and inverted with an O(g3) complexity. In the cases where g � E,

the overall complexity is O(g2E).

4.8.4 Some examples of GLBFs on torus

Fig. 4.24 shows a square torus with a single genus. The torus is discretized

by 32 vertices, 32 square quadrilaterals, and 64 quadrilateral BFs. In this case,

there are two GLBFs present. The first GLBF models a current mode that flows

perpendicularly to the axis of the torus. The second GLBF represents a current

that is approximately parallel to the axis.

There are 6 independent GLBFs on the triple torus shown in Fig. 4.25.

There are 64 vertices, 68 square quadrilaterals and 136 quadrilateral BFs. For

convenience, only two of them are shown. It is clearly seen from Fig. 4.25 that the

toroidal GLBF is related to one of the genera of the torus.

4.9 Conclusion

A framework for solving surface integral equation on quadrilateral, triangu-

lar, and mixed quadrilateral-triangular meshes was presented. The key presented
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Figure 4.24: GLBFs on a square torus.

ideas are listed next: (i) The initial mesh was partitioned into a QBM, which was

obtained from the initial triangles or quadrilaterals by partitioning a triangle into

three quadrilaterals or a quadrilateral into four quadrilaterals, (ii) bQBFs residing

on QBMs were defined and they served as a building block in constructing a set

of PBF and DBFs, (iii) PBFs were constructed as a linear combination of bQBFs,

which are well suited for representing surface currents on quadrilaterals, triangu-

lar, and mixed meshes as well as more generally-shaped polygons, (iv) DBFs were

defined using bQBFs, which are suitable for CMPs on different mesh types, (v)

based on the introduced PBFs and DBFs, CMPs were constructed, which allow

eliminating the dense-mesh breakdown of EFIE for different mesh types.

The seamless handling of the mixed meshes was allowed by the construc-

tion of QBMs. bQBFs rendered a redefinition of divergence-conforming vector

basis function on quadrilaterals as a linear combination of bQBFs. For triangular

meshes, bQBFs led to PBFs similar to RWG-BFs. The QBMs and bQBFs allowed

merging quadrilaterals and triangles in terms of PBF construction. Moreover,

the quadrilateral-partitioning approach can be naturally extended to more general

polygons, allowing for a seamless handling of arbitrary polygonal meshes.

Based on QBMs and bQBFs, a general definition of DBFs was given for

quadrilateral meshes and the same approach was extended to triangular and mixed
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Figure 4.25: GLBFs on a square triple torus.

meshes, without any modification. The introduced DBFs have a number of im-

portant properties, which were used for constructing CMPs on various types of

meshes. The DBFs are defined on the secondary mesh formed by polygons per

each initial mesh node [119, 120]. In this view, the DBFs can be seen as ordinary

BFs but defined on a dual mesh. Historically, the idea of using subdivided triangles

to generate a dual mesh dates back to 1967 [119]. Moreover, barycentric triangles

also pervade in computer visualization of vector fields or interpolation methods on

surfaces.

Importantly, the presented PBFs, DBFs, and CMP resulted in a substan-

tially reduced number of unknowns, memory storage for sparse matrices, and

quadrature points, which can be translated into an increased speed and reduced

memory requirements. Numerical examples were shown verifying the effectiveness

of the proposed PBFs and DBFs. The presented framework can be used for solving

EFIE and other types of surface integral equations on complex structures meshed

into elements of different types.



Chapter 5

Applications of quadrilateral basis

functions

This chapter is devoted the applications of the proposed v-BFs, which are

important theoretically and practically.

5.1 Working mechanisms of the Calderón pre-

conditioner

It has been pointed out that the crux of the Calderón preconditioner is to

ensure the vanishing of T 2
h after discretization. According to the Helmholtz de-

composition, the current has three components: I = [ISBF ; ILLBF ; IGLBF ]. Here

ISBF , ILLBF , IGLBF are column vectors of length F −1, V −1, and 2g respectively.

The current J is written as:

J(r) ≈
n=F−1∑
n=1

ISBFn fSBFn (r) +
n=V−1∑
n=1

ILLBFn fLLBFn (r) +

n=2g∑
n=1

IGLBFn fGLBFn (r). (5.1)

The range of the operator Th is approximately orthogonal to its domain. The

range is expressed in terms of the DBFs1. Let Ĩ
LLBF

= [ĨLLBF1 , . . . , ĨLLBFF−1 ]T ,

1Here we do not specify the kind of DBFs. The DBFs in this chapter are an excellent choice,
but there can be other options
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Ĩ
SBF

= [ĨSBF1 , . . . , ĨSBFV−1 ]T , Ĩ
GLBF

= [ĨGLBF1 , . . . , ĨGLBF2g ]T .

[T (J)](r) ≈
n=F−1∑
n=1

ĨLLBFn f̃LLBFn (r) +
n=V−1∑
n=1

ĨSBFn f̃SBFn (r) +

n=2g∑
n=1

ĨGLBFn f̃GLBFn (r).

(5.2)

To ge the coefficients in Eq. (5.2), the test functions are used:
ZSS ZSL ZSG

ZLS ZLL ZLG

ZGS ZGL ZGG




ISBF

ILLBF

IGLBF

 =


GnSL GnSS GnSG

GnLL GnLS GnLG

GnGL GnGS GnGG




Ĩ
LLBF

Ĩ
SBF

Ĩ
GLBF

 . (5.3)

The superscripts “S”, “L”, “G” are shorted for SBF, LLBF and GLBF respectively.

An element in the hypersingular part of the impedance Zh is

(Zxyh )mn =

‹
Γ

dr∇S · fxm(r)

‹
Γ

dr′∇′S · fyn(r′)
e−ik|r−r

′|

4π|r− r′|
. (5.4)

where x, y can be any of “S”, “L” or “G”. Since ∇S ·fLLBFn (r) = 0, ∇S ·fGLBFn (r) =

0, only when both x, y are the SBFs, (Zxyh )mn 6= 0. The hypersingular part of the

impedance matrix is:

Zh =


ZSSh ZSLh ZSGh
ZLSh ZLLh ZLGh
ZGSh ZGLh ZGGh

 =


ZSSh O O
O O O
O O O

 . (5.5)

It can be seen that only the first block in the matrix Zh is nonzero, all other parts

vanish. The second matrix in Eq. (5.3) is termed Gram matirx, which is sparse

and has some interesting properties, which are listed here:

• The first diagonal term GnSL is a (F − 1) × (F − 1) matrix. (GnSL)mn =˜
Γ

n̂×fSBFm (r)·f̃LLBFn (r)dS. It is similar to a Graph Laplacian. It is invertible

but ill-conditioned.The second diagonal term GnLS is a (V − 1) × (V − 1)

matrix. (GnLS)mn =
˜

Γ
n̂ × fLLBFm (r) · f̃SBFn (r)dS. Its properties are close

to GnSL. The third diagonal term is GnGG. It is a square matrix. Since the

GLBFs have many equivalent forms, the conditioning of GnGG is indefinite.

• GnSL is a (F −1)× (V −1) non-square matrix. (GnSS)mn =
˜

Γ
n̂× fSBFm (r) ·

f̃SBFn (r)dS. Similarly, GnSG is a (F−1)×2g non-square matrix. (GnSG)mn =˜
Γ

n̂× fSBFm (r) · f̃GLBFn (r)dS.
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• GnLL is a (V − 1) × (F − 1) non-square matrix. Surprisingly, it is zero.

(GnLL)mn =
˜

Γ
n̂× fLLBFm (r) · f̃LLBFn (r)dS. This is because any LLBF can be

written as fLLBFm (r) = n̂×∇φ, here φ is a continuous scalar function. So the

above integral becomes −
˜

Γ
∇φ · f̃LLBFn (r)dS =

˜
Γ
φ∇· f̃LLBFn (r)dS−

˜
Γ
∇·[

φf̃LLBFn (r)
]
dS. The first term in the right side is zero, since∇·f̃LLBFn (r) = 0;

the second term is also zero since the function f̃LLBFm (r) has zero normal

component along its support.

• The terms GnLG,GnGL are zero matrices. The reason is similar to that for

GnLL.

To use T as a preconditioner, its range is tested again, but with the DBFs

f̃SBFm , f̃LLBFm , f̃GLBFm . Then the discretized form of Th becomes:

Z̃h =


Z̃LLh Z̃LSh Z̃LGh
Z̃SLh Z̃SSh Z̃SGh
Z̃GLh Z̃GSh Z̃GGh

 (5.6)

Again, because ∇ · f̃LLBFm = 0,∇ · f̃GLBFm = 0, only Z̃SSh is nonzero in Eq. (5.6).

The discretization of T 2
h is:

(Z2
h)dis =


O O O
O Z̃SSh O
O O O



GnSL GnSS GnSG

O GnLS O
O GnGS GnGG


−1

ZSSh O O
O O O
O O O

 . (5.7)

It can be verified that the inverse of the Gram matrix is:
(GnSL)−1 G12 −(GnSL)−1GnSG(GnGG)−1

O (GnLS)−1 O
O −(GnGG)−1GnGS(GnLS)−1 (GnGG)−1

 (5.8)

where G12 = −(GnSL)−1GnSS(GnLS)−1 + (GnSL)−1(GnSG)(GnGG)−1GnGS(GnLS)−1.

The inverse of the Gram matrix has the same structure as itself. Inserting Eq. (5.8)

into Eq. (5.7), one can verify that (T 2
h )dis = O. All these inversions are used only

for theoretical analysis, they are not intended for practical implementation. As
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was pointed out in [95], for a simply connected and closed mesh, the vanishing

requirement translates into:

dimPBFsol + dimDBFsol = E − 2g. (5.9)

where dimPBFsol and dimDBFsol are the dimension of the solenoidal subspace of

PBF and DBF, respectively. RWG-like BFs cannot be used here for two reasons.

First, the resulting Gram matrix is singular. Second, if RWG-BFs are used for

both PBF and DBF sets, then dimPBFsol = dimDBFsol = V − 1, where V is

the number of vertices. However, in general 2(V − 1) 6= E − 2g, violating the

condition (5.9). Some would suggest n̂ × RWG be used as a DBF, however, it

results in a fictitious line charge and it cannot ensure cancellation condition either.

5.2 Calderón multiplicative preconditioner

Figure 5.1: Four bQBFs that share a common quadrilateral. Since b1 ‖ b3,˜
Γ

n̂×b1 ·b3dS = 0. On the other hand,
˜

Γ
n̂×b1 ·b2dS = −4. These results are

independent of the size or shape of the mesh, so they are topologically invariant.

The development of PBFs and DBFs in the preceding sections allows de-

veloping a CMP for quadrilateral, triangular, and mixed meshes. For a CMP

one needs to create the Gram matrix linking the PBFs and DBFs on triangu-

lar, quadrilateral or mixed meshes. This matrix is GPD
m ∈ RNE×NE ,

(
GPD
m

)
mn

=
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〈
n̂× fPBFm , fDBFn

〉
. GPD

m is sparse and its entries are, where fPBFm is the m-th

PBF and fDBFn is the n-th DBF. Employing the projection matrices, one has

GPD
m = P1

TGbQBF
m P2 , where GbQBF

m is a real-valued Nb×Nb matrix, (GbQBF
m )mn =

〈n̂× bm,bn〉, with bm and bn being the QBFs. The four bQBFs sharing a quadri-

lateral Q are displayed in Fig. 5.2. They can be expressed as
(
GPD
m

)
mn

.

Since (GbQBF
m )nm = 〈n̂× bn,bm〉 = −〈n̂× bm,bn〉, GbQBF

m is an anti-

symmetric matrix. On the quadrilateral, the expressions for the four v-BFs are:

b1 =
(u+ 1)ru

det J
,b2 =

(v + 1)rv
det (J)

,b3 =
(u− 1)ru

det J
,b4 =

(v − 1)rv
det (J)

. (5.10)

It follows that b1 and b3 are parallel to each other, so are the pair b2 and b4. As a

result, 〈n̂× b1,b3〉 = 〈n̂× b2,b4〉 = 0. The result of 〈n̂× b1,b2〉 is not obvious.

We substitute the formulas in Eq. (5.10) into it. It follows:

〈n̂× b1,b2〉 =

〈
n̂× (u+ 1)ru

det J
,
(v + 1)rv

det J

〉
=

¨
Q

n̂× (u+ 1)ru
det (J)

· (v + 1)rv
det (J)

dS =

¨
Q

(u+ 1)(v + 1)
n̂× ru · rv
[det (J)]2

dS.

(5.11)

Since dS = det (J)dudv, n̂ × ru · rv = det (J), the above integral becomes

〈n̂× b1,b2〉 =
´ 1

−1
(1 + u)du

´ 1

−1
(1 + v)dv = 4. This result demonstrates that the

Gram matrix is an intrinsic property of the connectivity of the mesh elements,

it does not depend on the positions of the vertices. Therefore, it is topologically

invariant. The matrix GbQBF
m is highly sparse, each row or column has only two

non-zero entries, whose values are ±4.

5.3 Numeric results

This section presents a set of numerical examples demonstrating the per-

formance of the introduced framework of PBFs, DBFs, and associated CMP. The

results are given for a problem of the electromagnetic field scattering from struc-

tures excited by an incident plane wave Einc = x̂e−
i2πz
λ , where λ is the wavelength.

A GMRES [46] solver with a restart of 80 was used. The solver was implemented

on graphics processing units (GPUs) to lead to a fast performance [50, 121]. In
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all the results, denoted by delta and epsilon are the discretized mesh element size

and residual error, respectively.

5.3.1 Sphere

Figure 5.2: A sphere meshed into quadrilateral, triangular, and mixed elements.
The color represents the the magnitude of the surface current distribution.

Figure 5.3: Analysis of scattering from PEC spheres (δ = 0.08λ) discretized
into quadrilateral, triangular or mixed elements. Comparisons in RCS verify the
effectiveness of the proposed PBFs and DBFs.

Next we show scattering from a larger sphere, whose radius is four wave-

lengths. In this example, the CMP solver reduced the error to ε = 10−4 in 20
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Figure 5.4: Iteration counts vs. residual errors for a sphere with a radius of 4λ.

Table 5.1: Number of edges in different meshes

Mesh Types 0.08 0.06 0.04 0.02
Quadrilateral 4800 8122 17022 65998
Triangular 6957 12633 28779 116085
Mixed 5880 10056 22756 92264

iterations, whereas the unpreconditioned system can only reach 10−3 in 1000 iter-

ations.

In this example, a PEC sphere with a radius of 1λ is considered. The sphere

is meshed with three mesh types: quadrilateral, triangular, and mixed, as shown

in Fig. 5.2. The number of edges for different δ for quadrilateral, triangular, and

mixed meshes is given in Table 5.1. Fig. 5.4 verifies the accuracy of the solvers for

the three meshes by comparing the radar cross section (RCS) versus angle with

the Mie series solution. The same-accuracy result was obtained for the cases with

and without CMP. This example demonstrates that the introduced PBFs lead to a

proper representation of the surface currents and that the new DBFs are applicable

to CMPs. Fig. 5.2 shows the iteration counts versus residual errors for the solver

with and without the CMP. It is found that without CMP, the convergence becomes

very slow as the mesh density increases. With CMP, the convergence is much faster
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and the number of iterations is nearly independent of the number of edges for all

mesh types, which confirms the effectiveness of the introduced DBFs and resulting

CMP.

5.3.2 Plate

Figure 5.5: Iteration counts vs. residual errors for a 1λ1λ square plate.

The next example considers a 1λ × 1λ square plate placed at z = 0, dis-

cretized into quadrilaterals (Fig. 5.5). The numbers of edges for meshes with

δ = 0.08λ, 0.06λ, 0.04λ and 0.02λ were 312, 544, 1200 and 4900, respectively. The

number of iterations was around 25 for all CMP solvers. On the other hand, for

the unpreconditioned EFIE solvers, the iteration number grew dramatically with

increased mesh density.

Again we can see that the CMP solver is much faster. This example also

shows that the DBFs can solve the open structures with minor modifications.

5.3.3 Magnetic recording head

This example presents a complex magnetic recording head with large aspect

ratios (Fig. 5.6). This problem is related to the emerging heat assisted magnetic
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Figure 5.6: Current distribution on a magnetic recording head.

recording technology as well as the operation of hard drives in certain integrated

systems. The head was illuminated by a plane wave. Its height and width were

1.7λ and 1.1λ, respectively. The bulk of the head and its underlayer were flat,

meshed into (54341, mostly rectangular) quadrilaterals, while the more complex

area around the sharp tapered tip was meshed into 5218 triangles. The total

number of edges was NE = 116509. With CMP, the iteration count was 170 for

ε = 3× 10−3. The solver could not converge in a reasonable time without CMP.

5.4 Conclusion

This chapter shows the applications of the proposed PBF and DBF. Espe-

cially, they are used into the scattering problems that is modeled by the EFIE.

The PBF is used to expand the unknown current, whereas the DBF is used the

preconditioner. The numerical result has shown that the speed of the precondi-

tioned EFIE system achieved a much faster speed since the impedance matrix is

well-conditioned.

The DBFs can also be used to improve the accuracy of the MFIE. The
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Figure 5.7: Iteration counts for a magnetic recording head.

traditional method tested the MFIE using Galerkin methods, where the testing

functions and the expansion functions are in the same set. This method suffers

from poor accuracy. On the other hand, when the current is expanded by the

PBFs and the testing functions are the DBFs, the accuracy could be improved by

a magnitude.
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Chapter 6

Implementation of volume

integral equations

The surface integral equations (SIEs) are well-suited for homogeneous struc-

tures. However, it is quite difficult to solve very complex structures. A general

solution is to use volume integral equation (VIE), which is based on volume e-

quivalence principles. The VIEs employ some fictitious currents as the unknown

sources, which are obtained by solving a linear equation. Compared to FEM, the

VIEs yield better-conditioned matrices, leading to a smaller number of iterations

[122, 123].

In this chapter, we further explore the potential-based volume integral equa-

tion (PVIE). While the field quantities have discontinuities along the boundaries,

the potentials are continuous throughout the whole space.

6.1 Volume equivalence principle

The Maxwell equation in the frequency domain reads:

∇× E = −iωµ0µrH,

∇×H = iωε0εrE.
(6.1)

In a scattering problem, the material properties µr and εr are not a constant, but

can be a function of r. There is no impressed current in the volume Ω. To make

95
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the problem Eq. (6.1) look like a free space problem, we define equivalent electric

and magnetic currents [87, 89]:

Jeq = iωµ0(µr − 1)E,Meq = iωε0(εr − 1)H. (6.2)

The equivalent currents Jeq and Meq exist only inside the material region Ω. The

Maxwell equations are reformulated as

∇× E = −iωµ0H−Meq,

∇×H = iωε0E + Jeq.
(6.3)

The electric and magnetic fields, scattered from an obstacle, have vector

potentials [49]:

Asc(r) =

˚
Ω

exp(−ik|r− r′|)
4π|r− r′|

Meq(r′)dr′,

Fsc(r) =

˚
Ω

exp(−ik|r− r′|)
4π|r− r′|

Jeq(r′)dr′.

(6.4)

The scattered electric and magnetic fields are due to the vector potentials. The

summation of the scattered and the incident field is the total field.

6.2 Field based volume integral equations

The scattered fields are related to the potentials:

Esca = iη0
∇∇ ·+k2

k
A−∇× F,

Hsca = i
∇∇ ·+k2

η0k
F +∇×A.

(6.5)

The total fields are the summation of incident and scattered fields:

Einc + iη0
∇∇ ·+k2

k
A−∇× F = E,

Hinc + i
∇∇ ·+k2

η0k
F +∇×A = H.

(6.6)
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The EFIE and MFIE for volume problems are:

D

εr
− (∇∇ ·+k2)

˚
Ω

keD(r′)
exp(−ik|r− r′|)

4π|r− r′|
dr′

+
ik

η0

∇×
˚

Ω

keB(r′)
exp(−ik|r− r′|)

4π|r− r′|
dr′ = ε0E

inc,

B

µr
− (∇∇ ·+k2)

˚
Ω

kmB(r′)
exp(−ik|r− r′|)

4π|r− r′|
dr′

−ikη0∇×
˚

Ω

keD(r′)
exp(−ik|r− r′|)

4π|r− r′|
dr′ = µ0H

inc.

(6.7)

where ke = 1− 1
εr
, km = 1− 1

µr
. ke and km are also called contrast ratios. In these

two equations, the unknown quantities are the flux densities D and B. These two

are preferred because the normal components are continuous across different media.

Since most materials react weakly to the external magnetic field, i.e. µr ≈ 1. The

above equation becomes:

D

εr
− (∇∇ ·+k2)

˚
Ω

exp(−ik|r− r′|)
4π|r− r′|

keD(r′)dr′ = ε0E
inc. (6.8)

6.2.1 Basis functions for the volume integral equations

Since the field quantities are vectors, the v-BFs should be used. The most

widely used v-BFs are the so called Schaubert-Wilton-Glisson (SWG) BFs [124,

125, 32, 126]. The SWG is very similar to RWG [127]. It ensures the normal

continuity across different media. An SWG is show in Fig. 6.1, its definition is:

fm(r) =

 r+m
3V +
m
, r ∈ T+

m ,

r−m
3V −m

, r ∈ T−m .
(6.9)

The divergence of the SWG-BF is:

∇ · fm(r) =

 1
V +
m
, r ∈ T+

m ,

− 1
V −m
, r ∈ T−m .

(6.10)

Hexahedrons can also be used in VIEs [128]. They result in a smaller

number of elements and unknowns. The v-BFs on hexahedrons are a generalization

of the QBFs on quadrilaterals. The number of SWG-BFs, denoted by NSWG is

the number of triangles in the mesh. Let ISWG = [ISWG
1 , ISWG

2 , . . . , ISWG
NSWG

]T be
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Figure 6.1: Defintion of an SWG basis. The SWG is associated with the triangle
formed by the blue lines. T+

m is the tetrahedrons with positive charge, T−m is the
tetrahedron with negative charge.

a column vector. When the divergence-conforming v-BFs are used, the electric

current is expanded as:

D(r) ≈
n=NSWG∑
n=1

ISWG
n fSWG

n (r). (6.11)

The impedance matrix is written as:

Zmn =

˚
Ωm∪Ωn

fm(r) · fn(r)

εr
dr− k2

˚
Ωm

drfm(r) ·
˚

Ωn

dr′
e−ik|r−r

′|

4π|r− r′|
kefn(r′)

+

˚
Ωm

dr∇ · fm(r)

˚
Ωn

dr′
e−ik|r−r

′|

4π|r− r′|
∇′ · kefn(r′).

(6.12)

In Eq. (6.12), ∇ appears twice. To reduce the singularity of the Green function,

one of the gradient operators is moved to fm(r), the other is transferred to fn(r).

If εr is a constant, the matrix Z is symmetric.

6.2.2 Near field corrections for the potentials

There are two kinds of integrals.

φ(r) =

˚
T

exp(−ik|r− r′|)
|r− r′|

dr′ (6.13)
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To solve Eq. (6.13), we want to find a function f(R) such that:

∇ · [f(R)(r− r′)] =
exp(−ik|r− r′|)
|r− r′|

. (6.14)

Eq. (6.14) is equivalent to an ODE:

df

dR
+

3f(R)

R
=

exp(−ikR)

R2
. (6.15)

The solution is q(R) = (1+ikR)e−ikR−1
k2R3 . So, we have reduced the three dimensional

volume integral into a two dimensional surface integral, which is much easier.

Furthermore, we can transform the surface integral into line integrals [129]. Define

a vector function f = (ρ− ρ′)g(R). Its divergence is ∇S · f = 2g(R) + dg
dR

R2−h2
R

=

q(R).

2g(R) +
dg

dR

R2 − h2

R
=

(1 + ikR)e−ikR − 1

k2R3
. (6.16)

Solution to Eq. (6.16) is very simple: g(R) = 1−e−ikR
(R2−h2)Rk2

, therefore, the only integral

we need to do is
´ x2
x1

e−ik
√
x2+a2

√
x2+a2

dx

A(r) =

˚
T

exp(−ik|r− r′|)
|r− r′|

(r′ − r)dr′ (6.17)

The vector potential can be rewritten as:

A(r) =
i

k

˚
T

∇′ exp(−ik|r− r′|)dr′ = i

k

‹
∂T

n̂′ exp(−ik|r− r′|)dr′ (6.18)

The integrand exp(−ik|r − r′|) is a smooth function, so one can do the integral

directly by using a quadrature rule for triangles. One can also reduce it to a

line integral, where the accuracy of the quadratures is more controllable. So the

problem is to find a function F (R) such that ∇S · [F (R)(ρ − ρ′)] = exp(−ikR).

Then one needs to solve an ODE:

dF

dR

R2 − h2

R
+ 2F (R) = exp(−ik0R). (6.19)

A solution to the above equation is F (R) = (1+ikR)e−ikR

k2(R2−h2)
. So the integrals take a

form:
´ x2
x1

(1+ik0
√
x2+a2)e−ik

√
x2+a2

k2(x2+b2)
dx, which can be handled by numeric quadratures.
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6.3 Potential based volume integral equations

In all the previous integral equations appearing in this work, the unknown

quantities are either field or current [130]. These quantities are not continuous in

the normal or tangential component across different media. The potentials, on the

other hand, are smoother. It is interesting to see that the potential, although non-

physical, can play a central role. The potentials can be divided as a summation of

the incident and the scattered potentials:

A = Asc + Ainc,F = Fsc + Finc. (6.20)

Since the scattered potential Asc,Fsc are related to the sources Jeq,Meq, the

potential-based volume integral equation reads:

A− k2

˚
Ω

exp(−ik|r− r′|)
4π|r− r′|

(εr − 1)

(
A +

∇′∇′ · A
k2

− i

k
∇′ × F

)
dr′ = Ainc,

F− k2

˚
Ω

exp(−ik|r− r′|)
4π|r− r′|

(µr − 1)

(
F +

∇′∇′ · F
k2

+
i

k
∇′ ×A

)
dr′ = Finc.

(6.21)

The equations (6.22) are quite similar to that in (6.7). They share the same Green

function as the kernel. However, there are also noticeable difference. For instance,

in Eq. (6.22), the differential operators are inside the integral operators.

Since it is inconvenient to take double differential operator inside the in-

tegral, we use the scalar potential ∇ · A = kφe,∇ · F = kφm. Moreover, in the

absence of magnetic materials, the PVIE is reduced to:

A− k2

˚
Ω

exp(−ik|r− r′|)
4π|r− r′|

(εr − 1)

(
A +

∇′φe
k

)
dr′ = Ainc,

∇ ·A = kφe.

(6.22)

The quantities A, φe are continuous across boundaries between different

media. Therefore, s-BFs can be used in the discretization. In a tetrahedral mesh,

the s-BFs, which have been used in solving the LLGE, are adopted here. The

usage of s-BFs have the following advantages: (1) They can reduce the number of

unknowns. The number of s-BFs is only 1
3

times the number of SWG-BFs. (2) The

matrices from the s-BF method is smaller than that from the SWG-BFs, making
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the iterative solution faster. (3) The formulation is free from surface integrals, and

it is easy for the implementation of inhomogeneous and anisotropic media.

6.4 Numerical results

In this section, a few examples are presented to validate the proposed

method.

6.4.1 Scattering from a layered sphere

A three layered sphere, is composed of three materials, is shown in Fig. 6.2.

In this simulation, there were 1.6 million tetrahedrons, 275 thousand vertices. It

Figure 6.2: Analysis of scattering from a three layered sphere. a1 = 0.3λ0, a2 =
0.7λ0, a3 = λ0.

took a GMRES solver 63 iterations to reach an error of 10−3. The preprocessing

time was only 9 seconds, and the total simulation time was 3.8 minutes. We can

see the good agreement between the Mie series and the PVIE.



102

6.4.2 Reflection coefficients of a doubly periodic structure

Periodic structures are used widely in microwave and photonic devices [36,

131, 132, 133]. The integral equations can be used for these structures. In this

case, the Green’s function is more complex:

Gp(r, r
′) :=

m=+∞∑
m=−∞

n=+∞∑
n=−∞

e−ik|r−r
′+mx̂Lx+nŷLy |

4π|r− r′ +mx̂Lx + nŷLy|
e−i(mkx0Lx+nky0Ly), (6.23)

where kx0 and ky0 are phases shifted in the x− and y− directions. The incident field

is E = x̂ exp(−ikx). The structure is a cube of 1cm× 1cm× 1cm, and the spacing

Figure 6.3: Analysis of reflection coefficient from a doubly periodic structure.

between the elements is Lx = Ly = 2.5cm. The PVIE was applied to calculate the

induced equivalent electric current J inside the element. J was applied to compute

the reflection coefficient. The wavelength is swept, and the reflection coefficient

is calculated. Rigorous coupled wave analysis (RCWA) was used as an analytic

apparatus to verify the accuracy of PVIE. The PVIE has a good agreement with

the RCWA.
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M. Chiampi, “Multiscale finite element solution of the exchange term in
micromagnetic analysis of large bodies,” IEEE Transactions on Magnetics,
vol. 45, no. 3, pp. 1614–1617, 2009.



109

[70] M. dAquino, C. Serpico, and G. Miano, “Geometrical integration of Landau-
Lifshitz-Gilbert equation based on the midpoint rule,” Journal of Computa-
tional Physics, vol. 209, pp. 730–753, 2005.

[71] J. Fidler and T. Schrefl, “Micromagnetic modelling-the current state of the
art,” Journal of Physics D: Applied Physics, vol. 33, no. 15, p. R135, 2000.

[72] D. Dunavant, “High degree efficient symmetrical gaussian quadrature rules
for the triangle,” International Journal for Numerical Methods in Engineer-
ing, vol. 21, pp. 1129–1148, 1985.

[73] M. Gellert and R. Harbord, “Moderate degree cubature formulas for 3-D
tetrahedral finite element approximations,” Communications in Applied Nu-
merical Methods, vol. 7, pp. 487–495, 1991.

[74] W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster, and V. T-
siantos, “Scalable parallel micromagnetic solvers for magnetic nanostruc-
tures,” Computational Materials Science, vol. 28, no. 2, pp. 366–383, 2003.

[75] M. Li and W. Chew, “Applying divergence-free condition in solving the vol-
ume integral equation,” Progress In Electromagnetics Research, vol. 57, pp.
311–333, 2006.

[76] S. Li, B. Livshitz, and V. Lomakin, “Graphics processing unit accelerated
O(n) micromagnetic solver,” IEEE Transactions on Magnetics, vol. 46, no. 6,
pp. 2373–2375, 2010.

[77] N. A. Gumerov and R. Duraiswami, “Fast multipole methods on graphics
processors,” Journal of Computational Physics, vol. 227, no. 18, pp. 8290–
8313, 2008.

[78] X. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of
combined-field integral equation using multilevel fast multipole algorithm
for scattering by homogeneous bodies,” IEEE Transactions on Antennas
and Propagation, vol. 46, no. 11, pp. 1718–1726, 1998.

[79] B. Streibl, T. Schrefl, and J. Fidler, “Dynamic fe simulation of µmag stan-
dard problem no. 2,” Journal of applied physics, vol. 85, no. 8, pp. 5819–5821,
1999.

[80] M. Escobar, M. V. Lubarda, S. Li, R. Chang, B. Livshitz, and V. Lomakin,
“Advanced micromagnetic analysis of write head dynamics using fastmag,”
IEEE Transactions on Magnetics, vol. 48, no. 5, pp. 1731–1737, 2012.

[81] A. Jeffrey and D. Zwillinger, Table of integrals, series, and products. Aca-
demic Press, 2007.



110

[82] D. Knoll and D. Keyes, “Jacobian-free Newton-Krylov methods: a survey of
approaches and applications,” Journal of Computational Physics, vol. 193,
pp. 357–397, 2004.

[83] G. Henkelman, B. Uberuaga, and Jónsson, “A climbing image nudged elastic
band method for finding saddle points and minimum energy paths,” Journal
of Chemical Physics, vol. 113, no. 22, pp. 9901–9904, 2000.

[84] S. Zhang and Z. Li, “Roles of nonequilibrium conduction electrons on the
magnetization dynamics of ferromagnets,” Physical Review Letters, vol. 93,
no. 12, p. 127204, 2004.

[85] W. Chew, M. Tong, and B. Hu, Integral Equation Methods for Electromag-
netic and Elastic Waves. USA: Morgan & Claypool, 2009.

[86] R. Chang and V. Lomakin, “Quadrilateral barycentric basis functions for
surface integral equations,” IEEE Transactions on Antennas and Propaga-
tion, vol. 61, no. 12, pp. 6039–6050, 2013.

[87] A. Peterson, S. Ray, and R. Mittra, Computational Methods for Electromag-
netics. IEEE Press, 1998.

[88] R. Mittra, Computational electromagnetics : recent advances and engineering
applications. New York: Springer, 2013.

[89] X. Sheng and W. Song, Essentials of computational electromagnetics. Sin-
gapore: John Wiley & Sons, 2012.

[90] T. Rylander, P. Ingelström, and A. Bondeson, Computational Electromag-
netics. New York: Springer, 2013.

[91] G. Hsiao and R. Kleinman, “Mathematical foundations for error estima-
tion in numerical solutions of integral equations in electromagnetics,” IEEE
Transactions on Antennas and Propagation, vol. 45, no. 3, pp. 316–328, 1997.

[92] A. Bourdonnaye, “Some formulations coupling finite element and integral
equation methods for Helmholtz equation and electromagnetism,” Journal
Numerische Mathematik, vol. 69, no. 3, pp. 257–268, 1995.

[93] H. Contopanagos, B. Dembart, M. Epton, J. Ottusch, V. Rokhlin, J. Visher,
and S. Wandzura, “Well-conditioned boundary integral equations for three-
dimensional electromagnetic scattering,” IEEE Transactions on Antennas
and Propagation, vol. 50, no. 12, pp. 1824–1830, 2002.

[94] S. Borel, D. Levadoux, and F. Alouges, “A new well-conditioned integral
formulation for Maxwell equations in three dimensions,” IEEE Transactions
on Antennas and Propagation, vol. 53, no. 9, pp. 2995–3004, 2005.



111
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