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A singular solution of the capillary equation, I: existence * 

Paul Concustand Robert Finnt 

It is known, as a speciql case of a more general theorem [1], that 

if the constant K is non-negative, every isolated singularity of a 

single valued solution of the capillary equation 

Ul div Tu = KU Tu = ! Vu, W = /1 + 1 Vu 12_ 

is removable. If K < a the proof of the general theorem fails; in this 

case, little is known about the behavior of solutions, presumably owing 

t th f '1 f th ' "1 (1) o e al. ure 0 e maxJ.mllm prl.ncl.p e. 

We show here that if K < 0, (l)admits,-in any number n > 2 of 

2 n 2 
dimensions, a rotationally symmetric solution U(r), r = L X, with 

1 l. 

a non-removable isolated singularity at r = O. In contrast to the 

behavior of solutions of linear elliptic equations (e.g., the Laplace 

equation), U(r) has the same order of growth in r for every n > 2; 

more precisely, U(r)~ n-l 
Kr as r -+ O. In the paper [2] directly 

following this one, we show that no other growth is possible for a 

symmetric singular solution. 

The solution U(r) is apparently related to a limiting behavior of 

pendent water drops; it is in that connection we first encountered it. 

For a discussion of these properties we refer the reader to our earlier 

paper [3] and to our forthcoming 
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paper [4J. The solution was also encountered independently in 

a computational study by Huh [SJ. 

1. For solutions depending only on distance r from the 

origin, ,(I) becomes,after a formal transformation, 

(2) ( 

n-1 ) r ur 

{I + u~ r' 
= - (n-1) n-1 r u 

We seek, for 0 < r S r o ' a solution in the form 

(3) u(r) = 
__ 

1 + n+3 3 + () 3 r ao r r r 2(n-1) 

with l~ ao(r) = o. 
r+O 

We introduce a vector operator '!g, with T = (To ,T1 ) 

defined as follows: set S = (a
O

,a1 ), and 

(4) '1(g (r) ; r) 
2 n+3 (n+2) (n+6) 3(n+S)a1r - - - 3 n-1 r + 

4 
a r + 

r3 0 

n-1 n-1 2 (n-1)Yo(1+y~)3/2, +- a - - Y 1 (l+y1 ) 
r3 0 r 

with 

(So) yo(ao(r);r) !+ 1 n+3 r3 + ao(r) r3 = 2 n-l r 

(51) y1(a1 (r);r) .-.!.+ 3 n+3 2 + 3a
1 

'(r) 2 
= 2 2 n-l r r 

r 

We set 

(6) . </[f(.)] - ( f(,.) Si{n;1 (> ;2~dT 

(7) trfC.)] .. )r 
fC,.) (f;N (1 1 ~ cosL - - - - d,. 2 . 2 2 

0 
,. r 

~: 
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and we write, for any function f (r) , 

n+q 

(8) (q) f (r) = r 2 fer) • 

We then set 

n+12 

= 
n+2 1 --r- ~ (8) 

--6- Tog + 3 r V [ r (g ( • ) ; .) ] 

One verifies formally that for functions u(r} £ c(2) 

defined by (3), the relations (2) and 

(10) 
d . 
dr lo(r) = 'Y 1 (r) 

are equivalent to the relation 

(11) g = !g • 

2. Let po(r) be a nondecreasing continuous function 

defined on the interval [0,1], and satisfying 

(12) p(o) = a , r 4 
lim po(r) = a • 

We introduce the space A of continuous vector valued functions 

g(r) on an interval 10 = [o,ro]: we set 

(13) 

and we denote by AM the ball ~ ~! < M. 

We assert first that if r • is sufficiently small, depcndinq -- 0 ~~~~~~~~-~~~ 

~ M, then !g ~ ~M into itself. To prove this, we use the 

relatiom, valid for i1..-k > - 6, 
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(14) 

US) 
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{n-l 

- 4 -

From (3,4,5) we obtain, for-small r, 

(16) ¥(gir) = lr + P(g)r + Q(g;r) 

where 

(17) = 3 (5n+11) (n+7) 
- 8 n-1 

(18) = (n+2) (n-18) 
4 ao - 9(n-l)Q'oQ'1 

(19) IO(g~r) I < A(g) r S 

(20) , j = 0,1 , 

the functions A and B being uniformly bounded in any ball 

I~I < M < CD. 

From (14,15) we find 

n+16 n+24 

(21) .1[(10) l] 1 l --r- + o (r--r-) = r 
-/n-1 

n+20 n+28 
e[(lO) ).] n+16 ). r-r- + o(r~ ) = 2(n-l) (22) 

for small r. 

From (6,7) follow directly 

I/C( 8 ) 0 (~( • ) ; .) ] I 
n+20 

(23) < C r -r-

n+20 

(24) /{;t(8)O(~(·); .)] I < C r-r-

for a constant C depending only on the bound for A in (19). 

Similarly, the inequality laol < Copo(r) implies 



,) 

2C n+12 

I V[CIO)", c.)'" C·)11 < _0 r 2 (251 ) ..(11 ""0 ""I n+12 l!~llpoCr) 

with analogous inequalities for 6f. 
We place these estimates in (9) to obtain, for ~ e: A-M ' 

I I -1 . C 2 4 -1) 
T~p <C r +rp 
0- 0 0 

I T1_a I < CCr4 + r2po) + (n+2) In-lal + 36(n-l)M M p Cr) 
6 (n+12), 0 

where C depends only on M •. On the interval 0'::: r :5 r o ' the ball ~M 

is then mapped interior to a ball of radius 

R(M) - C( 2 ( »(1 ( » (n+2) In-lal + 36Cn-l)M M ( ) - ro + e: r +p r +. 6 ( . 12) P r o 0 0 . . n+ 0 0 

with 

hence into itself for sufficiently small r o ' depending only on M and on Po (r ~ 

3. Using the same procedure, we may estimate lI!g - !fil, 

for any ~, ~ in ~M. We obtain now the estimates 

(27
0

) 

(271 ) 

the constant C depending now on a bound for B in (20). It follows 

that for sufficiently small r o ' the mapping (9) contracts the 

~ "gil < M. We conclude there exists a unique fixed point 

~(r) £4M, and. hence a corresponding solution U(r) of (1) in 

the indicated form (3), in some deleted neighbourhood of the 

origin. 

4. It follows immediately from the representation (11) that 

the solution A(r), sought originally in a class of functions 
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supposed only continuous, is in fact an analytic function of 

the (complex) variable r, and that for real r it has a zero of 

fourth order at r = O. In particular, the sum of the first two' 

terms on the right in (3) is asymptotic to U(r) at r = O. 

5. We may use the representation (11) to obtain an asymptotic 

development for U(r) in powers of r, at r = O. To do so, 

we set 

(28) = n+3 
2(n-1) , 

Then, as just observed, 

lim L (U(r)- u(3) (r» ~ 0 
r+O r3 

We now note the decomposition 

• 

where Q(5)(~) is a polynomial in ao,al • In particular, Q(5)(o) 

is a constant, and we may apply (14, 15) to the term Q(5)(O)r5• 

We may thus compute 

(30) T [0] o , = 3 (5n+11) (n+7) r4 
- 8 (n-l)2 

and we set, accordingly, 

(31) a 7 
3 (5n+11) (n+7) = - -8 (n-l)2 

U(7) 1 3 + a 7 
7 = - - + a r r • r 3 

On the other hand, using (29), we obtain after a single 
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iteration in.(ll), 

T A = - 18 (5n+ll) (~+') r 4 + O(ra) 
0- (n-1) 

Thus, in particular, 

lim 
r+O 

1 (U(r) _ u'(r» 
r' 

Continuing, we compute 

= o 

(32) 3 [7 a r 2n- 1] r To a,r + ••• + 2n-1 = 

• 

and demonstrate, using successive decompositions of Q(g;r), 

that the development is asymptotic. 

The procedure is formal but tedious if the exact values 

of the coefficients are desired. For the (physical) case n = 2, 
5 ~-, 

we obtain, starting with a 3 = 2 ' the successive numbers \-. 

5 56' 123149 212466731 
2' ' - -a' 16' 128' ... • 

It seems unlikely that the expansion is convergent. 

6. The method, as is known, assures the uniqueness of the.· 

solution in the class considered. We study the uniqueness question 

further in the paper directly following this one, where we 

show that if u(r) is a solution of (2) with an isolated singularity 

at r = 0, then either the singularity is removable or u(r) has 

(up to a change in sign) the asymptotic form 



" 

u(r) = 

- 8 -

- !. + 0 (r) 
r • 

An improvement of this result to an estimate of the form (3) 

would thus establish the solution constructed here as the unique 

solution of (2) with a (non-removable) isolated singularity 

at the origin. 

7. The singular solution U(r) can be obtained constructively 

by iteration, as the successive iterates of an arbitrary 

function in AM will converge to d(r) on 1
0

• From a numerical 

pOint of view, it is preferable .to use the first few terms of 

the asymptotic expansion as initial conditions for a numerical 

solution of the equation. The procedure appears to be stable 

with respect to small perturbations of the data, and yields the 

function shown in figure 1. See also Huh [51, who encountered 

the solution from this point of view. 

The numerical result, together with independent information 
l "pendent drop" J . 

asymptotic behavior of~"Y---~oiutions [3,4], leads us to:; on 
A 

the conjecture that the solution U(r) can be continued as a 

sinqle valued solution of (2) for all positive r. It seems 

unlikely that the solution would be observed as a stable physical 

configuration for r large, cf the remarks in [6, § 2.2]. 

8. We note for reference the crucial importance for the 

existence proof, of. the circumstance that 0'0 is a factor in 

both terms of p(g). 
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Figure 1 
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Footnotes 

(i) p.1 See however a remarkable paper of Wente [7] with regard to 
a related parametric problem. 

(2) p. 7 We wish to thank G. Sod for carrying out part of the calculation. 

*Work performed under the auspices of the U. S. Atomic Energy 
Commission. 

tLawrence Berkeley Laboratory, University of California, Berkeley, 
California 94720. 

tMathematics :Qepartment, Stanford University, Stanford, California 94305. 
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