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Angular Distributions 

Elihu Lubkin 

Lawrence Radiation Laboratory, Berkeley, California 

April,l960 

Summary. - The theorem for distributions in the angles 9, rj is extended 

to the third Euler angle, 'f', whereupon it becomes equivalent to the 

rot·ational invariance of the responsible interactions. An interpretation 

of half-angle terms in the general rate formula is given. 

1. Introduction 

A formally complete representa.tion of the content of rotational 

invariance is given by the 'Vigner-Eckart theorem. Although this theorem 

refers directly only to matrix elements between eigenstet es of the total 

angular momentum J and its z component M, it. may nevertheless be applied 

to other matrix elements, by. introducing transformation matrices to and 

from a J, M representation. 

However, when one set of states -is given in a J, M representa-

tion and the other is given in terms of Euler angles and· rotational 

invariants, the content of rotational invarianc e. may be developed very 

directly. The moot striking result is a restriction on the dependence 

on the F.uler angles of the matrix elements; for fixed J, there e.ppear 

only a finite number of standard functions.. Such restrictions have 

. 1 2 
long been known, ' but the arguments are simplified when presented 

for helicity eieenstates. The discussion here will aim at generality, 

in presenting results involving all three Euler angles. 
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2. Euler Angles 

muler angles are familiar from the discussion of a rigid 

body i_n classical mechanics. One imagines the body placed in some 

ste.ndard or fiduciary orientation with respect to a right-handed 

Cartesian reference frame. The body is rotated first through angle' 

about the z axis, by which is meant a counterclockwise or positive 

rotation in the xy plane, and which is formally equivalent to a 

corresponding negative rotation of the reference frame; then through. 

angle 9 about the y axis; and finally through angle I about the z axis. 

The entire operation w~ll be designated R(l9,). The same operation 

cari be applied to a fiduciary quantum-mechanical state, .to generate a 

rotationally invariant family of •states as the Euler angles 1, 9, 'I' 

are allowed to vary. 

It the original state be decomposed into its irreducible 

parts accordin( to the covering group of the rotation group, i. e., 

into eigenstetes of total angular momentum J, it is seen that a rotation 

of 21 about any e.xis restores the components of integra.! J, and restores 

those or half-odd-integral J except for reversal ot sign. Therefore, 

es r/, e, 'P va~y over a doubled Euler angle domain, the state in all case~ 

varies over all its rotational images. The usual convention tor Euler 

angle domain is 0 .S I < 21t, 0 ~ 9 ~ 'Jl", 0~ 'I'~ 21T, and an. appropriate· doubled 

range· may be obtained by, e. g., allowing elther p or ~ the range (o, 41'). 

More particularly, consider a state ot n particles of .definite 

spin, the i~ particle with momentum~i' and with helicity (spin component 
n 

elong the direction of ,.Ei) >.1 , with total momentum ~ 1 = 1 .fi = £.• 

Such a. ste.te may be specified by a. list of rotational invariants: the ~i, 

' 

,. 
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the Pi•Pj·-- the latter being of cour~e highly redundant for large n, 
' ....... 

and any specifications of the types or particle involved, augmented by 

three EUler angles. The latter may be assigned as follows: ~ to specify 

the orientPtion of the figure of n·l of the momenta about a distinguished 

one, and 9, p to specify the direction of the distinguished momentum. 

Such assignments are particularly convenient if one wishes to describe 

the engular distribution o! one particular final-state particle, although 

other assignments could be equally interesting if one is interested in 

the entire figure or n momenta. 

3 Exact phase conventions are easily fixed. Pick creation 

operators for particles at rest, spin-quantized on the z axis, with 

Condon-Shortley conventions for the infinitesimal rotation operators 

Jx, Jy• Then apply en active Lorentz transformation to produce a creation 

operator for a pe.rticle of momentum p along the z axis, and finally 

rotate with the operator R(pp~ &P' 0) to produce the creation operator 

appropriate to.an arbitrary direction. R(pp, QP' -pp) is an alternate 

choice used by JW, equally applicable here; any definite convention for 

'I'P will do. Our fiducial state is produced by ~ successive· creation 

operators of this form acting on a vacuum state, and the general state 

is obtained by applying R(p9'¥) to the entire fiducial s.ts.te. 

Thus we have produced e. rather general example of h~w co6rdi• ·· 
'0 

:,nEt~es may be so specified as to 'yield a system or· states labelled 

exclusively by a list p ot rotational invariants or "scalars" and Euler 

angles, p, e, ~. Since the scalars don't enter actively in our 

arguments, no detailed discussion of their redundancy in particular 

examples will be presented, but redundancy involving the Euler angles will 

claim some of our attention.· 
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For n ~ 3 particles, we have, except in very special cases 

which we will not discuss, e configuration which requires all three 

angles for the description of its orientation8 Thus, e, p may be used 

as spherical angles for the momentum of largest absolute value, and 'f 

as the angle from the plane of longitude through that momentum to the 

plene determined by the two largest momenta; '¥is then the angle east 

of south of the second momentum•s projection on a sphere e.t the point 

e, p determined by the first. There is, then, no linear dependence 

among the ste.tes given. by the p, &, 'I' of the Euler angle domain, but 

the states given by p, e."' in the other half or a doubled domain are 

either :_the corresponding states, obtained from them by a 211' rotation, · 

according as the number of ferm~ns is even or odd. This redundancy 

is not necessarily present for states where the number of fermione is 

not sharp. 

For a two-body state of particles of definite spin and helicity, 

there is much more re~undancy, so that in this discussion, it appears 

as a degene~at e case. In tact, the .'1' rotation leads only to a pha.se 

factor. Since the absolute value of the momentum is not in this case 

available for ct:istinction of particles, there is even· further redundancy 

for the case of two identical particles of the same helicity, for which, 

a complete but independent set of states is obtained by cutting the 

Euler angle domain in half. 
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3. 'lbe General Theorem 

The matrix element of a rotationally invariant opere.tor S 

between a state IJ ll. «) specified by the total angular momentum J, its 

z component M, and a list~ of rotational invariants, and a state 

\.¢'9'r~) specified by Euler angles and a list fi of rotational invariants, 

is always of form 

<¢9'¥~ \S\ Jt'A~) =- ~M' (~ \ JM'~ )e ~M'~ d,M'M J(-&)e~M¢ 
= 2: }.!\• t-)M-M'(~\JM'c~.) D-MJ-M'J(¢e'Y), 

where the (~l.m«) are the values of the matrix elements for all Euler 

angles zero, and the d and D functions are the matrices for active 

rotations defined in JW; namely, 

so that 

(
.l ) -iJzp -.iJYQ -iJzf 

R p9t' = e e e , 

R (pei') t.n.~) = L,A, ~, M J (pel') I .Th! •), 

e -iJy91JM) = ~'dM'M J (9) I JM?' 

(1) 

(2) 

(3) 

(4) 

~~·MJ(pef) = e-iM'p~'MJ(e)e-iMf. 

The result (1) is obtained as follows. 

l5) 

lp'e 'f~) = R(pe'V) looo~), 

so that (pe'ff:-1 = (ooo?\ R~1 (p9'f). The rotation operator thus extracted 

is commuted with the rotationally invariant operator S, and then in 

t-ne form 

R-l(p'9'f) = eiJz'feiJY'\iJzp 

is a.pplied via Equ. (4) to IJMOC.), to obtain. (1). The second form is 

obt~ ined by means of the identity 

J 2J+M+M' J 
dM, M ( 9) = ( -) dJ.p M ( -9) l6) 

supplemented by the identity 

J M'-M J 
dM 'M (@) = (-) dMM I ( Q) (7) 

of .M, Equ. (Al). 
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The importance of the result lies in the fact that only a 

small number of functions of the Euler angles is involved, for fixed J. 

Such qualitative remarks will also be S'een to hold for appropriate rates .. 

4. Relations Among the Generators 

It is almost obvious that (1) not only follows from rotational 

invariance of s, but also implies rotational invariance. More 

precisely, we inquire whether the generators (~lJM~) of the matrix 

element according to (1} may be chosen as independent complex numbers, 

or whet relations they must satisfy, to .assure rotational inverie.nce 

and a consistent definition of the matrix elements. 

Suppose, first, that tho states IP9'l'~) are linearly independent, 

so that (1) may be used as a definition of its left-hand side for 

arbitrary complex numbers (~IJM~) on the right. Then it is easy to 

prove that the matrix so defined is rotationally invariant. Explicitly, 

we ask 

<P1 el '\'1~\ R-
1 

(pS'2e2'Y2> 5 I JMO<) 
1 

(,s'le 1 'i'1~ \s IM' D-lM'l/ (lf292'l'2) I m·~>. (a> 

The 1. h. s. is equal to <.!9¥pls\JM«-), where ft e,t 'are the angles 

achieved by the successive operation R(p2e 2 f 2).R(-p'1e1'f1) = R(f @'f) • 

By (l), it follows that the 1. h. s. is equal to 

<ooo~\s !M, D-lM'M J ( i®Y) 1JM'o<.> 

= (000~\s}:M'M"D-lM'M"J(plC\'l'l)D .. \.! .. M J(p292'¥2) lJM'(() .. 

Rut this is also the result obtained by applying (1) directly to the 

~.h. s. of (8). 

We will n(IW examine cases where the \P9~~) are not linearly 

independent. We will always imagine redundant values of~ to be cast 

out, so thnt we address ourselves only to redundancy involving the Euler 

f 
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angle variables. Of course, both sides of (1) are periodic with nny 

doubled ~ler angle domain for period, so that the general restriction 

of (1} as a definition to a single doubled Euler angle domain involves 

no restriction on the generatorse 

The first material restrictions we dis6uss arise in cases of 

states or n particles or definite spin, where the states for pe~ in a 

doubled Euler angle domain depend on those in an ordinary Euler engle 

domain. Equ._ (1) may still be used as a definition of its 1. h. s. if 

restricted to an ordinary Euler angle domain, provided that there are no 

further redundancies. If the number of fermions is even, then the 1. h. s. 

reproduces itself in the other half or a doubled Euler angle domain, but 

the r. h. s. does not, unless it·contains no term of half-odd-integral J .. 

It the number ot fermions is odd, the 1. h. s. reproduces it.sel.f with a 

sign reversal, but the r. h. s. does not, unless it contains no term of 

integral J. The restrictions on the generators (~IJMoQ are, therefore, 

that all those with half-odd-integral or integral J vanish, respectively. 

If the lPB't'fi) restricted to. an ordinary Euler angle domain are linearly 

independent, there are no further relations implied by rotational 

invariance. 

For the case of n = 2 particles with definite spins and 

helicities, we noted in §2 that there is further redundancy, namely, 

that '¥ is a superfluous co6rdinate. It there is no redundancy beyond 

this, (1} can be taken as a definition of its 1. h. s. for 'f= o. For 

rotational invariance, it must however hold for all ~. If the fiducial 

state hns pa.rticles of helicities Al, ~2 and absolute value of momentum p 

moving respectively in the !_z directiono, we write the fiducial state as 

1ooOpA1A2). The-~ dependence of the la h. s. is, then, 

/ 
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' 
The r·. h. se of (1) is a superposition of several terms with 'V dependence 

iM'~ ~ e , so that (1) remains true for all i' T 0 if and only if 

a relation which has the obvious meaning of conservation of the z 

component of angular momentum in transitions to the fiducial state. 

There is ilt~ll further redundancy for n = 2 identical 

particles of the same helicity ~l = \2 = A. In the Appendix, it is 

shown that 

(9) 

(10) 

All the further redundancy is obtained by applying a rotation to both 

sides of (tO). Since (1) is rotationally invariant, it is necessary to 

satisfy the identification implied by 00) only for one example of 

identified states. All further relations among the generators must 

therefore follow from the requirement 

(11) 

The 1. ·h. 8. or .(11) is, by (1), equal to (p})}.\J0~}~001(-~). But 

d00
1(-1t) = (-) 1

, which with (11) shows that the relations are precisely 

that 

(pAA(JO~) = 0 un1es~ J is even, 

a result· which appears in JW after Equ. (47). 

If' S is to commute with operators P other than rotations, 

(12) 

there will be further restrictions among the generators. The additional 

relations sll follow from 

' (13) 

-1 provided P SP is rotationally invariant, which will be true it P 

commutes with rotations. The case of parity is such an example, but 

, 
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these relations usually involve· the scalars p in such a ~~Y that they 

may be satisfied by a restriction of the list p of scalars. In general, 

it is only for n 6 3 particles and all· helicities zero that the parity 

ima.ge is equal to a rotate or the original state, up to a phase factor. 

These relations will not be worked out; for the case ot n = 2, see JW. 

5. Rates 

The matrix elements of Equ. (1) will be introduced into the 

general formula, 

RF1(p9'l') = L (p{e't'pfsfJm1ot)(p9\fA'ls\K,-m2 ,r~..•).._ 
fJ(~ K'"' JKml m2 r 

.I F ·r J,m1 ,()(;K,-m2 ,tx.• f ~·,~· 

for a rate per nx volume of phase space, or an absolute rate it 

conservation 8 functions are kept in the matrix elements, from an 

initial mixture given by the density matrix fi to a final mixture with 

sharp values for the. Euler angles p9'f, but which may otherwise be a 

mixture, so that the final mixture is given by the operator 

\.¢'e1'p')PF , V'e'V,Sl• The use of an initial mixture is too well known 
. I ~ •f> 

to deserve comment; the use or a final mixture corresponds to an 

(14) 

experiment where several linearly independent system states ue.y correlate 

with the same indication of a measuring apparatus. 

By means or Equ. ( 32) of JW, the product of d functioria ma.y be 

written a.s a sum of d functions, 
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dm. ' m J (-e)d_m·· ' m K(~e) 1 , 1 2 ,- 2 

where the c's are Clebsch-Gordan coefficients in obvious notation. 

By using (6) and Equ. (Al) or JW, 

d-m',-mL(Q) = dm,m'L(Q), 

one obte.ins 

which has been brought to the standard form of an expansion in the 
L . . 

D , (p{ef), as may be seen by comparison with (5). This formula is m,m 

(15) 

(16) 

useful when fiJ . Dl'K , C~IJm1 'or) (~'I K,-m2 ' ,rA.•f is large only for . ,m1 , , ,-m2 ,Cit . 

a few J, K, as then Equ. (16) involves only a small number. of standar~-

functions of the Euler angles, although in gener_al, (16) is only a 

t·· 
formal expansion.in the complete set of functions D , (p!B~). 

m,m 

In fact, the Clebseh·Gordan coefficients vanish,_unless 

I J - K I ~ L ~ J + K and m
1 

+ m
2 

+ m = 0, m
1

' + m
2

' + m' = o. 

It the initial mixture has a definite value for J, then 

L ~ 2J. If also all m = -m = M, then m = m' = o, eo that the basic 
1 2 ' 

functions reduce to Legendre polynomials of degree up to 2J, as 

d
00

L(9) = PL(9). A form with m = m' = 0 is also obviously obtained it 

one is not interested in the p and~ distributions, and therefore 

integrates the rate over these angles. If one is interested in the 

deta.iled angular distribution of one particle, one may choose its 

momentum to define e, pf, and integrate over 'II, thereby obtaining m' = 0 

and an expansion in spherical harmonics, since the 

f 

f 
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are proportional to associated Legendre polynomials, 
J... 4 

= (47t/(2L+l)]
2 6'Lm(e). If one wishes to sum over final state 

helicities or over initial stete helicities subject to definite value 

·of total angular momentum and z component thereof, one may indicate 

this in the density matrices p1, fF, for such helicities are included 

in the lists oc, f3 of. scalars, or one may sum several particularized 

re.tes (16); either way, it is clear that the form of (16) remains 

unchanged by such summations. other scalars, as mutual angles 

between momenta, and absolute values of momenta, may also be summed 

over, to obtain, e. g., a formula of form (16) for the e.ngular 

distribution of one particle in a final state, irrespective· of 

other final-state variables. 

Inequalities among the coefficients consequent on 

positiveness of the density matrices will not be explicitly displayed. 

For a pc.rtiel discussi-on, see references 5, 6. 

In order to obte.in a rate for e. definite polarization or 

definite polarizations other than definite helicities, the helicity 

states must be appropriately superposed. If, e. g., the final-state 

helicity quantum number X is involved in this way, then we may use A 
as one of the scalars in the list fl, ~· in /''', and incorporate 1 >..'ltf..l. ~ 
in r' ' . ' where 1). is. the coeffichnt of the). helioity state in the 

fJ ·P 
final polarization eigenstate. · If the ~). are conste.nts, a definite 

relation of polarization to orientation is implied, which is nevertheless 

more genere.l than that given by pure helicity eigenstat es, whereas the 

Euler-angle dependence of (16) is unaltered. Thus, if the 1). device 

with constant 1). is used to give a transverse pola.rization in the p = 0 

or x direction to e: pa.rticle moving in the + z direction in the fiducial 
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state p = 9 = 'V = 0, then the general state with 'V= 0 has this 

particle with a transverse polarization pointing due south, and for 

f 1 0 the polarization is still tre.nsverae, but is oriented 't' east of 

· due south. If the polarization is required to have other dependence 

on the Euler angles p9'f, then the 1~ will be functions or the EUler 

angles, so that the Euler-angle dependence or (16) will no longer be 

that explicitly displayed in (16). For an analogous explicit e~pression, 
. ... 

the J.~ and i >.' would have to be analyzed into D functions, 'which would 

when multiplied by each other and by the explicit D functions in (16) 

give rise again to a sum of D functions. 

Finally, there is the very important case or the,2-particle 

initial state, with sharp momente along the z axis, and sharp helicities 

>.
1

, \
2

, the first associated with the particle moving in the +z direction. 

In the notation and normalization of JW, who suppress the index p, 

JW (20, 22, 24), this state is 

loo~1 ~2) = LJ[(2J+l)/41T}t l.m~1 ~2), 
M = ~- ~' 

which corresponds to the use of (4'JI)-1(2J+l)t(2K+l)t for fi a~d 

m
1 

= -m
2 

= ~l - ~2 , m = 0, in Equ. (16). 

6. Interpretation of Halt-Odd-Integral D FUnctions in the Rate 

The formal expresaion (16) admits nonzero terms with ·., 

half-odd-integral L, when p1 terms with one of J, K integra~ and the 

other half-odd-integral occur, provided that also r' include such 

states p that (plJm1 '«) of both 

vanish, or more precisely, that 

integral and half-odd-integral J don't 

St\fo')fF , (B(s andfl have elements 
p '/A r 

, 
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between common integral and he.lt-odd-int egral J stAtes. lt we confine 

ourselves to states formed by creation of fermions and bosons into 

vacuum, this requirement means that, when (16) describes e transition 

probability between pure states, both initiel and final states must be 

superpositions of states with even and odd numbers or fermions,, with 

a definite relative phase 1 between such components of a state. 

Since a density matrix is used to represent the correlations of a 

limited system with external systems or "measuring devices" in cases 

where the relevant matrix elements involve only limited system variables, 

the use of denSity matrices of the type necessary to yield half-odd-

integral L will arise only if there exist interactions involving such 

phases 1. Such interactions are not known; the content of the 

. half-odd-integral L terms of (16) is that their existence would be 

equivalent to an independent physical meaning for all the co6rdinates 

in a doubled Euler angle domain. The remainder of this section is 

devoted to the elaboration of a re.ther .fanciful example, to make this 

point clear. 

Let at be a creation operator for a spinless particle at 

rest, and let bt be a creation. operator for a spin-t particle at rest, 

with z component of spin t. Then 

R(DC,81)2-t(at + bt)(R(OC_fo't))·l 

= 2 --~(at + L M e-i~M ~M,t i(p) e -i'¥/2 bui') 

= 2 ... I (ai + ~ M DM,tt((;(~"J}bMt_) 
l! qt (O<~l), . 

where bMt is the creation operator for the fermion .. e.t rest with z 

component of spin M, may be regarded as the creation. operator for a 

particle or mixed spin at rest, with its polarization pointing in the 

(17) 
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direction p, bt and with 't specifying the relative phase between the 

fermion and boson components. For the corresponding mixed particles 

to appeer as physical entities with well•det'ined internal phase 't, 

it :is necessary that the masses of boson and fermion components be 

sufficiently close that the mass difference not imply too rapid a 

change of 1, and that an interaction involving mixed creation and 

annlhilation operators, qt and q, occur. Thus, the decay of a heavy 

mixed particle into two splnless bosons and a light mixed particle 

could be described by formula (16) , with p9i' having the usual inter­

pretation as EUler angles for a 3-body final state. Let e, p be the 

polar angles for the final mixed particle, let '\' specify th.e orienta-

tion of the decay plane, and let us assume detectors sensitive to the 

helicity of the fermion component and the internal phase of the mixed 

final particle; at each angle Q, p, for definite fermion helicity, 

there is still a 2-dimensional space ot mixed-particle states, and we 

assume a detector sensitive to a particular one of these dimensions. 

Such a detector could distinguish between a state and its 21f•rotate, 

because the change of internal phase renders the 21t-rotate orthogonal 

to the unrotated stat e. · Therefore the result (16) for the rate, 

involving half angles in this case, is perfectly reasonable. 

A detector sensitive to internal phase is also necessary to 

prepare the initial state. Such a detector could be imagined to be 

fashioned from mixed particles itself, provided that there be a mutual. ' 

intera.ction between mixed particles depending on the difference of 

internal phase of the interacting particle~ so that internal phases 

could be calibrated relative those of the mixed particles in the detector. 
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A 'simpler "detection" could be im9.gined if the detection intere.ctions 

are allowed to violate rotational invariance, although the transition 

operatorS is not; e. g., the lifetimes of mixed particles could be , 

taken dependent on internal phase~ 
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Appendix 

This is a verification that 

in the case of two identical partie!~ or see JW, p. 419. 

(10) 

looop~') = Lz(p)~tLz(-p)Lz(-p)a_~t Lz(p) \vac), (18) 

where aXt creates one particle of momentum2, z component of spin~. 

total spin s, and L
2

(p) is a Lorentz transformation along the z axis 

leading to a +z component p of momentum for a single particle originally 

at rest. 

loxop~~ = R(owo>)ooop~~). 
and we abbreviate R(01tO) = R (11"). Clearly, 

y 

. Ry (Tf) Lz (p )a~t I vac) = aLz ( •p) a .. )_ t lvac >, 
Ry('Jl)Lz(-p)a_~tlvaC) = bLz(p)a~tlvac), 

(19) 

(20) 

(21) 
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where a and b are phase factors. By applying R (n) to both sides of 
- - y 

(20) and using (21), we find 

R (2t)L (p)a\1 \vac) = abL (p)a\"t lvac), 
y z " z " 

whereupon the fact that R (2'n) acts as+ 1 on a state o! even or odd 
y ' -

total angular momentum, respectively, gives ua 

ab = (-) 28 • (22} 

From (20, 21) and standard q-number theory conventions, 

.R (1)L {p)a,tL (-p)R (·11) = aL (·p)a \tL (p), (23}. 
y Z ~ Z Y Z ... A Z 

R ('J()L (-p)a \1 L (p)R ( -'1(') = bL (p)a\TL (-p). (24) Y Z •A Z Y Z A Z 

F..xplicitly, (19, 18) yield 

\01iOp~~) = R ('f)L {p)a,tL {-p)R (-t)R (1[)L (-p)a ,tL (p)R (-J)\va~, (25) Y Z A Z Y Y Z -A Z Y ~/ 

so that by (23, 24), 

loltOp).).)= ab(\(-p)a_~tLz(p~(Lz(p)a~1L1 (·pU \vac). (26) 

If the operators in brackets could be interchanged, we see by (18) 

that ab looop~~) would be obtained. According to the spin-statistics 

relation, this can be done if we introduce a factor (-) 28• By (22), 

this cancels ab, yielding (10). 
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