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Angular Distributions
Elihu Lubkin

lawrence Radiation Laboratory, Berkeley, California
April, 1960
Summary. - The theorem for distributions in the angles 0, g is extended

to the third Euler angle.‘y, whereupon it becomes eduivalent to the
rotational invariance of the responsible interactions., An interpretation

of half-angle terms in the general rate formula is given.
" 1. Introduction

A formaliy complete repreaentation of the content of rotational
invarisnce is given by the Wigner-Eckart theorem. Although this theorem
refers directly only to matrix elements betWeen’eigenstates of the total
anguler momentum J and its z component M, it,may nevertheless be applied
to other matrix elements, by«introdtcing transformation matrices to and
from a J, M representation,

However, when one set of stetes is given in & J, M representa-
tion and the other is given in terms of Euler angles and rotational
invariants, the content of iotational‘invariance.maysbe develobed very
directly. The mest striking result is & restriction on the dependende
on the Fuler angles of th§ matrix elements; for fixed J, there_aﬁpear
only a finite number of stenderd functions. Such restrictions have

1y 2 vut the arguménts are simplified when presented

long been kn6Wn,
for helicity eigenstates, The discussion here will aim at generality;

in presenting results involving all three Euler angles.
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2. Tuler Angles

Euler angles are familiar from the discussion of a rigid
body in clessical mechanics. One imagines the body pleced in some
stendard or fiduciary orientation with respect to & right-handed
Cartesian reference frame. The body is rotated first through angle ¥
sbout the z axis, by which is meant & counterélockwise or pbéitive
rotation in the xy plene, and which is formally equivalent to &
cofresponding negative rotation of the reference frame; then through.
angle 8 about thé y axis;'and finally through angle g about the gz axis.
The entire operation will bevdesignated-R(ﬁbW0. The seme operation
can be applied to a fiduciesry quantum-mechanical stete, tc generate &
rotationally invariant family of -states as the Euler angles 4, 6, ¥
are allowed to. viary. |

If the 6rigina1 stete be decomposed into its irreducible
perts according'to the covering group of the rotation group, i. e.,
into eigensfatea of totél angular momentum J, it is seen that a rotation
of 27 about any esxis restores the coﬁponents of integrel J, and restores
those of half-odd~integral J except for reversai,of"sign. Therefore,
as J, 8, ¥ vary over & doubled Euler angle domain, thé_state in all cases
varies over all its rotational images. The usual convention for Euler
angle domain is 0 % F< 2%, 0£ 0 < T, 0<£ Y& 2T, and an appropriate doubled
«-fangé:may ﬁe obtained by, e. g., allowing either g or ¥ the range [0, 47).

- ‘More particulerly, consider & staﬁe éf n particles of definite

spin, the igg.particlo with momentum‘gi,'and with helicity'(spin componenﬁ
»along the direction °f.81) Xi, with total momentum :E'i : 1 Bi = g,

Such a state may be specified by a list of rotational invariants: the )i,
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tpe‘Eizgj.-- the letter being of courge highly redundent for large n,
and any specifications of the types of particle invo}ved, augmented by
three Fuler angles. The latter may be assigned as follows: W to specify
"the orientetion of the figure of n-1 of the momente about a distinguished
'one, and 6, ¢ to specify the direction of the distinguished momentum.
Such agsignments are particularly convenient if one wishes to describde
‘ the sngular distribution of one particular final—state,parficle, although
other assignments could bé equally interesting if one is interésted in
the entire figure of n momenta..

Exact phaee conventions are easily fixed.3 Pick creation
operators for particles et rest, spinequantized on the z axis, with
Condpn—Shortley c;nventions for the infinitesimel rotation operators

y* Then appiy.an active Lorentz transformation to‘produce‘a creation
operstor for & perticle of momentum p along the z axis, and finally

RS

rotate with the operator R(}h, @5 0) to produce thevcreation.opefator
appropriafe to an arbitrary direction. R(ﬂp, Op, -ﬂp) is an alternate
choice used by JW, equally applicable here; any definite convention for
Y; will do. Our fiducial state is produced by n successive creation |
operators of this form acting on e vacuum state, end the general state
18 obtained by applying R(4eV¥) to the entire fiducial state.
Thus we have produced & rather general example of how colrdi--

anéiea mey be‘so specified &8s to yield & system of-states labelled
exclusively by é list p of rotational invariants or “scalars" and Euler
engles, #, 8, Y. Since the scelars don't enter ectively in our
arguments, no detailed discussion of their redundency in particuler
examples will be presented, but redundancy involving the Euler angles will

claim some of our attention.
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For n 2 3 particles, we have, except in very special cases
which we will not discuss, 8 configuration which requires all three
angles for the description of its orientation, Thus, ©, ﬁ-may be used
" as spherical angles for the momentum of largest absolute value, and Y
as the angle from the plane of longitude through that'momentum to the
plane determined by the two largest momenta; W’is-tﬁen the angle east

of south of the second momentum's projecfion on & sphere at the point

@, # determined by the first. There is, them, no linaai dependence
emong the szteé given by the g, ©, V¥ of the Fuler angle domain, but

the sfateé given by 4, 8, ¥ in thé other half of a doubled domein are
either + the corresponding stetes, obtained from them by e Zﬂ'rotgtion,-
according as the number of fermions is even or odd. This redundancy

is not necessarily present for stztes where the number of fermions is
nof sharp,

For a two~body state of particles of‘definiterspin and helicity,
there is much more redundancy, so thet in this discussion, it appears |
-as & degenerate case. In fact, the ¥ rotation leads only to & phese
factor. Since the absolute value of the momentum is not in this case
available for distinction of particles, there is even further redundancy
‘for the case of two identical particles of the same helicity, for which
a complete but independent sef of states is obtained by cutting the

Euler angle domain in half,
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3. The Genersl Theorem

The matrix element of & rotationally invariant operstor S
between a state |J ¥ &) specified by the total angular momentum J, its
z component M, and & list & of rotational invariants, and a statg
|;!e\|*p> specified by Euler angles and 2 listp of rotational invariants,
is alwayg of form
<go¥pIsi IMny = =, (gl MY MY Y L 2(-0)e'M?
= Z s €M (B1INX) Doy e ($09),
where the (B]JM®) are the values of the matrix elements for &ll Euler
angles zero, and the d and D functions are the matrices for active

rotations defined in JW; namely,

R(doy) = é-iJz;{e«inee—iJzY, | | : @)
R(goy) | 1) = 2o DM.#J(;KGY)NM‘), ()
oM ) = 3,y (0) |, (4)
80 thet | | |
oyt = W T@e Y, 15)

, The result (1) is obtained as follows. |foV¥R)y = R(goy) jooopy,
80 that <%9*pl= <b00@\R’l(¢GY). The rotation opersator thus extracted
is commuted with the rotationally invariant operator S, and then in
the form

! (foY) = eiJz‘{’eineeiJz;{
is applied via Fqu. (4) to ‘JMN), to obtain (1). The second form is

obteined by means of the identity

J 2NNt J
supplemented by the identity
| DS "0 S |
dM " (@) = (=) dMM' (G) (7)

of JY, Fqu, (Al).
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The impdrtance_of the result lies in the fact that only &
small number of functions of the Euler engles is involved, for fixed J,

Such qualitetive remerks will also be seen to hold for appropriate rates.
4, Relations Among the Generators

It is almost obvious thet (1) not only follows from rotational
invariance of S5, but also imp;ies rotational invariancé. More
precisely, we inquire whether the generators (ﬁ‘JMK) of the matrix
element-accordiﬂg to (1) may be chosen as independent complex numbers, .
or what relations they must satisfy, to assure rotaiional invarignce
and a consistent definition of the matrix elements.,

‘ Suppose, first, that the states |¢ew¢> are linearly independent,
50 that (1) may be used as a definition of its left-hand side for
erbitrary complex numhers (ﬁ|JMUQ_on-the right,. Then it is easy to
prove that the matrix so defined is rotationally inverient. Explicitly,
we ask |
(;{lel\vlpln‘l(ﬁzez\yz)slmu)i—. (;!lelvlﬂsEM.D'IM';MJ(Béez\Pz) lowray.  (8)
The 1. h. s. is equal to (Q@TP\S‘JMCK), where Q, @,‘1’ ‘are the angles
achieved by the successive operation R("zgz*z)“(ﬂlgﬂl) = R(POF).
By (1), it follows that the 1. h. s. is equal to

ooopls 2,07, (39T far )
= <°°°(5\SEM°M"D-1M'M"J("191‘V1) Delu"m J(ﬂzgz‘vz) Ly

But this is also the result obtained by applying (1) directly to the
r. h. s. of (8).

We wili now examine cases where the \ﬁe?p) are not linearly
independent. We will always imagine redundant values of P to bve cast

out, so that we address ourselves only to redundancy involving the Euler
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angle variables, Of course, both sides of (1) are periodic with any
doubled Buler angle domain for period, so that the general restriction
of (1) as a definition to a single doubled Euler angle domain involves
no restriction on the generators.

The first material resfricfions we diséuss arise in cases of
states of n particles of definite spin, where the states for ﬁbv in a
doubled Euler angle domain depend on those in an ordinary Euler angle
domein., Equ. (1) may stiil be used as a definition of its 1. h. s. if
restricted-t§ an ordinery Buler angle domain, provided that there are no
further redundancies., If the number of fermions is even, then the 1. h. 8.
reproduces itseif in the other half of a doubled Euler angle domein, but
the r. h. s. does not, unless it'contains no term of half~odd-integrel J.
If the'numbér of fermions is odd, the 1. h. s. reprbduces itself with =
sign reversal, but the r. h. s. does not, unless it contains no term of
integral J. The restrictions on the generators (ﬁIJMM) are, therefore,
that all those with hﬁlf—odd-inﬁegral or integfal J vanish, respectively.
If the Iﬁb?p) restricted to an ordiﬁary Buler angle domain are linearly

independent, there are no further relations implied by rotational =
‘invariance.

For the caée of n= 2 particles with definite spins and
helicities, we noted in §2 that there is further redundancy, namely,
that ¥ is a superfluous colrdinate. If there is no redundancy beyond
this, (1) can be taken as a defiﬁition of its 1, h; s. for Y= 0, For
rrotatibnal invariance, it must however hold for all Y. If the fiduciel
state has particles of helicities )N Xz and absolute value of momentum p
moving respectively in the +z directions, we write the fiducial state as

lOOOpXIXZ>. The ¥ dependence of the 1. h. s, is, then,
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i(xl-)‘zw(pfeo;ﬂlxz\ s\ e,

<go¥pa ), |s| ey = ¢ |
The r. h. 8. of (1) is & superposition of several terms with \V dependence
eim'v,,so that (1) remains true for all Y7 0 if and only if
(PA A, | M%) = 0 when M* 7 M -\, | (9)
a relation which has the obvioﬁs meaning of conservetion of the z
component of anguler momentum in transitions to the fiducial state.

There is-éf;li further redundancy for n = 2 identical
particles of the same helicity ) = \2 = A. In the Appendix, it is
shown. that

loTopAX)y = |ooop AN ~ (0)
All the further redundancy is obtained by applying a rotation to both
sidequf (10). Since (1) is rotationally invariant, it is necessary to
satisfy the identification implied by (I0) only for one example of
identified states. All further relations among the generators must
therefore follow from the requirement
Sovopanlsi ooy = <0oopM] s|aop) = (pANlson). | (11)
The 1. h. s. of (11) is, by (1), equal to (P»\Jou)dooJ(‘K). But
dooJ(-ﬂ)'= (-)J, which with (11) shows that the relations are precisely
that | | |
(pM[JOX) = 0 unless J is even, : (12)
a result which appears in JW after Equ. (47).

If S is to commute with operators P other than rotations,
there will be further restrictions among the generators., The additional
relations all follow from

{ooop|p~tsp|amu>= (B|nw), | | o .(3)
provided P ISP is rotationally invariant, which will be true if P

commutes with rotations. The case of parity is such an examéle, but
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these relations usual;y involve the scalars ﬁ in such a vay that they
mey be satisfied by a restriction of the list P of scalars. In general,
it is only for n £ 3 particles and all helicities zero that the parity
image is equal to & rotate of the original state, up to a phasé factor.

These relations will not be worked out; for the case of n = 2, see JW.
5. Rates

The matrix elements of Equ. (1) will be introduced into the

general formula,

Rp (deY) = > (yf@‘i’p‘SIJmf)(ﬁGW‘_;'lS"Kﬁmz,u'y‘

Tl
T o (14)
P 3w ik, mg, o £ oprp?
for a rate per 2% )X volume of phase space, or an absolute rate if
‘consérvation § functions are kept in the matrix elementg, from an
initial mixture given by the density matrix PI to a finai mixture with
sharp values for the Euler angles ﬁb?, but which may otherwise be a
mixture, éo that the final mixture is given by the operator
‘ﬁ{e?p'>pr' 'P@e\i’p!. The use of an initial mixture is too well known
to deserve comment; the use of a final mixture corresponds to an -
experiment where several linearly independent system states nmay correl&té
with the same indication of = moasuring apparatus.
From (1),

R..(doy) = ! : P g,
Fl ﬁ( ‘P) upu"P'ZJ‘Kmlmzml'mz'P J’ml’a’K"‘mzt«f)p ’P

1(my +my " )Y J K
*e i dml"ml ('g)d_mzr’,mz ('9)

(P 'Jml .0() (ﬁ.\ Ko'mz' ,N')‘%

ei(ml+m2)ﬁ.

By means of Equ. (32) of JW, the product of d functiora may be

vritten as a sum of d ruhctions,
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Pyt
i

J K, .
8 v ym (O)dopy g, (=)

I X L I K L mommo’ L
c c ( ) 2 2 d ('9) »
Lom " mp’ mmpt m om " m) ‘+my’ ,my+m,

where the ¢'s are Clebsch-Gordan coefficients in obvious notatioh.

By using (6) and Equ. (Al) of JW,

Qe (©) = dy 1 (6), 1s)

one obtains

R__( 8Y) = » 1 ; F ' . . ¢

ri!f “F""g:jm“lmzmml 'my'm’ R . ,p(P\ m (16)
. ‘ - «im? 16

.(P"K.'mzv,w)"(-)ml*m] cmi' m:' _;. cil 52 -:; o iml‘d ,m.L(G)e im \P.

which has been brought to the standard form of an expension in the -
. (gfe‘{‘), as may be seen by comparison with (5). This formule is

(pIJml ‘o) (P IK,-mz o' )‘ is large only fof-_

.mm

useful whan]J Im 1'“ K, -, !
e few J, K, 28 then Equ. (16) involves only & small number of standéng
functions of the Fuler angles, although in general, (16) is only a \
formal expansion in the complete set of-functiona‘Dm’m,Ln(\p’e‘P).

In fact, the Clebsch-Gordan coefficients vanish,,unleevs

IJ-K‘S_L.‘.J+K'and m1+m +>m=0, m‘+m2'+m'=0.

2 1

, If the initial mixture has & definite value for J, then
L £ 2, If also all m, = -m, = ¥, thenm = m' = 0, ‘g0 that the basic
functions reduce to Legendré polynomials of degree 'up to 2J, as
dOOL(S) = PL(G). A form with m = m' = 0 is also obviously obtained if
one is not interested in the 4 and‘\y distributions, and therefore
integrates the rete over.these engles. If dne is intérested in t_he
detailed angular distribution of one particle, one may choose its
momentum to define 8, 4, and integrate over Y, thereby obtaining m' = 0

and an expansion in spherical harmonics, since the
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d ’OL(Q) are proportional to associated Legendre polynomials,
dm’OL(G) = [:}N/(2L+1)]%@1m(9).4» If one wishes to sum over final state
helicities or over initiml stete helicities subject to definite value
“of total angular momentum and z‘component thereof, one may indicete
this in the density matrices PI, PF, for such helicities are included
in the lists a,?ﬁ of scelars, or one may sum several particularized
retes (16)§ either way, it is clear that the form of (16) remains
unchanged by such summations. Othef scalars, as mutual angles

between momenta,»and abgolute values of momenta, may also be summed
over, to obtain, e. g., & formula of form (16) for the engular
distribution of one particle in a final state, irrespective of

other final-state variables,

Inequalities ambng the coefficients donseqdent on
positiveness of the density matrices will not be explicitly displayed.
Fof e partisl discussion, see references 5, 6.

In‘order to obtain a rate for a definite polarization or
definite polarizations other than definite helicities, the helicity
sfates must be appropriately superposéd. If, e. g., the final-state

‘helicity quantum number )\ is involved in this way, then we may use )\

as one of the scalars ;n the list p, A\' in Is", and incorporate 2)"41\
in f,F'B' - where §, is the coefficient of the helicity state in the .
final polarizatioh eigenstate.  If the 2) are constents, a definite
relation'of polarization to orientation is implied, which is nevertheless
more genersl than that given by pure helicity eigenétates, wherezs the
Eulereéngle dependence of (16) is unaltered. Thus! if the lx device
with'constént l}.is used to give a trensverse polariiatibn in the § = 0

or x direction to & particle moving in the +z direction in the fiducial
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state § = 8 = ¥ = 0, then the general state with Y= 0 has this
perticle with a transverse polarization pointing due south, and for
‘Y# 0 the polarization is still trensverse, but is oriented \P‘ east of
- due south. If the polarization is required fo have other depéndence
on. the Buler angles #8Y, then the !x will be functions of the Euler
angles, so that the Euler-anglé dependence of (_16) will no longer be.
that explicitly displayed in (16). For an analogous explicit expression,
the ).\ and ,Qx#' would have ' to b'e anelyzed into D functions, which would
when multiplied by each other and by the explicit D functions in (16)
give rise again to a sum of D functions.

Finally, there is the.very important cese of the .2-particle
initial state, with ehgrp moments along the z axis, and sharp helicities |
Mo\

1 2
In the notation and normalization of J%¥, who suppress the index p,

y the first associated with the particle moving in the +z direction.

i (20, 22, 24), this state.ia
loox, 3% = X, J[(2J+1)/41r]’5 lex, )
- \

which corresponds to the use of (4f) '1(2J+1)"§(2K+1)% for ‘oI and

tn1 = --rn2 = )1 - XZ’ mé 0, in Equ. (16).

6. Interpretation of Half-0Odd-Integral D Functions in the Rate

'Iﬁe formal expression (16) admits nonzero terms with
half-odd-integral L, when pI terms with one of J, K 'intégrd;' and the
other half-odd-integral occur, provided that also /oF include such
states § that (B|Jm 'a) of both integral and half-odd-integral J don't

. A F - I
vanish, or more precisely, that S |a') (f1s end have elements
’ ’ F f p' ’PF‘ f
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between common intégral and helf-odd-int egral J states. If we confine
ourselvés to states formed by creation of fermions and bosons into
vacuum, this requirement meeans that, when (16) descfibes 8 tranéitibn
probability between pure étates, both initisl and final statés must be
superpositions of states with even and odd numbers of fermions,,with

a definite relative phase Y between such components of a state.

Since a‘density matrix is used to represent the correlations of &

limited system with external systems or "measuring devices"™ in cases

where the relevant matrix elements involve only limited system variables,

the use of density matrices of the type necessary to yield half-odd-
integral L will‘arise-only‘if_there exist interactions involving such
phases Y. Such interactions are not known; the content of the‘
.half-odd-integral‘L terms of (16) is that their existence would be
equivalent to an independent physical meening for all the coBrdinates
in 2 doubled Euiei engle domain, The remainder of this section is
devoted to the elaborétion'of‘a rather-fancifu; example, to meke this
point clear., |

Let al be & creation operatof for a épinless,particlé at
rest, and let bt be a creation. operator for a spin-% particle at rest,
with z component of spin 4. Then

 ropz et oy mepmn

_ .2-;%(; s 3 | emivl ,dM,-f(ﬁ) a-i’X/z bm”_
LICUR D é_‘%(oclay_)bm"_)
at (xB?),

where bﬁt is the creation operet or for the-fermion,at rest with z

1]

component of Spih M, may be regarded as the creation operator for a

particle of mixed spin at rest, with its polarization pointing in the

(17)
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direction ,9, & and with Y specifying the relative phaese between the
fermion and boson components. For the correéponding mixed particles
to appear as physical entities with well-defined internal phase ¥,

it is necessary that the masses of boson and fermion components be
sufficiently close that the mass difference not imply too rapid a
change of ¥, and that an interaction involving mixed creation and
annihiletion operators, df and d, occur., Thus, the decay of & heavy
mixed particle into two spinless bosons and a light mixed particle

" could be described by formula (16), with goY having the usual inter-
pretation as Ruler angles for a 3-body final state. Let 8, g be the
polar angles for the final mixed particle, let ¥ specify the orienta-
tion of the decay plane, and let us assume detectors éensitive to the
heliéity of the fermion component and the internal phase of the mixed
final particle; at each angle 8, g, for definite fermion helicity,
there ig still a 2-dimensional space of mixed-particle states, and we
‘agsume a detector sensitive to a particular one of these dimensions.
Such a detector could distinguish between a state and its 2f-rotate,
because the change of internal phase rende;s the 2ﬂ-rotate ofthogonﬁl
"to the unrotated state. Therefore the result (16) for.the rate,
involving half ahgleé in this case, is perfectly reasonable.

A detector sensitive to internal phase is also necessary to
prepare the initial state. Such a detector could be imagined to be
fashioned from mixed particles itself, provided that there be a mutual
interaction between mixed particles depending on the difference of
internal phase of the interacting particlej, so that internal phases

could be calibrated relative those of the mixed particles in the detector.
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A simpler "detection® could be imagined if the detection intersctions
are allowed to violate rotational invariance, although the transition
operator S is not; e. g., the lifetimes of mixed particles could be

taken dependent on internel phase,
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Appendix

This is & verification that

JomopAX) = QOOOpXX), o (10)

in the case of two identical particles or see JW, p. 419.
= t Ny .
looopIN) = L,(p)ey Lz(-p)Lz(-.p)%!__x1 L, (p) |vac), - (18)

.t

where ak creates one particle of momentum.g, z component of spin N,
total spin s, and Lz(p) is & lorentz transformation along the z axis

leading to a +z component p of momentum for & single particle originally

at rest, ‘ ,
loxopMy = R(0f0) | 000p)Y, | (19)
and we abbreviate R(ON0) = Ry(ﬂ?. Clearly, |
R ML ()] vady = ar (-p)a, Tac), (20)

'RYCH)LZ(-p)a_it|va5> = bLz(p)a‘rlvac>, | , (21)
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where a and b are phase factors. By applying Ry(ﬂ) to both sides of
(20) and using (21), we find
1 = 1
| Ry(ZT)Lz(p)ax ‘va€> abLz(p)ax lvae),
whereupon the fact that Ry(zn) acts as + 1 on a state of even or odd
- total angular momentum, respectively, gives us
 ab= (978, , (22)
From (20, 21) and standard q-number theory conventions,
. 1 - - = - T | .
By(ﬁ)Lz(p)ax L ( p)Ry( M = al (-pa_ 'L (p), - (23)
R (ML, (-p)a_ ' L, ()R (-M = bL, (p)ay’L, (-p). , (24)
Explicitly, (19, 18) yield
lomopA) = R ML, (p)a, "L (-p)R_(-DIR (ML (-p)a L (PR (-P|ved), (25)
| y T N e y y e -\ 2y
so that by (23, 24), . ,
= wft, (et () (1, et o] .
lororAWy = =ft, (-pa Vi o) {1 2)ayl 1 (-p)f |vac). (26)
If the operators in brackets could be interchanged, we see by (18)
that ab |000p)‘x> would be obtained. According to the spin-statistics
relation, this can be done if we introduce a factor (-)28. By (22),

this cancels ab, yielding (10).
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