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Purpose: This study aims to evaluate the potential and feasibility of positron emission tomography
for dynamic lung tumor tracking during radiation treatment. The authors propose a center of mass
(CoM) tumor tracking algorithm using gated-PET images combined with a respiratory monitor and
investigate the geometric accuracy of the proposed algorithm.
Methods: The proposed PET dynamic lung tumor tracking algorithm estimated the target position
information through the CoM of the segmented target volume on gated PET images reconstructed
from accumulated coincidence events. The information was continuously updated throughout a scan
based on the assumption that real-time processing was supported (actual processing time at each
frame ≈10 s). External respiratory motion and list-mode PET data were acquired from a phantom
programmed to move with measured respiratory traces (external respiratory motion and internal tar-
get motion) from human subjects, for which the ground truth target position was known as a function
of time. The phantom was cylindrical with six hollow sphere targets (10, 13, 17, 22, 28, and 37 mm in
diameter). The measured respiratory traces consisted of two sets: (1) 1D-measured motion from ten
healthy volunteers and (2) 3D-measured motion from four lung cancer patients. The authors evaluated
the geometric accuracy of the proposed algorithm by quantifying estimation errors (Euclidean dis-
tance) between the actual motion of targets (1D-motion and 3D-motion traces) and CoM trajectories
estimated by the proposed algorithm as a function of time.
Results: The time-averaged error of 1D-motion traces over all trajectories of all targets was 1.6 mm.
The error trajectories decreased with time as coincidence events were accumulated. The overall error
trajectory of 1D-motion traces converged to within 2 mm in approximately 90 s. As expected, more
accurate results were obtained for larger targets. For example, for the 37 mm target, the average error
over all 1D-motion traces was 1.1 mm; and for the 10 mm target, the average error over all 1D-
motion traces was 2.8 mm. The overall time-averaged error of 3D-motion traces was 1.6 mm, which
was comparable to that of the 1D-motion traces. There were small variations in the errors between the
3D-motion traces, although the motion trajectories were very different. The accuracy of the estimates
was consistent for all targets except for the smallest.
Conclusions: The authors developed an algorithm for dynamic lung tumor tracking using list-mode
PET data and a respiratory motion signal, and demonstrated proof-of-principle for PET-guided lung
tumor tracking. The overall tracking error in phantom studies is less than 2 mm. © 2014 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4861816]
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1. INTRODUCTION

Motion management during radiotherapy has been vigorously
researched over the past several years, but it remains chal-
lenging to reduce the effect of motion due to irregular and
unpredictable motion patterns.1 The best strategy for motion

management is dynamic tumor tracking (i.e., image-guided
real-time tumor tracking), which enables continuous radia-
tion on the target, reducing the treatment setup margins and
the effect of motion of the target during treatment.1, 2 Com-
mercial instruments have been developed to achieve dynamic
tumor tracking, such as the CyberKnife Synchrony system
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FIG. 1. Geometry (left) and schematic (right) of an integrated PET-linac in which the PET signal (coincidence events) can be used to estimate the target position
during radiation delivery.14, 15

(Accuray, Inc.), the gimbaled linear accelerator (linac), the
beacon electromagnetic transponder (Calypso Medical), and
magnetic resonance imaging (ViewRay, Inc.).3–7 In almost all
cases, for in-room imaging, x-ray imaging (using megavolt-
age or kilovoltage source) with implanted markers is used
for dynamic tumor tracking.8–10 However, implanted markers
have potential problems to cause pneumothorax and maker
migration.11, 12 Markerless tracking techniques are alternative
non-invasive methods, but direct tracking is difficult or im-
possible if the tumor is hidden behind other structures such as
the vertebrae, ribs, and heart.

Positron emission tomography imaging has not been in-
corporated with radiotherapy systems (e.g., linac) despite the
potential of biologically based targeting. New methods us-
ing on-board PET have been recently proposed for radia-
tion treatment.13–18 Fan et al. evaluated the feasibility of a
combined PET-linac system for real-time guidance of ra-
diotherapy for moving targets in Monte Carlo simulations
(Fig. 1).14, 15 Darwish et al. proposed PET using an open dual
ring geometry, which was investigated as an on-board system
for functional imaging and PET marker tracking in Monte
Carlo simulations, specifically with tomotherapy.13 Yamaya
et al. developed the first small PET prototype with an open
dual ring geometry in order to show a proof-of-principle
of PET-guided radiation therapy. Tashima et al. proposed a
single-ring PET geometry with an accessible space and in-
vestigated the sensitivity of the geometry theoretically.17 The
common feature of all the proposed PET geometries is pro-
viding an accessible open space in which a radiation treatment
system can be positioned.

To the best of our knowledge, there have been no previ-
ous efforts to evaluate the accuracy of tumor tracking using
PET. In the literature, Tashima et al. demonstrated the poten-
tial and feasibility of PET-guided tumor tracking using the
point source with a 30 s cycle sine curve. However, the simu-
lated motion is not realistic compared to actual human breath-
ing and difficult to be used for tracking accuracy evaluation.18

The current limitations of PET such as long imaging times
and low spatial resolution may explain reasons why FDG-
PET has not been considered for PET-guided lung tumor
tracking despite the potential of biologically adaptive radia-
tion treatment. Due to the long imaging times and low spatial
resolution, respiratory tumor motion degrades the image qual-
ity of PET, particularly in thoracic and abdominal images. In
PET scans, data are acquired for 3–5 min per bed position.
Therefore, PET images are time-averaged over many respira-
tory cycles (average respiratory period: 4∼5 s) causing mo-
tion blurring artifacts. As the result of blurring artifacts, tu-
mor volumes are overestimated in size, and the corresponding
standard uptake value (SUV) is underestimated.19–26 There-
fore, rather than research PET-guided tumor tracking, previ-
ous studies have focused on reducing motion blurring artifacts
in PET images.

There are four broad classes to reduce artifacts caused by
respiratory motion in PET images: (1) hardware-based gating,
(2) software-based gating (Refs. 27–34), (3) incorporated-
motion-model based algorithms (Refs. 35 and 36), and
(4) joint estimation (Refs. 37 and 38). In the categories,
hardware-based gating is an only clinically approved method
based on the assumption that external respiratory motion is
a surrogate for motion of internal structures. Devices such
as pressure sensors, spirometers, temperature sensors, or the
real-time position management (RPM) system are employed
to monitor external respiratory motion and generate a trigger
signal at a user-predefined phase or displacement.19–21, 25, 39, 40

To reduce lesion blurring, gated PET or four dimensional (4D)
PET retrospectively correlates the external respiratory motion
with the PET data acquisition to allow image reconstruction
at different phases or displacements of the external respiratory
signals. PET research regarding motion management has been
focused on motion correction such as reducing motion blur-
ring artifacts, not dynamic tumor tracking, because of long
scan times and low spatial resolution. However, all the above
approaches except IMM-based methods imply the possbility
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that motion information can be derived from PET raw data or
reconstructed images.

This study aims to evaluate the potential and feasibility of
PET for dynamic lung tumor tracking during radiation treat-
ment. The research focus is to evaluate tracking accuracy in
a commercial PET scanner for a proof-of-principle based on
the assumption of real-time processing. We propose a center
of mass (CoM) lung tumor tracking algorithm using gated-
PET images combined with a respiratory monitoring signal.
The geometric accuracy of the proposed algorithm was quan-
tified in a dynamic phantom study.

2. METHODS

Figure 2 shows the workflow of PET dynamic tumor track-
ing using external respiratory motion and list-mode PET data.
The proposed algorithm estimates the target position infor-
mation through the CoM of the segmented target volume

on gated PET images reconstructed from accumulated co-
incidence events, which is continuously updated through-
out a scan. External respiratory motion and list-mode PET
data were acquired from a phantom programmed to move
with measured respiratory traces (external respiratory motion
and internal target motion) from human subjects, for which
the ground truth target position was known as a function of
time.41 (Fig. 3)

2.A. Motion input

2.A.1. PET targeting accuracy using 1D-measured
motion from healthy volunteers

We used the external respiratory motion traces of ten
healthy volunteers acquired in the Venkat study to reproduce
free breathing traces with a programmable motion phantom
(4D Phantom).42 We assumed a linear one-to-one correlation
between the internal target motion (3D motion stage) and

FIG. 2. The workflow of PET dynamic tumor tracking using external respiratory motion and list-mode PET data.
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FIG. 3. Experimental set-up and process for the PET dynamic tumor tracking phantom studies.

external respiratory signals (1D motion stage) and used
the same external respiratory traces for both the 3D and
1D motion stages to reproduce free breathing motion. This
assumption was based on the combined optical monitoring
and fluoroscopic analysis of the abdominal wall and di-
aphragm motion by Vedam et al.43 They found a correlation
of 0.82–0.95 in 60 measurements from five patients. This
correlation can be used to predict diaphragm motion, based
on the respiration signal to within 0.1 cm. Diaphragm motion
is dominant in the superior-inferior (SI) direction and lung
motion is strongly dependent on the diaphragm motion, so the
assumptions, (1) a linear correlation between internal target
motion and external respiratory motion and (2) superior-
inferior (SI) direction only for target motion, were reasonable
in this phantom study. In general, abdominal organ motion is
predominantly in the SI direction, with no more than a 2-mm
displacement in the anterior-posterior and lateral directions.44

Based on the general characteristics of lung tumor motion,
we moved the 3D motion stage in the SI direction only. The
SI phantom motion was synchronized with the 1D motion
stage, whose motion was only in the AP direction.

2.A.2. PET tracking accuracy using 3D-measured
motion from lung cancer patients

In order to test the algorithm on respiratory motion with
clinically observed variability, motion traces of higher than

average motion magnitudes and complexity were selected
from a large abdominal/thoracic tumor motion and respiratory
signal database.45 These motion traces were 3D-measured
motion where the tumor motion and external respiratory sig-
nals were different and derived from patient measurements.
The selected trajectories were all from lung tumors as pre-
viously used by Poulsen et al. and Keall et al. representing
typical motion, baseline variations, predominantly left-right
motion, and high-frequency breathing.6, 10

2.B. Cylindrical phantom

This phantom study followed the standard suggested in
the NEMA NU 2–2001 standard document.13 The cylindri-
cal phantom consisted of six hollow spheres (10, 13, 17, 22,
28, 37 mm in diameter and 0.5, 1.2, 2.6, 5.6, 11.5, 26.5 ml
in volume) of a NEMA IEC body phantom and a cylinder
(20.8 cm in inside diameter, 17.5 cm in inside height and 3100
ml in volume) of a Hoffman 3D brain phantom (Fig. 3).46 A
cylinder of a NEMA ICE body phantom was not used as it
exceeded the weight limit of the 3D motion stage of the 4D
phantom. Six hollow spheres were positioned symmetrically
in the cylinder. We injected 18F into the six hollow spheres
as targets and the cylinder as background. The standard back-
ground activity concentration (5.18 kBq/ml) was determined
with a typical injection dose (370 MBq) into a 70 kg patient.
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The target to background ratio was 8:1 as a representative
TBR for lung tumors.26, 46

2.C. 4D Phantom (motion platform)

A 4D phantom was used to reproduce internal target mo-
tion and external respiratory motion simultaneously for sim-
ulating clinical 4D-PET scans. The 4D Phantom was a pro-
grammable motion platform consisting of a 3D-motion stage
and a 1D-motion stage (Fig. 3) that simulate tumor motion
and abdominal displacement, respectively.47 We placed the
cylindrical phantom on the 3D-motion stage and scanned it.
We positioned an infrared reflective marker box on the 1D-
motion stage and measured the vertical motion of the marker
box by the RPM system throughout a scan. We set up the 4D
phantom outside the scanner, rather than on the scanner table,
as it could not be positioned in the scanner bore due to its
height.

2.D. Data acquisition of list-mode PET and external
respiratory motion

We used the data set of ten 1D-motion traces acquired for
an audiovisual biofeedback study.41 For the four 3D-motion
traces, the same experimental procedure (Fig. 3) applied to the
1D-motion traces was performed to obtain list-mode PET and
external respiratory motion data throughout 4D-PET scans
while reproducing the 3D-motion traces. During the 4D-PET
scans, the 3D-motion stage and 1D-motion stage reproduced
internal target motion and external respiratory motion, respec-
tively, while the RPM system recorded the motion of the 1D-
motion stage (external respiratory motion) in real-time. Dur-
ing the recording, the RPM system continuously generated

trigger signals at the highest point of each respiratory cycle
(peak-inhalation). The trigger signals were transferred to the
PET work-station and recorded in the list-mode PET data to
facilitate synchronization of the list-mode PET and external
respiratory signals in the simulation (Fig. 2).

The 4D-PET scans were performed using a Discovery ST
PET/CT scanner (GE Medical Systems, Waukesha, WI).48

The 2D scan mode using septa was chosen to minimize the
effect of scattering. The PET system has a transaxial field of
view (FOV) of 70 cm and an axial FOV of 15.7 cm. The slice
thickness (axial sampling interval) is 3.27 mm. The transaxial
full width at half maximum (FWHM) is 6.2 mm at 1 cm and
6.8 mm at 10 cm, and the axial FWHM is 4.8 mm at 1 cm and
5.9 mm at 10 cm from the center of FOV. In the 2D scan mode,
the sensitivity is 2.0 cps/kBq, the peak noise equivalent count
rate (NECR) is 95 kcps at 12 kBq/ml, and the scatter fraction
is 19%.

2.E. Image reconstruction with displacement-based
gating

PET images were reconstructed in the Respiratory Gating
Toolbox (RGT, GE Health Care, Milwaukee, WI) which en-
ables the reconstruction of 4D PET images using (1) list-mode
PET data acquired from a GE PET system and (2) external
respiratory motion data recorded in RPM.

Although phase gating is a clinical protocol for 4D-PET
images in the work-station, displacement gating has been
shown to be superior to phase gating in general.49 As a result,
displacement gating was selected as a default gating method
for producing gated sinograms from list-mode PET data
(Figs. 2 and 4). After beginning to collect coincidence events,
but before starting to track target motion, a 1 min record of

FIG. 4. The procedure of sinogram updating using real-time displacement gating. During learning time (default: 1 min), the displacement boundaries of every
bin were determined and initial sinograms were created from accumulated events for every bin. After the learning time, the sinogram corresponding to current
time and bin # was updated from new events which were collected during the frame interval (200 ms).
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external respiratory motion signals was employed to deter-
mine displacement boundaries. One minute was chosen as a
reasonable compromise between patient throughput and tar-
geting accuracy. The number of gated bins followed the clin-
ical standard (six bins). The displacement boundaries of six
gated bins (bin-1: end inhalation, bin-6: end exhalation) were
determined to give each bin the same time duration, based on
the recorded external respiratory motion up to 1 min, which
caused different gate intervals in displacement.49 The equal
time duration was maintained for every bin to ensure near
uniform counts in each bin for at least 1 min, from which
it was reasonable to assume that each bin has approximately
the same amount of coincidence events. The upper and lower
limits of the boundaries were the maximum and minimum of
the used external respiratory signals.

The Ordered Subset Expectation Maximization (OSEM)
algorithm (21 subsets, 2 iterations, and 6 mm FWHM Gaus-
sian post filter) was applied for 2D image reconstruction. The
corrections for random coincidences, dead time, normaliza-
tion, and well-counter were included in the reconstruction
procedure. However, attenuation and scatter correction using
CT images was not applied to avoid any effect of CT images
on motion information derived from PET images. The matrix
size for an image slice was 128 × 128 with a 4.68 × 4.68
× 3.27 mm3 voxel size. The number of image slices was 47
and the slice thickness was 3.27 mm.

2.F. Motion tracking algorithm

Figure 2 shows the workflow of PET dynamic tumor track-
ing using external respiratory motion and list-mode PET data.
The algorithm was developed in MATLAB (MathWorks, Nat-
ick, MA) using RGT.

In the current 4D-PET protocol, 4D-PET images are re-
constructed retrospectively from list-mode data (and external
respiratory motion data in an optional manner). For dynamic
target tracking, however, the concept of sinogram updating
is proposed, which enables continuous image reconstruction
for each gated bin with increasing acquisition time (steps of
200 ms). With the displacement boundaries set as described
above, a bin number is continuously updated according to the
displacement of external respiratory motion in real-time, and
the corresponding sinogram is updated with new coincidence
events that are collected during the frame time (200 ms). For
example, if the external marker position is in the interval of
bin #3, the old sinogram for bin #3 is updated with new events
at current time t (Fig. 4). PET images are reconstructed from
the sinogram at current time t (Figs. 3 and 4):

S (r, ϕ, z, t) =
∫ t

o

LM (t) · H (t) dt, (1)

A (x, y, z, t) = recon {S (r, ϕ, z, t)} , (2)

where S(r, ϕ, z, t) is a sinogram for the bin # of time t, and
LM(t) is list-mode data at time t. H(t) = 1 for the bin # and 0
otherwise. A(x, y, z, t) is an activity at a voxel (x, y, z) at time
t before interpolation.

After the image reconstruction, CoM-based target tracking
is employed to estimate the current target position, for which
a predetermined volume of interest is segmented and then in-
terpolated with a 1 × 1 × 1 mm3 voxel size:

I (x̃, ỹ, z̃, t) = Interpolate {A (x, y, z, t) · V OI (x, y, z)} ,

(3)

where V OI (x, y, z) is a binary mask; V OI (x, y, z) = 1 if
(x, y, z) is in a manually predetermined volume of interest, else
V OI (x, y, z) = 0. I (x̃, ỹ, z̃, t) is an interpolated volume of
A (x, y, z, t) · V OI (x, y, z).

In the VOI, the CoM is computed after segmenting the tar-
get based on a threshold (60% for the 10 mm target and 40%
for the other targets):50, 51

CoMx̃ =
∑

x̃

∑
ỹ

∑n
z̃=1 x̃ · I (x̃, ỹ, z̃, t) · M (x̃, ỹ, z̃, t)∑

x̃

∑
ỹ

∑n
z̃=1 I (x̃, ỹ, z̃, t) · M (x̃, ỹ, z̃, t)

and similarly for CoMỹ and CoMz̃, (4)

where M (x̃, ỹ, z̃, t) is a binary mask; M (x̃, ỹ, z̃, t) = 1 if
I (x̃, ỹ, z̃, t) is larger than 40% of the maximum voxel value,
else M (x̃, ỹ, z̃, t) = 0. (x̃, ỹ, z̃) is a new pixel position af-
ter interpolation. x̃ direction is corresponding to the left-
right direction, ỹ direction is corresponding to the anterior-
posterior (AP) direction, and z̃ direction is corresponding to
the superior-inferior (SI) direction.

The geometric accuracy of the proposed algorithm was
evaluated by quantifying estimation errors between actual
motion of targets (1D-motion and 3D-motion traces) and
CoM trajectories estimated by the proposed algorithm at time
t.28, 34 We ignored the data out of upper and lower limits when
calculating the errors as this would correspond to a beam
pause for clinical implementation. The estimation error at a
time frame was quantified by the Euclidean distance between
the actual target position and the estimated CoM in three di-
mensions:

Error(t)

=
√

(x − CoMx)2 + (y − CoMy)2 + (z − CoMz)2,

(5)

where (x, y, z, t) is the actual position of a target at time t.
(CoMx, CoMy, CoMz, t) is the estimated CoM of the target at
time t.

3. RESULTS

3.A. Estimation error of 1D-motion traces

The average error of 1D-motion traces was 1.6 mm, time-
averaged over all error trajectories of all targets (10, 13, 17,
22, 28, and 37 mm in diameter). The errors from 60 s to 300 s
were used for computing the average error. The first 60 s
(1 min) was for learning time or observation time.

The error trajectories decreased with time as coincidence
events were accumulated. Figure 5 shows this trend that error
decreased with increasing scan time. The overall error trajec-
tory converged to within 2 mm in 300 s [Fig. 5(a)] for all
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FIG. 5. (a) Average errors of 1D-motion traces over all targets in time and (b) average errors of 37 and 10 mm targets with 1D-motion traces in time. The
moving average curve is displayed to demonstrate the patterns of convergence.

target sizes. It took approximately 90 s to reach 2 mm er-
ror bound in the moving-averaged error trajectory. However,
the speed of convergence of error trajectories was dependent
on target sizes. The error trajectory of the 37 mm target con-
verged faster than that of the 10 mm target. Specifically, in the
moving-averaged error trajectory, it took 35 s to arrive at the 2
mm error bound for the 37 mm target; whereas, 300 s was re-
quired for the 10 mm target. This difference can be explained
by the higher number of coincidence events and hence lower
statistical uncertainty in the larger target.

As expected, improved results were obtained for larger tar-
gets [Fig. 6(a)]. For example, for the 37 mm target, the aver-
aged error over all 1D-motion traces was 1.1 mm; whereas, for
the 10 mm target, the average error over the 1D-motion traces
was 2.8 mm. There were variations between motion traces
and bins such as target sizes in the accuracy of estimation:
bin-1 (end inhalation) had the largest average error (2.2 mm)
and bin-6 (end exhalation) had the smallest one (1.6 mm)
[Fig. 6(b)]. The overall estimation error of 1D-motion trace
7 was 1.3 mm, but that of 1D-motion trace 3 was 2.0 mm
[Fig. 6(c)].

3.B. Estimation error of 3D-motion traces

Figure 7 shows trajectories of the actual motion and the
CoM estimation of the 28 mm target (2nd largest) and 13
mm target (2nd smallest) in each direction for the 3D-motion
traces. As mentioned above, in order to test the accuracy of
CoM estimation on tumor motion with clinical variability,
the 3D-motion traces selected from the database had higher
magnitudes and complexity than average motion. The overall
time-averaged error of 3D-motion traces was 1.6 mm, which
was comparable to that of 1D-motion traces. There were small
variations in the errors for the four traces (Table I), although
they were very different in Fig. 7. The estimation accuracy
was consistent for all target sizes except the smallest one.

4. DISCUSSION

This study aims to investigate the potential of PET for
dynamic tumor tracking, which demomstrates the proof-of-

principle for PET-guided lung tumor tracking. Tumor track-
ing using PET has potential benefits over other tumor track-
ing methods, including (1) obviating the need for implanted
markers, (2) adapting dose based on tumor biology, and
(3) providing a more individualized radiation treatment.52 The
investigation is focused more on the estimation accuracy of
the proposed algorithm than the computational time for two
reasons: (1) recent papers have reported that computational
power is increasing, which would make real-time PET imag-
ing feasible in the near future, and (2) investigating estima-
tion accuracy is much more important than speeding up the
algorithm for the proof-of-principle as the image quality of
PET is relatively much poorer than those of X-rays, CT, and
MRI. The computational burden of reconstruction time could
be a main concern as iterative reconstruction is still compu-
tationally challenging; thus, GPU-based acceleration will be
mentioned in Sec. 4.C.

The variations of tumor position caused by respiratory mo-
tion affect PET-guided radiation treatment for lung tumors in
all steps of the treatment planning and beam delivery chain.
Positional uncertainties are categorized as follows: the treat-
ment planning uncertainty category (systematic uncertainties)
and the treatment execution category (random uncertainties);
the uncertainties should be included in the treatment margin
calculation.53 In terms of systematic uncertainties, 4D treat-
ment planning and patient setup should be elaborated since
beam tracking techniques are not matured and a standard for
the setup is not crystallized yet.54–56 In the geometry of PET-
linac, the setup is described as follows: (1) the planning target
volume (PTV) is defined at the tumor delineation (treatment
planning) stage, to contain the gross tumor volume (GTV)
motion, considering residual tumor motion in each bin;
(2) the patient is administered with a PET radiotracer and
waits for post-injection scan time (e.g., 1 h); and (3) the
patient undergoes setup and registration using megavoltage
cone-beam CT (MV cone-beam CT) images after the patient
is positioned on the table to align the PTV.14, 15, 57 After the
setup and the learning time, the proposed algorithm tracks the
tumor position through the CoM of the segmented target vol-
ume on gated-PET images reconstructed from accumulated

Medical Physics, Vol. 41, No. 2, February 2014
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FIG. 6. Average errors of 1D-motion traces for (a) target sizes, (b) bins, and
(c) motion traces. Note that the error bars represent one standard deviation.

coincidence events, throughout a treatment. In terms of ran-
dom uncertainties, the accuracy of PET-guided tumor tracking
is demonstrated by the real-world accuracy of the algorithm
(overall time-averaged error ≈2 mm), though the computa-
tion time and the impact of tumor location and TBR for es-
timation accuracy remain as issues (see Sec. 4.C). If there are
differences between respiratory motion patterns on the date
of the imaging study and the date of treatment, 4D treatment
planning methods may not account for these differences.58 In
order to minimize the possibility of mislocalization for the
tumor and an increase of toxicity for surrounding healthy tis-

sues, it is necessary to devise a way to compensate for those
differences in the stage of patient setup and during treatment.
This is beyond the scope of this study.

An approach comparable to PET-guided tumor track-
ing is magnetic resonance imaging (MRI)-guided tumor
tracking.7, 59, 60 Although still under development, there are
several groups currently developing MRI-linac systems.61, 62

Our method for PET-guided tumor tracking is similar to MRI-
guided tumor tracking in the sense that both approaches are
image-based. However, the concept of biologically based tar-
geting using PET is the most distinguishable feature from
that of anatomically based targeting of the other image-based
guidance methods (e.g., X-rays, CT, ultrasound, or MRI) as
PET has high sensitivity and specificity for tumors.

4.A. Analysis

Considering the large spatial resolution of the PET scan-
ner, the performance of the proposed algorithm is demon-
strated by the overall time-averaged error 1.6 mm for 1D-
motion traces and 3D-motion traces. The error is at least three
times smaller than the spatial resolution (axial full width at
half maximum) of the PET scanner, which is achievable as
multiple voxels are included in the CoM computation.

4.A.1. Convergence of estimation

In the estimation at each frame time, a larger instan-
taneous error occurred (1) at the beginning of scans and
(2) outside of gate boundaries. The reason for these errors was
the small number of coincidence events. It is a basic principle
of PET that the number of coincidence events are significant
for reconstructed image quality. The maximum intensity in
the volume of interest changed dynamically at the beginning
of scans, which was investigated by Liu et al.63 The general
trend is that higher image noise with a small fraction of data
causes larger maximum values. For this reason, 1 min was
set up as learning time or observation time to collect coinci-
dence events before starting target motion tracking. Regard-
less of the low number of coincidence events, the overall con-
vergence of the error to the 2 mm error bound was achieved in
30 s after the learning time (Fig. 5), although high frequency
noise persisted due to statistical errors. The fast convergence
to the error bound can be explained by averaging effects. The
CoM tracking involves averaging in computing a target po-
sition in each axis over many voxels, which automatically
reduces statistical uncertainties or high frequency noise, en-
abling sub-voxel accuracy.

4.A.2. Target sizes

Target size had a significant influence on the accuracy of
estimating target position [Figs. 5(b) and 6]. In general, tar-
gets smaller than two or three times the spatial resolution suf-
fer from the partial volume effect (PVE) around the bound-
ary of the targets.26, 64 The signal intensity of smaller tar-
gets was further degraded due to respiratory motion and the
PVE, which caused the CoM estimation of the smallest target
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FIG. 7. Trajectories of the actual motion of targets and the CoM estimation of the 28 mm target and 13 mm target in the three directions. The actual motion
trajectories were all from lung tumors, representing (a) typical motion, (b) baseline variations, (c) predominantly left-right motion, and (d) high-frequency
breathing. Three directions are SI: superior-inferior, AP: anterior-posterior, and LR: left-right.
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TABLE I. The error (Euclidean distance between actual position and CoM
estimation) of each target of 3D-motion traces in the three directions.

Typical Baseline Predominantly High frequency

Target
case shifts left-right breathing

size Mean error Mean error Mean error Mean error

37 mm 1.1 1.1 1.3 1.9
28 mm 1.1 1.1 1.3 1.7
22 mm 1.1 1.1 1.4 1.8
17 mm 1.2 1.2 1.4 1.7
13 mm 1.2 1.3 2.0 2.0
10 mm 2.3 2.2 2.6 3.9
Overall 1.3 ± 0.5 1.3 ±0.4 1.7 ± 0.5 2.2 ± 0.9

(10 mm) to have higher errors and slower convergence to the
error bound.

4.A.3. Bins

Six-bin gating is a default in the PET-CT machine (GE
Discovery ST) in which 4D-PET data were acquired. In a dy-
namic phantom study, Park et al. demonstrated the effect of
gating on images by changing the number of bins (1, 2, 5, 10,
and 20).26 They concluded that the 5-bin gating method gave
the best temporal image resolution with acceptable image
noise, which also justified the use of six bins. From the over-
all average error, bin-6 (end exhalation) had the smallest er-
ror, and bin-1 (end inhalation) had the largest error [Fig. 6(b)].
In general, the breathing patterns around end inhalation have
larger fluctuations with a short period, while those around end
exhalation are more regular and stable with a longer period.44

The CoM of each target for each bin is the mean measured
position of the target position in that bin. Thus, the CoM esti-
mation in each bin is stepped, which decreases the estimation
accuracy specifically for bin-1.

4.A.4. Motion traces

In addition to the variations of the results according to tar-
get sizes and bin number, each motion trace had a specific
result due to its specific external and internal respiratory mo-
tion (Fig. 7). A perfectly regular trace like a sinusoidal wave
would give better results—if regularity was defined by how
small variations were between breathing cycles—but it is not
possible for humans to breathe regularly without variations
of patterns between the cycles. Both the 1D-motion and 3D-
motion traces had variations in amplitude, period, and pattern
which influenced the performance of the CoM estimation.

4.B. Uniqueness

The CoM method for estimating target position has been
used previously by several researchers.28, 34, 65, 66 Data-driven
gating techniques using the CoM method on sinograms or im-
ages are possible as motion information is intrinsic to the PET
data. The basic idea is to divide the PET raw data into small
time frames and estimate the target motion that is assumed
to be constant during these frames. The sinogram-based CoM

methods by Klein et al. and Büther et al. derive motion infor-
mation directly from coincidence events (lines of response)
which is very time efficient.28, 66 However, the disadvantages
of this method are: (1) it is only applicable to the axial di-
rection and (2) lines of response that are part of the prede-
termined VOI include coincidence events from outside the
VOI, leading to statistical errors. Whereas, the image-based
CoM method by Bundschuh et al. has the advantage of hav-
ing full 4D (x, y, z, t) motion information of the target with-
out the disadvantages though the image reconstruction time is
significant.34

Our proposed algorithm aims to investigate the poten-
tial and feasibility of PET for dynamic lung tumor track-
ing by estimating CoM, based on the assumption that real-
time processing is supported. Our method is similar to Bund-
schuh’s approach for PET image reconstruction (not real-time
radiotherapy), but is distinct in three respects. It uses (1)
image-based target motion tracking (not data-driven gating),
(2) sinogram updating using external respiratory signals, and
(3) no band-pass filtering. The purpose of Bundschuh’s ap-
proach is data-driven gating to perform gating retrospectively
by using the axial component of CoM without using an ex-
ternal respiratory signal. To enable the image-based CoM
estimation dynamically, the real-time sinogram updating is
needed for reconstructing PET images continuously (Fig. 4),
which requires external respiratory signals for real-time gat-
ing. For the real-time sinogram updating, the proposed algo-
rithm accumulates coincidence events in proportion to data
acquisition time, which is robust to statistical noise by sim-
ply increasing coincidence events in each bin. In the previous
CoM methods, the CoM trajectories derived from sinograms
or images are filtered retrospectively in order to reduce statis-
tical (high frequency) noise because a short time frame results
in a large fluctuation of coincidence events in each frame.

4.C. Limitations

4.C.1. Processing time

The main disadvantage of image-based CoM estimation is
the long processing time for image reconstruction. On an intel
i7 processor with eight cores, the reconstruction time for 3D
volume (128 × 128, 47 slices) is about 10 s at each frame
time. To apply this method clinically, the total processing time
would need to be shorter than the frame time or less to achieve
total system latency similar to other guidance methods.8–10

Thus, fast image reconstruction is required to enable image-
based CoM estimation for dynamic tumor tracking.

To the best of our knowledge, no algorithm is available for
real-time PET image reconstruction. However, the recent pub-
lications have given the positive feedback of GPU-accelerated
PET image reconstruction toward real-time imaging. In the
most recent review paper, Pratx et al. reported the evolu-
tion of GPUs: the number of computing cores in GPU pro-
cessors has increased twofold every 1.4 year; also, the GPU
memory bandwidth has increased twofold every 1.7 years.67

They stated that the performance of GPUs has been steadily
increasing. Cui et al. showed that the GPU-accelerated 3D
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list-mode OSEM >200 times faster than a CPU implemen-
tation for PET image.68 Tashima et al. developed a real-time
PET imaging system for preclinical studies.18 They developed
the system using the GPU-accelerated list-mode based recon-
struction algorithm for real-time visualization, and the pro-
cessing time of image reconstruction was 0.5 s. The system
demonstrated tracking ability with a sine curve (amplitude:
4 mm, period: 30 s) that was not realistic to simulate tumor
motion and to investigate the feasibility of PET for tumor
tracking.

No effort has yet been made to improve the computation
time for the current study, though it is reasonable to expect
that large gains could be made by parallelizing the code and
using a faster CPU and/or GPU hardware.

4.C.2. PET geometry with an open space

A requirement of PET geometries for dynamic tumor
tracking is to provide an accessible open space for the treat-
ment beam. In recent publications, possible open geometries
were suggested to satisfy this requirement.17 Regarding the
application of the CoM tracking method, using measurements
from a conventional PET scanner and applied to an unconven-
tional PET, our results would be an upper bound on the accu-
racy. The actual accuracy from a PET geometry with an open
space would be limited by the final configuration of the PET
ring, which would be designed in such a way as to maximize
the PET signal and be as close to a conventional PET scanner
as possible.

One institution performed a Monte Carlo simulation re-
garding the impact of scanner geometry on the quality of
PET images. Surti et al. investigated the optimal design of an
in situ PET scanner for use in proton therapy using time-of-
flight (TOF) information and an iterative reconstruction al-
gorithm through GEANT4 simulations.69 It should be noted
that the process of positron emission of the in situ PET sys-
tem (positron emitters produced by proton beams) was dif-
ferent from that of clinical 18F-FDG PET scanners (positron
emitters produced by FDG uptake on tumor cells). However,
the science of detection and image reconstruction are consis-
tent with those of clinical PET scanners. Also, a partial-ring
PET design was selected in order to avoid interference be-
tween PET detectors and proton beams. As ring coverage was
reduced, distortions and artifacts increased in images. How-
ever, using TOF imaging reduced the image artifacts and dis-
tortions through improving the timing resolution. The results
indicate that it would be feasible to develop a partial-ring PET
scanner, maintaining the similar imaging quality of a full-ring
PET scanner.

4.C.3. Displacement gating

The displacement boundaries of each bin for gating were
determined from external respiratory motion signals during
an initial 1 min learning period. In terms of number of bins,
this is a tradeoff between motion resolution and noise level
on gated-PET images; increasing the number of bins makes

displacement boundaries smaller, which results in increasing
tracking accuracy. However, an increased bin number means
fewer events per bin, which reduces the precision as there are
fewer counts and therefore higher statistical uncertainties in
each bin. In terms of gating methods, Dawood et al. evaluated
seven gating methods and concluded that the displacement-
based gating approaches were superior to the phase-based
gating methods.49 They also observed that displacement-
based gating captured the external respiratory motion best
while keeping a constant noise level when equal number of
events was sorted into each bin. For this reason, this gating
scheme was applied to the proposed algorithm. However, if
there is a significant hysteresis in a tumor motion trajectory,
the combination of displacement and phase gating could be
considered.

In displacement gating, the interval of displacement
boundaries of a bin can be much larger than those of the other
bins if external respiratory motion is irregular, specifically
around end inhalation. In addition, this gating method is not
robust to baseline shifts of external respiratory motion, which
are not unusual.70 As a possible way to improve breathing
regularity, the use of an audiovisual (AV) biofeedback system
can be considered as the system has a potential to regulate a
patient’s breathing and to prevent a baseline shift, which is un-
der investigation.41, 71, 72 However, even with AV biofeedback
respiratory variability will be present, though the variability
is potentially of smaller magnitude with breathing training.
The AV biofeedback is not suggested as a solution, as not
all patients breathe regularly with AV biofeedback, but sim-
ply as a method that may reduce the magnitude of breathing
variability.

4.C.4. Sensitivity to instantaneous motion

The CoM trajectories estimated by the proposed algorithm
converge to actual motion within a reasonable accuracy. How-
ever, as data acquisition time is increasing, accumulated data
become less sensitive to instantaneous target motion out of
displacement boundaries because the estimated position is av-
eraged up to the time that the estimation is performed. How-
ever, the approach of accumulating counts in each bin to re-
duce noise and eliminate the need for image filtering, as op-
posed to a, e.g., moving window approach where only the
counts from the prior fixed time period are included, is a trade-
off. To demonstrate the accuracy of the proposed method, we
used higher-than-average lung tumor motion measured from
four patients with different motion types. The results give an
estimate of the real-world accuracy of the method (apart from
the computation time issues). As shown in Fig. 7, on average
the error is less than 2 mm. To prevent irregular respiratory
motion being out of displacement boundaries, an external res-
piratory guidance such as the AV biofeedback system may
help a patient breathe within the displacement boundaries.
To maximize imaging sensitivity to present motion, another
method could be a weighting scheme to give more weight to
coincidence events closer to the present than those further in
the past.
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4.C.5. Segmentation

In this phantom study, the predetermined binary mask
was used to choose the VOI that would be interpolated. The
segmentation accuracy is guaranteed since the advantage of
phantom studies is to know the ground truth of a target mo-
tion and volume. In the VOI, the threshold used for segment-
ing the 10 mm target (smallest) was 60% that was higher
than the 40% value used for segmenting the other targets.
The 10 mm target is more susceptible to respiratory motion
and blurred out more easily due to the partial volume effect
(PVE), which results in smaller TBR and requires a higher
percentage threshold.

The segmentation approach using predetermined binary
masks and a threshold for the phantom data can be applied
to patient data. However, a VOI including a tumor should
be selected much more carefully, considering tumor location
and TBR.51, 73, 74 The accuracy of tumor segmentation is de-
pendent on the location and TBR of the tumor. For instance,
if the tumor location is close to or surrounded by an organ
whose activity concentration is considerable, TBR may not
be enough to distinguish the tumor from surrounding healthy
tissues, which may prevent the success of the proposed algo-
rithm. To minimize the possibility of inaccurate segmentation
caused by a low TBR, the VOI should be very carefully de-
termined from 4D-CT and 4D-PET images, which can reduce
uncertainties in determining the boundary of the tumor.

4.C.6. Attenuation and scatter corrections

In this phantom study, no attempt has been made to com-
pensate for attenuated and scattered events in the procedure
of image reconstruction. PET image quality could be fur-
ther improved by applying attenuation and scatter corrections
through an appropriate manner. In terms of attenuation correc-
tion, since respiratory phase and displacement in helical CT, a
current clinical protocol, are generally different from those in
gated PET, the spatial mismatch of within the thorax between
the two modalities results in a mismatch of tumor location,
which causes inaccurate quantification of tumors in gated-
PET images.75 For lung tumors with significant motion, in or-
der to match gated-PET images with the corresponding phase
of the CT images, averaged-CT or 4D-CT images should be
carefully prepared.75–77 In terms of scatter correction, scat-
ter fraction typically ranges from about 15% (2D mode or
septa extended) to 40% or more (3D mode or septa retracted),
which affects final image quality and leads to image artifacts,
specifically for scans performed in 3D mode.78

5. CONCLUSION

We have developed an algorithm using list-mode PET data
and external respiratory motion data and investigated the po-
tential and feasibility of PET for dynamic lung tumor track-
ing. The overall tracking error in phantom studies is less than
2 mm. Although a fast reconstruction algorithm is required
for practical implementation, the CoM tracking method us-
ing gated-PET images demonstrates the proof-of-principle for

PET-guide lung tumor tracking within clinically acceptable
accuracy.
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