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ChIP-chip: Data, Model, and Analysis

Ming Zheng1, Leah O. Barrera2, Bing Ren3 and Ying Nian Wu1,4 ∗

Department of Statistics, UCLA1.

Ludwig Institute for Cancer Research, UCSD2.

Department Of Cellular and Molecular Medicine, UCSD School Of Medicine3.

Abstract: ChIP-chip (or ChIP-on-chip) is a technology for isolation and identification of

genomic sites occupied by specific DNA binding proteins in living cells. The ChIP-chip

data can be obtained over the whole genome by tiling arrays, where a peak in the signal

is generally observed at a protein binding site. In this paper, we describe and present a

probability theory for modelling ChIP-chip data. We then propose a model-based computa-

tional method for locating and testing peaks for the purpose of identifying potential protein

binding sites.

Keywords: Genome, Mpeak, Peak detection, Protein binding sites, Sonication, Truncated

triangle shape model.

1 Introduction

ChIP-chip (or ChIP-on-chip) [22, 18, 9, 21, 4, 17, 11, 16, 13, 14, 5, 6, 20], also known

as genome-wide location analysis, is a technology for isolating genomic sites occupied by

specific DNA binding proteins in living cells. This strategy may be used to annotate

functional elements, such as promoters, enhancers, repressor elements, and insulators, in

genomes by mapping the locations of protein markers associated with these sites.

In the term “ChIP-chip,” “ChIP” refers to “chromatin immunoprecipitation,” which is

a method for isolating DNA fragments that are bound by specific DNA binding proteins.
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“Chip” refers to the DNA microarray technology [19] for measuring the concentrations of

these DNA fragments. The DNA microarray probes can tile the whole genome, so the

ChIP-chip data can be obtained over the whole genome in the form of a one-dimensional

signal, where a peak in the signal is generally present at a protein binding site. Therefore,

the protein binding sites can be located by detecting the peaks in the signal. For the

purpose of peak detection, it is desirable to develop mathematical models for the ChIP-

chip data.

The model must be probabilistic in nature, mainly because the chromatin immunopre-

cipitation process involves cutting the long genomic sequences into small DNA fragments

by sonication, and this process is a stochastic one. In this paper, we derive the functional

forms of the ChIP-chip data under probabilistic assumptions about this process.

After studying the probability model of ChIP-chip data, we shall describe a model-

based computational method for locating and testing the peaks for the purpose of identi-

fying potential protein binding sites. We then illustrate our method using the recent data

obtained by Kim et al. [12]. They used ChIP with microarrays, tiling all non-repetitive

sequence of the human genome with 50 bp probes at 100 bp resolution, to obtain a high-

resolution map of active promoters in one human cell type in steady state.

A software called Mpeak has been developed based on the method proposed in this

article. The software (including the visual C++ source code) is free to download.

2 ChIP-chip data

This section gives a description of the ChIP-chip process. Readers who are more interested

in mathematical modelling can jump directly to Section 3, and then come back to this

section for details.

The ChIP-chip process is shown in Figure 1.

Step 1: Let proteins bind to DNA: bound transcription factors and other DNA-

associated proteins are cross-linked to DNA with formaldehyde.

Step 2: Chop the DNA sequences into small fragments: Sonication is used to break

genomic DNA to small DNA fragments while the transcription factors are still bound to

DNA. Therefore, among all the chopped DNA fragments, some are bound by proteins,

and the rest are not.

Step 3: Isolate the DNA fragments bound by proteins (or the DNA fragments contain-

ing protein binding sites) by chromatin immunoprecipitation (ChIP). For instance, in Kim
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Figure 1: Illustration of ChIP-chip method.
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et al. [12], an antibody specifically recognizing a component of the pre-initiation complex,

i.e. the TAF1 subunit of the general transcription factor IID (TFIID) is added and used

to immunoprecipitate DNA fragments corresponding to the promoter regions bound by

TAF1.

Step 4: Cross-linking between DNA and protein is reversed and DNA is released,

amplified by LM-PCR (here, we ligate linkers to DNA fragments that allow us to amplify

them all at the same time using the same set of primers by PCR) and labelled with a

fluorescent dye (Cy5). At the same time, a sample of DNA which is not enriched by

the above immunoprecipitation process are also amplified by LM-PCR and labelled with

another fluorescent dye (Cy3).

Step 5: both IP-enriched and -unenriched DNA pools of labelled DNA are hybridized

to the same high-density oligonucleotide arrays (chip). The microarray is then scanned

and two images, corresponding to Cy5 (TAF1 IP) and Cy3 (control), respectively, are

extracted.

Intensity-dependent Loess [10] can be used to normalize the resulting signal values for

both images, and median filtering (window size = 3 probes) can be applied to smooth the

log(Cy5/Cy3) data.

Kim et al. [12] used this method to analyze the active promoters in human genome.

They used antibodies specially recognizing components of the transcription pre-initiation

complex to obtain a high-resolution map of active promoters in human genome. Using

this approach, they were able to annotate transcriptional start sites and discover novel

genes. The data analyzed in this paper come from their experiment, but the algorithm

is generally applicable to other ChIP-chip experiments where peak finding can be used to

localize the binding sites of a transcription factor of interest.

3 Probability Modelling

In this section, we derive probability models for ChIP-chip data. The probabilities cal-

culated for one random genome sequence manifest themselves as frequencies among the

large number of genome sequences in an experiment. The derivations of the formula are

elementary and non-rigorous so that they are easy to follow for interested biologists.
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3.1 ChIP process

Genome and binding sites: The protein binding sites (such as promoters) on the genome

can be modelled as a set of points on the real line. Let’s denote the locations of these

binding sites by their coordinates B1, B2, ..., BM . The total number M of binding sites

and their coordinates are unknown, and need to be inferred from the ChIP-chip data.

Protein binding: In the ChIP-chip experiment, the proteins are bound to the binding

sites. For a genome sequence, let pm be the probability that the binding site m is bound

by a protein. The binding at different binding sites are assumed to be independent of each

other.

Sonication: The sonication process chops the genome sequences into short DNA frag-

ments. Each fragment is an interval on the real line. For a genome sequence, the set of

cut points are randomly distributed.

A common probability model is the Poisson point process model, which has the follow-

ing assumptions: 1) the probability that a cut point occurs in a small interval (x, x + ∆x)

is λ(x)∆x, where λ(x) is the intensity function measuring how dense the cut points are

around x. 1/λ(x) can be considered the expected length of the intervals between two

consecutive cut points around x. 2) For non-overlapping intervals, what is happening in

one interval is independent of what is happening in the other intervals.

The Poisson model can be considered the first order approximation to reality. It cap-

tures the marginal information about the density of cut points. The interactions between

cut points are not modelled.

Immunoprecipitation: For each protein bound to a binding site, the probability that it

is bound by the antibody is α. For a DNA fragment to be immunoprecipitated, it must

contain at least one binding site that is bound by protein, which must in turn be bound by

the antibody. We call such a binding site a “good binding site.” Clearly, the probability

that Bm is a good binding site is pmα = qm. A DNA fragment that contains at least one

good binding site is called a “good fragment.”

Tiling array of probes: At each location x, the array signal measured by a probe at x is

denoted by Y (x) = log(Cy5/Cy3). It measures the relative abundance of good fragments

that contain x.
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3.2 Probability calculation

Consider a random genome sequence. The ChIP process produces from this genome

sequence a collection of non-overlapping good fragments. These good fragments only

cover part of the whole genome.

For any location x, let p(x) be the probability that x is covered by a good fragment.

In the following, we shall calculate p(x) under various scenarios.

For x to be covered by a good fragment, a necessary and sufficient condition is that

there is no cut point between x and at least one good binding site.

One binding site scenario: Let’s first consider the simplest scenario where there is only

one binding site at the origin of the real line. Then

p(x) = Pr(0 is a good binding site and

no cut point between 0 and x)

= q × Pr(no cut in (0,x))

(1)

where q is the probability that 0 is a good binding site, i.e., it is bound by a protein,

which is in turned bound by the antibody. Without loss of generality, let’s assume that

x > 0.

To compute Pr(no cut ∈ (0, x)), we can divide the interval (0, x) into a large number

of small bins, (0, ∆x), (∆x, 2∆x), ... ,(i∆x, (i + 1)∆x), ..., ((n − 1)∆x, n∆x), where

∆x = x/n. Let xi = i∆x. According to the Poisson assumption,

Pr (no cut ∈ (0, x))

=
n∏

i=1

Pr(no cut ∈ ((i− 1)∆x, i∆x))

=
n∏

i=1

(1− λ(xi)∆x). (2)

Taking log on both sides,

log Pr(no cut ∈ (0, x))

=
n∑

i=1

log(1− λ(xi)∆x)

=
n∑

i=1

[−λ(xi)∆x + o(∆x)]

→ −
∫ x

0
λ(s)ds, as n →∞, (3)
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where Taylor expansion gives us log(1−λ(xi)∆x) = −λ(xi)∆x+o(∆x), with o(∆x) being

a term that decreases to 0 faster than 1/n as n →∞. Thus

log p(x) = log q −
∫ x

0
λ(s)ds, for x > 0. (4)

If we assume λ(x) = a for x > 0, then

log p(x) = c− ax, for x > 0,

where c = log q. Similarly for x ≤ 0, if we assume λ(x) = b, then

log p(x) = c + bx, for x ≤ 0.

We can combine the above two equations into one equation,

log p(x) = c− b[−x]+ − a[x]+, (5)

where [x]+ = x if x > 0, and [x]+ = 0 otherwise. From the above equation, it is easy to

see that log p(x) has a triangle shape with peak at 0.

Equation (5) is the basis for our model-based peak detection method. However, this

model assumes that there is only one binding site. For real data, the above model is true

only around a local neighborhood of a binding site, where the effects of other binding sites

can be neglected. In the following, we shall study the situation of more than one binding

site, in order to understand how different binding sites affect each other.

We can also view this problem from survival analysis perspective. Here, for simplicity,

we still assume that there is only one good binding site at the origin 0 and we consider

some point x > 0. We can regard the good binding site as the time point that a patient

receives treatment. Then, the event that there is no cut between 0 and x is equivalent to

the event that the patient survives time point x. The probability is simply the survival

function of the patient, and the λ() function is the hazard rate.

Two binding site scenario: Suppose there are two binding sites B1 and B2. Let’s

assume that B1 ≤ B2. Let q1 and q2 be the probabilities that they are good binding sites
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respectively. For x ∈ (B1, B2), p(x) is influenced by both B1 and B2.

p(x) = Pr(B1 is good and no cut ∈ (B1, x) or

B2 is good and no cut ∈ (x,B2))

= q1 Pr(no cut ∈ (B1, x))

+q2 Pr(no cut ∈ (x,B2))

−q1q2 Pr(no cut ∈ (B1, B2))

= q1 exp{−
∫ x

B1

λ(s)ds}

+q2 exp{−
∫ B2

x
λ(s)ds}

−q1q2 exp{−
∫ B2

B1

λ(s)ds}, (6)

where the last step follows the same logic as equations (2) and (3).

If B1 and B2 are far away from each other, and if x is close to B1, then the last two

terms in equation (6) can be neglected, and we will obtain an approximated equation that

is in the same form as (4) in the one binding site scenario.

General scenario: Now we are ready to derive the formula for general scenario, where

there are M binding sites B1, ..., BM . For notational convenience, we also add B0 = −∞,

and BM+1 = ∞, with q0 = qM+1 = 0. For x ∈ (Bm, Bm+1),

p(x) = Pr(no cut between x and the nearest

good binding site to the left

or no cut between x and the nearest

good binding site to the right)

= pL(x) + pR(x)− pL(x)pR(x), (7)

where

pL(x)

= Pr(no cut between x and the nearest

good binding site to the left)

=
0∑

i=m

Pr(the nearest good binding site

to the left is Bi and no cut ∈ (Bi, x))

=
0∑

i=m




m∏

j=i+1

(1− qj)


 qi exp{−

∫ x

Bi

λ(s)ds}.

(8)
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pR(x)

= Pr(no cut between x and the nearestr

good binding site to the right)

=
M+1∑

i=m+1




m+1∏

j=i−1

(1− qj)


 qi exp{−

∫ Bi

x
λ(s)ds}.

(9)

With equations (8) and (9), p(x) can be computed according to equation (7).

From the above analysis, we can see that the triangle shape fits the data only within

a local range around a true binding site. So in our data analysis, we shall fit a truncated

triangle shape model whose range is adaptively determined.

3.3 Chip measurement

The “chip” part of the ChIP-chip technique is intended to measure log p(x). In particular,

the Cy5 measures the abundance of DNA fragments in the IP-enriched DNA pool, and

Cy3 measures the abundance of DNA fragments in the unenriched DNA pool. For a DNA

fragment containing probe x, the hybridization strength, i.e., the probability that it will

be hybridized by the probe x, can depend on x. By computing Y (x) = log(Cy5/Cy3),

this dependence is cancelled out.

There has been previous work [23, 8] on modelling the chip data. We shall simply

assume that the errors are distributed with constant marginal variance.

4 Model fitting and peak detection

4.1 Fit truncated triangle shape model

In order to make inference about M,B1, ..., BM from the observed signal Y (x), ideally one

may adopt a Bayesian modelling and inference framework, using the model derived for the

general scenario in the previous subsection, by making assumptions on the smoothness of

λ(s), as well as the form of measurement noise. However, the computation can be too

expensive given the length of the genome. Instead, we propose to locally fit the following

approximated model:

Y (x) = log(Cy5/Cy3)

= c− b[B − x]+ − a[x−B]+ + ε(x), (10)
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which is a triangle shape model, where ε(x) is assumed to be a Gaussian process with

constant marginal variance.

We may fit this triangle shape model on the data around each probe to see if the

model fits the data. Let us use x0 to denote the position of this probe. We look at a

window around x0. Let’s denote the probes on the left of x0 by (x−L, ..., x−1), and the

probes on the right of x0 by (x1, ..., xR). Let the signals measured by these probes be

(y−L, ..., y−1, y0, y1, ..., yR). We then fit the following multiple regression model

yi = c− b[x0 − xi]+ − a[xi − x0]+ + εi,−L ≤ i ≤ R, (11)

by least squares estimate. To be more specific, let

Y = (yi)R
i=−L, X = (1,−[x0 − xi]+,−[xi − x0]+)R

i=−L,

where Y is the column vector composed of yi for i = −L, ..., R, and X is the 3-column

matrix. Then the least squares estimates of the parameters are

(ĉ, b̂, â)′ = (X ′X)−1(X ′Y ),

σ̂2 = ‖Y ′Y − Y ′X(X ′X)−1X ′Y ‖2/(R + L + 1).
(12)

4.2 Peak finding

With the ability to fit the triangle shape model, we propose the following peak finding

algorithm.

1 Identify all the local maximum probes in the data. A probe is a local maximum

probe if its signal is greater than all the signals within k bp away (k is a parameter

that is pre-specified and the default number is 200).

2 As a starting point, pick the probe with the largest signal among all the local max-

imum probes.

3 At the current probe x, fit the triangle shape model as described above, for all

combinations of (L,R), where both L and R are chosen within a range from the

smallest allowable value to the largest allowable value (these two values are pre-

specified, and the default numbers are 300 bp and 1500 bp respectively). Then choose

the (L,R) that gives us the smallest residual variance σ̂2. We call (x−L, x+R) the

range of this probe x, and σ̂2 the residual of x.
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4 Repeat the above model fitting procedure for the neighbors of this current local

maximum probe. For each neighboring probe x, obtain its range and residual as

described in step 2. Then among the current local maximum probe and its neighbors,

choose the probe with the smallest residual. We mark this probe as a potential

binding site.

5 For any smaller local maximum in the range of this best fitted triangle, we compare

the fit of the triangle just identified and that of the triangle centered at the smaller

local maximum. If the difference between the two fitted values at the smaller local

maximum are smaller than a threshold (which is a factor times the SD of the residuals

of the best fitted triangle, and the default factor is 1.5), then the smaller one is said

to be inhibited by the larger one and marked as non-peak.

6 Among all the local maximum probes still not marked, choose the local maximum

probe with the largest signal. Then go back to step 3. Stop the algorithm if all the

local maxima are marked, or below a threshold (a pre-specified value, whose default

value is the mean plus 2.5 SD of the raw data).

Despite the large amount of computation involved, the algorithm takes less than one

minute to analyze a genome long sequence on a regular PC.

4.3 Peak testing

For a potential binding site x, suppose the triangle shape model fitted at x covers n

probes. Let Y1, Y2, ..., Yn be the signals of these n probes, which can be considered the

signals caused by the potential binding site x. We want to test whether x is a real binding

site.

We decide to use the following test statistic:

Ȳn =
1√
n

n∑

i=1

Yi.

A similar method to calculate P-value is proposed by Buck, Nobel, and Lieb ([7]), where

background noise is assumed to be independent. Some properties of statistic of this kind

are discussed elsewhere ([1]).

If Y1, ..., Yn are not caused by a binding site, they should be pure noise, which can be

modelled by a stationary process. This process is not independent white noise, because

there are auto-correlations between nearby probes. We may assume that Yi is correlated
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with its neighbors Yj with |Pj − Pi| ≤ m (Pj and Pi are the genomic positions of Yj and

Yi, respectively). Then

Var(Ȳn)

= Var(
1√
n

n∑

i=1

Yi) =
1
n

∑

i,j

Cov(Yi, Yj)

=
1
n

∑

|Pi−Pj |≤m

Cov(Yi, Yj)

≈ Var(Yi)(1 +
∑

|Pj−Pi|≤m

Cov(Yi, Yj)/Var(Yi))

= γ2(1 + f),

where γ2 is the marginal variance Var(Yi), and f is the auto-correlation factor. Both can

be estimated from the data.

Then we can obtain the p-value by comparing the observed Ȳn with N(0, γ2(1 + f)).

The normal distribution can be justified by the central limit theorem. We can trim the

insignificant peaks by thresholding the p-value.

5 Results on real data

We have applied our algorithm to real data obtained from human genome. The reader

is referred to [12] for biological discoveries and validations. Figures below show some

examples of model fitting. The plot on the top shows the observed signals. The plot in

the middle shows the signals produced by the fitted triangle shape models. The plot on

the bottom shows the probes that are considered the potential binding sites.

Figure 2: Top: original data. Middle: fitted data. Bottom: Peak position.
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Figure 3: Top: original data. Middle: fitted data. Bottom: Peak position.

Figure 4: Top: original data. Middle: fitted data. Bottom: Peak position.

Figure 5: Top: original data. Middle: fitted data. Bottom: Peak position.
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Figure 6: Top: original data. Middle: fitted data. Bottom: Peak position.

Figure 7: Top: original data. Middle: fitted data. Bottom: Peak position.

Figure 8: Top: original data. Middle: fitted data. Bottom: Peak position.
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It appear that the triangle shape model provides reasonable fit to the observed data.

But there are also cases where the model fitting is not very good. See Figures 9 and 10.

Figure 9: Top: original data. Middle: fitted data. Bottom: Peak position.

Figure 10: Top: original data. Middle: fitted data. Bottom: Peak position.

To assess the overall fitness of the triangle shape model, we compute the R2 measure for

every detected peak. Specifically, for a peak at x, let the range of the peak be [x−L, x+R].

We compute the overall variance of all the signals within this range,

τ̂2 =
x+R∑

i=x−L

(Yi − µ̂)2/(R + L + 1),

where µ̂ is the average of all the Yi, i ∈ [x − L, x + R]. Then R2 = 1 − σ̂2/τ̂2, where

σ̂2 is the estimated residual variance of the triangle shape model, see equation (12). R2

measures the percentage of the variance explained by the triangle shape. The larger R2
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is, the better the model fits the data. Figure 11 plots the histogram of the R2 for all the

detected peaks, indicating that the model fits the data reasonably well.

Figure 11: Histogram of R2 measures for all the detected peaks.

Another indicator of goodness of fit is the log likelihood ratio score, which is (R +

L + 1) log(τ̂2/σ̂2). The triangle shape model has three more parameters than the model

assuming a common mean (i.e. a flat top instead of a triangle shape), namely, the peak

position and the two slopes of the triangle shape. Figure 12 plots the log-likelihood ratio

scores of the detected peaks. Most of the log-likelihood ratio scores are much larger

than 11.34, the 99% quantile of χ2
3, suggesting that the triangle shape model provides

considerable improvements over the flat top model.

Figure 12: Histogram of log-likelihood ratios for all the detect peaks.

6 Justifications of truncated triangle model

The following are justifications for fitting the truncated triangle model.

1) Probabilistically, the exponential model is a local approximation to the underlying

sonication process.
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2) Functionally, the truncated triangle model is a local linear approximation to the

functional form around the true binding site.

3) Empirically, the model provides reasonable fit to the data. We may not have enough

data and computing power to fit more sophisticated non-linear models.

4) The signals produced by a binding site are not only characterized by a large value at

the corresponding probe, but also by a roughly triangle shape caused by the binding site

(figure 13). In order to rank and test the peaks in the data, it is advantageous to identify

a neighborhood of probes whose signals may be caused by a biding site.

Figure 13: Illustration of necessity of model fitting: the single large signal in the first figure is

likely to be noise, and the signals in the second figure is likely to indicate a true binding site.

5) Our model fits the range and two slopes to the data. This can be more adaptive than

finding local maxima after smoothing the data with kernel function of fixed bandwidth

(e.g., [7]). In some sense, our model fitting method corresponds to finding the kernel

bandwidth adaptively.

7 Mpeak software

A software named Mpeak has been developed following our peak finding procedure and re-

leased to public. The software and the source code are free to download from www.stat.ucla.edu

/∼ zmdl /mpeak. To use the software, please just download the file, unzip it and follow

the instruction. Currently, only windows-executable version is provided. The software is

reasonably fast: ∼ 10 seconds for ∼ 400, 000 probes on a regular PC (Celeron 2.4GHz,

512 Mb memory.)
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8 Discussion

The contribution of this article lies in two aspects. 1) We provide a theoretical framework

for modelling the ChIP-chip process, and we derive the functional forms of the ChIP-chip

data under simple assumptions. 2) We develop a model-based algorithm for locating the

positions and ranges of the peaks that are caused by potential binding sites. We also

provide a method for testing the significance of the peaks compared to the background

noise.

There are a number of issues that need to be addressed in further work.

1) The Poisson model is only a first order approximation to the spatial distribution

of the cut points caused by the sonication process. Its validity needs to be carefully

examined, in comparison with more sophisticated models, such as Markov point process

models, which take into account the interactions between the cut points.

2) The chip process for measuring log p(x) needs to be modelled more carefully. In

particular, the auto-correlation structures in the tiling array data need to be studied

theoretically and empirically.

3) The model fitting algorithm needs improvement. Currently, the algorithm only

seeks to explain the data around the potential binding sites. We need to develop efficient

algorithms to fit the whole data set using the multiple-peak model. The model should

also allow rare cases where probes near the binding sites do not hybridize efficiently and

result in poor signals.

4) In computing the p-values, we do not take into account the fact that the peaks are

selected by an optimization algorithm. As a result, the p-values can be smaller than they

should be. We may use a simulation method to obtain more accurate p-values, although

this can be time consuming. Currently, the p-values are only used as indications of the

significance of the peaks, for the purpose of trimming insignificant peaks.

5) FDR controlling method proposed by Benjamini et al ([2], [3]) can be incorporated

to take care of the multiple testing scenario in our data.

6) The model-based peak detection method can be extended to detecting more sophis-

ticated shapes.
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