
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Functional Verification of CMS PIXEL 28nm Design for the Large Hadron Collider Using 
Unit-Level Testing and Assertions

Permalink
https://escholarship.org/uc/item/8fc455gr

Author
Molina, Lilian

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8fc455gr
https://escholarship.org
http://www.cdlib.org/


Functional Verification of CMS PIXEL 28nm Design for the Large Hadron Collider Using
Unit-Level Testing and Assertions

By

LILIAN MOLINA
THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Chair Rajeevan Amirtharajah

Hussain Al-Asaad

Giuseppe Di Guglielmo

Committee in Charge

2024

i



Table of Contents

Table of Contents ii

Abstract iv

Acknowledgments v

Contributors and Funding v

Chapter 1. Introduction 1

1.1. Background 2

1.2. ASIC Design Flow 4

1.3. Overview of Thesis 6

Chapter 2. Logic Verification Literature Review 8

2.1. Formal Verification 8

2.1.1. Theorem Proving 8

2.1.2. Model Checking 11

2.1.3. Symbolic Trajectory 13

2.2. Functional Verification 13

2.2.1. Random 13

2.2.2. Deterministic 13

2.3. Pillars of Verification 13

2.3.1. Stimulus 13

2.3.2. Coverage 14

2.3.3. Checking 15

Chapter 3. Verification Framework 16

3.1. Verification Approach 16

3.1.1. Verification Environment 16

3.1.2. Testbench 16

3.1.3. Test-Suite 17

3.2. Cocotb Simulator 18

3.3. Python Testbench 18

ii



Chapter 4. Verification Results 20

4.1. Deep Neural Network 20

4.2. Shift Register 25

4.3. Scan-Chain 28

4.4. Updates for Scan-Chain and Shift Register 30

4.5. Ripple Carry Adder 33

4.6. Top Module 36

4.7. Updates 37

4.8. Future Works 38

Chapter 5. Conclusion 39

Appendix A. Verification Outputs 41

A.1. Shift Register 41

A.2. Scan-Chain 42

A.3. Ripple Carry Adder 43

A.4. Top Module 45

Bibliography 46

iii



Abstract

The evolution of data processing at the Large Hadron Collider (LHC) requires advancements in the

design and implementation of specialized hardware to manage large quantities of data generated by

high-energy collisions of subatomic particles in experiments. The Application-Specific Integrated

Circuit (ASIC) Design Group at Fermi Lab has developed an integrated chip that merges analog

data acquisition systems with digital logic. This chip is designed to perform on-site classification of

collision events, effectively distinguishing between low-energy, irrelevant particles and those impor-

tant to high-energy physics investigations. This design integrates two versions of analog chips with

a superpixel architecture, facilitating the direct application of neural network algorithms for data

classification, thus significantly reducing the data bandwidth requirements by preprocessing data

at the source. Using functional testing, design errors pertaining to undefined logic signals were

addressed and corrected in the ASIC. To correct undefined logic signals in the ASIC chip, exten-

sive simulations revealed issues with the testselect and encoderOut signals in the superPixel

submodule, which initially included only row values for certain pixel coordinates. By converting

these into a 2D signal array to encompass both rows and columns, the design was modified. Ad-

ditional design updates included removing the scanCLK signal to simplify the clocking architecture

and introducing a Resetnot signal across several modules to ensure the chip starts in a known,

stable state. These corrections and enhancements have significantly improved the functionality and

reliability of the ASIC.

iv



Acknowledgments

I would like to extend my deepest gratitude to my advisor, Dr. Rajeevan Amirtharajah, for his

invaluable guidance and unwavering support throughout my studies. His kindness and dedication

have been pivotal in shaping my academic journey. I am also profoundly thankful to my under-

graduate advisor, Dr. Shiva Abbaszadeh, whose mentorship and insights have played a crucial role

in advancing my educational and professional training.

I extend my gratitude to the ECE department at UC Davis. In particular, I am thankful to ECE

graduate advisors, Ms. Michelle Theresa Walker and Dr. Juan Sebastian Gomez-Diaz, for arrang-

ing logistics as and when required and guiding me through the university formalities.

Finally, I am immensely thankful to my parents for their extraordinary support and motivation

throughout my career.

Contributors and Funding

Contributors

The RTL file for this research project was provided by Farah Fahim (farah@fnal.gov) and Manu

Blanco Valentin (manuelbv@fnal.gov). The Deep Neural Network and Cocotb Design Environment

used for this graduate research thesis were provided by Giuseppe Di Guglielmo Ph.D. (gdg@fnal.gov).

Furthermore, this project includes collaborations with Corrinne Mills, Gauri Pradhan, Jennet Dick-

inson, Jieun Yoo, Nhan Tran, Suresh Kumar, and Suresh Senthilkumar.

The rest of the work was carried out independently by the student under the guidance of Giuseppe

Di Guglielmo, Ph.D. and Benjamin Parpillon, Ph.D.

Funding Sources

This thesis project was fully supported by the Department of Energy IC Design Traineeship Pro-

gram With Applications In High-Energy Physics (HEPIC) Fellowship. The research topic is part of

an ongoing Compact Muon Solenoid (CMS) project in collaboration between Fermilab and CERN.

v



CHAPTER 1

Introduction

The Large Hadron Collider (LHC) generates an extensive array of particle collision data, a substan-

tial portion of which includes low-energy particles that provide little value to high-energy physics

research. Traditional data processing methods involve transferring all collision data off-chip for

classification, which consumes considerable bandwidth and processing power [1]. To address this

inefficiency, the ASIC Design Group at Fermilab has developed a chip that incorporates both ana-

log and digital components to preprocess and classify data directly within the readout hardware.

This approach aims to handle data processing of very large data sets by filtering out irrelevant

low-energy particle data at the source.

The chip features two distinct versions of analog circuits, each optimized for specific performance

metrics such as power efficiency, noise levels, and area utilization. These circuits are part of a larger

superpixel configuration—comprising a 16x16 pixel array—connected to an embedded neural net-

work classifier [2]. This setup allows for immediate data classification at the pixel level, enhancing

the selection process for data transfer and analysis.

To ensure the reliability of the ASIC design, functional verification strategies are employed through-

out the ASIC tapeout process. Additionally, functional verification techniques are used to detect,

correct, and validate the chip’s functional design. The verification process is supported by testing

protocols that involve both random and deterministic simulations to cover a broad spectrum of be-

haviors or scenarios. We also explore formal verification methods like theorem proving and model

checking, which provide mathematical assurances of design correctness. These formal methods are

not implemented for this ASIC design but they are presented in order to understand other methods

available apart from functional simulations.

1



This document elaborates on the design approaches taken by the ASIC Design Group, detailing

the architecture and functionality of the integrated chip. It also discusses various verification

methodologies implemented to validate the design, ensuring that the chip operates reliably under

all expected conditions. Through this integration of analog and digital technologies, the project

not only enhances the efficiency of data processing at the LHC but also sets a precedent for future

developments in particle physics instrumentation. The following sections will delve into the ASIC

design flow, formal verification techniques, functional verification processes, and the foundational

pillars of verification used to achieve a robust design. Then we look at our design approach im-

plemented through the Cocotb simulator and review our verification results for different modules

within the design.

1.1. Background

The Large Hadron Collider (LHC) is a 27-kilometer ring-shaped tunnel located on the border be-

tween Switzerland and France. It operates by accelerating subatomic particles to near-light speeds

in opposite directions, causing two proton beams to precisely collide within the LHC. Following

these collisions, the Compact Muon Solenoid (CMS) detector captures data from the events [3].

Positioned in Cessy, France, the CMS’s strategic location enables a probing of these particle colli-

sion events, advancing the study of particle physics.

The CMS detector acts as an imaging system, rendering 3D images of the particle collisions at a

rate of about 40 million times per second, by analyzing the energy and momentum data from these

events [3]. This data is crucial for reconstructing images of the collisions. The primary components

of the CMS detector include a solenoid magnet, silicon trackers, the Electromagnetic Calorimeter

(ECAL), the Hadron Calorimeter (HCAL), and sub-detectors that capture the final particles. The

solenoid magnet, a cylindrical coil made from special fibers that can conduct a current of up to

18,500 amps without electrical resistance, generates a magnetic field of about 4 Tesla—100,000

times stronger than Earth’s magnetic field [3]. Its main function is to bend the trajectories of the

collided particles, helping to determine their charge and momentum. High momentum particles

experience a greater degree of bending compared to those with low momentum. Precise image

2



reconstruction is achieved by tracing the paths of these particles with millions of electronic sen-

sors that serve as trackers. Additionally, the CMS includes calorimeters in inner and outer layers

to measure photon energy. The ECAL measures the energy of particles by completely stopping

photons that scatter outwardly at the time of collision, while the Hadron Calorimeter in the outer

layers stops other subatomic particles. Furthermore, sub-detectors identify the final particles that

the calorimeters do not stop.

ASICs in the CMS pixel tracker, which include both analog and digital functionalities, are designed

to manage the substantial data rates and harsh radiation conditions typical at the LHC. Analog

ASICs, used mainly in the readout chips of the pixel detectors, amplify and buffer the electrical

signals produced by particle interactions with the silicon sensors. Conversely, digital ASICs handle

more complex data processing. Specifically, the Token Bit Manager (TBM), a digital ASIC, syn-

chronizes data collection with the LHC’s collision frequency of 40 MHz [3].

The design and implementation of ASICs in such an extreme environment faces significant chal-

lenges. These circuits must be highly radiation-tolerant to resist the intense particle flux and

radiation without degradation over time. Additionally, the high data throughput demands that

ASICs process data at extremely high speeds, calling for innovative chip design to ensure reliable

and precise data handling [1]. Lastly, considering the compact nature of the CMS tracker and the

constraints on power, ASICs must operate with high power efficiency. Excessive power consumption

can lead to increased heat, which can diminish the performance and lifespan of the electronics. To

combat this, ASICs are designed to be power-efficient.

Overall, the integration of ASICs into the CMS pixel tracker represents a significant advancement

in particle physics instrumentation. These chips play a significant role in managing the complex

demands of particle detection and data processing, allowing physicists to explore the mysteries of

the universe with precision.

3



1.2. ASIC Design Flow

Application-Specific Integrated Circuits (ASICs) play a crucial role in high-energy physics, partic-

ularly in experiments and facilities where precision and efficiency are crucial. These specialized

circuits are integral to the operation of detectors and instrumentation used in large-scale physics

experiments, such as those conducted at the Large Hadron Collider (LHC) and other similar facil-

ities around the world.

In high-energy physics, ASICs are designed to handle the massive volumes of data generated by

particle collisions. They are used in particle detectors to process signals directly from detection

elements, such as silicon trackers or calorimeters converting these signals into digital data that can

be analyzed by physicists. The speed and accuracy with which ASICs operate allow for real-time

data processing, which is essential for filtering and selecting relevant particle collision events among

the millions of interactions that can occur every second.

The ASIC design process begins at a conceptual level and extends into physical implementation.

For large complex designs, designers must first draft a Register-Transfer Level (RTL) description

using hardware description languages such as Verilog or SystemVerilog. The RTL provides a de-

tailed map of the ASIC’s digital logic, outlining a behavioral model of how the chip functions.

Advances in VLSI design have tremendously scaled ASIC complexity, making IC designs consist-

ing of billions of transistors compacted onto a small silicon die. Due to this large complexity, the

likelihood of errors and bugs has also increased. Therefore, it is crucial for bugs to be caught

during the design process before chips are fabricated and distributed. The task of verifying the

RTL design falls on verification engineers who use comprehensive strategies that include functional

or formal verification methods to find errors within the RTL design. Usually, verification engineers

use logic simulators to simulate the RTL code and analyze whether the logic outputs match the

expected outputs and help debug any discrepancies. Tools such as Cadence Xcelium or ModelSim

are employed for simulations to verify behavioral functionality.

Once the RTL is successfully verified, the next step is logic synthesis. A logic synthesis tools works

similarly to a compiler that translates source code into assembly language. In this case, the RTL

4



code is mapped into a library of logic gates called standard cells. The mapping is done with the ob-

jective to minimize the area while ensuring timing constraints are being met [4]. Tools like Synopsys

Design Compiler translate the RTL code into a gate-level netlist. This netlist includes the individ-

ual gates and their connections, which can often comprise thousands of transistors. Designers then

revisit this stage to optimize area, speed, and power efficiency according to the initial specifications.

Physical design begins with floorplanning, where the ASIC’s major functional blocks are positioned

to optimize efficiency and connections. In floorplanning, design engineers estimate the area and

other critical components to make sure the proposed architecture fits into the area budgeted. As

soon as the design specification is given, a general floorplan is proposed and the design goes through

various feedback and modification cycles in order to come up with the best design.

Following floorplanning is placement and routing, where tools such as Cadence Innovus or Synopsys

IC Compiler are used to lay out countless standard cells and their connections. Engineers then

perform static timing analysis to ensure the design meets all the timing constraints to prevent fu-

ture failures or hazardous behaviors. Then, the design goes through post-layout verification, which

includes Design Rule Checks (DRC) and Layout versus Schematic (LVS) checking to verify that

everything is functioning according to the original specifications.

In the final phase of the design process, the design files are sent to a semiconductor foundry where

the files are used to create photolithographic masks used to create the patterns of transistors and

wires that are then etched into silicon wafers and made into individual chips. Verification also fol-

lows the design at this stage, ensuring that the physical chips meet all functional and performance

criteria.

Despite multiple iterations of verification at each design stage, the complexity and scale of modern

ASICs mean that not every potential fault can be tested or detected. Furthermore, the rapid pace

of technological advancements places immense pressure on verification to catch and fix bugs before

they are distributed.

5



1.3. Overview of Thesis

The Large Hadron Collider (LHC) at CERN generates large amounts of data for each particle col-

lision. The ASIC design group at Fermilab is addressing the challenge of handling large amounts of

data through the development of an Application-Specific Integrated Circuit (ASIC). The ASIC is

designed to filter out low-energy particle data. By integrating both analog and digital components,

the chip preprocesses and classifies the data. This thesis covers the verification processes involved

in correcting specific faults of this ASIC.

Chapter 2 covers the essential techniques and principles of formal verification in hardware design.

We begin by introducing formal verification and highlighting its significance in ensuring that the

design meets the specifications across all scenarios. Then the chapter examines the methodologies

of theorem proving and model checking. We also discuss functional verification, which includes

both random and deterministic strategies to assess system behavior. Throughout this chapter, we

emphasize the aspects of verification such as stimulus, coverage, and checking.

Chapter 3 delves deeper into designing a robust verification approach, building on functional veri-

fication concepts. The verification test environment is crucial for evaluating the design under test

(DUT), which includes a test bench designed under Cocotb, a tool that facilitates verification us-

ing Python. This chapter then covers the setup of test benches and test suites that incorporate

stimulus, coverage, and checking in order to validate the DUT’s correctness.

Chapter 4 examines the ASIC verification process across various RTL modules, adopting both

random-based and deterministic testing. This chapter describes the hierarchical verification pro-

cess of the ASIC, across different components, including a deep neural network (DNN), shift register,

scan-chain, ripple-carry adder (RCA), and the top module. The top module integrates all lower

level modules and ensures a complete verification process.

Finally, Chapter 5 reviews the modifications made to the ASIC to correct the undefined logic values

shown in Chapter 4. Challenges within the superPixel submodule were addressed and design

updates were reviewed that included correctly instantiating signals testselect and encoderOut,

6



removing scanCLK, and introducing a Resetnot signal. This work lays the foundation for further

research and development in ASIC design for applications in high-energy physics.

7



CHAPTER 2

Logic Verification Literature Review

Formal verification uses mathematical methods to prove the correctness of circuits and systems. We

will explore two main techniques which are theorem proving and model checking. Theorem prov-

ing involves using logic formulas to verify that a system’s behavior aligns with its specifications,

while model checking examines the behavioral models of a system against specified properties using

temporal logic. Additionally, we discuss functional verification, focusing on random and determin-

istic methodologies to validate system behavior under various conditions. Finally, we highlight the

pillars of verification, such as stimulus, coverage, and checking, which provide a comprehensive

framework for evaluating and enhancing the reliability of electronic circuits and systems. This

structured approach ensures that every aspect of a design meets the specified criteria.

2.1. Formal Verification

Formal verification is a critical methodology in the field of hardware design, utilizing a mathe-

matical approach to prove the correctness of electronic circuits and systems. Unlike functional

simulations which only demonstrate the presence of defects but cannot conclusively prove their

absence, this methodology uses mathematical techniques to ensure that a design behaves exactly as

intended across all possible scenarios [5]. The primary goal of formal verification is to use a logical

framework to prove that a given design adheres strictly to all the specifications, ensuring that the

system remains fault-free and behaves as expected under all specified conditions.

2.1.1. Theorem Proving. Theorem Proving is a method that is intended to provide a formal

way of describing the specification and the implementation of a digital system. For example, to

prove the correctness of a circuit, this method involves using logic formulas to represent the speci-

fications, intended behavior of a system, and then finding out how they are related [5]. A formal

logic language can be used in describing the circuit inputs, outputs, and internal behaviors as well

8



as the intended behavior. The purpose of theorem proving is to show that the circuit model always

satisfies the intended behavior, in relation to the specification.

We will explore the formal verification of hardware components, specifically the verification of an

AND gate constructed from NAND and NOT gates [5]. This approach is grounded in the principles

of higher-order logic to ensure that the gate’s implementation adheres to its intended specification.

The process begins with a clear problem statement: proving that an AND gate, built by integrating

NAND and NOT gates, functions as a standard AND gate should. The verification is conducted

under the assumption that the individual NAND and NOT gates operate as specified [5]. The

formal method employed here is theorem proving in higher-order logic, which offers a structured

framework to demonstrate that the combined behavior of these gates meets the AND gate specifi-

cation.

The verification begins by first defining the behavior of the NAND and NOT gates in higher-order

logic. Then, the specification for the AND gate is set, assuming that the output should be true

if both inputs are true, and false otherwise. The implementation using NAND and NOT gates

involves feeding inputs through a NAND gate followed by a NOT gate, which inverts the output of

the NAND gate.

To formally prove the correctness of this implementation, we begin with the assumption of the

correct behavior of the NAND and NOT gates. Through a series of logical transformations and

deductions, it’s demonstrated that the output from the NAND followed by the NOT gate setup

indeed matches the behavior defined in the AND specification [5]. The logical steps involve apply-

ing the definitions of the gates, reducing expressions, and finally proving that the output condition

holds true for all input scenarios.

The AND gate implementation, ANDgate.IMP, initially assumes that both the input conditions i1

and i2 and the output o conform to the NAND gate operations negated twice [5]. This form uses

De Morgan’s laws. First, we assume a generic form of the AND gate implementation. This involves

9



both inputs i1 and i2 being processed through a NAND gate to produce an intermediary output z.

The direct application of NAND gates leads to the intermediary state z, which is essentially the

negation of the conjunction of i1 and i2. The NAND operation that together with a NOT gate

translates the output from the negation of z to a more direct expression. Substituting z with its

expression in terms of i1 and i2, and simplifying using logical identities, the output o is refined to

reflect the conventional AND operation between i1 and i2.

Finally, the specification of the AND gate, ANDgate.SPEC, is confirmed to be met by the imple-

mentation, linking the input conditions directly to the expected output, thus verifying that the

implemented logic for the AND gate using NAND and NOT gates behaves as specified under all

possible input conditions.

This process shows the inclusion of formal verification in hardware design, ensuring that implemen-

tations are error-free and function as intended under their specified operations.

Theorem proving offers a significant advantage in formal hardware verification due to its ability

to remove any unclear details in the specification through temporal logic, making it less reliant on

human error. This method is effective as it allows for the verification of complex digital circuits

across multiple levels of abstraction. For example, it can demonstrate that circuit behaviors at

various levels from RTL to physical design match their specifications, linking inputs and outputs in

a manner that aligns with predefined logical relationships. This structured approach helps in refin-

ing and validating a design against its higher-level specifications and the incomplete understanding

held by the circuit’s designer.

However, theorem proving is not without its challenges. It requires considerable effort from the user

in defining detailed specifications for each component and guiding the theorem prover throughout

the stages of the verification process. The process also demands a substantial investment in time

and computational resources to navigate through complex algebraic levels and relationships within

10



the hardware being verified.

2.1.2. Model Checking. Model checking is a way of verifying the behavioral models of a sys-

tem with respect to temporal logic. Essentially, model checking provides a way of specifying all the

possible states that a system can be in and then checking if the system violates any specifications

at a given state. A Computational Logic Tree (CTL) can then be employed to find the sequence

of events that lead to a fault within the system.

A CTL formula is defined with respect to some set of atomic formulas. These atomic formulas

should be thought of as basic properties of the individual states. An atomic formula, which is the

most basic element, is considered a CTL formula and represents simple, state-dependent expres-

sions [5]. CTL extends this foundational concept by enabling the construction of more complex

formulas. If f is a CTL formula, various operations can be applied to expand its scope: the nega-

tion ¬f inverts its truth value, while path quantifiers paired with temporal operators further refine

its application. Specifically, AXf stipulates that f must hold in the next state across all paths,

and EXf requires f to hold in the next state on at least one path. The operators AGf and EGf

ensure that f holds across all states for all paths and at least one path. Meanwhile, AFf and

EFf assert that f will eventually hold for all paths and at least one path [5]. This comprehensive

framework facilitates the analysis and verification of complex system behaviors in various contexts.

The figures shown in Figure 2.1 below offer a visual representation of various CTL operators and

how they are applied across different paths in a model. Each tree in the figure illustrates the specific

application of one CTL operator, with black nodes representing the current state and orange nodes

representing future states [5]. The labels such as AXf, EXf, AGf, EGf, AFf, and EFf correlate to

different CTL formulas, each demonstrating how these operators dictate state relationships within

computation trees.

The figure is a clear tool that helps explain the temporal and path-dependent nature of CTL formu-

las, showing how different conditions can be evaluated with state transitions within computational

11



models.

(a) f must hold in the
next state across all
paths.

(b) f holds in the
next state, for at least
one path. (c) f holds in all paths.

(d) f holds in every state for
some path

(e) f eventually holds for all
paths. (f) f eventually holds for some paths.

Figure 2.1. Computational Tree Logic paths formulas

CTL is used extensively in system verification for its precise and rigorous ability to define and

check properties of system behaviors over time. One of its significant strengths is that the decision

procedure is fully automated, allowing verification engineers to verify complex temporal properties

without manually tracking the CTL structures [5]. This automation facilitates the detection of

errors in both hardware systems, enhancing reliability and correctness.

However, CTL also has weaknesses. Specifically, it enumerates desired properties, which can make

it difficult to conclude if the verification process has thoroughly covered all relevant system be-

haviors or just a subset. This can lead to potential oversights where some critical behaviors may

not be checked [5]. Moreover, CTL faces the “state explosion problem” where the state space for

systems with numerous components becomes extremely large, making verification computationally

intensive. This complexity can decrease the effectiveness of CTL in environments with immense

12



state spaces.

2.1.3. Symbolic Trajectory. Symbolic trajectory uses temporal logic to enumerate a set of

properties of a given circuit. The properties are then expressed as assertions, which take the form

of “Antecedent” and “Consequent” [6]. This relationship is used to specify a set of properties

of a system, where the antecedent describes a state or premise of a system, and the consequent

describes the outcome that is produced if the antecedent is true. In symbolic trajectory simulation,

the antecedents are simulated, and then consequences are asserted.

2.2. Functional Verification

Functional verification aims to check if a system satisfies its intended behavior through simula-

tion. Functional verification can then be subdivided into random or deterministic methodologies.

Random-based verification is usually used in black box scenarios where the designer does not have

much prior knowledge of the functionality of the system. In deterministic verification, the designer

has some prior knowledge as to the property set of the system.

2.2.1. Random. Typically, random-based simulations are implemented when the space of

possible states of a system is substantially large. Random simulations can be further categorized

as static and dynamic.

2.2.2. Deterministic. In deterministic testing, the test is generated based on knowledge of

the chip. Deterministic techniques include ad hoc and general testing. In ad hoc testing, modules

are subdivided and each block within the system is targeted to verify . General testing techniques

include simulation of the possible transitions in a finite state machine.

2.3. Pillars of Verification

2.3.1. Stimulus. In the verification cycle, stimulus inputs are used to invoke specific states or

behavior of the system. Stimulus vectors are intended to simulate various edge cases and to provide

13



a thorough verification of the behavior and functionality of the system. These stimulus vectors are

used to exercise and detect potential faults and ensure that the system is meeting design constraints.

2.3.2. Coverage. Coverage is one of the most important metrics in the design and verification

cycle. Coverage metrics can be user-defined and are based on human judgment if the design is free

of all potential faults or bugs. Furthermore, the coverage metric helps assess the completeness of

the verification cycle and leads the designer to areas that might have missed verification.

In the domain of electronic circuit verification, fault coverage (FC) serves as a crucial metric to

gauge the efficacy of a test suite, T , in detecting potential faults within the circuit. The formula

for calculating fault coverage is given by:

FC(T ) =
Number of faults detected by T

Total number of detectable faults

This ratio quantifies the proportion of the total detectable faults that the test suite T successfully

identifies. The test suite comprises a collection of tests designed specifically to exercise various

aspects of the circuit, aiming to trigger and thereby reveal any existing faults through the circuit’s

responses.

Fault coverage is fundamentally important for several reasons. Firstly, it is a direct measure of

the test suite’s effectiveness. A higher fault coverage indicates a more effective test suite that can

detect a larger number of potential faults, enhancing the verified circuit’s reliability . Secondly, in

critical applications, such as aerospace or medical devices, achieving high fault coverage is essential

to ensure safety and operational reliability. It confirms that the circuit can be trusted to perform

under varied conditions without failure.

Moreover, fault coverage is an invaluable tool in the design verification process. It helps in identi-

fying areas where the circuit design might be prone to failures, thus guiding engineers in refining

the circuit architecture . This metric also assists in determining the robustness of a circuit against

14



a wide range of potential faults, informing further enhancements in the design or testing strategies.

In summary, fault coverage not only underscores the quality and thoroughness of the testing pro-

cesses but also contributes significantly to the overall reliability and safety of electronic circuit

designs. Its role is pivotal in certifying that a circuit meets its defined operational specifications

and can withstand real-world operational stresses.

2.3.3. Checking. In verification, checking is used in monitoring a simulation output and as-

serting a pass or fail flag. The designer specifies failing conditions to find bugs, which is when the

designer simulates scenario against a predefined criterion or reference model. At the beginning of

the verification cycle, this reference model can consist of predefined conditions in the test bench.

At the beginning of the verification cycle, it is essential to have a reference model or a set of prede-

fined conditions incorporated within the test bench. This reference model serves as a benchmark

in which the circuit’s behavior is compared during simulation tests. The use of a reference model

helps in structuring the verification process, providing a clear and objective standard for measur-

ing the circuit’s compliance with the expected outcomes. By comparing the simulation results to

this model, discrepancies are easily highlighted, enabling designers to make precise adjustments

and improvements. This methodical approach ensures thoroughness in the testing process, thereby

increasing the likelihood of achieving a robust and error-free circuit design.

15



CHAPTER 3

Verification Framework

3.1. Verification Approach

Designing a robust verification approach is integral to ensuring the reliability and correctness of

electronic designs. We will build on the principles of formal verification discussed in the previous

chapter. We start by establishing a robust verification environment that utilizes stimulus, coverage,

and checking within a testbench framework to assess and validate the design under test (DUT).

This environment is crucial for simulating real-world conditions and verifying that the DUT meets

all specified operational requirements. We then delve into the specifics of the testbench setup,

detailing its components and functionalities, which are essential for a comprehensive evaluation of

the DUT. Following this, we introduce the Cocotb simulator, a powerful tool that utilizes Python

for writing testbenches, providing a flexible and intuitive approach to verification. Lastly, we discuss

the configuration of Python testbenches and test suites, which play a pivotal role in identifying

and addressing potential faults in the design phase, ensuring that the hardware system functions

correctly across a range of scenarios and meets all design specifications.

3.1.1. Verification Environment. The verification environment developed for this project

uses stimulus, coverage, and checking to create a framework to validate and verify the correctness

of the design under test (DUT). This verification environment is referred to as the testbench.

3.1.2. Testbench. The verification environment, crucial for assessing and validating the de-

sign under test (DUT), is often implemented through a testbench. A testbench is a specialized

environment set up to simulate the electrical and logical conditions under which a piece of elec-

tronic hardware is expected to operate. It serves as a framework to provide inputs, monitor outputs,

and inject various operational scenarios into the DUT to ensure that it behaves as expected across

all specified conditions.

16



The testbench includes three fundamental components: stimulus, coverage, and checking.

Stimulus involves generating and applying a set of test vectors as inputs to the DUT to emulate

both typical and extreme operational conditions. The stimulus is designed to challenge the DUT,

exposing potential weaknesses and verifying robustness. It can simulate a range of conditions from

standard operating inputs to edge cases and error states that are critical for testing the DUT’s

response capabilities.

Coverage metrics are used to quantify how thoroughly the tests explore the functional and opera-

tional aspects of the DUT. This component ensures that every part of the design is exercised by

the tests, highlighting any areas that have not been tested. Effective coverage analysis is vital for

guiding further test development.

Checking is a component that automatically evaluates the DUT’s outputs in response to the test

inputs. It checks the outputs against expected outcomes to assert whether the conditions for pass-

ing have been met. This process is crucial for identifying discrepancies or failures in the DUT’s

performance, allowing for rapid diagnosis and correction of any issues.

Including all of these components within the testbench not only tests and verifies the DUT against

its expected specifications but also ensures it can reliably perform in its intended operational en-

vironment. By simulating real-world conditions and systematically verifying every aspect of the

DUT, the testbench plays a pivotal role in the product development lifecycle, significantly enhanc-

ing the reliability and quality of the final hardware.

3.1.3. Test-Suite. Test-suites refers to an ensemble of test vectors that are chosen to validate

or drive the system to a desired state or scenario. In other words, a test suite is a collection of test

cases that are designed to validate the functionality and performance of a hardware system against

its specifications . Each test case within the suite is a set of conditions or variables under which a

tester will determine whether a system under test satisfies requirements or works correctly.

17



The test vectors are chosen such that the designer can determine if the system satisfies a set of

constraints or design specifications. This will help the designer determine if the system works cor-

rectly. Test-suites are designed to cover possible edge cases and potential fault conditions.

3.2. Cocotb Simulator

Verification processes in circuit design critically depend on simulators to observe the functional be-

havior of the inputs and outputs across various modules. One of the prominent simulators employed

for this purpose is Cocotb. Standing for ”Coroutine-based Co-simulation Test Bench,” Cocotb is

a specialized simulator framework that allows for writing testbenches in Python. This feature sig-

nificantly simplifies the testing process, as Python is a high-level, versatile programming language

familiar to many developers, in contrast to hardware description languages (HDLs) like VHDL,

Verilog, and SystemVerilog that are typically used for writing testbenches.

Cocotb is known for its ability to operate as a coroutine simulation library, integrating with exist-

ing simulation frameworks without the need for additional adapters or special testbench languages.

This approach allows developers to write sequential code to interact with the simulation, making

the testbenches easier to implement and maintain.

Furthermore, Cocotb is open-source and supports cross-platform functionality, being compatible

with Linux, Windows, and macOS. Its integration with different simulation tools and its support for

multiple HDLs make it a versatile choice for testing RTL (Register Transfer Level) files. By using

Cocotb, verification engineers can efficiently create and run complex test scenarios that simulate

various operational conditions. Engineers can develop Python testbenches and run the simulation

simultaneously with the RTL and ensure that all potential issues are identified and corrected in the

design phase.

3.3. Python Testbench

In the field of hardware verification, the use of Python through Cocotb has improved the pro-

cess of creating testbenches. Cocotb utilizes Python coroutines, which are a form of asynchronous

18



programming that allows the testbench to pause and wait for hardware events or specific conditions.

A typical testbench in Python testbenches uses Cocotb coroutines to interact with the design under

test (DUT). The coroutines are defined using Python’s async def syntax, and they manage the

sequence of test actions through non-blocking waits. These waits are facilitated by triggers such

as RisingEdge, which waits for a change in a signal’s state, or Timer, which waits for a specific

amount of simulation time to pass. This allows the testbench to synchronize with the DUT’s op-

eration, such as waiting for a clock edge before changing input signals or checking outputs. The

Cocotb framework manages the scheduling and execution of these coroutines, integrating it with

the simulation environment.

Testing the DUT involves sending a series of test vectors defined as sets of inputs intended to ex-

ercise various aspects of the circuit’s functionality. These vectors are applied to the DUT’s inputs,

and the resulting outputs are captured and compared against expected results predefined by the

test designer. This comparison is critical, as it verifies whether the DUT behaves as expected under

different conditions. To facilitate this, Cocotb testbenches typically include functions to load test

vectors from external files or to generate them during simulation. The test vectors are then driven

into the DUT through assignments within the coroutine, often synchronized with the DUT’s clock.

For instance, a test vector might be a binary string representing a sequence of logic levels to be

applied to a digital input. After applying each vector, the testbench uses assertions to check the

DUT’s outputs against expected values, effectively verifying the correctness of the DUT’s design

in an automated and repeatable manner.

Overall, Cocotb and its coroutine-based approach provide a powerful and flexible framework for

developing testbenches. This methodology not only improves the reliability of the testing process

but also enhances the productivity of verification engineers, as they can leverage Python as the

main verification language and bypass the obstacles associated with learning more challenging lan-

guages such as C/C++.

19



CHAPTER 4

Verification Results

To test the correctness of the RTL modules we used functional verification which included both

random-based testing and deterministic testing. We analyzed and tested each individual unit mod-

ule before conducting comprehensive tests on the entire circuit via the top module. Figure 4.1

illustrates the layout of these modules.

Figure 4.1. ASIC Module Hierachy

4.1. Deep Neural Network

Most of the particles observed during photon collision pertain to low-energy event activity. In order

to improve bandwidth from the readout chip, low-energy particle clusters must be filtered out at

the data source. A neural network was designed by the ASIC design group at Fermilab to identify

20



high momentum particle clusters.

A deep neural network (DNN) typically consists of three layers: the input layer, a hidden (dense)

layer, and the output layer, as shown in Figure 4.2 This layout is typical in a neural network archi-

tecture. The first layer is the input layer. The input layer consists of three neurons (X1, X2, X3),

representing the initial data points fed into the network. These could represent various features of

a dataset.

The second layer is the hidden layer. The hidden layer includes three neurons (h1, h2, h3) con-

nected to each input neuron. Each connection has a weight (A11, A12, A13, etc.), which adjusts

as the network learns. The neurons in this layer transform the input values by weighted sums and

typically apply a nonlinear activation function to pass an output to the next neural network layer:

h1 = A11x1 +A12x2 +A13x3

h2 = A21x1 +A22x2 +A23x3

h3 = A31x1 +A32x2 +A33x3

21



Figure 4.2. DNN Layers

The network’s output is derived from processing the activation’s of the hidden layer neurons through

an activation function and then combining them to produce the final output. This structure allows

the network to learn complex patterns and relationships within the data. In a neural network

architecture, the equations

(4.1) h = Ax

(4.2) y = F (Ax)

explain the process of data transformation within the network. Here, A represents the matrix of

weights and x denotes the input vector. The product Ax calculates the weighted sums of inputs

for each neuron in the following layer.

The function F in the equation is known as the activation function. This function is crucial as

it introduces nonlinearity into the model, enabling the network to capture complex patterns and

22



relationships within the data. Activation functions such as the sigmoid, ReLU, or tanh are common

in DNNs and serve to transform the linear combination of inputs into an output signal. This output

is either passed to subsequent layers or serves as the final network output.

The model uses two activation functions: ReLU and Argmax. An activation function is a mathe-

matical operation applied to a layer’s output to introduce nonlinearity [2]. This is crucial because

it enables the network to learn and represent complex patterns and relationships in the data. With-

out nonlinearity, the network would essentially be a series of linear transformations, which cannot

capture intricate relationships. ReLU (Rectified Linear Unit) is a popular activation function that

sets negative values to zero while keeping positive values the same. This allows the network to

efficiently learn complex patterns in data. Argmax is another activation function that selects the

class with the highest score.

Overfitting occurs when a model learns the training data too well but struggles to generalize to

new data. To combat this, a batch normalization (BN) layer was included [2]. Batch normaliza-

tion standardizes the inputs to a layer by normalizing the data using its mean and variance. This

reduces the sensitivity of the network to initialization and helps stabilize training.

The DNN model implemented in the CMS Pixel ASIC comprises 1,163 trainable parameters, with

986 located in the first dense layer and 177 in the second. These parameters include weights, which

determine the influence of each input on the output, and biases, which independently adjust the

output . Table 4.1 gives a description of the DNN input signals and the bit width for the corre-

sponding weights and biases.

Weights and biases are stored as fixed-point numbers, which contain one sign bit to distinguish

between positive and negative values and three bits for the fractional part.

The ReLU activation function is represented using 8-bit data, meaning it outputs values ranging

from 0 to 255. This allows the ReLU to accurately capture variations in the data without requiring

excessive memory [8]. The final model output is represented by a 2-bit unsigned integer, which can

23



hold up to four values. In this application, the output distinguishes among three classes: negative

high (0), low (1), and positive high (2) [9]. These classifications pertain to oppositely charged par-

ticle trajectories that curve in opposite directions in a magnetic field. This limited representation

minimizes the memory requirements and speeds up the computation.

To implement this deep neural network (DNN) efficiently, the ASIC design group at Fermilab used

the hls4ml workflow [8]. This tool translates machine learning models into hardware using high-

level synthesis, which produces a register-transfer level (RTL) design ready for ASIC development.

This RTL code was then integrated into the system with the necessary registers. The hls4ml work-

flow allowed the group to develop a hardware solution that is both fast and resource-efficient.

The verification process for the digital hardware implementation employs fixed-point arithmetic to

ensure the simulation closely mirrors real-world operations. Fixed-point arithmetic is advantageous

for embedded systems due to its simplicity and speed compared to floating-point arithmetic, mak-

ing it ideal for real-time applications.

Port Name Bit-width Description

input 1 16 * 6 = 96 DNN input features. 16 inputs, each input is unsigned integer on 6 bit

w2 928 * 4 = 3712 DNN first dense layer weights. 928 weights, each weight is a fixed-point value (4,1)
b2 58 * 4 = 232 DNN first dense layer biases 58 biases, each bias is a fixed-point value (4,1)

w5 174 * 4 = 696 DNN second dense layer weights. 174 weights, each weight is a fixed-point value (4,1)

b5 3 * 4 = 12 DNN second dense layer biases. 3 biases, each bias is a fixed-point value (4,1)
layer7 out 1 * 2 = 2 DNN output predictions. 1 input, each input is unsigned integer on 2 bits

Table 4.1. DNN module specifications.

The testbench utilizes the ‘fxpmath’ Python library to simulate fixed-point operations. This library

allows for the customization of bit lengths for both the integer and fractional parts, enabling preci-

sion control over numerical accuracy and range. For our tests, values are converted to a fixed-point

format with a specific configuration suitable for our hardware model—using four bits in total and

rounding values to the nearest representable number.

During testing, critical parameters such as weights and biases of the neural network are first con-

verted into this fixed-point format before they are fed into the Device Under Test (DUT). This step

24



is crucial as it ensures the test conditions accurately reflect the hardware’s data handling capabil-

ities. By comparing the output from the DUT against expected outcomes under these controlled

conditions, we can effectively verify the hardware’s ability to perform neural network computations

correctly. Figure 4.3 shows the scoreboard assertion test for the DNN. This approach is vital in

validating the design’s accuracy before it goes into production, minimizing the risk of errors and

ensuring the system’s functionality and reliability.

Figure 4.3. DNN scoreboard

4.2. Shift Register

All weights are stored in registers, and not static random access memories (SRAMs) [9] . In the

shift register module, when a new bit is passed to the input (on a new clock cycle), all of the

existing bits are shifted down to make room for it. At the other end of the register, the last bit is

passed as an output before being discarded. This shift-register works as SIPO, that is serial-in,

parallel-out [10]. The data is loaded into the shift register one bit at a time but the entire vector

of bits can be loaded out completely. This is useful when the data is received sequentially, but all

bits need to be retrieved together, such as the weights and input features of the neural network.

Figure 4.4 shows a diagram of a serial-in, parallel-out shift register with its respective inputs and

output ports. Table 4.2 provides a detailed explanation on how shift-register size was chosen. The

full size of the shift register is composed of the sum of the weight bits from the DNN and the pixel

bits. Therefore, the full size shift register as seen from the top module includes 5164 bits for the

registers. Table 4.3 describes the bit width of each input signal for the shift register.

25



Figure 4.4. SIPO Shift Register

Port Name Bit-width Description

NWEIGHTS 4652 The total number of weight bits in the neural network.
w2+b2+w5+b5 = 928*4+58*4+174*4+3*4 = 4652

PIXEL CONFIG 512 The total number of pixel bits. 16*16*2 = 512

Table 4.2. DNN Bit Specification.

Port Name Bit-width Description

configClk 1 Clock Signal
configRst 1 Reset Signal

configIn 1 Loads data serially into the shift register

configLoad 1 Enables data to be sent outside the shift register
configOut 1 Loads data serially out of the shift register

parallelOut 4652 + 512
= 5164

Loads parallel data outside the shift register. parallelOut =
NWEIGHTS + PIXEL CONFIG ∗∗

Table 4.3. Shift Register Module Port Specification.

Functional testing of the shift register began with unit-level testing, involving a module with 12 bits.

Three primary types of tests were performed on the shift register. The first test involved sending a

single bit through the module to verify if it was transmitted through all 12 cells. This crucial test

was conducted across all ASIC modules to ensure there were no disconnections between the circuit

nodes and to verify the output bit passed along each cell, as depicted in Figure 4.5. ConfigIn,

a one-bit input signal, carries the bit through the 12 cells of the shift register. After 12 rising

edges, the output at ConfigOut is expected. The second test observed multiple vectors passing

sequentially through the Device Under Test (DUT); these vectors were stored in a predefined file

and loaded into the testbench, shown in Figure 4.6. The final test evaluated the shift register’s

parallel output, as shown in Figure 4.7. The purpose of this test was to verify if the test vectors

could be observed through its parallel output functionality.

26



Figure 4.5. Test 1: Shift register test passing a single bit through the shift-register.

Figure 4.6. Test 2: Shift register test passing multiple test vectors.

27



Figure 4.7. Test 3: Shift register test for parallel out of the shift register.

These three tests of the shift register reveal the challenges of detecting a disconnection or fault

within the register. A disconnection may not disrupt the overall behavior in a way that is signif-

icantly detectable. This condition is due to the fact that the output of a shift register is driven

by its input, making the intermediate stages less observable. Therefore, in functional verification,

faults in shift registers can often go undetected if these components are tested in isolation, such

as in these tess. This presents a significant challenge in ensuring the system proceeds to the next

stage in the tapeout process fault-free.

4.3. Scan-Chain

Contrast to shift register testing, scan chain testing is highly detailed and aimed explicitly at dis-

covering faults within the ASIC, including signal disconnections [10]. We performed similar tests

using the scan chain module to achieve better visibility within the state of the shift register and

ensure any disconnection is found.

In the scan-chain module, when the scanload signal is low, the scan chain is disabled. Figures 4.8

provides a detailed diagram of how the scan-chain works. When scanload is high, the scan chain

is enabled and data is loaded using a 12 bit SIPO register. The compOut data (coming from

the analog-digital converters or ADCs) from a 2x2 pixel is mapped from the Most Significant Bit

(MSB) to the Least Significant Bit (LSB), being the Left Top (LT), Right Bottom (RB), Right

28



Top (RT), and Left Bottom (LB) pixel. When scanCLK is at rising edge, the register shifts one

position to the right and the rightmost bit is dropped. This is when the scanIn input loads serial

data into the leftmost bit. ScanOut drives data outside the chip for debugging and testing. Ta-

ble 4.4 provides the bit-width description of the input and output signals for the scan-chain module.

Figure 4.8. SIPO Scan Chain

Port Name Bit-width Description

BXCLK 1 Clock Signal
scanClk 1 Clock Signal for Scan Chain Module

scanRst 1 Reset Signal

scanIn 1 Loads data in serially to test functionality
scanLoad 1 Load data from the pixels to the scan-chain registers.

scanOut 1 loads data out of scan-chain registers

compoutLB 3 3-bit input signal from left bottom of pixel
compoutLT 3 3-bit input signal from left-top of pixel

compoutRB 3 3-bit input signal from right-bottom of pixel

compoutRT 3 3-bit input signal from right-top of pixel
encoderOutLT 3 3-bit output signal from the thermal to binary encoder for the left-top pixel
encoderOutRB 3 3-bit output signal from the thermal to binary encoder for the right-bottom pixel
encoderOutRT 3 3-bit output signal from the thermal to binary encoder for the right-top pixel

Table 4.4. Scan Chain Module Port Specifications.

In the scan chain module, the same tests conducted for the shift register were repeated. Initially, a

single bit was passed through the 12-bit scan chain module, and the output for Scan-Out was ob-

served. Subsequently, a second test involved passing pre-defined deterministic test vectors through

the DUT to determine if multiple test vectors could be observed at the output. These pre-defined

test vectors were stored in separate files and loaded into the python testbench. Figures 4.9 and 4.10

illustrate the results of these simulations. It is evident from the undefined logic states shown in

29



Scan-Out that there is a disconnection in the RTL signals.

Figure 4.9. Test 1: Scan Chain test passing a single bit

Figure 4.10. Test 2: Scan chain test passing multiple test vectors from vector file

These simulation diagrams indicate there are undefined states but do not pinpoint the exact loca-

tion of the disconnections within the RTL design. To fully understand the where fault was located

within the RTL, simulations from all the modules within the ASIC were required. Once all modules

within the design were simulated, backtracing and following signals through the entire ASIC design

was performed to find the faults within the design.

4.4. Updates for Scan-Chain and Shift Register

Extensive simulations were conducted to locate the disconnection within the ASIC module and

ensure that the RTL produces clean and error-free synthesis reports, as well as passing all test

30



cases in the cocotb simulator. After multiple meetings and discussions with the ASIC design group,

it was discovered that the RTL module superPixel, which contains an entire matrix of pixels

and the digital signals associated with the thermo-to-binary encoder and scan chains, incorrectly

instantiated signals for testselect and encoderOut for the left top, right bottom, right top, and

left bottom pixels. Although the disconnection of these signals was not in the scan-chain module,

scan-chain testing was sufficient to detect the undefined logic state values and perform corrective

measures.

Figure 4.11. Update Test 1: Shift Register

Figure 4.12. Update Test 2: Shift Register

31



Figure 4.13. Update Test 1: Scan Chain

Figure 4.14. Update Test 2: Scan Chain

To correct faults associated with testselect and encoderOut for the left top, right bottom, right

top, and left bottom pixels, testselect and encoderOut were converted from 1D to 2D arrays,

with specific rows and columns designated for these signals. Figures 4.11 and 4.12 display the

simulations for the shift register, while Figures 4.13 and 4.14 depict the simulations for the scan

chain. These waveform diagrams demonstrate that the undefined logic values present in the previ-

ous version of the RTL chip are no longer apparent. Additionally, the updated version of the RTL

code also generated clean synthesis reports. A clean synthesis report as well as cleared undefined

values, was sufficient to mark the fault as corrected.

Further simulations and testbenches were created to examine the entire ASIC. Additional test-

benches included ones for the adder and the top module. The adder incorporated signals propagated

32



through the binary-thermometric encoder. These additional testbenches provided more coverage

and a broader view of the signals for testselect and encoderOut propagating through the ASIC

and the rest of the modules.

4.5. Ripple Carry Adder

Adders within the chip architecture process the signals generated by charged particles interacting

with the sensor. When a charged particle traverses the sensor array, it deposits charge in multiple

pixels, forming a spatial pattern known as a charge cluster [9]. These adders are crucial for sum-

ming the charges collected across these pixels to determine the overall charge of the cluster.

The function of the adders is to sum the charges captured by individual pixels within a prede-

fined cluster region. This integrated approach enables the ASIC to perform preliminary filtering

of the data at the sensor level, using deep learning algorithms to distinguish between low and

high-momentum particles [9]. By reducing the data volume at the source, these adders contribute

significantly to bandwidth management.

The adders were ripple carry adders (RCAs), composed of several full adders. Each full adder

combines two binary digits and a carry-in bit to produce a sum and a carry-out bit. Figure 4.15

represents the gate-level description of a full adder. Within an RCA, each full adder is constructed

from basic logic gates: two XOR gates for sum calculation, two AND gates, and one OR gate

for carry-out determination. The first XOR gate computes the preliminary sum of the input bits,

while the second XOR gate combines this result with the carry-in to produce the final sum output.

The AND gates generate signals indicating conditions where a carry should be generated, and the

OR gate combines these signals to produce the final carry-out [10]. This configuration ensures

that each bit’s addition depends on the carry generated from the preceding lower bit, creating a

sequential ripple of carry from the least to the most significant bit. Figure 4.16 shows a ripple carry

adder composed of multiple full adders.

33



Figure 4.15. Full Adder Gate Level

Figure 4.16. Ripple Carry Adder

Figure 4.17. Test 1. Sending a single bit

34



Figure 4.18. Test 2. Sending test vectors from pre-defined file

Figure 4.19. Test 3. Sending all 1’s test vector

After faults were corrected for testselect and encoderOut, additional simulations were conducted

to observe the encoderOut signals and their propagation to the output signals pixelrowsum. Fig-

ure 4.17 shows the initial test where a single bit was sent from scanIn and the output observed

through scanOut. Unlike scan-chain testing, this single bit was sent from a different module within

the design to ensure there is no disconnection and the bit is passed through the design. Figure 4.18

then tests the functionality of the RCA by sending test vectors through the input signal encoderOut

and observing their sum through the output signal pixelrowsum. The waveform diagrams confirm

that there is no disconnection and the input test vectors can be propagated throughout the module.

Figure 4.19 shows the test where 12-bit all 1’s vector was sent in through the encoderOut and seen

at the output of pixelrowsum.

35



4.6. Top Module

For these verification tasks, we refer to the top module as the highest level of hierarchy within

this chip’s design. This module includes all lower-level modules, including the ripple carry adder,

shift register, scan chain, DNN, and encoder. The primary goal of conducting verification through

the top module is to ensure that all intermediate nodes and signals are correctly connected for the

entire design, as opposed to verifying unit level signal connections.

For this verification task, we simulated the entire chip, which includes all 5,164 shift registers to

verify their functionality before and after synthesis. The ASIC design team assigned specific tasks

for this module. The first task was to verify that the output ConfigOut behaves correctly, toggling

after 5,164 clock cycles following a pulse on the input ConfigIn. Next, we confirmed that we could

reset all the registers using the top reset input.

Figure 4.20. Test 1. Top module single bit test

Figure 4.21. Test 2. Testing Parallel Out

Figure 4.20 shows a single bit being propagated through the entire length of the ASIC. Although

simple, this test provided significant assurance that all intermediate nodes were connected and

the bit could propagate throughout lower-level modules. Figure 4.21 shows the Reset not signal

36



being toggled through the top module, enabling the reset of all lower-level modules. Resetting from

the top-level modules ensures that all sub-modules start from a known, predictable initial state.

Effective reset mechanisms are also crucial for debugging, as they allow verification engineers to

bring the system back to a defined state for testing after modifications or when errors occur. This

capability is invaluable in isolating and diagnosing specific issues within the system, significantly

streamlining the troubleshooting process.

4.7. Updates

The updates to the ASIC chip, specifically the version 1 as of November 2023, reveal significant

changes. In the initial version of the ASIC RTL, logic waveform simulations identified undefined sig-

nal values for scanOut and CompReg. Extensive simulations showed that the issues originated from

how testselect and encoderOut for pixels coordinates top left, top right, right bottom, and left

bottom were instantiated. Both signals, testselect and encoderOut, initially included only row

values and were modified to a 2D signal array to incorporate both rows and columns for the pixel

chip. This mismatch indicated potential issues in data coordination at these specific array positions

To address these initialization challenges, a Resetnot signal has been initiated across several

modules including the top module cms28smartpix, superPixelv1, and the scan chain module

CMSPIXDIGx4v1. Resetting these registers is a crucial step towards ensuring that the chip starts in

a known state, which does not include high impedance or undefined logic values in the waveform

diagrams, thereby enhancing the reliability and predictability of its operations.

Additionally, significant modifications were made in the clocking and scanning mechanisms within

the chip. The scanCLK signal has been completely removed from the scan chain, and the system

now solely relies on BXCLK. This change likely aims to simplify the clocking architecture or resolve

previous synchronization issues but requires careful integration to ensure that the remaining clock

signal BXCLK can adequately support the scan operations without introducing latency or timing

errors.

37



The removal of scanCLK and the emphasis on using BXCLK, along with the systematic reset imple-

mented across the modules, help in addressing and fixing the previously observed undefined logic

values in the scan chain. These updates aim to enhance system functionality and simplify the

clocking mechanism and also ensure that the chip can function without the intermittent undefined

states that appeared previously in the scan chain. These updates reflect ongoing efforts to optimize

ASIC chip designs for enhanced performance and dependability.

4.8. Future Works

Enhancing the verification process for each module within the ASIC design can significantly improve

the overall robustness and reliability of the chip. Furthermore, developing more comprehensive

testbenches that include a wider range of edge cases, such as signal overflow, will ensure that

modules are resilient under all operational circumstances. Specifically, each module could be tested

for its response to maximum and minimum input values to simulate overflow scenarios, which

are critical for ensuring that the system maintains stability and accurate output under extreme

conditions.

38



CHAPTER 5

Conclusion

This thesis covered the design and verification of Application-Specific Integrated Circuits (ASICs)

for the Large Hadron Collider (LHC) at Fermilab. The development of a specialized chip that

integrated both analog and digital components to preprocess and filter out low-energy particle data

at the source addresses a critical need. This innovative approach not only optimizes data handling

and processing bandwidth but also sets a new standard in the realm of particle physics research

instrumentation.

By implementing a chip with dual analog circuits within a superpixel configuration, the ASIC De-

sign Group at Fermilab has successfully met the needs of high-energy physics with the advanced

capabilities of modern microelectronics. The 16x16 pixel array, combined with an embedded neural

network, facilitates rapid on-chip data classification, significantly reducing the volume of data that

requires off-chip processing. This not only speeds up data analysis but also enhances the accuracy

and efficiency of capturing relevant high-energy events.

Throughout the design process, functional verification methodologies were essential to ensure the

chip’s reliability and functionality. The application of both random and deterministic verification

simulations served to test the chip under a wide range of scenarios, ensuring robustness and oper-

ational integrity. The introduction of formal verification methods like theorem proving and model

checking provided a theoretical foundation for asserting the correctness of the design, despite not

being implemented in this particular ASIC.

The integration of design and verification techniques highlights the role of ASICs in advancing

scientific research tools. The capability to process and analyze data efficiently at the source with-

out the need for extensive off-chip resources is paramount. This approach not only improves the

data acquisition process but also reduces the latency and energy consumption associated with data

39



processing in large-scale physics experiments.

Throughout the verification process, several critical ASIC design errors were identified, particularly

in the scan-chain and shift register modules. One of the primary issues was the presence of un-

defined logic signals within the scan-chain module. These undefined values, appearing during the

initialization and operation phases, were causing unpredictable behaviors and potentially compro-

mising the stability and performance of the entire system.

To address these issues, functional testing was used which included the use of predefined test vec-

tors and random testing scenarios, which facilitated the detection of faults at various operational

stages. This testing ensured that all potential faults were identified and corrected before final im-

plementation.

Significant updates o the chip design were made in response to the issues identified. One major

update was the removal of the scanCLK signal within the scan-chain module, which simplified the

clocking architecture and aimed to eliminate synchronization issues. This change required careful

adjustment to ensure the remaining clock signal, BXCLK, adequately supported the scan operations

without introducing latency or timing errors.

Furthermore, a Resetnot signal was introduced across several modules, including the cms28smartpixv1,

superPixelv1, and CMSPIXDIGx4v1 modules. This reset mechanism was crucial for clearing any

irregular states or data that might have persisted in the configuration registers, thereby ensuring

the chip started in a known good state and enhancing the overall reliability of operations.

40



APPENDIX A

Verification Outputs

The verification results for the RTL modules within the CMS Pixel ASIC was performed through

functional verification. Each unit module was individually analyzed and tested before these modules

were integrated and tested collectively. Upon successful verification, the RTL was then synthesized,

and the resulting images included in this appendix highlight the synthesized outcomes.

A.1. Shift Register

The shift register serves primarily to sequence digital data streams by shifting bits through a series

of flip-flops, each representing a register element. Testing these registers involved sending a single

bit through the system to ensure proper data transmission from input to output. The results from

the synthesized RTL are included in Figures A.1 and Figures A.2.

Figure A.1. Test 1: synthesized shift register

41



Figure A.2. Test 2: synthesized shift register

A.2. Scan-Chain

The scan chain primarily facilitates the testing and debugging of digital circuits by providing a

mechanism to bypass normal signal paths and directly observe register values. The results for the

synthesized results are included Figures A.3, Figures A.4, and Figures A.5.

Figure A.3. Test 1: synthesized scan-chain

42



Figure A.4. Test 2: synthesized scan-chain

Figure A.5. Test 3: synthesized scan-chain

A.3. Ripple Carry Adder

To validate the Ripple Carry Adder (RCA), a series of tests were performed. Initially, single-bit

inputs were passed through to monitor the carry propagation across all stages, confirming the func-

tionality of each full adder. Subsequently, a range of predetermined and random test vectors were

used to simulate normal and extreme conditions, ensuring accurate processing of inputs and robust-

ness under stress. The synthesized results are included in Figures A.6, Figures A.7, and Figures A.8.

43



Figure A.6. Test 1. synthesized RCA

Figure A.7. Test 2. synthesized RCA

44



Figure A.8. Test 3. synthesized RCA

A.4. Top Module

For the top module in the ASIC design, testing focused on verifying the integration and inter-

action of all sub-modules, ensuring that they functioned cohesively as a single unit. The initial

test involved sending a single bit through the entire system from the input to the output, tracking

its correct propagation across all integrated modules. This test was crucial for verifying signal

integrity and connectivity throughout the chip. The results for the synthesized RTL are included

in the following images, Figures A.9 and Figures A.10.

Figure A.9. Test 1: synthesized top module

Figure A.10. Test 2: synthesized top module

45



Bibliography

[1] G. D. Guglielmo, F. Fahim, C. Herwig, M. B. Valentin, J. Duarte, C. Gingu, P. Harris, J. Hirschauer, M. Kwok,

V. Loncar, Y. Luo, L. Miranda, J. Ngadiuba, D. Noonan, S. Ogrenci-Memik, M. Pierini, S. Summers, and

N. Tran, “A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC,”

IEEE Transactions on Nuclear Science, vol. 68, no. 8, pp. 2179–2186, 2021.

[2] G. Carini, G. Deptuch, J. Dickinson, D. Doering, A. Dragone, F. Fahim, P. Harris, R. Herbst, C. Herwig,

J. Huang et al., “Smart sensors using artificial intelligence for on-detector electronics and ASICs,” arXiv preprint

arXiv:2204.13223, 2022.

[3] S. Chatrchyan, E. de Wolf, P. Van Mechelen et al., “The CMS experiment at the CERN LHC,” Journal of

Instrumentation.-Bristol, 2006, currens, vol. 3, p. S08004, 2008.

[4] N. H. Weste and D. Harris, CMOS VLSI Design: a Circuits and Systems Perspective. Pearson Education India,

2015.

[5] C.-J. Seger, An Introduction to Formal Hardware Verification. University of British Columbia, Department of

Computer Science, 1992.

[6] L.-C. Wang, M. Abadir, and N. Krishnamurthy, “Automatic generation of assertions for formal verification of

powerpc/sup tm /microprocessor arrays using symbolic trajectory evaluation,” in Proceedings 1998 Design and

Automation Conference. 35th DAC. (Cat. No.98CH36175), 1998, pp. 534–537.

[7] C. Pixley, N. R. Strader, W. Bruce, J. Park, M. Kaufmann, K. Shultz, M. Burns, J. Kumar, J. Yuan, and

J. Nguyen, “Commercial design verification: Methodology and tools,” in Proceedings International Test Confer-

ence 1996. Test and Design Validity. IEEE, 1996, pp. 839–848.

[8] T. Aarrestad, V. Loncar, N. Ghielmetti, M. Pierini, S. Summers, J. Ngadiuba, C. Petersson, H. Linander,

Y. Iiyama, G. Di Guglielmo et al., “Fast convolutional neural networks on fpgas with hls4ml,” Machine Learning:

Science and Technology, vol. 2, no. 4, p. 045015, 2021.

[9] J. Yoo, J. Dickinson, M. Swartz, G. Di Guglielmo, A. Bean, D. Berry, M. B. Valentin, K. DiPetrillo, F. Fahim,

L. Gray et al., “Smart pixel sensors: Towards on-sensor filtering of pixel clusters with deep learning,” arXiv

preprint arXiv:2310.02474, 2023.

[10] S. D. Brown, Z. G. Vranesic et al., Fundamentals of Digital Logic with Verilog Design. McGraw-Hill New York,

2003, vol. 1.

46



[11] S. Taylor, M. Quinn, D. Brown, N. Dohm, S. Hildebrandt, J. Huggins, and C. Ramey, “Functional verification of a

multiple-issue, out-of-order, superscalar alpha processor—the DEC Alpha 21264 microprocessor,” in Proceedings

of the 35th Annual Design Automation Conference, 1998, pp. 638–643.

[12] IEEE Standard VHDL Language Reference Manual, Institute of Electrical and Electronics Engineers (IEEE)

Std., 2002.

[13] A. M. Deiana, N. Tran, J. Agar, M. Blott, G. Di Guglielmo, J. Duarte, P. Harris, S. Hauck, M. Liu, M. S.

Neubauer et al., “Applications and techniques for fast machine learning in science,” Frontiers in big Data, vol. 5,

p. 787421, 2022.

47


	Table of Contents
	Abstract
	Acknowledgments
	Contributors and Funding
	Chapter 1. Introduction
	1.1. Background
	1.2. ASIC Design Flow
	1.3. Overview of Thesis

	Chapter 2. Logic Verification Literature Review 
	2.1. Formal Verification
	2.1.1. Theorem Proving
	2.1.2. Model Checking
	2.1.3. Symbolic Trajectory

	2.2. Functional Verification
	2.2.1. Random
	2.2.2. Deterministic

	2.3. Pillars of Verification
	2.3.1. Stimulus
	2.3.2. Coverage
	2.3.3. Checking


	Chapter 3. Verification Framework 
	3.1. Verification Approach
	3.1.1. Verification Environment
	3.1.2. Testbench
	3.1.3. Test-Suite

	3.2. Cocotb Simulator
	3.3. Python Testbench

	Chapter 4. Verification Results 
	4.1. Deep Neural Network
	4.2. Shift Register
	4.3. Scan-Chain
	4.4. Updates for Scan-Chain and Shift Register
	4.5. Ripple Carry Adder
	4.6. Top Module
	4.7. Updates
	4.8. Future Works

	Chapter 5. Conclusion 
	Appendix A. Verification Outputs 
	A.1. Shift Register
	A.2. Scan-Chain
	A.3. Ripple Carry Adder
	A.4. Top Module

	Bibliography



