
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Unstructured Space-Time Finite Element Methods in Four Dimensions

Permalink
https://escholarship.org/uc/item/8fc5042w

Author
Lenz, David Charles

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8fc5042w
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Unstructured Space-Time Finite Element Methods in Four Dimensions

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Mathematics with Specialization in Computational Science

by

David Charles Lenz

Committee in Charge:

Professor Randolph Bank, Chair
Professor Jiun-Shyan Chen
Professor Michael Holst
Professor Petr Krysl
Professor Melvin Leok

2020

Copyright

David Charles Lenz, 2020
All rights reserved.

The dissertation of David Charles Lenz is approved, and it is acceptable
in quality and form for publication on microfilm and electronically:

Chair

University of California San Diego

2020

iii

DEDICATION

For Ashley, who makes time stand still.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vi

List of Tables . vii

List of Algorithms . viii

Acknowledgments . x

Vita . xi

Abstract of the Dissertation . xiii

Chapter 1: Introduction . 1
1.1 Preliminaries . 5
1.2 A Model Problem . 19

Chapter 2: Space-Time Finite Element Methods for Linear Parabolic PDEs . 22
2.1 The Basic Setting of Space-Time Methods . 23
2.2 Space-Time Formulations of Parabolic Problems . 29
2.3 Stability of a Space-Time Galerkin Method . 32
2.4 Convergence of a Stabilized Space-Time Galerkin Method . 43
2.5 Numerical Experiments . 53

Chapter 3: Four-Dimensional Space-Time Meshes . 57
3.1 Construction of Space-Time Meshes . 62
3.2 Bisection of 4D Mesh Elements . 86

Chapter 4: Conclusion . 96

Appendix A: Proof of Lemma 2.7 . 100

Bibliography . 104

v

LIST OF FIGURES

Figure 2.1: Convergence of finite element error in 𝐿2(𝑄) for the solution of the heat equation on
a three-dimensional space-time domain. 55

Figure 2.2: Convergence of finite element error in 𝐿2(𝑄) for the solution of the heat equation on
a four-dimensional space-time domain. 56

Figure 3.1: Types of space-time meshes associated to a 1D spatial domain. From left to right:
Flat Space-Time, Simplex Space-Time, Unstructured Space-Time. 59

Figure 3.2: Examples of SST (left) and UST (right) meshes containing a subset of closely-packed
vertices. The bold horizontal lines at left represent time slab boundaries. 61

Figure 3.3: Left: Triangle in a two-dimensional mesh. Center: Extruded space-time triangular
prism. Right: Subdivision of space-time prism into tetrahedra. 65

Figure 3.4: Relationship between faces of a triangle and its corresponding triangular prism. At
top, from left to right: faces of the underlying triangle of dimension 2,1,0. At bot-
tom, the extrusions of each face at top. Note that the extrusion of each face from the
triangle at top is a face of the prism at bottom. 69

Figure 3.5: Illustration of a triangular mesh in two dimensions, and its corresponding prism
mesh in three dimensions. Due to the conforming nature of the triangular mesh,
the prism mesh is also conforming. 70

Figure 3.6: One possible subdivision of a triangular prism into tetrahedra. Note that each tetra-
hedron contains exactly one vertical edge. 71

Figure 3.7: The five tetrahedral faces of a pentatope. 74
Figure 3.8: 𝑘-Simplex prisms. From left to right: 𝑘 = 0, 1, 2, 3. In each case, the bottom base is

highlighted. 76
Figure 3.9: Exploded view of a tetrahedral prism. Every triangular prism is a lateral face of the

tetrahedral prism. Furthermore, every triangular face on the top or bottom tetrahe-
dron coincides with a triangular face of a triangular prism. 76

vi

LIST OF TABLES

Table 3.1: Summary of the type and quantity of lower-dimensional faces in a pentatope. 73
Table 3.2: Summary of the type and quantity of lower-dimensional faces in a tetrahedral prism. . 75
Table 3.3: List of all possible triangulations of a triangular prism, enumerated by parameters 𝑖

and 𝜎 from Proposition 3.10. 81
Table 3.4: Local vertex orderings of child elements formed by the bisection of the tagged pen-

tatope 𝜏 = {𝛾 ∣ 𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4}. The new vertex𝑚 is the midpoint of the edge 𝑣0𝑣4. . . . 92

vii

LIST OF ALGORITHMS

Algorithm 3.1: Pseudocode algorithm for creating a pentatopal mesh from a mesh of tetrahedral
prisms. 86

Algorithm 3.2: Psuedocode description of Stevenson’s bisection scheme. 93

viii

ACKNOWLEDGMENTS

I am incredibly grateful to my advisor, Randy Bank, who has been an invaluable guide to me

in the course of this research. The study of finite element methods is deeply intertwined with ideas

from approximation theory, numerical linear algebra, functional analysis, and high-performance com-

puting, and it is very easy to get lost in the details, losing the forest for the trees. Throughout our many

conversations, I routinely entered Randy’s office with a slate of questions to ask and left his office with

answers to the questions I should have been asking. As I leave the doctoral program, I attribute my

ability to guide my own research and ask “the important questions” to Randy’s example.

In this final year at UCSD, I have been extremely fortunate to work alongside Eric Lybrand,

whose consistent encouragement and support was a relief in the midst of stress. Thank you Eric for

your affirmation, patient listening when I wanted to rant, and for your gentle prodding to take a break

every once in a while.

My research at UCSDwould not be the same without the support of Yifeng Cui, who welcomed

me into his research group at the San Diego Supercomputer Center and introduced me to the field of

high-performance computing for the first time. I am also indebted to Alex Breuer, who guided my

research at SDSC and patiently answeredmy hundreds of questions as I tookmy first steps into compu-

tational science research. And perhaps I would not have been so bold to apply to join Yifeng’s group if it

were not for Alan Hylton at NASA Glenn Research Center, who inspired me to apply mymathematical

knowledge to real-world problems. Thank you Yifeng, Alex, and Alan.

My growth as amathematician and as a student in general has been supported bymore teachers

than I can list here. To all the teachers who have built me up, thank you. From the bottom of my heart,

I have the most profound gratitude for all of your efforts and sacrifices that have gone unnoticed, even

by myself. You have all changed my life.

There are some forms of gratitude which cannot be captured by words, but in the case of my

first teachers I cannot help but try. To my parents, I could not have entered this world with a greater

blessing. I found my zeal for learning by watching you, and my courage to try new things comes from

your unceasing support. Thank you for every sacrifice that you made to support me in my education. I

realize now how unspeakably lucky I am to have been raised by such kind, smart, and joyful parents.

I am thankful for many people for many reasons, but none so much as my brilliant wife Ashley,

ix

who stood by me and loved me every step of the way. Her tenacity and dedication is inspiring, and I

could not have pushed through the challenges of the last five years without her example and encourage-

ment. Doctoral study is a grueling, disorienting, and humbling experience for many people, and I am

no exception. But - even on the most crushing and exhausting days - I was never without the support

and assurance of my greatest advocate. I cannot overstate how much of a consolation this was.

To Ashley, thank you for the innumerable ways that you have sustained me through the last

five years. I was able to write this dissertation because you made a choice every day to love and build

me up. Thank you for all the times you helped me “really get out there” and step out of my comfort

zone - without those steps, I wouldn’t be where I am today. And of course, thank you for your patience,

understanding, and encouragement when things didn’t go to plan. Your faith in me is everything. I

love you, Ashley.

In compliance with the university instructions on material in preparation, I also make the fol-

lowing acknowledgments:

Chapter 2, in part, is currently being prepared for submission for publication of the material.

The dissertation author was the sole investigator and author of this material.

Chapter 3, in part, is currently being prepared for submission for publication of the material.

The dissertation author was the sole investigator and author of this material.

x

VITA

2015 Bachelor of Science, University of Notre Dame

2017 Master of Arts, University of California San Diego

2020 Doctor of Philosophy, University of California San Diego

xi

ABSTRACT OF THE DISSERTATION

Unstructured Space-Time Finite Element Methods in Four Dimensions

by

David Charles Lenz

Doctor of Philosophy in Mathematics with Specialization in Computational Science

University of California San Diego, 2020

Professor Randolph Bank, Chair

Large-scale simulations of time-dependent partial differential equations are, at present, largely

reliant on massively parallel computers. As a result, the parallel scalability of numerical methods for

partial differential equations is of crucial importance. In recent years, continuous space-time finite ele-

ment methods have emerged as a promising technique for approximating these equations in a scalable,

flexible way. In a space-time finite element method, the space and time variables of a time-dependent

equation are treated as a single unified variable in higher-dimensional space. The higher-dimensional

space-time domain is discretized into a collection of simplices and finite element methods may then

be defined over this discretization. Parallelization is then achieved through domain decomposition

techniques.

In this dissertation, we extend the theory of space-time finite element methods to a more gen-

eral class of problems. We prove new theoretical results describing the stability of space-time methods

applied to parabolic partial differential equations with nontrivial convection and reaction terms. In

xii

particular, we define a streamline-upwind scheme which upwinds in the direction of the space-time

convection. The stabilized method is proved to be coercive with respect to an energy norm and asymp-

totic error bounds are derived.

This dissertation also proposes several operations for the construction and refinement of un-

structured, conforming four-dimensional simplex meshes. We define a simple algorithm which takes

as input any tetrahedral mesh and produces a corresponding four-dimensional, simplicial space-time

mesh. Our algorithm always produces conforming triangulations andmay be run concurrently for each

spatial element. In addition, we describe how four-dimensional simplex elements can be bisected in

order to achieve local spatiotemporal refinement.

xiii

Chapter 1

Introduction

Over the last several decades, high-fidelity numerical simulations have been instrumental to

the development of fields ranging from seismology to fluid dynamics to biotechnology. This explosion

in simulation accuracy has been driven largely through improvements in CPU speeds, but these speeds

have leveled off in recent years. Increases in computational power now rely on the simultaneous use of

multiple processors, and this progression is even more pronounced in state-of-the-art supercomputers,

where large-scale applications routinely use hundreds of thousands of cores. Unfortunately, creating

mathematical methods that can be executed in parallel is a nontrivial task. In order to maintain the

decades-long expansion of computational capability, new, scalable numerical methods are needed.

Finite element methods (FEMs) are a broad class of numerical methods which are used to solve

partial differential equations (PDEs) in a wide variety of fields. These methods are integral to the inner

workings of CAD (computer aided design) systems, which are ubiquitous in the practice of modern

engineering. FEMs can also be exceptionally efficient - simulations conducted on the world’s fastest

supercomputers routinely utilize finite elementmethods for their numerical computations. In addition,

the mathematical theory of FEMs has a rich structure that allows for detailed error estimates to be

rigorously proven. Over the last fifty years, the breadth and depth of study of these methods has made

FEMs one of the most widespread methods for approximating the solution to PDEs.

Over the years, a number of finite elementmethods have been studied which can run efficiently

on parallel computers. An early approach to parallel finite element methods leveraged domain decom-

position techniques for elliptic PDEs. In these methods, the domain of the PDE is subdivided into

a number of smaller subdomains, which are assigned to different processors of a parallel computer.

1

Each processor then solves the PDE on its own subdomain, communicating and combining their local

solutions with the other processors as necessary. Domain decomposition methods scale very efficiently

on a wide variety of problems and are now a cornerstone of finite element solvers for elliptic PDEs.

It should be noted that the time-evolution equations which govern physical processes do not

have an elliptic structure, whichmeans that domain decompositionmethods cannot be applied to them

directly. However, in the context of time-stepping finite element methods, it is often necessary to solve

a sequence of elliptic PDEs, where each step in the sequence corresponds to a further time in the simu-

lation. By applying domain decomposition to each sub-problem in a time-steppingmethod, a good deal

of the work of solving time-dependent PDEs may be carried out in parallel. Essentially, time-stepping

methods with domain decomposition compute a sequence of sub-problems, where each sub-problem

is carried out in parallel.

However, this broad-brush description of parallel finite element methods via domain decom-

position hides a number of important details. In practice, the inter-processor communication that is

required by domain decomposition methods can bog down the entire solver if one is not careful. As the

number of subdomains increases, more time must be spent communicating between different proces-

sors. At the same time, each subdomain gets smaller, and the amount of work each processor applies to

actually solving the PDE on its own subdomain decreases. Taken to an extreme, increasing the number

of processors in a domain decomposition scheme can lead to a situation where the solver spends more

time passing messages between processors than it does actually solving the PDE.

Given the huge number of parallel ranks on a modern supercomputer, it is nowmore challeng-

ing than ever to leverage the full power of these machines without becoming mired in communication

overhead. When faced with a method that is dominated by message passing, the general solution is

to modify the algorithm so that the ratio of communication to computation goes down. When solving

time-dependent PDEs, oneway to achieve this is to approximate the solution at various simulation times

all at once. In other words, instead of solving a long sequence of elliptic problems one after another,

one may structure the computation so that the serial time-stepping structure is avoided.

In the finite element literature, whatwehave just described is generally referred to as a “parallel-

in-time” method. A number of approaches have been proposed over the years[21] which aim to reduce

or eliminate the need for sequential time-stepping in time-dependent problems.

In this dissertation, we consider space-timefinite elementmethods, which are a class of parallel-

2

in-time method. In particular, we develop the theory of continuous Galerkin methods on unstructured

space-time meshes, which have received renewed attention over the last ten years. This dissertation

presents a novel analysis of continuous space-timeGalerkinmethods for general linear parabolic PDEs,

which to our knowledge is the first of its kind. In addition, we study the construction andmanipulation

of unstructured four-dimensional meshes for use with space-time methods. We give a new algorithm

for four-dimensional mesh construction and exhibit amesh refinement technique for four-dimensional

simplices.

The dissertation is structured as follows. In the remainder of Chapter 1, we define the basic

terminology and theory that will serve as building blocks for our analysis. We also introduce a model

parabolic PDE, the transient convection-diffusion equation, and describe its structure and applications.

In Chapter 2, we present an analysis of space-time finite element methods applied to general parabolic

PDEs. The results in this chapter are the first rigorous analysis of space-time finite element methods

applied to parabolic PDEs with nontrivial convection and reaction terms. We prove the stability of the

numerical scheme and establish a priori error estimates on the finite element solution, even in the pres-

ence of low regularity. In Chapter 3, we address a major challenge in the implementation of space-time

methods, which is the use of four-dimensional unstructured meshes. At present, research considering

four-dimensional space-time finite element methods treat problems defined on very simple domains.

We introduce a new algorithm which creates four-dimensional space-time meshes from a given three-

dimensional spatialmesh. We also describedmethods for refining four-dimensionalmeshes via simplex

bisection. Finally, in Chapter 4 we make some concluding remarks on the continued development of

space-time methods.

Comparison to Time-Stepping Methods

In contrast to time-steppingmethods, space-timemethods are characterized by a simultaneous

treatment of the space and time variables as a unified space-time variable 𝑦 = (𝑥, 𝑡). In this paradigm,

the fundamental domain is the space-time domain𝑄 = Ω×[0, 𝑇], which is one dimension higher than

the spatial domain. This relatively minor change in perspective at a high level has profound conse-

quences for the ways in which numerical methods are constructed.

3

For instance, consider an abstract PDE where a solution 𝑢(𝑥, 𝑡) satisfies

𝒜(𝑢(𝑥, 𝑡)) = 𝑔(𝑥, 𝑡) for almost every 𝑥 ∈ Ω and 𝑡 ∈ [0, 𝑇],

where 𝒜 is some differential operator. This equation is a (almost-everywhere) pointwise condition on

𝒜(𝑢(𝑥, 𝑡)). To make the problem more tractable, most numerical methods solve the related variational

problem:

∫
Ω
𝒜(𝑢(𝑥, 𝑡))𝑣(𝑥) 𝑑𝑥 = ∫

Ω
𝑔(𝑥, 𝑡)𝑣(𝑥) 𝑑𝑥 for all 𝑣 ∈ 𝑉 and almost every 𝑡 ∈ [0, 𝑇].

This condition relaxes the pointwise condition on 𝑥, but maintains a pointwise condition on 𝑡. This

problem can be solved in a multitude of ways by further adjusting and discretizing the equation. At a

high level, however, numerical schemes eventually define some discretization of the spatial domain and

time domain; the structure of these two discretizations and how they interact with each other determine

the overall form of themethod. For our purposes, the key characteristic of thesemethods is the separate

discretization of the space and time domains. While these two discretizationmay be coupled in various

ways, the treatment of time and space variables is fundamentally distinct.

We emphasize that the separation of space and time discretizations is not an inherently negative

thing. In fact, many numerical methods are exceptionally efficient as a direct result of this separation.

However, it is possible to derive more general and flexible methods by considering a simultaneous ap-

proximation of space and time.

For instance, the integral equation listed above implies the related condition

∫
𝑇

0
∫
Ω
𝒜(𝑢(𝑥, 𝑡))𝑣(𝑥) 𝑑𝑥 𝑑𝑡 = ∫

𝑇

0
∫
Ω
𝑔(𝑥, 𝑡)𝑣(𝑥) 𝑑𝑥 𝑑𝑡 for all 𝑣 ∈ 𝑉,

and the two equations are equivalent if the functions are sufficiently smooth. If we define 𝑄 = Ω ×

[0, 𝑇] and 𝑦 = (𝑥, 𝑡), then this equation of double integrals can be recast a single integral over higher-

dimensional space:

∫
𝑄
𝒜(𝑢(𝑦))𝑣(𝑦) 𝑑𝑦 = ∫

𝑄
𝑔(𝑦)𝑣(𝑦) 𝑑𝑦 for all 𝑣 ∈ 𝑉 ′

where 𝑉 ′ is some extension of 𝑉 to the higher-dimensional space. This final integral equation is just

4

another variational problem, which can be discretized as if there were no time-dependence at all. By

imposing a particular structure on the discretization, one can recover particular time-steppingmethods

as special cases. However, it is equally valid to define an unstructured discretization on 𝑄, which was

not possible before. For this reason we say that space-time methods possess greater “flexibility” than

time-stepping methods: they allow for the problem to be discretized in a more general setting.

1.1 Preliminaries

1.1.1 Convex Sets and Simplices

Definition 1.1. A set {𝑣𝑖}𝑚𝑖=0 of 𝑚 + 1 vectors in Euclidean space is said to be affinely independent if

{𝑣1 −𝑣0, 𝑣2 −𝑣0, … , 𝑣𝑚 −𝑣0} is linearly independent. A set of vectors which is not affinely independent

is said to be affinely dependent.

The set

affSpan(𝑉) = 𝑣0 + ⟨𝑣1 − 𝑣0, … , 𝑣𝑚 − 𝑣0⟩

is called the affine span of {𝑣𝑖}𝑚𝑖=0.

Intuitively, the affine span of𝑚+1 affinely independent vectors form an “offset”𝑚-dimensional

subspace. For instance, three affinely independent vectors {𝑣0, 𝑣1, 𝑣2} in ℝ3 lie in the plane containing

𝑣0 and spanned by 𝑣1 − 𝑣0 and 𝑣2 − 𝑣0.

There are a number of equivalent ways to define affine spans, each with their own strengths

and weaknesses. It is often much more convenient to prove properties of affine spans by applying

linear algebra techniques in these various settings. The following lemmas establish some of these cor-

respondences.

Lemma 1.2. Let 𝑉 = {𝑣𝑖}𝑚𝑖=0. Then

𝑢 ∈ AffSpan(𝑉) ⟺ 𝑢 =
𝑚
∑
𝑖=0

𝛼𝑖𝑣𝑖 where
𝑛
∑
𝑖=0

𝛼𝑖 = 1. (1.1)

Proof. If 𝑢 ∈ AffSpan(𝑉), then there exists some coefficients 𝛽𝑖 such that

𝑢 = 𝑣0 +
𝑚
∑
𝑖=1

𝛽𝑖(𝑣𝑖 − 𝑣0).

5

Redistributing the sum, we have

𝑢 =
𝑚
∑
𝑖=1

𝛽𝑖𝑣𝑖 + (1 −
𝑚
∑
𝑖=1

𝛽𝑖) 𝑣0,

and so under the definitions

𝛼0 = 1 −
𝑚
∑
𝑖=1

𝛽𝑖, 𝛼𝑖 = 𝛽𝑖 for 1 ≤ 𝑖 ≤ 𝑚

the lemma is proved in one direction. The same argument can be carried out in reverse to prove the

converse.

Remark 1.3. When a vector 𝑢 is written as a combination of vectors of the form Equation 1.1 (in partic-

ular, when the coefficients sum to 1), we say that 𝑢 is an affine combination of 𝑣0, … , 𝑣𝑚.

Lemma 1.4. Let 𝑉 = {𝑣𝑖}𝑚𝑖=0 and 𝑉 ′ = {(𝑣𝑖, 1)𝑇 }𝑚𝑖=0. Then

𝑢 ∈ AffSpan(𝑉) ⟺ (𝑢, 1)𝑇 ∈ ⟨𝑉 ′⟩.

Proof. By Lemma 1.2,

𝑢 ∈ AffSpan(𝑉) ⟺
𝑚
∑
𝑖=0

𝛼𝑖𝑣𝑖 = 𝑢 and
𝑚
∑
𝑖=0

𝛼𝑖 = 1

⟺ (
𝑢

1
) =

𝑚
∑
𝑖=0

𝛼𝑖 (
𝑣𝑖
1
)

⟺ (
𝑢

1
) ∈ ⟨𝑉 ′⟩.

Lemma 1.5. The set of vectors 𝑉 = {𝑣0, 𝑣1, … , 𝑣𝑚} ⊂ ℝ𝑑 is affinely independent if and only if the set

𝑉 ′ = {(𝑣0, 1)𝑇 , (𝑣1, 1)𝑇 , … , (𝑣𝑚, 1)𝑇 } ⊂ ℝ𝑑+1 is linearly independent.

Proof. We will prove that 𝑉 is affinely dependent if and only if 𝑉 ′ is linearly dependent. Suppose 𝑉

is affinely dependent. Then there exists a set of coefficients 𝛼𝑖, 1 ≤ 𝑖 ≤ 𝑚, not all zero such that

∑𝑚
1 𝛼𝑖(𝑣𝑖 − 𝑣0) = 0, and thus∑𝑚

1 𝛼𝑖𝑣𝑖 = (∑𝑚
1 𝛼𝑖) 𝑣0.

6

If∑𝑚
1 𝛼𝑖 = 0, then 0 ⋅ (𝑣0, 1)𝑇 +∑

𝑚
1 𝛼𝑖 ⋅ (𝑣𝑖, 1)𝑇 = 0 and 𝑉 ′ is linearly dependent. If∑𝑚

1 𝛼𝑖 ≠ 0,

define𝛼′𝑖 = 𝛼𝑖/(∑
𝑚
1 𝛼𝑖). Then∑

𝑚
1 𝛼′𝑖𝑣𝑖 = 𝑣0 and∑

𝑚
1 𝛼′𝑖 = 1, whichmeans that∑𝑚

1 𝛼′𝑖(𝑣𝑖, 1)𝑇 = (𝑣0, 1)𝑇 .

Thus 𝑉 ′ is linearly dependent in this case as well.

Now suppose that 𝑉 ′ is linearly dependent. Then there is some set of coefficients 𝛽𝑖, 0 ≤ 𝑖 ≤ 𝑚,

not all zero such that∑𝑚
0 𝛽𝑖𝑣𝑖 = 0 and∑𝑚

0 𝛽𝑖 = 0. Hence

𝑚
∑
1
𝛽𝑖(𝑣𝑖 − 𝑣0) =

𝑚
∑
1
𝛽𝑖𝑣𝑖 − (

𝑚
∑
1
𝛽𝑖) 𝑣0

=
𝑚
∑
1
𝛽𝑖𝑣𝑖 − ((

𝑚
∑
0
𝛽𝑖) − 𝛽0) 𝑣0

=
𝑚
∑
1
𝛽𝑖𝑣𝑖 − (0 − 𝛽0)𝑣0

=
𝑚
∑
1
𝛽𝑖𝑣𝑖 + 𝛽0𝑣0 = 0,

and therefore 𝑉 is affinely dependent.

Corollary 1.6. The ordering of the vectors {𝑣𝑖}𝑚𝑖=0 in Definition 1.1 does not affect the affine independence

and span of the set.

In particular, if 𝜎 is a permutation on {0, 1, … ,𝑚} and we define 𝑉 = {𝑣𝑖}𝑚𝑖=0 and 𝑉𝜍 = {𝑣𝜍(𝑖)}𝑚𝑖=0,

then:

i) 𝑉 is affinely independent if and only if 𝑉𝜍 is affinely independent,

ii) AffSpan(𝑉) = AffSpan(𝑉𝜍).

Proof. Let 𝑉 ′ = {(𝑣𝑖, 1)𝑇 }𝑚𝑖=0 and 𝑉 ′
𝜍 = {(𝑣𝜍(𝑖), 1)𝑇 }𝑚𝑖=0. By Lemma 1.5, the set 𝑉 is affinely indepen-

dent if and only if 𝑉 ′ is linearly independent. But 𝑉 ′ is linearly independent whenever 𝑉 ′
𝜍 is linearly

independent, which is the case whenever 𝑉𝜍 is affinely independent. This proves (𝑖).

Furthermore, by Lemma 1.4, 𝑢 ∈ AffSpan(𝑉) if and only if (𝑢, 1)𝑇 ∈ ⟨𝑉 ′⟩ = ⟨𝑉 ′
𝜍 ⟩, and 𝑢 ∈ ⟨𝑉 ′

𝜍 ⟩

if and only if 𝑢 ∈ AffSpan(𝑉𝜍). Thus (𝑖𝑖) holds as well.

As described above, the affine span of𝑚+1 affinely independent vectors inℝ𝑑 can be considered

to be an 𝑚-dimensional subspace of ℝ𝑑 shifted by translation. However, we will often consider such

translated linear subspaceswithout referring to a generating set of vectors. In essence, we are concerned

7

with affine subspaces; we present a narrow definition of these spaces here, but remark that affine spaces

may be defined more generally. For a more general discussion of affine spaces, see [44].

Definition 1.7. An affine subspace 𝐴 of ℝ𝑑 is a subset of the form

𝐴 = 𝑝 +𝑊 = {𝑝 + 𝑤 ∶ 𝑤 ∈ 𝑊}, (1.2)

where𝑊 is a linear subspace of ℝ𝑑. The dimension of 𝐴 is equal to the dimension of𝑊 .

Clearly, the affine span of any collection of vectors forms an affine subspace, and in particular,

the affine span of a collection of affinely dependent vectors is still an affine subspace. If 𝑉 = {𝑣𝑖}𝑚𝑖=0 is a

set of vectors, then AffSpan(𝑉) will be a shifted 𝑙-dimensional subspace of ℝ𝑑, where 𝑙 ≤ 𝑚. Often, we

will be concerned more with the dimensionality of an affine span, and less with the number of vectors

that generated it. This motivates the next definition.

Definition 1.8. We say that the affine dimension of a collection of vectors 𝑉 is the dimension of the

corresponding affine subspace AffSpan(𝑉).

Definition 1.9 (Convexity). Let 𝑅 = {𝑝1, … , 𝑝𝑛} be a finite collection of points in ℝ𝑑. A convex combi-

nation 𝑝′ of the points in 𝑅 is a point of the form

𝑝′ =
𝑛
∑
𝑖=1

𝛼𝑖𝑝𝑖, where 𝛼𝑖 ≥ 0 for all 𝑖 and
𝑛
∑
𝑖=1

𝛼𝑖 = 1.

Furthermore, the convex hull of a set 𝑆 ⊂ ℝ𝑑 (possibly infinite) is the set of all convex combinations of

points in 𝑆. We shall use the operator notation Conv to denote convex hulls. Therefore, we write

Conv(𝑆) = {𝑝 ∈ ℝ𝑑 ∶ 𝑝 is a convex combination of points in 𝑆}.

At times it will also be helpful to consider the convex hull of a union of sets 𝑆𝑗. For convenience of

notation, in this case we shall use the convention

Conv(𝑆1, 𝑆2, … , 𝑆𝑚) ∶= Conv(
𝑚

⋃
𝑗=1

𝑆𝑗) .

Finally, when 𝑆 = Conv(𝑆), we say that 𝑆 is a convex set.

8

We remark that a convex combination of vectors is a special case of an affine combinationwhere

all coefficients 𝛼𝑖 are non-negative. One effect of this is that the convex hull of finitely many points is

bounded in ℝ𝑑, whereas affine hulls are in general unbounded.

The following lemma is a useful tool for describing points in the union of two convex sets, and

will be used later in the dissertation.

Lemma 1.10. If 𝑆1, 𝑆2 ⊂ ℝ𝑑 are two convex sets and 𝑝 ∈ Conv(𝑆1, 𝑆2), then 𝑝 = 𝛼𝑝1 + (1 − 𝛼)𝑝2, where

0 ≤ 𝛼 ≤ 1 and 𝑝1 ∈ 𝑆1 while 𝑝2 ∈ 𝑆2.

Proof. Since𝑝 ∈ Conv(𝑆1, 𝑆2), 𝑝 is a convex combination of some collection of points in 𝑆1∪𝑆2. Without

loss of generality we may write

𝑝 =
𝑛1
∑
𝑖=1

𝛽𝑖𝑞𝑖 +
𝑛2
∑
𝑗=1

𝛾𝑗𝑞′𝑗 , (1.3)

where each 𝑞𝑖 ∈ 𝑆1, each 𝑞′𝑗 ∉ 𝑆1, the 𝛽𝑖 and 𝛾𝑖 are non-negative, and∑𝛽𝑖+∑𝛾𝑗 = 1. Next, let 𝐵 = ∑𝛽𝑖
and 𝐶 = ∑𝛾𝑗. If either 𝐵 or 𝐶 is equal to 0, then immediately the lemma holds with 𝛼 = 0 or 𝛼 = 1,

respectively. Thus, for the remainder of this proof we shall assume 𝐵 and 𝐶 are nonzero.

Factoring out these terms from Equation 1.3, we obtain

𝑝 = 𝐵
𝑛1
∑
𝑖=1

𝛽𝑖
𝐵 𝑞𝑖 + 𝐶

𝑛2
∑
𝑗=1

𝛾𝑗
𝐶𝑞

′
𝑗 . (1.4)

By the definition of 𝐵 and 𝐶, the terms

𝑛1
∑
𝑖=1

𝛽𝑖
𝐵 𝑞𝑖 and

𝑛2
∑
𝑗=1

𝛾𝑗
𝐶𝑞

′
𝑗

are convex combinations of points in 𝑆1 and 𝑆2, respectively. Since 𝑆1 and 𝑆2 are convex sets, these two

terms must belong to 𝑆1 and 𝑆2. The lemma follows upon observing that 𝐵 +𝐶 = 1 and 0 ≤ 𝐵 ≤ 1.

Next, we move on to a discussion of the geometry of convex sets. Of particular importance to

this dissertation will be convex sets which are the convex hull of finitely many points. This is a broad

class of objects, which include line segments, convex polygons, and convex solids. In order to carry

out a discussion of four-dimensional geometry, it is necessary to establish a dimension-independent

language which unifies geometric objects of this type. The fundamental building block of this analysis

is the polytope.

9

Definition 1.11. A convex polytope is the convex hull of finitely many points. If a polytope 𝑃 is the

convex hull of points {𝑝1, … , 𝑝𝑚} and the affine span of these points has dimension 𝑘, then we say that

𝑃 is a polytope of dimension 𝑘. Throughout this dissertation we shall always take “polytope” to mean

“convex polytope.”

Remark 1.12. There are several widespread definitions for convex polytopes, which are more or less

equivalent. However, some defnitions allow polytopes to be unbounded while others do not. By our

definition, all polytopes are necessarily compact (and in particular, bounded). In other sources, such

an object may be referred to as a “compact convex polytope.”

Many common shapes are examples of polytopes. For instance, all convex polygons are poly-

topes of dimension 2. Cubes, pyramids, and triangular prisms are all polytopes of dimension 3. A sin-

gular point is a polytope of dimension 0. In addition, the empty set is often considered to be a polytope

of dimension -1.

Since all polytopes are defined as the convex hull of some finite set of points, these points are of

central importance to any analysis involving polytopes. However, multiple sets of points can generate

the same polytope. For instance, the same rectangle in ℝ2 is generated by {(0, 0), (1, 0), (1, 1), (0, 1)}

and {(0, 0), (1, 0), (1, 1), (0, 1), (0.5, 0.5)}. In order to associate a polytope with a unique generating set of

points, we introduce the notion of extremal points.

Definition 1.13. Let 𝑃 be a convex set. The point 𝑝 is an extremal point of 𝑃 if 𝑝 ∈ 𝑃 and there is no

open line segment contained in 𝑃 which contains 𝑝. Equivalently, whenever 𝑝 is an extremal point of

𝑃, if 𝑝 = 𝛼𝑝1 + (1 − 𝛼)𝑝2 where 𝑝1, 𝑝2 ∈ 𝑃 and 0 ≤ 𝛼 ≤ 1, then 𝑝 = 𝑝1 = 𝑝2.

Remark 1.14. When 𝑃 is a polytope, we shall refer to its extremal points as vertices. The intuitive un-

derstanding of vertices as “corners” of a shape coincides with this definition. We shall sometimes use

the phrase vertex set to refer to the set of all extremal points of a polytope.

In higher dimensions, it will be especially handy to study and manipulate polytopes in terms

of their vertex sets. In order to easily identify a polytope with its vertices, we establish the following

notation.

Definition 1.15 (Vertex Representation of Polytopes). Suppose 𝑆 is a convex polytope with vertices

10

𝑝1, … , 𝑝𝑘. We denote the convex hull of {𝑝1, … , 𝑝𝑘}, which is equal to 𝑆, by

𝑆 = {{𝑝1, … , 𝑝𝑘}} ∶= Conv ({𝑝1, … , 𝑝𝑘}) .

The final geometric object that we shall introduce in this section is arguably themost important

for the purposes of space-time finite element methods.

Definition 1.16. A k-simplex (or a simplex of dimension 𝑘) is defined to be the convex hull of 𝑘 + 1

affinely independent points in Euclidean space. The convex hull of 𝑘 + 1 points which are not affinely

independent will be described as a degenerate k-simplex. Throughout this dissertation, the term “sim-

plex” will be taken to mean “non-degenerate simplex” unless otherwise stated.

Remark 1.17. A 𝑘-simplex may alternatively be characterized as a polytope of dimension 𝑘 with 𝑘 + 1

vertices.

For example, a 0-simplex is a point and a 1-simplex is a line segment. In ℝ2, a 2-simplex is a

triangle, and in ℝ3 a 3-simplex is a tetrahedron. As a further example, any collection of 𝑘 + 2 points in

ℝ𝑘 will always form a degenerate simplex, since 𝑘 + 2 points in ℝ𝑘 are always affinely dependent.

One useful property of simplices is that the boundary of any 𝑘-simplex can be decomposed into

sets which are each 𝑙-simplices, where 𝑙 < 𝑘. For instance, the boundary of a triangle (a 2-simplex) can

be decomposed into three line segments (each a 1-simplex). This property also holds on a more general

level for polytopes: the boundary of any polytope of dimension 𝑘 can be decomposed into a collection

of polytopes of dimension 𝑙, where 𝑙 < 𝑘. However, in the case of polytopes, the structure of these

lower-dimensional polytopes is not always easy to deduce. In contrast, every 𝑙-simplex has the same

essential topology, which makes the boundary structure of simplices easy to analyze.

Describing the boundaries of simplices can be made more precise with the general definition

of simplex faces.

Definition 1.18. Let 𝐾 = {𝑠1, … , 𝑠𝑘+1} be a 𝑘-simplex. A 𝑗-face of 𝐾 is the convex hull of 𝑗 + 1 of the

vertices of 𝐾. As a convention, we define the empty set ∅ to be a (-1)-face of any simplex.

Note that by definition, every 𝑗-face of a simplex is itself a simplex. In addition, the number of

𝑗-faces of a 𝑘-simplex is simply the number of unique combinations of 𝑗+1 out of 𝑘+1 points; therefore,

the number of 𝑗-faces of a 𝑘-simplex is (𝑘+1
𝑗+1

) (for −1 ≤ 𝑗 ≤ 𝑘 + 1).

11

1.1.2 Triangulations

A central component of space-time finite element methods is the discretization of a space-time

domain into elements. As previously discussed, this dissertation considers space-time methods over

conforming, simplicial meshes. The use of conforming triangular or tetrahedral meshes in two- or

three-dimensional finite element methods is widespread, but their generalization to four dimensions is

neither widely studied nor implemented.

At a very basic level, triangular and tetrahedral meshes are collections of simplices with extra

conditions imposed. We may generalize these conditions to set an appropriate definition for a mesh of

𝑘-simplices. Then, in four-dimensional space-time, the appropriate space-time discretization will be a

4-simplex mesh.

Definition 1.19. A triangulation of 𝑄 ⊂ ℝ𝑑 is a collection of 𝑑-simplices 𝒯 = {𝜏𝑖}𝑛𝑖=1 covering 𝑄 such

that the intersection of any two 𝑑-simplices is a common 𝑗-face for both simplices, with −1 ≤ 𝑗 ≤ 𝑑. In

other words, the set 𝒯 is a collection of 𝑑-simplices satisfying:

i)
𝑛

⋃
𝑖=1

𝜏𝑖 = 𝑄,

ii) If 𝜆 = 𝜏𝑖 ∩ 𝜏𝑗, then 𝜆 is a face of both 𝜏𝑖 and 𝜏𝑗.

Note that since ∅ is a face of every simplex, property (ii) holds even for disjoint simplices.

Many standard properties of triangular and tetrahedral meshes can be naturally extended to

four dimensions. Let 𝒯 = {𝜏𝑖}𝑛𝑖=1 be a triangulation of 𝑑-simplices, and let 𝜏 be an arbitrary simplex

element in 𝒯.

The diameter of 𝜏 is defined to be

ℎ𝜏 = max
𝑥,𝑦∈𝜏

|𝑥 − 𝑦|; (1.5)

that is, the largest distance between two points in 𝜏. In general, we say that the “size” of the element 𝜏

is its diameter, unless another measure of size is specifically mentioned. Furthermore, the size of the

largest element in 𝒯 is denoted

ℎ = max
𝜏∈𝒯

ℎ𝜏. (1.6)

12

Another important measure of size, which better captures the 𝑑-dimensional volume of 𝜏, is the largest

contained radius parameter. This parameter is defined as

𝜌𝜏 = sup{𝑟 ∶ 𝜏 contains a 𝑑-ball of radius 𝑟}. (1.7)

Following the nomenclature of [9], the chunkiness parameter of 𝜏 is defined to be

𝜎𝜏 =
ℎ𝜏
𝜌𝜏
. (1.8)

In linewith the typical definition for two- and three-dimensional problems, the 𝑑-simplexmesh

𝒯 is said to be shape regular if there exists some 𝜎 > 0 such that 𝜎𝜏 ≤ 𝜎 for all 𝜏 ∈ 𝒯.

Now, suppose we have a countable collection of triangulations𝒯𝑠, parameterized by a real num-

ber 𝑠 → 0. We say that the family {𝒯𝑠} is shape regular if there exists a 𝜎 > 0 such that

sup
𝑠
sup
𝜏∈𝒯𝑠

𝜎𝜏 ≤ 𝜎. (1.9)

The family {𝒯𝑠} is said to be quasi-uniform if there exists some 𝜈 > 0 such that for all 𝑠 and all 𝜏 ∈ 𝒯𝑠,

ℎ𝜏 ≥ 𝜈 ⋅ sup
𝑠
sup
𝜏∈𝒯𝑠

ℎ𝜏. (1.10)

1.1.3 Reference Elements

Many operations on simplices are unaffected by the precise location of the simplex in ℝ𝑑. For

instance, a procedure to subdivide a simplex is often performed in the same way no matter where that

simplex lies in the domain. To simplify our analysis, we will define operations on a “reference simplex”

with simple geometry, and then extend that definition to arbitrary simplices through the use of affine

transformations. An affine transformation on ℝ𝑑 is map of the form 𝐹𝑥 = 𝐵𝑥 + 𝑏, where 𝐵 is a linear

map onℝ𝑑 and 𝑏 ∈ ℝ𝑑. In this section, we will explore some of the properties of affine transformations

that transform an arbitrary simplex into the reference simplex, and vice-versa.

Let 𝐾 = {{𝑣0, 𝑣1, … , 𝑣𝑑}} be a 𝑑-simplex in ℝ𝑑 (c.f. Definition 1.15 for a description of {{⋅}} no-

tation). Denote by 𝐾 the canonical 𝑑-simplex; i.e., the convex hull of {0, 𝑒1, 𝑒2, … , 𝑒𝑑}. In addition, we

13

define the canonical simplex vertices:

̂𝑣𝑗 =
⎧
⎨
⎩

0 if 𝑗 = 0

𝑒𝑗 if 𝑗 > 0
(1.11)

Next, let 𝐹𝐾 be an affinemap such that 𝐹𝐾(𝐾) = 𝐾; note that for any𝐾 there aremultiple distinct choices

for 𝐹𝐾 . The Barycentric TransformationMatrix for𝐾 is the (𝑑+1)×(𝑑+1)matrix with columns partially

defined by its vertices 𝑣0, … , 𝑣𝑑; specifically,

𝐴𝐾 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

| | |

𝑣0 𝑣1 … 𝑣𝑑
| | |

1 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

By the definition of the 𝑑-simplex, every point 𝑝 ∈ 𝐾 is a convex combination of the vertices of

𝐾. Since 𝐾 = {{𝑣0, 𝑣1, … , 𝑣𝑑}}, there must be a set of scalars 𝜆𝑖, 0 ≤ 𝑖 ≤ 𝑑, such that

𝑝 =
𝑑
∑
𝑖=0

𝜆𝑖𝑣𝑖, where
𝑑
∑
𝑖=0

𝜆𝑖 = 1 and 𝜆𝑖 ≥ 0 for all 0 ≤ 𝑖 ≤ 𝑑.

The tuple 𝜆 = (𝜆0, 𝜆1, … , 𝜆𝑑)𝑇 is called the barycentric coordinates of 𝑝 in the simplex 𝐾. Essentially, 𝜆

describes the relative location of 𝑝within 𝐾: the larger the value of 𝜆𝑖, the closer 𝑝 is to 𝑣𝑖. In particular,

if 𝜆𝑖 = 1 and 𝜆𝑗 = 0 for all 𝑗 ≠ 𝑖, then 𝑝 = 𝑣𝑖. If all 𝑣𝑖 = 1/(𝑑 + 1), then 𝑝 is the barycenter of 𝐾.

The aptly-named barycentric transformation matrix directly relates the Cartesian coordinates

of a point to its barycentric coordinates. By construction, one may verify that if 𝜆 is the barycentric

coordinates of 𝑝 in the simplex 𝐾, then

𝐴𝐾𝜆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

| | |

𝑣0 𝑣1 … 𝑣𝑑
| | |

1 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜆0
𝜆1
⋮

𝜆𝑑

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= (
𝑝

1
) .

Furthermore, the representation of a point in barycentric coordinates within a simplex 𝐾 is

14

unique (provided 𝐾 is non-degenerate, which we assume throughout). Thus wemay consider barycen-

tric coordinates to be an equivalent local coordinate system within each simplex. Since affine transfor-

mations between finite elements and the reference element are defined in terms of element vertices,

properties of these transformations may be proved more naturally in the setting of barycentric coordi-

nates.

We now establish some fundamental properties of affine transformations and maps between

simplex elements. Our goal is to show that every affine bijection from a simplex element 𝐾 to the

reference element 𝐾 has a known structure that is defined solely in terms of the vertices of 𝐾. Having

established this structure, wemay prove several important properties about affinemaps to the reference

element. To begin, we prove that the barycentric representation of a point is, indeed, unique.

Lemma 1.20. The simplex 𝐾 is non-degenerate if and only if 𝐴𝐾 is non-singular.

Proof. By definition, the simplex 𝐾 is non-degenerate if and only if the vectors in {𝑣0, … , 𝑣𝑑} are affinely

independent. By Lemma 1.5, the set {𝑣0, … , 𝑣𝑑} is affinely independent if and only if the associated set

{(𝑣0, 1)𝑇 , … , (𝑣𝑑, 1)𝑇 } is linearly independent, which is the case precisely when 𝐴𝐾 is non-singular.

The following series of lemmas provides an explicit characterization of the affine bijections from

the reference simplex 𝐾 to another simplex 𝐾.

Lemma 1.21. If the map 𝐹𝐾 ∶ 𝐾 → 𝐾 is an affine bijection, then 𝐹𝐾(̂𝑣𝑗) = 𝑣𝜍(𝑗) for 0 ≤ 𝑗 ≤ 𝑑, where 𝜎 is

a permutation on {0, 1, … , 𝑑}.

Proof. Let 𝑥 ∈ 𝐾 be arbitrary and ̂𝑥 = 𝐹−1𝐾 (𝑥). Then for some barycentric coordinates 𝜆𝑖, ̂𝑥 = ∑𝑑
0 𝜆𝑖 ̂𝑣𝑖

and ∑𝑑
0 𝜆𝑖 = 1. Now since 𝐹𝐾 is affine, there is some linear transformation 𝐵 and vector 𝑏 such that

𝐹𝐾(̂𝑥) = 𝐵 ̂𝑥 + 𝑏. Thus

𝑥 = 𝐹𝐾(̂𝑥) = 𝐵 ̂𝑥 + 𝑏 =
𝑑
∑
𝑖=0

(𝜆𝑖𝐵 ̂𝑣𝑖) + 𝑏 =
𝑑
∑
𝑖=0

(𝜆𝑖𝐵 ̂𝑣𝑖) + (
𝑑
∑
𝑖=0

𝜆𝑖) 𝑏 =
𝑑
∑
𝑖=0

𝜆𝑖(𝐵 ̂𝑣𝑖 + 𝑏) =
𝑑
∑
𝑖=0

𝜆𝑖𝐹𝐾(̂𝑣𝑖)

and therefore 𝑥 is a convex combination of {𝐹𝐾(̂𝑣𝑖)}𝑑𝑖=0. Since 𝑥 was arbitrary, this implies that every

point in 𝐾 is a convex combination of {𝐹𝐾(𝑣𝑖)}𝑑𝑖=0. Now, since 𝐾 was the simplex defined to be the

convex hull of {𝑣𝑖}𝑑𝑖=0, these two sets must be equal up reordering. Thus for all 0 ≤ 𝑖 ≤ 𝑑, 𝐹𝐾(̂𝑣𝑗) = 𝑣𝜍(𝑗),

where 𝜎 is a permutation on {0, 1, … , 𝑑}.

15

Lemma 1.22. Let 𝐾 be a 𝑑-simplex with vertices given by {𝑣0, 𝑣1, … , 𝑣𝑑}. For any permutation 𝜎 on the set

{0, 1, … , 𝑑}, the map

𝐹𝐾,𝜍(̂𝑥) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

| | |

| | |

𝑣𝜍(1) − 𝑣𝜍(0) 𝑣𝜍(2) − 𝑣𝜍(0) ⋯ 𝑣𝜍(𝑑) − 𝑣𝜍(0)
| | |

| | |

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

̂𝑥 + 𝑣𝜍(0). (1.12)

is a bijection from 𝐾 to 𝐾 and 𝐹𝐾,𝜍(̂𝑣𝑗) = 𝑣𝜍(𝑗) for 0 ≤ 𝑗 ≤ 𝑑.

Proof. The linear transformation in the definition of 𝐹𝐾,𝜍 is non-singular by Lemma 1.5, so 𝐹𝐾,𝜍 is bi-

jective. To see that 𝐹𝐾,𝜍(𝐾) = 𝐾, consider an arbitrary element 𝑥 = ∑𝑑
0 𝜆𝑖𝑣𝑖 ∈ 𝐾, where ∑𝑑

0 𝜆𝑖 = 1.

Then

𝐹𝐾,𝜍 ((𝜆𝜍(1), … , 𝜆𝜍(𝑑))𝑇) = 𝑣𝜍(0) +
𝑑
∑
𝑖=1

𝜆𝜍(𝑖)(𝑣𝜍(𝑖) − 𝑣𝜍(0))

= 𝑣𝜍(0) −
𝑑
∑
𝑖=1

𝜆𝜍(𝑖)𝑣𝜍(0) +
𝑑
∑
𝑖=1

𝜆𝜍(𝑖)𝑣𝜍(𝑖)

= (1 −
𝑑
∑
𝑖=1

𝜆𝜍(𝑖)) 𝑣𝜍(0) +
𝑑
∑
𝑖=1

𝜆𝜍(𝑖)𝑣𝜍(𝑖)

=
𝑑
∑
𝑖=0

𝜆𝜍(𝑖)𝑣𝜍(𝑖)

= 𝑥.

Finally, we note that since ̂𝑣𝑖 = 𝑒𝑖 and ̂𝑣0 = 0, (𝜆𝜍(1), … , 𝜆𝜍(𝑑))𝑇 = ∑𝑑
𝑖=0 𝜆𝜍(𝑖) ̂𝑣𝑖 ∈ 𝐾. Thus every

element in 𝐾 is the image under 𝐹𝐾,𝜍 of an element in 𝐾, and therefore 𝐹𝐾,𝜍(𝐾) = 𝐾. The statement

that 𝐹𝐾,𝜍(̂𝑣𝑗) = 𝑣𝜍(𝑗) follows directly from the definition of 𝐹𝐾,𝜍 and ̂𝑣𝑗.

Lemma 1.23. Every bijection from𝐾 to𝐾 is of the form 𝐹𝐾,𝜍 for some permutation 𝜎 on the set {0, 1, … , 𝑑}.

Proof. To begin, we show that every affine bijection of simplices is completely determined by the image

of each of the vertices. Let 𝐹 ∶ 𝐾 → 𝐾 be an affine bijection and let ̂𝑥 ∈ 𝐾 be arbitrary. Since 𝐹 is affine,

𝐹(̂𝑥) = 𝐵 ̂𝑥 + 𝑏 for some matrix 𝐵 and vector 𝑏. Since ̂𝑥 ∈ 𝐾, ̂𝑥 = ∑𝑑
𝑗=0 𝜆𝑗 ̂𝑣𝑗 with∑

𝑑
𝑗=0 𝜆𝑗 = 1 and 𝜆𝑗 ≥ 0

16

for 0 ≤ 𝑗 ≤ 𝑑. Then

𝐹(̂𝑥) = 𝐹 (
𝑑
∑
𝑗=0

𝜆𝑗 ̂𝑣𝑗) = 𝐵 (
𝑑
∑
𝑗=0

𝜆𝑗 ̂𝑣𝑗) + 𝑏 =
𝑑
∑
𝑗=0

𝜆𝑗𝐵 ̂𝑣𝑗 +
𝑑
∑
𝑗=0

𝜆𝑗𝑏 =
𝑑
∑
𝑗=0

𝜆𝑗 (𝐵 ̂𝑣𝑗 + 𝑏) =
𝑑
∑
𝑗=0

𝜆𝑗𝐹(̂𝑣𝑗).

Thus𝐹(̂𝑥) is determined completely by the images𝐹(̂𝑣𝑗). By Lemma1.21, the fact that an affine bijection

of simplices is determined by its image on the vertices implies that there are at most (𝑑 + 1)! such

bijections. Lemma 1.22 establishes the existence of (𝑑+1)! of these maps (all distinct). The distinctness

of each 𝐹𝐾,𝜍 is obvious from the fact that the ordered set {𝐹𝐾,𝜍(̂𝑣0), … , 𝐹𝐾,𝜍(̂𝑣𝑑)} is unique for each 𝜎.

Therefore, every affine bijection from 𝐾 to 𝐾 must be of the form 𝐹𝐾,𝜍 for some 𝜎 a permutation on

{0, … , 𝑑}.

Lemma 1.23 describes explicitly the structure of any affine bijection between a simplex and

the reference simplex. Since all (𝑑 + 1)! bijections are essentially equivalent up to a reordering of the

vertices, the magnitude of the determinant of these maps must be invariant.

Proposition 1.24. Let 𝐹𝐾 ∶ 𝐾 → 𝐾 be an affine bijection of 𝑑-simplices. Then |det(∇𝐹𝐾)| = 𝑑! ⋅ vol(𝐾),

where vol(⋅) denotes 𝑑-dimensional volume.

Proof. By Lemma 1.23, 𝐹𝐾 = 𝐹𝐾,𝜍 for some permutation 𝜎. In addition,

∇𝐹𝐾,𝜍 = (𝑣𝜍(1) − 𝑣𝜍(0), … , 𝑣𝜍(𝑑) − 𝑣𝜍(0)),

and hence

|det(∇𝐹𝐾)| = ||det(∇𝐹𝐾,𝜍)|| = ||det(𝑣𝜍(1) − 𝑣𝜍(0), … , 𝑣𝜍(𝑑) − 𝑣𝜍(0))||.

The volume of the 𝑑-simplex 𝐾 = {𝑣0, … , 𝑣𝑑} is given by

vol(𝐾) = |||
1
𝑑! det (𝑣1 − 𝑣0, … , 𝑣𝑑 − 𝑣0)|||,

and since the volume of 𝐾 is unrelated to the ordering of the vertices {𝑣0, … , 𝑣𝑑}, it must be the case that

vol(𝐾) = |||
1
𝑑! det (𝑣𝜍(1) − 𝑣𝜍(0), … , 𝑣𝜍(𝑑) − 𝑣𝜍(0))|||

as well. Thus |det(∇𝐹𝐾)| = 𝑑! ⋅ vol(𝐾).

17

In the implementation of finite element methods, the quantity |det(∇𝐹𝐾)| is frequently used for

the efficient integration of various functions over finite elements. Proposition 1.24 shows that this quan-

tity can be computed using any ordering on the vertices of 𝐾. In particular, this mean that even though

each bijection is defined in terms of an ordering on the vertices, the quantity |det(∇𝐹𝐾)| is invariant

with respect to this ordering.

The maps 𝐹𝐾,𝜍 may also be used to estimate the shape regularity of individual elements, which

has a direct impact on the accuracy of a finite element method. We recall from the previous section on

Triangulations that the shape regularity of an element 𝜏 may be described in terms of its chunkiness

parameter 𝜎𝜏 = ℎ𝜏/𝜌𝜏, where ℎ𝜏 is the diameter of 𝜏 and 𝜌𝜏 is the radius of the largest ball contained in

𝜏.

Let us consider an affine bijection 𝐹𝐾,𝜍 ∶ 𝐾 → 𝐾, where 𝐹𝐾,𝜍 ̂𝑥 = 𝐵 ̂𝑥 + 𝑏, and let ℎ̂ and ̂𝜌 be the

diameter and largest contained radius of the reference simplex, respectively. It may be shown directly

from the definitions of the parameters ℎ and 𝜌 that

‖𝐵‖ ≤ ℎ𝜏
̂𝜌 and ‖

‖𝐵−1
‖
‖ ≤

ℎ̂
𝜌𝜏
,

where here ‖⋅‖ denotes the operator norm (see [12], Theorem 15.2, for a proof). By multiplying these

two inequalities together, we have

‖𝐵‖‖‖𝐵−1
‖
‖ ≤

ℎ̂
̂𝜌 ⋅
ℎ𝜏
𝜌𝜏

= 𝐶 ⋅ 𝜎𝜏.

Thus the chunkiness parameter of 𝜏 increases along with the condition number ‖𝐵‖‖𝐵−1‖; as such, one

may use the condition number of the reference mapping 𝐹𝐾,𝜍 as an estimate for the shape regularity of

𝜏. In fact, one may even define the shape regularity of an element to be the condition number of the

reference mapping.

1.1.4 Useful Inequalities

There are a number of inequalities that find applicability in the analysis of finite elementmeth-

ods. Due to their widespread use, however, many authors formulate slight variants for ease of use in

their area of interest. We shall state a few such inequalities in this section for use later in the disserta-

18

tion.

Lemma 1.25. Let {𝒯𝑠} be a shape-regular family of triangulations, where 𝜎 is the uniform bound on shape

regularity defined in Equation 1.9. Then for any𝒯 ∈ {𝒯𝑠},𝑤 ∈ 𝐻1(𝒯), 𝜏 ∈ 𝒯, and any (𝑑−1)-face 𝐹 of 𝜏,

‖𝑤‖2𝐿2(𝐹) ≤
1
𝜎 (2‖∇𝑤‖𝐿2(𝜏)‖𝑤‖𝐿2(𝜏) +

𝑑
ℎ𝜏
‖𝑤‖2𝐿2(𝜏)) (1.13)

and in particular,

‖𝑤‖2𝐿2(𝐹) ≤
1
𝜎ℎ𝜏‖∇𝑤‖

2
𝐿2(𝜏) +

1 + 𝑑
𝜎 ℎ−1𝜏 ‖𝑤‖2𝐿2(𝜏). (1.14)

Proof. A proof of Equation 1.13 may be found in [15], Lemma 1.49. Equation 1.14 follows from Equa-

tion 1.13 since

2‖∇𝑤‖𝐿2(𝜏)‖𝑤‖𝐿2(𝜏) ≤ ℎ‖∇𝑤‖2𝐿2(𝜏) + ℎ−1‖𝑤‖2𝐿2(𝜏)

by Young’s inequality with epsilon.

1.2 AModel Problem

Throughout this dissertation, we will often return to the time-evolving convection-diffusion

equation as a model problem for studying the behavior of space-time finite element methods. This

equation is highly studied in the finite element literature and can exhibit behavior which ranges from

straightforward to sophisticated, depending on how the problem is set up. For the purposes of this

dissertation, the convection-diffusion equation is complex enough to illustrate the main components

of space-time finite element methods, but simple enough to be analyzed without studying the PDE

too closely. Our focus here is the behavior of space-time methods; as such, we would like to avoid or

de-emphasize the particularities of any specific PDE as much as possible.

We define the time-dependent convection-diffusion equation to be:

⎧⎪⎪
⎨⎪⎪
⎩

𝜕𝑢
𝜕𝑡 − ∇𝑥 ⋅ (𝐷̃∇𝑥𝑢 − 𝑏̃𝑢) + 𝑐𝑢 = 𝑓 for 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇)

𝑢 = 0 for 𝑥 ∈ 𝜕Ω

𝑢 = 𝑢0 for 𝑡 = 0

(1.15)

where Ω ⊂ ℝ𝑑 is a domain with boundary 𝜕Ω, and [0, 𝑇] is the time interval of interest. The function

19

𝐷̃ = 𝐷̃(𝑥, 𝑡) is a smoothly varying matrix-valued function, which is assumed to be uniformly positive

definite over all 𝑥 and 𝑡; that is, there exists a constant 𝜅 > 0 such that

𝜉𝑇𝑤𝑡𝐷(𝑥, 𝑦)𝜉 > 𝜅|𝜉|2 for all 𝜉 ∈ ℝ𝑑 and all 𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇].

The function 𝑏̃ = 𝑏̃(𝑥, 𝑡) is a smooth vector field, 𝑓 = 𝑓(𝑥, 𝑡) and 𝑐 = 𝑐(𝑥, 𝑡) are scalar fields, and

𝑢0 = 𝑢0(𝑥) is the initial condition of the PDE. We also assume that there is some constant 𝛽 > 0 such

that for all 𝑥 and 𝑡, 𝑐(𝑥, 𝑡) + 1
2
∇⋅ 𝑏(𝑥, 𝑡) ≥ 𝛽.

Equation 1.15 may be viewed as a generalization of the heat equation

𝜕𝑢
𝜕𝑡 − ∆𝑢 = 𝑓,

where the Laplacian ∆ is replaced by a general second order linear elliptic operator𝒜:

𝜕𝑢
𝜕𝑡 − 𝒜𝑢 = 𝑓. (1.16)

It can be shown that every second order linear elliptic operator can be written in the form 𝒜𝑢 = ∇𝑥 ⋅

(𝐷̃∇𝑥𝑢−𝑏𝑢)+𝑐𝑢 for appropriately chosen 𝐷̃, 𝑏̃, and 𝑐 (see, e.g., [18]). Furthermore, Equation 1.16 is the

general form for any second-order linear parabolic PDE. Therefore, by studying arbitrary convection-

diffusion equations, we are actually considering second-order linear parabolic PDEs in the general

sense.

The convection-diffusion equation alsomodels a number of physical phenomena, with the func-

tions 𝐷̃, 𝑏̃, 𝑐, and 𝑓 all holding physical significance. By choosing these functions in certain ways, one

may model processes ranging from semiconductor current density, to heat transfer through a medium,

to population migration of a biological species. Due to their connection to physical processes, it is often

helpful to think about these functions in relation to the phenomena they can model.

Generally speaking, the convection-diffusion equation describes the evolution of some physical

quantity in space. The value of 𝑢(𝑥, 𝑡) represents the value of this quantity (i.e. temperature, pressure,

density) at location 𝑥 and time 𝑡. The three coefficient functions 𝐷̃, 𝑏̃, and 𝑐 dictate the ways in which

the quantity 𝑢 changes with 𝑥 and 𝑡.

The function 𝐷̃ is called the diffusion coefficient and describes the movement of a substance

20

from regions of high concentration to regions of low concentration. For instance, pouring a spoonful of

salt into a glass of water will cause the new salt ions to move through the liquid in a diffusive process:

ions will disperse rapidly where the change in salt concentration is high, but will disperse slowly as the

concentration of salt ions approaches uniformity throughout the cup.

The function 𝑏̃ is called the convection coefficient (or advection coefficient)1. This term describes

the underlying motion of the medium carrying the quantity 𝑢. In semiconductor physics, for example,

the function 𝑢may represent charge density, which is mediated by the movement of charged particles

(electrons and “holes”). In this model, the convection term models an ambient electric field, which

imparts directed forces on the charge carriers throughout the device. Alternatively, if 𝑢 describes the

concentration of silt in a river, the flow of the river would be encoded by the convection coefficient 𝑏̃.

The function 𝑐 is the reaction coefficient, which is used formodeling processes where the change

in the quantity 𝑢 is affected by the value of that quantity at a particular point in space and time. This

behavior is common when chemical reactions are a component of the process being modeled. For

instance, in applications where 𝑢 measures the temperature of a solution during a chemical reaction,

higher temperatures may spur additional reactions which generate or consume heat.

Finally, the function 𝑓 is called the forcing function and can take on a number of meanings. In

many of the situations we have just described, 𝑓 can represent sources or sinks of the quantity 𝑢. When

𝑢 models heat, 𝑓 might describe a heat source. When 𝑢 measures particle concentration in a liquid, a

forcing function might model the effects of a filter in portions of the domain.

In the following chapters, we will not concern ourselves with any particular application of the

convection-diffusion equation. Instead, our focus will be on the ways in which the different terms of

Equation 1.15 affect the behavior of space-time finite element methods applied to this problem.

1Formally speaking, convective transport and advective transport refer to two different phenomena, depending on the
context. Advective transport refers to the directional, bulk movements of a medium (like river currents). Convection is a
more general term, encompassing any type of bulk movement (for instance, the undirected movement of fluid due to thermal
gradients). This distinction between modes of transport is outside the scope of this dissertation, so we will use the more
general term (convection).

21

Chapter 2

Space-Time Finite Element Methods for

Linear Parabolic PDEs

We present a continuous space-time finite element method for the 𝑑-dimensional transient

convection-diffusion equation, with weak assumptions on the regularity of the problem data and so-

lution. The numerical stability of the method is proven and asymptotic convergence rates are derived

which are in agreement with existing related literature. In particular, we prove convergence so long as

the solution has at least 1+𝜖weak derivatives, where 𝜖 > 0. Numerical experiments are also conducted

which verify the theoretical convergence rates in three- and four-dimensional space-time domains. To

the best of our knowledge, this is the first analysis of unstructured space-time finite element methods

applied to general linear parabolic equations.

Our approach is directly influenced by Bank, Vassilevski, and Zikatanov[4], who proved ba-

sic properties of upwinded space-time methods for constant-coefficient parabolic equations. Another

notable influence is the work of Langer, Neumüller, and Schafelner, who apply an element-wise up-

winding scheme to study low-regularity solutions of the heat equation in [27–29].

In contrast to these earlier results, here we shall treat parabolic equations where the second-

order term is a general elliptic operator. That is, we consider second-order terms of the form

𝑑
∑
𝑖=1

𝑑
∑
𝑗=1

𝜕
𝜕𝑥𝑖

(𝐷𝑖𝑗
𝜕
𝜕𝑥𝑗

𝑢) where 𝜅|𝜉|2 ≤ ∑
𝑖,𝑗
𝐷𝑖𝑗(𝑥, 𝑡)𝜉𝑖𝜉𝑗 ≤ 𝛿|𝜉|2 for any 𝜉 ∈ ℝ𝑑, where 𝜅, 𝛿 > 0.

22

In all of the previously cited literature onGalerkin space-timemethods, the second-order term is always

taken to be a scalar field, often a piecewise-constant function. Existing results for these special cases

corroborate the more general results which we present here. For instance, when 𝐷𝑖𝑗 = 𝜈𝛿𝑖𝑗 is some

piecewise-constant diagonal operator, our theory aligns with that of [29].

Furthermore, we extend the work of Langer et. al. to problems with non-autonomous spatial

convection and reaction terms. The proposed method utilizes a space-time upwinding term, which

provides a natural mechanism to handle cases where the spatial convection dominates the spatial dif-

fusion.

In addition, we present convergence results for problems in which the problem data is some-

what nonsmooth. For example, when modeling the dispersion of a species through a heterogeneous

material, the material properties which define the PDE may be discontinuous across (potentially mov-

ing) interfaces, but otherwise smooth. Problems of this type are included in the present analysis. In-

spired by [27], we will assume that a coefficient function is regular within each element of themesh but

place limited restrictions on the smoothness across element boundaries. Given a function 𝑐 ∶ 𝑄 → ℝ

and a triangulation 𝒯, we say that

𝑐 ∈ 𝐻𝑘(𝒯) if and only if 𝑐 ∈ 𝐻𝑘(𝜏) for all 𝜏 ∈ 𝒯. (2.1)

Then, if 𝒯 is chosen such that no mesh element crosses a material interface, 𝑐 will have smoothness

𝐻𝑘(𝒯). Of course, when the problem data is nonsmooth across some interface, we generally expect a

solution 𝑢 to have reduced smoothness across these interfaces as well. Therefore, we treat solutions of

the class 𝐻𝑚(𝑄) ∩ 𝐻𝑘(𝒯), where𝑚 < 𝑘. In this scenario, 𝑢 has some low level of global regularity, but

potentially much higher regularity within mesh elements.

2.1 The Basic Setting of Space-TimeMethods

At the core of the space-time formulation of a PDE is the space-time variable 𝑦 = (𝑥, 𝑡). Once

this variable is defined, the associated language of norms, derivatives, boundary conditions, and so on

must be adjusted as well.

Written in terms of separate space and time variables, the model convection-diffusion equation

23

is
⎧⎪⎪
⎨⎪⎪
⎩

ℒ𝑢 ∶= 𝜕𝑢
𝜕𝑡 − ∇𝑥 ⋅ (𝐷̃∇𝑥𝑢 − 𝑏̃𝑢) + 𝑐𝑢 = 𝑓 for 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇)

𝑢 = 0 for 𝑥 ∈ 𝜕Ω

𝑢 = 𝑢0 for 𝑡 = 0

(2.2)

Now, we define 𝑦 = (𝑥, 𝑡) ∈ ℝ𝑑+1 and may re-write Equation 2.2 in terms of derivatives with respect to

𝑦. Let ∇ and ∇⋅ denote the gradient and divergence operators with respect to the space-time variable.

Then the model problem may be written as

⎧⎪⎪
⎨⎪⎪
⎩

ℒ𝑢 = −∇⋅ (𝐷∇𝑢 − 𝑏𝑢) + 𝑐𝑢 = 𝑓 for 𝑦 ∈ Ω × (0, 𝑇)

𝑢 = 0 for 𝑦 ∈ 𝜕Ω × (0, 𝑇)

𝑢 = 𝑢0 for 𝑦 ∈ Ω × {0}

(2.3)

where

𝐷 = (
𝐷̃ 0𝑑×1

01×𝑑 0
) ∈ ℝ(𝑑+1)×(𝑑+1) and 𝑏 = (

𝑏̃

1
) ∈ ℝ𝑑+1. (2.4)

Following the nomenclature for the (spatial) coefficient functions, we will refer to 𝐷 as the

space-time diffusion coefficient and 𝑏 as the space-time convection coefficient. We also reiterate, following

the description in Section 1.2, that 𝐷̃ = 𝐷̃(𝑦) is assumed to be a 𝑑 × 𝑑matrix-valued function such that

𝐷̃(𝑦) form a uniformly positive-definite family of matrices over all 𝑦. That is, for any vector 𝑥 ∈ ℝ𝑑,

𝑥𝑇𝐷̃(𝑦)𝑥 ≥ 𝜅|𝑥|2 for all 𝑦 ∈ 𝑄, (2.5)

where 𝜅 > 0 is a constant independent of 𝑦.

Because we make no formal distinction between the variables 𝑥 and 𝑡, it is important to also

redefine the sets in Equation 2.2 describing the computational domain (e.g. Ω × (0, 𝑇), 𝜕Ω × (0, 𝑇),

and Ω × {0}). From a purely notational perspective it makes sense to ignore the Cartesian product

structure between the space and time domains, since we are not setting apart time as a special variable.

In addition, the space-time domain of a PDEdoes not have aCartesian product structure in all cases. For

instance, for problems with moving domains, the space-time domain can “bend” in the time direction;

such a case is considered in [37].

24

We denote by 𝑄 the full space-time domain for the problem; specifically, 𝑄 is the open set in

ℝ𝑑+1 containing all points for which the differential operator ℒ is defined. In the case of Equation 2.2,

the fact that 𝑄 has a Cartesian product structure means that we can separate 𝜕𝑄 into a few distinct

pieces. We define:
𝑄 = Ω × (0, 𝑇) ⊂ ℝ𝑑+1

Σ0 = Ω × {0}

Σ𝑇 = Ω × {𝑇}

Σ = 𝜕Ω × [0, 𝑇]

ThusΣ0 is the portion of 𝜕𝑄 that contains the initial state of𝑢,Σ𝑇 contains the final state, andΣdescribes

the spatial boundary of Ω at all times between 0 and 𝑇. Furthermore, for any 𝑡 ∈ [0, 𝑇] we will denote

Ω𝑡 = Ω × {𝑡} ⊂ ℝ𝑑+1 and 𝑄𝑡 = Ω × (0, 𝑡). (2.6)

The setΩ𝑡 is called the spatial domain at time t or a time slice at time t, while𝑄𝑡 is the space-time domain

through 𝑡 or the space-time domain on (0, 𝑡).

When the space-time domain 𝑄 has the Cartesian product structure of Ω × (0, 𝑇), it is often

called the space-time cylinder for the problem. When it is helpful to consider the individual domains in

this product, we will refer to Ω ⊂ ℝ𝑑 as the spatial domain and (0, 𝑇) as the time interval.

Furthermore, we define the following spaces:

𝐻𝑘,𝑙(𝑄) = { 𝑢 ∈ 𝐿2(𝑄) ∣ 𝜕𝛼𝑥𝑢 ∈ 𝐿2(𝑄), 𝜕𝑖𝑡𝑢 ∈ 𝐿2(𝑄), for 0 ≤ |𝛼| ≤ 𝑘 and 0 ≤ 𝑖 ≤ 𝑙 }

𝐻𝑘,𝑙
0 (𝑄) = { 𝑢 ∈ 𝐻𝑘,𝑙(𝑄) ∣ 𝑢 = 0 on Σ }

𝐻𝑘,𝑙
0,0(𝑄) = { 𝑢 ∈ 𝐻𝑘,𝑙(𝑄) ∣ 𝑢 = 0 on Σ and 𝑢 = 0 on Σ0 }

𝐻𝑘,𝑙
0,0(𝑄) = { 𝑢 ∈ 𝐻𝑘,𝑙(𝑄) ∣ 𝑢 = 0 on Σ and 𝑢 = 0 on Σ𝑇 }

Each of the above spaces is a Sobolev space with particular smoothness and boundary conditions. The

superscripts denote the smoothness of the class in the spatial and temporal variables, with the first

superscript describing spatial smoothness and the second superscript describing temporal smoothness.

The subscripts define the boundary conditions. The first 0 subscript signifies homogeneous boundary

conditions on the spatial boundary, while the second 0 (if it appears) describes homogeneous boundary

25

conditions on the time boundaries Σ0 or Σ𝑇 .

2.1.1 Abstract Error Analysis

A significant portion of this chapter will consist of various lemmas and propositions that es-

tablish the stability and convergence of our space-time finite element method. The details of these

statements are important, but technical. As such, it is helpful to have a “road map,” or big-picture view,

that contextualizes the various claims and characteristics that we prove in this chapter. In this section,

an abstract framework will be described that highlights the most important properties of our proposed

finite element method and illustrates how these properties fit together.

Our point of departure will be to consider the transient convection-diffusion equation as a dif-

ferential equation in the traditional sense; that is, a problem of the form:

Problem 1 (Strong Form, Abstract Setting)

Find 𝑢̃ ∈ 𝑈̃ such that
⎧
⎨
⎩

𝒜𝑢̃ = 𝑓 for 𝑦 ∈ 𝑄

𝑢̃ = 𝑔 for 𝑦 ∈ Σ0 ∪ Σ
(2.7)

where𝒜 is a differential operator and the equalities are considered in the sense of 𝐿2 functions.

This form of the PDEwill be called the strong form and its corresponding solution will be called

the strong solution.

Next, we will define a variational problemwhich is consistent with the strong form in the sense

that any strong solution will also be a solution to the variational problem. For suitable function spaces

𝑈 and 𝑉 , this problem takes the form:

Problem 2 (Variational Form, Abstract Setting)

Find 𝑢 ∈ 𝑈 such that for all 𝑣 ∈ 𝑉 ,

𝐵(𝑢, 𝑣) = 𝐿(𝑣) (2.8)

where 𝐵 is a continuous bilinear form on 𝑈 × 𝑉 and 𝐿 is a continuous linear functional on 𝑉 .

In contrast to another variational equation which we will define shortly, this problem is some-

times called the continuous variational problem (as opposed to the discrete problem).

26

Of course, Problem 1 and Problem 2 are not directly computable, so it is necessary to define

a finite element scheme that produces an approximation 𝑢ℎ to the variational solution 𝑢. The finite

element solution is defined to satisfy a variational equality, but the function spaces fromwhich solutions

and test functions are drawn will be finite dimensional. As a result, the finite element problem can be

characterized as a linear algebra problem (and is therefore computationally tractable).

Problem 3 (Finite Element Form, Abstract Setting)

Find 𝑢ℎ ∈ 𝑉ℎ such that for all 𝑣ℎ ∈ 𝑉ℎ,

𝐵ℎ(𝑢ℎ, 𝑣ℎ) = 𝐿ℎ(𝑣ℎ) (2.9)

where the space 𝑉ℎ ⊂ 𝑈 is finite dimensional, 𝐵ℎ is a bilinear form on 𝑈 × 𝑉ℎ, and 𝐿ℎ is a continuous

linear functional on 𝑉ℎ.

As before, a key property of the finite element problem is consistency with the continuous vari-

ational problem. That is, if 𝑢 is a solution to Problem 2, then it must also satisfy Equation 2.9. An

immediate consequence of consistency between Problem 2 and Problem 3 is the notion of Galerkin or-

thogonality. For solutions 𝑢 and 𝑢ℎ to the continuous and discrete variational problems, respectively,

Galerkin orthogonality is the property that

𝐵ℎ(𝑢 − 𝑢ℎ, 𝑣ℎ) = 0 for all 𝑣ℎ ∈ 𝑉ℎ. (2.10)

That is, the difference between the continuous and discrete solutions is orthogonal to the entire space

𝑉ℎ (in the sense of 𝐵ℎ). Note that Equation 2.10 may be derived immediately by observing that for any

𝑣ℎ ∈ 𝑉ℎ, the definition of consistency means that

𝐵ℎ(𝑢, 𝑣ℎ) = 𝐿ℎ(𝑣ℎ) = 𝐵ℎ(𝑢ℎ, 𝑣ℎ).

In addition to consistency, it will be necessary to establish two further properties of the bilinear

form 𝐵ℎ: coercivity and boundedness. Let |||⋅|||ℎ be a norm on 𝑉ℎ. We say that 𝐵ℎ is coercive with respect

to the norm |||⋅|||ℎ if there is some positive constant 𝐶𝑐 such that

𝐵ℎ(𝑣ℎ, 𝑣ℎ) ≥ 𝐶𝑐|||𝑣ℎ|||
2
ℎ for all 𝑣ℎ ∈ 𝑉ℎ. (2.11)

27

Next, let |||⋅|||ℎ,∗ be some norm on 𝑈. The bilinear form 𝐵ℎ is said to be bounded with respect to |||⋅|||ℎ,∗
and |||⋅|||ℎ if there is another positive constant 𝐶𝑏 such that

|𝐵ℎ(𝑤, 𝑣ℎ)| ≤ 𝐶𝑏|||𝑤|||ℎ,∗|||𝑣ℎ|||ℎ for all 𝑤 ∈ 𝑈 and 𝑣ℎ ∈ 𝑉ℎ. (2.12)

The properties of consistency, coercivity, and boundednessmay be combined to establish a best-

approximation property for the finite element solution 𝑢ℎ:

|||𝑢 − 𝑢ℎ|||
2
ℎ ≤ (1 + 𝐶2

𝑏
𝐶2𝑐

) inf
𝑣ℎ∈𝑉ℎ

|||𝑢 − 𝑣ℎ|||
2
ℎ,∗. (2.13)

That is, the distance from 𝑢ℎ to 𝑢 is minimal among all functions in the solution space 𝑉ℎ. Finally, the

size of the distance |||𝑢 − 𝑢ℎ|||ℎ can be characterized asymptotically as a function of the discretization

parameter ℎ. Given a polynomial interpolation operator ℐℎ satisfying

|||𝑤 − ℐℎ𝑤|||ℎ,∗ ≤ 𝐶2ℎ𝑚|𝑤|𝐻𝑚 ,

for any 𝑤 ∈ 𝑈 ⊂ 𝐻𝑚, an a priori error estimate of the form

|||𝑢 − 𝑢ℎ|||ℎ ≤ 𝐶ℎ𝑘−1|𝑢|𝐻𝑚 (2.14)

will be proven, for a specific 𝑘.

The present chapter will establish each of the preceding definitions and properties, taking care

to define the appropriate function spaces, norms, and linear forms. We begin with formal statements

of the strong, variational, and finite element problems, and demonstrate consistency among them. The

first main result will be the proof of coercivity of 𝐵ℎ, which also establishes the numerical stability

of the method. Following the coercivity result, the boundedness of 𝐵ℎ will be established and a best-

approximation property will follow immediately. The last component of the discussion will center on

polynomial interpolants, which involves some nuance for schemes in four-dimensional space-time.

After establishing the necessary properties of polynomial interpolation operators, we will arrive at an

a priori error estimate for the finite element scheme.

28

2.2 Space-Time Formulations of Parabolic Problems

Whenwritten in terms of the space-time variable 𝑦, the transient convection-diffusion equation

takes on the form of a stationary convection-diffusion problem in 𝑑+1 variables, with the condition that

the space-time diffusion operator 𝐷 has a specific (positive semidefinite, singular) form. In the stan-

dard analysis of stationary convection-diffusion equations, the diffusion operator is symmetric positive

definite; therefore, we cannot apply the general theory of convection-diffusion equations directly to

this problem. Our goal is to recover as much of the general theory as possible and handle the singular

diffusion term appropriately when necessary.

Let us define precisely the strong form of the transient convection-diffusion equation, which

will serve as the starting point for all of the following analysis.

Problem 4 (Transient Convection-Diffusion, Strong Form)

Let Ω ⊂ ℝ𝑑 be a domain and 𝑄 ⊂ ℝ𝑑+1 its associated space-time domain. The solution 𝑢 ∈ 𝐻2,1(𝑄) to

the transient convection-diffusion equation satisfies

⎧⎪⎪
⎨⎪⎪
⎩

−∇⋅ (𝐷∇𝑢 − 𝑏𝑢) + 𝑐𝑢 = 𝑓 for 𝑦 ∈ 𝑄

𝑢 = 0 for 𝑦 ∈ Σ

𝑢 = 𝑢0 for 𝑦 ∈ Σ0

(2.15)

where 𝐷 and 𝑏 are defined as in Equation 2.4. Furthermore, we assume that 𝑢0 ∈ 𝐿2(Ω), 𝑓 ∈ 𝐿2(𝑄),

𝑐 ∈ 𝐿∞(𝑄), 𝑏 ∈ 𝐻(𝑑𝑖𝑣; 𝑄), and 𝑐 + 1
2
∇⋅ 𝑏 ≥ 𝛽 > 0 on all of 𝑄.

A variational form of Problem 4 may be derived in the usual manner for second-order equa-

tions - we multiply both sides of Equation 2.3 by a test function and then integrate by parts. However,

due to the structure of the space-time boundary conditions, we must be somewhat careful. The fol-

lowing derivation is based on the classical work of Ladyzhenska[25], where notational changes have

been introduced as needed. These basic results will thenmotivate the construction of a consistent finite

element method.

Suppose that 𝑢 ∈ 𝐻2,1(𝑄) is a solution to Problem 4 and let 𝑣 ∈ 𝐻1
0,0(𝑄) be arbitrary. Then

∫
𝑄
−∇⋅ (𝐷∇𝑢 − 𝑏𝑢)𝑣 + 𝑐𝑢𝑣 𝑑𝑦 = ∫

𝑄
𝑓𝑣 𝑑𝑦

29

and by the divergence theorem,

−∫
𝜕𝑄
(𝐷∇𝑢 − 𝑏𝑢)𝑣 ⋅ 𝑛 𝑑𝑦 +∫

𝑄
∇𝑣𝑇 (𝐷∇𝑢 − 𝑏𝑢) + 𝑐𝑢𝑣 𝑑𝑦 = ∫

𝑄
𝑓𝑣 𝑑𝑦. (2.16)

We can show that the boundary integral simplifies immensely by decomposing 𝜕𝑄 and considering the

boundary conditions. Recall that the space-time boundary can be split up as

𝜕𝑄 = Σ ∪ Σ0 ∪ Σ𝑇 , (2.17)

where Σ is the set of spatial boundary points, Σ0 is the initial state, and Σ𝑇 is the final state. Since

𝑣 ∈ 𝐻1
0,0(𝑄), it follows that 𝑣 = 0 on Σ𝑇 ∪ Σ. Thus

−∫
𝜕𝑄

(𝐷∇𝑢 − 𝑏𝑢) 𝑣 ⋅ 𝑛 𝑑𝑦 = −∫
Σ0
(𝐷∇𝑢 − 𝑏𝑢) 𝑣 ⋅ 𝑛 𝑑𝑦.

Now, due to the special structure of the space-time diffusion𝐷, the (𝑑+1)𝑡ℎ component of𝐷∇𝑢 vanishes.

Since 𝑛 = (0, … , 0, −1) on Σ0, this implies that

−∫
Σ0
(𝐷∇𝑢 − 𝑏𝑢) 𝑣 ⋅ 𝑛 𝑑𝑦 = ∫

Σ0
(𝑏𝑢𝑣) ⋅ 𝑛 𝑑𝑦 = −∫

Σ0
𝑢𝑣 𝑑𝑦 = −∫

Σ0
𝑢0𝑣 𝑑𝑦.

Inserting this back into the larger expression of Equation 2.16, we conclude that

∫
𝑄
∇𝑣𝑇 (𝐷∇𝑢 − 𝑏𝑢) + 𝑐𝑢𝑣 𝑑𝑦 = ∫

𝑄
𝑓𝑣 𝑑𝑦 +∫

Σ0
𝑢0𝑣 𝑑𝑦. (2.18)

We remark that the deduced Equation 2.18 is well-defined so long as 𝑢,∇𝑥𝑢 ∈ 𝐿2(𝑄). This

motivates the definition of a variational solution to the model equation in Problem 4.

Problem 5 (Transient Convection-Diffusion, Variational Form)

The function 𝑢 ∈ 𝐻1,0
0 (𝑄) is a variational solution of the transient convection-diffusion equation if

𝐵(𝑢, 𝑣) = 𝐿(𝑣) for all 𝑣 ∈ 𝐻1
0,0(𝑄) (2.19)

30

where
𝐵(𝑢, 𝑣) = ∫

𝑄
∇𝑣𝑇 (𝐷∇𝑢 − 𝑏𝑢) + 𝑐𝑢𝑣 𝑑𝑦 and

𝐿(𝑣) = ∫
𝑄
𝑓𝑣 𝑑𝑦 +∫

Σ0
𝑢0𝑣 𝑑𝑦.

(2.20)

In the study of elliptic equations with Dirichlet boundary conditions, variational equations are

often posed with test functions that vanish at the points where a Dirichlet boundary condition is im-

posed. For the space-time formulation of the transient convection-diffusion problem in Equation 2.15,

the initial-boundary conditions on Σ0 ∪ Σ may be considered as Dirichlet boundary conditions on the

space-time domain. However, one may note that in the definition of the test space𝐻1
0,0(𝑄) for the vari-

ational equation in Problem 5, functions are prescribed to vanish on Σ𝑇 ∪Σ, not Σ0 ∪Σ. We choose this

particular test space in order to leverage the theory proven by Ladyzhenska in [25], who also shows that

the solution to Equation 2.19 satisfies a more general variational equality as well.

Proposition 2.1. Let 𝑢 ∈ 𝐻1,0
0 (𝑄) be the solution to Problem 5. Then for any 𝑣 ∈ 𝐻1

0(𝑄) and 𝑡 ∈ [0, 𝑇],

∫
𝑄𝑡

∇𝑇𝑣(𝐷∇𝑢 − 𝑏𝑢) + 𝑐𝑢𝑣 𝑑𝑦 +∫
Ω𝑡

𝑢𝑣 𝑑𝑦 = ∫
𝑄𝑡

𝑓𝑣 𝑑𝑦 +∫
Σ0
𝑢0𝑣 𝑑𝑦 (2.21)

where 𝑄𝑡 and Ω𝑡 are defined as in Equation 2.6; that is, 𝑄𝑡 = Ω × (0, 𝑡) and Ω𝑡 = Ω × {𝑡}. In particular,

taking 𝑡 = 𝑇, we have

∫
𝑄
∇𝑇𝑣(𝐷∇𝑢 − 𝑏𝑢) + 𝑐𝑢𝑣 𝑑𝑦 +∫

Σ𝑇
𝑢𝑣 𝑑𝑦 = ∫

𝑄
𝑓𝑣 𝑑𝑦 +∫

Σ0
𝑢0𝑣 𝑑𝑦. (2.22)

Proof. See [25], Chapter III, Equation 3.20, and the surrounding discussion.

Proposition 2.1 states that any solution to Problem 5 satisfies a variational equality with test

functions drawn from the larger space𝐻1
0(𝑄) ⊃ 𝐻1

0,0(𝑄), so long as we include an extra term containing

contributions from the time-outflow boundary Σ𝑇 . We will use this fact when defining a consistent

finite-element scheme for Problem 5.

A natural way to discretize the variational problem is to consider finite-dimensional subspaces

of 𝐻1,0
0 (𝑄) which are made up of piecewise-polynomial functions over a triangulation 𝒯. For a trian-

gulation 𝒯 which covers 𝑄, we will choose the finite element space 𝑉ℎ to be the space of all piecewise-

polynomial functions which are of degree 𝑟 on each simplex 𝜏 ∈ 𝒯, and which vanish on Σ. That

31

is,

𝑉ℎ = 𝑉𝑟
ℎ,0(𝒯) = {𝑝 ∈ 𝐻1,0

0 (𝑄) ∶ 𝑝||𝜏 ∈ ℙ𝑟(𝜏) ∀𝜏 ∈ 𝒯} . (2.23)

Remark 2.2. Going forward we will also assume that the coefficient functions in the definition of Prob-

lem 4 possess a given smoothness on the interior of individual mesh elements. For example, instead of

assuming that ∇⋅ 𝑏 ∈ 𝐿2(𝑄), we will only assume that ∇⋅ 𝑏 ∈ 𝐿2(𝜏) for each 𝜏 ∈ 𝒯.

In order to maintain consistency between the continuous variational problem and the finite

element problem, we will use Equation 2.22 to define the discrete bilinear form.

Problem 6 (Transient Convection-Diffusion, Galerkin FEM)

The finite element solution 𝑢ℎ ∈ 𝑉ℎ satisfies

𝐵ℎ(𝑢ℎ, 𝑣ℎ) = 𝐿ℎ(𝑣ℎ) for all 𝑣ℎ ∈ 𝑉ℎ. (2.24)

where
𝐵ℎ(𝑢ℎ, 𝑣ℎ) = ∫

𝑄
∇𝑣𝑇ℎ (𝐷∇𝑢ℎ − 𝑏𝑢ℎ) + 𝑐𝑢ℎ𝑣ℎ 𝑑𝑦 +∫

Σ𝑇
𝑢ℎ𝑣ℎ 𝑑𝑦 and

𝐿ℎ(𝑣ℎ) = ∫
𝑄
𝑓𝑣 𝑑𝑦 +∫

Σ0
𝑢0𝑣ℎ 𝑑𝑦.

(2.25)

Since𝑉ℎ ⊂ 𝐻1
0(𝑄), Proposition 2.1 implies that any solution to Problem 5 satisfies Equation 2.25.

Therefore Problem 6 is consistent with Problem 5. Unfortunately, the above finite element problem is

inherently numerically unstable due to the presence of the singular diffusion term𝐷. This scenario can

be viewed as a limiting case of convection-dominated flow problems, where the size ratio of convection

and diffusion terms approaches infinity. In the following section, we apply this methodology to the

transient convection-diffusion equation and show that the stability and convergence behavior matches

that of the steady-state problem.

2.3 Stability of a Space-Time Galerkin Method

Galerkin finite element methods applied to the convection-diffusion equation can exhibit poor

behavior under certain conditions on the coefficients 𝐷, 𝑏, and 𝑐. In particular, continuous Galerkin

methods produce oscillatory solutions when the strength of the convective field 𝑏 is much stronger

than the diffusive term 𝐷; see [23], [40], and [10] for a more detailed treatment of this phenomenon.

32

These erroneous oscillations are present in treatments of both the steady-state and transient convection-

diffusion equations.

Consider first the steady-state problem, where the magnitude of convection dominates the dif-

fusive strength. Mathematically, this is the case where |𝑏̃| ≫ 𝜅 (recall that 𝜅 is the coercivity constant

of 𝐷̃). Now, the abstract error estimate in Equation 2.13 describes the error of Galerkin’s method in

terms of polynomial approximation, but it also depends on a (semi-)computable constant. The con-

stant 𝐶 = 1 + 𝐶𝑏𝐶−1
𝑐 depends directly on the boundedness constant 𝐶𝑏 and the coercivity constant 𝐶𝑐,

which depend in turn on 𝐷, 𝑏, and 𝑐. In particular, 𝐶𝑐 = 𝐶′𝜅, where 𝐶′ depends only on the spatial

domain, and 𝐶𝑏 ≥ ‖𝑏̃‖∞ (see [40], Chapters 6 and 8 for more detail). Therefore, as the ratio ‖𝑏̃‖∞/𝜅

increases, the method’s control on ‖∇𝑥(𝑢−𝑢ᵆ)‖𝐿2 diminishes, and spurious oscillations in the solution

can develop.

In the case of the transient convection-diffusion equation, the situation is evenworse. While the

stability issues for steady-state convection-diffusion equations arose from the potentially large constant

(1+𝐶𝑏/𝐶𝑐), in the transient setting such a (finite) constant does not even exist! If the above argument is

applied to the transient equation, we find that 𝐶𝑐, the smallest eigenvalue of 𝐷̃, will be 0. If we consider

this to be the limiting case of 𝐶𝑐 → 0, it is immediately clear that the constant (1 + 𝐶𝑏/𝐶𝑐) appearing in

the error bound will tend to infinity.

Informally, we can think of the size of 𝜕𝑥𝑖𝑢 as being controlled by the ratio of the diffusive

strength in the 𝑖𝑡ℎ dimension to the convective strength in the 𝑖𝑡ℎ dimension. Since the transient

convection-diffusion equation contains “time convection” terms but no “time diffusion” terms, the

space-time Galerkin method loses any form of control over the size of the time derivative.

Clearly, the simple space-time Galerkin method proposed above needs to be modified in order

to obtain a measure of numerical stability. Several stabilization techniques have been considered for

this purpose. In [4], the authors analyzed a streamline-upwind Petrov-Galerkin (SUPG) scheme and an

Edge Average Finite Element (EAFE) scheme for the case of constant coefficients (an EAFE scheme is

higher-dimensional generalization of a Scharfetter-Gummel scheme). The series [27–29] considers an

SUPG scheme for the heat equationwith only weak regularity assumptions on the coefficient functions.

In addition, stabilization of the heat equation via bubble functions is studied in [26].

The defining characteristic of an SUPG finite element scheme is the augmentation of the test

space 𝑉ℎ,0 with terms that are “biased” in the direction of a convective flow. We define the upwinded

33

test space

𝑉ℎ = {∑
𝜏∈𝒯

𝑣𝜏 + 𝜃𝜏ℎ𝑝𝜏𝑏 ⋅ ∇𝑣𝜏 ∶ 𝑣 ∈ 𝑉ℎ, 𝑣𝜏 = 𝑣||𝜏} = 𝑉ℎ +𝑊ℎ. (2.26)

We leave the integer 𝑝 and the real parameters 𝜃𝜏 unspecified for now.

The guiding principle when defining an SUPGmethod is that the solution of the original strong

form of the PDE (c.f Equation 2.3) is consistent with the solution to the SUPG problem. That is, if 𝑢 a

solution to Equation 2.3, then it must be a solution to the SUPG problem.

To derive an appropriate SUPG form of the PDE, we introduce a test function in the same way

as for Galerkin’s method. However, we now choose 𝑣 ∈ 𝑉ℎ. Furthermore, since the functions in 𝑉ℎ

are defined element-wise, our analysis will also proceed on an element-by-element basis. Since the

triangulations considered always cover 𝑄, global estimates are obtained by summing together every

element-wise contribution.

Remark 2.3. In the previous section, notational conventions implied that functions 𝑢 and 𝑣 belonged

to spaces for the continuous variational problem, while functions 𝑢ℎ and 𝑣ℎ belonged to spaces for the

discrete (i.e. finite element) variational problem. For the remainder of this section, we will discard this

convention and use the symbols 𝑣 for functions in 𝑉ℎ and 𝑣 for functions in 𝑉ℎ. This is done primarily

to reduce notational clutter.

Suppose 𝑢 ∈ 𝐻2,1
0 (𝑄) is a solution to the strong form of the transient convection-diffusion equa-

tion (c.f. Problem 4) and let

𝑣 = ∑
𝜏∈𝒯

𝑣𝜏 + 𝜃𝜏ℎ𝑝𝜏𝑏 ⋅ ∇𝑣𝜏 ∈ 𝑉ℎ (2.27)

be arbitrary, where again we set 𝑣𝜏 to be the function which coincides with 𝑣 on 𝜏 ∈ 𝒯 and vanishes

elsewhere. Then

∫
𝑄
−∇⋅ (𝐷∇𝑢 − 𝑏𝑢)𝑣 + 𝑐𝑢𝑣 𝑑𝑦 = ∑

𝜏∈𝒯
∫
𝜏
−∇⋅ (𝐷∇𝑢 − 𝑏𝑢) 𝑣 + 𝑐𝑢𝑣 𝑑𝑦 = ∑

𝜏∈𝒯
∫
𝜏
𝑓𝑣 𝑑𝑦 (2.28)

34

and we deduce:

∑
𝜏∈𝒯

∫
𝜏
𝑓𝑣 𝑑𝑦 = ∑

𝜏∈𝒯
∫
𝜏
−∇⋅ (𝐷∇𝑢 − 𝑏𝑢) 𝑣 − ∇⋅ (𝐷∇𝑢 − 𝑏𝑢) ⋅ 𝜃𝜏ℎ𝑝𝜏 (𝑏 ⋅ ∇𝑣) + 𝑐𝑢𝑣 𝑑𝑦 (2.29)

= ∑
𝜏∈𝒯

∫
𝜏
(𝐷∇𝑢 − 𝑏𝑢) ⋅ ∇𝑣 − 𝜃𝜏ℎ𝑝𝜏∇⋅ (𝐷∇𝑢 − 𝑏𝑢) (𝑏 ⋅ ∇𝑣) + 𝑐𝑢𝑣 + 𝜃𝜏ℎ𝑝𝜏 (𝑏 ⋅ ∇𝑣) 𝑐𝑢 𝑑𝑦

− ∑
𝜏∈𝒯

∫
𝜕𝜏
(𝐷∇𝑢 − 𝑏𝑢) 𝑣 ⋅ 𝑛 𝑑𝑦

Due to the smoothness of solution 𝑢, we can show that the boundary flux terms (the last integral in the

previous expression) cancel along internal boundaries. In particular:

Proposition 2.4. Let 𝒯 be a triangulation covering 𝑄, 𝑢 ∈ 𝐻2,1
0 (𝑄) a solution to Problem 4, and 𝑣 ∈

𝐻1
0(𝑄). Then

− ∑
𝜏∈𝒯

∫
𝜕𝜏
(𝐷∇𝑢 − 𝑏𝑢)𝑣 ⋅ 𝑛 𝑑𝑦 = ∫

Σ𝑇
𝑢𝑣 𝑑𝑦 −∫

Σ0
𝑢𝑣 𝑑𝑦. (2.30)

Proof. Recalling the derivation of Problem 4, we know that

∫
𝑄
∇𝑇𝑣(𝐷∇𝑢 − 𝑏𝑢) + 𝑐𝑢𝑣 𝑑𝑦 +∫

Σ𝑇
𝑢𝑣 𝑑𝑦 −∫

Σ0
𝑢0𝑣 𝑑𝑦 = ∫

𝑄
−∇⋅ (𝐷∇𝑢 − 𝑏𝑢)𝑣 + 𝑐𝑢𝑣 𝑑𝑦. (2.31)

Then since 𝒯 covers 𝑄,

∫
𝑄
−∇⋅ (𝐷∇𝑢 − 𝑏𝑢)𝑣 + 𝑐𝑢𝑣 𝑑𝑦 = ∑

𝜏∈𝒯
∫
𝜏
−∇⋅ (𝐷∇𝑢 − 𝑏𝑢)𝑣 + 𝑐𝑢𝑣 𝑑𝑦

= ∑
𝜏∈𝒯

∫
𝜏
∇𝑇𝑣(𝐷∇𝑢 − 𝑏𝑢) + 𝑐𝑢𝑣 𝑑𝑦 −∫

𝜕𝜏
(𝐷∇𝑢 − 𝑏𝑢)𝑣 ⋅ 𝑛 𝑑𝑦

= ∫
𝑄
∇𝑇𝑣(𝐷∇𝑢 − 𝑏𝑢) + 𝑐𝑢𝑣 𝑑𝑦 − ∑

𝜏∈𝒯
∫
𝜕𝜏
(𝐷∇𝑢 − 𝑏𝑢)𝑣 ⋅ 𝑛 𝑑𝑦.

(2.32)

Subtracting the integral over 𝑄 from Equation 2.31 and Equation 2.32 establishes the proposition.

Applying Proposition 2.4 to the derivation in Equation 2.29 simplifies the boundary integrals

35

so that

∑
𝜏∈𝒯

∫
𝜏
𝑓𝑣 𝑑𝑦 = ∑

𝜏∈𝒯
∫
𝜏
(𝐷∇𝑢) ⋅ ∇𝑣 − 𝜃𝜏ℎ𝑝𝜏 (𝑏 ⋅ ∇𝑣)∇⋅ (𝐷∇𝑢) + 𝜃𝜏ℎ𝑝𝜏 (𝑏 ⋅ ∇𝑣)∇⋅ (𝑏𝑢) 𝑑𝑦

+ ∑
𝜏∈𝒯

∫
𝜏
(𝜃𝜏ℎ𝑝𝜏𝑐 − 1) (𝑏 ⋅ ∇𝑣) 𝑢 + 𝑐𝑢𝑣 𝑑𝑦 +∫

Σ𝑇
𝑢𝑣 𝑑𝑦 −∫

Σ0
𝑢𝑣 𝑑𝑦

= ∑
𝜏∈𝒯

∫
𝜏
∇𝑇𝑣 (𝐷 + 𝜃𝜏ℎ𝑝𝜏𝑏𝑏𝑇)∇𝑢 − 𝜃𝜏ℎ𝑝𝜏 (𝑏 ⋅ ∇𝑣)∇⋅ (𝐷∇𝑢) 𝑑𝑦

+ ∑
𝜏∈𝒯

∫
𝜏
(𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏) − 1)(𝑏 ⋅ ∇𝑣)𝑢 + 𝑐𝑢𝑣 𝑑𝑦 +∫

Σ𝑇
𝑢𝑣 𝑑𝑦 −∫

Σ0
𝑢𝑣 𝑑𝑦.

Remark 2.5. For the sake of notational convenience, we will denote

𝐷ℎ,𝜃,𝜏 = 𝐷 + 𝜃𝜏ℎ𝑝𝜏𝑏𝑏𝑇 . (2.33)

When 𝜏 is clear from the context, or the element 𝜏 is arbitrary, this will often be abbreviated to 𝐷ℎ,𝜃.

Furthermore, when 𝜏 is arbitrary we will drop the subscripts on ℎ and 𝜃. We can consider 𝐷ℎ,𝜃 to be

an “augmented” space-time diffusion, where an artificial (or “numerical”) diffusion 𝜃ℎ𝑝𝑏𝑏𝑇 has been

added to the natural diffusion𝐷. Thematrix 𝑏𝑏𝑇 is a rank-one projection in the direction of 𝑏; therefore,

the artificial diffusion introduced by the SUPG problem exists only in the direction of the space-time

convection. For this reason, the SUPG discretization described above is sometimes referred to as a

“streamline diffusion” method.

Incorporating the notation 𝐷ℎ,𝜃,𝜏 into the above derivation, we conclude that the solution 𝑢 ∈

𝐻2,1
0 (𝑄) satisfies

𝐵ℎ(𝑢, 𝑣) = 𝐿ℎ(𝑣) for any 𝑣 ∈ 𝑉ℎ (2.34)

where

𝐵ℎ(𝑢, 𝑣) = ∑
𝜏∈𝒯

∫
𝜏
(∇𝑣)𝑇𝐷ℎ,𝜃,𝜏∇𝑢 − 𝜃𝜏ℎ𝑝𝜏 (𝑏 ⋅ ∇𝑣)∇⋅ (𝐷∇𝑢) 𝑑𝑦

+∫
𝜏
(𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏) − 1)(𝑏 ⋅ ∇𝑣)𝑢 + 𝑐𝑢𝑣 𝑑𝑦 +∫

Σ𝑇
𝑢𝑣 𝑑𝑦

(2.35)

𝐿ℎ(𝑣) = ∑
𝜏∈𝒯

∫
𝜏
𝑓𝑣 + 𝜃𝜏ℎ𝑝𝜏𝑓(𝑏 ⋅ ∇𝑣) 𝑑𝑦 +∫

Σ0
𝑢0𝑣 𝑑𝑦 (2.36)

The above derivation shows that any strong solution 𝑢 ∈ 𝐻2,1
0 (𝑄) to the transient convection-diffusion

36

equation must also satisfy Equation 2.34 for any 𝑣 ∈ 𝑉ℎ.

We are now ready to define the SUPG finite element problem in the space-time setting. To

ensure consistency, we will utilize the linear forms defined in Equations 2.35 to 2.36. The only modifi-

cation necessary is to adjust the trial space to be finite dimensional.

Problem 7 (Transient Convection-Diffusion, SUPG FEM)

Find 𝑢 ∈ 𝑉ℎ such that for all 𝑣 ∈ 𝑉ℎ,

𝐵ℎ(𝑢, 𝑣) = 𝐿ℎ(𝑣) (2.37)

where 𝐵ℎ and 𝐿ℎ are defined as in Equation 2.35 and Equation 2.36, respectively.

We will prove in short order that Problem 7 is numerically stable and converges at a near-

optimal rate. In fact, this space-time SUPG method for the transient convection-diffusion equation

converges at the same rate as the classical SUPG method for steady-state convection-diffusion equa-

tions. This shows that SUPG stabilization of convection-dominated flow problems converges even in

the presence of vanishing diffusion.

Proposition 2.6. 𝐷ℎ,𝜃 is positive definite for any ℎ > 0, 𝜃 > 0.

Proof. Let𝑤 ∈ ℝ𝑑+1 be nonzero and arbitrary, and let𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑑+1)𝑇 . We denote the first 𝑑 co-

ordinates of𝑤 as𝑤𝑥 = (𝑤1, … , 𝑤𝑑), so wemaywrite (in a slight abuse of notation) that𝑤 = (𝑤𝑥, 𝑤𝑑+1)𝑇 .

Then

𝑤𝑇𝐷ℎ,𝜃𝑤 = 𝑤𝑇(𝐷 + 𝜃ℎ𝑝𝑏𝑏𝑇)𝑤 = 𝑤𝑇𝐷𝑤𝑇 + 𝜃ℎ𝑝𝑤𝑇𝑏𝑏𝑇𝑤 = 𝑤𝑇𝐷𝑤 + 𝜃ℎ𝑝(𝑤𝑇𝑏)2.

From the block diagonal structure of 𝐷̃ and the uniform positive definiteness of 𝐷, we deduce

𝑤𝑇𝐷ℎ,𝜃𝑤 = 𝑤𝑇𝐷𝑤 + 𝜃ℎ𝑝(𝑤𝑇𝑏)2

= 𝑤𝑇
𝑥 𝐷̃𝑤𝑥 + 𝜃ℎ𝑝(𝑤𝑇

𝑥 𝑏̃ + 𝑤𝑑+1)2

≥ 𝜅|𝑤𝑥|
2 + 𝜃ℎ𝑝(𝑤𝑇

𝑥 𝑏̃ + 𝑤𝑑+1)2.

If |𝑤𝑥| > 0, then clearly 𝑤𝑇𝐷ℎ,𝜃𝑤 > 0. If instead |𝑤𝑥| = 0, then 𝑤𝑇𝐷𝑤 = 𝜃ℎ𝑝(𝑤𝑑+1)2; since 𝑤 is

nonzero and 𝑤𝑥 = 0, we conclude that 𝑤𝑑+1 ≠ 0 and thus 𝑤𝑇𝐷𝑤 > 0. Therefore, 𝑤𝑇𝐷𝑤 > 0 in all

cases.

37

With a little additional effort, we can estimate the uniform bound for the positive-definiteness

of 𝐷ℎ,𝜃 from below. The following lemma is necessary to establish this bound; however, the proof of

Lemma 2.7 is quite messy and does not provide additional insight into the present discussion. As such,

the details of the proof are deferred to Chapter A.

Lemma 2.7. Given constants 𝐴,𝐶 > 0 and 𝐵 ≥ 0,

min
0≤𝑧≤1

𝐴𝑧2 + 𝐶 (𝐵𝑧 − √1 − 𝑧2)
2
≥ min (𝐴 + 𝐵2𝐶, 𝐴𝐶

𝐴 + 𝐶 (𝐵2 + 𝐵)) .

Proof. See Chapter A.

Proposition 2.8. For any 𝑤 ∈ ℝ𝑑+1,

𝑤𝑇𝐷ℎ,𝜃𝑤 ≥ 𝛾|𝑤|2, (2.38)

where

𝛾 = min(𝜅 + 𝜃ℎ𝑝||𝑏̃||
2, 𝜅 ⋅ 𝜃ℎ𝑝

𝜅 + 𝜃ℎ𝑝 (||𝑏̃||
2 + ||𝑏̃||)

) . (2.39)

Proof. Let 𝑤 ∈ ℝ𝑑+1 have unit norm. We will show that 𝑤𝑇𝐷ℎ,𝜃𝑤 ≥ 𝛾. As in the proof of Propo-

sition 2.6, let 𝑤 be written as (𝑤𝑥, 𝑤𝑑+1)𝑇 , where 𝑤𝑥 = (𝑤1, … , 𝑤𝑑)𝑇 . By the same argument as of

Proposition 2.6, we know

𝑤𝑇𝐷ℎ,𝜃𝑤 ≥ 𝜅|𝑤𝑥|
2 + 𝜃ℎ𝑝(𝑤𝑇𝑏)2.

Since |𝑤| = 1, we know that 𝑤𝑑+1 = √1 − |𝑤𝑥|
2. By definition, 𝑏𝑑+1 = 1, and so we deduce that

𝑤𝑇𝑏 = 𝑤𝑇
𝑥 𝑏̃ +√1 − |𝑤𝑥|

2. Plugging this into the inequality above, we see

𝑤𝑇𝐷ℎ,𝜃𝑤 ≥ 𝜅|𝑤𝑥|
2 + 𝜃ℎ𝑝 (𝑤𝑇

𝑥 𝑏̃ +√1 − |𝑤𝑥|
2)

2

≥ 𝜅|𝑤𝑥|
2 + 𝜃ℎ𝑝 (|𝑤𝑥|||𝑏̃|| −√1 − |𝑤𝑥|

2)
2

.

This expression is a continuous function of of |𝑤𝑥|, for 0 ≤ |𝑤𝑥| ≤ 1. Now, let 𝐴 = 𝜅, 𝐵 = ||𝑏̃||, and

𝐶 = 𝜃𝜏ℎ𝑝𝜏 . By Lemma 2.7, we know that

min
0≤𝑧≤1

𝐴𝑧2 + 𝐶 (𝐵𝑧 − √1 − 𝑧2)
2
≥ min (𝐴 + 𝐵2𝐶, 𝐴𝐶

𝐴 + 𝐶(𝐵2 + 𝐵)) ,

38

and therefore we conclude that for 0 ≤ |𝑤𝑥| ≤ 1,

𝑤𝑇𝐷ℎ,𝜃𝑤 ≥ 𝜅|𝑤𝑥|
2 + 𝜃ℎ𝑝 (|𝑤𝑥|||𝑏̃|| −√1 − |𝑤𝑥|

2)
2

≥ min(𝜅 + 𝜃ℎ𝑝||𝑏̃||
2, 𝜅𝜃ℎ𝑝𝜌
𝜅 + 𝜃ℎ𝑝 (||𝑏̃||

2 + ||𝑏̃||)
)

= 𝛾.

Thus for any unit 𝑤, we have 𝑤𝑇𝐷̃ℎ,𝜃𝑤 ≥ 𝛾. The proposition is then proved by noting that for any

nonzero 𝑤 ∈ ℝ𝑑+1,

𝑤𝑇𝐷ℎ,𝜃𝑤 = 𝑤𝑇

|𝑤|𝐷ℎ,𝜃
𝑤
|𝑤| ⋅ |𝑤|

2 ≥ 𝛾|𝑤|2.

Next, we define an associated energy norm for this problem:

For 𝑣 ∈ 𝐻1
0(𝑄), let

|||𝑣|||2ℎ ∶ = ∫
Σ𝑇
𝑣2 𝑑𝑦 +∫

Σ0
𝑣2 𝑑𝑦 + ∑

𝜏∈𝒯
∫
𝜏
∇𝑇𝑣𝐷ℎ,𝜃∇𝑣 + 𝑣2 𝑑𝑦

= ‖𝑣‖2𝐿2(Σ𝑇) + ‖𝑣‖2𝐿2(Σ0) + ∑
𝜏∈𝒯

‖
‖𝐷

1/2
ℎ,𝜃∇𝑣‖‖

2

𝐿2(𝜏)
+ ‖𝑣‖2𝐿2(𝜏)

We will show that the SUPG bilinear form 𝐵ℎ is coercive with respect to this norm, which is crucial

in order for the method to be numerically stable. In particular, the presence of the term ‖
‖𝐷

1/2
ℎ,𝜃
‖
‖ in the

definition of |||⋅||| ensures that the gradient of the error will diminish with mesh size. This has the effect

of removing the spurious oscillations present in the standard Galerkin finite element solution.

Theorem 2.9. Let 𝑝 ≥ 2. Then there is a positive constant 𝐶𝑐 such that for any 𝑣 ∈ 𝑉ℎ,

𝐵ℎ(𝑣, 𝑣) ≥ 𝐶𝑐|||𝑣|||
2
ℎ.

Proof. By definition,

𝐵ℎ(𝑣, 𝑣) = ∑
𝜏∈𝒯

∫
𝜏
∇𝑇𝑣𝐷ℎ,𝜃∇𝑣−𝜃𝜏ℎ𝑝𝜏 (𝑏 ⋅∇𝑣)∇⋅(𝐷∇𝑣)+(𝜃𝜏ℎ𝑝𝜏 (𝑐+∇⋅𝑏)−1)(𝑏 ⋅∇𝑣)𝑣+𝑐𝑣2 𝑑𝑦+∫

Σ𝑇
𝑣2 𝑑𝑦.

(2.40)

39

We will approximate each term of the integrand separately.

Let 𝜏 ∈ 𝒯 be an arbitrary simplex and define:

𝐼(𝜏) = ∫
𝜏
(∇𝑣)𝑇𝐷ℎ,𝜃∇𝑣 𝑑𝑦

𝐼𝐼(𝜏) = −∫
𝜏
𝜃𝜏ℎ𝑝𝜏 (𝑏 ⋅ ∇𝑣)∇⋅ (𝐷∇𝑣) 𝑑𝑦

𝐼𝐼𝐼(𝜏) = ∫
𝜏
(𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏) − 1)(𝑏 ⋅ ∇𝑣)𝑣 𝑑𝑦

𝐼𝑉(𝜏) = ∫
𝜏
𝑐𝑣2 𝑑𝑦

𝑉 = ∫
Σ𝑇
𝑣2 𝑑𝑦.

Then

𝐵(𝑣, 𝑣) = 𝑉 + ∑
𝜏∈𝒯

𝐼(𝜏) + 𝐼𝐼(𝜏) + 𝐼𝐼𝐼(𝜏) + 𝐼𝑉(𝜏).

First, we approximate 𝐼𝐼(𝜏) using an inverse inequality together with Young’s inequality with

epsilon and the Cauchy-Schwarz inequality.

𝐼𝐼(𝜏) = −𝜃𝜏ℎ𝑝𝜏 (∇⋅ (𝐷∇𝑣), 𝑏 ⋅ ∇𝑣)𝐿2(𝜏)

≥ −𝜃𝜏ℎ𝑝𝜏‖∇⋅ (𝐷∇𝑣)‖𝐿2(𝜏)‖𝑏 ⋅ ∇𝑣‖𝐿2(𝜏)

≥ −𝜃𝜏ℎ𝑝𝜏 ⋅ 𝐶𝜏ℎ−1𝜏 ‖𝐷∇𝑣‖𝐿2(𝜏)‖𝑏 ⋅ ∇𝑣‖𝐿2(𝜏)

≥ −𝜃𝜏ℎ𝑝𝜏 (𝐶2
𝜏ℎ−2𝜏 ‖𝐷∇𝑣‖2𝐿2(𝜏) +

1
4‖𝑏 ⋅ ∇𝑣‖

2
𝐿2(𝜏))

≥ −𝜃𝜏ℎ𝑝𝜏 (𝐶2
𝜏ℎ−2𝜏 ‖

‖𝐷1/2‖‖
2‖
‖𝐷1/2∇𝑣‖‖

2

𝐿2(𝜏)
+ 1
4‖𝑏 ⋅ ∇𝑣‖

2
𝐿2(𝜏))

= −𝜃𝜏𝐶2
𝜏ℎ𝑝−2𝜏

‖
‖𝐷1/2‖‖

2
∫
𝜏
∇𝑇𝑣𝐷∇𝑣 𝑑𝑦 − 1

4𝜃𝜏ℎ
𝑝
𝜏 ∫

𝜏
∇𝑇𝑣𝑏𝑏𝑇∇𝑣 𝑑𝑦

= ∫
𝜏
∇𝑇𝑣 (−𝜃𝜏𝐶2

𝜏ℎ𝑝−2𝜏
‖
‖𝐷1/2‖‖

2
𝐷 − 1

4𝜃𝜏ℎ
𝑝
𝜏𝑏𝑏𝑇)∇𝑣 𝑑𝑦,

40

Therefore, we have for 𝑝 ≥ 2 and sufficiently small 𝜃𝜏,

𝐼(𝜏) + 𝐼𝐼(𝜏) ≥ ∫
𝜏
∇𝑇𝑣 ((1 − 𝜃𝜏𝐶2

𝜏
‖
‖𝐷1/2‖‖

2
ℎ𝑝−2𝜏)𝐷 + 3

4𝜃𝜏ℎ
𝑝
𝜏𝑏𝑏𝑇)∇𝑣 𝑑𝑦

≥ 𝐶1∫
𝜏
∇𝑇𝑣 (𝐷 + 𝜃𝜏ℎ𝑝𝜏𝑏𝑏𝑇)∇𝑣 𝑑𝑦

= 𝐶1‖‖𝐷
1/2
ℎ,𝜃∇𝑣‖‖

2

𝐿2(𝜏)
.

We now proceed to estimate 𝐼𝐼𝐼(𝜏) + 𝐼𝑉(𝜏). Applying the product rule in reverse on the term 𝑣∇𝑣 in

𝐼𝐼𝐼(𝜏),

𝐼𝐼𝐼(𝜏) = ∫
𝜏
(𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏) − 1)(𝑏 ⋅ ∇𝑣)𝑣 𝑑𝑦

= ∫
𝜏
(𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏)𝑏 − 𝑏) ⋅ ∇ (𝑣2) 𝑑𝑦 −∫

𝜏
(𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏)𝑏 − 𝑏) ⋅ (∇𝑣)𝑣 𝑑𝑦,

and therefore

𝐼𝐼𝐼(𝜏) = 1
2 ∫𝜏

(𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏)𝑏 − 𝑏) ⋅ ∇ (𝑣2) 𝑑𝑦

= −12 ∫𝜏
∇⋅ (𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏)𝑏 − 𝑏)𝑣2 𝑑𝑦 + 1

2 ∫𝜕𝜏
(𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏) − 1)𝑣2𝑏 ⋅ 𝑛 𝑑𝑦

= 1
2 ∫𝜏

(∇⋅ 𝑏)𝑣2 𝑑𝑦 − 1
2𝜃𝜏ℎ

𝑝
𝜏 ∫

𝜏
∇⋅ (𝑐𝑏 + (∇⋅ 𝑏)𝑏)𝑣2 𝑑𝑦 + 1

2 ∫𝜕𝜏
(𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏) − 1)𝑣2𝑏 ⋅ 𝑛 𝑑𝑦.

Adding together integrals 𝐼𝐼𝐼(𝜏) and 𝐼𝑉(𝜏), and applying the assumptions that 𝑏 ∈ 𝐻2(𝑄), 𝑐 ∈ 𝐻1(𝑄),

and 𝑐(𝑦) + 1
2
∇⋅ 𝑏(𝑦) ≥ 𝛽 > 0 for all 𝑦 ∈ 𝑄,

𝐼𝐼𝐼(𝜏) + 𝐼𝑉(𝜏) =∫
𝜏
(𝑐 + 1

2∇⋅ 𝑏) 𝑣
2 𝑑𝑦 − 𝜃𝜏ℎ𝑝𝜏

2 ∫
𝜏
∇⋅ (𝑐𝑏 + (∇⋅ 𝑏)𝑏)𝑣2 𝑑𝑦

+ 1
2 ∫𝜕𝜏

(𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏) − 1)𝑣2𝑏 ⋅ 𝑛 𝑑𝑦

≥𝛽‖𝑣‖2𝐿2(𝜏) −
𝜃𝜏ℎ𝑝𝜏
2 ‖∇⋅ (𝑐𝑏 + (∇⋅ 𝑏)𝑏)‖𝐿2(𝑄)‖𝑣‖

2
𝐿2(𝜏)

+ 1
2 ∫𝜕𝜏

(𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏) − 1)𝑣2𝑏 ⋅ 𝑛 𝑑𝑦.

41

Denote the constant ‖∇⋅ (𝑐𝑏 + (∇⋅ 𝑏)𝑏)‖𝐿2(𝑄) =∶ 𝐶𝑑. Then we have shown that

𝐼𝐼𝐼(𝜏) + 𝐼𝑉(𝜏) ≥ (𝛽 − 𝜃𝜏ℎ𝑝𝜏
2 𝐶𝑑) ‖𝑣‖

2
𝐿2(𝜏) +

1
2 ∫𝜕𝜏

(𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏) − 1)𝑣2𝑏 ⋅ 𝑛 𝑑𝑦,

and so, taking 𝜃𝜏 sufficiently small (for example, 𝜃𝜏 < 𝛽 ⋅ (ℎ𝑝𝜏𝐶𝑑)−1) we conclude that

𝐼𝐼𝐼(𝜏) + 𝐼𝑉(𝜏) ≥ 𝐶2‖𝑣‖
2
𝐿2(𝜏) +

1
2 ∫𝜕𝜏

(𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏) − 1)𝑣2𝑏 ⋅ 𝑛 𝑑𝑦.

Next, we remark that if 𝜃𝜏 is chosen such that 𝜃𝜏 ≤ (2ℎ𝑝𝜏‖𝑐 + ∇⋅ 𝑏‖𝐿∞(𝑄))−1, then

1
2 ∫𝜕𝜏

(𝜃𝜏ℎ𝑝𝜏 (𝑐 + ∇⋅ 𝑏) − 1)𝑣2𝑏 ⋅ 𝑛 𝑑𝑦 ≥ −34 ∫𝜕𝜏
𝑣2𝑏 ⋅ 𝑛 𝑑𝑦.

Additionally, since 𝑣2 ∈ 𝐻1
0(𝑄) and ∇⋅ 𝑏 ∈ 𝐿2(𝑄), the internal boundary integrals above cancel:

∑
𝜏∈𝒯

∫
𝜕𝜏
𝑣2𝑏 ⋅ 𝑛 𝑑𝑦 = ∫

𝜕𝑄
𝑣2𝑏 ⋅ 𝑛 𝑑𝑦 = ∫

Σ𝑇
𝑣2 𝑑𝑦 −∫

Σ0
𝑣2 𝑑𝑦.

We remark that above equality holds because for any vector field 𝐹 ∈ 𝐻(div; 𝑄),

∑
𝜏∈𝒯

∫
𝜕𝜏
𝐹 ⋅ 𝑛 𝑑𝑦 = ∑

𝜏∈𝒯
∫
𝜏
−∇⋅ 𝐹 𝑑𝑦 = ∫

𝑄
−∇⋅ 𝐹 𝑑𝑦 = ∫

𝜕𝑄
𝐹 ⋅ 𝑛 𝑑𝑦.

Finally, the above element-wise estimates are combined into the domain-wide estimate:

𝐵(𝑣, 𝑣) = 𝑉 + ∑
𝜏∈𝒯

𝐼(𝜏) + 𝐼𝐼(𝜏) + 𝐼𝐼𝐼(𝜏) + 𝐼𝑉(𝜏)

≥ ∫
Σ𝑇
𝑣2 𝑑𝑦 + ∑

𝜏∈𝒯
𝐶1‖‖𝐷

1/2
ℎ,𝜃∇𝑣‖‖

2

𝐿2(𝜏)
+ 𝐶2‖𝑣‖

2
𝐿2(𝜏) −

3
4 ∫𝜕𝜏

𝑣2𝑏 ⋅ 𝑛 𝑑𝑦

= ∫
Σ𝑇
𝑣2 𝑑𝑦 + ∑

𝜏∈𝒯
(𝐶1‖‖𝐷

1/2
ℎ,𝜃∇𝑣‖‖

2

𝐿2(𝜏)
+ 𝐶2‖𝑣‖

2
𝐿2(𝑄)) −

3
4 ∫Σ𝑇

𝑣2 𝑑𝑦 + 3
4 ∫Σ0

𝑣2 𝑑𝑦

= 1
4‖𝑣‖

2
𝐿2(Σ𝑇) +

3
4‖𝑣‖

2
𝐿2(Σ0) + ∑

𝜏∈𝒯
𝐶1‖‖𝐷

1/2
ℎ,𝜃∇𝑣‖‖

2

𝐿2(𝜏)
+ 𝐶2‖𝑣‖

2
𝐿2(𝜏)

≥ 𝐶𝑐|||𝑣|||
2
ℎ.

Remark 2.10. In the proof of Theorem 2.9, the upwinding parameter 𝜃 had several conditions imposed

42

upon it. The conditions are:
𝜃𝜏ℎ𝑝−2𝜏 ≤ 3

4𝐶
−2
𝜏
‖
‖𝐷1/2‖‖

−2

𝜃𝜏ℎ𝑝𝜏 ≤ 𝛽‖∇⋅ (𝑐𝑏 + (∇⋅ 𝑏)𝑏)‖−1𝐿2(𝑄)

𝜃𝜏ℎ𝑝𝜏 ≤
1
2‖𝑐 + ∇⋅ 𝑏‖−1𝐿∞(𝑄)

(2.41)

where we may safely ignore conditions in which infinity appears on the right-hand side. In all fur-

ther discussion, 𝜃𝜏 is chosen to be the largest value that satisfies all three inequalities, or 1, whichever

is smaller. In particular, this means that 𝜃𝜏 is bounded uniformly from below and 𝜃𝜏ℎ𝑝𝜏 is bounded

uniformly from above for all 𝜏.

Remark 2.11. If 𝑉ℎ is the space of piece-wise linear polynomials over the triangulation 𝒯 (i.e. the case

𝑟 = 1), then Theorem 2.9 holds even with 𝑝 ≥ 1.

Proof. The only change lies in estimating the term 𝐼(𝜏) + 𝐼𝐼(𝜏). If 𝑣 is piece-wise linear, then ∇⋅ (𝐷∇𝑣)

is identically 0 and 𝐼𝐼(𝜏) vanishes. Thus 𝐼(𝜏) + 𝐼𝐼(𝜏) = ‖
‖𝐷

1/2
ℎ,𝜃∇𝑣‖‖

2

𝐿2(𝜏)
, and no assumption that 𝑝 ≥ 2 is

needed to make this estimation. The rest of the proof may be carried through unchanged.

The remainder of this chapter is devoted to analyzing the error of the SUPG finite element

method. Going forward, we will always assume that 𝑝 and 𝜃𝜏 satisfy the requirements of Theorem 2.9;

that is, 𝑝 = 2 and each 𝜃𝜏 is chosen in the manner described by Remark 2.10. A parallel analysis could

be carried out for the special case when 𝑟 = 𝑝 = 1; see the remarks in [27] for a discussion of this

scenario.

2.4 Convergence of a Stabilized Space-Time Galerkin Method

One of the key properties of the proposed SUPG scheme is good convergence with respect to

|||⋅|||ℎ. To establish this property, it is necessary to show that 𝐵ℎ is uniformly bounded with respect to

|||⋅|||ℎ. To aid in this proof, we will introduce a second norm:

|||𝑤|||2ℎ,∗ = |||𝑤|||2ℎ + ∑
𝜏∈𝒯

𝜃𝜏ℎ2𝜏‖∇⋅ (𝐷∇𝑤)‖
2
𝐿2(𝜏) + 𝜃−1𝜏 ℎ−2𝜏 ‖𝑤‖2𝐿2(𝜏), (2.42)

defined for all 𝑤 ∈ 𝐻2,1(𝒯) ∩𝐻1,0
0 (𝑄). The norm |||⋅|||ℎ,∗ is a natural cousin to the energy norm |||⋅|||ℎ. In

fact, it is the uniform bound on 𝐵ℎ(𝑢, 𝑣) for fixed 𝑢:

43

Proposition 2.12. Let 𝐵ℎ be the SUPG bilinear form with 𝑝 = 2 and 𝜃𝜏 chosen elementwise to satisfy the

inequalities in Equation 2.41. Then for all 𝑢 ∈ 𝐻2,1(𝒯) ∩ 𝐻1,0
0 (𝑄) and 𝑣 ∈ 𝑉ℎ,

||𝐵ℎ(𝑢, 𝑣)|| ≤ 𝐶𝑏|||𝑢|||ℎ,∗|||𝑣|||ℎ (2.43)

for some constant 𝐶𝑏 > 0.

Proof. The full expression for ||𝐵(𝑢, 𝑣)|| may be broken into several parts and estimated individually.

Indeed,

||𝐵ℎ(𝑢, 𝑣)|| ≤∫
Σ𝑇
|𝑢𝑣| 𝑑𝑦 + ∑

𝜏∈𝒯
∫
𝜏
||∇𝑇𝑣𝐷ℎ,𝜃∇𝑢|| 𝑑𝑦 +∫

𝜏
||𝜃𝜏ℎ2𝜏(𝑏 ⋅ ∇𝑣)∇⋅ (𝐷∇𝑢)|| 𝑑𝑦

+∫
𝜏
||(𝜃𝜏ℎ2𝜏(𝑐 + ∇⋅ 𝑏) − 1)(𝑏 ⋅ ∇𝑣)𝑣|| 𝑑𝑦 +∫

𝜏
|𝑐𝑢𝑣| 𝑑𝑦.

(2.44)

We shall bound each term of Equation 2.44 by the right-hand side of Equation 2.43, moving in order

from the first to last term.

By the Cauchy-Schwarz inequality, the first term satisfies

∫
Σ𝑇
|𝑢𝑣| 𝑑𝑦 ≤ ‖𝑢‖𝐿2(Σ𝑇)‖𝑣‖𝐿2(Σ𝑇) ≤ |||𝑢|||ℎ|||𝑣|||ℎ ≤ |||𝑢|||ℎ,∗|||𝑣|||ℎ. (2.45)

Similarly, for each 𝜏 ∈ 𝒯, the Cauchy-Schwarz inequality yields

∫
𝜏
||∇𝑇𝑣𝐷ℎ,𝜃∇𝑢|| 𝑑𝑦 ≤ ‖

‖𝐷
1/2
ℎ,𝜃∇𝑢‖‖𝐿2(𝜏)

‖
‖𝐷

1/2
ℎ,𝜃∇𝑣‖‖𝐿2(𝜏)

and therefore after applying the Cauchy-Schwarz inequality for sums,

∑
𝜏∈𝒯

∫
𝜏
||∇𝑇𝑣𝐷ℎ,𝜃∇𝑢|| 𝑑𝑦 ≤ ∑

𝜏∈𝒯

‖
‖𝐷

1/2
ℎ,𝜃∇𝑢‖‖𝐿2(𝜏)

‖
‖𝐷

1/2
ℎ,𝜃∇𝑣‖‖𝐿2(𝜏) ≤ (∑

𝜏∈𝒯

‖
‖𝐷

1/2
ℎ,𝜃∇𝑢‖‖

2

𝐿2(𝜏)
)

1
2

(∑
𝜏∈𝒯

‖
‖𝐷

1/2
ℎ,𝜃∇𝑣‖‖

2

𝐿2(𝜏)
)

1
2

≤ |||𝑢|||ℎ,∗|||𝑣|||ℎ.

(2.46)

44

For the next sub-expression, the contribution of the 𝜃𝜏ℎ2𝜏 term can be split such that

∫
𝜏
||𝜃𝜏ℎ2𝜏(𝑏 ⋅ ∇𝑣)∇⋅ (𝐷∇𝑢)|| 𝑑𝑦 ≤ ‖

‖𝜃
1/2
𝜏 ℎ𝜏∇⋅ (𝐷∇𝑢)‖‖𝐿2(𝜏)

‖
‖𝜃

1/2
𝜏 ℎ𝜏𝑏 ⋅ ∇𝑣‖‖𝐿2(𝜏).

Furthermore, by the following bound:

‖
‖𝜃

1/2
𝜏 ℎ𝜏𝑏 ⋅ ∇𝑣‖‖

2

𝐿2(𝜏)
= ∫

𝜏
𝜃𝜏ℎ2𝜏∇𝑇𝑣𝑏𝑏𝑇∇𝑣 𝑑𝑦 ≤ ∫

𝜏
∇𝑇𝑣𝐷ℎ,𝜃∇𝑣 𝑑𝑦 ≤ ‖

‖𝐷
1/2
ℎ,𝜃∇𝑣‖‖

2

𝐿2(𝜏)

and another application of the Cauchy Schwarz inequality, the third term is bounded as

∑
𝜏∈𝒯

∫
𝜏
||𝜃𝜏ℎ2𝜏(𝑏 ⋅ ∇𝑣)∇⋅ (𝐷∇𝑢)|| 𝑑𝑦 ≤ (∑

𝜏∈𝒯
𝜃𝜏ℎ2𝜏‖∇⋅ (𝐷∇𝑢)‖

2
𝐿2(𝜏))

1
2

(∑
𝜏∈𝒯

‖
‖𝐷

1/2
ℎ,𝜃∇𝑣‖‖

2

𝐿2(𝜏)
)

1
2

≤ |||𝑢|||ℎ,∗|||𝑣|||ℎ.

(2.47)

For the fourth term of Equation 2.44, we first note that since 𝜃𝜏 satisfies Equation 2.41, the

estimate ||𝜃𝜏ℎ2𝜏(𝑐 + ∇⋅ 𝑏) − 1|| ≤ 3
2
holds. Therefore

∫
𝜏
||(𝜃𝜏ℎ2𝜏(𝑐 + ∇⋅ 𝑏) − 1)(𝑏 ⋅ ∇𝑣)𝑢|| 𝑑𝑦 ≤ 3

2 ∫𝜏
|𝑏 ⋅ ∇𝑣||𝑢| 𝑑𝑦 ≤ 3

2
‖
‖𝜃

−1/2
𝜏 ℎ−1𝜏 𝑢‖‖𝐿2(𝜏)

‖
‖𝜃

1/2
𝜏 ℎ𝜏𝑏 ⋅ ∇𝑣‖‖𝐿2(𝜏)

and thus

∑
𝜏∈𝒯

∫
𝜏
||(𝜃𝜏ℎ2𝜏(𝑐 + ∇⋅ 𝑏) − 1)(𝑏 ⋅ ∇𝑣)𝑣|| 𝑑𝑦 ≤ 3

2 (∑𝜏∈𝒯
𝜃−1𝜏 ℎ−2𝜏 ‖𝑢‖2𝐿2(𝜏))

1
2

(∑
𝜏∈𝒯

𝜃𝜏ℎ2𝜏‖𝑏 ⋅ ∇𝑣‖
2
𝐿2(𝜏))

1
2

≤ 3
2|||𝑢|||ℎ,∗|||𝑣|||ℎ.

(2.48)

Finally, the last termmay be estimated in terms of the upper bound 𝑐 = max𝑄|𝑐| via the Cauchy-

Schwarz inequality once more:

∑
𝜏∈𝒯

∫
𝜏
|𝑐𝑢𝑣| 𝑑𝑦 ≤ 𝑐 ∑

𝜏∈𝒯
‖𝑢‖𝐿(𝜏)‖𝑣‖𝐿2(𝜏) ≤ 𝑐 (∑

𝜏∈𝒯
‖𝑢‖2𝐿2(𝜏))

1
2

(∑
𝜏∈𝒯

‖𝑣‖2𝐿2(𝜏))

1
2

≤ 𝑐|||𝑢|||ℎ,∗|||𝑣|||ℎ. (2.49)

Having estimated each term of ||𝐵ℎ(𝑢, 𝑣)|| separately, by combining Equations 2.45 to 2.49, the proof is

complete.

We recall from the derivation of Problem7 that𝐵ℎ and𝐿ℎwere defined so that the finite element

45

scheme is consistent with the strong form of the transient convection-diffusion equation. Thus if 𝑢 ∈

𝐻2,1
0 (𝑄) is a strong solution, then

𝐵ℎ(𝑢, 𝑣) = 𝐿ℎ(𝑣) and 𝐵ℎ(𝑢ℎ, 𝑣) = 𝐿ℎ(𝑣) for all 𝑣 ∈ 𝑉ℎ.

From this we conclude that for any 𝑣 ∈ 𝑉ℎ, 𝐵ℎ(𝑢 − 𝑢ℎ, 𝑣) = 0; that is, the finite element error 𝑢 − 𝑢ℎ
possesses Galerkin orthogonality.

Proposition 2.13. Let 𝑢 ∈ 𝐻2,1(𝒯) ∩ 𝐻1,0
0 (𝑄) be the solution to Problem 5, and let 𝑢ℎ ∈ 𝑉ℎ be the finite

element solution. Then 𝑢ℎ satisfies the best-approximation property:

|||𝑢 − 𝑢ℎ|||
2
ℎ ≤ inf

𝑣∈𝑉ℎ
(1 + 𝐶2

𝑏
𝐶2𝑐

) |||𝑢 − 𝑣|||2ℎ +
𝐶2
𝑏

𝐶2𝑐
∑
𝜏∈𝒯

𝜃𝜏ℎ2𝜏‖∇⋅ (𝐷∇(𝑢 − 𝑣))‖2𝐿2(𝜏) + 𝜃−1𝜏 ℎ−2𝜏 ‖𝑢 − 𝑣‖2𝐿2(𝜏)

≤ (1 + 𝐶2
𝑏

𝐶2𝑐
) inf
𝑣∈𝑉ℎ

|||𝑢 − 𝑣|||2ℎ,∗.
(2.50)

Proof. Let 𝑣 ∈ 𝑉ℎ be arbitrary. Since 𝑢ℎ − 𝑣 ∈ 𝑉ℎ, the coercivity of 𝐵ℎ with respect to |||⋅|||ℎ means that

|||𝑢ℎ − 𝑣|||2ℎ ≤
1
𝐶𝑐
𝐵ℎ(𝑢ℎ − 𝑣, 𝑢ℎ − 𝑣).

Since 𝐵ℎ(𝑢 − 𝑢ℎ, 𝑣) = 0 for all 𝑣 ∈ 𝑉ℎ and the form 𝐵ℎ is bounded with respect to |||⋅|||ℎ,∗, we have

𝐵ℎ(𝑢ℎ − 𝑣, 𝑢ℎ − 𝑣) = 𝐵ℎ(𝑢 − 𝑣, 𝑢ℎ − 𝑣) ≤ 𝐶𝑏|||𝑢 − 𝑣|||ℎ,∗|||𝑢ℎ − 𝑣|||ℎ, (2.51)

and therefore

|||𝑢ℎ − 𝑣|||ℎ ≤
𝐶𝑏
𝐶𝑐
|||𝑢 − 𝑣|||ℎ,∗. (2.52)

Now by definition, |||𝑤|||ℎ ≤ |||𝑤|||ℎ,∗ for any 𝑤 ∈ 𝐻2,1
0 (𝑄), so the triangle inequality applied to the left-

46

hand side of Equation 2.50 yields

|||𝑢 − 𝑢ℎ|||
2
ℎ ≤ |||𝑢 − 𝑣|||2ℎ + |||𝑢ℎ − 𝑣|||2ℎ

≤ |||𝑢 − 𝑣|||2ℎ +
𝐶2
𝑏

𝐶2𝑐
|||𝑢 − 𝑣|||2ℎ,∗

≤ (1 + 𝐶2
𝑏

𝐶2𝑐
) |||𝑢 − 𝑣|||2ℎ +

𝐶2
𝑏

𝐶2𝑐
∑
𝜏∈𝒯

𝜃𝜏ℎ2𝜏‖∇⋅ (𝐷∇(𝑢 − 𝑣))‖2𝐿2(𝜏) + 𝜃−1𝜏 ℎ−2𝜏 ‖𝑢 − 𝑣‖2𝐿2(𝜏)

= (1 + 𝐶2
𝑏

𝐶2𝑐
) |||𝑢 − 𝑣|||2ℎ,∗.

(2.53)

Since 𝑣 ∈ 𝑉ℎ was arbitrary, Equation 2.53 holds for the infimum over 𝑉ℎ as well.

Approximation by Polynomials

In order to prove an a priori error estimate for the finite element solution, we will quantify the

polynomial interpolation error in terms of the norms |||⋅|||ℎ and |||⋅|||ℎ,∗. In many cases, this is done with

the standard Lagrange interpolator (see, e.g., [9], Theorem 4.4.4 or [12], Theorems III.15.3 and III.16.1).

Definition 2.14. Let𝒯 be some triangulation of 𝑄 and 𝒱(𝒯) = {𝑦𝑖}𝑁𝑖=1 the vertex set of𝒯. In addition,

let 𝑝𝑖 be the standard 𝑟-degree Lagrange basis polynomial which is 1 on 𝑦𝑖 and 0 on all other 𝑦𝑗 ∈ 𝒱(𝒯).

Finally, let 𝑣 be a continuous function on 𝑄. The Lagrange interpolation operator

ℐℎ ∶ 𝐶(𝑄) → 𝑉ℎ

𝑤 ↦ ℐℎ𝑤
(2.54)

is defined such that

ℐℎ𝑤 =
𝑁
∑
𝑖=1

𝑤(𝑦𝑖)𝑝𝑖. (2.55)

The Lagrange interpolator maps any continuous function into the finite element space 𝑉ℎ by

evaluating the function 𝑤 at each Lagrange node. This simple construction satisfies a number of nice

properties, making it a useful tool in the error analysis of finite element methods. In particular, the

difference between a continuous function 𝑤 and its Lagrange interpolant can be quantified in terms of

the weak derivatives of 𝑤.

47

Proposition 2.15. Let 𝜏 ⊂ ℝ𝑑+1 be a (𝑑 + 1)-simplex and 𝑤 ∈ 𝐻𝑟+1(𝑄) ∩ 𝐶(𝑄). Then for 0 ≤ 𝑙 ≤ 𝑟 + 1,

|𝑤 − ℐℎ𝑤|𝐻𝑙(𝜏) ≤ 𝐶ℎ𝑟+1−𝑙𝜏 |𝑤|𝐻𝑟+1(𝜏) (2.56)

where ℎ𝜏 is the diameter of 𝜏 and 𝐶 is independent of ℎ𝜏.

The requirement that𝑤 be continuous is critical to the construction of ℐℎ, and is often satisfied

naturally by weak solutions to PDEs. The Sobolev embdedding theorem states that if Ω ⊂ ℝ𝑛, then

there is a continuous inclusion map from 𝐻𝑘(Ω) into 𝐶(Ω) when 𝑘 > 𝑛/2. In other words, when

𝑘 > 𝑛/2, every function in 𝐻𝑘(Ω) may be identified with a continuous function (and the 𝐶(Ω) norm

varies continuously with the 𝐻𝑘(Ω) norm). When PDEs are posed on domains of dimension three or

less, this means that point values are well-defined for finite element solutions in 𝐻2(Ω).

However, in four-dimensional space-timedomains, even relatively smooth functions𝑢 ∈ 𝐻2(𝑄)

are not necessarily continuous, and Lagrange interpolation is not well-defined. To remedy this, wemay

apply the theory of quasi-interpolation operators, which are a generalization of Lagrange interpolators

that do not rely on pointwise evaluations. A comprehensive treatment of polynomial interpolation is

outside the scope of this dissertation and has been well-developed elsewhere. A comparison of quasi-

interpolation operators may be found in [50]; additional background can be found in the survey [1].

In the present study, we shall apply the quasi-interpolant of Scott and Zhang [43], which is a

nodal interpolator based on local integrals, not point evaluations. Let ̃ℐℎ denote the 𝑟-degree Scott-

Zhang interpolation operator, which is well-defined for all functions 𝑤 ∈ 𝐻
1
2 (𝑄). For each 𝜏 ∈ 𝒯,

define

𝑆𝜏 =⋃{𝜏′ ∈ 𝒯 ∶ 𝜏′ ∩ 𝜏 ≠ ∅}, (2.57)

which is a neighborhood of 𝜏 containing every simplex adjacent to 𝜏. Due to the structure of the Scott-

Zhang interpolant, many element-wise estimates will be stated in terms of 𝑆𝜏. We may now state the

fundamental approximability result for this interpolant; for further details see [43].

Proposition 2.16. Let 𝜏 ⊂ ℝ𝑑+1 be a (𝑑 + 1)-simplex, 𝑙 be a non-negative integer, 𝜏 ∈ ℝ𝑑+1, and 𝑤 ∈

𝐻𝑚(𝑄), where 0 ≤ 𝑙 ≤ 𝑚 ≤ 𝑟 + 1. Then

||𝑤 − ̃ℐℎ𝑤||𝐻𝑙(𝜏) ≤ 𝐶ℎ𝑚−𝑙
𝜏 |𝑤|𝐻𝑚(𝑆𝜏). (2.58)

48

where ℎ𝜏 is the diameter of 𝜏 and 𝐶 is independent of ℎ𝑡.

By combining the best approximation result in Proposition 2.13 with the approximability result

of Proposition 2.16, we can establish an asymptotic bound on the finite element error. However, first

we must extend Proposition 2.16 to the norms |||⋅|||ℎ and |||⋅|||ℎ,∗.

Lemma 2.17. Let 𝑄 ⊂ ℝ𝑑+1 be a space-time domain, 𝒯 a shape-regular, quasi-uniform triangulation

over𝑄, and 𝑉ℎ the previously-defined finite element space of piecewise degree-𝑟 polynomials. Furthermore,

let 𝑤 ∈ 𝐻𝑚(𝑄) ∩ 𝐻2,1
0 (𝒯) and assume the polynomial degree 𝑟 satisfies 1 ≤ 𝑟 ≤ ⌊𝑚⌋. Then the 𝑟-degree

Scott-Zhang quasi-interpolation operator ̃ℐℎ satisfies

||||||𝑤 − ̃ℐℎ𝑤||||||
2
ℎ ≤ 𝐶 ∑

𝜏∈𝒯
ℎ2𝑚−2
𝜏 |𝑤|2𝐻𝑚(𝑆𝜏). (2.59)

Proof. Let 𝐸ℎ = 𝑤 − ̃ℐℎ𝑤. Each term in

|||𝐸ℎ|||
2
ℎ = ‖𝐸ℎ‖

2
𝐿2(Σ𝑇) + ‖𝐸ℎ‖

2
𝐿2(Σ0) + ∑

𝜏∈𝒯

‖
‖𝐷

1/2
ℎ,𝜃∇𝐸ℎ‖‖

2

𝐿2(𝜏)
+ ‖𝐸ℎ‖

2
𝐿2(𝜏)

may be bounded individually.

For the first term, we have

‖𝐸ℎ‖
2
𝐿2(Σ𝑇) = ∑

𝜏∈𝒯
∫
Σ𝑇∩𝜏

𝐸2ℎ 𝑑𝑦 = ∑
𝜏∈𝒯

∫
𝐹𝜏
𝐸2ℎ 𝑑𝑦 = ∑

𝜏∈𝒯
‖𝐸ℎ‖

2
𝐿2(𝐹𝜏)

where each 𝐹𝜏 is the 𝑑-face 𝐹 which is contained in Σ𝑇 (if such a face exists). Now since 𝑤 ∈ 𝐻𝑚(𝑄)

with 𝑚 > 1 and ℐℎ𝑤 ∈ 𝑉ℎ ⊂ 𝐻1(𝑄), 𝐸ℎ ∈ 𝐻1(𝑄) as well. Therefore we can apply the trace inequality

Lemma 1.25 and Proposition 2.16 to obtain

‖𝐸ℎ‖
2
𝐿2(Σ𝑇) = ∑

𝜏∈𝒯
‖𝐸ℎ‖

2
𝐿2(𝐹𝜏) ≤ ∑

𝜏∈𝒯

1
𝜎ℎ𝜏‖∇𝐸ℎ‖

2
𝐿2(𝜏) +

1 + 𝑑
𝜎 ℎ−1𝜏 ‖𝐸ℎ‖

2
𝐿2(𝜏)

≤ 𝐶1 ∑
𝜏∈𝒯

ℎ2𝑚−1
𝜏 |𝑤|2𝐻𝑚(𝑆𝜏).

The same argument can be applied to the second term, changing Σ𝑇 to Σ0, to arrive at the same bound

for the second term.

The third and fourth terms of |||𝐸ℎ|||
2
ℎmay be estimated with Proposition 2.16, using the fact that

49

𝐷ℎ,𝜃 is a bounded operator:

∑
𝜏∈𝒯

‖
‖𝐷

1/2
ℎ,𝜃∇𝐸ℎ‖‖

2

𝐿2(𝜏)
+ ‖𝐸ℎ‖

2
𝐿2(𝜏) ≤ ∑

𝜏∈𝒯

‖
‖𝐷

1/2
ℎ,𝜃
‖
‖‖∇𝐸ℎ‖

2
𝐿2(𝜏) + ‖𝐸ℎ‖

2
𝐿2(𝜏)

≤ 𝐶2 ∑
𝜏∈𝒯

ℎ2𝑚−2
𝜏 |𝑤|2𝐻𝑚(𝑆𝜏).

Combining the estimates for each of the four terms, we have

|||𝐸ℎ|||
2
ℎ ≤ (2 + ℎ𝐶1 + 𝐶2) ∑

𝜏∈𝒯
ℎ2𝑚−2
𝜏 |𝑤|2𝐻𝑚(𝑆𝜏).

Lemma 2.18. Let the assumptions of Lemma 2.17 hold. Then

∑
𝜏∈𝒯

𝜃𝜏ℎ2𝜏‖‖∇⋅ (𝐷∇(𝑤 − ̃ℐℎ𝑤))‖‖
2

𝐿2(𝜏)
+ 𝜃−1𝜏 ℎ−2𝜏 ‖

‖𝑤 − ̃ℐℎ𝑤‖‖
2

𝐿2(𝜏)
≤ 𝐶 ∑

𝜏∈𝒯
ℎ2𝑚−2
𝜏 (|𝑤|2𝐻𝑚(𝑆𝜏) + ‖𝑤‖2𝐻2(𝜏)) .

(2.60)

Proof. The second term on the left-hand side of Equation 2.60 may be bounded immediately by Propo-

sition 2.16:

∑
𝜏∈𝑇

𝜃−1𝜏 ℎ−2𝜏 ‖
‖𝑤 − ̃ℐℎ𝑤‖‖

2

𝐿2(𝜏)
≤ 𝐶 ∑

𝜏∈𝒯
ℎ2𝑚−2
𝜏 ‖𝑤‖2𝐻𝑚(𝑆𝜏), (2.61)

where 𝐶 = max𝜏 𝜃−1𝜏 . Note that this constant is uniformly bounded since 𝜃𝜏 is bounded from below

even as ℎ𝜏 → 0 (c.f. Remark 2.10).

To bound the first term, we recall that by assumption, the entries of the diffusion coefficient

matrix are in 𝐻1,0(𝒯). For 1 ≤ 𝑖, 𝑗 ≤ 𝑑, let

‖
‖𝐷𝑖𝑗

‖
‖
2

𝐻1,0(𝒯)
= ∑

𝜏∈𝒯

‖
‖𝐷𝑖𝑗

‖
‖
2

𝐿2(𝜏)
+ ‖
‖∇𝑥𝐷𝑖𝑗

‖
‖
2

𝐿2(𝜏)
.

We shall also use the shorthand

𝐶0
𝜏,𝑖𝑗 ∶= ‖

‖𝐷𝑖𝑗
‖
‖
2

𝐿2(𝜏)
and 𝐶1

𝜏,𝑖𝑗 ∶= ‖
‖∇𝑥𝐷𝑖𝑗

‖
‖
2

𝐿2(𝜏)
.

50

Under this notation, the first term satisfies

‖
‖∇⋅ (𝐷∇(𝑤 − ̃ℐℎ𝑤))‖‖

2

𝐿2(𝜏)
=

𝑑
∑
𝑖=1

‖
‖‖‖
𝜕
𝜕𝑥𝑖

𝑑
∑
𝑗=1

𝐷𝑖𝑗
𝜕
𝜕𝑥𝑗

(𝑤 − ̃ℐℎ𝑤)
‖
‖‖‖

2

𝐿2(𝜏)

≤
𝑑
∑
𝑖=1

𝑑
∑
𝑗=1

‖
‖‖(
𝜕𝐷𝑖𝑗
𝜕𝑥𝑖

) 𝜕
𝜕𝑥𝑗

(𝑤 − ̃ℐℎ𝑤) + 𝐷𝑖𝑗
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑤 − ̃ℐℎ𝑤)

‖
‖‖

2

𝐿2(𝜏)

≤
𝑑
∑
𝑖=1

𝑑
∑
𝑗=1

‖
‖‖
𝜕𝐷𝑖𝑗
𝜕𝑥𝑖

‖
‖‖

2

𝐿2(𝜏)

‖
‖‖
𝜕
𝜕𝑥𝑗

(𝑤 − ̃ℐℎ𝑤)
‖
‖‖
2

𝐿2(𝜏)
+ ‖
‖𝐷𝑖𝑗

‖
‖
2

𝐿2(𝜏)

‖
‖‖

𝜕2
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑤 − ̃ℐℎ(𝑤))
‖
‖‖

2

𝐿2(𝜏)

≤
𝑑
∑
𝑖=1

𝑑
∑
𝑗=1

𝐶1
𝜏,𝑖𝑗

‖
‖‖
𝜕
𝜕𝑥𝑗

(𝑤 − ̃ℐℎ𝑤)
‖
‖‖
2

𝐿2(𝜏)
+ 𝐶0

𝜏,𝑖𝑗
‖
‖‖

𝜕2
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑤 − ̃ℐℎ𝑤)
‖
‖‖

2

𝐿2(𝜏)
.

Proposition 2.16 may be applied to the first term of this double sum, and thus

‖
‖∇⋅ (𝐷∇(𝑤 − ̃ℐℎ𝑤))‖‖

2

𝐿2(𝜏)
≤ 𝐶1

𝜏ℎ2𝑚−2
𝜏 |𝑤|2𝐻𝑚(𝑆𝜏) +

𝑑
∑
𝑖=1

𝑑
∑
𝑗=1

𝐶0
𝜏,𝑖𝑗

‖
‖‖

𝜕2
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑤 − ̃ℐℎ𝑤)
‖
‖‖

2

𝐿2(𝜏)
(2.62)

where 𝐶1
𝜏 = ∑𝑖∑𝑗 𝐶1

𝜏,𝑖𝑗.

Finally, the last term of the above equation can be treated in two cases. If𝑚 ≥ 2, then Proposi-

tion 2.16 implies that

𝑑
∑
𝑖=1

𝑑
∑
𝑗=1

𝐶0
𝜏,𝑖𝑗

‖
‖‖

𝜕2
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑤 − ̃ℐℎ𝑤)
‖
‖‖

2

𝐿2(𝜏)
≤ 𝐶0

𝜏ℎ2𝑚−4
𝜏 |𝑤|2𝐻𝑚(𝑆𝜏). (2.63)

where 𝐶0
𝜏 = ∑𝑖∑𝑗 𝐶0

𝜏,𝑖𝑗. If 𝑚 < 2, then 𝑟 = 1 and ̃ℐℎ𝑤 is piecewise-linear. In this case, all second

derivatives of ̃ℐℎ𝑤 vanish and

𝑑
∑
𝑖=1

𝑑
∑
𝑗=1

𝐶0
𝜏,𝑖𝑗

‖
‖‖

𝜕2
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑤 − ̃ℐℎ𝑤)
‖
‖‖

2

𝐿2(𝜏)
≤

𝑑
∑
𝑖=1

𝑑
∑
𝑗=1

𝐶0
𝜏,𝑖𝑗

‖
‖‖
𝜕2𝑤
𝜕𝑥𝑖𝜕𝑥𝑗

‖
‖‖

2

𝐿2(𝜏)

≤
𝑑
∑
𝑖=1

𝑑
∑
𝑗=1

𝐶0
𝜏,𝑖𝑗|𝑤|

2
𝐻2,0(𝜏)

= 𝐶0
𝜏 |𝑤|

2
𝐻2,0(𝜏) = 𝐶0

𝜏ℎ4−2𝑚𝜏 ℎ2𝑚−4
𝜏 |𝑤|2𝐻2,0(𝜏).

(2.64)

Note that since𝑚 < 2 in this case, ℎ4−2𝑚𝜏 is uniformly bounded above by some constant 𝐶′.

Combining Equation 2.63 and Equation 2.64 and setting 𝐶″ = max(1, 𝐶′), we conclude that for

51

any𝑚 ≥ 1,

𝜃𝜏ℎ2𝜏
𝑑
∑
𝑖=1

𝑑
∑
𝑗=1

𝐶0
𝜏,𝑖𝑗

‖
‖‖

𝜕2
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑤 − ̃ℐℎ𝑤)
‖
‖‖

2

𝐿2(𝜏)
≤ 𝐶0

𝜏 𝜃𝜏𝐶″ℎ2𝑚−2
𝜏 (|𝑤|2𝐻𝑚(𝑆𝜏) + |𝑤|2𝐻2,0(𝜏))

Returning now to Equation 2.62, and summing over all 𝜏 ∈ 𝒯, we conclude

∑
𝜏∈𝒯

𝜃𝜏ℎ2𝜏‖‖∇⋅ (𝐷∇(𝑤 − ̃ℐℎ𝑤))‖‖
2

𝐿2(𝜏)
≤ ∑

𝜏∈𝒯
𝐶1
𝜏𝜃𝜏ℎ2𝑚𝜏 |𝑤|2𝐻𝑚(𝑆𝜏) + 𝐶0

𝜏 𝜃𝜏𝐶″ℎ2𝑚−2
𝜏 (|𝑤|2𝐻𝑚(𝑆𝜏) + |𝑤|2𝐻2,0(𝜏))

≤ 𝐶 ∑
𝜏∈𝒯

ℎ2𝑚−2
𝜏 (|𝑤|2𝐻𝑚(𝑆𝜏) + |𝑤|2𝐻2,0(𝜏)) ,

which completes the proof.

Having established the approximability of Scott-Zhang interpolation in terms of the norms |||⋅|||ℎ
and |||⋅|||ℎ,∗, wemay now combine these results with the best-approximation property in Proposition 2.13

to quantify the finite element error.

Theorem 2.19. Let 𝑄 ⊂ ℝ𝑑+1 be a space-time domain and 𝒯 a shape-regular, quasi-uniform triangu-

lation over 𝑄. Suppose 𝑢 ∈ 𝐻𝑚(𝑄) ∩ 𝐻2,1
0 (𝒯) is the weak solution to the transient convection-diffusion

equation (Problem 5) and 𝑢ℎ is the solution to the SUPG finite element method (Problem 7) with degree-𝑟

shape functions. Then

|||𝑢 − 𝑢ℎ|||
2
ℎ ≤ 𝐶 ∑

𝜏∈𝒯
ℎ2𝑘−2𝜏 (|𝑢|2𝐻𝑘(𝑆𝜏) + |𝑢|2𝐻2(𝜏))

where 𝑘 = min(𝑚, 𝑟 + 1) and 𝑆𝜏 is the neighborhood of 𝜏 defined in Equation 2.57 for Scott-Zhang quasi-

interpolation.

Proof. If𝑚 < 𝑟 + 1, let ̃ℐℎ be the ⌊𝑚⌋-degree Scott-Zhang interpolator, otherwise let ̃ℐℎ be the 𝑟-degree

Scott-Zhang interpolator. In both cases, Lemma 2.17 and Lemma 2.18 apply (with “𝑚” in the statement

of the lemmas changed to “𝑘” as defined in the theorem). Since ̃ℐℎ𝑢 ∈ 𝑉ℎ, Proposition 2.13 implies

|||𝑢 − 𝑢ℎ|||
2
ℎ ≤ inf

𝑣∈𝑉ℎ
(1 + 𝐶2

𝑏
𝐶2𝑐

) |||𝑢 − 𝑣|||2ℎ +
𝐶2
𝑏

𝐶2𝑐
∑
𝜏∈𝒯

𝜃𝜏ℎ2𝜏‖∇⋅ (𝐷∇(𝑢 − 𝑣))‖2𝐿2(𝜏) + 𝜃−1𝜏 ℎ−2𝜏 ‖𝑢 − 𝑣‖2𝐿2(𝜏)

≤ (1 + 𝐶2
𝑏

𝐶2𝑐
) ||||||𝑢 − ̃ℐℎ𝑢||||||

2
ℎ +

𝐶2
𝑏

𝐶2𝑐
∑
𝜏∈𝒯

𝜃𝜏ℎ2𝜏‖‖∇⋅ (𝐷∇(𝑢 − ̃ℐℎ𝑢))‖‖
2

𝐿2(𝜏)
+ 𝜃−1𝜏 ℎ−2𝜏 ‖

‖𝑢 − ̃ℐℎ𝑢‖‖
2

𝐿2(𝜏)
.

Applying to Lemma 2.17 and Lemma 2.18 to the above expression proves the theorem.

52

By separating out the constitutive terms of |||⋅|||ℎ, Theorem 2.19 provides estimates on several

different kinds of error. Expanding the term |||𝑢 − 𝑢ℎ|||
2
ℎ on the left-hand side of Theorem 2.19,

‖𝑢 − 𝑢ℎ‖
2
𝐿2(Σ𝑇)

∑
𝜏∈𝒯

‖𝑢 − 𝑢ℎ‖
2
𝐿2(𝜏)

𝜅 ∑
𝜏∈𝒯

‖∇𝑥(𝑢 − 𝑢ℎ)‖
2
𝐿2(𝜏)

∑
𝜏∈𝒯

𝜃𝜏ℎ2𝜏‖𝑏 ⋅ ∇(𝑢 − 𝑢ℎ)‖
2
𝐿2(𝜏)

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

≤ |||𝑢 − 𝑢ℎ|||
2
ℎ ≤ 𝐶 ∑

𝜏∈𝒯
ℎ2𝑘−2𝜏 (|𝑢|2𝐻𝑘(𝑆𝜏) + |𝑢|2𝐻2(𝜏)) . (2.65)

Thus the finite element error in 𝐿2(Σ𝑇) and 𝐿2(𝒯) is 𝑂(ℎ𝑘−1) which is slightly less than the optimal

decay rate of 𝑂(ℎ𝑘). However, error in the spatial gradient is 𝑂(ℎ𝑘−1), which is optimal. Finally, error

of the gradient in the space-time streamline direction is 𝑂(ℎ𝑘−2). In particular, this means that the

solution 𝑢 must be in 𝐻2(𝑄) in order to achieve asymptotic decay of the derivative in the streamline

direction.

As previously mentioned, in the special case of piecewise linear elements, it is possible to con-

struct a similar SUPG scheme where the coefficient on the upwinded term is 𝜃𝜏ℎ𝜏, not 𝜃𝜏ℎ2𝜏. Under this

scheme, the convergence of the streamline derivatives is 𝑂(𝑘 − 3
2
), which is better than the estimate in

Equation 2.65 for 𝑢 ∈ 𝐻𝑘(𝑄)with 𝑘 < 2. In particular, this means that when 3
2
< 𝑘 ≤ 2, the streamline

error ‖𝑏 ⋅ ∇(𝑢 − 𝑢ℎ)‖𝐿2(𝜏) will converge when using linear elements but may not converge for higher

order elements. For a description of this alternative scheme, see [27].

2.5 Numerical Experiments

As ameans of confirming the theory laid out in the prior sections, numerical experiments were

conducted with an implementation of the space-time SUPGmethod. When the research for this disser-

tation began, no publicly-shared finite element codes treated the case of four-dimensional unstructured

meshes. To remedy this, we developed a research code tailored to this dissertation which solves space-

time parabolic equations in domains of dimension ≤ 4. We remark that in the recent series [27–29] the

authors describe an implementation of space-time methods with the MFEM[33] library; however, this

support does not appear to be included in the library documentation at present.

53

Our solver relies on the Eigen [17] library for basic linear algebra operations and uses the

Multigraph [2] solver for sparsematrix solves. We create our own implementation of four-dimensional

unstructured meshes by building a mesh data structure on top of the Combinatorial Map package of

the CGAL [47] library.

In each of the following examples, we used piecewise-linear elements on uniformly refined

meshes to study the asymptotic convergence of the method. All space-time meshes were constructed

using the procedures of Chapter 3. The linear system is solved with Multigraph, which uses a compos-

ite step biconjugate gradient method with a 2-level preconditioner based on ILU factorization. In each

test we choose the drop tolerance for the ILU factorizations to be 10−8; since we were not concerned

with time-to-solution, no effort was made to optimize the drop tolerance. All numerical experiments

were run in serial on a single compute node of the Comet supercomputer at the San Diego Supercom-

puter Center.

As a first example, we study the heat equation in three-dimensional space-time on the box

domain [−1, 1] × [−1, 1] × [0, 2]. We consider two functions:

𝑢1(𝑥, 𝑦, 𝑡) = cos(𝑥)𝑒−𝑡

𝑢2(𝑥, 𝑦, 𝑡) = cos(𝑥) + 𝑦2 + 𝑡

and solve the model problem where 𝐷̃ = 𝐼, 𝑏̃ = 0, 𝑐 = 0, and 𝑓 is chosen such that 𝑢1 or 𝑢2 is the true

solution. Boundary conditions on Σ0 and Σ are imposed which are in agreement with the true solution.

Figure 2.1 shows the convergence of the error in 𝐿2(𝑄) as the number of degrees of freedom

increases. In the case of 𝑢1, we observe an𝑂(ℎ) error decay rate as the mesh size decreases, particularly

for ℎ ≤ 0.1. The decay rate of the 𝐿2(𝑄) error for 𝑢2 is steeper than𝑂(ℎ), although not quite𝑂(ℎ2). This

may indicate that the mesh size is too coarse for the error to be governed by the asymptotic decay rates.

However, due to the serial implementation of our solver, we were not able to test problem sizes with

greater than 2.5M degrees of freedom.

It is also possible that the |||⋅|||ℎ error is dominated by the error of the derivatives, which decay

like𝑂(ℎ), but the 𝐿2 error (shown above) actually decays at a faster rate. An immediate extension of the

present research would be to further disect the various errors that comprise the |||⋅|||ℎ error; for instance,

measuring the streamline and crosswind derivatives directly.

54

Figure 2.1: Convergence of finite element error in 𝐿2(𝑄) for the solution of the heat equation on a three-
dimensional space-time domain.

We obtain similar results for tests in four-dimensional space-time. Taking again the computa-

tional domain to be a box,𝑄 = [1, 3]×[1, 3]×[1, 3]×[0, 2], we define twomoremanufactured solutions.

Let
𝑢3(𝑥, 𝑦, 𝑧, 𝑡) = 𝑥2.5𝑦 + 𝑡 cos(𝑧)

𝑢4(𝑥, 𝑦, 𝑧, 𝑡) = 𝑦𝑡1.25 + 𝑥𝑧1.75

As before, we set 𝐷̃ = 𝐼, 𝑏̃ = 0, 𝑐 = 0, and manufacture the problem data to ensure that 𝑢3 and 𝑢4
are the true solutions. We remark that functions 𝑢3 and 𝑢4 are both smooth on the domain 𝑄, since

the spatial origin is excluded. At present, our implementation of the space-time finite element method

cannot handle functions with singularities. This limits our ability to study the convergence of 𝑢4 near

the origin.

In this test, both problems display 𝑂(ℎ2) convergence with respect to the mesh size. Due to the

huge memory footprint necessary to maintain a four-dimensional mesh (both degrees of freedom and

adjaceny information), these tests are further constrained inmesh size. A pentatopemesh with average

edge length of just 0.1 requires 100,000 degrees of freedom in order to cover 𝑄! These numerical tests

underscore the double-edged nature of space-timemethods, as discussed in [19]: these schemes require

an increased overhead to set up, which is only compensated for when running in parallel.

It is clear that larger-scale numerical experiments will require a parallel implementation of our

space-time solver, especially for four-dimensional problems. However, these tests confirm the theoret-

ical error estimates that were established earlier in this chapter.

55

Figure 2.2: Convergence of finite element error in 𝐿2(𝑄) for the solution of the heat equation on a four-
dimensional space-time domain.

Chapter 2, in part, is currently being prepared for submission for publication of the material.

The dissertation author was the sole investigator and author of this material.

56

Chapter 3

Four-Dimensional Space-TimeMeshes

In one way or another, every numerical algorithm that approximates the solution of a time-

dependent PDE relies on a discretization of the space-time domain 𝑄 = Ω × [0, 𝑇]. However, this

discretization is often implicit, serving aminor role in the overall description of themethod. Very often,

numerical methods maintain two separate discretizations: a 𝑑-dimensional tesselation of the spatial

domainΩ and a one-dimensional subdivision of the time interval [0, 𝑇]. These two discretizations are,

of course, the spatial mesh and the time steps which are ubiquitous in time-stepping algorithms.

By maintaining discretizations of space and time separately, time-stepping methods avoid the

need to handle a (𝑑 + 1)-dimensional discretization of 𝑄 directly. For this reason, four-dimensional

discretizations have been largely unstudied in the finite element literature. As we have discussed, how-

ever, a unified treatment of space and time means that high-dimensional meshes are unavoidable.

As we shall see in the present chapter, once the work has been done to set up four-dimensional

unstructured meshes, there are a variety of benefits immediately at our fingertips. In the language of

time-stepping methods, these includes generalizations of moving meshes and adaptive-time stepping,

as well as time-dependent refinement and coarsening. What is paid for in abstraction is made up in

flexibility.

The two major contributions of this chapter are a method for creating (𝑑 + 1)-dimensional

space-time meshes from 𝑑-dimensional spatial meshes (𝑑 ≤ 3) and a description of simplex bisection

in four dimensions, which is adapted from Stevenson’s method[45] for space-time meshes. Our mesh

generation procedure is one of only a very limited numberwhich appear in the literature, andwe believe

that it holds several advantanges over existing methods.

57

Before describing our proposed method for space-time mesh generation, it will be helpful to

discuss a number of different structures that space-time meshes can possess. Some of these, like the

implicit discretizations used in time-stepping methods, are highly structured. Our goal is to create a

simplex mesh with as little imposed structure as possible, which will allow for the greatest level of

freedom to refine and/or coarsen the mesh.

Types of Space-TimeMeshes

A classification of space-timemesh elements was proposed by Behr[13], which delineates three

types of space-time meshes (see Figure 3.1 for an illustration). In order of decreasing structure, these

are:

1. Flat Space-Time Meshes (FST): FST meshes are defined by a spatial discretization and a series of

time intervals [𝑡𝑖, 𝑡𝑖+1], which are referred to as “time slabs.” The space-time elements in an FST

mesh are tensor product-type elements; for a spatial element 𝜏 ∈ ℝ𝑑, an associated space-time

element is

𝑃𝜏,𝑖 = {(𝑥, 𝑡) ∶ 𝑥 ∈ 𝜏, 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1]} = 𝜏 × [𝑡𝑖, 𝑡𝑖+1]

Classical time-stepping methods implicitly use FST meshes as a discretization of the space-time

domain, where continuity is enforced within time slabs, but not across time slabs.

2. Simplex Space-Time Meshes (SST): As the name implies, SST meshes are comprised of simplex-

type elements, in contrast to the tensor product elements in FST meshes. SST meshes can be

thought of as refinements of FST meshes, where each time slab [𝑡𝑖, 𝑡𝑖+1] has been tesselated into

a collection of simplices. A defining feature of SST meshes is that the simplex elements do not

cross time slab boundaries, and therefore there is an alignment of the simplex elements to the

times 𝑡𝑖. We emphasize that SST meshes can contain new vertices with time coordinates in the

interval (𝑡𝑖, 𝑡𝑖+1), which allows for local temporal refinement.

3. Unstructured Space-Time Meshes (UST): In a UST mesh, no distinction is made between the time

and spatial dimensions, and the space-time discretization is a conforming collection of (𝑑 + 1)-

simplices in ℝ𝑑+1. In this setting, there are no time slabs and the boundaries of these simplex

elements are not aligned in any particular way.

58

x

t

t1

t2

t3

t4

Figure 3.1: Types of space-time meshes associated to a 1D spatial domain. From left to right: Flat
Space-Time, Simplex Space-Time, Unstructured Space-Time.

Each of the space-time mesh formats described above have strengths and weaknesses that af-

fect their application to different kinds of problems. FST meshes, for instance, are often the simplest to

implement. Due to the tensor product structure of FST elements, methods employing FST discretiza-

tions can maintain a 𝑑-dimensional spatial discretization and a 1-dimensional temporal discretization

separately. This avoids the need to manage (𝑑 + 1)-dimensional elements explicitly. In practice, many

time-stepping methods can be formulated in terms of FST discretization. This ability to separate space

and time discretizations in FSTmeshes, together with the widespread usage of time-stepping methods,

is one reason that unified treatments of space-time discretizations have received relatively little study

until recently.

Due to their structure with respect to the time dimension, FST meshes are well-suited to prob-

lems which evolve discontinuously in time. For instance, in applications of fracture mechanics with

multiple prescribed fractures at different crack points, it is often desirable to allow for discontinuities

at each time of interest.

On the other hand, FST meshes are severely limited by their inability to handle local temporal

refinements. Because of the tensor product structure of FST elements, the temporal resolution ∆𝑖 =

𝑡𝑖+1 − 𝑡𝑖 is global with respect to space; that is, the height of every element within each time slab is the

same. In many numerical simulations of physical processes, there is some (often moving) region of the

domain that requires a high time resolution to achieve a desired accuracy, while the rest of the domain

can be modeled with a lower resolution. In the FST paradigm, the smallest time increment ∆𝑖 must be

applied to every spatial element 𝜏 no matter its location. This frequently generates space-time meshes

59

with far more elements than is necessary.

In the finite element literature, one technique for achieving local temporal refinement is adap-

tive time-stepping, in which the time evolution of different spatial elements can be performed on dif-

ferent temporal scales. Successful usage of adaptive time-stepping can dramatically reduce the com-

putational work of a solver based on time steps, but the implementation and analyses of such methods

can often be difficult to transfer from one application to another.

A major strength of SST discretizations is the ability to achieve local temporal refinement in

a natural way; that is, without relying on any specific equation or spatial discretization. Since every

time slab in an SST mesh is tesselated with simplex elements, the mesh elements within each time slab

can be refined adaptively to vary mesh resolution in both time and space simultaneously. The cost of

this flexibility, however, is that the elements in SST meshes are truly spatiotemporal - they cannot be

described by independent spatial and temporal discretizations. Thus the primary trade-off in moving

from an FST to a SST mesh is the addition of local space-time adaptivity at the expense of a higher-

dimensional representation.

Simplex Space-Timemethods can also be considered as a generalization of moving-meshmeth-

ods. In moving-mesh methods, a time-stepping strategy is employed, but the spatial position of mesh

nodes can differ at each time step, essentially “moving themesh” as the time 𝑡 increases. In SSTmeshes,

the location of mesh vertices lying on the hyperplanes 𝑡 = 𝑡𝑖 and 𝑡 = 𝑡𝑖+1 need not match; in effect, the

spatial position of degrees of freedom “move” from time 𝑡𝑖 to 𝑡𝑖+1. It should also be noted that the total

number of mesh nodes lying on the hyperplanes 𝑡 = 𝑡𝑖 and 𝑡𝑖+1 need not be the same, which allows

the overall spatial mesh size (and even mesh topology) to change from time 𝑡𝑖 to 𝑡𝑖+1. While moving

mesh methods can be combined with ℎ-refinement schemes to accommodate the insertion and dele-

tion of nodes, creating a robust decision criterion to guide the ℎ-refinement in concert with the mesh

movement poses a number of challenges [16].

While the difference between FST and SST meshes is evident from the shapes of their con-

stituent elements, the difference between SST and UST meshes is more subtle, and even somewhat

philosophical. Since UST meshes are any simplicial subdivision of a space-time domain, there are no

time slabs to speak of, and therefore no analogy to time-stepping methods. UST meshes are most ap-

propriate for problemswhere space-time elements need not be aligned to temporal boundaries, or those

temporal boundaries are not known ahead of time.

60

Figure 3.2: Examples of SST (left) andUST (right)meshes containing a subset of closely-packed vertices.
The bold horizontal lines at left represent time slab boundaries.

The primary benefit of UST discretizations is that no restrictions are imposed on the temporal

coarseness of the mesh. In SST meshes, by contrast, no space-time element can span more than one

time slab. This can be a notable constraint if, for instance, several short time slabs are specified, but the

solution is smooth in the majority of the spatial domain during these times (by “short” time slabs we

mean ∆𝑖 is small).

As an example, consider an earthquake propagation simulation based on a kinematic source

model (see, e.g., [39, 46, 53]). In these applications, the nucleation (essentially, the “start”) of an earth-

quake is described as a tight cluster of prescribed movements at pre-specified times and locations. As a

result, mesh nodes near the nucleation site and timemust be aligned to these tightly-spaced spatiotem-

poral points, even though the vast majority of the domain (away from the seismic fault) is in a constant

state. If an SST mesh were used to enforce time steps at each of these points, the temporal resolution

far from the nucleation would be very fine, since space-time elements cannot cross the boundaries of

the prescribed time slabs. However, a UST mesh for the same application could contain very coarse

elements away from the nucleation zone, which taper to a fine, regular mesh in the immediate vicinity

of nucleation. See Figure 3.2 for an illustration of these two scenarios.

Of course, the problematic SST mesh in Figure 3.2 could be avoided if the time slabs were not

aligned to the prescribed times of the sourcemodel; it is equally possible to enclose the entire nucleation

region in a large time slab and then prescribe a locally-refined mesh in the interior in the samemanner

as a UST mesh. This brings us to the “philosophical” distinction between SST and UST meshes. As

a limiting case, UST meshes are just SST meshes where there is only one time slab (that is, the slab

between the initial and final time).

While UST meshes may be considered to be a special subclass of SST meshes, it is the author’s

61

view that there should be some distinction made betweenmeshes which bear no global dependence on

a sequence of “notable times” associated to the underlying application, and those which do. As such,

we consider USTmeshes to be discretizations in which no attempt is made to align simplex boundaries

to specific times.1 By contrast, SSTmeshes are characterized by elements which possess some structure

in the time dimension that is not present in the spatial dimensions.

In this dissertation, we will consider space-time meshes with simplicial elements. Our presen-

tation will require a set of “time steps” 𝑡0, 𝑡1, … for the construction of a coarse space-time mesh only,

and these time steps may be chosen almost arbitrarily. Therefore, the initial coarse mesh construction

described in this chapter yields an SST mesh. The given time steps will be ignored after the construc-

tion of the initial mesh, at which point we investigate somemethods for producing a truly unstructured

space-time mesh.

3.1 Construction of Space-TimeMeshes

Some of the first work to address unstructured space-timemesh generation arose in the context

of spacetime-discontinuous Galerkin (SDG) methods. In 2000, Ungör and Scheffer proposed the Tent

Pitcher algorithm [49], which is an advancing front method for producing (𝑑 + 1)-dimensional meshes

from 𝑑-dimensional meshes. At the time of its introduction, mesh generation based on Tent Pitcher

only handled problems in two spatial dimensions. In 2012, Mont[36] extended the algorithm to three

spatial dimensions; nevertheless, their methodology avoids treating four-dimensional mesh elements

explicitly.

Space-time meshes described explicitly in terms of four-dimensional elements were explored

briefly in the 2004 thesis of Sathe[42], but no systematicmethod for producing four-dimensionalmeshes

was presented. In their work, the space-time refinement schemewas dubbed ”Enhanced-Discretization

Space-Time Technique - Single Mesh,” or EDSTT-SM.

In 2008, Behr[5] introduced a method for creating simplex space-time meshes, starting from a

given spatialmesh. Behr’smethod is based on an extrusion of the spatialmesh into a series of time slabs,

which are then refined into simplices by adding new vertices and performing a Delaunay triangulation.
1A reasonable exception to this rule aremeshes which are partitioned and distributed to parallel processors along temporal

boundaries. In this setting, themesh on each processor is unstructured; furthermore, the partition along temporal boundaries
is an implementation artifact, not an a priori time constraint.

62

Another method for constructing four-dimensional meshes is to create a simple, coarse initial

mesh and then adaptively refine the mesh until a given criteria is met. An example of this method is

demonstrated in the 2019 thesis of Caplan[11], where the hypercube is initially triangulated with Kuhn

simplices and then adaptively refined with Caplan’s adaptive mesher (which is the primary subject of

the thesis).

The mesh construction procedure proposed in this dissertation is most closely related to that

of Behr. The present method was developed independently, with the connection to Behr’s construction

being discovered after the initial research was complete. In addition, there are a few key differences

between these methods, which we highlight here. The primary difference in methodology comes from

the process of incorporating local temporal refinement into the space-time mesh. In both methods, the

construction begins by extruding a spatial mesh into a sequence of space-time prism elements. At this

point, the method we present here immediately subdivides each prism into simplicial elements in a

deterministic way. Temporal refinement is achieved in a post-processing step, using a method based on

element bisection. In contrast, the method of Behr adds new vertices to the space-time prism elements

to achieve temporal refinement. These prisms are then independently triangulated via a Delaunay

criterion; however, in order to avoid producing nonconforming meshes, this method requires a vertex

perturbation and sliver removal process to be carried out alongside the Delaunay triangulation.

The method contained in the present work is characterized by its simplicity - the subdivision of

prism elements into simplices is deterministic, combinatorial in nature, always produces conforming

meshes, and does not require additional operations like vertex perturbation and sliver elimination. It

may be argued that Behr’s method has the benefit of controlling temporal refinement within the mesh

generation process. However, a similar result can be achieved with our method by immediately follow-

ing the coarse mesh generation with a sequence of element bisections.

Finally, we remark that on an even more general level, these two methods approach temporal

refinement in different ways. We say that ourmethod utilizes element-based refinement in the sense that

a particular simplex element is specified for bisection, and the mesh is adapted from there. In contrast,

we say that Behr’s approach uses vertex-based refinement, in which a particular vertex is selected for

insertion into the mesh, and a series of additional elements are created in order maintain consistency.

One benefit of element-based refinement is a greater control over the similarity classes of elements

produced by refinement. The element bisection method used in this dissertation has been shown to

63

produce a finite number of similarity classes, which gives us a priori guarantees on the shape regu-

larity of the adapted mesh (see Section 3.2 for an expanded discussion). In contrast, the vertex-based

refinement utilized in [5] does not make explicit reference to a coarse triangulation, and conclusions

regarding shape regularity of the resulting mesh are not apparent. Although Behr directly addresses

the problem of sliver removal for extremely degenerate elements, bounds on the shape regularity of

non-degenerate elements remains an open problem.

Overview of the Method

The construction of a space-time triangulation from a spatial triangulation will be achieved

through a sequence of two smaller operations: Extrusion and Subdivision. These steps are described in

a general sense below and will be defined explicitly in the next section.

In the extrusion step, a 𝑑-dimensional triangulationwill be converted into a (𝑑+1)-dimensional

cell complex. The resulting cell complex will consist of (𝑑 + 1)-dimensional prisms, where the base of

each prism is congruent to a 𝑑-simplex belonging to the original triangulation. These prisms may be

viewed as a kind of tensor product element, where each prism is the tensor product of a simplex with

an interval. In the case of two spatial dimensions, this procedure “extrudes” a triangle into a triangular

prism. The extrusion step can be repeated arbitrarily many times to produce a sequence of prisms

where the top base of one prism is the bottom base of the next. In two dimensions, this would appear

as a “tower” comprised of triangular prisms stacked on top of each other.

In the subdivision step, each (𝑑 + 1)-dimensional prism constructed during extrusion is par-

titioned into 𝑑 + 1 simplices of dimension 𝑑 + 1. Due to the regular nature of simplex prisms, this

construction can always be carried out in such a way that the resulting set of (𝑑 + 1)-simplices is con-

forming (that is, the set of (𝑑+1)-simplices forms a triangulation). At the end of the subdivision step, a

space-time triangulation has been produced which covers the space-time cylinder 𝑄 = Ω × [0, 𝑇]. For

an illustration of the extrusion-subdivision process applied to a single triangle, see Figure 3.3.

The main goal of this section is to define a procedure for the construction of four-dimensional

space-time meshes which correspond to a given three-dimensional spatial mesh. However, much of

the following discussion is equally valid for space-time meshes constructed over 𝑑-dimensional spatial

domains. When appropriate, we will state definitions and basic properties for 𝑑-dimensional spatial

64

Figure 3.3: Left: Triangle in a two-dimensional mesh. Center: Extruded space-time triangular prism.
Right: Subdivision of space-time prism into tetrahedra.

domains, where 𝑑 is arbitrary. This is done to emphasize extensibility of this theory to even higher

dimensions; however, the special case of 𝑑 = 3 remains the primary object of study, and we shall not

prove every result for arbitrary dimension 𝑑.

3.1.1 Basic Operations and Notation

As a matter of notation, when 𝑝 ∈ ℝ𝑑 is some point in Euclidean space, we will denote its 𝑗𝑡ℎ

coordinate by 𝑝(𝑗). The canonical basis vectors are denoted 𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑑.

It is often useful to identify points in ℝ𝑑 with points in ℝ𝑑+1, where the (𝑑 + 1)𝑡ℎ coordinate is

constant. Informally, this considers ℝ𝑑 as a hyperplane in ℝ𝑑+1 which is orthogonal to the canonical

basis vector 𝑒𝑑+1. Formally speaking, we make this identification via an embedding 𝜙𝑟 ∶ ℝ𝑑 ↪ ℝ𝑑+1,

where

𝜙𝑟 (𝑝(1), 𝑝(2), … , 𝑝(𝑑)) = (𝑝(1), 𝑝(2), … , 𝑝(𝑑), 𝑟) .

When 𝑑 = 2, the parameter 𝑟 can be thought of as the “height” of a 2D object lying in ℝ3, where the

third dimension is considered as the vertical direction.

This embedding may be extended to subsets of ℝ𝑑 as well. For any 𝐷 ⊂ ℝ𝑑, we define

𝜙𝑟(𝐷) = {𝜙𝑟(𝑝) ∶ 𝑝 ∈ 𝐷}. (3.1)

Although trivial to prove, we will also record a few properties about this embedding so that they may

be referred to later. All properties follow immediately from the definition of 𝜙𝑟(𝑝).

Lemma 3.1. Let 𝛼, 𝛽, 𝑟, 𝑠 ∈ ℝ and 𝑝, 𝑞 ∈ ℝ𝑑. Then

65

i) 𝜙𝑟(𝑝) + 𝜙𝑠(𝑞) = 𝜙𝑟+𝑠(𝑝 + 𝑞)

ii) 𝛼𝜙𝑟(𝑝) = 𝜙𝛼𝑟(𝛼𝑝)

iii) If 𝜙𝑟(𝑝) = 𝜙𝑠(𝑞), then 𝑟 = 𝑠 and 𝑝 = 𝑞.

We remark that when considering polytopes embedded in Euclidean space, there are two “di-

mensionalities” at play. The first is the dimension of the polytope itself (see Section 1.1.1); in the fol-

lowing discussion we denote the polytope dimension by 𝑘. The second type of dimensionality is the

ambient dimension, or the dimension of the Euclidean space in which the polytope is embedded; we

denote this dimension by 𝑑. Thus a triangle in ℝ3 would have polytope dimension 𝑘 = 2 and ambient

dimension 𝑑 = 3.

Additionally, throughout this chapter we will adopt the notation of Definition 1.15 for the de-

scription of convex polytopes, which are the convex hull of their extremal points. Let us briefly describe

an example of this notation to illustrate its usage. Suppose that 𝑝1, 𝑝2, 𝑝3, 𝑝4 ∈ ℝ3 form the vertices of

a tetrahedron 𝜏. Then 𝜏 = {{𝑝1, 𝑝2, 𝑝3, 𝑝4}}. Suppose now that we would like to enumerate all of the

triangular faces of 𝜏. Each triangular face is the convex hull of three vertices of 𝜏. Thus the triangular

faces of 𝜏 are

{{𝑝1, 𝑝2, 𝑝3}}, {{𝑝1, 𝑝2, 𝑝4}}, {{𝑝1, 𝑝3, 𝑝4}}, and {{𝑝2, 𝑝3, 𝑝4}}.

Since every face of a convex polytope is itself a convex polytope, the above notation provides a conve-

nient mechanism for describing operations on polytopes in a purely combinatorial way.

3.1.2 Three-Dimensional Constructions

In order to gain some geometric intuition behind the four-dimensional operations described in

Section 3.1.3, we shall describe first the process of constructing space-time meshes in three dimensions

(corresponding to two spatial dimensions). Due to our natural inability to understand four-dimensional

geometry in a spatial sense, a methodical treatment of four-dimensional operations must rely on some-

thing other than spatial reasoning. In the following sections, we will rely on two general techniques to

make reasoning in four dimensions more tractable.

The first of these is combinatorics. In a simplex, every face can be represented uniquely by

the vertices it contains, meaning that operations on faces can considered to be operations on combina-

66

tions of vertices. In addition, adjacency relations among faces can be deduced from the sets of vertices

bounding those faces. This means that almost any geometric operation on simplices is actually a purely

combinatorial operation, with no dependence on the ambient space ℝ4.

The second technique we will employ is dimension reduction. As much as possible, it will be

beneficial to define operations on 𝑑-dimensional objects in terms of operations on (𝑑 − 1)-dimensional

objects. For example, we will show in the following section that the triangulation of a triangular

prism requires each rectangular face to be triangulated. Thus, an operation (triangulation) on a three-

dimensional object can be broken into sub-operations on two-dimensional objects. By emphasizing this

structure, we can then make an analogy to four-dimensional geometry. As it turns out, the triangula-

tion of a four-dimensional prism is executed in part by a series of triangulations of three-dimensional

prisms.

There is an extraordinary amount that can be said about three-dimensional geometry and tetra-

hedral meshes. We make no attempt to be exhaustive here; instead, our intent is solely to lay a foun-

dation for the four-dimensional constructions defined in Section 3.1.3. Namely, we shall walk through

the construction of tetrahedra via the extrusion of triangles and subdivision of the resulting prisms.

For the remainder of Section 3.1.2, let Ω ⊂ ℝ2 be a 2D domain with polygonal boundary and

𝒯 = {𝜏𝑗}𝑀𝑗=1 a triangulation that covers Ω. We define the set 𝒱(𝒯) = {𝑣𝑘}𝑁𝑘=1 to be the collection of

vertices of the triangulation.

Extrusion into 3D Space-Time

For each triangle 𝜏𝑗, the 2D extrusion operation on a triangle creates an associated triangular prism

𝑃𝑗 which has 𝜏𝑗 as one of its bases. Recalling the definition of the convex hull (denoted Conv) from

Definition 1.9, we define the (𝑟, 𝑠)-extrusion of 𝜏 ∈ 𝒯 to be

Extr𝑟,𝑠 ∶ ℝ2 → ℝ3

𝜏 ↦ Conv(𝜙𝑟(𝜏), 𝜙𝑠(𝜏))
(3.2)

In otherwords, the (𝑟, 𝑠)-extrusion of a triangle 𝜏 is the set of all points between two copies of 𝜏 embedded

in ℝ3 at heights 𝑧 = 𝑟 and 𝑧 = 𝑠. Clearly, 𝑃 ∶= Extr𝑟,𝑠(𝜏) is a triangular prism.

A quick remark on the face structure of triangular prisms is in order, since this structure will

67

be important to the study of four-dimensional prisms as well. Consider an arbitrary triangle 𝜏 =

{{𝑝1, 𝑝2, 𝑝3}} and let 𝑃 be the prism formed by extruding 𝜏. That is, let

𝑃 = Extr𝑟,𝑠 ({{𝑝1, 𝑝2, 𝑝3}}) = {{𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3}}. (3.3)

There are two kinds of 2-faces of 𝑃: rectangular faces and triangular faces. Written in vertex notation,

these are
{{𝑎1, 𝑎2, 𝑏1, 𝑏2}} {{𝑎1, 𝑎2, 𝑎3}}

{{𝑎1, 𝑎3, 𝑏1, 𝑏3}} {{𝑏1, 𝑏2, 𝑏3}}

{{𝑎2, 𝑎3, 𝑏2, 𝑏3}}

(3.4)

Now, each triangular face is simply an embedded copy of the extruded triangle:

{{𝑎1, 𝑎2, 𝑎3}} = 𝜙𝑟(𝜏), {{𝑏1, 𝑏2, 𝑏3}} = 𝜙𝑠(𝜏). (3.5)

Furthermore, each rectangular 2-face of 𝑃 is the extrusion of a 1-face of 𝜏; for example

{{𝑎1, 𝑎2, 𝑏1, 𝑏2}} = Extr𝑟,𝑠 ({{𝑝1, 𝑝2}}). (3.6)

Thus all of the 2-faces of 𝑃 can be described explicitly in terms of the original 2-simplex 𝜏: They

are either an embedded copy of 𝜏 or the extrusion of a 1-face of 𝜏. We shall see shortly that every 3-face

of a four-dimensional prism can (in the sameway) be described solely in terms of the original 3-simplex.

It is worth noting that the above discussion can be carried out for the 1-faces of 𝑃 as well. Every

edge (1-face) of 𝑃 is either a vertically shifted edge of the underlying triangle or the extrusion of a 0-face

of the underlying triangle (see Figure 3.4).

In particular, this means that if 𝜏1 and 𝜏2 are two triangles that intersect on edge 𝑒, then the

intersection of Extr𝑟,𝑠(𝜏1) and Extr𝑟,𝑠(𝜏2) is Extr𝑟,𝑠(𝑒). We conclude the rather plain fact that when two

triangles intersect along a 𝑗-face, their corresponding extrusions intersect along a 𝑗 + 1 face. However,

this observation will be important in the four-dimensional case, when the geometry is more difficult to

visualize.

In order to create a space-time mesh from the triangular mesh 𝒯, each triangle in the spatial

mesh will be repeatedly extruded into a collection of different prisms, each stacked one atop another.

68

𝐴3

𝐵3

𝐶3

𝐷3

𝐸3

𝐹3

𝐴5𝐵5
𝐶5𝐷4 𝐸4𝐹4

𝐺1

𝐻1

𝐼1

𝐽1

𝐾1

𝐿1

𝐺2𝐻2𝐼2

𝐽2

𝐾2

𝐿2

Figure 3.4: Relationship between faces of a triangle and its corresponding triangular prism. At top,
from left to right: faces of the underlying triangle of dimension 2,1,0. At bottom, the extrusions of each
face at top. Note that the extrusion of each face from the triangle at top is a face of the prism at bottom.

Let

𝑊 = {𝑤0, 𝑤1, … , 𝑤𝑁𝑤} where 𝑤𝑖−1 < 𝑤𝑖 for 1 ≤ 𝑖 ≤ 𝑁𝑤. (3.7)

be a sequence of real numbers. We call each 𝑤𝑖 a time slice, but the values of each 𝑤𝑖 need not take on

any physical significance.

Next, we define an extrusion operation on the entire spatial triangulation 𝒯, such that each

triangle is extruded into multiple prisms with heights given by𝑊 .

Definition 3.2. Let 𝒯 = {𝜏𝑗}𝑀𝑗=1 be a two-dimensional triangulation and 𝑊 = {𝑤𝑖}𝑁𝑤
𝑖=0 a sequence of

time slices. The extrusion of𝒯 over𝑊 is defined to be

Extr𝑊 (𝒯) = {𝑃𝑖𝑗 ∶ 1 ≤ 𝑖 ≤ 𝑁𝑤, 1 ≤ 𝑗 ≤ 𝑀},

where 𝑃𝑖𝑗 = Extr𝑤𝑖−1,𝑤𝑖(𝜏𝑗)
(3.8)

As would be expected from an operation that increases the problem dimension, this construc-

tion notably increases the size of the geometric discretization. Let𝑁0(𝒯) be the number of vertices in𝒯,

𝑁1(𝒯) the number of edges, and 𝑁2(𝒯) the number of triangular faces (in general 𝑁𝑗(𝒞) is the number

of 𝑗-dimensional cells in the complex 𝒞).

Furthermore, let

𝒫 = Extr𝑊 (𝒯) (3.9)

69

Figure 3.5: Illustration of a triangular mesh in two dimensions, and its corresponding prism mesh
in three dimensions. Due to the conforming nature of the triangular mesh, the prism mesh is also
conforming.

be the space-time prism mesh produced by extruding 𝒯 over𝑊 . Then:

𝑁0(𝒫) = (𝑁𝑤 + 1) ⋅ 𝑁0(𝒯)

𝑁1(𝒫) = (𝑁𝑤 + 1) ⋅ 𝑁1(𝒯) + 𝑁𝑤 ⋅ 𝑁0(𝒯)

𝑁2(𝒫) = (𝑁𝑤 + 1) ⋅ 𝑁2(𝒯) + 𝑁𝑤 ⋅ 𝑁1(𝒯)

𝑁3(𝒫) = 𝑁𝑤 ⋅ 𝑁2(𝒯)

Subdivision of Triangular Prisms

The output from the extrusion operation is a collection 𝒫 of triangular prisms which covers

the space-time domain 𝑄. Next, in order to produce a conforming mesh of tetrahedra which covers

𝑄, each prism is subdivided into tetrahedra. In order transform the full collection of prisms into a

conforming triangulation, the subdivision of each prism must be carried out such that neighboring

prisms are divided in a matching way.

There are exactly six ways to subdivide a triangular prism into tetrahedra without introducing

new vertices, and all six divide the prism into 3 tetrahedra. Let us consider a general triangular prism

𝑃, where the vertices of the lower base are {𝑎1, 𝑎2, 𝑎3}, the vertices of the upper base are {𝑏1, 𝑏2, 𝑏3}, and

for each 𝑖, 𝑏𝑖 lies directly above 𝑎𝑖.

One triangulation of 𝑃 is then given by the three tetrahedra:

{{𝑎1, 𝑏1, 𝑏2, 𝑏3}}, {{𝑎1, 𝑎2, 𝑏2, 𝑏3}}, {{𝑎1, 𝑎2, 𝑎3, 𝑏3}} (3.10)

70

a1

a2

a3

b1

b2

b3

b1
b2

b3

a1

a2

a3

Figure 3.6: One possible subdivision of a triangular prism into tetrahedra. Note that each tetrahedron
contains exactly one vertical edge.

which is illustrated in Figure 3.6. One crucial feature of this triangulation is that each tetrahedron

contains exactly one vertical edge connecting𝑎𝑖𝑏𝑖 for some 𝑖. In fact, every triangulation of the triangular

prism has this property, and all six triangulations are equivalent up to a permutation of the vertex labels.

The problem of prism subdivision is the following: for each triangular prism element, which

of the six subdivision methods should be chosen such that the resulting collection of tetrahedra form a

conforming triangulation?

To guarantee conformity, we define the following process. First, let𝒱(𝒯) be the vertex set of𝒯,

and let 𝒱(𝒯) = {𝑣𝑗}𝑁𝑗=1 be some ordering on the vertices. Next, let 𝒱(𝒫) be the vertex set of the prism

mesh 𝒫 = Extr𝑊 (𝒯). Since 𝒫 was produced by the extrusion operation of the previous section, we

know that every vertex in 𝒫 is some shifted copy of a vertex in𝒯. Thus for every 𝑣 ∈ 𝒱(𝒫), 𝑣 = 𝜙𝑤𝑖(𝑣𝑗)

for some 0 ≤ 𝑖 ≤ 𝑁𝑤 and 1 ≤ 𝑗 ≤ 𝑁. This naturally establishes the indexing

𝑣𝑖𝑁+𝑗 = 𝜙𝑤𝑖(𝑣𝑗), (3.11)

which is uniquely determined for every vertex in 𝒱(𝒫). For any two vertices 𝑎 and 𝑏, we say that

𝑎 ≺ 𝑏 if and only if 𝑎 = 𝑣𝑘, 𝑏 = 𝑣𝑘′ , and 𝑘 < 𝑘′. (3.12)

Note that under this ordering, the index of every vertex differs by 𝑁 from those vertices immediately

above and below them.

71

Now, for each prism 𝑃 ∈ 𝒫, let

𝑃 = {{𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3}} where 𝑎1 ≺ 𝑎2 ≺ 𝑎3 ≺ 𝑏1 ≺ 𝑏2 ≺ 𝑏3. (3.13)

By the definition of ≺, this means that bottom base is {{𝑎1, 𝑎2, 𝑎3}}, the top base is {{𝑏1, 𝑏2, 𝑏3}}, and

each 𝑏𝑖 vertex lies directly above 𝑎𝑖. To subdivide 𝑃, we always choose the triangulation specified in

Equation 3.10, applied to this particular ordering of the vertices.

The collection of tetrahedra obtained by this process is always conforming. Suppose 𝑃 and 𝑃′

are two prism which share a common 2-face. If the common face is a triangle, then the subdivisions

of 𝑃 and 𝑃′ will be conforming because this triangular face is never subdivided (see Figure 3.6). If the

common face is a rectangle, the situation is slightly move complex, since the rectangular face may be

triangulated in two different ways. We will see that under our vertex ordering and subdivision method,

a matching triangulation is always independently chosen by both adjacent prisms.

As a consequence of the vertex ordering in Equation 3.13 and the subdivision given in Equa-

tion 3.10, every new tetrahedron has the form {{𝑎1, … , 𝑎𝑖, 𝑏𝑖, … , 𝑏3}} for some 𝑖 = 1, 2, 3. In particular,

this means that for a tetrahedron 𝜒,

If 𝑎𝑖, 𝑏𝑖 ∈ 𝜒, then 𝑎𝑗 ∉ 𝜒 for 𝑗 > 𝑖 and 𝑏𝑗 ∉ 𝜒 for 𝑗 < 𝑖. (3.14)

Next, let

𝑃 = {{𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3}} and 𝑃′ = {{𝑎1, 𝑎2, 𝑎′3, 𝑏1, 𝑏2, 𝑏′3}}, (3.15)

where each 𝑏𝑖 is directly above the corresponding 𝑎𝑖. Without loss of generality we may assume that

𝑎1 ≺ 𝑎2 (and thus 𝑏1 ≺ 𝑏2); however, the ordering of 𝑎3 and 𝑎′3 with respect to the other vertices is not

assumed.

The intersection of 𝑃 and 𝑃′ is the rectangular face {{𝑎1, 𝑎2, 𝑏1, 𝑏2}}. Let 𝜒 ⊂ 𝑃 be a new tetra-

hedron produced by subdividing 𝑃 which has a triangular face contained in {{𝑎1, 𝑎2, 𝑏1, 𝑏2}}. By the

condition in Equation 3.14, this triangular face must be either {{𝑎1, 𝑏1, 𝑏2}} or {{𝑎1, 𝑎2, 𝑏2}}. By the same

logic, if 𝜒′ ⊂ 𝑃′ is a new tetrahedron which has a triangular face on the intersection, that triangular

face must be either {{𝑎1, 𝑏1, 𝑏2}} or {{𝑎1, 𝑎2, 𝑏2}}.

72

Table 3.1: Summary of the type and quantity of lower-dimensional faces in a pentatope.

Dimension Type Count
0 Point 5
1 Segment 10
2 Triangle 10
3 Tetrahedron 5

Therefore, any two new tetrahedra formed during subdivision of neighboring prisms either

overlap on a triangular face (on which they always coincide) or on a rectangular face. If they inter-

sect on a rectangular face, then the triangular faces of the tetrahedra contained within this rectangle

either coincide, or they meet along the diagonal 𝑎1𝑏2. In any case, their intersection is conforming.

We have shown that by imposing a global ordering on vertices, each prism can be subdivided

independently (and indeed, in parallel) from the rest, and the resulting collection of tetrahedra will

always be conforming. No post-processing checks or adjustments are needed.

3.1.3 Four-Dimensional Constructions

Basic Four-Dimensional Geometry

The four-dimensional simplex has been given a variety of names throughout the literaturewith-

out any one term becoming standard. We will refer to such simplices as pentatopes, following the trend

of recent papers in space-time finite element analysis (e.g. [5, 30, 38]). Other names for this shape

include pentachoron, 5-cell, and pentahedroid.

The pentatope, being a simplex, possesses all of the properties of simplices laid out in Sec-

tion 1.1.1. In particular, a pentatope is the convex hull of 5 affinely independent points. In this sec-

tion, we will always assume that a pentatope is embedded in ℝ4 (non-degenerate pentatopes may be

embedded in higher dimensional space, but not lower).

We recall from Section 1.1.1 that the boundary of any 𝑘-simplex is the union of its (𝑘−1)-faces.

In the case of a pentatope, each 3-face is a tetrahedron. Therefore, the boundary of a pentatope is the

union of five tetrahedra (embedded inℝ4). In general, the number of 𝑙-faces in a 𝑘-simplex is (𝑘+1
𝑙+1

); see

Table 3.1 for a complete summary of the proper faces of the pentatope.

Another four-dimensional object that plays a central role in the construction of space-time

meshes is the simplex prism. The 𝑘-simplex prism is a generalization of the triangular prism to other

73

Figure 3.7: The five tetrahedral faces of a pentatope.

dimensions.

Definition 3.3. Let 𝐾 ⊂ ℝ𝑑 be a 𝑘-simplex, and let 𝑣 ∈ ℝ𝑑 be a direction which is orthogonal to every

face of 𝐾 (0-simplices are considered to be orthogonal to all vectors in ℝ𝑑). If 𝑇𝑣 is a translation in the

direction 𝑣, then the polytope

𝑃 = Conv (𝐾, 𝑇𝑣(𝐾)) (3.16)

is a 𝑘-simplex prism (over K). Furthermore, 𝐾 is called the bottom base of 𝑃, 𝑇𝑣(𝐾) is called the top base

of 𝑃, and the remaining 𝑘-faces are called the lateral faces of 𝑃.

Remark 3.4. The requirement that the translation direction 𝑣 be orthogonal to the simplex faces ensures

that the prism is a right prism. For instance, a skew triangular prism can be described by Equation 3.16

with 𝑘 = 2 and 𝑣 not orthogonal to the edges of the bottom base.

Remark 3.5. Clearly, any 𝑘-simplex prism may be described by its top and bottom bases. Since these

bases are simplices, they in turn may be described by their vertices. As such, we can describe any 𝑘-

simplex prism as the convex hull of its vertices. Writing

𝑃 = {{𝑎1, 𝑎2, … , 𝑎𝑘+1, 𝑏1, 𝑏2, … , 𝑏𝑘+1}} (3.17)

we will always take this to mean that the bottom simplex base is {{𝑎1, 𝑎2, … , 𝑎𝑘+1}}, the top simplex base

is {{𝑏1, 𝑏2, … , 𝑏𝑘+1}}, and 𝑏𝑖 is the image of 𝑎𝑖 under the translation 𝑇𝑣 defining the prism.

An important property of 𝑘-simplex prisms is that every lateral face is a (𝑘 − 1)-simplex prism.

This can be proven in a variety of ways; see, [14], Chapter 6 for a treatment of simplex prisms via point

74

Table 3.2: Summary of the type and quantity of lower-dimensional faces in a tetrahedral prism.

Dimension Type Count Dimension Type Count
0 Point 8 2 Rectangle 6
1 Segment 16 3 Tetrahedron 2
2 Triangle 8 3 Tri. Prism 4

configurations. Figure 3.8 exhibits 𝑘-simplex prisms for 𝑘 = 1, 2, 3, 4. It is clear that the lateral faces of

the triangular (2-simplex) prism are rectangles, which are 1-simplex prisms. Likewise, the lateral faces

of the rectangle (1-simplex prism) are segments, which can be thought of as 0-simplex prisms.

In addition, every lateral face of a 𝑘-simplex prism corresponds to a (𝑘−1)-face of the base of the

prism. To illustrate this point, consider the 2-simplex prism (i.e. triangular prism). Every lateral face of

the triangular prism is a rectangle, or 1-simplex prism. Each of these 1-simplex prisms is a prism over a

particular 1-simplex. Indeed, the base of each rectangular face is a line segment forming the perimeter

of the triangular base. In this way, we may identify each lateral (rectangular) face with its base, which

must be a (𝑘 − 1)-face of the base of the original prism. We summarize the above discussion by stating

Proposition 3.6. Let 𝑃 be a 𝑘-simplex prism and 𝐾 a base of 𝑃. Then

i) Every lateral 𝑘-face of 𝑃 is a (𝑘 − 1)-simplex prism

ii) If 𝐾′ is a (𝑘 − 1)-face of 𝐾, then one of the lateral faces of 𝑃 is a (𝑘 − 1)-simplex prism over 𝐾′.

iii) 𝑃 has 𝑘 + 1 lateral faces

The remainder of this chapter will consider the manipulation of pentatopes (4-simplices) and

tetrahedral prisms (3-simplex prisms). As such, it will be useful to record a few specific facts about

tetrahedral prisms.

By Proposition 3.6, every tetrahedral prism has six 3-faces: two tetrahedra and four triangular

prisms. In addition, for every triangular-prismatic face, the upper and lower triangular faces coincide

with a pair of triangular faces on the upper and lower tetrahedral bases. Furthermore, the above char-

acterization of 3-faces implies that if two tetrahedral prisms intersect in a 3-dimensional region, their

intersection is either a tetrahedron or a triangular prism. A full accounting of the various faces in a

tetrahedral prism is given in Table 3.2.

75

‘

Figure 3.8: 𝑘-Simplex prisms. From left to right: 𝑘 = 0, 1, 2, 3. In each case, the bottom base is high-
lighted.

Figure 3.9: Exploded view of a tetrahedral prism. Every triangular prism is a lateral face of the tetra-
hedral prism. Furthermore, every triangular face on the top or bottom tetrahedron coincides with a
triangular face of a triangular prism.

Extrusion into 4D Space-Time

The construction of a four-dimensional space-time mesh from a three-dimensional spatial

mesh proceeds analogously to the construction from two- to three-dimensional space. In the three-

dimensional case, the extrusion step created a mesh of triangular prisms from the spatial triangular

mesh. In the four-dimensional case, a mesh of tetrahedral prisms will be created from the spatial tetra-

hedral mesh.

We define the (𝑟, 𝑠)-extrusion of a convex set 𝑆 ⊂ ℝ𝑑 to be

Extr𝑟,𝑠 ∶ ℝ𝑑 → ℝ𝑑+1

𝑆 ↦ Conv(𝜙𝑟(𝑆), 𝜙𝑠(𝑆))
(3.18)

Remark 3.7. If 𝑆 is a 𝑘-simplex, then 𝑃 = Extr𝑟,𝑠(𝑆) is 𝑘-simplex prism. To check this fact, we simply

verify that 𝜙(𝑆) is a translation of 𝜙𝑟(𝑆) in the direction of 𝑒𝑑+1, which is orthogonal to any face of 𝜙𝑟(𝑆)

76

(since 𝜙𝑟(𝑆) is contained in a hyperplane orthogonal to 𝑒𝑑+1).

In contrast to the definition of Extr𝑟,𝑠 for the special case of 𝑑 = 2 (see Equation 3.2), this general

definition applies to arbitrary dimension 𝑑 and arbitrary convex subsets 𝑆 ⊂ ℝ𝑑. This is of practical

importance for the construction of space-time meshes, since it will often be necessary to consider the

extrusion of individual faces of an element. In particular, when a convex a set 𝑆 can be decomposed

into a collection of convex subsets 𝑆1, … , 𝑆𝑛, we can relate the extrusion of the set 𝑆 to the extrusion of

its constituent subsets.

Proposition 3.8. Let 𝑆 ⊂ ℝ𝑑 be a convex set, and

𝑆 =
𝑛

⋃
𝑗=1

𝑆𝑗,

where each 𝑆𝑗 ⊂ 𝑆 is also convex. Then

i) The extrusion of 𝑆 is the extrusion of its constituent sets; that is,

Extr𝑟,𝑠(𝑆) =
𝑛

⋃
𝑗=1

Extr𝑟,𝑠(𝑆𝑗). (3.19)

ii) The intersection of the extrusions of two constituent sets is the extrusion of their intersection:

Extr𝑟,𝑠(𝑆𝑖) ∩ Extr𝑟,𝑠(𝑆𝑗) = Extr𝑟,𝑠(𝑆𝑖 ∩ 𝑆𝑗) (3.20)

Proof. To prove (i), first consider an arbitrary 𝑝 ∈ Extr𝑟,𝑠(𝑆). By Lemma 1.10, 𝑝 = 𝛼𝑝1 + (1 − 𝛼)𝑝2,

where 𝑝1 ∈ 𝜙𝑟(𝑆), 𝑝2 ∈ 𝜙𝑠(𝑆), and 0 ≤ 𝛼 ≤ 1. Now, since 𝑝1 ∈ 𝜙𝑟(𝑆) and 𝑝2 ∈ 𝜙𝑠(𝑆), there must be

points 𝑞1, 𝑞2 ∈ 𝑆 such that 𝑝1 = 𝜙𝑟(𝑞1) and 𝑝2 = 𝜙𝑠(𝑞2).

77

Since 𝑆 is convex, the point 𝑞 = 𝛼𝑞1 + (1 − 𝛼)𝑞2 ∈ 𝑆. By the definition of 𝜙, we have

𝛼𝑝1 + (1 − 𝛼)𝑝2 = 𝛼𝜙𝑟(𝑞1) + (1 − 𝛼)𝜙𝑠(𝑞2) = 𝜙𝛼𝑟(𝛼𝑞1) + 𝜙(1−𝛼)𝑠((1 − 𝛼)𝑞2)

= 𝜙𝛼𝑟+(1−𝛼)𝑠(𝛼𝑞1 + (1 − 𝛼)𝑞2)

= 𝜙𝛼𝑟+(1−𝛼)𝑠(𝑞)

= 𝜙𝛼𝑟+(1−𝛼)𝑠(𝛼𝑞 + (1 − 𝛼)𝑞)

= 𝛼𝜙𝑟(𝑞) + (1 − 𝛼)𝜙𝑠(𝑞).

(3.21)

Since 𝑞 ∈ 𝑆, it follows that 𝑞 ∈ 𝑆𝑗 for some 𝑗. Therefore Equation 3.21 implies that 𝑝 ∈ Extr𝑟,𝑠(𝑆𝑗) ⊂

⋃𝑛
1 Extr𝑟,𝑠(𝑆𝑗), establishing set inclusion from left to right.

Showing the reverse inclusion is much simpler. Suppose 𝑝 ∈ ⋃𝑛
1 Extr𝑟,𝑠(𝑆𝑗). Then there is

some 𝑗 such that 𝑝 ∈ Extr𝑟,𝑠(𝑆𝑗). Hence 𝑝 = 𝛼𝑝1 + (1 − 𝛼)𝑝2 by Lemma 1.10, where 𝑝1 ∈ 𝜙𝑟(𝑆𝑗) and

𝑝2 ∈ 𝜙𝑠(𝑆𝑗). Since 𝑆𝑗 ⊂ 𝑆, this immediately implies that 𝑝 ∈ Extr𝑟,𝑠(𝑆).

To prove (ii), we begin by considering an arbitrary element 𝑝 ∈ Extr𝑟,𝑠(𝑆𝑖) ∩ Extr𝑟,𝑠(𝑆𝑗). There-

fore for some 𝑝1 ∈ 𝜙𝑟(𝑆𝑖), 𝑝2 ∈ 𝜙𝑠(𝑆𝑖), 𝑝′1 ∈ 𝜙𝑟(𝑆𝑗), 𝑝′2 ∈ 𝜙𝑠(𝑆𝑗) and 0 ≤ 𝛼, 𝛼′ ≤ 1, we have

𝑝 = 𝛼𝑝1 + (1 − 𝛼)𝑝2 = 𝛼𝜙𝑟(𝑞1) + (1 − 𝛼)𝜙𝑠(𝑞2)

𝑝 = 𝛼′𝑝′1 + (1 − 𝛼′)𝑝′2 = 𝛼′𝜙𝑟(𝑞′1) + (1 − 𝛼′)𝜙𝑠(𝑞′2)
(3.22)

where 𝑞1, 𝑞2 ∈ 𝑆𝑖 and 𝑞′1, 𝑞′2 ∈ 𝑆𝑗 are chosen in the same manner as in the proof of part (i). Setting the

two right hand sides of Equation 3.22 equal to each other and considering only the (𝑑+1)𝑡ℎ coordinate

of each expression, we obtain the relation

𝛼𝑟 + (1 − 𝛼)𝑠 = 𝛼′𝑟 + (1 − 𝛼′)𝑠. (3.23)

Simplifying this relation (assuming 𝑟 ≠ 𝑠) yields the condition that 𝛼 = 𝛼′.

Now, applying the same argument as in the proof of the first inclusion of part (i), there must be

points 𝑞𝑖 ∈ 𝑆𝑖 and 𝑞𝑗 ∈ 𝑆𝑗 such that

𝑝 = 𝛼𝜙𝑟(𝑞𝑖) + (1 − 𝛼)𝜙𝑠(𝑞𝑖) = 𝛼′𝜙𝑟(𝑞𝑗) + (1 − 𝛼′)𝜙𝑠(𝑞𝑗). (3.24)

78

Rearranging terms and using the fact that 𝛼 = 𝛼′, we deduce

𝛼𝜙0(𝑞𝑖 − 𝑞𝑗) = (𝛼 − 1)𝜙0(𝑞𝑖 − 𝑞𝑗).

Thus 𝛼(𝑞𝑖 − 𝑞𝑗) = (𝛼 − 1)(𝑞𝑖 − 𝑞𝑗), and consequently 𝑞𝑖 = 𝑞𝑗. Therefore, 𝑞𝑖, 𝑞𝑗 ∈ 𝑆𝑖 ∩ 𝑆𝑗, and by

Equation 3.24 it follows that 𝑝 ∈ Extr𝑟,𝑠(𝑆𝑖 ∩ 𝑆𝑗), thus establishing set inclusion in part (ii) from left to

right.

To show set inclusion in (ii) from right to left, suppose that 𝑝 ∈ Extr𝑟,𝑠(𝑆𝑖 ∩ 𝑆𝑗). Then 𝑝 =

𝛼𝜙𝑟(𝑞1) + (1 − 𝛼)𝜙𝑠(𝑞2), where 𝑞1, 𝑞2 ∈ 𝑆𝑖 ∩ 𝑆𝑗. This immediately implies that 𝑝 ∈ Extr𝑟,𝑠(𝑆𝑖) and

𝑝 ∈ Extr𝑟,𝑠(𝑆𝑗), which establishes the set inclusion in (ii) from right to left, closing the proof.

When a collection of elements in a spatial mesh are extruded into space-time prisms, Propo-

sition 3.8 can be used to describe properties of the space-time mesh in terms of its underlying spatial

mesh. For instance, if 𝜏𝑖 and 𝜏𝑗 are two elements of the spatial mesh and 𝑃𝑖 = Extr𝑟,𝑠(𝜏𝑖), 𝑃𝑗 = Extr𝑟,𝑠(𝜏𝑗)

are their corresponding space-time prisms, then any interface between 𝑃𝑖 and 𝑃𝑗 will have the structure

Extr𝑟,𝑠(𝜏𝑖 ∩ 𝜏𝑗). In particular, this means that if 𝜏𝑖 and 𝜏𝑗 intersect along an edge, 𝑃𝑖 and 𝑃𝑗 will intersect

along a rectangle. If the interface between 𝜏𝑖 and 𝜏𝑗 is a triangular face, the interface between 𝑃𝑖 and 𝑃𝑗
will be a triangular prism.

We have now established the necessary preliminaries to define the extrusion of a tetrahedral

mesh into a four-dimensional prism mesh.

Definition 3.9. Let𝒯 = {𝜏𝑗}𝑁𝑗=1 be a triangulation of a spatial domainΩ ⊂ ℝ3 with polytopal boundary.

Additionally, let𝑊 = {𝑤𝑖}𝑁𝑤
𝑖=0 be a series of time steps, where 𝑤0 < 𝑤1 < … < 𝑤𝑁𝑤 . The extrusion of 𝒯

over𝑊 is

Extr𝑊 (𝒯) = {𝑃𝑖𝑗 ∶ 1 ≤ 𝑖 ≤ 𝑁2, 1 ≤ 𝑗 ≤ 𝑁},

where 𝑃𝑖𝑗 = Extr𝑤𝑖−1,𝑤𝑖(𝜏𝑗)
(3.25)

In other words, the space-time extrusion of 𝒯 over the time steps 𝑊 is the collection of all

4D tetrahedral prisms formed by extruding the spatial tetrahedra at different times. Let 𝒫 = Extr𝑊 (𝒯)

denote thismesh of prisms. Then each𝑃𝑖𝑗 ∈ 𝒫 is a tetrahedral prismwith several known characteristics.

Firstly, each 𝑃𝑖𝑗 has upper and lower bases which are congruent to 𝜏𝑗. In addition, 𝑃𝑖𝑗 is bounded in the

79

fourth dimension by the planes 𝑒4 = 𝑤𝑖−1 and 𝑒4 = 𝑤𝑖; put another way, every point 𝑝 ∈ 𝑃𝑖𝑗 satisfies

𝑤𝑖−1 ≤ 𝑝(4) ≤ 𝑤𝑖.

The adjacency relations among the tetrahedral prisms can be deduced from the adjacency rela-

tions on the spatial triangulation. The four lateral faces of a tetrahedral prism 𝑃𝑖𝑗 are shared with four

other tetrahedral prisms (unless 𝑃𝑖𝑗 is near the boundary). Furthermore, if 𝜏𝑗′ shares a triangular face

with 𝜏𝑗, then 𝑃𝑖𝑗 is adjacent to 𝑃𝑖𝑗′ and their interface is a triangular prism. In addition, for 𝑖 ≠ 1, 𝑁𝑤−1,

each prism 𝑃𝑖𝑗 is adjacent “above” and “below” to the prisms 𝑃𝑖+1,𝑗 and 𝑃𝑖−1,𝑗, and their interface is a

tetrahedron.

Prism Subdivision

The goal of the prism subdivision step is to create a conforming mesh of pentatopes from the

space-time prism mesh in a way that does not introduce any new vertices. To do this we will first

describe how any 𝑘-simplex prism can be subdivided into a collection of 𝑘 + 1 (𝑘 + 1)-simplices. If

this subdivion is applied to every prism in the mesh produced during the extrusion step, the result will

be a collection of 𝑘-simplices which covers the entire space-time domain. However, this collection of

simplices may not form a conforming triangulation. To address this issue, we introduce simple criterion

which ensure that the prism subdivision produces a conforming mesh.

In Section 3.1.2, we described the six methods to subdivide a triangular prism and then showed

how to choose a particular method for each triangular prism so that the resulting tetrahedral mesh

is conforming. When dealing with tetrahedral prisms, the situation is slighly more complex, but the

methodology for choosing conforming subdivisions is the same.

The set of all possible subdivisions of a 𝑘-simplex prism can be precisely described. The fol-

lowing proposition is a restatement of Proposition 6.2.3 in [14] (using the notational conventions of

Remark 3.5 and Definition 1.15).

Proposition 3.10. Let 𝑃 = {{𝑎1, … , 𝑎𝑘+1, 𝑏1, … , 𝑏𝑘+1}} be a 𝑘-simplex prism, and let 𝜎 be a permutation

on {1, 2, … , 𝑘 + 1}. Then the collection of simplices

𝒞𝜍 ∶= {𝜏𝜍,𝑖 = {{𝑎𝜍(1), … , 𝑎𝜍(𝑖), 𝑏𝜍(𝑖), … , 𝑏𝜍(𝑘+1)}} ∶ 1 ≤ 𝑖 ≤ 𝑘 + 1} (3.26)

is a triangulation of 𝑃. Furthermore, every triangulation of 𝑃 has the form of Equation 3.26, and there are

80

Table 3.3: List of all possible triangulations of a triangular prism, enumerated by parameters 𝑖 and 𝜎
from Proposition 3.10.

𝝈 = 𝐞 𝝈 = (𝟐 𝟑) 𝝈 = (𝟏 𝟐) 𝝈 = (𝟏 𝟑 𝟐) 𝝈 = (𝟏 𝟐 𝟑) 𝝈 = (𝟏 𝟑)
𝑖 = 1 𝑎1𝑏1𝑏2𝑏3 𝑎1𝑏1𝑏3𝑏2 𝑎2𝑏2𝑏1𝑏3 𝑎2𝑏2𝑏3𝑏1 𝑎3𝑏3𝑏1𝑏2 𝑎3𝑏3𝑏2𝑏1
𝑖 = 2 𝑎1𝑎2𝑏2𝑏3 𝑎1𝑎3𝑏3𝑏2 𝑎2𝑎1𝑏1𝑏3 𝑎2𝑎3𝑏3𝑏1 𝑎3𝑎1𝑏1𝑏2 𝑎3𝑎2𝑏2𝑏1
𝑖 = 3 𝑎1𝑎2𝑎3𝑏3 𝑎1𝑎3𝑎2𝑏2 𝑎2𝑎1𝑎3𝑏3 𝑎2𝑎3𝑎1𝑏1 𝑎3𝑎1𝑎2𝑏2 𝑎3𝑎2𝑎1𝑏1

precisely (𝑘 + 1)! distinct triangulations of 𝑃.

Proof. See [14], Proposition 6.2.3.

Proposition 3.10 states that, up to a (consistent) reordering of vertices, there is only one way to

triangulate a simplex prism 𝑃. By “consistent reordering” we mean a permutation of vertices within

each base, such that the same permutation is applied to the top and bottom bases simultaneously. In

addition, the above proposition shows that every (𝑘+1)-simplex in a triangulation of 𝑃 contains exactly

one pair corresponding vertices in the top and bottom bases. This is analogous to the property we

observed for triangular prisms, in which each of tetrahedra produced by subdivision contained exactly

one vertical edge.

This structure can be verified in the case of triangular prisms which were analyzed in the pre-

vious section. Table 3.3 lists each of the six possible triangulations of the triangular prism, organized

by the permutation 𝜎 in Proposition 3.10. Examining the column labeled “𝜎 = 𝑒,” we note that for each

tetrahedron, there is exactly one index 𝑖 such that both 𝑎𝑖 and 𝑏𝑖 are contained in the vertex set. Upon

further examination of Table 3.3, we note that each column (and therefore each triangulation) is the

same as the first column with the appropriate permutation applied to the vertex labels.

We shall not enumerate the 4! = 24 possible triangulations of the tetrahedral prism, since the

collection of all admissible triangulations has the same pattern as that of the triangular prism. We

reiterate once more, however, that the structure of each possible triangulation is the same; the only

difference is the labeling, or permutation, of vertices.

After triangulating each tetrahedral prism in a space-time prismmesh, the result is a collection

of pentatopes which cover the space-time domain. However, this collectionmay not form a conforming

triangulation, since no guarantees have been made that Property (ii) of Definition 1.19 is satisfied. In

Section 3.1.2, the key to producing a conforming triangulation was imposing a global ordering on the

vertices of 𝒯. We shall see that same condition suffices in four-dimensional space.

81

The proof of conformity is simplified by recognizing that a collection of (𝑘 + 1)-simplices inter-

sect properly in the sense of Definition 1.19 if and only if every pair of simplices which intersect over a

𝑘-volume have a shared 𝑘-face. When 𝑘 = 2, this is the statement that a tetrahedral mesh is conform-

ing if any only if every pair of tetrahedra with a two-dimensional intersection overlap along a shared

triangular face.

Theorem 3.11. Let 𝑋 be a collection of (𝑘 + 1)-simplices covering some domain 𝑄 ⊂ ℝ𝑘+1. Then the

following are equivalent.

1. 𝑋 is a triangulation of 𝑄.

2. For every 𝜒, 𝜒′ ∈ 𝑋 , if 𝜒 ∩ 𝜒′ has affine dimension 𝑘, then 𝜒 ∩ 𝜒′ is a shared face of both.

Proof. For a proof in the context of finite element methods, see [45], Theorem 3.2 and the preceding

discussion in Remark 3.1. For a proof in the context of computational geometry, see [14], Theorem

4.5.8.

It is also necessary to extend the vertex ordering introduced in Equation 3.11 and Equation 3.13

to higher dimensions.

Definition 3.12. Let𝒯 be a spatial triangulation in ℝ𝑑 and 𝒱(𝒯) = {𝑣𝑗}𝑁𝑣
𝑗=1 its vertex set. Additionally,

let𝑊 = {𝑤𝑖}𝑁𝑤
𝑖=0 be a set of time steps and set 𝒫 = Extr𝑊 (𝒯). The extruded-vertex ordering on 𝒱(𝒫) is

For 𝑣 ∈ 𝒱(𝒫), 𝑣 = 𝑣𝑖𝑁𝑣+𝑗 when 𝑣 = 𝜙𝑤𝑖(𝑣𝑗) (3.27)

and we say that

𝑣 ≺ 𝑣′ if and only if 𝑣 = 𝑣𝑘 and 𝑣′ = 𝑣𝑘′ where 𝑘 < 𝑘′. (3.28)

The following theorem describes a prism subdivision method which always produces conform-

ing triangulations. The structure is essentially the same as the procedure used to subdivide triangular

prisms in the earlier discussion. At the root of this method is the global ordering that we impose on

vertices of the prism mesh. The subdivision procedure is defined entirely in terms of the ordering on

vertices, which means that two adjacent prisms always subdivide their common faces in the same way.

82

Practically, this means that all prisms can be subdivided in a single pass and the subdivision of a prism

does not depend on the subdivision of its neighbors.

Theorem 3.13. Let Ω ⊂ ℝ3 be a polyhedral domain and 𝑄 = Ω × (0, 𝑇) a corresponding space-time

domain. Suppose 𝒯 is a triangulation of Ω, and let 𝒫 = Extr𝑊 (𝒯) be the space-time extrusion of 𝒯 over

time steps𝑊 . Let ≺ be the extruded-vertex ordering on 𝒱(𝒫).

For each tetrahedral prism 𝑃 ∈ 𝒫, order the vertices incident to 𝑃 such that

𝑃 = {{𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏1, 𝑏2, 𝑏3, 𝑏4}} and

𝑎1 ≺ 𝑎2 ≺ 𝑎3 ≺ 𝑎4 ≺ 𝑏1 ≺ 𝑏2 ≺ 𝑏3 ≺ 𝑏4. (3.29)

Finally, for each 𝑃, define the pentatopes

𝜒𝑃,1 = {{𝑎1, 𝑏1, 𝑏2, 𝑏3, 𝑏4}} 𝜒𝑃,3 = {{𝑎1, 𝑎2, 𝑎3, 𝑏3, 𝑏4}}

𝜒𝑃,2 = {{𝑎1, 𝑎2, 𝑏2, 𝑏3, 𝑏4}} 𝜒𝑃,4 = {{𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏4}}
(3.30)

Then the collection

𝑋 = {𝜒𝑃,𝑗 ∶ 𝑃 ∈ 𝒫 and 1 ≤ 𝑗 ≤ 4} (3.31)

forms a conforming triangulation of 𝑄.

Proof. In order to prove that 𝑋 is a triangulation of𝑄, we must establish the two constitutive properties

of Definition 1.19; that is,

i) 𝑄 = ⋃
𝑃∈𝒫

4

⋃
𝑗=1

𝜒𝑃,𝑗, and

ii) For 𝜒, 𝜒′ ∈ 𝑋 , the intersection 𝜒 ∩ 𝜒′ is a face of both 𝜒 and 𝜒′.

The preceding discussion has established Property (i) already. In particular, Proposition 3.10

states that for each 𝑃 ∈ 𝒫,

𝑃 =
4

⋃
𝑗=1

𝜒𝑃,𝑗, (3.32)

and thus

⋃
𝑃∈𝒫

4

⋃
𝑗=1

𝜒𝑃,𝑗 = ⋃
𝑃∈𝒫

𝑃 = 𝑄. (3.33)

83

To prove Property (ii), will show the equivalent condition described in Theorem 3.11. That is,

it suffices to show that if 𝜒, 𝜒′ ∈ 𝑋 have a three-dimensional intersection, then 𝜒 ∩ 𝜒′ is a tetrahedron.

First, suppose that 𝜒, 𝜒′ ⊂ 𝑃 for some 𝑃 ∈ 𝒫. Then both pentatopes were produced during the

subdivision of 𝑃; by Proposition 3.10 their intersection must be a common face, and the intersection

condition is satisfied.

For the remainder of the proof, we may assume that there are prisms 𝑃, 𝑃′ ∈ 𝒫 such that 𝜒 ⊂ 𝑃

and 𝜒′ ⊂ 𝑃′, with 𝑃 ≠ 𝑃′. Since 𝑃 ≠ 𝑃′, we may deduce that 𝑃 ∩ 𝑃′ = 𝜕𝑃 ∩ 𝜕𝑃′. Consequently,

𝜒 ∩ 𝜒′ = (𝜒 ∩ 𝑃) ∩ (𝜒′ ∩ 𝑃′) = (𝜒 ∩ 𝜒′) ∩ (𝑃 ∩ 𝑃′)

= (𝜒 ∩ 𝜒′) ∩ (𝜕𝑃 ∩ 𝜕𝑃′)

= (𝜒 ∩ 𝜕𝑃) ∩ (𝜒′ ∩ 𝜕𝑃′)

= (𝜕𝜒 ∩ 𝜕𝑃) ∩ (𝜕𝜒′ ∩ 𝜕𝑃′),

(3.34)

which means that the intersection of 𝜒 and 𝜒′ is the same as the intersection of the faces of 𝜒, 𝜒′ which

lie on the boundary of each prism.

To prove the necessary intersection condition, suppose that 𝜒 ∩ 𝜒′ is three-dimensional. By

Equation 3.34, it must also be the case that 𝜕𝑃 ∩ 𝜕𝑃′ is three-dimensional. By the face structure of

tetrahedral prisms (as described in Proposition 3.6 and the subsequent discussion), this means that

𝑃 ∩ 𝑃′ is either a tetrahedron or a triangular prism.

If 𝑃 ∩ 𝑃′ is a tetrahedron, the prisms intersect at either their top and bottom base and without

loss of generality we can write

𝑃 = {{𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏1, 𝑏2, 𝑏3, 𝑏4}} and 𝑃′ = {{𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑐1, 𝑐2, 𝑐3, 𝑐4}}, (3.35)

and therefore

𝑃 ∩ 𝑃′ = {{𝑏1, 𝑏2, 𝑏3, 𝑏4}}. (3.36)

Under the presecribed prism subdivision rule, the only pentatopes which have a three-dimensional

intersection with 𝑃 ∩ 𝑃′ are

𝜒 = {{𝑎1, 𝑏1, 𝑏2, 𝑏3, 𝑏4}} and 𝜒′ = {{𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑐4}}. (3.37)

84

Since 𝑎(4)𝑖 < 𝑏(4)𝑖 < 𝑐(4)𝑖 , we conclude that 𝜒∩𝜒′ = {{𝑏1, 𝑏2, 𝑏3, 𝑏4}}, which is a 3-face of both pentatopes.

Finally, we consider the case where 𝑃 ∩ 𝑃′ is a triangular prism. In this scenario, 𝑃 and 𝑃′ have

the form

𝑃 = {{𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏1, 𝑏2, 𝑏3, 𝑏4}} and 𝑃′ = {{𝑎1, 𝑎2, 𝑎3, 𝑎′4, 𝑏1, 𝑏2, 𝑏3, 𝑏′4}}, (3.38)

where each 𝑎𝑖 and 𝑏𝑖 differ only in their fourth coordinate and 𝑎1 ≺ 𝑎2 ≺ 𝑎3. In particular, we do

not make assumptions on the ordering of 𝑎4, 𝑏4, 𝑎′4, 𝑏′4 with respect to the other vertices. Using this

notation, the intersection between 𝑃 and 𝑃′ is the triangular prism

𝑃 ∩ 𝑃′ = {{𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3}}. (3.39)

Again, we are assuming that 𝜒∩𝜒′ is three-dimensional, and thus 𝜒∩𝒫 and 𝜒′ ∩𝑃′ are 3-faces

of 𝜒 and 𝜒′. By Equation 3.30, the only pentatopes contained in 𝑃 that have three-dimensional faces in

{{𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3}} are

{{𝑎1, 𝑏1, 𝑏2, 𝑏3, 𝑏4}}, {{𝑎1, 𝑎2, 𝑏2, 𝑏3, 𝑏4}}, and {{𝑎1, 𝑎2, 𝑎3, 𝑏3, 𝑏4}}. (3.40)

Therefore, 𝜒 ∩ 𝑃 must take the form:

𝑇1 = {{𝑎1, 𝑏1, 𝑏2, 𝑏3}}, or 𝑇2 = {{𝑎1, 𝑎2, 𝑏2, 𝑏3}}, or 𝑇3 = {{𝑎1, 𝑎2, 𝑎3, 𝑏3}}. (3.41)

The same argument can be applied to 𝜒′ and 𝑃′ to show that 𝜒′ ∩ 𝑃′ = 𝑇𝑖 for some 𝑖.

Therefore, 𝜒 ∩ 𝜒′ = (𝜒 ∩ 𝑃) ∩ (𝜒′ ∩ 𝑃′) = 𝑇𝑖 ∩ 𝑇𝑗 for some 1 ≤ 𝑖, 𝑗 ≤ 3. However, these three

tetrahedra form a conforming triangulation of the triangular prism (see Proposition 3.10)! Thus 𝑇𝑖 ∩ 𝑇𝑗
= 𝑇𝑖 (if 𝑖 = 𝑗) or has dimension less than three. Since we have assumed that𝜒∩𝜒′ is three-dimensional,

we conclude that 𝜒 ∩ 𝜒′ = 𝑇𝑖 for some 𝑖. Since 𝑇𝑖 is a face of both 𝜒 and 𝜒′, the intersection condition

is satisfied and the proof is complete.

Despite its involved proof, Theorem 3.13 gives simple criterion and preconditions for the cre-

ation of a conforming 4-simplexmesh. As long as the extruded-vertex ordering is established, the subdi-

vision of a 3-simplexmesh is achieved by looping through each prism 𝑃 in themesh, sorting the vertices

of 𝑃 according to the global ordering, and then adding the pentatopes 𝜒𝑃,𝑖 to the new space-time mesh.

85

Algorithm 3.1 provides a pseudocode description of this process.

Algorithm 3.1 Pseudocode algorithm for creating a pentatopal mesh
from a mesh of tetrahedral prisms.
1: procedure SubdividePrisms(PList) ▷ Tesselate all prisms in PList
2: for each P in PList do
3: BVList← BottomVerticesOf(P)
4: TVList← TopVerticesOf(P)
5: {a1, a2, a3, a4} ← Sort(BVList)
6: {b1, b2, b3, b4} ← Sort(TVList)
7:
8: Pent1← CreatePentatope(a1, b1, b2, b3, b4)
9: Pent2← CreatePentatope(a1, a2, b2, b3, b4)
10: Pent3← CreatePentatope(a1, a2, a3, b3, b4)
11: Pent4← CreatePentatope(a1, a2, a3, a4, b4)
12:
13: AddToMesh(Pent1,Pent2,Pent3,Pent4)
14: end for
15: end procedure

Wealso remark that the subdivision routine inAlgorithm 3.1 is an inherently parallel workload.

The construction of pentatopes within different steps of the for-loop are completely independent of

each other, and therefore may be done in any order. The only serial step is an accumulation at the end

where the global mesh data structure is updated with the new adjacency information. In addition, a

similar property hold for the space-timemesh extrusion algorithm - each new prism element is defined

independently of its neighbors. Therefore, the entire pipeline of space-time mesh generation may be

implemented in parallel.

3.2 Bisection of 4DMesh Elements

As we have seen, the full power of unstructured space-time finite element methods relies on

the simultaneous refinement of the mesh in space and time. Furthermore, the use of simplicial mesh

elements allows for the shape and size of elements to vary gradually fromareas of low to high resolution.

Our goal is a refinement process that is truly local in space-time. We contrast this with spatial refine-

ment schemes, where a spatial mesh is refined and then used at for every time step, as well as adaptive

time-stepping schemes, where the temporal resolution is adjusted but applies to every spatial element

simultaneously. In these two examples, the size of a space-time element was determined solely by its

spatial location or solely by its temporal location, respectively. In this section we describe a refinement

86

process for space-time elements so that the size of an element depends on its space and time positions

simultaneously, not just one or the other.

In the previous section, we introduced a method for creating space-time meshes over a given

spatial domain. To do this, a series of time steps𝑊 = {𝑤𝑖}𝑁𝑤
𝑖=0 was specified, and the resulting triangu-

lation was a simplex space-time mesh with aligned time-slabs at each 𝑤𝑖. At present, we shall assume

that the initial spatial mesh𝒯 has roughly equally-sized elements (that is, the ratio of largest to smallest

element size is close to 1). Then, we take ∆𝑖 = 𝑤𝑖 − 𝑤𝑖−1 to be the average diameter of the spatial ele-

ments for all 𝑖. These assumptions are necessary to avoid the construction of wedge or needle elements

during space-time mesh generation.

In general, we presume that the spatial mesh 𝒯 is the coarsest shape-regular mesh which ac-

curately fits the geometry of the spatial domain Ω. This allows for the greatest degree of freedom in

any subsequent refinement steps. For instance, suppose there was some subdomain 𝑆 ⊂ Ω that was

covered by a collection of very fine spatial elements, 𝑆 = ⋃𝑘
1 𝜏𝑖. After mesh extrusion and subdivision,

this high spatial resolution will propagate through the entire patch Ω × [0, 𝑇]. In this case, the spatial

resolution of the entire space-time patch is bounded below uniformly, which is precisely the situation

we are trying to avoid.

Some applications utilize pre-set triangulations that have been constructed specifically for that

application. In this case, the size ofmesh elementsmay varywidely, which is not suitable for the current

approach. The presentmethod of space-timemesh generation relies on a simultaneous discretization of

space and time. Thus if the input triangulation has been previously refined in space, this construction

may not be well-behaved.

The local refinement of simplexmeshes has been studied in depth for meshes of dimension two

and three, and a smaller collection of results exists for arbitrary-dimension simplex meshes. Generally

speaking, these methods may be classified as one of three types: uniform, red-green, and bisection.

3.2.1 Uniform Refinement

Uniform refinement is perhaps one of the most well-known methods of simplex subdivision.

If 𝜏 is a 𝑘-simplex, then 𝜏 may be divided into 2𝑘 subsimplices by adding vertices at the midpoint of

each edge of 𝜏 and adding new edges as needed. Due to the fact that every edge of 𝜏 is subdivided,

87

mesh refinement schemes that rely solely on uniform subdivision must subdivide every mesh element

simultaneously in order to maintain a conforming mesh. Nevertheless, uniform refinement is useful

when a mesh is so coarse that multiple rounds of global mesh refinement are needed.

It is important to note that the simplicity of uniform refinement in two dimensions obscures

some of the complexity in three dimensions, and the situation in higher dimensions is even more in-

tricate. In two dimensions, there is only one way to uniformly refine a triangle. However, the uniform

refinement of the tetrahedron can be achieved in multiple ways (essentially, the “interior children” of

the refined tetrahedron can be configured in a number of ways, see [7]). As a result, successive uniform

refinement of tetrahedra can produce degenerate elements if the method of subdivision is not chosen

correctly[51].

Furthermore, uniform refinement of pentatopes is not necessarily conforming unless a consis-

tent scheme is defined. This follows from the fact that every uniform refinement of a simplex uniformly

refines each of its faces. In the case of pentatopes, every 3-face is a tetrahedron, and any two adjacent

pentatopes intersect in this tetrahedron. Since the uniform refinement of tetrahedra is not unique,

neighboring pentatopes must be refined in a way which is consistent with their neighbors.

As discussed by Bey, Freudenthal’s algorithm[20] can be used to generate conforming uniform

refinements of simplexmeshes[6]. Applied to pentatopes, Freudenthal’smethod generates 12 similarity

classes upon repeated refinements (and therefore does not produce degenerate child elements). In

[38], Neumüller and Steinbach generalized Bey’s discussion with a criterion for consistent uniform

refinement of pentatopes, for which Freudenthal’s algorithm is a special case.

3.2.2 Red-Green Refinement

A major drawback of uniform simplex refinement is that it is not a local operation - in order

to maintain consistency, every mesh element must be uniformly refined simultaneously. Red-green

refinement methods combine the uniform refinement (“red refinement”) of a simplex with a closure

operation (“green refinement”) on its neighbors. The green refinement is chosen in such a way that a

neighbor element is subdivided in a conforming way without introducing new vertices. Red-green re-

finement techniqueswere introduced for triangular elements in 1983 by Bank, Sherman, andWeiser[3],

and extended to tetrahedral elements by Bey[7], Zhang[52], and Liu and Joe[31] in the mid-1990s. His-

88

torically, two approaches have been taken to the construction of red-green refinement rules.

In its original formulation[3], meshes produced by red-green refinement may contain irregular

(nonconforming) vertices, so long as the 1-irregular rule is satisfied. This rule states that every edge

of a triangular element may have at most one irregular vertex from a refined neighbor. A simple post-

processing step allows one to produce accurate finite element discretizations from 1-irregular meshes.

Therefore, it is enough to apply green refinement only to ensure that the 1-irregular rule is satisfied. In

this paradigm, further rules can be imposed to reduce the number of irregular vertices, but they are not

strictly necessary.

Other red-green refinement schemes[7, 22], however, impose total conformity on the refined

mesh. In these methods, every neighbor of a red-refined element must be refined in order to maintain

mesh conformity. If the neighboring element is not also red-refined, then a closure operation must

be chosen which depends on the pattern of irregular vertices incident to the neighbor element. Now,

an arbitrary element marked for green refinement can contain irregular vertices in a number of con-

figurations if several of its neighbors are red-refined. A full green-refinement rule in this setting must

produce a consistent triangulation for any possible pattern. As the dimension of the mesh in question

increases, the number and complexity of these edge refinement patterns increases as well, which can

make higher-dimensional green rules difficult to formulate in practice.

Due to the difficulty in defining closure operations that eliminate all irregular vertices in high-

dimensional meshes, it is often simpler to utilize the 1-irregular rule and allow slightly nonconforming

meshes. While methods of this type require an additional step tomanage irregular vertices, this is often

preferable to implementing high-dimensional conforming closure operations.

3.2.3 Bisection Refinement

The last general class of simplex subdivision techniques is bisection. In these refinement

schemes, simplices are divided in two by inserting a vertex at the midpoint of one edge. In order to

maintain conformity, any neighboring elements which share this edge are refined via bisection as well.

This rather large class of refinement schemes can be further subdivided into what we call “geometric

bisection rules” and “combinatorial bisection rules.”

We define geometric bisection rules to be any bisectionmethod which uses the geometric prop-

89

erties of a simplex element to determine how the element is bisected. A classical example of this is

the longest-edge bisection[41] popularized by Rivara. In their simplest forms, geometry bisection rules

require limited additional data structures to implement, since they rely on the mesh data explicitly.

However, the shape regularity of meshes produced by longest-edge bisection is difficult to study. In

two dimensions, it has been proven that the smallest interior angles of child elements are bounded

away from zero. This phenomenon has been observed for the dihedral angles of tetrahedra in three

dimensions, but has not been proven.

On the other hand, combinatorial bisection rules are easier to study theoretically but can be

more challenging to implement. In a combinatorial rule, a simplexmesh is first taggedwith a collection

of labels (typically corresponding to vertex orderings and bisection generations). Then, the bisection of

all elements and all of their child elements are completely determined by these labels. A prototypical

example of this is the newest vertex bisection method[35] of Mitchell. In this method, the edges of a

two-dimensional triangulation are tagged for refinement such that:

1. There is exactly one tagged edge per triangle, and

2. Any two adjacent triangles agree on the tag of their shared edge

After this tagging is complete, triangles marked for refinement are bisected along their tagged edge,

and their neighbor is also bisected along this edge. Then, for every child triangle, the edge opposite the

new vertex (at the midpoint) is designated as the new tagged edge. It has been proved that the child

elements produced by newest vertex bisection belong to a finite set of similarity classes, which implies

that the shape regularity of elements does not degenerate.

The key components of newest vertex bisection are the initial tagging scheme, and the rule

for tagging child simplices. By choosing these rules correctly, the refinement scheme continues in a

controlled way ad infinitum. It is also worth noting that, given a rule for tagging child elements, the

refinement scheme is completely determined by the initial tagging of the coarsemesh and the adjacency

structure of the elements.

A number of generalizations of newest vertex bisection have been proposed for simplex meshes

in dimension greater than three. In all cases, the cornerstone of these methods is the rule for tagging

child elements. A comprehensive overview of newest vertex bisection methods may be found in [34].

However, while a number of methods have been proposed and studied for three-dimensional triangu-

90

lation, the theory for simplices in higher dimensions is limited. We note the works of Maubach[32]

and Traxler[48], who constructed combinatorial bisection methods for 𝑑-dimensional simplex meshes

in the mid-1990s. Unfortunately, a critical roadblock for handling high-dimensional meshes is the ini-

tial tagging of the coarse mesh. For instance, Maubach’s tagging scheme is proved only for meshes

generated by reflections, while Traxler’s method requires every edge to incident to an even number of

elements.

Finally, in 2008, Stevenson[45] further analyzed the methods of Maubach and Traxler, proving

an upper bound on the number additional bisections needed to retain conformity and relaxing the re-

quired conditions on the intial coarse mesh. In the remainder of this section we shall apply Stevenson’s

theory to four-dimensional simplex meshes and detail the refinement pattern of pentatopes. We shall

also discuss the conditions required to set an initial tagging of the mesh.

3.2.4 Local Bisection of Pentatopes

The following definitions are proposed by Stevenson in [45] in order to describe the refinement

rules of Maubach and Traxler. Here, we adapt the definitions for four-dimensional simplices, which

simplifies the analysis significantly.

Definition 3.14. Let 𝜏 = {{𝑎, 𝑏, 𝑐, 𝑑, 𝑒}} be a pentatope. The type of 𝜏 is and integer 𝛾(𝜏) between 0 and

4. The order of 𝜏 is the ordered tuple

𝜎(𝜏) = (𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4), where 𝑣𝑖 ∈ {𝑎, 𝑏, 𝑐, 𝑑, 𝑒},

that is, 𝜎(𝜏) is a local ordering on the vertices of 𝜏. When 𝜏 is a pentatope of type 𝛾 with ordering

(𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5), we write:

𝜏 = {𝛾 ∣ 𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4}.

We say that a pentatope 𝜏 is taggedwhen 𝜏 has been given a choice of 𝛾(𝜏) and 𝜎(𝜏). A 4-simplex

mesh is tagged if all of its elements are tagged.

The behavior of the refinement algorithm is completely determined by the tag on each element.

In particular, if 𝜏 = {𝛾 ∣ 𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4} is an arbitrary element of 𝒯, then 𝜏 will be bisected along the

edge 𝑣0𝑣4, and the ordering of its child elements is determined by 𝛾. The two children of 𝜏 are uniquely

91

determined to be:
𝜏𝑎 = {𝛾 + 1(𝑚𝑜𝑑4) ∣ 𝑣0,

𝑣0 + 𝑣4
2 , 𝑣1, 𝑣2, 𝑣3}

𝜏𝑏 = {𝛾 + 1(𝑚𝑜𝑑4) ∣ 𝑣4,
𝑣0 + 𝑣4

2 , 𝑣1, … , 𝑣𝛾, 𝑣3, … , 𝑣𝛾+1}
(3.42)

(where in abuse of notation, we take the term 𝑣1, … , 𝑣𝛾 to disappear when 𝛾 = 0, and 𝑣3, … , 𝑣𝛾+1 to

disappear when 𝛾 = 3. Let us examine the structure of these two child elements more closely. In the

case of 𝜏𝑎, the vertex ordering of the parent element is preserved, with the new midpoint being given

the second-lowest index. However, the case of 𝜏𝑏 is more complex. Here, the ordering of vertices is

permuted from that of the parent element. Table 3.4 shows the possible orderings of child vertices for

various types 𝛾.

Table 3.4: Local vertex orderings of child elements formed by the bisection of the tagged pentatope
𝜏 = {𝛾 ∣ 𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4}. The new vertex𝑚 is the midpoint of the edge 𝑣0𝑣4.

𝛾 = 0 𝛾 = 1 𝛾 = 2 𝛾 = 3
𝜎(𝜏𝑎) (𝑣0, 𝑚, 𝑣1, 𝑣2, 𝑣3) (𝑣0, 𝑚, 𝑣1, 𝑣2, 𝑣3) (𝑣0, 𝑚, 𝑣1, 𝑣2, 𝑣3) (𝑣0, 𝑚, 𝑣1, 𝑣2, 𝑣3)
𝜎(𝜏𝑏) (𝑣4, 𝑚, 𝑣3, 𝑣2, 𝑣1) (𝑣4, 𝑚, 𝑣1, 𝑣3, 𝑣2) (𝑣4, 𝑚, 𝑣1, 𝑣2, 𝑣3) (𝑣4, 𝑚, 𝑣1, 𝑣2, 𝑣3)

The permutation of vertices described in Equation 3.42 is crucial to the success of the bisection

method. It can be derived by mapping each simplex element to a Kuhn simplex, which is a kind of

reference element contained in the unit cube[48]. The sequence of bisections and vertex shuffles then

corresponds to Freudenthal’s partition of the unit cube. We refer to [6] for a general exposition of

Freudenthal’s algorithm applied to simplex meshes.

In a similar vein, the reflection of a tagged pentatope 𝜏 = {𝛾 ∣ 𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4} is

𝜏𝑅 =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

{𝛾 ∣ 𝑣4, 𝑣3, 𝑣2, 𝑣1, 𝑣0} if 𝛾 = 0

{𝛾 ∣ 𝑣4, 𝑣1, 𝑣3, 𝑣2, 𝑣0} if 𝛾 = 1

{𝛾 ∣ 𝑣4, 𝑣1, 𝑣2, 𝑣3, 𝑣0} if 𝛾 = 2

{𝛾 ∣ 𝑣4, 𝑣1, 𝑣2, 𝑣3, 𝑣0} if 𝛾 = 3

(3.43)

That is, the reflection of 𝜏 is another tagging of 𝜏 which produces the same children upon bisection.

Since the bisection rule is completely determined by the tag on each pentatope, we may consider the

tagged pentatopes 𝜏 and 𝜏𝑅 to be equivalent.

In addition, we say that two pentatopes 𝜏 and 𝜏′ that intersect on a tetrahedron are reflected

92

neighbors if the orderings on their vertices match in a particular way. In particular, if 𝜎(𝜏′) matches

𝜎(𝜏) or 𝜎(𝜏𝑅) on all but one position, then 𝜏 and 𝜏′ are reflected neighbors (note that it is impossible for

the two ordering to match completely because 𝜏 and 𝜏′ have only 4 vertices in common).

Finally, a pentatopal mesh is said to be consistently tagged if every two pentatopes sharing a

tetrahedral face are reflected neighbors, OR the adjacent children of this pair of pentatopes are reflected

neighbors. In practice, it is hard to impose this property except in simple cases. However, we shall see

below that there are a number of workarounds to guarantee that a mesh is consistently tagged.

Algorithm3.2 Psuedocode description of Stevenson’s bisection scheme.
1: procedure BisectPent(𝒯, 𝜏) ▷ Outputs new mesh after bisection
2: BisectList← ∅
3: TempBisectList← 𝜏
4: while TempBisectList ≠ ∅ do
5: CheckNext← ∅
6: for all 𝜏′ ∈ TempBisectList do
7: for all 𝜏″ neighbors of 𝜏′, not in BisectList or TempBisectList do
8: if 𝜏 and 𝜏′ share refinement edge then
9: CheckNext← CheckNext ∪ 𝜏″
10: else
11: 𝒯 ← BisectPent(𝒯,𝜏″) ▷ Refine 𝜏″ and update 𝒯
12: end if
13: end for
14: end for
15: BisectList← TempBisectList
16: TempBisectList← CheckNext
17: end while
18: Bisect all element in BisectList along refinement edge
19: return 𝒯
20: end procedure

We describe the main refinement algorithm in [45] in Algorithm 3.2. While the algorithm is

recursive, it is proved in [45] that the algorithm always terminates, and the generation of any new

pentatope is no more than one greater than the generation of the input 𝜏. Furthermore, if𝑀 ⊂ 𝒯 is a

collection of pentatopesmarked for refinement, then sequentially applying BisectPent to all elements

in𝑀 produces the smallest conforming refinement of 𝒯 which bisects every element in𝑀.

The characteristics of this scheme are in many ways optimal. Unfortunately, the behavior of

the method relies strongly on the fact that the initial coarse mesh is consistently tagged, which is a

nontrivial condition. In fact, it is an open problem as to whether any simplex mesh can be consistently

tagged. For triangular meshes, a condition equivalent to consistent tagging was proved in [8] to hold

for all meshes. However, no analogous results hold for dimension ≥ 3.

93

In [24], Kossaczky demonstrated a method or refining an arbitrary two- or three-dimensional

mesh into one which is generated by reflections; meshes of this type can always be consistently tagged.

This method was generalized into higher dimensions by Stevenson, and we state the particular case for

𝑑 = 4 here.

Let 𝒯 be an arbitrary pentatopal mesh. We shall subdivide every element in 𝒯 into a series of

sub-pentatopes by introducing new vertices within each element. Given a pentatope 𝜏, let 𝑅𝜏 be the

barycenter of 𝜏, let 𝑆𝑖𝜏 be the barycenter of the 𝑖𝑡ℎ tetrahedral face of 𝜏, and let 𝑇𝑗
𝜏 the barycenter of

the 𝑗𝑡ℎ triangular face of 𝜏 (the ordering on the faces of 𝜏 may be chosen arbitrarily). In addition, let

𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4 denote the vertices of 𝜏.

For each 𝜏 ∈ 𝒯, refine 𝜏 into the collection of pentatopes which have the form

𝜏𝑚𝑛
𝑖𝑗 = {{𝑅𝜏, 𝑆𝑖𝜏, 𝑇𝑗

𝜏 , 𝑣𝑚, 𝑣𝑛}}

where 𝑆𝑗𝜏 is the barycenter of a tetrahedron containing 𝑣𝑚 and 𝑣𝑛, and 𝑇𝑗
𝜏 is the barycenter of a triangle

containing 𝑣𝑚 and 𝑣𝑛. Furthermore, we tag each new pentatope as:

𝜏𝑚𝑛
𝑖𝑗 = {4 ∣ 𝑣𝑚, 𝑇𝑗

𝜏 , 𝑆𝑖𝜏, 𝑅𝜏, 𝑣𝑛}.

where the ordering 𝑣𝑚 and 𝑣𝑛 may be arbitrary.

Under this tagging scheme, every original edge of the original triangulation is now marked for

refinement (since every new pentatope tags 𝑣𝑚 and 𝑣𝑛 to be its first and last vertices). In addition, by

Equation 3.43, we find that the reflected neighbor of every new pentatope has the same vertex ordering

with just the first and last vertices transposed. This makes it easy to check that all adjacent pentatopes

are reflected in this new mesh.

First, suppose that 𝜏𝑚𝑛
𝑖𝑗 and 𝜏𝑚′𝑛′

𝑖′𝑗′ are two new pentatopes produced from the same ancestor, 𝜏.

If these two pentatopes are neighbors, then their intersection is a common tetrahedral face. Therefore,

𝑅𝜏 and 𝑆𝑖𝜏must coincide with their primed (′) versions. Then, if (𝑣𝑚, 𝑣𝑛) and (𝑣𝑚′ , 𝑣𝑛′) alsomatch (up to

reordering) these two elements are reflected neighbors. If they do not match, then the two pentatopes

must share a common triangular face and 𝑇 𝑖
𝜏 matches 𝑇 𝑖′

𝜏 . In this case, a direct application of the bisec-

tion rule shows that the adjacent children of these two pentatopes will always be reflected neighbors.

94

Finally, wemay consider the scenario where two new pentatopes were generated from adjacent

pentatopes in the coarse mesh. In this setting, 𝑅𝜏′ ≠ 𝑅𝜏, and therefore the remaining four vertices

of each pentatope much coincide (otherwise the elements would not be adjacent). In particular, this

means that (𝑣𝑚, 𝑣𝑛) and (𝑣𝑚′ , 𝑣𝑛′) match up to reordering, and thus the two elements are reflected

neighbors.

This brings us to our concluding remark, which summarizes the above discussion.

Remark 3.15. The refinement scheme described in Algorithm 3.2 produces conforming refinements of

pentatopemeshes with a sequence of bisection operations. The number of new elements introduced by

this sequence is minimal, and the shape regularity of new elements does not degenerate upon repeated

applications of the elements. In order to satisfy the precondition for Algorithm 3.2 (that is, a consistent

tagging of the coarse mesh), it is possible to refine the mesh by introducing vertices at face barycenters.

After an appropriate tagging of the newly-created elements, themeshwill always be consistently tagged.

Chapter 3, in part, is currently being prepared for submission for publication of the material.

The dissertation author was the sole investigator and author of this material.

95

Chapter 4

Conclusion

Space-time finite element methods based on conforming, unstructuredmeshes possess a num-

ber of useful properties that support a much broader class of discretizations than traditional time-

stepping methods. High-dimensional simplex elements can be used to achieve local spatiotemporal

refinement in a manner analogous to spatial refinement of triangular and tetrahedral meshes. Because

the finite element discretization in these methods is continuous, the resulting numerical schemes are

fully implicit and stable. Furthermore, the huge linear system that results from this implicitmethod can

be solved in parallel by applying standard domain decomposition methods. While space-time methods

possess an added computational overhead compared to time-stepping methods, parallel implementa-

tions have been shown to scale well and outperform time-stepping methods on highly parallel comput-

ers[19].

In this dissertation, we addressed two major challenges to the efficient implementation of un-

structured space-timefinite elementmethods. Firstly, we examined the behavior of space-timemethods

applied to general linear parabolic PDEs. At present, we know of no other research which has treated

parabolic equations in this general setting. Specifically, we introduce the first analysis of second-order

linear parabolic PDEs with non-autonomous convection and reaction coefficients. This work also con-

siders general elliptic operators in the principal term, in contrast to existing work which focuses solely

on constant or scalar-valued diffusion operators.

Considered in its space-time formulation, the parabolic equations we consider possess a singu-

lar space-time diffusion term, which introduces a numerical instability in traditional Galerkinmethods.

To stabilize these methods, we defined a streamline-upwind Petrov-Galerkin (SUPG) method for the

96

space-time setting. In our scheme, we simultaneously upwind in the direction of time and any spatial

convection. This choice of upwinding term eliminates the previously-mentioned numerical instability,

as well as any instability stemming from convection-dominated flow.

In addition, we have proved that the space-time SUPGmethod converges at near optimal rates,

with the error of the solution and its derivatives following asymptotic decay rates which are standard

for upwinded methods. These results hold even for relatively non-smooth solutions possessing 1 + 𝜖

weak derivatives.

This work establishes some of the fundamental properties of our upwinded space-timemethod,

but research into this scheme can be extended in a number of ways.

Firstly, it would be instructive to prove analogous results for parabolic PDEs posed with Neu-

mann or Robin boundary conditions. Our analysis exclusively considers Dirichlet initial-boundary

problems, as does the space-time finite element literature as a whole. Having established the basic

theory for Dirichlet conditions, we may observe what modifications are necessary to produce a scheme

for other boundary conditions.

Secondly, an extension of this work to problems with moving domains would illustrate the full

generality of all-at-once space-time discretizations. In this dissertation, we consider space-time do-

mains with a Cartesian product structure, 𝑄 = Ω× [0, 𝑇]. However, this condition is not required. The

main change which arises when considering moving spatial boundaries comes from the interaction of

the time convection term with the movement of the spatial boundary. When 𝑄 is a tensor product, the

normal vector to spatial boundary is always orthogonal to the time dimension; that is, 𝑏 ⋅ 𝑛 = 𝑏𝑥 ⋅ 𝑛𝑥.

When the boundary of Ωmoves with time, this outward pointing normal will no longer be orthogonal

to the time component of the convection.

Finally, we would like to study the effect of upwinding strength on the finite element error. Just

like in the traditional analysis of steady-state convection diffusion problems, choosing the upwinding

strength too large unnecessarily smooths the solution, while choosing it too small decreases the nu-

merical stability. In [27], a heuristic for element-wise upwinding strength based on a small generalized

eigenvalue problem was used. The cited research studied the upwinding scheme in the context of heat

equations; however, we see no reason that this cannot be extended to the general parabolic setting.

The second main component of this dissertation was a study of four-dimensional unstructured

meshes for space-time methods. Since space-time mesh elements always exist in Euclidean space one

97

dimensionhigher than the spatial domain, four-dimensionalmeshes are required in order to implement

space-time finite element methods for PDEs in three-dimensional space. The existing literature on

four-dimensional finite element methods is quite sparse, which makes the issue of four-dimensional

meshing one of the greatest impediments to applying space-time methods to large-scale problems.

Much of the existing research into four-dimensional triangulations comes from disciplines out-

side of numerical PDEs. To bridge this gap, we extended foundational concepts from computational

geometry into the setting of finite element meshes. These concepts were then used to define a new

method for space-time mesh construction in four dimensions. Our meshing algorithm takes as input a

spatial mesh in 𝑑 dimensions and outputs a corresponding space-time mesh in (𝑑 + 1)-dimensions. In

practice, this means that any mesh that could be used for a time-stepping scheme can be extended for

use in a space-time scheme. Furthermore, this mesh construction process can be instantly parallelized

and only one communication step is required at the very end in order to share adjacency information.

As an add-on to our mesh construction algorithm, we also discussed methods of mesh refine-

ment on four-dimensional simplex meshes. Local refinement of simplex meshes increases in complex-

ity in dimensions greater than three, but we were able to apply the bisection procedure of Stevenson to

the special case of 4-simplex meshes. While this method is proven to maintain consistency and shape

regularity of mesh elements, it requires than any initial mesh satisfy a strict precondition. To address

this issue, a modification of the previously introduced meshing algorithm was defined which guaran-

tees this condition is satisfied.

Moving forward, there are a host of open questions regarding 4-simplex meshes which are of

direct importance to space-time finite element methods. One of the greatest open challenges at the mo-

ment is a general-purpose four-dimensionalmesherwhich canproduce amesh froma four-dimensional

skeleton. At the moment, existing mesh generation techniques (our own included) require a tensor

product structure on the space-time domain. Algorithms based on Delaunay mesh construction have

been proven to work in theory, but may be unacceptably slow in four dimensions. It is possible that a

mix of coarse Delaunay mesh generation mixed with local adaptive operations can speed up this pro-

cess.

This brings us to the next major open problem, which is four-dimensional mesh smoothing. In

addition to mesh refinement, it is often helpful to change the structure of a simplicial mesh through

vertex movements, edge collapses, and the like. The very recent dissertation of Caplan[11] exhibits a

98

number of promising operations of this type. It would certainly be helpful to incorporate these refine-

ment operations into the context of space-time meshers.

The field of unstructured space-time finite element methods is a young and active one, and the

list of promising research directions could go on for some while. In addition to the questions posed

and answered here, the sphere of inquiry into these methods is advancing rapidly on several fronts.

Exciting research is ongoing to construct space-time adaptivemethods which can target spatiotemporal

refinement in a flexible way. Preconditioners andmultigrid methods for space-time problems continue

to improve the efficiency of the linear system solution. Recently, space-time methods were introduced

into the literature of high-performance computing, where the parallel scalability of these methods was

highlighted. There is certainly a great deal to continue learning.

99

Appendix A

Proof of Lemma 2.7

Lemma 2.7 was used in order to prove an estimate on the coefficient for uniform positive-

definiteness of𝐷ℎ,𝜃 in Chapter 2. However, the proof of this lemma is somewhat intricate and the details

provide no additional insight into the discussion of space-time methods, so the proof was omitted from

Chapter 2. For completeness, we include the full proof here, along with a restatement of Lemma 2.7.

Lemma. Given constants 𝐴,𝐶 > 0 and 𝐵 ≥ 0,

min
0≤𝑧≤1

𝐴𝑧2 + 𝐶 (𝐵𝑧 − √1 − 𝑧2)
2
≥ min (𝐴 + 𝐵2𝐶, 𝐴𝐶

𝐴 + 𝐶 (𝐵2 + 𝐵)) .

Proof. First, note that the objective function 𝑓(𝑧) can be simplified as

𝑓(𝑧) ∶= 𝐴𝑧2 + 𝐶 (𝐵𝑧 − √1 − 𝑧2)
2
= 𝐴𝑧2 + 𝐶𝐵2𝑧2 + 𝐶 − 𝐶𝑧2 − 2𝐵𝐶𝑧√1 − 𝑧2

= 𝐺𝑧2 − 2𝐵𝐶𝑧√1 − 𝑧2 + 𝐶,

where we have defined the constant 𝐺 = 𝐴 − 𝐶 + 𝐶𝐵2. Note that 𝐺 is not necessarily positive.

Next, we treat an edge case where 𝐺 = 0 and 𝐵 = 0. By the definition of 𝐺, this implies that

𝐴 = 𝐶. Then 𝑓(𝑧) = 𝐴𝑧2 + 𝐴(1 − 𝑧2) = 𝐴, the minimum is 𝐴, and this satisfies the statement of the

lemma. For the remainder of the proof, we assume that 𝐵2 + 𝐺2 > 0.

Since 𝑓(𝑧) is smooth on (0, 1), theminimum of 𝑓 is obtained at 𝑧 = 0, 𝑧 = 1, or at a critical point

100

of 𝑓. The critical points of 𝑓 lying in (0, 1) satisfy

0 = 𝑓′(𝑧) = 2𝐺𝑧 − 2𝐵𝐶√1 − 𝑧2 + 2𝐵𝐶 𝑧2

√1 − 𝑧2

= 2𝐺𝑧 + 2𝐵𝐶 2𝑧2 − 1
√1 − 𝑧2

,

which implies that

(−𝐺𝑧)2(1 − 𝑧2) = 𝐵2𝐶2(2𝑧2 − 1)2

and consequently

(𝐺2 + 4𝐵2𝐶2) 𝑧4 − (𝐺2 + 4𝐵2𝐶2) 𝑧2 + 𝐵2𝐶2 = 0.

This equation is quadratic in 𝑧2; if we set 𝛼 ∶= 𝐺2 + 4𝐵2𝐶2 and 𝛽 ∶= 𝐵2𝐶2, then the solutions

to 𝛼𝑧4 − 𝛼𝑧2 + 𝛽 = 0 are:

𝑧2 = 𝛼 ± √𝛼2 − 4𝛼𝛽
2𝛼 = 1

2 ±
1
2√

𝛼2 − 4𝛼𝛽
𝛼2 = 1

2 (1 ±√
𝛼 − 4𝛽
𝛼) .

Substituting the values of 𝛼 and 𝛽, we conclude that

𝑧2 = 1
2 (±√

𝐺2 + 4𝐵2𝐶2 − 4𝐵2𝐶2

𝐺2 + 4𝐵2𝐶2)

= 1
2 (1 ±√

𝐺2

𝐺2 + 4𝐵2𝐶2) .

Since the termunder the radical is less than 1, both of these solutions lie in the interval [0, 1]. The quartic

equation above gives has four potential candidates for the critical points (the positive and negative

square roots of the two values of 𝑧2 above); however, since the critical points must be positive, we can

disregard the negative square roots. Thus we are left with two potential critical points of 𝑓:

𝑧− =
√√√
√

1
2 (1 −√

𝐺2

𝐺2 + 4𝐵2𝐶2), 𝑧+ =
√√√
√

1
2 (1 +√

𝐺2

𝐺2 + 4𝐵2𝐶2).

It is possible that one or both of these points is not a critical point. Nevertheless, it suffices to bound

𝑓(𝑧±).

101

Substituting the values of 𝑧± back into the objective function, we have

𝑓(𝑧±) = 𝐺 (12 ±
1
2√

𝐺2

𝐺2 + 4𝐵2𝐶2) − 2𝐵𝐶√
1
2 ±

1
2√

𝐺2

𝐺2 + 4𝐵2𝐶2√
1
2 ∓√

𝐺2

𝐺2 + 4𝐵2𝐶2 + 𝐶

= 𝐺
2 + 𝐶 ± 𝐺

2√
𝐺2

𝐺2 + 4𝐵2𝐶2 − 2𝐵𝐶
√

1
4 −

1
4 (

𝐺2

𝐺2 + 4𝐵2𝐶2)

= 𝐺
2 + 𝐶 ± 𝐺

2√
𝐺2

𝐺2 + 4𝐵2𝐶2 − 𝐵𝐶√
4𝐵2𝐶2

𝐺2 + 4𝐵2𝐶2

= 𝐺
2 + 𝐶 ± 𝐺|𝐺|

2 √
1

𝐺2 + 4𝐵2𝐶2 − 2𝐵2𝐶2
√

1
𝐺2 + 4𝐵2𝐶2

= 𝐺
2 + 𝐶 − 1

2 (∓𝐺|𝐺| + 4𝐵2𝐶2)√
1

𝐺2 + 4𝐵2𝐶2 .

The second termwill be minimized when the factor (∓𝐺|𝐺|+4𝐵2𝐶2) is maximized. Nomatter the sign

of 𝐺, this maximum is 𝐺2 + 4𝐵2𝐶2, and it will be attained either at 𝑧+ or 𝑧−. Hence

𝑓(𝑧±) ≥
𝐺
2 + 𝐶 − 1

2 (𝐺
2 + 4𝐵2𝐶2)√

1
𝐺2 + 4𝐵2𝐶2

= 𝐺
2 + 𝐶 − 1

2
√𝐺2 + 4𝐵2𝐶2.

This expression may be simplified by multiplying by a fraction to cancel some terms.

𝐺
2 + 𝐶 − 1

2
√𝐺2 + 4𝐵2𝐶2 = (𝐺2 + 𝐶 − 1

2
√𝐺2 + 4𝐵2𝐶2) ⋅

𝐺
2
+ 𝐶 + 1

2
√𝐺2 + 4𝐵2𝐶2

𝐺
2
+ 𝐶 + 1

2
√𝐺2 + 4𝐵2𝐶2

=
𝐺2

4
+ 𝐺𝐶 + 𝐶2 − 1

4
(𝐺2 + 4𝐵2𝐶2)

𝐺
2
+ 𝐶 + 1

2
√𝐺2 + 4𝐵2𝐶2

= (𝐴 − 𝐶 + 𝐵2𝐶)𝐶 + 𝐶2 − 𝐵2𝐶2

𝐺
2
+ 𝐶 + 1

2
√𝐺2 + 4𝐵2𝐶2

= 𝐴𝐶
𝐺
2
+ 𝐶 + 1

2
√𝐺2 + 4𝐵2𝐶2

.

Finally, by the subadditivity of the square root function, we have that√𝐺2 + 4𝐵2𝐶2 ≤ 𝐺+2𝐵𝐶. There-

102

fore,

𝑓(𝑧±) ≥
𝐴𝐶

𝐺
2
+ 𝐶 + 1

2
√𝐺2 + 4𝐵2𝐶2

≥ 𝐴𝐶
𝐺
2
+ 𝐶 + 1

2
(𝐺 + 2𝐵𝐶)

= 𝐴𝐶
𝐺 + 𝐶 + 𝐵𝐶

= 𝐴𝐶
𝐴 + 𝐵2𝐶 + 𝐵𝐶 .

Now, since 𝑓 is continuous on [0, 1], the global minimum must occur at 𝑧 = 0, 𝑧 = 1, or at a

critical point. We have just shown that the value of 𝑓 at any potential critical point is bounded below

by (𝐴𝐶)(𝐴 + 𝐵2𝐶 + 𝐵𝐶)−1. Hence

min
0≤𝑧≤1

𝑓(𝑧) ≥ min (𝑓(0), 𝑓(1), 𝐴𝐶
𝐴 + 𝐶(𝐵2 + 𝐵)) .

By direct substitution, 𝑓(0) = 𝐶 and 𝑓(1) = 𝐴 + 𝐶𝐵2. Noting that

𝐴𝐶
𝐴 + 𝐶(𝐵2 + 𝐵) = 𝐶 ⋅ 𝐴

𝐴 + 𝐶(𝐵2 + 𝐵) ≤ 𝐶,

we conclude that

min
0≤𝑧≤1

𝑓(𝑧) ≥ min (𝑓(0), 𝑓(1), 𝐴𝐶
𝐴 + 𝐶(𝐵2 + 𝐵)) = min (𝐴 + 𝐶𝐵2, 𝐴𝐶

𝐴 + 𝐶(𝐵2 + 𝐵)) ,

which completes the proof.

103

Bibliography

[1] Thomas Apel and Jens M Melenk. “Interpolation and Quasi-Interpolation in h-and hp-Version
Finite Element Spaces”. Encyclopedia of Computational Mechanics Second Edition (2017), pp. 1–
33.

[2] Randolph Bank. Multigraph User’s Guide. Version 2.1. Department of Mathematics, University
of California San Diego. 2017.

[3] Randolph E. Bank, Andrew H. Sherman, and Alan Weiser. “Some Refinement Algorithms And
Data Structures For Regular LocalMeshRefinement”. ScientificComputing, Applications ofMath-
ematics and Computing to the Physical Sciences 1 (1983), pp. 3–17.

[4] Randolph E Bank, Panayot S Vassilevski, and Ludmil T Zikatanov. “Arbitrary dimension
convection–diffusion schemes for space–time discretizations”. Journal of Computational and
Applied Mathematics 310 (2017), pp. 19–31.

[5] Marek Behr. “Simplex space–time meshes in finite element simulations”. International Journal
for Numerical Methods in Fluids 57.9 (2008), pp. 1421–1434.

[6] Jürgen Bey. “Simplicial grid refinement: on Freudenthal’s algorithm and the optimal number of
congruence classes”. Numerische Mathematik 85.1 (2000), pp. 1–29.

[7] Jürgen Bey. “Tetrahedral grid refinement”. Computing 55.4 (1995), pp. 355–378.

[8] Peter Binev, Wolfgang Dahmen, and Ron DeVore. “Adaptive finite element methods with con-
vergence rates”. Numerische Mathematik 97.2 (2004), pp. 219–268.

[9] Susanne Brenner and Ridgway Scott. The mathematical theory of finite element methods. Vol. 15.
Springer Science & Business Media, 2007.

[10] Alexander N. Brooks and Thomas J.R. Hughes. “Streamline upwind/Petrov-Galerkin formula-
tions for convection dominated flows with particular emphasis on the incompressible Navier-
Stokes equations”.ComputerMethods in AppliedMechanics and Engineering 32.1 (1982), pp. 199–
259.

[11] Philip Claude Delhaye Caplan. “Four-dimensional anisotropic mesh adaptation for spacetime
numerical simulations”. PhD thesis. Massachusetts Institute of Technology, 2019.

[12] P. G. Ciarlet. “Basic error estimates for elliptic problems”. In: vol. II. Handbook of Numerical
Analysis. North-Holland, Amsterdam, 1991, pp. 17–351.

104

[13] Max von Danwitz, Violeta Karyofylli, Norbert Hosters, and Marek Behr. “Simplex space-time
meshes in compressible flow simulations”. International Journal for NumericalMethods in Fluids
91.1 (2019), pp. 29–48.

[14] Jesus A. De Loera, Jorg Rambau, and Francisco Santos. Triangulations: Structures for Algorithms
and Applications. 1st. Springer Publishing Company, Incorporated, 2010.

[15] Daniele Di Pietro and Alexandre Ern.Mathematical Aspects of Discontinuous Galerkin Methods.
Vol. 69. 2012.

[16] Michael G. Edwards, J. Tinsley Oden, and Leszek Demkowicz. “An h-r-Adaptive Approximate
Riemann Solver for the Euler Equations in Two Dimensions”. SIAM Journal on Scientific Com-
puting 14.1 (1993), pp. 185–217.

[17] Eigen v3. http://eigen.tuxfamily.org. 2010.

[18] L.C. Evans. Partial Differential Equations. Graduate studies in mathematics. American Mathe-
matical Society, 2010.

[19] R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, J. B. Schroder, and S. Vandewalle.
“Multigrid methods with space–time concurrency”. Computing and Visualization in Science 18.4
(2017), pp. 123–143.

[20] Hans Freudenthal. “Simplizialzerlegungen von Beschrankter Flachheit”. Annals of Mathematics
43.3 (1942), pp. 580–582.

[21] Martin J. Gander. “50 Years of Time Parallel Time Integration”. In: Multiple Shooting and Time
DomainDecompositionMethods. Ed. by Thomas Carraro,Michael Geiger, StefanKörkel, and Rolf
Rannacher. Cham: Springer International Publishing, 2015, pp. 69–113.

[22] JörgGrande. “Red–green refinement of simplicialmeshes in d dimensions”.Mathematics of Com-
putation 88.316 (2019), pp. 751–782.

[23] Claes Johnson and Jukka Saranen. “Streamline Diffusion Methods for the Incompressible Euler
and Navier-Stokes Equations”.Mathematics of Computation 47.175 (1986), pp. 1–18.

[24] Igor Kossaczkỳ. “A recursive approach to local mesh refinement in two and three dimensions”.
Journal of Computational and Applied Mathematics 55.3 (1994), pp. 275–288.

[25] O. A. Ladyzhenskaia. The boundary value problems of mathematical physics. English. Springer-
Verlag New York, 1985.

[26] U. Langer, M. Neumüller, and I. Toulopoulos. “Multipatch Space-Time Isogeometric Analysis
of Parabolic Diffusion Problems”. In: Large-Scale Scientific Computing. Ed. by Ivan Lirkov and
Svetozar Margenov. Cham: Springer International Publishing, 2018, pp. 21–32.

[27] Ulrich Langer, Martin Neumüller, and Andreas Schafelner. “Space-Time Finite Element Meth-
ods for Parabolic Evolution Problems with Variable Coefficients”. In: Advanced Finite Element
Methods with Applications: Selected Papers from the 30th Chemnitz Finite Element Symposium
2017. Ed. by Thomas Apel, Ulrich Langer, Arnd Meyer, and Olaf Steinbach. Cham: Springer In-
ternational Publishing, 2019, pp. 247–275.

105

[28] Ulrich Langer and Andreas Schafelner. “Adaptive space-time finite element methods for non-
autonomous parabolic problems with distributional sources”. arXiv e-prints, arXiv:2003.09248
(2020).

[29] Ulrich Langer and Andreas Schafelner. “Space-Time Finite Element Methods for Parabolic Evo-
lution Problems with Non-smooth Solutions”. arXiv e-prints, arXiv:1903.02350 (2019).

[30] ChristophLehrenfeld. “On a space-time extendedfinite elementmethod for the solution of a class
of two-phase mass transport problems”. PhD thesis. Universitätsbibliothek der RWTH Aachen,
2015.

[31] Anwei Liu and Barry Joe. “Quality local refinement of tetrahedral meshes based on 8-
subtetrahedron subdivision”.Mathematics of computation 65.215 (1996), pp. 1183–1200.

[32] Joseph M Maubach. “Local bisection refinement for n-simplicial grids generated by reflection”.
SIAM Journal on Scientific Computing 16.1 (1995), pp. 210–227.

[33] MFEM: Modular Finite Element Methods Library. mfem.org.

[34] William F. Mitchell. “30 Years of Newest Vertex Bisection”. Journal of Numerical Analysis, Indus-
trial and Applied Mathematics 11 (2017), pp. 11–22.

[35] William F. Mitchell. “Adaptive refinement for arbitrary finite-element spaces with hierarchical
bases”. Journal of Computational and Applied Mathematics 36.1 (1991), pp. 65–78.

[36] Alexander D Mont. “Adaptive unstructured spacetime meshing for four-dimensional spacetime
discontinuous Galerkin finite element methods”. MA thesis. University of Illinois at Urbana-
Champaign, 2012.

[37] Stephen Edward Moore. “A stable space–time finite element method for parabolic evolution
problems”. Calcolo 55.2 (2018), p. 18.

[38] Martin Neumüller and Olaf Steinbach. “Refinement of flexible space–time finite element
meshes and discontinuous Galerkin methods”. Computing and Visualization in Science 14.5
(2011), pp. 189–205.

[39] K. Olsen, S. Day, Bernard Minster, Yanghao Cui, Amit Chourasia, Marcio Faerman, Reagan
Moore, Y. Hu, J. Zhu, Y. Li, Philip Maechling, and Thomas Jordan. “TeraShake: Strong Shaking
in Los Angeles Expected From Southern San Andreas Earthquake”. AGU Fall Meeting Abstracts
-1 (2005), p. 03.

[40] AlfioM.Quarteroni andAlberto Valli.Numerical Approximation of Partial Differential Equations.
1st ed. 1994. 2nd printing. Springer Publishing Company, Incorporated, 2008.

[41] María-Cecilia Rivara. “New longest-edge algorithms for the refinement and/or improvement of
unstructured triangulations”. International Journal for Numerical Methods in Engineering 40.18
(1997), pp. 3313–3324.

[42] Sunil V. Sathe. “Enhanced-discretization and solution techniques in flow simulations and
parachute fluid -structure interactions”. PhD thesis. Rice University, 2004.

106

mfem.org

[43] L. Ridgway Scott and Shangyou Zhang. “Finite Element Interpolation of Nonsmooth Functions
Satisfying Boundary Conditions”.Mathematics of Computation 54.190 (1990), pp. 483–493.

[44] Igor R Shafarevich and Alexey O Remizov. Linear algebra and geometry. Springer Science & Busi-
ness Media, 2012.

[45] Rob Stevenson. “The completion of locally refined simplicial partitions created by bisection”.
Mathematics of computation 77.261 (2008), pp. 227–241.

[46] Hiroshi Takenaka and Yushiro Fujii. “A compact representation of spatio-temporal slip distribu-
tion on a rupturing fault”. Journal of seismology 12.2 (2008), pp. 281–293.

[47] The CGAL Project. CGAL User and Reference Manual. 5.0.2. CGAL Editorial Board, 2020.

[48] C. T. Traxler. “An algorithm for adaptive mesh refinement in N dimensions”. Computing 59.2
(1997), pp. 115–137.

[49] Alper Üngör and Alla Sheffer. “Tent-Pitcher: A meshing algorithm for space-time discontinuous
Galerkin methods”. In: In proc. 9th int’l. meshing roundtable. 2000.

[50] Rüdiger Verfürth. “Error estimates for some quasi-interpolation operators”. ESAIM: Mathemati-
cal Modelling and Numerical Analysis 33.4 (1999), pp. 695–713.

[51] Shangyao Zhang. “Multi-level Iterative Techniques”. PhD thesis. The Pennsylvania State Univer-
sity, 1988.

[52] Shangyou Zhang. “Successive subdivisions of tetrahedra and multigrid methods on tetrahedral
meshes”. Houston J. Math 21.3 (1995), pp. 541–556.

[53] Xiaozhi Zhang, Jinjun Hu, Lili Xie, and Haiyun Wang. “Kinematic source model for simulation
of near-fault ground motion field using explicit finite element method”. Earthquake Engineering
and Engineering Vibration 5.1 (2006), pp. 19–28.

107

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgments
	Vita
	Abstract of the Dissertation
	Introduction
	Preliminaries
	A Model Problem

	Space-Time Finite Element Methods for Linear Parabolic PDEs
	The Basic Setting of Space-Time Methods
	Space-Time Formulations of Parabolic Problems
	Stability of a Space-Time Galerkin Method
	Convergence of a Stabilized Space-Time Galerkin Method
	Numerical Experiments

	Four-Dimensional Space-Time Meshes
	Construction of Space-Time Meshes
	Bisection of 4D Mesh Elements

	Conclusion
	Proof of lem:quartic-bound
	Bibliography

