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We show that the galaxy 4-Point Correlation Function (4PCF) can test for cosmological parity
violation. The detection of cosmological parity violation would reflect previously unknown forces
present at the earliest moments of the Universe. Recent developments both in rapidly evaluating
galaxy N-Point Correlation Functions (NPCFs) and in determining the corresponding covariance
matrices make the search for parity violation in the 4PCF possible in current and upcoming surveys
such as those undertaken by Dark Energy Spectroscopic Instrument (DESI), the Euclid satellite,
and the Vera C. Rubin Observatory (VRO).

I. INTRODUCTION

Among the known fundamental forces, only the weak
interaction violates parity [1–3]. Since the weak inter-
action played no role in the evolution of the large-scale
distribution of matter, observation of cosmological parity
violation would imply the existence of new forces at the
time of inflation. The Sakharov conditions [4] for pro-
ducing the baryon-antibaryon asymmetry (see e.g. [5]
for a review) require violations of both charge conjuga-
tion invariance (C) and of CP, the combination of C
with parity (P). The weak interactions violate CP as
well as parity [6], but this is well-described by the Stan-
dard Model of particle physics and cannot account for
the observed baryon-antibaryon asymmetry. Whatever
new CP-violating force is responsible for the asymmetry
may violate parity, as well.
Searches for parity violation have a long history. In

1848, Louis Pasteur directly observed a parity asymme-
try. He found that artificially synthesized tartaric acid
crystals could be separated into two distinct groups by
their shapes. The crystals in one group were mirror im-
ages of those in the other group. However, tartaric acid
produced organically in grapes yielded crystals of only
one group. This occurred because organic molecules con-
tain tetravalent carbon and when the carbon atom is at-
tached to four different atoms the result is a tetrahedral
shape that is distinguishable from its mirror image. That
our hearts are on the left side of the body must owe its
ultimate origin to the presence of just one form of each
amino acid and the absence of its mirror image. Indeed,
looking for dominance of organic molecules with a sin-
gle chirality has been used in searches for extraterrestrial
life (see e.g. [7] for a review).
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In this work, we present a novel means of testing par-
ity invariance in 3D large-scale structure, relying on the
same principle as Pasteur’s original separation: in gen-
eral, in 3D a tetrahedron and its mirror image cannot be
superimposed.
The possibility of parity violation in large-scale struc-

ture is independent of homogeneity and isotropy: a large
jar of crystals of one of the forms of tartaric acid would
be homogeneous and isotropic to the extent of its vol-
ume. On the other hand, parity violation in 3D de-
tected in the 4PCF would be evidence for primordial non-
Gaussianity, since the 4PCF produced by a purely Gaus-
sian random field would be simply products of 2PCFs
and hence parity-conserving. In addition the technique
described here can be used to search for parity violation
in a straightforward way in 5-point and higher correla-
tion functions using the algebraic structures described in
[8].
Tests of parity invariance in the cosmic microwave

background (CMB) have been discussed for more than
two decades (e.g. [9–15]) and carried out in [16]. Par-
ity violation might be observable, as well, in primordial
gravity waves[17]. Our proposal opens the search to an
entirely new class of experiments: 3D large-scale struc-
ture surveys.

II. POSSIBLE SOURCES OF COSMOLOGICAL

PARITY VIOLATION

Two frequently considered potential sources of cosmo-
logical parity violation are represented by the Lagrangian
densities

L ∝ φFµν F̃µν (1)

and

L ∝ φRµνσλR̃µνσλ. (2)

http://arxiv.org/abs/2110.12004v1
mailto:rncahn@lbl.gov


2

In Eq. (1), Fµν is the field strength of an Abelian field
like that associated with electromagnetism [9, 18] and

F̃µν = ǫµναβF
αβ is its dual field, with ǫµναβ denoting

the Levi-Civita tensor. In Eq. (2), Rµνσλ is the Riemann

tensor of General Relativity and R̃µνσλ = ǫµναβR
αβ
σλ is its

dual. In both cases φ is some scalar field of relevance in
the early Universe, such as the inflaton or quintessence.
Now, in both cases, there is no parity violation if φ is
constant in space and time, since then the terms of Eqs.
(1) and (2) are total derivatives. Such terms do not con-
tribute to the equations of motion since integration by
parts removes them from the action.
In both cases, parity violation leads to a preferred he-

licity for fluctuations, respectively in the gauge field for
Eq. (1) and in the metric for Eq. (2). This in turn
induces parity-violation in the correlations between the
curvature perturbations, and ultimately in the subse-
quent correlations between density fluctuations, which
seed the formation of the galaxies we may observe in sur-
veys of the late-time Universe.

III. POSSIBILITY OF PARITY VIOLATION IN

THE CMB

Previous considerations of cosmological parity viola-
tion have primarily focused on CMB. CMB polarization
can be decomposed into even- and odd-parity compo-
nents for each angular momentum, ℓ. It is possible to
form parity-violating observables from the product of
temperature and the parity-odd polarization or from the
product of the opposite-parity polarizations [9].
The temperature bispectrum of the CMB would evi-

dence parity violation if a scalene triangle appeared pro-
jected onto the observed sphere more often than its mir-
ror image. These two shapes could not be superimposed
simply by sliding along the surface of the sphere. How-
ever, two mirror-image triangles can always be super-
posed in the full three-dimensional space. More gener-
ally, in aD-dimensional space, parity-odd basis functions
must be a function of more than D position vectors [19].

IV. SEARCHING FOR PARITY-VIOLATION

WITH THE 4PCF

To search for parity violation we separate the parity-
conserving and parity-violating components of the cor-
relation function between fractional density fluctuations
δ(r) ≡ ρ(r)/ρ̄− 1 at locations ri, i = 0, 1, 2, 3, where ρ(r)
is the density and ρ̄ its average. By homogeneity one of
the positions can be taken as the origin. Without loss
of generality we thus set r0 = 0 so that the 4PCF is a
function of three vectors; we denote it ζ(r1, r2, r3). By
isotropy ζ must be invariant under simultaneous rotation
of r1, r2 and r3. The 4PCF thus depends on three radial
distances, r1, r2, r3 and the collection of angles defining
directions r̂1, r̂2, r̂3.

While our treatment ignores the anisotropy introduced
observationally by redshift-space distortions (RSD; for a
review, see [20]), these do not produce spurious parity
violation. One can straightforwardly show that RSD,
when the 4PCF is averaged over all orientations with
respect to the line of sight, do not produce any parity-
breaking signal.
In previous work ([8]) two of us showed how to con-

struct a complete set of isotropic basis functions of an
arbitrary number of unit vectors from products of spher-
ical harmonics. If the spherical harmonics are viewed as
representing angular momenta, doing so is simply a mat-
ter of combining a number of angular momenta to form
a quantity with zero total angular momentum. Here we
confine our discussion to isotropic functions of three unit
vectors, which is the case of interest for the 4PCF.
The isotropic functions can also be created in a Carte-

sian representation by forming a scalar quantity from a
collection of unit vectors. For example, from r1, r2, r3
one can form r1 · r2, (r1 · r2)(r2 · r3), r1 · (r2 × r3), etc.
This “direct” approach is convenient only for low values
of the angular momenta, that is, for few factors of dot
or cross products. It is clear that scalars formed from an
odd number of unit vectors are parity-odd.
Written explicitly in spherical harmonics, our isotropic

functions are

Pℓ1ℓ2ℓ3(r̂1, r̂2, r̂3)

= (−1)ℓ1+ℓ2+ℓ3
∑

m1,m2,m3

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

× Yℓ1m1
(r̂1)Yℓ2m2

(r̂2)Yℓ3m3
(r̂3) (3)

where the matrix is a Wigner 3-j symbol. To complete
the specification of the basis functions we label the ri by
the order r1 ≤ r2 ≤ r3. Thus (ℓ1,m1) corresponds to the
shortest of the ri, and so on. The triangular inequalities,
|ℓ1 − ℓ2| < ℓ3 < ℓ1 + ℓ2 are enforced by the 3-j symbol.
The parity of the overall state is odd if the sum of the ℓi
is odd.
The spherical harmonics form a complete basis for

functions on the sphere and so the Pℓ1ℓ2ℓ3 are a complete
orthonormal basis for isotropic functions of r̂1, r̂2, r̂3. Us-
ing the orthogonality properties of the 3-j symbols, we
have

∫

dr̂1dr̂2dr̂3 Pℓ1ℓ2ℓ3(r̂1, r̂2, r̂3)P
∗

ℓ′
1
ℓ′
2
ℓ′
3

(r̂1, r̂2, r̂3)

= δKℓ1ℓ′1
δKℓ2ℓ′2

δKℓ3ℓ′3
, (4)

where dr̂i is the differential solid angle and δKℓℓ′ is the
Kronecker delta, unity if its subscripts are equal and zero
otherwise.
It follows from the properties of the spherical harmon-

ics and the Wigner 3-j symbols that

Pℓ1ℓ2ℓ3(−r̂1,−r̂2,−r̂3) = (−1)ℓ1+ℓ2+ℓ3Pℓ1ℓ2ℓ3(r̂1, r̂2, r̂3)

= P∗

ℓ1ℓ2ℓ3
(r̂1, r̂2, r̂3). (5)

Consequently, Pℓ1ℓ2ℓ3 is real if ℓ1 + ℓ2 + ℓ3 is even and
is imaginary if the sum is odd. Moreover, the parity-odd
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components are those for which ℓ1 + ℓ2 + ℓ3 is odd. A
variety of useful algebraic relations among the Pℓ1ℓ2ℓ3 are
given in [8].
The 4PCF can be expanded as

ζ(r1, r2, r3) =
∑

ℓ1ℓ2ℓ3
Zℓ1ℓ2ℓ3(r1, r2, r3) (6)

× Pℓ1ℓ2ℓ3(r̂1, r̂2, r̂3).

It follows from the properties of the Pℓ1ℓ2ℓ3 that Zℓ1ℓ2ℓ3

is real if ℓ1 + ℓ2 + ℓ3 is even and imaginary if the sum
is odd. The expansion coefficient Zℓ1ℓ2ℓ3 is obtained by
averaging over the continuous position x out from which
r1, r2, r3 are measured:

Zℓ1ℓ2ℓ3(r1, r2, r3) (7)

=

∫

d3x

V

∫

dr̂1dr̂2dr̂3 ζ̂(r1, r2, r3;x)P
∗

ℓ1ℓ2ℓ3
(r̂1, r̂2, r̂3),

where V is the volume over which x ranges. In the in-

tegrand, ζ̂(r1, r2, r3;x) is the estimate of the 4PCF ob-
tained by sitting at a point x, i.e. it is δ(x)δ(x+r1)δ(x+
r2)δ(x+r3); we are projecting this estimate onto the ba-
sis of Pℓ1ℓ2ℓ3 and then, with

∫

d3x/V , averaging over all
possible centers x.

The problem of measuring efficiently the large-scale
3PCF in the distribution of galaxies was solved by the
technique developed in [21–23], with extensions to 4PCF
and higher by [24]. We briefly outline the approach here.

In practice we have in place of the continuous distribu-
tion of density fluctuations δ(r) the collection of discrete
galaxy locations. As a first step, we choose a galaxy at an
absolute position xi. Next, we bin the relative distances
of its neighbors into spherical shells which we denote by
rbj . We then expand the angular dependence in each shell
in spherical harmonics as:

δ(xi, r
b
j , r̂) =

∑

ℓ,m

aℓm(xi, r
b
j)Yℓm(r̂) (8)

where

aℓm(xi, r
b
j) =

∑

α

Y ∗

ℓm(r̂α). (9)

The summation is over galaxies α = 1, 2, . . . in the radial
bin rbj surrounding the galaxy at xi.

Using Eq. (8) for δ(xi, r
b
j , r̂) and forming the product

indicated by ζ̂ (defined below Eq. 7), we then project
onto the basis of Pℓ1ℓ2ℓ3 (see Eq. 3) and average over xi

(the discrete analog of
∫

d3x/V in Eq. 7). The result is

Zℓ1ℓ2ℓ3(r
b
1, r

b
2, r

b
3)

= (−1)ℓ1+ℓ2+ℓ3
∑

m1m2m3

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

×Aℓ1m1,ℓ2m2,ℓ3m3
(rb1, r

b
2, r

b
3), (10)

where we have defined

Aℓ1m1,ℓ2m2,ℓ3m3
(rb1, r

b
2, r

b
3)

=
1

N

N
∑

i=1

aℓ1m1
(xi, r

b
1)aℓ2m2

(xi, r
b
2)aℓ3m3

(xi, r
b
3) (11)

and there are N galaxies in the survey.
While the proposed search for cosmic parity violation

is simple to describe, its implementation presents some
challenges, which we now briefly outline. One concern is
the computational expense of determining the 4PCF. The
problem of measuring higher-point correlations on large
scales efficiently was solved by the technique described
above [21, 24].
The observables are the Zℓ1ℓ2ℓ3(r

b
1, r

b
2, r

b
3). Each is

specified by three integers constrained by the triangular
inequalities, and by three radial bins. A priori there is
no preferred scale for searching parity violation. Searches
where each tetrahedron side is of the order of a few
Mpc to one or two hundred Mpc seem reasonable. With
ℓmax = 5, a bin width of 10 Mpc and a maximal side
length rbj of 200 Mpc, there are thousands of different

Zℓ1ℓ2ℓ3(r
b
1, r

b
2, r

b
3).

More daunting is the challenge of determining the co-
variance matrix among so many observables. An analytic
expression for the covariance matrix can be obtained by
assuming a Gaussian random density field when eval-
uating the appropriate expectation value of eight den-
sity fluctuations [25]. This offers a smooth, invertible
template, which can then be calibrated using a reason-
ably modest number of mock catalogs. An analytical
covariance template can be used to mitigate the sam-
pling fluctuations that occur when the covariance is sim-
ply drawn from a number of mock catalogs [26, 27] and
due to these fluctuations may even fail to be positive
semi-definite [28].
Another challenge of a practical analysis is that com-

puting NPCFs from spectroscopic surveys inevitably re-
quires the use of randomly distributed particles to which
the data are compared (e.g. [29–31]). The randoms are
necessary to compensate for the survey footprint and for
variations in the galaxy density in both the angular and
radial coordinates. These latter can arise from inhomo-
geneities in the depth of the imaging survey used to target
the spectroscopy as well as from the need to mask out the
Galactic plane and bright stars.
Furthermore, NPCF computation from a spectroscopic

survey requires a radial selection function, which gives
the expected galaxy number density as a function of red-
shift in the absence of clustering. In practice, this selec-
tion function must be inferred from the observed spec-
troscopic data themselves, since the imaging survey used
to target does not have radial information. In imposing
this inferred selection function on the randoms which are
then used to correct for the survey geometry, particular
care must be taken to avoid spuriously introducing parity
violation.
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Finally, it is important to handle carefully any possible
systematics introduced by the mechanical method the
survey uses to place an optical fiber on a galaxy, such as
potential under-sampling of highly dense regions as can
be caused by the limitations of coverage by robotic fiber
positioners in DESI. Methods to correct these effects at
the level of the 2PCF and its Fourier-space analog the
power spectrum do exist [32–34] but need to be developed
for the 4PCF.

Already there are significant data sets (Baryon Oscil-
lation Spectroscopic Survey (BOSS), extended Baryon
Oscillation Spectroscopic Survey (eBOSS)) that can be
analyzed in the fashion described above. However, ex-
periments now underway (Dark Energy Spectroscopic In-
strument, DESI) and others that will soon take data (Eu-
clid, Vera Rubin Observatory, VRO) will provide much
more extensive data and will enable more stringent tests
of parity violation.

A simple model-free test is to compare the magnitudes
of the parity-violating terms (“signal’) to the “noise”
given by the Gaussian random field covariance. How-
ever, much more powerful tests will be possible of mod-
els that predict relations between the various parity-
violating terms.

V. SUMMARY

In this work we have proposed a new method to search
for parity violation, the first using 3D large-scale struc-
ture (LSS). This method relies on the fact that in 3D,
tetrahedra, represented by the 4PCF, are the lowest-
order shapes that cannot be rotated into their mirror
images, and so the lowest-order shapes that can probe
parity violation. We have outlined how measurement
of the 4PCF in a basis of isotropic functions can be
made computationally feasible, and discussed some of
the challenges that will need to be carefully addressed
to enable a robust analysis. The coming years will offer
ideal datasets for 3D parity-violation constraints with the
4PCF. Overall, the detection of a parity-violating signal
in LSS would illuminate early Universe physics and per-
haps even reveal physical processes beyond the Standard
Model.
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