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ARTICLE OPEN

Eye gaze patterns reveal how reasoning skills improve with
experience
Belén C. Guerra-Carrillo1,2 and Silvia A. Bunge 1,2

Reasoning, our ability to solve novel problems, has been shown to improve as a result of learning experiences. However, the
underlying mechanisms of change in this high-level cognitive ability are unclear. We hypothesized that possible mechanisms
include improvements in the encoding, maintenance, and/or integration of relations among mental representations – i.e., relational
thinking. Here, we developed several eye gaze metrics to pinpoint learning mechanisms that underpin improved reasoning
performance. We collected behavioral and eyetracking data from young adults who participated in a Law School Admission Test
preparation course involving word-based reasoning problems or reading comprehension. The Reasoning group improved more
than the Comprehension group on a composite measure of four visuospatial reasoning assessments. Both groups improved
similarly on an eyetracking paradigm involving transitive inference problems, exhibiting faster response times while maintaining
high accuracy levels; nevertheless, the Reasoning group exhibited a larger change than the Comprehension group on an ocular
metric of relational thinking. Across the full sample, individual differences in response time reductions were associated with
increased efficiency of relational thinking. Accounting for changes in visual search and a more specific measure of relational
integration improved the prediction accuracy of the model, but changes in these two processes alone did not adequately explain
behavioral improvements. These findings provide evidence of transfer of learning across different kinds of reasoning problems after
completing a brief but intensive course. More broadly, the high temporal precision and rich derivable parameters of eyetracking
make it a powerful approach for probing learning mechanisms.

npj Science of Learning  (2018) 3:18 ; doi:10.1038/s41539-018-0035-8

INTRODUCTION
Reasoning, the ability to solve novel problems, relies on multiple
cognitive processes including relational thinking1–3 as well as
working memory and cognitive control (e.g., refs. 4–7). Indeed,
relational thinking is an essential component, as it allows us to
form relational representations from mere percepts.8 Solving
reasoning problems, such as those involving transitive inference,
relies heavily on processes supported by relational thinking,
including the ability to encode, maintain, and integrate mental
relations.1,3 Together, these processes allow us to identify patterns
and solve novel problems and are fundamental for human
learning (e.g., refs. 9,10).
Prior research has demonstrated that reasoning can improve

with targeted practice and increased task-specific expertise across
the lifespan;8,11–13 more broadly, it has been argued that
schooling hones reasoning skills.14,15 However, it is still unknown
which aspects of reasoning contribute to improved behavioral
performance. Do people become more efficient at relational
thinking with experience? To address this question, we leveraged
the high temporal precision and rich derivable parameters of
eyetracking to index cognitive processes that may support
improvements in reasoning over time.
In earlier work, our laboratory demonstrated that young adults

who underwent 100 h of preparation for an exam that taxes
relational reasoning (the Law School Admission Test (LSAT))
showed improvements in reasoning performance and changes in
the frontoparietal network of the brain.16–18 Compared to a

passive control group, the LSAT group improved more in accuracy
and response times (RTs) on a test of transitive inference (Fig. 1a)
that required the integration of novel visuospatial relations.18,19

Moreover, they showed a greater concomitant decrease in
activation of dorsolateral prefrontal cortex,18 a region broadly
implicated in high-level cognition (e.g., ref. 20). The LSAT group
also showed changes in structural and resting-state functional
connectivity of the frontoparietal network,16,17 particularly
between regions implicated in relational thinking.21,22 Together,
these findings provide evidence of experience-dependent brain
plasticity as a result of practice with reasoning. However, these
brain imaging results alone are insufficient to conclude which
cognitive mechanisms were altered by the intervention.23,24

Broadly speaking, candidate mechanisms that could underlie
improvements in reasoning include the ability to identify relevant
pieces of information in a display (visual search)3 and relational
thinking processes such as the encoding, maintenance, and
integration of relations.8,25 Manipulating any of these elements
have been shown to influence reasoning performance. For
example, performance on a reasoning task tends to drop with
an increase in the number of relations that must be integrated.1,26

Additionally, people tend to make incorrect deductions when
individual premises contain convoluted wording, as this hinders
relational encoding.3 Finally, drawing attention to relevant
relations or segmenting a complex task to facilitate focus on
single relations can improve performance, even after controlling
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for other task demands.27 These examples illustrate the point that
reasoning ability relies on multiple cognitive processes.
Here we sought to determine which processes, if any, are honed

with experience—both as a result of reasoning instruction/
practice and more generally from repeated experience with a
test (i.e., a test–retest effect). To this end, we probed changes in
patterns of eye movements on a reasoning task. In the ~7 s that it
takes to solve one of the problems on this task, participants make
~23 eye fixations. As such, we posited that analyzing patterns of
eye movements should yield complementary insights relative to
prior behavioral and brain imaging research on reasoning
interventions.12,18,28

Participants in this study performed a transitive inference task
(Fig. 1a; adapted from refs. 18,19) while we collected eyetracking
data, both before and after they completed one of the two online
LSAT preparation courses developed by Kaplan, Inc. The Logic
Games course focused on reasoning about novel problems, and
the Reading Comprehension course on answering questions
about passages of text (see Methods for sample problems for
both sections of the LSAT). Our eyetracking task requires
participants to jointly consider a subset of relevant visuospatial
relations depicted by balance scales (see Fig. 1). On the surface,
this task bears no resemblance to the text-based problems in the
LSAT curriculum. However, at a deeper level, both tax relational
thinking.
We developed three gaze metrics to assess, respectively, (1)

visual search; (2) a broad measure of relational thinking
encompassing encoding, maintenance, and integration of rela-
tions; and (3) a more specific measure of relational integration (see
Table 1 and Methods for details). Although there have been no
prior eyetracking studies involving this paradigm (see refs. 29 for
another transitive inference paradigm), our metrics were informed
by eyetracking studies of analogical reasoning22 and matrix
reasoning,23 as well as visual search30 and memory encoding.31

Based on these studies (see also refs. 32,33), we operationalized
efficiency of visual search as the number of fixations needed to
identify the relevant relations in a stimulus array,30,34 relational
thinking as the total duration spent fixating the relevant
relations,35 and relational integration, more specifically, as the
number of transitions between these relations, based on the
premise that increased efficiency of integrating the relations
depicted in two stimuli should be manifested in looking back and
forth between them fewer times.36,37

We had initially sought to use eye gaze metrics to isolate three
distinct stages of task performance: visual search, relational
encoding, and relational integration. However, examination of
the eye gaze data (collapsed across groups and time points, Fig. 2)
did not support such clear-cut stages of processing (see also ref. 3).

First, fixations on irrelevant scales did not cease abruptly after an
initial search of the array; rather, they tapered off slowly over the
course of the trial (Fig. 2). As such, rather than measuring visual
search as the number of fixations a participant made before
looking at the irrelevant scales ever again, we identified the point
in the trial at which the probability of looking at an irrelevant scale
dipped below chance and the probability of looking at a relevant
scale rose above chance. Second, the duration of fixations on
relevant scales did not decrease over the course of a trial, as it
should if this were a pure metric of relational encoding; rather, it
increased (Fig. S2). This finding intimates that long fixations on a
relevant scale toward the end of the trial reflect simultaneous
consideration of that scale and the other relevant scale—i.e.,
relational integration. As such, we renamed the metric that we had
previously labeled “relational encoding” to “relational thinking,” to
denote the fact that it likely reflects relational encoding and
maintenance toward the beginning of the trial (after preferentially
looking at the relevant scales), and relational integration toward
the end of the trial.
Considering the data indicated a more gradual transition from

visual search to relational integration, we refined the planned gaze
metrics to account for the reality of how participants solved the
problems (see Methods) and then tested for effects of group and
time point. Importantly, the revised metrics were unbiased with
respect to effects of LSAT instruction: they were defined on the
basis of data at the first time point, collapsed across groups.
Our key predictions were that reasoning instruction/practice

would be associated with improved reasoning performance and
efficiency in relational thinking, including the more specific
measure of integration. We tested these hypothesis with
behavioral and gaze data from the transitive inference task. We
also assessed behavioral improvements with a composite measure
of four reasoning tests, to better characterize the generalizability
of the intervention.38–40 We considered these non-verbal mea-
sures of reasoning tests of moderate transfer, as they are very
different from the word-based problems in Logic Games but have
shared demands on relational thinking. The behavioral test battery
additionally included assessments of working memory, planning,
and selective attention, which we used to characterize the extent
of transfer to untrained tasks. However, we did not anticipate
improvements on these measures, given limited evidence to date
of far transfer of learning in adults.41

Finally, we undertook an exploratory analysis to understand the
cognitive mechanisms that support test–retest improvements on
the transitive inference task and underlie individual differences in
pre-test performance. Specifically, we examined the relationship
between relational thinking, integration, visual search, and
behavior.

Fig. 1 Transitive inference task. a Sample stimulus array, with four relations at the top and the question at the bottom. In this sample problem,
participants had to encode that the blue ball was heavier than the orange one, and that the orange and purple balls were equally heavy, to
determine that the blue ball was heavier than the purple one. b Eyetracking adaptation from refs. 18,19: each trial began with a fixation cross in
the center of the screen (1000ms) that cued participants to fixate on it, followed by the presentation of the question and target balls. After
100ms, four scales would appear, only two of which were relevant to the problem. A trial ended immediately after the participant pressed a
button to indicate which of the two target balls was heavier
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RESULTS
Improvements related to targeted reasoning instruction/practice
We quantified evidence in support of our hypotheses with
Bayesian tests, permitting us to assess how likely our data are to
support one model versus another using the Bayes Factor (BF10)
and thus also quantify the strength for the null hypothesis.42 We

used Bayesian single-sided t tests to gauge support for the
prediction that the Reasoning group would improve in the
behavioral and gaze metrics. We followed these tests with
Bayesian mixed regressions to assess the probability that these
changes could be attributed to reasoning practice beyond
test–retest alone or subject variance. As such, we quantified the
strength of evidence in favor of including the Group×Time term
relative to a model containing both main effects. We modeled
subject variance as a random nuisance factor, but the model
design is otherwise equivalent to a 2 × 2 repeated-measures
analysis of variance. We report BF10 (see Table S3 for detailed
output) and interpret this metric in accordance with prior work:42

BF10 > 1: data provide positive evidence for the hypothesis, BF10 >
3: moderate evidence, BF10 > 10: strong evidence. The inverse
applies for the null hypothesis (1/BF10).

Transfer to the composite reasoning metric. The Reasoning group
showed approximately a 22% improvement on this metric; by
contrast, there was no evidence that performance of the
Comprehension group changed between time points (Fig. 3;
Table 2). The Group×Time interaction model also received strong
support. Thus, according to the Bayesian analysis, there is strong
evidence that the Reasoning group improved on the composite of
four measures of reasoning; this was not the case for the
Comprehension group.
We also tested for transfer to the other cognitive measures in

our test battery. There was no evidence that performance on
these measures changed between time points in either group
(Table S4). Based on these results, there was evidence of transfer
from the LSAT Logic Games course to a composite score of four
measures of reasoning but little evidence of far transfer from the
study materials to other cognitive domains.

Transfer to the transitive inference task. Given that accuracy was
at ceiling already at pre-test (Fig. S1) for this sample, unlike the
sample in our prior study,18 we focused exclusively on RTs on
correct problems as a measure of performance. The data provided
strong evidence in support of the hypothesis that the Reasoning
group would become faster at accurately solving the problems
between time points (BF10 ≈ 27.41 ± < 0.00, Δ ≈ 18%). There was
positive, albeit weaker, evidence that the Comprehension group
also improved (BF10 ≈ 2.18 ± < 0.00). Although the data provided
support for the model containing the Group×Time term (BF10 ≈

Table 1. Gaze metrics indexing processes that may support improvements in reasoning

Cognitive
process

Gaze metric Evidence supporting H1 BF10 ≈ P(H1 | data)/P(H0 | data)

H1= POST < PRE H0= Group
+ Time

Reasoning Comprehension H1=
Group ×
Time BF10

PRE Mdn
[95% CI]

POST Mdn
[95% CI]

BF10 (%
error)

PRE Mdn
[95% CI]

POST Mdn
[95% CI]

BF10 (%
error)

BF10 (%
error)

Visual
search

Decrease in the number of fixations on any scale before
homing in on the relevant scales

5.75 [4, 7] 5 [4, 5] 6.51*
(±<0.00)

5 [4, 5.75] 4 [3, 5] 0.67
(±<0.00)

0.60 (±2.79)

Relational
thinking

Decrease in the total duration of fixations on relevant
relations after homing in on the relevant scales

2526.5
[1010.50,
3259.00]

1122.5
[555.99,
1854.50]

240.03***
(±<0.00)

1635.75
[1069,
2256.25]

1725
[1387.5,
1990.18]

0.30˙
(±0.02)

3.66* (±1.98)

Relational
integration

Fewer saccades between the two relevant scales after
homing in on the relevant scales

3 [1.75, 3.75] 2 [1, 3] 3.15*
(±<0.00)

2 [2, 3] 2.5 [2, 3] 0.14˙
(±<0.00)

1.58 (±2.62)

Mdn [95% CI]: Median with 95% confidence intervals, calculated with 1000 bootstrap iterations. H1= POST < PRE assessed with Bayesian paired single-sided t
test. Interaction models tested with Bayesian mixed regressions. Estimations made using BayesFactor’s53 default Cauchy prior scale r ¼ 1

2

ffiffiffi

2
p

and prior uniform
probability to the models. Refer to Table S1 for specification of the models and posterior odd estimates. Approximate classification scheme for the
interpretation of Bayes factors from ref. 40: ***Extreme evidence H1, *Moderate evidence H1 and ˙Moderate evidence for H0

Fig. 2 Fixations patterns on the transitive inference task. Plotting
fixations during problem solving across groups and time points.
Participants made a median of 22 fixations on accurately solved
problems. Trials up to 64 fixations were included in the analyses (i.e.,
range in x axis). Vertical dotted lines denote quartiles of total
fixations (e.g., the vertical line denoting Q3, indicates that 75% of
the trials had up to 34 fixations). The colored dots represent the total
number of fixations (y axis) from participants across both groups
and time points. The colors indicate the areas of interest (AOIs)
where those fixations occurred: two relevant scales (teal), two
irrelevant scales (purple), and the question area (yellow). Gray points
indicate fixations to points on the screen outside the AOIs
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8.30 ± 4.48%), the strongest model included only the effect of
Time (BF10 ≈ 39.24 ± 2.41%). Thus, although the evidence of
improvement was stronger for the Reasoning group, both groups
got faster at solving the task between time points (Fig. 4a).

Gaze metrics. We predicted that reasoning instruction would
lead to improved efficiency of relational thinking, including
changes in relational integration. For the Reasoning group, the
gaze data provided moderate support for the model stipulating
changes in the selective measure of relational integration, and
extreme evidence in favor of the model testing improvements in
the broader measure of relational thinking (for these and
subsequent results, see Table 1; Fig. 4b–d). By contrast, for the
Comprehension group, there was moderate evidence in favor of
the null model for both metrics, suggesting that their pre- and
post-test scores are comparable. When considering whether the
changes in relational thinking in the Reasoning group were
greater than in the Comprehension group, we find that the data
are 3.66 times more likely under the model including the
Group×Time term compared to the model testing only the main
effects. Indeed, the interaction model was best supported by the
relational thinking data (BF10 ≈ 7.27 ± 1.51%). Conversely, there
was moderate evidence against including the interaction term to
model the relational integration data (BF10 ≈ 0.17 ± 2.32%). Thus
there is moderate evidence that reasoning instruction/practice led
to improved efficiency of relational thinking.
We also tested for improved efficiency of visual search. For the

Reasoning group, the data provided moderate support for the

model stipulating increased search efficiency; this was not the
case for the Comprehension group. However, the data did not
support the Group×Time model: rather, there was moderate
support for the main effect of Time (BF10 ≈ 4.01 ± 1.14%). These
results suggest that changes in visual search were likely due to
individual differences and test–retest effects present across both
groups, rather than to an effect of reasoning instruction/practice.

Individual differences in performance and test–retest
improvements on the transitive inference task across the full
sample
We first assessed the relationships among the gaze metrics at pre-
test with Kendall’s tau Bayesian correlations. At pre-test, relational
thinking was strongly correlated with both visual search (τ= 0.40,
BF10 ≈ 161.67) and relational integration (τ= 0.64, BF10 ≈ 4.742e+
6), but the latter two metrics were only moderately correlated with
each other (τ= 0.29, BF10 ≈ 6.41). Similarly, change in relational
thinking correlated strongly with changes in relational integration
(τ= 0.53, BF10 ≈ 24534.15) and moderately with changes in visual
search (τ= 0.29, BF10 ≈ 6.61); by contrast, there was no evidence
that changes in visual search and relational integration were
correlated with one another (τ= 0.19, BF10 ≈ 0.91). These results
provide evidence that greater efficiency of relational thinking was
related to both visual search and relational integration, which in
turn were separable components of relational reasoning.
Next, we used Bayesian regression models to determine which

gaze metric(s) could best explain changes in RTs between time
points across the full sample. The models included LSAT group as
a nuisance variable and RT changes as a dependent variable. The
predictors included one or more of the gaze metrics, scaled to the
same units (deviations from the grand mean). We found the
strongest evidence in favor of a model that included changes in
relational integration, relational thinking, and visual search as
predictors of change in RTs (BF10 ≈ 27.75 ± 0.85%). Together, these
metrics accounted for ~35% of the variance in RT reduction. In
simpler models testing individual gaze predictors of changes in
RTs, there was strong evidence in favor of relational thinking
(BF10 ≈ 20.11 ± 1.70%), which accounted for ~23% of the variance
in RT reductions (β= 0.72). By contrast, there was mild evidence
for visual search (BF10 ≈ 2.83 ± 0.79%, R2= 0.14, β= 0.25) and no
evidence in favor of the more specific measure of relational
integration (BF10 ≈ 0.53 ± 1.52%). The fact that the relational
thinking metric was a continuous, time-based measure rather
than a frequency count (unlike visual search and relational
integration) cannot explain why it was more predictive of change
in RTs than visual search: in a follow-up analysis, we found that a
continuous measure of visual search, total duration, explained
even less of the variance than the number of search fixations
(BF10 ≈ 0.20 ± 1.42%, R2= 0.05, β= 0.19). Overall, these results

Fig. 3 Performance on reasoning assessments. Scaled score on the
composite measure of reasoning (y axis), before and after (x axis)
each group completed their LSAT course. Error bars are 95% CI
estimated with 5000 bootstrap iterations. **Strong evidence that the
Reasoning group showed greater improvements across time points.
See Table 2 for detailed statistics

Table 2. Transfer to composite reasoning measure

Subtest included Description of subtest Evidence supporting H1 BF10 ≈ P(H1 | data)/P(H0 | data)

H1= POST < PRE BF10 (~ % error) H0= Group+ Time

Reasoning Comprehension H1= Group × Time

BF10 (% error)

Odd One Out Infer rules that relate object features to identify a deviant object among 9 choices 20.78** (±<0.00) 0.63 (±<0.00) 15.06** (±3.04)

Object Reasoning Decide whether four 2 × 2 matrices containing geometrical patterns form a sequence

Analogical Reasoning Apply the rule governing the relationship between three objects to a new set of objects

Analysis Synthesis Solve logical puzzles involving color codes representing symbolic rules

H1= POST < PRE assessed with Bayesian single-sided paired t test. Interaction models tested with Bayesian mixed regressions. Estimations made using
BayesFactor’s53 default Cauchy prior scale r ¼ 1

2

ffiffiffi

2
p

and prior uniform probabilities. See Table S1 for model specification and posterior odd estimates.
Approximate classification scheme for the interpretation of Bayes factors from ref. 40: **Strong evidence for H
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point to relational thinking as a key facet of practice-related
improvements in transitive inference task performance.

DISCUSSION
Which cognitive mechanisms underlie improvements in relational
reasoning? We sought to address this question by examining
improvements related to targeted reasoning instruction and
practice with the Logic Games section of the LSAT and general
test–retest improvements across two time points by also
considering the changes in the group who prepared for the
Reading Comprehension section of the LSAT. Our key prediction
was that practicing solving word-based logic problems would lead
to improved performance on visuospatial tests of reasoning, as
well as improved efficiency of relational thinking on a visuospatial
transitive inference task, as measured via gaze metrics. We
additionally tested whether either group exhibited increased
efficiency of visual search.
We found evidence that reasoning instruction/practice led to

improved performance on a composite of four measures of
reasoning. On the surface, these measures of reasoning did not
resemble the LSAT problems but rather shared a deeper
commonality of demands on relational thinking. Thus these
results provide evidence of moderate transfer from one type of
reasoning practice to other reasoning tests.
Additionally, we found evidence that reasoning instruction/

practice led to increased efficiency on our ocular measure of
relational thinking. By contrast, there was no compelling evidence
that the changes in visual search or the specific metric of relational
integration could be attributed to the intervention. Thus we
conclude that reasoning instruction/practice predominantly
honed the ability to encode and maintain several mental relations
in mind.

Although reasoning/instruction affected relational thinking on
the transitive inference task, it did not yield a benefit in terms of
behavioral changes on this task over and above a test–retest
effect. This discrepancy illustrates the idea that gaze metrics can
pinpoint changes in specific cognitive processes even if the
behavioral measures administered in the study are insufficiently
sensitive. Similar arguments have been made with regard to brain
imaging studies examining the effects of an intervention43 or
predicting future behavior.44

Having found evidence that the Reasoning group improved on
the composite reasoning measure, we sought to characterize the
extent of transfer to other cognitive domains. In our prior study,18

we did not observe transfer of reasoning instruction/practice to
individual measures of matrix reasoning, rule induction, working
memory, or processing speed. Here we examined transfer to
composite measures of various cognitive abilities, rather than
individual tests, as a more robust test of transfer.40 We found
moderate evidence in favor of the null hypothesis—i.e., no change
—for measures of planning, working memory, selective attention,
and verbal comprehension. Taking together the results from both
studies, there is—as predicted based on prior intervention
studies41,45—no evidence of far transfer from LSAT practice.
Finally, we adopted an individual differences approach to

understand the processes that support test–retest improvements
and performance on the transitive inference task. At pre-test,
relational thinking was strongly correlated with both visual search
and relational integration, but these two metrics were only weakly
correlated with each other. This pattern of results was also
obtained for correlations among the change scores for these
metrics. These findings suggest that there could be temporal
overlap between visual search and the early stages of relational
thinking (initial encoding of scales), whereas relational integration
may overlap with the later stages (maintenance of the relevant
relations). It is also plausible that our metric of relational

Fig. 4 Performance and gaze metrics from the transitive inference task. Cumulative distribution functions (CDF) on each measure, for each
group (left panels= Reasoning group) and time point (blue functions= post-test scores). Vertical lines denote: medians (solid), and 25th or
75th percentiles (dotted lines left or right to the median, respectively). Classification scheme to interpret Bayes factors (BF10) used to quantify
the strength of evidence in support of the models testing: improvements across time points (i.e., POST < PRE), and differential improvements
between the groups (i.e., Group×Time): ***Extreme, **Strong, *Moderate, ~Anecdotal. Refer to Table 1 for detailed statistics
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integration includes a verification or checking process that occurs
after relational integration but prior to responding. Similar ocular
behaviors related to confirming an answer have been observed in
cognitive assessments of planning.46

Across the entire sample, we found evidence that RT reductions
were associated with improved efficiency of relational thinking
and visual search but that relational thinking was likely the
strongest driver of change. This finding, along with the pattern of
correlations among gaze metrics, suggests that these gaze metrics
capture at least partially separable cognitive processes—and that
each contributes differentially to improved performance. Indeed,
even when accounting for improved attentional control under-
lying visual search, changes in relational thinking are still a critical
predictor of improved reasoning performance.
Although this study leverages eyetracking measures in a novel

way to provide insights regarding learning mechanisms, there are
several limitations to consider. First, while we have evidence that
practicing Logic Games is associated with gains in other measures
of reasoning, we lack strong evidence that Logic Games
performance itself improved after the 6-week online course, as
measured via one brief (8-min) problem set administered at pre-
test and two at post-test. This outcome contrasts with the
improvements we found in our laboratory’s prior study,18 which
differed from the current study in multiple ways. First, changes in
LSAT performance in the previous study were assessed with full-
length practice exams, which included 4 problem sets (35 min
each) for Logic Games as well as for Reading Comprehension.
Although the problems we had selected are considered of
medium difficulty and test common question types, the strategies
taught in the LSAT course may not have been particularly useful
for solving the specific problems we selected.
Second, although participants rated both courses as effective,

the online course format—while ideal from an experimental
standpoint, as it enabled us to compare two separate but similarly
structured courses—may not have been an ideal learning
platform. Additionally, those participants who did not plan to
take the LSAT in the near future are likely to have devoted less
time to their study than they would have otherwise; with our self-
report measure, we do not know for certain how many hours they
spent on the paper-and-pencil practice problems.
Finally, there may have been a synergistic effect in the previous

study of studying for all sections of the LSAT together (Logic
Games, Analytical Reasoning, and Reading Comprehension) and
spreading the course over 3 months as opposed to 6 weeks.
However, despite the lack of improvement on our brief Logic
Games assessment, we contend that we can meaningfully assess
effects of this experience on other assessments that tap over-
lapping skills.
Another limitation of the study is that pre-test accuracy on the

transitive inference task was at ceiling, in contrast with our prior
study.18 This difference likely reflects differing sample character-
istics. The task was sensitive to RTs in this study, but the two
groups sped up to a similar degree. We can only speculate that, if
the task had been more difficult for these participants, we would
have had an opportunity to observe a differential effect of
Reasoning and Comprehension courses on accuracy.
A final limitation is that recruitment and retention were

challenging. The study required students who were inexperienced
with the LSAT and were willing to commit to studying for only one
section—a requirement that likely dissuaded students who sought
to take the LSAT immediately. Additionally, the study required a
serious time commitment for undergraduates who already had a
full course load. However, considering that there were similar
levels of attrition in the Reasoning and the Comprehension
groups, we are still able to draw meaningful conclusions about the
effects of reasoning practice.
To conclude, our study highlights the utility of eyetracking for

probing the mechanisms underlying real-world learning. The gaze

metrics revealed that changes in relational thinking contributed to
improved reasoning performance, beyond changes in supporting
attentional processes. The high temporal resolution of the
eyetracker provides a more detailed window into the series of
rapid computations and highly interactive processes that underlie
reasoning27 than is possible with neuroimaging or behavioral
methods alone. Beyond elucidating mechanisms of plasticity,
then, the metrics and observations reported here could inform
future research on the thought processes that unfold during
reasoning. Finally, the combined use of eyetracking with
neuroimaging methods could provide unique insights into the
brain mechanisms that support cognitive functioning and learning
and sources of individual differences therein.

METHODS
Participants and eligibility
We recruited college students planning to take the LSAT within 1 year.
Inclusion criteria included being native English speakers; at least 18 years;
normal/corrected vision; and no history of psychiatric disorders, learning
disabilities, or prior LSAT experience. Participants were assigned pseudo-
randomly to study for one of these two sections of the LSAT, the Logic
Games or the Reading Comprehension section. The first quarter of
participants were assigned to a group at random, whereas we distributed
the rest to match the groups on age, gender, reasoning, working memory,
and LSAT performance (Table S1). We collected data from 2015 to 2017,
following the semester structure of UC Berkeley: Spring (January–May)
2015, Summer (June–August) 2015, Fall (August–December) 2015, Spring
2016, Summer 2016, Fall 2016, and Spring 2017.
Ninety-five participants completed the pre-tests, and 49 completed the

LSAT course and post-tests. We excluded two of these participants because
they failed to study for their assigned course. Participants in our final
sample did not differ from those who only completed one time point on
either cognitive performance or demographic variables. The final sample
who prepared for the Logic Games section of the LSAT included
23 students (14 females, mean age 21.55 years). The final sample who
prepared for the Reading Comprehension section of the LSAT included
24 students (13 females, mean age 21.88 years). Levels of attrition did not
differ significantly between the groups (χ²= 0.01, p= 0.93). For analyses
involving the transitive inference task, we excluded two subjects from each
group for having >60% of trials missing valid fixation data, and one subject
from the Reasoning group for having performance below chance levels
(20% accuracy, chance was 50%). The research was approved by the
Committee for the Protection of Human Subjects at the University of
California, Berkeley. Written informed consent was obtained from all
participants.

Summary of procedures
Before and after studying for the LSAT courses, participants completed a
battery of nine online cognitive assessments,47 followed by an in-person
testing session. Participants were blind to their LSAT group at pre-test, and
the experimenters carrying out the testing sessions were blind to the
group assignment at both time points.
During the laboratory sessions, we recorded gaze data from participants

while they completed a transitive inference task, followed by two tests of
inductive reasoning. Data from the transitive inference task is the subject
of the current investigation. After finishing the eyetracking tasks,
participants completed a standardized test of reasoning termed Analysis
Synthesis (Woodcock–Johnson Battery III48), LSAT sample problems, and a
survey. The survey included demographic and ocular health questions,
questions regarding prior experience with the LSAT, and at post-test,
questions about the participant’s experience with their LSAT course. The
order of tests was the same at both time points.

LSAT courses
Participants studied for either the Logic Games or Reading Comprehension
section of the LSAT with a commercially available online course (Kaplan,
Inc.) for 6 weeks. The courses were similar in critical ways. Both courses
included six lessons, each consisting of online videos and homework
practice problems designed to help improve timing and increase mastery
with different question types. Both courses featured the same instructors
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in the online videos, who explained problem-solving strategies and had
students practice those skills with real LSAT problems. Students had access
to the online course materials and were given a companion workbook that
included practice problems.
We requested that participants (1) study only for the LSAT section we

assigned to them, (2) complete all six lessons of the course within 7 weeks
(approximately one lesson/week), and (3) space their practice (i.e., study
every other day, three times per week), in keeping with prior work showing
that spacing practice promotes learning49 and transfer effects.50 We chose
these practice intervals so that students could incorporate their LSAT
courses more easily with their typical school schedules. Participants
reported having complied with these instructions and that they had
completed on average one lesson per week (range= 0.5–2 lessons) and
studied their course for on average 24 h (first quartile: 16; third quartile: 36).
Both groups reported similar studying times (median= 24 h for each
group).
The Logic Games section involves solving word problems that contain

many rules that must be integrated to find the correct answer (sample
problems: https://www.lsac.org/jd/lsat/prep/analytical-reasoning). The pre-
paratory course for this section instructed on strategies such as organizing
relational information into sketches to minimize the amount of information
one needs to remember, as well as to facilitate deductions, rule
abstractions, and correct rule application.
The Reading Comprehension section involves reading long passages

and answering multiple choice questions based on relevant information in
the passages (sample problems: https://www.lsac.org/jd/lsat/prep/reading-
comprehension). The preparatory course for this section involved learning
strategic reading techniques, such as finding keywords based on the
passage questions and annotating main ideas on the passages to minimize
working memory demands.
Participants in the two groups found their respective courses relatively

effective and enjoyable, with no differences between groups (Table S2).
However, we measured the effectiveness of the LSAT courses with short
Logic Games and Reading Comprehension problem sets that participants
completed in the laboratory and found little evidence of the effectiveness
of the mini-courses in improving performance on either section (S1).

Eyetracking apparatus and procedures
We recorded binocular gaze data from participants completing a transitive
inference task using Tobii T120 Eye Tracker (17-inch monitor, 1280 × 1024
pixel resolution). We sampled at a temporal resolution of 120 Hz, with
participants sitting at 60 cm from the eyetracker camera. We took several
precautions to collect high-quality ocular data following recommendations
from.51 Furthermore, participants reported that they did not suffer from
medical conditions or used medication that could affect ocular behaviors. We
used Presentation® software (v. 18.0, Neurobehavioral Systems, Inc.) to present
the task stimuli and the Tobii Eye Tracker Extension for Presentation v1.152 to
synchronize the timing of the stimulus presentation and ocular events.

Transitive inference task
In the transitive inference task (adapted from a task we had developed
previously for functional magnetic resonance imaging research;18,19 Fig. 1),
participants saw four balance scales, each one with two color balls. Based
on the relations shown by the scales, participants needed to infer the
relative weights of two target balls. To solve the problems correctly, it was
necessary to integrate the relationship shown by two of the four scales (i.e.,
the relevant scales). Participants completed 60 of these problems, divided
into two blocks of 30 trials. We recalibrated the eyetracker during the short
break between blocks.
We minimized potential confounds in gaze patterns by controlling for

features that could impact visual saliency and subjects’ expectations as to
where the relevant scales were likely to appear and which balls were likely
to be relevant. We changed the position of the relevant scales across trials,
and the program selected the color of the five balls at random from a set
of six colors, which were all matched in luminance. Additionally, we biased
the participant’s first fixation to the question area by first presenting the
question alone for 100ms and then adding the four scales (see trial
sequence in Fig. 1b). We staggered the stimulus presentation in this way in
an effort to encourage participants to begin the task by searching for the
relevant relations and then proceed to integrating them.

Behavioral outcome measures
We examined changes in RTs and accuracy (proportion of trials answered
correctly). Performance did not vary as a function of the spatial
arrangement of the scales (e.g., the position of relevant scales) or the
number of scales showing inequalities (Fig S1). Thus we did not include
these factors in our analyses in favor of maximizing the statistical power to
assess our hypotheses.
Given that pre-test RTs were highly positively skewed (sk= 4.55), we

trimmed outlier trials falling on the long end of the tail (i.e., Q3+ 1.5 × IQR)
to minimize bias in our gaze analysis that could result from including the
highly variable fixation durations that could occur on these atypically long
trials. Outlier trials were identified separately by subject, time point, and
block, to retain individual differences in performance. Approximately 5%
of trials were trimmed owing to outlier RTs from each group per time
point.

Gaze preprocessing and outcome measures
We classified gaze data into fixations using a standard dispersion-based
algorithm adapted from ref. 53 allowing a maximum dispersion of 35px
over a 100ms window (see details in Section S2). Participants had a
median of 22 fixations on correct trials. Our analysis included only trials
with at least three valid fixations, under the assumption that this is the
minimum number of fixations needed to solve the problem, with a
maximum of 64 fixations (i.e., Q3+ 1.5 × IQR) to minimize the bias that
those outlier trials could induce.
We assigned an area of interest (AOI) label to the fixations. The AOIs

included each of the four scales (two relevant and two irrelevant scales)
and the area where the target balls and question appeared. We used these
labeled fixations to calculate the number of gaze transitions between
different AOIs. For instance, a fixation on “Relevant Scale 1” followed by a
fixation on “Relevant Scale 2” was coded as one transition between the
relevant scales. We refer to these events as transitions because we were
primarily concerned with measuring how often fixations shifted between
two different scales; we ignored, at most, one fixation that may have
occurred elsewhere between those two target fixations.
We used the transitions and fixation data from each trial to derive three

gaze outcome measures (Table 1), informed by an analysis of fixation
sequences performed across groups and time points (Fig. 2). To compute the
gaze metrics, we first marked the point at which it became more probable
that a participant had homed in on the relevant scales during a trial. For each
trial, and on an individual subject basis, we measured that point in the trial by
calculating the empirical probability that the number of fixations on
irrelevant scales was below chance (25%) and that the number of fixations
on relevant scales was greater than chance. We estimated these probabilities
with a sliding window that evaluated 20% of the fixations at once (min. size
4, max. size 8 fixations). This approach enabled us to capture a common
pattern of fixations (Fig. 2), whereby participants began to preferentially
fixate on the relevant scales after a certain point in the trial. Accordingly, the
visual search metric constitutes the number of fixations the participant made
on any scale prior to that point, and we indexed relational thinking as the
duration of fixations on relevant scales occurring after that point. We
additionally computed a more specific metric of relational integration as the
number of saccades between the two relevant scales.

Composite reasoning measure and other transfer tasks
Three subtests included in the composite reasoning measure (Table 2)
were part of a larger battery of nine online assessments, which included
tests of selective attention, planning, and working memory (Table S4).
These tests were developed by the Cambridge Brain Sciences Laboratory
(http://www.cambridgebrainsciences.com) as an online adaptation of
assessments designed and validated at the Medical Research Council
Cognition and Brain Sciences Unit.47,54

Task difficulty in all the assessments was adaptive as a function of
performance. Performance metrics differed between the tasks (e.g., a
maximum level achieved versus total correct responses), so we standar-
dized the scores after removing outlier scores (i.e., scores that deviated >3
S.D. away from the grand pre-test mean). Using this normalized dataset,
we created composite measures of reasoning, planning, and working
memory by averaging performance across related assessments. Composite
measures provide a robust test of transfer38,40 and help minimize the
number of statistical tests necessary. We derived these composite
measures with a theory-driven approach, given that factor analytic
methods were not appropriate for our sample size. For the reasoning
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measure, we averaged the standardized scores from the Analogical
Reasoning, Object Reasoning, and Odd One Out tests, as well as the
Analysis Synthesis test administered in the laboratory.

Statistical analysis
We used Bayesian models to quantify the strength of evidence supporting
the model that tested a given hypothesis in question, as described in the
Results section. For all analyses, we used participant’s median scores on
the measure of interest and uniform distribution of prior probabilities with
default Cauchy prior scales from the BayesFactor R package.55 The sample
size was sufficient for the Bayesian analysis performed. For traditional
hypothesis testing analysis, the sample size is sufficient to test for the
effects of reasoning practice between time points with a power of 0.86 and
an alpha criterion of 0.05, as well as a Group×Time interaction effect with a
power of 0.73 and an alpha criterion of 0.05.

Code availability
We used custom scripts written in Python (v3.6) to preprocess and calculate
gaze outcome metrics and R (v3.2) to perform the Bayesian analysis. The code
and instructions can be found in the Open Science Framework repository,
https://osf.io/hkzgw/?view_only=8f4749510a2f44ef86fea154e9f6e9c4.
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