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ABSTRACT OF THE DISSERTATION

Understanding the representation and dynamics of welfare tradeoff ratios

by

Wenhao Qi

Doctor of Philosophy in Experimental Psychology

University of California San Diego, 2024

Professor Lindsey J. Powell, Chair

Human society is built on cooperative relationships. Humans have evolved so-
phisticated mental representations and mechanisms to cooperate effectively in a noisy
and changing world. One such representation is the welfare tradeoff ratio (WTR)—the
weight one places on another person’s welfare relative to her own. People not only use
WTRs to make social decisions consistently in varying circumstances, but can also infer
others’ WTRs from their actions, allowing them to reciprocate by adjusting their own
WTRs. In this dissertation, I investigate the mechanisms underlying the dynamics of
WTRs and build tools to support such investigation. In Chapter 1, I develop an accurate
and efficient measure of WTRs, called the Lambda Slider, which, in contrast to previous

xii



measures, requires only one response from participants. In three experiments, I show
that the Lambda Slider has high reliability and validity, enabling fine-grained investiga-
tion of the dynamics of WTRs over time or space. In Chapter 2, I explore the evolutionary
origins of the capacity of WTR inference, a basic form of “theory of mind” that supports
reciprocity and partner choice. Through evolutionary game simulations, I identify two
environmental requirements forWTR inference to evolve—stable opponents and variable
payoff structures. Using behavioral experiments, I show that people do perform WTR in-
ference in such an environment. In Chapter 3, I strengthen the argument in Chapter 2 by
focusing on games without strong interdependence, a more common occurrence in the
real world, and considering reciprocity in the form of WTR inference and adjustment.
I found that a reciprocal agent with WTR inference performs the best in both noiseless
and noisy environments, but has a unique advantage only in a noisy environment with
uncertainty about the payoffs perceived by the opponent. This points to the role uncer-
tainty plays in the evolution of theory-of-mind capacities. In Chapter 4, I discuss some
future directions. Overall, this work lays the groundwork for studying the dynamics of
WTRs in a fine-grained way and understanding the evolution of sophisticated mental
representations underlying people’s social life.
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Introduction

Human society is built on cooperative relationships, in which one person is willing
to sacrifice some personal welfare to benefit another person. Mutual cooperation allows
a group of people to be better off than selfish individuals who only care about their own
welfare. The ideal situation is that each individual tries to maximize the total welfare
of the group, which, in a changing world, only requires the ability to calculate the total
welfare embedded in each social decision.

However, a constant threat to cooperation is defectors who enjoy the benefit of
others’ cooperation but do not contribute, or contribute less, to the public good. The
maintenance of mutual cooperation requires identifying and punishing defectors, either
by not cooperating with them in future interactions or by ostracizing them (Axelrod,
1984; Nowak, 2006b; Trivers, 1971). It is relatively easy to identify a defector who is
entirely selfish, but much harder to identify a subtler defector who is only slightly less co-
operative than the ideal level of cooperation, especially given the noise and uncertainty
in the real world. This motivates partial defection. Such subtle defection requires a
sophisticated cognitive ability—to calculate a weighted sum of one’s own and others’ po-
tential payoffs, incorporating the degree to which the defector wants to discount others’
rewards. This calculation can be expressed in terms of a welfare tradeoff ratio (WTR),
the weight one places on another person’s welfare relative to her own (Tooby & Cosmides,
2008). Perfect cooperation corresponds to a WTR of 1, complete defection corresponds
to a WTR of 0, and subtle defection corresponds to a WTR between 0 and 1.

Subtle defectors can thrive in a population of perfect cooperators as long as they
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are not detected, gradually eroding the cooperation. Detecting subtle defection requires
an even more sophisticated cognitive ability—to infer another person’s WTR from their
actions—which enables reciprocity in the form of adjusting one’s own WTR in light of
such inference. A central hypothesis of this dissertation is that the interplay between
subtle defection and detecting subtle defection gives rise to a graded representation of
WTRs shared between these two functions. The result of this evolutionary process is a
complex dynamics of setting, inferring, and adjusting WTRs in response to a variety of
information in the social environment (Ackermann et al., 2016; Jones & Rachlin, 2006;
Lim, 2012; Piff et al., 2010; Qi et al., under review; Van Lange et al., 1997), which we
have only started to uncover.

Two complementary ways of studying WTR psychology are behavioral and evo-
lutionary. Behavioral studies examine how people set, infer, and adjust WTRs, usually
in controlled experiments. Evolutionary studies model social interactions as games and
examine what behavioral and cognitive strategies evolve in different game environments.
This dissertation fills gaps in each of these approaches.

Behavioral studies rely on a good measure of participants’ WTRs toward specific
partners. Such a measure should be accurate and sensitive so that we can detect small
differences in WTRs. It should also be efficient so that we can track changes in a partic-
ipant’s WTR toward a partner throughout an experiment or variations in a participant’s
WTRs toward many different targets. Previous measures of WTRs often require multiple
responses from participants to obtain a single measurement, and have limited sensitivity
because they are inherently discrete (Kirkpatrick et al., 2015; Liebrand, 1984; Murphy
et al., 2011; Van Lange et al., 1997). In Chapter 1, I develop a new measure, called
the Lambda Slider, which requires only one response and is inherently continuous. The
key innovation is using a nonlinear payoff function instead of the traditional linear ones.
In three experiments, I show that the Lambda Slider has highly reliability and validity,
ready to be used in a variety of WTR research.
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The concept of WTR is largely missing in previous evolutionary models of coopera-
tion because most models only consider games with fixed payoff structures, such as fixed
Prisoner’s Dilemmas or public goods games, where making decisions based on WTRs
can be reduced to behavioral strategies, e.g., to cooperate or defect (Axelrod, 1984;
Nowak, 2006b). This is not the case in the real world, where each social interaction has
a different payoff structure—lending an extra umbrella to someone on a rainy day and
jumping in the sea to save a drowning person involve vastly different costs and benefits.
Effective cooperation, subtle defection, and detecting subtle defection in such varying
circumstances likely require online computation based on WTRs that takes into account
the payoffs specific to each decision. But without directly modeling variable games, it
is unclear under what conditions WTR computation and inference can evolve—e.g., if
every game is a Prisoner’s Dilemma with slightly different payoffs but clear labels for
cooperation and defection, WTR computation is still likely unnecessary. In Chapters 2
and 3, I show that modeling variable games allows us to identify the conditions for the
evolution of more sophisticated mental representations and mechanisms, such as graded
WTR inference and adjustment.

In Chapter 2, inspired by the structures of one-shot games and fixed repeated
games, I expand the space of game environments along two dimensions: the variabil-
ity of opponents and the variability of payoff structures. I find that the only environ-
ment where WTR inference creates a unique evolutionary advantage is the one with
stable opponents and variable payoff structures. When the opponents are variable (i.e.,
two agents never interact more than once, or at least they do not track each other’s
identity), inferring the opponent’s WTR has no influence on future interactions. When
the payoff structures are fixed or stable, action-level strategies work well, including a
reinforcement-learning agent that learns the best action sequence under each particular
opponent–payoff structure combination. In an environment with stable opponents and
variable payoff structures, the agent with WTR inference performs the best. This is be-
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cause having a higher-level model of the opponent allows the agent to better predict the
opponent’s actions. In games with strong interdependence, where one player’s best ac-
tion depends on the other player’s simultaneous action, better predictions lead to higher
utilities for the agent with WTR inference.

However, games with strong interdependence may be rare in the real world. Most
of our social decisions are not influenced by a simultaneous decision by someone else;
we make each decision by evaluating the costs and benefits created by that decision
alone. In Chapter 3, I explore the conditions under which WTR inference can evolve
using games without strong interdependence. I hypothesize that the evolution of WTR
inference is driven by the need to reciprocate in a way similar to tit-for-tat in the iterated
Prisoner’s Dilemma (Axelrod, 1984). I show that an agent with graded WTR inference
and reciprocity performs the best in both noiseless and noisy environments, but has a
unique advantage only in a noisy environment with some uncertainty about the payoffs
perceived by the opponent. This form of uncertainty is ubiquitous in the real world—
when someone lends me an umbrella, I may be unsure whether it is her only umbrella or
if she has a spare one, which entails different costs for her. In the noiseless environment,
a much simpler strategy with a binary conception of cooperation and defection performs
almost as well, reducing the likelihood that graded WTR inference can evolve there.
These results suggest that specific forms of uncertainty in the world might have driven
the evolution of more sophisticated mental representations and processes.

In Chapter 4, I conclude with a brief discussion of some future directions for ad-
dressing questions unanswered by this dissertation. Overall, this work lays the ground-
work for studying the dynamics of WTRs in a fine-grained way and understanding the
evolution of sophisticated mental representations underlying people’s social life.
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Chapter 1

An accurate and efficient measure of
welfare tradeoff ratios

People’s decisions are affected by their interest in others’ welfare. They can be
motivated both to help and to harm others. The direction and magnitude of these mo-
tivations can be quantified relative to a person’s self-interest as a welfare tradeoff ratio
(WTR). This construct is valuable for testing quantitative theories of social motivation.
However, most existing measures of WTRs are based on multiple choices between dis-
crete sets of payoffs, which forces a tradeoff between the accuracy and efficiency of the
measures. Here we introduce the Lambda Slider, a WTR measure that is simultaneously
accurate and efficient. A participant uses a linear slider to choose from a continuous
range of payoff allocations for herself and her social partner. The underlying payoff
functions for self and other create a one-to-one correspondence between the participant’s
potential WTR values and the slider positions that she could choose, which enables accu-
rate measurements of WTR from a single response. Across three experiments, we show
that a single response on the Lambda Slider has high reliability, high convergent validity
with other measures of social motivation, and high external validity for an altruistic de-
cision with real-world consequences. The Lambda Slider is easy to implement and can
be applied in a wide variety of studies on the forces that shape social motivation.
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1.1 Introduction

People’s lives are full of choices that affect both their own welfare and others’
welfare. For example, the decision to give your coat to another person on a cold winter
night decreases your own welfare but increases that person’s welfare. People’s decisions
in such interdependent situations are driven by a variety of social motivations, including
an interest in social norms and reputation alongwith direct concern for others’ well-being
(Camerer, 2011; Fehr & Schmidt, 1999).

The sum of these social forces results in an overall motivation to increase or de-
crease another person’s welfare; i.e., to benefit or harm that person. The direction and
magnitude of this motivation can be captured as a welfare tradeoff ratio (WTR): the
amount of personal welfare one is willing to give up in order to increase or decrease
another person’s welfare by a specified amount (Tooby & Cosmides, 2008). Formally, if
Alice has a relationship with Bob, then we can express Alice’s utility for a given decision
as

𝑢 =𝑤s+𝜆𝑤t , (1.1)

where 𝑤s (“s” stands for “self”) is Alice’s resulting welfare (her actual or expected payoff
from the decision), 𝑤t (“t” stands for “target”¹) is Bob’s welfare (his actual or expected
payoff), and 𝜆 is Alice’s welfare tradeoff ratio toward Bob. For conciseness, we will
use 𝜆 to represent welfare tradeoff ratios throughout the paper. A higher 𝜆 indicates
stronger altruism or friendliness on the part of Alice toward Bob, as it means that Alice
will favor actions or situations that are good for Bob, even at the expense of some of her
own welfare. In contrast, a lower 𝜆 indicates stronger selfishness or dislike. A negative
𝜆 would mean that Alice could perceive utility in sacrificing some of her own welfare in
order to harm Bob.

¹We use “target” instead of the usual “other” due to the confusability between the letter o and the
number 0 as subscripts, and that the letter t happens to be the alphabetical successor of the letter s.
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𝜆 varies across people and their social partners; some people feel more concern
for others in general, and people also care more about some social partners than others
(Jones & Rachlin, 2006; Lim, 2012; Van Lange et al., 1997). Higher 𝜆s promote coop-
eration, generosity, and altruism, while lower or even negative 𝜆s can lead to spiteful
actions that are costly for both the actor and their target. Given the significance of inter-
dependent decisions for the well-being of individuals and societies, an important goal
for social psychology and behavioral economics has been to understand the factors that
impact people’s concern for others’ welfare (Almlund et al., 2011; Henrich et al., 2001;
Thielmann et al., 2020; Van Lange et al., 1997). Such research is predicated on good
measurements of the dependent variable, which can usually and fruitfully be conceptu-
alized as a 𝜆 value since it is well-defined and generalizable across situations.

1.1.1 Binary allocation tasks

An ideal tool for measuring 𝜆 would be both accurate² and efficient. This would
make it feasible for researchers to measure meaningful differences or changes in 𝜆 across
many people, partners, or situations. For example, an accurate and efficient measure of
𝜆 could allow researchers to study how 𝜆 changes as social partners build a history of
reciprocation by quickly and repeatedly sampling across interactions (Ackermann et al.,
2016). Or it could allow researchers to study how 𝜆 reflects positions and connections
among many people in a social network (Leider et al., 2009).

How can we measure 𝜆? The simplest way is through a “binary allocation task”
(Messick & McClintock, 1968). If we want to measure Alice’s 𝜆 toward Bob, we can give
Alice two allocation options to choose from (Fig. 1.1A). Option A results in $5 for Alice
and $0 for Bob (𝑤s = 5, 𝑤t = 0), while Option B results in $0 for Alice and $10 for Bob

²For simplicity, in most of this paper, “accuracy”, “accurate” or “accurately” entails the technical con-
cepts of both accuracy (or unbiasedness) and precision (or reliability); i.e., a measure needs to be both
accurate and precise in order to be called “accurate”.
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Figure 1.1. From binary allocation tasks to the Lambda Slider. (A) A binary allocation task,
where the threshold of 𝜆 for switching between Options A and B is 𝜆̂ = 0.5. The arrows point
in the direction of the gradient of the utility function (Eq. (1.1)) for a given 𝜆. (B) Adding a
third option C to create a triple-dominance task, which is equivalent to two binary allocation
tasks with 𝜆̂ ∈ {0,1}, but requires only one response. The shaded areas are all the locations
where Option C can be placed in order for the task to be triple-dominance. C′ is a hypothetical
third option that does not form a triple-dominance task with A and B because they do not fall
along a strictly concave function 𝑤s = 𝑓(𝑤t). (C) An illustration of a hypothetical “septuple-
dominance task” in which each option would be preferred for some range of 𝜆. (D) A possible
option space for a Lambda Slider, where a participant can choose any point on the curve (via a
slider; Fig. 1.2A). Each point on the curve corresponds to a unique 𝜆 whose corresponding utility
gradient is perpendicular to the tangent of the curve at that point.
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(𝑤s = 0, 𝑤t = 10)³. If 𝜆 > 0.5, Alice will choose Option B since it leads to a higher overall
utility for herself than Option A. If 𝜆 < 0.5, then the overall utility of Option A is higher,
and Alice will be more likely to choose that option instead. Therefore, Alice’s decision
on this allocation task tells us whether her 𝜆 toward Bob is above or below the threshold
𝜆̂ = 0.5. This threshold tested by the task can be adjusted by changing the payoff values
involved in the two allocation options.

However, a single binary allocation task has very low sensitivity, defined as the
inverse of the smallest change that can be detected by the measure. A binary allocation
task with 𝜆̂ = 0.5 cannot distinguish among different 𝜆s above, or below, 0.5. By analogy,
refusing to give your coat to another person could reflect any 𝜆 ranging from valuing your
own warmth just a little more than theirs to actively wishing for them to be cold. The
accuracy of a measure is upper-bounded by its sensitivity. To gain a higher sensitivity
in our overall measurement of 𝜆, we can give Alice multiple binary allocation tasks with
different 𝜆̂s. For instance, if we assume 𝜆 falls between −2 and 3 and want a measure
that gets within 0.5 of the correct value, we need 9 tasks with 𝜆̂ ∈ {−1.5,−1,…,2.5}.
If we aim to get within 0.1 of the correct value, then the number of tasks goes up to
49. This illustrates the inevitable tradeoff between sensitivity and efficiency when we
measure 𝜆 with binary allocation tasks.

Most existing measures of 𝜆 (Delton et al., 2023; Jones & Rachlin, 2006; Kirk-
patrick et al., 2015), or related constructs such as social value orientation (SVO; Liebrand,
1984; Liebrand and McClintock, 1988; Messick and McClintock, 1968; Murphy et al.,
2011; Sonnemans et al., 2006; Van Lange et al., 1997), share the logic of narrowing
down 𝜆 with multiple binary allocation tasks, thus sharing the tradeoff between sensitiv-
ity and efficiency. This can result in study designs in which many participants must be

³Here we assume a linear relationship between monetary payoffs and welfare, and that the same in-
crease in payoff leads to the same increase in welfare for both oneself and the target. In practice this may
not be exactly true (Kahneman & Tversky, 1979), but in our experiments we try to minimize sources of
nonlinearity.
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recruited to study the effects of only a few factors on social motivation (e.g., Hall et al.,
2021). (For a comprehensive review of the measures in the SVO literature, see Murphy
and Ackermann (2014).)

1.1.2 Triple-dominance tasks

Can we achieve the level of sensitivity of many binary allocation tasks with only a
few responses or even one response from the participant? We can draw inspiration from
the Triple-Dominance Measure (Van Lange et al., 1997). Although a triple-dominance
task is equivalent to two binary allocation tasks, a participant only needs to make one
response on the measure. We can create a triple-dominance task by adding a third option
to the binary allocation task in Fig. 1.1A: Option C results in $5 for Alice and $5 for Bob
(Fig. 1.1B). With these three options, Alice will choose A if 𝜆 < 0, B if 𝜆 > 1, and C if
𝜆 is between 0 and 1. Therefore, this triple-dominance task is equivalent to two binary
allocation tasks but Alice only needs to make one decision by choosing the best option
among the three.

Allocation options in a triple-dominance task must be selected such that for any
given 𝜆, one option dominates (i.e., results in a higher utility than) the other two, and
for each option there exists some 𝜆 such that the given option is dominant. In order to
maintain these features, the three options need to fall along a strictly concave function
𝑤s = 𝑓(𝑤t). This means that Options A and B constrain the possible payoffs offered in
Option C, as illustrated by the shaded areas in Fig. 1.1B. As a counterexample, consider
Option C′ in Fig. 1.1B, which corresponds to 𝑤s = 0 and 𝑤t = 5. Given Options A, B and
C′, Alice will choose A if 𝜆 < 0.5 and B if 𝜆 > 0.5, but she will never choose C′, so the
task does not satisfy the criterion that for each option there exists some 𝜆 such that the
given option is dominant.
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1.1.3 Lambda Slider

By the same logic, we can add more allocation options to a single-choice task to
gain a higher sensitivity in the measurement of 𝜆. Fig. 1.1C is a hypothetical example of
a “septuple-dominance task” with 7 options, and the sensitivity of the measurement is
1
0.5 for 𝜆 ∈ (−1.25,1.25). The options still need to fall along a strictly concave function
𝑤s = 𝑓(𝑤t) to ensure that each option corresponds to the best choice given some 𝜆. If we
keep adding options to the task, we can create a smooth, continuous curve in the 𝑤s–𝑤t

space (Fig. 1.1D), with each point on the curve corresponding to a single 𝜆. This one-
to-one correspondence (bijection) between potential 𝜆s and points on the curve results
in a (theoretically) infinite sensitivity of the measurement, which makes it possible to
accurately measure a participant’s 𝜆 toward a particular social partner from a single
choice.

We can present such a continuous set of allocations to the participant with a slider
(Fig. 1.2A), and we call it the Lambda Slider (see Appendix 1.A for a formal definition
and Appendix 1.B for comparison with a related measure, the Circle Test (Sonnemans
et al., 2006)). The rewards allocated to the participant and target, 𝑤s and 𝑤t, are both
continuous functions of the slider position 𝑥, and we call 𝑤s(𝑥) and 𝑤t(𝑥) the payoff
functions of the slider.

We can choose the payoff functions such that the slider position 𝑥 that a utility-
maximizing participant chooses (denoted 𝑥∗) is an identity function of her 𝜆 toward the
social partner in question. Consequently, the slider position is a direct measure of 𝜆 and
no additional calculation is required. One class of such payoff functions (and arguably
the simplest class; see Appendix 1.A) is

𝑤s(𝑥) =−𝑎𝑥2+𝑏s , (1.2)

𝑤t(𝑥) = 2𝑎𝑥+𝑏t , (1.3)
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Figure 1.2. The (quadratic) Lambda Slider. (A) The interface of the slider. The payoff to oneself
(red bar) and payoff to the target (blue bar) change continuously as the participant moves the
slider. (B) The payoff functions of the quadratic Lambda Slider used in Experiment 1 (𝑎 = 11.25,
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𝑥 ∈ 𝑥min,𝑥max , (1.4)

where 𝑎 > 0 is an arbitrary scale parameter that expands or shrinks the range of payoff
values, 𝑏s and 𝑏t are arbitrary shift parameters that can offset the participant and target’s
payoff ranges from one another, and 𝑥min and 𝑥max are boundaries of the slider (Fig. 1.2B).
When we apply the utility definition of Eq. (1.1), we get

𝑢(𝑥) =𝑤s(𝑥)+𝜆𝑤t(𝑥)

=−𝑎𝑥2+𝑏s+𝜆(2𝑎𝑥+𝑏t)

=−𝑎(𝑥−𝜆)2+𝑎𝜆2+𝑏s+𝑏t𝜆 ,

which is a concave parabola with a peak at 𝑥 = 𝜆 (Fig. 1.2C), so it satisfies the criterion

𝑥∗ = argmax
𝑥∈[𝑥min,𝑥max]

𝑢(𝑥) = 𝜆 , ∀𝜆 ∈ ⒧𝑥min,𝑥max⒭ . (1.5)

In other words, the participant will choose the slider position that is equal to her 𝜆
(as long as it falls between 𝑥min and 𝑥max) in order to maximize her utility, and this
single response on the Lambda Slider gives a measurement of the participant’s 𝜆 with
theoretically infinite sensitivity, though of course there will be some limits imposed by
the implementation of the task.

We call a Lambda Slider with payoff functions given by Eqs. (1.2) and (1.3) the
quadratic Lambda Slider. When plotted on the𝑤s–𝑤t plane, the quadratic Lambda Slider
is still a parabola, and 𝑤s = 𝑓(𝑤t) is a strictly concave function, similar to Fig. 1.1D. The
(quadratic) Lambda Slider shares the logic with mechanism design (Hurwicz & Reiter,
2006), i.e., we design the payoff structure such that the player’s rational action directly
reveals her hidden preferences (𝜆 in our case).
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Figure 1.3. The SVO Slider Measure (Murphy et al., 2011). (A) The payoff functions of the
6 primary items of the measure (black lines). Each segment represents the linear relationship
between 𝑤s and 𝑤t on one of the items, and they are labeled in the same order as in Murphy
et al. (2011). The red arc and point (50,50) provide an intuitive explanation (but not formal
justification) for the calculation of SVO°. (B) The theoretical step function (green curve) between
the output of the measure (SVO°) and 𝜆. The labeled vertical segments correspond to the 𝜆̂s (the
thresholds of 𝜆 at which a utility-maximizing participant switches from one end to the other on
the sliders) of the 6 items. The theoretical response on the circular Lambda Slider (arctan𝜆;
Eq. (1.15)) is also plotted for comparison.

1.1.4 SVO Slider Measure

One apparent difference between the Lambda Slider and the measures based on
binary allocation tasks is that the set of possible responses is continuous for the former
but discrete for the latter. There is a measure, the SVO Slider Measure, that employs
continuous sliders to assess social value orientation, a theoretical construct similar to
𝜆 (Murphy & Ackermann, 2014; Murphy et al., 2011). This measure consists of 6 slid-
ers, each involving linear payoff functions for the participant, 𝑤s, and another person,
𝑤t. Each slider connects two points on a circular arc, centered on (𝑤s,𝑤t) = (50,50)
(Fig. 1.3A). The points represent the choices most aligned with four categorical social
value orientations: competitive, selfish, prosocial, and altruistic. After calculating the
average chosen payoffs for self and target across the 6 sliders (𝑤s and 𝑤t), a summary
output is calculated as:

SVO°= arctan⒧
𝑤t−50
𝑤s−50⒭, (1.6)
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This “angle” can be interpreted as the angle of the point a participant would choose
among payoff values aligned along the arc in Fig. 1.3A, with larger angles corresponding
to higher values of 𝜆. (In fact, this arc can be used to create a “circular” Lambda Slider;
see Appendix 1.B.)

The SVO Slider Measure is relatively efficient, requiring 6 responses for one mea-
surement, which is fewer than previous measures such as the 9-item Triple-Dominance
Measure (Van Lange et al., 1997) and the Ring Measure (Liebrand, 1984; Liebrand &
McClintock, 1988). However, the linear nature of the slider payoff functions effectively
results in binary allocation tasks, which create the familiar tradeoff between sensitivity
and efficiency. For instance, the first slider has payoff functions

𝑤s(𝑥) = 85,

𝑤t(𝑥) =−70𝑥+85,

where 𝑥 ∈ [0,1] is the slider position. Then the utility function is

𝑢(𝑥) =𝑤s(𝑥)+𝜆𝑤t(𝑥)

=−70𝜆𝑥+85(1+𝜆).

A utility-maximizing participant would choose 𝑥 = 0 if 𝜆 > 0, choose 𝑥 = 1 if 𝜆 < 0, and
be indifferent if 𝜆 = 0. Therefore, this slider is equivalent to a binary allocation task
with 𝜆̂ = 0. Similarly, the 𝜆̂s for the remaining 5 sliders are −3

7 , 7
17 , 3

7 , 1, and 7
3 . The

measure has no way of distinguishing among different 𝜆s between two adjacent 𝜆̂s (e.g.,
0 from slider 1 and 7

17 from slider 4). For any given 𝜆, we can derive the output of
the measure, SVO°, from the choices that the participant would make on the 6 sliders,
which is plotted in Fig. 1.3B. The relationship between 𝜆 and SVO° is not one-to-one, but
many-to-many (i.e., different 𝜆s between two adjacent 𝜆̂s lead to the same responses,
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and for a given 𝜆 that is equal to one of the 𝜆̂s, all positions on one of the sliders are
equally preferable). Technically speaking, the SVO Slider Measure has high resolution
but low sensitivity. The Lambda Slider has the potential to provide both higher sensitivity
and higher efficiency, though when implemented as a single item measure it may have
somewhat lower reliability.

1.1.5 Current research

In Experiment 1, we compare the Lambda Slider to the SVO Slider Measure in
terms of test–retest reliability and convergent validity, because (a) the SVO Slider Mea-
sure performs relatively well in practice and is regarded as the state-of-the-art measure
of 𝜆, and (b) it can share an interface with the Lambda Slider (Fig. 1.2A), allowing us
to easily mix them in a single experiment. In Experiment 2, we rule out an alternative
hypothesis that participants use a heuristic to make decisions on the Lambda Slider. In
Experiment 3, we test the external validity of the Lambda Slider using a social decision
with real-world consequences, and explore the effects of inequity aversion on measure-
ments of 𝜆.

1.2 Experiment 1

We have formally shown above that the one-shot Lambda Slider has infinite sensi-
tivity. However, how much such theoretical sensitivity translates to empirical accuracy is
limited by the degree to which participants perfectly maximize a utility function in the
form of Eq. (1.1).

In Experiment 1, we evaluate the reliability and validity of the quadratic Lambda
Slider, and compare it with the SVO Slider Measure⁴. To evaluate the psychometric
properties of the Lambda Slider, we need to elicit as wide a range of 𝜆s as possible from
each participant. It has been shown that a person’s 𝜆 toward another person decreases as

⁴In all three experiments, we report all measures, manipulations and exclusions.
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their social distance increases (Jones & Rachlin, 2006). Therefore, we asked participants
to each generate a list of 10 known people (subsequently called “targets”) occupying a
range of social distances from themselves. We then had participants make hypothetical
allocation decisions between themselves and each of those 10 targets. Such a manipu-
lation not only helps elicit a wide range of 𝜆s, but also tests the measure’s convergent
validity with social distance, based on an expected negative correlation between a par-
ticipant’s measured 𝜆s toward the targets and her reported social distances from the
targets.

1.2.1 Methods
Participants

40 participants were recruited on Prolific and completed the experiment online⁵.
The participants were drawn from the “standard sample”, were located in the USA, were
fluent in English, had an approval rate of at least 95%, and had at least 10 previous
submissions on the platform. The participants gave informed consent to participate in
the experiment. The experiment was approved by the UCSD institutional review board.
Each participant received US$2 for completing the experiment. 30 participants (7 female,
23 male) passed at least 8 out of the 9 attention checks (see below) and only these
participants are included in the analyses below.

Design

The experiment is implemented as a web page and can be viewed at https://
experiments.evullab.org/qi-games-2/. There are three stages in the experiment: List,
Rank, and Slide.

In the List stage, participants are asked to list the first names of 10 people they
⁵The sample sizes in all experiments were determined before any data analysis, although this is not

strictly necessary because all data analyses are fully Bayesian. The sample sizes of Experiments 1 and 2
were determined heuristically, while the sample size of Experiment 3 was determined based on a frequen-
tist power analysis as preregistered.
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know, 2 in each of 5 categories: family+, friends, neighbors and colleagues, acquain-
tances, and adversaries. These categories are designed to maximize the range of social
distances between a participant and the targets and, presumably, of the participant’s 𝜆s
toward the targets.

In the Rank stage, participants are asked to rank the 10 names they input in the
List stage “based on how close you are to them (in terms of relationship, not physical
distance)” by dragging the 10 names in a vertical list. The order of the names is initially
randomized. The final order of the names is recorded.

In the Slide stage, each participant completes 72 allocation trials using an inter-
face similar to Fig. 1.2A. In each trial, participants drag the horizontal slider, and the
payoffs to the participant (𝑤s) and to the target (𝑤t), depicted both numerically and
as horizontal bars, change continuously according to the underlying payoff functions,
which are bounded at 0 and 100 in an arbitrary unit. The bars are labeled “You receive:”
and “[Target] receives:”, where “[Target]” is replaced by the name of the target in the
current trial. Participants are told that the payoffs are hypothetical and are asked to
move the slider until the settings look the best to them. The initial position of the slider
is randomized in each trial.

In order to evaluate the test–retest reliability of the Lambda Slider and the SVO
Slider Measure, we need two measurements for each target for each measure, which
amounts to 2 quadratic Lambda Slider trials and 12 SVO Slider Measure trials (twice for
each of the 6 primary items) per target. If we measured each participant’s 𝜆s toward
all the targets on both measures, there would be 6 times as many SVO Slider Measure
trials as Lambda Slider trials and too many trials in total. Therefore, we measure each
participant’s 𝜆s toward all the 10 targets on the Lambda Slider (20 trials in total), but
only targets whose social distance rankings are 1, 4, 7 or 10 on the SVO Slider Measure
(48 trials in total).

A participant’s response on each quadratic Lambda Slider trial is directly used
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as the measured 𝜆 by virtue of Eq. (1.5). A participant’s responses on the 6 different
SVO Slider Measure items are aggregated to an SVO° according to Eq. (1.6). The first
occurrence of each item is treated as part of the first measurement of SVO°, and the
remaining items compose the second measurement.

We also include 4 “catch trials” as attention checks, in which “[Target]” is replaced
by “Left” or “Right”. Participants are instructed that on these trials they should move the
slider to the far left (right) regardless of the payoffs. A participant is considered to pass a
catch trial if the slider position she chooses satisfies 𝑥 <−1.9 (𝑥 > 1.9) when the target
is “Left” (“Right”). These 72 trials are randomized in order. Immediately after Trials 2, 6,
14, 30 and 62 (called “memory trials”), participants are asked to type the target’s name
(or “Left” or “Right”) they just saw as attention checks. Participants are considered to
pass a memory trial if the name they type is the same as the target’s name they just saw,
after transforming both names to lowercase and removing whitespaces. The combined
“catch” and “memory” trials result in 9 attention checks altogether.

The quadratic Lambda Slider trials have payoff functions defined by Eqs. (1.2)–
(1.4) with 𝑎 = 11.25, 𝑏s = 70, 𝑏t = 50, 𝑥min = −2 and 𝑥max = 2, such that 𝑤s ∈ [25,70],
𝑤t ∈ [5,95], and the range of 𝜆 that can be accurately measured is (−2,2) (Fig. 1.2B).
We make the range of 𝑤s and 𝑤t narrower than the full range [0,100] because (a) allow-
ing the payoffs to reach extreme values creates salient points that may bias participants’
responses (Thomas & Kyung, 2019), and (b) the welfare participants perceive for them-
selves and the targets with respect to the raw payoffs is likely to be more nonlinear when
the payoffs are close to 0 (Kahneman & Tversky, 1979). The catch trials depict payoff
functions in the same manner as the Lambda Slider trials. The SVO Slider Measure trials
have the same payoff functions as in Murphy et al. (2011), as shown in Fig. 1.3A.
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1.2.2 Results
Test–retest reliability

We evaluate the test–retest reliability of the quadratic Lambda Slider by estimat-
ing the correlation between the two measurements of 𝜆 of each participant–target com-
bination, and compare it to the correlation between the two measurements of SVO°. We
do not expect the correlation of 𝜆s to be as high as the correlation of SVO°s because
(a) one measurement of SVO° is an aggregation of 6 responses, which almost certainly
has less noise than 1 response on the Lambda Slider, and (b) the Lambda Slider has a
nonlinear payoff structure, which might be harder to understand than the linear pay-
off structures of the SVO Slider Measure. However, researchers using the Lambda Slider
have the flexibility to select the number of repeated measurements to achieve the desired
tradeoff between precision and efficiency⁶. We will first compare the test–retest reliabil-
ity of the 1-response 𝜆 with the 6-response SVO°, and then estimate the reliability of the
multiple-response 𝜆.

Figs. 1.4A and B plot the relationship between the two measurements of each
participant-target combination. We fit a bivariate normal distribution to the Lambda
Slider data and to the SVO Slider Measure data (see Appendix 1.D for details). The
two measurements on the quadratic Lambda Slider have a high correlation (𝜌 = 0.859
(0.823,0.888) ⁷, Fig. 1.4A), indicating that a single measurement on the Lambda Slider
has high test–retest reliability. As predicted, the two measurements of SVO° have an
even higher correlation (𝜌 = 0.952 (0.930,0.967), Fig. 1.4B).

⁶This is different from the tradeoff between sensitivity and efficiency involved in the binary allocation
tasks, mentioned in the Introduction. For the binary allocation tasks, the tradeoff arises from a theoretical
limitation which even applies to a noiseless decision maker, while the current tradeoff is only due to noise
in the decisions.

⁷Here, 0.859 is the posterior median of 𝜌, and (0.823,0.888) is the 95% (equal-tailed) credible interval
of 𝜌. The same notation is used for the rest of the paper. Besides, we do not report the probability of
direction (𝑝d) or the Bayes factor (relative to a null model) of a parameter if 𝑝d calculated using the
“direct” method (Makowski et al., 2019) is 100%, in which case the true 𝑝d is expected to be at least
99.975% because we take at least 4000 posterior samples in our models.
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Figure 1.4. Test–retest reliability of (A) the quadratic Lambda Slider and (B) the SVO Slider
Measure, and (C) convergent validity between the two measures. In (A) and (B), each data point
represents one participant–target combination. In (C), for each participant–target combination,
there are two data points representing the first 𝜆 paired with the first SVO°, and the second
𝜆 paired with the second SVO°. The green line is the theoretical relationship between 𝜆 and
SVO°, same as Fig. 1.3B. Data points on the boundaries, which are treated as censored data,
are represented as crosses (same for all figures below). The ellipses indicate the 1-𝜎 and 2-𝜎
iso-density loci of the fitted bivariate normal distributions with parameters set to their posterior
medians.

To assess how many administrations of the Lambda Slider would be required to
make the reliability scores of the two measures comparable, we estimate the reliability
score of the average of multiple measurements on the Lambda Slider. According to the
classical test theory (Lord & Novick, 1968), the test–retest correlation is equal to the
reliability score, and

𝜌 =
𝜎2
t

𝜎2
t +𝜎2

e
,

where 𝜎2
t is the variance of the true score and 𝜎2

e is the variance of the error (of one
measurement) on the Lambda Slider. Let 𝜌′ be the reliability score of the average of 𝑛
measurements on the Lambda Slider. Averaging 𝑛 measurements shrinks the variance of
the error by a factor of 𝑛, so we have

𝜌′ =
𝜎2
t

𝜎2
t + 𝜎2e

𝑛
,
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and therefore
𝜌′

1−𝜌′ =𝑛
𝜌

1−𝜌 .

The same result can be obtained by first assuming a multivariate normal distribution over
2𝑛 variables with the same mean and standard deviation and a fixed pairwise correlation
𝜌, and then deriving the correlation between the mean of the first 𝑛 variables and the
mean of the other variables.

For a baseline of 𝜌 = 0.858 (0.823,0.888), if we increase the number of measure-
ments to 𝑛 = 3, we have 𝜌′ = 0.948 (0.933,0.960), which indicates that the reliability of
the average of 3 measurements on the Lambda Slider is expected to be comparable to
the reliability of the SVO Slider Measure, which requires 6 measurements.

Convergent validity: Lambda Slider vs. SVO Slider Measure

Fig. 1.4C plots the relationship between 𝜆 as measured by the quadratic Lambda
Slider and by the SVO Slider Measure (SVO°). We fit a 4-variate normal distribution
(2 measurements × 2 measures for each participant–target combination) to the data
(see Appendix 1.D for details). The two measures are highly correlated (𝜌𝜆𝜈 = 0.866
(0.821,0.902)), indicating that the Lambda Slider has high convergent validity with the
SVO Slider Measure.

In Fig. 1.4C, there seem to be more responses of SVO° between 7.82° and 36.61°

than 𝜆 between 0 and 0.667. This does not indicate that the SVO Slider Measure has a
higher sensitivity for measuring 𝜆 in this range than the Lambda Slider, because (a) it is
inconsistent with theoretical predictions, and (b) it can be explained away by assuming
that a participant probabilistically chooses between self-gain maximization and perfect
inequity aversion for each decision, which we do not explicate here but can be investigated
by future work.
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Figure 1.5. Relationship between 𝜆 and social distance, for the quadratic Lambda Slider (A) and
the SVO Slider Measure (B). Each raw data point is one of the twomeasurements of a participant–
target combination. Black points and ranges represent the means and standard errors of data in
each group. Blue lines and ranges represent the conditional effects (also called marginal effects;
Bürkner, 2017) of the social distance ranking as a monotonic predictor, with 95% credible inter-
vals.

Convergent validity: 𝜆 vs. social distance

Fig. 1.5 shows participants’ measured 𝜆s from the Lambda Slider and their SVO°
measurements toward targets with different social distances from the participants. We
fit a Bayesian mixed effects model to the data with the social distance ranking as a
monotonic predictor and 𝜆 or SVO° as the dependent variable (see Appendix 1.D for
details). As predicted, 𝜆 as measured by the quadratic Lambda Slider decreases as the
target’s social distance ranking increases (mean slope 𝑏3 = −0.25 (−0.34,−0.16); this
corresponds to how much 𝜆 decreases on average as social distance ranking increases by
1). The output of the SVO Slider Measure (SVO°) also decreases as the target’s social
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distance ranking increases (mean slope 𝑏3 =−16.9 (−20.9,−13.0); this corresponds to
how much SVO° decreases on average as social distance ranking increases by 3).

It is worth noting that participants’ 𝜆s spanned a wide range (Fig. 1.5A). The
mean 𝜆 toward the socially closest person is 0.86, which means that participants value
the target’s welfare almost as much as their own. The mean 𝜆 toward the socially most
distant person is −0.86, which means that participants are almost willing to give up $1
to take $1 away from the target. The SVO Slider Measure has very low sensitivity for
𝜆 < −0.43 or 𝜆 > 1 (Fig. 1.3B), and thus cannot measure a large subset of plausible 𝜆s
accurately.

1.3 Experiment 2

Experiment 1 provided evidence that the Lambda Slider is a valid and reliable
measure of 𝜆. However, it is possible that instead of making decisions by incorporat-
ing the relevant 𝜆s into a utility function like the one in Eq. (1.1) (we call this hy-
pothesis 𝐻𝜆), participants use the slider position as a qualitative representation of kind-
ness/spitefulness and make decisions based on this representation (we call this hypoth-
esis 𝐻𝜒). For instance, after getting an intuitive idea of how the two payoffs change as a
function of the raw slider position 𝜒 ∈ [0,1] ⁸, a participant might treat 𝜒 = 0, 0.25, 0.5,
0.75 and 1 as “very mean”, “somewhat mean”, “neutral”, “somewhat nice”, and “very
nice”, respectively. Then she may choose to be “very nice” to Alice, “somewhat mean” to
Bob, etc., and choose slider positions accordingly.

𝐻𝜆 and 𝐻𝜒 make different predictions when we alter the relationship between
𝜆 and the raw slider position 𝜒. For example, suppose that in an initial trial in which
𝑥 ∈ [−2,2], Alice chooses 𝜒 = 0.75 on the quadratic Lambda Slider, corresponding to
a 𝜆 of 1 for that target. If we then have Alice make a decision for the same target on

⁸Note that 𝜒 is different from 𝑥 above. 𝜒 = 0 (𝜒 = 1) always corresponds to the left (right) end of the
slider.
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a different quadratic Lambda Slider with 𝑥 ∈ [−1,1], 𝐻𝜆 predicts that she will choose
𝜒 = 1 (corresponding to 𝜆 = 1) but 𝐻𝜒 predicts that she will still choose 𝜒 = 0.75 (corre-
sponding to 𝜆 = 0.5).

In general, suppose we have two quadratic Lambda Sliders, Slider A and Slider B.
Let 𝑥 ∈ [𝑥minA,𝑥maxA] on Slider A and 𝑥 ∈ [𝑥minB,𝑥maxB] on Slider B. Let the raw slider
position that the participant chooses be 𝜒A on Slider A and 𝜒B on Slider B. For simplicity,
suppose neither 𝜒A nor 𝜒B is at the boundaries of the slider. Let 𝜆A (𝜆B) be the 𝜆 derived
from 𝜒A (𝜒B). We have

𝜆A = (1−𝜒A)𝑥minA+𝜒A𝑥maxA ,

𝜆B = (1−𝜒B)𝑥minB+𝜒B𝑥maxB .

Given 𝐻𝜆, since 𝜆 on the two sliders should be the same, we have 𝜆A = 𝜆B, and therefore

𝜒B =
𝑥maxB−𝑥minB
𝑥maxA−𝑥minA

𝜒A+
𝑥minA−𝑥minB
𝑥maxA−𝑥minA

. (1.7)

Given 𝐻𝜒, we have
𝜒B =𝜒A . (1.8)

To adjudicate between 𝐻𝜆 and 𝐻𝜒, in Experiment 2, we let participants make de-
cisions for each target on three different quadratic Lambda Sliders with different ranges
of 𝑥, and see which hypothesis best predicts the responses.

1.3.1 Methods
Participants

20 participants were recruited on Prolific and completed the experiment online.
The participant consent, experiment approval, prescreening, payments, and attention
check criteria were the same as Experiment 1. 16 participants (4 female, 12 male) passed
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Figure 1.6. Payoff functions of the three quadratic Lambda Sliders in Experiment 2. The ranges
on the 𝑥 axes reflect the ranges of the sliders.

at least 8 out of the 9 attention checks and are included in the analyses below.

Design

Similar to Experiment 1, Experiment 2 is implemented as a web page and can be
viewed at https://experiments.evullab.org/qi-games-4/. It also has three stages: List,
Rank and Slide, and the List and Rank stages are identical to Experiment 1.

In the Slide stage, there are three quadratic Lambda Sliders: a “base” slider with
𝑥 ∈ [−2,2], same as Experiment 1; a “positive-shift” slider with 𝑥 ∈ [−1.25,2.75]; a
“negative-shift” slider with 𝑥 ∈ [−2.75,1.25] (Fig. 1.6; how we select these ranges and
the payoff functions is detailed in Appendix 1.C). For each participant, each target is
measured twice on each of the three sliders, with a total of 60 Lambda Slider trials.
There are 4 “Left”/“Right” catch trials, similar to Experiment 1, whose payoff functions
are the same as the base slider. These 64 trials are randomized in order. The memory
trials are at the same locations as in Experiment 1, so there are still 9 attention checks
altogether.

We will compare the responses on the three sliders. From Eqs. (1.7) and (1.8),
we see that 𝐻𝜆 predicts

𝜒base =𝜒pos+0.1875 =𝜒neg−0.1875, (1.9)
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Figure 1.7. Responses in Experiment 2 compared to predictions of 𝐻𝜆 and 𝐻𝜒. The axes are raw
slider positions (𝜒) for the base, positive-shift and negative-shift sliders. For each participant–
target combination, there are two raw data points in each panel representing the two measure-
ments on either slider. The diagonal lines indicate the predictions of the two hypotheses without
noise. The ellipses indicate the bivariate normal distributions representing the two fitted models
(see Appendix 1.D).

while 𝐻𝜒 predicts
𝜒base =𝜒pos =𝜒neg . (1.10)

1.3.2 Results

Fig. 1.7 plots the comparisons of the responses on the base slider versus the
positive-shift or negative-shift slider, and compares them to the predictions of 𝐻𝜆 and
𝐻𝜒. For either hypothesis, we fit a 6-variate normal distribution (2 measurements ×
3 sliders for each participant–target combination) to the data, with the constraint that
the means satisfy either Eq. (1.9) or Eq. (1.10) depending on the hypothesis (see Ap-
pendix 1.D for details). The logarithm of the Bayes factor between 𝐻𝜆 and 𝐻𝜒 is 101.6,
indicating decisive evidence in favor of 𝐻𝜆 compared to 𝐻𝜒. This confirms that partici-
pants likely made decisions based on 𝜆 and utility maximization rather than based on a
qualitative representation of kindness.

As further evidence for the test–retest reliability of the Lambda Slider under dif-
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ferent configurations, the within-slider correlations under 𝐻𝜆 are 𝜌base = 0.876 (0.833,
0.908), 𝜌pos = 0.903 (0.870,0.927), and 𝜌neg = 0.906 (0.871,0.931). We also exam-
ine the relationship between 𝜆 and the social distance ranking with a model similar to
Experiment 1 (see Appendix 1.D), and the mean slope is 𝑏3 = −0.22 (−0.34,−0.10),
𝑝d = 99.98%.

1.4 Experiment 3

So far, the decisions participants made in the experiments were all hypothetical.
However, the utility of the Lambda Slider in practice also depends on its external va-
lidity (also called predictive validity by some); i.e., whether hypothetical decisions on
the Lambda Slider predict real-world altruistic behavior. Despite theoretical concerns
about whether decisions with hypothetical payoffs can predict decisions with real pay-
offs (Kahneman & Tversky, 1979), experiments using matched designs have generally
found good alignment between the two settings (Bostyn et al., 2018; FeldmanHall et al.,
2012; Johnson & Bickel, 2002; Locey et al., 2011; Wiseman & Levin, 1996). However,
most decisions people make in the lab, such as makingmonetary tradeoffs in an economic
game, are so different from real-life decisions that it is unclear whether behavior in these
decisions can generalize to real-life situations. Therefore, for the best test of the exter-
nal validity of a measure, we need to use real-life decisions with real payoffs. Höglinger
and Wehrli (2017) examined the external validity of the SVO Slider Measure using a
standard dictator game. Using anonymous targets in all measures, they found that the
correlation between the SVO Slider Measure (in terms of SVO°) and amount given in the
dictator game was 0.42. Likewise, in Experiment 3, we let participants make a real-life
decision of how much money to donate, with an underlying structure of a dictator game,
and examine its relationship with hypothetical decisions on the Lambda Slider. We also
examine the robustness of the Lambda Slider under different configurations and the ef-
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fects of inequity aversion on the measurements. This experiment was preregistered at
https://osf.io/zbw8f.

1.4.1 Inequity aversion

A basic assumption of any study on 𝜆 is that a person’s utility function is a lin-
ear combination of 𝑤s and 𝑤t, at least within the range of payoffs in that study. In
other words, the only motivations under consideration are the motivations to increase
or decrease one’s own and the other person’s welfare. However, another relevant social
motivation is inequity aversion, which is the desire to decrease the absolute difference
between 𝑤s and 𝑤t (Fehr & Schmidt, 1999). We can see inequity aversion at play in
the previous experiments. In Figs. 1.4A, 1.4C and 1.5A, instead of forming a smooth
distribution between 𝜆 = 0 and 𝜆 = 2, many Lambda Slider responses were concentrated
at 𝜆 = 0.667, which leads to 𝑤s =𝑤t given the parameters in Experiment 1. Likewise, in
Figs. 1.4B, 1.4C and 1.5B, instead of forming a smooth distribution between SVO°= 7.82°

(corresponding to a 𝜆 slightly greater than 0) and SVO°= 61.39° (the maximum possible
value), many SVO Slider Measure responses were concentrated at SVO°= 36.61°, which
is consistent with the responses of a perfectly inequity-averse decision maker.

Formally, we can add an inequity-aversion term to the utility function of Eq. (1.1):

𝑢 =𝑤s+𝜆𝑤t−𝜅𝑤s−𝑤t , (1.11)

where 𝜅 ∈ [0,1) captures the strength of inequity aversion⁹.
The measurement of 𝜆 may be biased and may lose sensitivity around the equal-

payoff point if the participant has a nonzero 𝜅. This problem is shared by all the existing
measures of 𝜆, including our Lambda Slider. Trying to counter this problem, Murphy et

⁹It can be shown algebraically that this utility function is equivalent to a utility function with separate
advantageous- and disadvantageous-inequality terms but no 𝜆 term, as in Fehr and Schmidt (1999). In
fact, the utility function in Fehr and Schmidt (1999) can always be rewritten in the form of Eq. (1.11),
but not vice versa.
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al. (2011) describe a set of secondary linear-payoff sliders that are used to distinguish be-
tween inequality aversion and “joint gain maximization”. Participants’ responses to these
secondary items can be used to calculate an “inequality aversion index” ranging from 0
(pure inequality aversion) to 1 (pure joint gain maximization). However, this approach
can only be used for participants whose responses on the “primary items” (Fig. 1.3A) are
consistent with a “prosocial” orientation (i.e., 𝜆 ≈ 1), as the index assesses the degree
to which a participant’s responses are closer to a perfectly consistent decision maker with
𝜆 = 1, 𝜅 = 0 versus 𝜆 = 1, 𝜅 = 1.

Using a range of payoff configurations, the Lambda Slider can simultaneously
measure 𝜆 and 𝜅 with no additional restriction on the value of 𝜆. To see how, we can con-
sider the cases where 𝑤s ≥𝑤t and 𝑤s <𝑤t separately and substitute Eqs. (1.2) and (1.3)
into Eq. (1.11):

𝑢(𝑥) =
⎧⎪
⎨
⎪
⎩

(1−𝜅)𝑤s+(𝜆+𝜅)𝑤t 𝑤s ≥𝑤t

(1+𝜅)𝑤s+(𝜆−𝜅)𝑤t 𝑤s <𝑤t

=
⎧⎪
⎨
⎪
⎩

(1−𝜅)⒧−𝑎𝑥2+𝑏s⒭+(𝜆+𝜅)⒧2𝑎𝑥+𝑏t⒭ 𝑤s ≥𝑤t

(1+𝜅)⒧−𝑎𝑥2+𝑏s⒭+(𝜆−𝜅)⒧2𝑎𝑥+𝑏t⒭ 𝑤s <𝑤t

=
⎧⎪⎪
⎨
⎪⎪
⎩

−𝑎(1−𝜅)⒧𝑥−
𝜆+𝜅
1−𝜅⒭

2
+ const 𝑤s ≥𝑤t

−𝑎(1+𝜅)⒧𝑥−
𝜆−𝜅
1+𝜅⒭

2
+ const 𝑤s <𝑤t

. (1.12)

For any 𝜆 ∈ ℝ and 𝜅 ∈ [0,1), we can make the difference between the shift parameters
of the payoff functions, 𝑏s−𝑏t, positive enough such that 𝑤s >𝑤t when 𝑥 = 𝜆+𝜅

1−𝜅 and thus
𝑥∗ = 𝜆+𝜅

1−𝜅 ; we can also make 𝑏s−𝑏t negative enough such that 𝑤s <𝑤t when 𝑥 = 𝜆−𝜅
1+𝜅 and

thus 𝑥∗ = 𝜆−𝜅
1+𝜅 (proof omitted). Assuming that the participant maximizes their utility

perfectly, these two different values of 𝑥∗ allow us to solve for 𝜆 and 𝜅 independently. In
Experiment 3 we define a likelihood function based on Eq. (1.12) and perform Bayesian
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inference on 𝜆 and 𝜅. Estimating 𝜅 also allows us to examine its external validity, similar
to the external validity of 𝜆, by looking at the relationship between the estimated 𝜅 and
participants’ decisions in the dictator game with real payoffs.

1.4.2 Methods
Participants

90 participants were recruited on Prolific and completed the experiment online.
The participant consent, experiment approval, prescreening, payments, and attention
check criteria were the same as Experiment 1. 76 participants (39 female, 36 male, 1
unknown) passed at least 4 out of the 5 attention checks and only these participants are
included in the analyses below.

Design

Similar to Experiments 1 and 2, Experiment 3 is implemented as a web page and
can be viewed at https://experiments.evullab.org/qi-games-7/. It has three stages: List,
Slide, and Bonus & Donation.

The List stage is the same as Experiment 1, except that participants list only one
target in each of the five categories. We use the categories as proxies for the social
distance rankings and do not ask the participants to rank the targets. After participants
list these targets, we introduce an additional target described as a victim in the wildfires
of Maui, Hawaii in 2023. The name of the target was extracted from a non-paywalled
news article on the wildfires, and we provide a link to the article as well as a description
of the victim’s circumstances.

In the Slide stage, there are three quadratic Lambda Sliders: a “balanced” slider,
where 𝑤s can be either greater than, less than, or equal to 𝑤t depending on the slider
position; a “self-more” slider, where𝑤s >𝑤t holds regardless of the slider position (within
the allowed range); and a “target-more” slider, where the inverse holds (Fig. 1.8; see
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Figure 1.8. Payoff functions of the three quadratic Lambda Sliders in Experiment 3. The ranges
on the 𝑥 axes reflect the ranges of the sliders.

Appendix 1.C for the exact parameters). The range of 𝜆 on the sliders is always [−2,2].
These three sliders allow us to estimate the inequity aversion parameter 𝜅 as described
above.

For each participant, a slider allocation to each of the 6 targets is measured twice
on each of the 3 sliders, with a total of 36 Lambda Slider trials, which are randomized
in order. A “Left” catch trial and a “Right” catch trial (as in Experiment 1) are added,
which become Trials 5 and 20, respectively. Trials 2, 11 and 32 are memory trials, so
there are 5 attention checks altogether.

In the Bonus & Donation stage, participants are asked to use a slider to split US$2
between a monetary bonus to themselves and a donation to the Maui Strong Fund, a
fund created by the Hawaii Community Foundation to support recovery from the Maui
wildfires. Participants essentially play a dictator game between themselves and the fund.
The slider has a precision of $0.01. Participants are assured that there is no deception
involved and that we will actually donate the amount they specify to the Maui Strong
Fund. We also tell participants that after we have collected all the data, we will send
them a spreadsheet documenting the donation from each participant and a receipt of
the total donation. We tell them that in the spreadsheet the participants will only be
identified by the last 5 characters of their Prolific IDs, to prevent them from taking into
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account others’ perception of them.
After a participant completed the experiment, we sent them the monetary bonus

they specified in the Bonus & Donation stage through Prolific. Donations from the par-
ticipants totaled $65.01, and we donated this amount to the Maui Strong Fund and sent
the participants a message through Prolific with links to the spreadsheet and receipt as
we promised them.

1.4.3 Results
Robustness

We first fit a 6-variate normal distribution (2 measurements × 3 sliders for each
participant–target combination) to the data from the Slide stage to examine the within-
slider and between-slider correlations (see Appendix 1.D for details). The within-slider
correlations are (“b” for balanced, “s” for self-more, “t” for target-more) 𝜌b = 0.853
(0.825,0.879), 𝜌s = 0.889 (0.863,0.911), and 𝜌t = 0.868 (0.841,0.890), confirming
that the Lambda Slider has high test–retest reliability for a variety of configurations, even
though its scale is smaller in this experiment than previous ones (𝑎 = 7 vs. 𝑎 = 11.25;
Figs. 1.2B, 1.6 and 1.8). The Bayes factor between the full model and an alternative
model where 𝜌b = 𝜌s = 𝜌t is roughly 1.6, indicating inclusive evidence about whether the
test–retest reliabilities of the three sliders are meaningfully different. The between-slider
correlations are 𝜌bs = 0.802 (0.768,0.831), 𝜌bt = 0.784 (0.751,0.814), and 𝜌st = 0.681
(0.629,0.728), indicating that measurements of 𝜆 are relatively robust to different shift
parameters 𝑏s and 𝑏t.

We examined the relationship between 𝜆 and the social distance ranking (exclud-
ing theMaui wildfire victim) with the samemodel as in Experiment 2 (see Appendix 1.D),
and the mean slope is 𝑏3 =−0.60 (−0.73,−0.47) ¹⁰. Given the larger sample size com-

¹⁰Since there are only 5 targets here, the value of this slope is roughly comparable to the previous
experiments after being divided by 2.

33



pared to Experiments 1 and 2, we also conducted an exploratory analysis of the effect
of sex on 𝜆 and the interaction between sex and social distance ranking, and found no
evidence toward the existence or nonexistence of these two effects, meaning that the
sample size is still not large enough to reach a conclusion (see Appendix 1.D).

External validity

To examine the relationship between measurements on the Lambda Slider and
real-world altruistic behavior, we fit a 3-variate normal distribution to the participants’
measured 𝜆s toward the Maui wildfires victim and their actual donations to the Maui
Strong Fund (see Appendix 1.D). We fit the model separately for the three different
sliders. For the balanced slider, the correlation between 𝜆 and the donation is 𝜌𝑥𝑑 =
0.448 (0.231,0.618), and the Bayes factor between the full model and a null model
where 𝜌𝑥𝑑 = 0 is BF = 640, indicating extreme evidence that the measured 𝜆 and the
donation are positively correlated and that the Lambda Slider has good external validity.
This correlation is close to the correlation of 0.42 between the SVO Slider Measure (in
terms of SVO°) and a standard dictator game (Höglinger & Wehrli, 2017), despite the
Lambda Slider only depending on 1 response instead of 6. For the self-more slider, 𝜌𝑥𝑑 =
0.453 (0.245,0.623), BF = 491. For the target-more slider, 𝜌𝑥𝑑 = 0.349 (0.139,0.529),
𝑝d = 99.95%, BF= 33.3.

Inequity aversion

If participants are inequity-averse, i.e., they have a non-zero 𝜅, the slider posi-
tion they choose on average would be highest on the self-more slider, lowest on the
target-more slider, and in-between on the balanced slider. In the fitted 6-variate normal
distribution described above, we have 𝜇s = 1.04 (0.85,1.23), 𝜇t = 0.08 (−0.02,0.18),
and 𝜇b = 0.22 (0.10,0.33), suggesting that participants are indeed inequity-averse to
some extent.
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Figure 1.9. Inequity aversion in Experiment 3. (A) Posterior distributions of 𝜅 for each partici-
pant sorted by posterior median. The dots indicate the posterior medians and the lines indicate
the 95% credible intervals. Three participants are highlighted, whose raw responses are plotted in
(B)–(D). Targets 1–5 are the targets listed by the participants in the List stage, in increasing order
of social distance. The target “M” is the Maui wildfires victim. For each participant–target–slider
combination, the cross represents the predicted utility-maximizing response given the posterior
medians of 𝜆 and 𝜅, while the two dots are the actual responses.

We fit a hierarchical model to jointly estimate 𝜆 and 𝜅 for each participant–target
combination. We assume that each participant has a fixed 𝜅, but their 𝜆 varies across
targets. We restrict the range of 𝜅 to [0,0.95] because the model becomes unstable when
𝜅 gets too close to 1 (see Appendix 1.D for details and other assumptions).

Fig. 1.9A plots the estimates of 𝜅 for each participant, which span a wide range.
Figs. 1.9B–D plot raw responses of three participants with high, medium and low esti-
mates of 𝜅. We see that the higher 𝜅 is, the more slider positions are influenced by the
relative offsets of the sliders.

To examine the external validity of 𝜅, we look at the relationship between a partici-

35



pant’s estimated 𝜅 and how far the participant’s donation 𝑑 is from the equal-payoff point:
𝑑 − 1. The two variables are negatively correlated (𝜌 = −0.343 (−0.527,−0.129),
𝑝d = 99.92%), indicating that participants with a higher 𝜅 are more likely to choose
equal payoffs between themselves and another person in real-world decisions.

These data suggest that there is considerable variation among participants in
terms of the degree of inequity aversion and, although a single response on the Lambda
Slider is highly correlated with a participant’s true 𝜆, it may be biased toward the equal-
payoff point, especially for participants with high degrees of inequity aversion. In many
research programs such biases do not affect the validity of the conclusions, but if and
when such biases are a concern, we recommend that researchers jointly estimate 𝜆 and
𝜅 using multiple Lambda Sliders. We also recommend fitting a complete model like we
did for the benefits of having uncertainty estimates and easy integration of prior and
global information. But a quick point estimate of 𝜆 and 𝜅 is also possible by having one
measurement 𝑥1 where 𝑤s > 𝑤t and another measurement 𝑥2 where 𝑤s < 𝑤t on two
sliders with different relative offsets, and then solving

𝑥1 =
𝜆+𝜅
1−𝜅 ,

𝑥2 =
𝜆−𝜅
1+𝜅

for 𝜆 and 𝜅 by virtue of Eq. (1.12):

𝜆 =
𝑥1+𝑥2

2+𝑥1−𝑥2
,

𝜅 =
𝑥1−𝑥2

2+𝑥1−𝑥2
.

There is a solution for 𝜅 ∈ [0,1) as long as 𝑥1 ≥𝑥2. In case 𝑥1 <𝑥2, we can assume 𝜅 = 0
and use the average of 𝑥1 and 𝑥2 as a point estimate of 𝜆.
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Now we can have a refined understanding of the tradeoff between accuracy and
efficiency discussed in the Introduction. Accuracy entails both unbiasedness and reli-
ability. There is a straightforward tradeoff between reliability and efficiency for any
measure; the more administrations of a measure are averaged to get a single measure-
ment, the more reliable the measurement will be. On the other hand, biases are trickier
to deal with, and none of the correlation metrics we reported in the experiments really
deals with biases. In the context of measuring 𝜆, biases are prominently introduced in
two ways: (a) through discreteness in the underlying measure, such as the measures
based on binary allocation tasks; and (b) through the failure of accounting for inequity
aversion. The Lambda Slider, unlike most other measures of 𝜆, is free of the first kind
of biases. The second kind of biases can be mitigated by administering multiple Lambda
Sliders with different relative offsets of the payoff functions for each participant–target
combination and jointly estimating 𝜆 and 𝜅, assuming that they are stable across the
multiple measurements. Of course, one has to sacrifice some efficiency for this joint
estimation. In general, the more prior information one has about 𝜆 and/or 𝜅, the less
efficiency one has to sacrifice to achieve the same level of accuracy.

1.5 Discussion

We have developed the Lambda Slider, an accurate and efficient measure of 𝜆
that is theoretically rigorous. We have shown that the Lambda Slider has high relia-
bility, convergent validity, and external validity for real-world decisions. We have also
demonstrated how multiple Lambda Sliders can be used to correct the biases in the mea-
surements of 𝜆 caused by inequity aversion.

The Lambda Slider can be straightforwardly implemented using any dynamic
graphical user interface. To make it easier for other researchers to use the Lambda Slider,
we have created a standalone version of the quadratic Lambda Slider with the same pay-
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off functions as in Experiment 1 (https://experiments.evullab.org/lambda-slider/). It
can be directly embedded into web-based survey platforms such as Qualtrics; instructions
can be found at https://github.com/jameswhqi/wtr-slider-data/blob/main/README.md.

Although the Lambda Slider is efficient and has good psychometric properties,
it may not be the best measure to use under some conditions. The nonlinear payoff
structures may be difficult for people to quickly familiarize themselves with. It is also
inapplicable to projects relying on paper-based measures. Under these circumstances,
it may be preferable to use another measure such as the SVO Slider Measure (Murphy
et al., 2011) or the Welfare Trade-Off Task (Delton et al., 2023; Kirkpatrick et al., 2015).
The SVO Slider Measure may also better align with personality scale measures designed
to assess the same four social strategies that serve as endpoints for the SVO items.

One potential future direction is to use the Lambda Slider to study social per-
ception. People not only make social decisions based on their 𝜆s toward other people,
but can represent, infer, and predict others’ 𝜆s toward themselves or someone else and
react accordingly e.g., Ackermann et al., 2016; Delton and Robertson, 2012; Krasnow
et al., 2016; Lim, 2012; Qi and Vul, 2022; Quillien et al., 2023; Sell et al., 2017. Be-
cause of the drawbacks of the existing measures of 𝜆 based on binary allocation tasks,
the processes of (a) conveying another person’s 𝜆 to the participant, and (b) measuring
the participant’s prediction of another person’s 𝜆, have had a relatively low ceiling on the
product of accuracy and efficiency, limiting the study of the dynamics of such inference
and prediction over time or space. The Lambda Slider can potentially be used to make
these processes more accurate and/or efficient. Using the Lambda Slider to measure
participants’ predictions of another person’s 𝜆 seems straightforward—Alice could imag-
ine that she adopts Bob’s 𝜆 and makes decisions on the Lambda Slider in the same way
she makes her own decisions. Participants should also be able to infer others’ 𝜆s from
observations of Lambda Slider choices, so long as the observing participants have a good
understanding of the underlying payoff functions. This understanding could potentially
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be achieved by allowing the participant to manipulate the slider, or by depicting the re-
lationship between the payoff functions using a 2D curve, as in Fig. 1.1D. The validity
and reliability of the (1D or 2D) Lambda Slider for either of these purposes need to be
established by further research.

Data availability

All data and analysis code in the experiments can be found at https://github.com/
jameswhqi/wtr-slider-data, with instructions for reproducing the results.
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Appendices
1.A Formal derivation of the Lambda Slider
The general form

Suppose we have a curve on the 𝑤s–𝑤t space defined by 𝑤s = 𝑓(𝑤t), 𝑤t ∈ [𝑤min,
𝑤max], and 𝑓 is everywhere differentiable on 𝑤t ∈ (𝑤min,𝑤max) and strictly concave (or,
equivalently, 𝑓′ is strictly decreasing), from which we can deduce that 𝑓′ is continuous
and invertible. We can rewrite the utility (Eq. (1.1)) as a function of 𝑤t:

𝑢(𝑤t) =𝑤s+𝜆𝑤t

= 𝑓(𝑤t)+𝜆𝑤t , 𝑤t ∈ [𝑤min,𝑤max] .
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Then we have
𝑢′(𝑤t) = 𝑓′(𝑤t)+𝜆 , 𝑤t ∈ (𝑤min,𝑤max) .

Since 𝑓′(𝑤t) is continuous and strictly decreasing, we have

𝑢′(𝑤t)

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

>0 𝑤t ∈ ⒧𝑤min,𝑓′−1(−𝜆)⒭

= 0 𝑤t = 𝑓′−1(−𝜆)

< 0 𝑤t ∈ ⒧𝑓′−1(−𝜆),𝑤max⒭

,

as long as 𝑤min < 𝑓′−1(−𝜆) < 𝑤max, or, equivalently, −𝑓′(𝑤min) < 𝜆 < −𝑓′(𝑤max). There-
fore,

𝑤∗
t = argmax

𝑤t∈[𝑤min,𝑤max]
𝑢(𝑤t) = 𝑓′−1(−𝜆), ∀𝜆 ∈ ⒧−𝑓′(𝑤min),−𝑓′(𝑤max)⒭ .

In other words, there is a one-to-one correspondence between 𝜆 ∈ ⒧−𝑓′(𝑤min),−𝑓′(𝑤max)⒭
and points on the curve that a utility-maximizing participant will choose.

To derive a slider and two payoff functions from this curve, we can parameterize
the curve as

𝑤t = 𝑔(𝑥),

𝑤s = 𝑓⒧𝑔(𝑥)⒭,

𝑥 ∈ 𝑥min,𝑥max ,

where 𝑥 is the slider position, 𝑥min and 𝑥max are the boundaries of the slider, and 𝑔 is
a continuous and strictly monotonic (and thus invertible) function. The slider (with the
two payoff functions) derived in such a way is called a Lambda Slider. If 𝑔 is strictly
increasing, we have 𝑥min = 𝑔−1(𝑤min) and 𝑥max = 𝑔−1(𝑤max), and the relationship is
reversed if 𝑔 is strictly decreasing. Then the slider position that the participant (with
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𝜆 ∈ ⒧−𝑓′(𝑤min),−𝑓′(𝑤max)⒭) will choose is

𝑥∗ = 𝑔−1(𝑤∗
t )

= 𝑔−1⒧𝑓′−1(−𝜆)⒭.

Let ℎ(𝜆) = 𝑔−1⒧𝑓′−1(−𝜆)⒭. Since both 𝑔−1 and 𝑓′−1 are continuous and strictly monotonic
functions, ℎ is also a continuous and strictly monotonic function, so there is a one-to-one
correspondence between 𝑥∗ and 𝜆.

Quadratic Lambda Slider

If we select 𝑔 such that 𝑔(𝑥) = 𝑓′−1(−𝑥), we have

𝑥∗ =−𝑓′⒧𝑓′−1(−𝜆)⒭

=−(−𝜆)

= 𝜆 ,

in which case ℎ is the identity function.
What are the simplest 𝑓 and 𝑔 such that ℎ is the identity function? Can 𝑓, 𝑔, or

𝑓 ∘𝑔 (the payoff function for “self”) be linear? Since 𝑓 is strictly concave, it cannot be
linear. In order to measure both positive and negative 𝜆s, 𝑓′(𝑤min) and 𝑓′(𝑤max) need to
have different signs, which means 𝑓 cannot be monotonic. Since 𝑔 is monotonic, 𝑓 ∘𝑔
cannot be monotonic, and thus cannot be linear. Therefore, only 𝑔 can be linear.

Let 𝑤t = 𝑔(𝑥) = 𝐴𝑥+𝐵, 𝐴 > 0. Given 𝑔(𝑥) = 𝑓′−1(−𝑥), we have

𝐴𝑥+𝐵 = 𝑓′−1(−𝑥)

⇒ 𝑓′(𝐴𝑥+𝐵) =−𝑥

⇒ 𝑓′(𝑤t) =−
𝑤t−𝐵
𝐴
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⇒ 𝑓(𝑤t) =−
𝑤t−𝐵
𝐴 d𝑤t

=−
1
2𝐴 (𝑤t−𝐵)2+𝐶 ,

where 𝐶 is an arbitrary constant, and

𝑤s = 𝑓⒧𝑔(𝑥)⒭

=−
1
2𝐴 ⒧(𝐴𝑥+𝐵)−𝐵⒭2+𝐶

=−
𝐴
2𝑥

2+𝐶 .

Letting 𝐴 = 2𝑎, 𝐵 = 𝑏t and 𝐶 = 𝑏s, we get the same payoff functions as Eqs. (1.2)
and (1.3).

1.B Circle Test and circular Lambda Slider

Sonnemans et al. (2006) introduced a “Circle Test” to measure participants’ social
value orientations (or 𝜆s). Participants are presented with a 𝑤s–𝑤t plane and are asked
to choose a point on a circle defined by 𝑤2

s +𝑤2
t = 1000. The Circle Test has the same

underlying logic as the Lambda Slider, and, theoretically, there is also a one-to-one cor-
respondence between the participant’s potential 𝜆s and points on the (right half of the)
circle.

To see this, we can create a Lambda Slider that is almost the same as the Circle
Test, by selecting 𝑓 that defines a half circle on the 𝑤s–𝑤t plane and verifying that 𝑓
satisfies the requirements of a Lambda Slider. Instead of writing out 𝑓 directly, it is
easier to parameterize the curve with 𝜃:

𝑤s = 𝑎 cos𝜃+𝑏s ,

𝑤t = 𝑎 sin𝜃+𝑏t ,
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𝜃 ∈ −
π
2,

π
2,

where 𝑎 > 0, 𝑏s and 𝑏t are arbitrary scale and shift parameters. Then we have

𝑓′(𝑤t) =
d𝑤s
d𝑤t

=
d𝑤s
d𝜃 

d𝑤t
d𝜃

=
−sin𝜃
cos𝜃

=− tan𝜃 ,

which confirms that 𝑓 is everywhere differentiable on (−𝑎+𝑏t,𝑎+𝑏t) and strictly concave.
Since the relationship between 𝑤t and 𝜃 is bijective, we can define a unique 𝜃∗ according
to

𝑤∗
t = 𝑎 sin𝜃∗+𝑏t

and have

𝑤∗
t = 𝑓′−1(−𝜆)

⇒ 𝑓′(𝑤∗
t ) =−𝜆

⇒ − tan𝜃∗ =−𝜆

⇒ 𝜃∗ = arctan𝜆 .

Based on this curve, we can define a Lambda Slider by letting 𝑥 = 𝜃:

𝑤s(𝑥) = 𝑎 cos𝑥+𝑏s , (1.13)

𝑤t(𝑥) = 𝑎 sin𝑥+𝑏t , (1.14)

𝑥 ∈ −
π
2,

π
2.
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We call such a Lambda Slider the “circular Lambda Slider”. Applying the utility definition
of Eq. (1.1), it can be easily verified that

𝑥∗ = argmax
𝑥∈[−π

2 ,π2 ]
𝑢(𝑥) = arctan𝜆 , ∀𝜆 ∈ℝ. (1.15)

We see that the circular Lambda Slider can measure an infinite range of 𝜆, while the
quadratic Lambda Slider cannot (due to the constraint of an identity function between
𝜆 and 𝑥).

Although the Circle Test has the same underlying logic as the Lambda Slider, there
are three limitations in Sonnemans et al.’s presentation of the Circle Test. First, they
developed the Circle Test as an intuitive extension of the Ring Measure (Liebrand, 1984)
without linking the measured angle to 𝜆 itself. Second, Sonnemans et al. (2006) only
used the Circle Test as a tool without testing its psychometric properties. Third, the Circle
Test involves negative payoffs because the payoff structure is defined by 𝑤2

s +𝑤2
t = 1000.

This seems to result from a direct influence of the Ring Measure (Liebrand, 1984). It
is well known that people interpret gains and losses differently (Kahneman & Tversky,
1979) and mixing positive and negative payoffs might exacerbate the nonlinearity in
the relationship between perceived welfare and payoffs, biasing the measurements. In
our Lambda Slider, we can select the shift parameters 𝑏s and 𝑏t such that the payoffs are
always positive or always negative, and we only used positive payoffs in our experiments.

An important difference between the Circle Test and the circular Lambda Slider
is that the payoff structure of the Circle Test is a full circle, while the payoff structure
of the circular Lambda Slider is a half circle. This raises two related questions: (a)
How can we explain choices (if any) made on the left half of the circle in the Circle
Test? (b) What happens when we extend the range of the circular Lambda Slider to
𝑥 > π

2 and/or 𝑥 <−π
2 while keeping the functional forms of Eqs. (1.13) and (1.14)¹¹? If

¹¹In this case the slider is no longer a Lambda Slider as defined in Appendix 1.A, because the curve on
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we restrict the utility function to be a linear combination of 𝑤s and 𝑤t, the participant
must have a zero or negative coefficient on 𝑤s in her utility function in order to choose
𝑥 ∈ ⒧−π,−π

2∪ π2 ,π. In reality and in experimental data e.g., Sonnemans et al., 2006,
it is unlikely for someone to have a zero or negative coefficient on 𝑤s (i.e., all else being
equal, the person is indifferent about her own payoff or prefers a lower payoff for herself).
Hence in this paper we mostly restrict ourselves to the utility function in the form of
Eq. (1.1), which entails that any extension of the circular Lambda Slider beyond a half
circle is useless because those points do not correspond to any 𝜆.

However, it has been shown that people can perceive and make predictions based
on social value orientations of altruism (𝑥 = π

2), martyrdom (𝑥 = 3π
4 ), masochism (𝑥 = π),

sadomasochism (𝑥 =−3π
4 ) and aggression (𝑥 =−π

2), which involve zero or negative coef-
ficients on 𝑤s, although their ability to understand these motivations is generally worse
than motivations with positive coefficients on 𝑤s (Maki et al., 1979). We can capture
such “abnormal” motivations with a different parameterization of the utility function,
such as

𝑢 =𝑤s cos𝜙+𝑤t sin𝜙, (1.16)

where 𝜙 ∈ (−π,π] is a parameter analogous to 𝜆, and this utility function is equivalent to
Eq. (1.1) (up to a scaling factor) given 𝜆 = tan𝜙 for 𝜙 ∈ ⒧−π

2 , π2⒭. 𝜙 is also equivalent to
𝜃𝑀 in Griesinger and Livingston Jr. (1973). Then we can define the “Phi Slider”, which is
a (potentially) accurate and efficient measure of 𝜙, and the “circular Phi Slider”, which
has the same payoff functions as Eqs. (1.13) and (1.14) but a wider range over 𝑥. For
the circular Phi Slider, we have

𝑥∗ = argmax
𝑥∈(−π,π]

𝑢(𝑥) =𝜙 , ∀𝜙 ∈ (−π,π],

the 𝑤s–𝑤t plane cannot be written in the form of 𝑤s = 𝑓(𝑤t). We need a more general definition of a “𝜙
slider” that can measure 𝜙 as defined in Eq. (1.16), which we do not elaborate in the current paper.
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so there is a one-to-one correspondence (an identity function) between the slider position
a participant chooses and her 𝜙.

On the other hand, extending the range of the circular Lambda Slider might be
useful even if we are committed to the utility function of Eq. (1.1). Participants are
often drawn to the boundaries of a finite-length slider, even when those points do not
strictly maximize their utility. If the circular Lambda Slider has a range of 𝑥 ∈ −π

2 , π2,
participants’ choices near the boundaries of the slider are likely to be biased toward
the boundaries, and many responses would correspond to 𝜆 = ±∞. To eliminate the
salient points of 𝑥 =±π

2 on the slider, the experimenter can extend the range of the slider
such that the boundaries (e.g., 𝑥 = ±2π

3 ) are sufficiently discouraged for typical social
motivations (i.e., positive coefficient on 𝑤s) and responses near 𝑥 = ±π

2 are minimally
biased.

Another difference between the Circle Test and the circular Lambda Slider is that
the Circle Test is presented as a circle on the computer screen, and participants are asked
to choose a point on the circle, while the Lambda Slider is presented as a linear slider. In
general, a Lambda Slider (or a Phi Slider) can be presented either as a linear slider with
two bars of varying lengths indicating the payoffs (1D presentation), or as a curve on
the 𝑤s–𝑤t plane (2D presentation). We think that neither of these two presentations is
intrinsically better, but for the Phi Slider, the 2D presentation seems more intuitive when
the range of 𝜙 we want to measure is (−π,π], while the 1D presentation seems more
intuitive when the range of 𝜙 we want to measure is smaller, such as ⒧−π

2 , π2⒭ (in which
case we can measure 𝜆 instead of 𝜙). It is possible that one of these two presentations
has better psychometric properties than the other, which future research can investigate.
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1.C Payoff functions in Experiments 2 and 3

In Experiment 2, we would like the payoff functions of the base, positive-shift
(pos), and negative-shift (neg) sliders (in the form of Eqs. (1.2)–(1.4)) to have the fol-
lowing properties:

1. The range of 𝑥 on the base slider is [−2,2] (same as Experiment 1).

2. The range of 𝑥 on the pos (neg) slider is a constant shift 𝑑 > 0 upward (downward)
from the base slider, and the larger 𝑑 is, the better.

3. The range of 𝑤t is [5,95] on any slider.

4. The range of 𝑤s is narrower than [5,95] on any slider.

5. Let 𝜒∗
base, 𝜒∗

pos and 𝜒∗
neg be the raw slider positions corresponding to 𝑤s =𝑤t on the

three sliders, respectively (the equal-payoff points). 𝐻𝜆 predicts𝜒pos =𝜒base−𝑑 and
𝜒neg =𝜒base+𝑑 while 𝐻𝜒 predicts 𝜒pos =𝜒neg =𝜒base. We would like 𝜒∗

base, 𝜒∗
pos and

𝜒∗
neg to be halfway between the predictions of 𝐻𝜆 and 𝐻𝜒 so that inequity-averse

responses do not bias toward one of the hypotheses, and thus 𝜒∗
pos =𝜒∗

base− 𝑑
2 and

𝜒∗
neg =𝜒∗

base+ 𝑑
2 .

We find that 0.75 is almost the maximum value 𝑑 can have to satisfy all these constraints,
so we set 𝑑 = 0.75 and use the following parameters:

base: 𝑎 = 11.25, 𝑏s = 90, 𝑏t = 50,

pos: 𝑎 = 11.25, 𝑏s = 92.716, 𝑏t = 33.125,

neg: 𝑎 = 11.25, 𝑏s = 90.448, 𝑏t = 66.875.

Fig. 1.6 confirms that these sliders satisfy constraints 1–4. In Fig. 1.7, a tight cluster
of points halfway between the predictions of the two hypotheses corresponds to the
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inequity-averse responses, which confirms that the sliders satisfy constraint 5.
In Experiment 3, all three sliders have the same range [−2,2] and scale 𝑎 = 7, but

different offsets:

balanced: 𝑏s = 64, 𝑏t = 50,

self-more: 𝑏s = 95, 𝑏t = 33,

target-more: 𝑏s = 33, 𝑏t = 67.

1.D Model specifications
Experiment 1
Test–retest reliability

The two measurements for each participant–target combination 𝑖 form a data
vector 𝒙𝑖. The data vectors are assumed to be sampled i.i.d. from a bivariate normal
distribution where the two variables have the same mean and standard deviation:¹²

𝒙𝑖 ∼𝑁(𝝁,𝜮),

𝒙𝑖 = (𝑥𝑖1,𝑥𝑖2)⊤ ,

𝝁 = (𝜇,𝜇)⊤ ,

𝜮 = 𝜎2⎛
⎝

1 𝜌
𝜌 1

⎞
⎠

,

¹²In this paper, univariate normal distributions, denoted by 𝑁(𝜇,𝜎), are parameterized by their stan-
dard deviations instead of variances; multivariate normal distributions, denoted by 𝑁(𝝁,𝜮), are parame-
terized by their covariance matrices as usual. Log-normal distributions, denoted by Lognormal(𝜇,𝜎), are
parameterized by their means and standard deviations in the log space.
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where 𝜌 is the correlation parameter representing the test–retest reliability. We set the
priors to be

𝜇 ∼𝑁(0,2) ,

𝜎 ∼ Lognormal⒧ln(1),1⒭ ,

𝜌 ∼Uniform(−1,1)

for the Lambda Slider data, and

𝜇 ∼𝑁(20,40),

𝜎 ∼ Lognormal⒧ln(20),1⒭,

𝜌 ∼Uniform(−1,1)

for the SVO Slider Measure data. Elements of 𝒙𝑖 are restricted to a range ([−2,2] for
𝜆 and [−16.26°,61.39°] for SVO°), so we treat data points that lie on the boundaries
as censored data. For example, if 𝜆𝑖1 = 2 and 𝜆𝑖2 = 1.8, 𝜆𝑖2 will be used as data in the
model, but 𝜆𝑖1 will be a parameter with a lower bound of 2, which will be included in
the posterior samples along with the other model parameters. We fit the model using
RStan (Stan Development Team, 2023, 2024) with the default sampling parameters.

Lambda Slider vs. SVO Slider Measure

For each participant–target combination 𝑖, the two measurements on the Lambda
Slider (denoted by 𝜆) and the two measurement on the SVO Slider Measure (denoted
by 𝜈) form a data vector 𝒙𝑖. The data vectors are assumed to be sampled i.i.d. from a
4-variate normal distribution with certain constraints:

𝒙𝑖 ∼𝑁(𝝁,𝜮),
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𝒙𝑖 = (𝜆𝑖1,𝜆𝑖2,𝜈𝑖1,𝜈𝑖2)⊤ ,

𝝁 = (𝜇𝜆,𝜇𝜆,𝜇𝜈,𝜇𝜈)⊤ ,

𝜮 =

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝜎2
𝜆 𝜎𝜆𝜆 𝜎𝜆𝜈 𝜎𝜆𝜈

𝜎𝜆𝜆 𝜎2
𝜆 𝜎𝜆𝜈 𝜎𝜆𝜈

𝜎𝜆𝜈 𝜎𝜆𝜈 𝜎2
𝜈 𝜎𝜈𝜈

𝜎𝜆𝜈 𝜎𝜆𝜈 𝜎𝜈𝜈 𝜎2
𝜈

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

,

𝜎𝜆𝜆 = 𝜌𝜆𝜎2
𝜆 ,

𝜎𝜈𝜈 = 𝜌𝜈𝜎2
𝜈 ,

𝜎𝜆𝜈 = 𝜌𝜆𝜈𝜎𝜆𝜎𝜈 ,

where 𝜌𝜆 and 𝜌𝜈 are within-measure correlations representing the test–retest reliability
of either measure, and 𝜌𝜆𝜈 is the between-measure correlation representing the conver-
gent validity. Since not all values of 𝜌𝜆, 𝜌𝜈 and 𝜌𝜆𝜈 in the range [−1,1] result in a valid
covariance matrix 𝜮, instead of parameterizing 𝜮 directly, we parameterize the Cholesky
factor of the correlation matrix¹³:

𝜮 = diag(𝝈)𝜬diag(𝝈),

𝝈 = (𝜎𝜆,𝜎𝜆,𝜎𝜈,𝜎𝜈)⊤ ,

𝜬 = 𝑳𝑳⊤ ,

𝑳 =

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
𝑎1 𝐴1 0 0
𝑎2 𝐴2𝑎3 𝐴2𝐴3 0
𝑎2 𝐴2𝑎3 𝐴2𝐴3𝑎4 𝐴2𝐴3𝐴4

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

,

𝑎𝑗 ∈ [−1,1] ,

¹³The correlation matrix is written 𝜬, the Greek capital letter of 𝜌. Since it looks identical to the Latin
letter P, it can be pronounced as either rho or P.
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𝐴𝑗 =1−𝑎2
𝑗 ,

𝑎3 =
(1−𝑎1)𝑎2

𝐴1𝐴2
,

where 𝑎{1,2,4} are the true parameters for the correlation matrix 𝜬. Such parameteriza-
tion guarantees that 𝜮 is a valid covariance matrix and that its constraints are satisfied.

We set the priors to be

𝜇𝜆 ∼𝑁(0,2),

𝜇𝜈 ∼𝑁(20,40),

𝜎𝜆 ∼ Lognormal⒧ln(1),1⒭ ,

𝜎𝜈 ∼ Lognormal⒧ln(20),1⒭,

𝜬 ∼ LKJ(1).

Data points that lie on the boundaries are treated as censored data. We fit the model
using RStan with the default sampling parameters.

The ellipses in Fig. 1.4C correspond to a bivariate normal distribution with mean
vector (𝜇𝜆,𝜇𝜈)⊤ and covariance matrix

⎛
⎝

𝜎2
𝜆 𝜎𝜆𝜈

𝜎𝜆𝜈 𝜎2
𝜈

⎞
⎠

where the parameters are set to their posterior medians.

𝜆 vs. social distance

Let 𝑖 index the participants; 𝑛 be the number of distinct social distance rankings
minus 1 (9 for the Lambda Slider and 3 for the SVO Slider Measure); 0 ≤ 𝑡 ≤ 𝑛 index
the targets sorted by their social distance rankings (𝑡 = 0 corresponds to the target with
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the smallest social distance); 𝑟𝑡 ∈ [0,𝑛] be the linear predictor term derived from the
monotonic predictor 𝑡 and the simplex parameters 𝜁𝑖, 1≤ 𝑖 ≤ 𝑛 (Bürkner & Charpentier,
2020); and 𝑦𝑖𝑡 be the dependent variable (𝜆 or SVO°) for participant 𝑖 and target 𝑡. The
model is

𝑦𝑖𝑡 ∼𝑁⒧𝑏1+𝑏2𝑖+(𝑏3+𝑏4𝑖)𝑟𝑡,𝜎0⒭ ,

⎛
⎝

𝑏2𝑖
𝑏4𝑖

⎞
⎠

∼𝑁⒧𝟎,⎛
⎝

𝜎2
2 𝜌𝜎2𝜎4

𝜌𝜎2𝜎4 𝜎2
4

⎞
⎠
⒭.

Values of 𝑦𝑖𝑡 that lie on the boundaries are treated as censored data. The priors for the
Lambda Slider data are

𝑏1 ∼𝑁(1,2),

𝑏3 ∼𝑁(0,0.5) ,

𝜎0 ∼ Lognormal(0,1) ,

𝜎2 ∼ Lognormal(0,1) ,

𝜎4 ∼ Lognormal(−1,1),

𝜌 ∼Uniform(−1,1),

𝜻 ∼Dirichlet(𝟏).

The priors for the SVO Slider Measure data are

𝑏1 ∼𝑁(40,40),

𝑏3 ∼𝑁(0,30),

𝜎0 ∼ Lognormal(3,1) ,

𝜎2 ∼ Lognormal(3,1) ,
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𝜎4 ∼ Lognormal(2,1) ,

𝜌 ∼Uniform(−1,1),

𝜻 ∼Dirichlet(𝟏).

We fit the model using brms (Bürkner, 2017) with the default sampling parameters.

Experiment 2
Adjudicating between the two hypotheses

For each participant–target combination 𝑖, the two raw slider positions on each
of the three sliders (“b” for base, “p” for positive-shift, “n” for negative-shift) form a data
vector 𝒙𝑖. The data vectors are assumed to be sampled i.i.d. from a 6-variate normal
distribution with certain constraints:

𝒙𝑖 ∼𝑁(𝝁,𝜮),

𝒙𝑖 = (𝜒𝑖b1,𝜒𝑖b2,𝜒𝑖p1,𝜒𝑖p2,𝜒𝑖n1,𝜒𝑖n2)⊤ ,

𝝁 = (𝜇,𝜇,𝜇−𝜇Δ,𝜇−𝜇Δ,𝜇+𝜇Δ,𝜇+𝜇Δ)⊤ ,

𝜮 = 𝜎2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 𝜌b 𝜌bp 𝜌bp 𝜌bn 𝜌bn

𝜌b 1 𝜌bp 𝜌bp 𝜌bn 𝜌bn

𝜌bp 𝜌bp 1 𝜌p 𝜌pn 𝜌pn

𝜌bp 𝜌bp 𝜌p 1 𝜌pn 𝜌pn

𝜌bn 𝜌bn 𝜌pn 𝜌pn 1 𝜌n

𝜌bn 𝜌bn 𝜌pn 𝜌pn 𝜌n 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where 𝜌{b,p,n} are within-slider correlations, and 𝜌{bp,bn,pn} are between-slider correla-
tions. According to Eqs. (1.9) and (1.10), we have 𝜇Δ = 0.1875 for 𝐻𝜆 and 𝜇Δ = 0 for
𝐻𝜒.

Like above, not all values of 𝜌{b,p,n,bp,bn,pn} in the range [−1,1] result in a valid
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covariance matrix 𝜮, so again we parameterize the Cholesky factor of the correlation
matrix:

𝜮 =𝜎2𝜬 =𝜎2𝑳𝑳⊤ ,

𝑳 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
𝑎1 𝐴1 0 0 0 0
𝑎2 𝐴2𝑎4 𝐴2𝐴4 0 0 0
𝑎2 𝐴2𝑎4 𝐴2𝐴4𝑎6 𝐴2𝐴4𝐴6 0 0
𝑎3 𝐴3𝑎5 𝐴2𝐴5𝑎7 𝐴2𝐴5𝐴7𝑎8 𝐴2𝐴5𝐴7𝐴8 0
𝑎3 𝐴3𝑎5 𝐴2𝐴5𝑎7 𝐴2𝐴5𝐴7𝑎8 𝐴2𝐴5𝐴7𝐴8𝑎9 𝐴2𝐴5𝐴7𝐴8𝐴9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (1.17)

𝑎𝑗 ∈ [−1,1] ,

𝐴𝑗 =1−𝑎2
𝑗 ,

𝑎4 =
(1−𝑎1)𝑎2

𝐴1𝐴2
,

𝑎5 =
(1−𝑎1)𝑎3

𝐴1𝐴3
,

𝑎8 =
(1−𝑎6)𝑎7

𝐴6𝐴7
,

where 𝑎{1,2,3,6,7,9} are the true parameters for the correlation matrix 𝜬. Such param-
eterization guarantees that 𝜮 is a valid covariance matrix and that its constraints are
satisfied.

We set the priors to be

𝜇 ∼𝑁(0.5,0.5) ,

𝜎 ∼ Lognormal⒧ln(0.25),1⒭,

𝜬 ∼ LKJ(1).
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Data points that lie on the boundaries are treated as censored data. We fit both models
(𝐻𝜆 and 𝐻𝜒) using RStan with the default sampling parameters, except that the number
of total iterations is set to 5000, half of which are warm-up samples. We estimate the
marginal likelihoods of the two models using bridge sampling (Gronau et al., 2020).

In Fig. 1.7, using the base-pos comparison as an example (panel A), the ellipses
correspond to a bivariate normal distribution with mean vectors (𝜇,𝜇−𝜇Δ)⊤ and covari-
ance matrix

𝜎2⎛
⎝

1 𝜌bp

𝜌bp 1
⎞
⎠

where the parameters are set to their posterior medians.

𝜆 vs. social distance

The model is similar to Experiment 1, but with an extra predictor representing
the slider, which we assume only changes the intercept but not the slope on 𝑟𝑡. Let 𝑠p
and 𝑠n be dummy variables corresponding to the positive- and negative-shift sliders. The
model becomes

𝑦𝑖𝑡 ∼𝑁⒧𝑏1+𝑏2𝑖+𝑏5𝑠p+𝑏6𝑠n+(𝑏3+𝑏4𝑖)𝑟𝑡,𝜎0⒭ ,

and the priors are the same as the ones for the Lambda Slider data in Experiment 1, with
the extra terms

𝑏5 ∼𝑁(0,1),

𝑏6 ∼𝑁(0,1).

Note that the dependent variable is slider position 𝑥, whose range depends on the slider,
not the raw slider position 𝜒, whose range is always [0,1].
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Experiment 3
Robustness

For each participant–target combination 𝑖, the two slider positions on each of the
three sliders (“b” for balanced, “s” for self-more, “t” for target-more) form a data vector
𝒙𝑖. The data vectors are assumed to be sampled i.i.d. from a 6-variate normal distribution
with certain constraints:

𝒙𝑖 ∼𝑁(𝝁,𝜮),

𝒙𝑖 = (𝑥𝑖b1,𝑥𝑖b2,𝑥𝑖s1,𝑥𝑖s2,𝑥𝑖t1,𝑥𝑖t2)⊤ ,

𝝁 = (𝜇b,𝜇b,𝜇s,𝜇s,𝜇t,𝜇t)⊤ ,

𝜮 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜎2
b 𝜎bb 𝜎bs 𝜎bs 𝜎bt 𝜎bt

𝜎bb 𝜎2
b 𝜎bs 𝜎bs 𝜎bt 𝜎bt

𝜎bs 𝜎bs 𝜎2
s 𝜎ss 𝜎st 𝜎st

𝜎bs 𝜎bs 𝜎ss 𝜎2
s 𝜎st 𝜎st

𝜎bt 𝜎bt 𝜎st 𝜎st 𝜎2
t 𝜎tt

𝜎bt 𝜎bt 𝜎st 𝜎st 𝜎tt 𝜎2
t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

𝜎𝑙𝑙 = 𝜌𝑙𝜎2
𝑙 , 𝑙 ∈ {b,s, t},

𝜎𝑙1𝑙2 = 𝜌𝑙1𝑙2𝜎𝑙1𝜎𝑙2 , 𝑙1𝑙2 ∈ {bs,bt,st},

where 𝜌𝑙 are within-slider correlations, and 𝜌𝑙1𝑙2 are between-slider correlations. The
parameterization of 𝜮 (in fact, the correlation matrix 𝜬) is the same as in Experiment 2,
which was not described in the preregistration because we were not aware of the issue
that not all values of 𝜌 result in a valid covariance matrix.

For the alternative model where 𝜌b = 𝜌s = 𝜌t, the Cholesky factor of 𝜬 has the
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same format as Eq. (1.17), but with two additional constraints among the variables:

𝑎6 =
𝑎1−𝑎2

2 −𝐴2
2𝑎2

4
𝐴2
2𝐴2

4
,

𝑎9 =
𝑎1−𝑎2

3 −𝐴2
3𝑎2

5 −𝐴2
3𝐴2

5𝑎2
7 −𝐴2

3𝐴2
5𝐴2

7𝑎2
8

𝐴2
3𝐴2

5𝐴2
7𝐴2

8
,

so 𝑎{1,2,3,7} are the true parameters for 𝜬.
We set the priors to be

𝜇𝑙 ∼𝑁(0,2),

𝜎𝑙 ∼ Lognormal(0,1) ,

𝜬 ∼ LKJ(1).

Data points that lie on the boundaries are treated as censored data. We fit the full
model using RStan with the default sampling parameters, except that the number of
total iterations is set to 3000, half of which are warm-up samples. For estimating the
Bayes factor between the two models, we randomly sample 10% of the data (bridge
sampling would not reliably converge for more data, likely because there are too many
parameters in the model corresponding to the censored data points) and fit the two
models with the default sampling parameters, except that the number of total iterations
is set to 5000, half of which are warm-up samples. We repeat this process 10 times,
producing 10 Bayes factors, and report their median in the main text.

For the relationship between 𝜆 and social distance, the model is similar to Exper-
iment 2, but with a different set of sliders and two extra predictors—sex and the interac-
tion between sex and social distance. Let 𝑠s and 𝑠t be dummy variables corresponding to
the self-more and target-more sliders. Let 𝑠m be dummy variable corresponding to being
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male (instead of female). The model becomes

𝑦𝑖𝑡 ∼𝑁⒧𝑏1+𝑏2𝑖+𝑏5𝑠s+𝑏6𝑠t+𝑏7𝑠m+𝑏8𝑠m𝑟𝑡+(𝑏3+𝑏4𝑖)𝑟𝑡,𝜎0⒭ ,

and the priors are the same in Experiment 2, with the extra terms

𝑏7 ∼𝑁(0,0.5) ,

𝑏8 ∼𝑁(0,0.2) .

The number of total sampling iterations is 5000, half of which are warm-up samples.
Call this full model 𝑀1. There are two alternative models, the first one without

the 𝑏8 term (call it 𝑀2), and the second one without both 𝑏7 and 𝑏8 (call it 𝑀3). 𝑀3 is
essentially the same model as in Experiment 2. The mean slope 𝑏3 reported in the main
text is from𝑀3 fit to the full dataset. To examine the effect of sex, we fit the three models
to a dataset where the only participant whose sex was “prefer not to say” is excluded.
There is very weak evidence for the nonexistence of an interaction between sex and social
distance (𝑏8 = 0.05 (−0.16,0.26), BF𝑀1/𝑀2

= 0.55) and no evidence for the existence or
nonexistence of an effect of sex (𝑏7 = 0.16 (−0.16,0.47), BF𝑀2/𝑀3

= 0.91).

External validity

For each participant 𝑖, the two measurements on a particular Lambda Slider to-
ward the Maui wildfires victim 𝑥𝑖{1,2} ∈ [−2,2] and the participant’s donation to the
Maui Strong Fund 𝑑𝑖 ∈ [0,2] form a data vector 𝒙𝑖. The data vectors are assumed to be
sampled i.i.d. from a 3-variate normal distribution with certain constraints:

𝒙𝑖 ∼𝑁(𝝁,𝜮),

𝒙𝑖 = (𝑥𝑖1,𝑥𝑖2,𝑑𝑖)⊤ ,

58



𝝁 = (𝜇𝑥,𝜇𝑥,𝜇𝑑)⊤ ,

𝜮 =
⎛⎜⎜⎜
⎝

𝜎2
𝑥 𝜌𝑥𝜎2

𝑥 𝜌𝑥𝑑𝜎𝑥𝜎𝑑

𝜌𝑥𝜎2
𝑥 𝜎2

𝑥 𝜌𝑥𝑑𝜎𝑥𝜎𝑑

𝜌𝑥𝑑𝜎𝑥𝜎𝑑 𝜌𝑥𝑑𝜎𝑥𝜎𝑑 𝜎2
𝑑

⎞⎟⎟⎟
⎠

.

The Cholesky factor of the correlation matrix is parameterized as

𝑳 =
⎛⎜⎜⎜
⎝

1 0 0
𝑎1 𝐴1 0
𝑎2 𝐴2𝑎3 𝐴2𝐴3

⎞⎟⎟⎟
⎠

,

𝑎𝑗 ∈ [−1,1] ,

𝐴𝑗 =1−𝑎2
𝑗 ,

𝑎3 =
(1−𝑎1)𝑎2

𝐴1𝐴2
,

where the true parameters are 𝑎{1,2}. In the null model where 𝜌𝑥𝑑 = 0, there is an addi-
tional constraint 𝑎2 = 0, and the only true parameter is 𝑎1.

We set the priors to be

𝜇𝑥 ∼𝑁(0,2),

𝜇𝑑 ∼𝑁(1,1),

𝜎𝑥,𝜎𝑑 ∼ Lognormal(0,1) ,

𝜬 ∼ LKJ(1).

Data points that lie on the boundaries are treated as censored data. We fit both the full
model and the null model using RStan with the default sampling parameters, except
that the number of total iterations is set to 5000, half of which are warm-up samples.
We estimate the marginal likelihoods of the two models using bridge sampling.
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Inequity aversion

We assume that participants’ choices on the sliders are noisy maximization of the
utility function:

𝑝(𝑥) ∝ exp⒧𝛽𝑢(𝑥)⒭, (1.18)

where 𝛽 > 0 is a global softmax parameter (we do not have enough data to fit a 𝛽 for
each participant). Substituting Eq. (1.12) into Eq. (1.18), we see that 𝑝(𝑥) has the same
form as the probability density function of a normal distribution on each segment of the
slider where 𝑤s−𝑤t has the same sign. In other words, 𝑥 is distributed according to a
truncated normal distribution on each of these segments, with the constraint that 𝑝(𝑥)
is continuous at the boundaries between segments.

Let 𝜙𝜇,𝜎 and𝛷𝜇,𝜎 be the density and cumulative functions of a normal distribution
with mean 𝜇 and standard deviation 𝜎. Let

𝜇1 =
𝜆+𝜅
1−𝜅 ,

𝜇2 =
𝜆−𝜅
1+𝜅 ,

𝜎1 =
1

2𝛽𝑎(1−𝜅) ,

𝜎2 =
1

2𝛽𝑎(1+𝜅) ,

where 𝑎 = 7 is the scale of the slider. The likelihood functions for the self-more and
target-more sliders are

𝑝s(𝑥|𝜆,𝜅,𝛽) =
𝜙𝜇1,𝜎1

(𝑥)
𝛷𝜇1,𝜎1

(2)−𝛷𝜇1,𝜎1
(−2) ,

𝑝t(𝑥|𝜆,𝜅,𝛽) =
𝜙𝜇2,𝜎2

(𝑥)
𝛷𝜇2,𝜎2

(2)−𝛷𝜇2,𝜎2
(−2) .

The likelihood function for the balanced slider is slightly more complex because there
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are two segments where 𝑤s−𝑤t has different signs:

𝑝b(𝑥|𝜆,𝜅,𝛽) =

⎧⎪⎪⎪
⎨
⎪⎪⎪
⎩

𝜙𝜇1,𝜎1
(𝑥)

𝐴1+𝑘𝐴2
𝑥 ∈ [−2, ̂𝑥]

𝜙𝜇2,𝜎2
(𝑥)

1
𝑘𝐴1+𝐴2

𝑥 ∈ ( ̂𝑥,2]
,

where

̂𝑥 =3−1,

𝐴1 =𝛷𝜇1,𝜎1
( ̂𝑥)−𝛷𝜇1,𝜎1

(−2),

𝐴2 =𝛷𝜇2,𝜎2
(2)−𝛷𝜇2,𝜎2

( ̂𝑥) ,

𝑘 =
𝜙𝜇1,𝜎1

( ̂𝑥)
𝜙𝜇2,𝜎2

( ̂𝑥) .

Unless 𝜆 =−1, both 𝜇1 →∞ and 𝜎1 →∞ when 𝜅 →1, which makes the model unstable,
so we restrict the range of 𝜅 to [0,0.95].

Let 𝑖 index the participants; 𝜅𝑖 be a participant’s 𝜅 parameter; 1 ≤ 𝑡 ≤ 6 index
the targets; 𝜆𝑖𝑡 be the 𝜆 parameter for a participant–target combination; and 𝑦𝑖𝑡𝑙 be the
response for participant 𝑖, target 𝑡, and slider 𝑙. The model is

𝜆𝑖𝑡 ∼𝑁 ⒧𝜇𝑡,0.5⒭

𝑦𝑖𝑡𝑙 ∼𝑝𝑙 ⒧⋅  𝜆𝑖𝑡,𝜅𝑖,𝛽⒭ ,

where 𝜇𝑡 is the mean 𝜆 for a target across participants. We put a slightly strong prior on
𝜆𝑖𝑡 (but not unreasonable given prior data) because for extreme values of 𝜆, the poste-
rior distribution would be strongly degenerate and the sampling algorithm would have
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difficulty exploring the distribution efficiently. The other priors are

𝜇𝑡 ∼𝑁(0,1),

𝛽 ∼ Lognormal(−1,0.5) ,

𝜅𝑖 ∼Uniform(0,0.95).

The relatively strong prior on 𝛽 is also set to prevent degeneracy. We fit the model using
RStan with the default sampling parameters.

The correlation between 𝜅𝑖 and 𝑑𝑖 −1 (where 𝑑𝑖 is the donation amount) is
calculated by fitting a bivariate normal distribution to the data, without treating any
data as censored:

𝒙𝑖 ∼𝑁(𝝁,𝜮),

𝒙𝑖 = ⒧𝜅𝑖, 𝑑𝑖−1⒭⊤ ,

𝝁 = (𝜇1,𝜇2)⊤ ,

𝜮 =⎛
⎝

𝜎2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

⎞
⎠

,

and the priors are

𝜇1,𝜇2 ∼𝑁(0.5,0.5) ,

𝜎1,𝜎2 ∼ Lognormal⒧ln(0.5),1⒭ ,

𝜌 ∼Uniform(−1,1).

We fit the model using RStan with the default sampling parameters.
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Chapter 2

The evolution of theory of mind on wel-
fare tradeoff ratios

People seem to attribute beliefs and desires to another person when interacting
with them. Such a “theory of mind” capacity is essential for complex and uniquely hu-
man behavior such as language, but its evolutionary origin remains elusive. Using the
formal tools of evolutionary game theory, we asked what environmental properties are
necessary to select for a basic form of theory of mind—the ability to infer the prosociality,
quantified by the welfare tradeoff ratio, of another person towards oneself. We found
that none of the environments studied in classical or evolutionary game theory give an
advantage to this form of theory of mind capacities; theory of mind is advantageous only
in a new class of environments with stable opponents and variable payoff structures. In
two behavioral experiments (𝑛 = 91) we verified that people can, and do use theory of
mind in such an environment. These results suggest that some features of early humans’
social environment that were previously neglected in evolutionary game theory may be
responsible for the evolution of people’s complex social capacities.
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2.1 Introduction

Theory of mind (ToM) refers to one’s ability to impute different mental states,
such as beliefs and desires, to others, and use them to build causal theories that can
explain, predict, and influence behavior (Premack & Woodruff, 1978). Although there
is no consensus on whether non-human animals have ToM (Call & Tomasello, 2008;
Krupenye et al., 2016; Penn & Povinelli, 2007), many researchers believe that ToM is a
prerequisite for such uniquely human phenomena as language (Baron-Cohen, 2000), cul-
ture (Tomasello et al., 2005), and even consciousness (Baumeister & Masicampo, 2010).
Thus a natural question is why humans evolved to have ToM. It has been suggested that
ToM evolved to facilitate cheater detection in reciprocal altruism (Trivers, 1971), which
increases the long-term fitness of every altruistic individual in a group-living setting
(Brüne & Brüne-Cohrs, 2006). However, when Axelrod (1984) famously formalized re-
ciprocal altruism with the iterated Prisoner’s Dilemma tournament, the best-performing
strategy was tit-for-tat, a simple behavior-level strategy that requires no ToM whatso-
ever. Since Axelrod, evolutionary game theory has helped us understand (or at least
speculate about) the origins of a wide range of social behavior in animals and humans
(Nowak, 2006b; Weibull, 1997), but the puzzle of the evolution of ToM remains largely
untouched. Can evolutionary game theory explain the origins of human ToM abilities?

Evolutionary game theory explains behavioral tendencies by considering what so-
cial environment (modeled with games) creates an evolutionary pressure for that behav-
ior (Maynard Smith & Price, 1973). For instance, in the Prisoner’s Dilemma (Fig. 2.1A),
althoughmutual cooperation is the globally optimal outcome, the payoff structure strong-
ly encourages defection (Rapoport et al., 1965), which raises the question of how self-
interested organisms can cooperate to achieve the mutually best payoffs. Axelrod (1984)
showed that when the game is played repeatedly between two players, cooperation can
be maintained through direct reciprocity, exemplified by the simple strategy of tit-for-tat
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Figure 2.1. The game environments we study. (A) The 2×2 normal-form game. Either player
chooses an action (𝐴 or 𝐵), and the payoffs in the resulting cell are given to the two players
respectively (e.g., if 𝑋 chooses 𝐴 and 𝑌 chooses 𝐵, 𝑋 gets𝑤3 and 𝑌 gets𝑤4). The payoff structure
is determined by 𝑤1,…,𝑤8. The canonical payoffs of a Prisoner’s Dilemma are also given (𝐴 is
cooperation and 𝐵 is defection). (B) The 3×3 grid of stability in the opponent and the payoff
structure. We do not consider the “fixed opponent” row in the simulation because it makes no
sense in an evolutionary setting (see Section 2.2.2). (C) Three examples of the environments in
the 3×3 grid. Faces with different colors represent different agents, and squares with different
colors represent different payoff structures. Each box illustrates the experience of a fixed row
player, and every agent in the environment has a similar experience. Note that when the opponent
or payoff structure is “fixed”, it is the same for all agents in the environment.

(TfT). Here the critical condition for cooperation to arise is the stability of the opponent,
which gives TfT players an opportunity to punish uncooperative behavior and thereby
avoid exploitation. Using this same logic we ask: what social environment favors ToM
abilities?

Most of the social environments that have thus far been studied in evolutionary
game theory are insufficient for ToM to arise, in much the same way that one-shot Pris-
oner’s Dilemma is insufficient for cooperation to arise. A central feature of ToM reasoning
is that it allows us to respond uniquely to the behavior of distinct individuals by track-
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ing and adapting to their idiosyncratic mental states. In one-shot games (Hauert et al.,
2006) an agent never meets the same opponent again, so nothing learned about any
individual is useful in the future and we would not expect ToM to be selected in such
settings. In fixed repeated games (i.e., repeated games with a fixed payoff structure
(Axelrod, 1984) or stochastic games with simple fixed specifications (Hilbe et al., 2018;
Shapley, 1953)), simple action-level strategies like TfT are likely to be sufficient, so the
additional complexity of ToM would not be advantageous.

We will instead consider a broader range of environments characterized by the
stability of opponents and payoff structures, forming a 3×3 grid (Fig. 2.1B). A given fea-
ture of the environment may be fixed (invariant over all interactions), stable (repeated
over many, but not all, interactions), or variable (unique for each interaction). We con-
sider a grid of possible environments where the rows correspond to fixed/stable/variable
opponents (abbreviated as OF/OS/OV) and the columns are fixed/stable/variable pay-
off structures (abbreviated as PF/PS/PV). This subsumes one-shot games (variable op-
ponents and fixed payoffs: OV-PF), fixed repeated games (stable opponents and fixed
payoffs: OS-PF) and variable games (stable opponents and variable payoffs: OS-PV)
(Kleiman-Weiner, 2018; Qi & Vul, 2020). We ask if any region of this space creates an
evolutionary advantage for ToM abilities.

ToM in human adults is extremely rich and flexible. There are a variety of mental
states that ToM can impute to others, such as perceptions, knowledge, beliefs, desires, in-
tentions, and emotions. Although we are expanding the scope of the game environments,
they remain highly abstract and restricted compared to the real world environment, such
that it is infeasible to study most of the mental states that human ToM can impute. For
instance, the literature on ToM has largely focused on beliefs (about some objective state
of the world), and false beliefs in particular (Baron-Cohen et al., 1985; Liu et al., 2008;
Wimmer & Perner, 1983), but beliefs cannot play a role in a 2×2 normal-form game be-
cause the payoff structure is transparent and common knowledge (in a recursive sense).
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However, there is one basic form of ToM that is subject to investigation in these slightly
enriched environments—thinking about how nice or mean another agent is toward one-
self, which can be formalized as a welfare tradeoff ratio (WTR; Tooby and Cosmides,
2008). The WTR reflects how an agent values another agent’s welfare compared to her
own, and is defined through the utility function

𝑢self = 𝑣self+𝜆 ⋅𝑣opp , (2.1)

where 𝜆 is the WTR (for the rest of the paper we will mostly use 𝜆 to refer to WTR),
𝑣self is the payoff for the agent itself and 𝑣opp is the payoff for the “opponent”, i.e., the
other agent (in game theory “opponent” does not necessarily entail competition)¹. In-
tuitively, an agent may be selfish (𝜆 = 0), altruistic (𝜆 > 0) or spiteful (𝜆 < 0) toward
the opponent. In a game theoretic setting, 𝜆 generalizes the notion of cooperation and
defection—defined at the action level in classic social dilemma games like the Prisoner’s
Dilemma—to games with arbitrary payoff structures, and is tied to such concepts as so-
cial value orientation (Van Lange et al., 1997) and social discounting (Jones & Rachlin,
2006). There is a rich psychological literature revealing that people model others as
utility-maximizers (Jara-Ettinger et al., 2016) and can infer another person’s WTR to-
ward themselves or someone else and react accordingly (e.g., through emotions includ-
ing anger and gratitude and through reciprocity; Delton and Robertson, 2012; Krasnow
et al., 2016; Lim, 2012; Monroe, 2020; Sell et al., 2017), highlighting the importance
of this basic form of ToM ability.

Here, we focus on the evolution of the ToM ability to infer another agent’s 𝜆 to-
ward oneself. We conducted an evolutionary simulation based on repeated 2×2 normal-
form games (Fig. 2.1A) to identify which environment in the 3×3 grid of stability favors

¹In this work, following the standard assumptions in the WTR and evolutionary game theory literature,
we assume that “payoff” only involves “objective” welfare, but not “subjective” welfare or happiness, and
it is the “objective” welfare that gets translated to fitness in the evolutionary analysis below.
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an agent with ToM abilities, and then tested whether people use ToM in such an envi-
ronment through two behavioral experiments.

2.2 Simulation

In this section, we first introduce the agents we used in the simulation. Then we
describe the tournaments in which the agents play the games against each other and the
resulting pairwise mean payoffs (i.e., for each pair of agents, their respective average
payoffs per round in the tournaments). Finally, we describe the evolutionary results
based on the pairwise mean payoffs.

2.2.1 Agents

For simplicity, in this study we assume that the two 𝜆s (one for either direction)
between a pair of agents are fixed throughout their lifetime interactions. It is plausible
for agent A to adjust its 𝜆 towards agent B given the perceived 𝜆 of B towards A, which
would constitute reciprocity (Fehr & Schmidt, 2006). If the capacity for such reciprocity
endows an agent with an evolutionary advantage in an environment, having a ToMwould
be even more evolutionarily advantageous compared to agents without a ToM because
reciprocity at this level of abstraction requires first representing the opponent’s 𝜆. In
this work we examine the minimal case: in which environments does a ToM capacity
to represent, and infer, an opponent’s 𝜆 toward oneself—without reciprocity—have an
evolutionary advantage?

In the simple case of fixed lifetime 𝜆s, a rational ToM agent would infer the oppo-
nent’s 𝜆 towards itself, and make choices to optimize its utility in light of beliefs about
the opponent’s 𝜆. Such an agent has a much more sophisticated decision policy than a
simple action-level strategy like TfT. First, it maximizes utility in light of payoffs, rather
than adopting a fixed decision rule over options. Second, it assumes a utility-maximizing
model of the opponent to predict their choices. Third, it learns from past experience,
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rather than adopting a fixed policy that is insensitive to past outcomes. Finally, it learns
the utility function of a specific opponent that can be used to predict behaviors in novel
environments. While our ToM agent embodies the conjunction of these traits, some of
these features in isolation may be beneficial. To identify which environment is neces-
sary for the full set of ToM traits to arise, we first introduce several foils for a ToM agent,
which also enriches the evolutionary environment, and then describe the ToM agent.

The first foil is a random agent who chooses one of the two actions with equal
probability.

The second foil is “tit-for-tat (TfT)”, an action-level strategy that has proved to be
very effective in iterated Prisoner’s Dilemmas (IPD) (Axelrod, 1984). It chooses 𝐴 (which
corresponds to “cooperation” in the Prisoner’s Dilemma when the payoff structure is
fixed; see Fig. 2.1A) in the first round, and, in all the other rounds, repeats the opponent’s
action from the previous round.

The third foil is a “reinforcement-learning (RL)” agent that can adapt to an op-
ponent given sufficient opportunities to learn. However, like TfT, it learns policies over
actions, does not build a flexible model of the opponent, and cannot immediately adapt to
new payoff structures. Intuitively, it learns the best action (in terms of the highest total
expected utility in the future) given the history of previous rounds. See Appendix 2.A for
a detailed description of the RL agent and Section 2.4 for a discussion on the possibility
of making it payoff structure–aware.

The fourth foil is a “naïve utility maximizer (NUM)”, who assumes that the oppo-
nent will choose randomly between the two actions, and makes a choice by comparing
the expected utilities of its own two actions in light of its 𝜆 towards the opponent (i.e.,
it deterministically chooses the action with the higher expected utility for itself²). This
agent can immediately alter behavior in response to new payoff structures, but cannot

²We could have used a slightly noisy decision rule (e.g., a softmax function on the utilities), but the
results would be analogous, because the ToM agent presumes some uncertainty in the opponent’s 𝜆 (see
below) and makes robust inferences of it.
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adapt to opponents.
The fifth foil is a “fixed-belief maximizer (FBM)”, who assumes that the opponent

is a NUM whose 𝜆 towards the agent is sampled from some population distribution (we
use a normal distribution). This agent has a richer understanding of the social world, but
still does not adapt to each unique opponent. See Appendix 2.A for a detailed description
of the FBM.

Finally, a ToM agent is one that adapts to each opponent by learning what they
value (as reflected in their 𝜆), and thus gains the ability to predict their behavior in
a broad range of circumstances. Similar to the FBM, a ToM agent assumes that the
opponent is a NUM whose 𝜆 is sampled from a normal distribution, but contrary to the
FBM, this distribution is not fixed. Instead, when playing repeated games, a ToM agent
does iterated Bayesian inference to learn a distribution over the opponent’s 𝜆. This is
the simplest agent that can been seen as having a ToM. See Appendix 2.A for a detailed
description of the ToM agent.

2.2.2 Tournaments

To find out which environmental structures favor which kinds of agents, we simu-
lated an evolutionary process based on “tournaments” among the different agents for
each environment in the 3× 3 grid of stability of games and opponents (Figs. 2.1B
and 2.1C). In the tournaments, each agent plays repeated games as specified by the
environment with every other agent, and we use the mean payoffs per round for each
pair of agents as the indicator of their fitness. First, we do not consider the “fixed op-
ponent” row as it makes no ecological sense when simulating population behavior: it
describes a world in which all agents in the environment only ever interact with a single
central hub agent, but not each other. In the remaining 2×3 grid, when the payoff struc-
ture is fixed, we use the canonical payoffs of a Prisoner’s Dilemma (Fig. 2.1A) to give
TfT an advantage (other payoff structures likely favor other fixed action-level strategies
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and the results would be analogous). When the payoff structure is stable or variable, for
each new payoff structure, we sample the 8 payoff values independently from a uniform
distribution.

We include 6 types of agents in the environment: random, tit-for-tat (TfT), rein-
forcement-learning (RL), naïve utility maximizer (NUM), fixed-belief maximizer (FBM),
and theory-of-mind (ToM). RL, NUM, FBM and ToM are called “utility-maximizing agents”
because they maximize a utility function in the form of Eq. (2.1). Since 𝜆s are driven by
social structure, they are not a property of an agent, but a property of the directional rela-
tion between two agents, and any one individual will have a distribution of inbound and
outbound 𝜆s determined by the social structure. Consequently, we are not concerned
with the evolutionary selection of 𝜆s themselves, but with the evolutionary selection of
the ability to infer others’ 𝜆s toward oneself. So we fix each utility-maximizing agent’s
distribution of outbound 𝜆 values to 𝜆 =−1/0/1 with probabilities 0.25/0.5/0.25, based
on the heuristic that an agent is more likely to be selfish than altruistic or spiteful towards
another agent, and assume that inbound and outbound 𝜆s are independent.

For each of the 6 environments in the 2× 3 grid, we first simulate the mean
payoffs for each pair of agents, and then use the pairwise mean payoffs to simulate
the evolutionary process (described in Section 2.2.3 below). For the utility-maximizing
agents (RL, NUM, FBM and ToM), we include 3 agents of each type in the environment,
corresponding to 𝜆 = −1/0/1, so that we have 14 agents in total. In this way, we do
not need to explicitly randomize each agent’s 𝜆. Instead, we get the pairwise payoffs
for all the 14 agents and then collapse over the 3 agents of each type according to the
probabilities 0.25/0.5/0.25.

In the stable-opponent (OS) environments, the basic unit of the tournament is 100
rounds of games played by two fixed agents, which we call a supergame (“supergame”
in game theory is almost a synonym of “repeated game”, but here we use it to denote
this specific repeated game with 100 rounds). The history-dependent agents (TfT, RL,
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ToM) are reset at the start of each supergame. For each pair of agents (including two
clones of the same agent), the supergame is repeated multiple times until the standard
errors of the mean payoffs are small enough.

In the variable-opponent (OV) environments, we include two groups of agents.
Agents in one group always play as the row player, and agents in the other group always
play as the column player. In each round of the game, one agent from either group
is randomly sampled and the two sampled agents play against each other. In either
group there are 4 random agents, 4 TfT agents, and 1/2/1 agents of every other type
for 𝜆 =−1/0/1 (24 agents in total). In other words, each agent has equal probability of
encountering each type of agent as the opponent, and the distribution of 𝜆s for the oppo-
nents is 0.25/0.5/0.25. Note that in principle the distribution of the opponents should
change as evolution progresses, but here we use the simplifying assumption that the
distribution is fixed, so that we can use fixed pairwise mean payoffs in the evolutionary
simulation. Each supergame includes 100×24 rounds of games, so that on average each
agent plays 100 rounds of games. The TfT agents and RL agents are reset at the start of
each supergame because they are defined in terms of raw actions and are insensitive to
changes in the type of the opponent. However, the ToM agents are reset in every round
of the game (i.e., they do not learn at all and are identical to the FBMs), because when
the opponent is constantly changing, it is meaningless to try to learn a specific oppo-
nent’s 𝜆 and the ToM agents may as well assume a fixed distribution of 𝜆 like the FBMs.
In contrast, the RL and TfT agents might adapt in non-trivial ways to some aspects of the
payoff structure or opponent distribution despite changing opponents. The supergame
is also repeated multiple times until the standard errors of the all the pairwise mean
payoffs are small enough.

In the fixed-payoff (PF) environments, the payoff structure is always a Prisoner’s
Dilemmawith canonical payoffs (Fig. 2.1A), and the payoffs are normalized (i.e., rescaled
to have a mean of 0 and a standard deviation of 1). In the stable-payoff (PS) environ-
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Table 2.1. Number of repetitions in the simulation.

Environment # of repetitions Total # of rounds
OS-PF 100 100×100×105
OS-PS 10,000 100×10,000×105
OS-PV 100 100×100×105
OV-PF 500 100×24×500
OV-PS 50,000 100×24×50,000
OV-PV 50,000 100×24×50,000

ments, the payoff structure stays the same within each supergame, and varies across rep-
etitions of supergames. Each new payoff structure is constructed by sampling 8 values
independently from 𝑈(0,1) and normalizing them. In the variable-payoff (PV) environ-
ments, the payoff structure is resampled in each round, and the sampling process is the
same as above.

Table 2.1 shows the number of repetitions of supergames and the total number of
rounds in the simulation of each environment. The number of repetitions for OS environ-
ments is for each pair of agents (there are ⒧142 ⒭+14 = 105 unique pairs). The pairwise
mean payoffs are shown in Figs. 2.2A, 2.2B, and 2.5. The payoffs on the diagonal of the
matrices are the average payoffs for the two clones of the same agent.

2.2.3 Evolution

To find out which type of agent has the most evolutionary advantage in each
environment, we first simulate an evolutionary process that starts from equal proportions
of the agents in the environment. Then we confirm the stability of the converged states
and generalize the results to arbitrary initial conditions by conducting a formal analysis
of the pairwise mean payoffs.

Dynamic simulation

The relative evolutionary advantage of the different types of agents can be charac-
terized by how the population proportions of the agents change as evolution progresses.
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Figure 2.2. (A) The raw pairwise mean payoffs for all the agents used in the simulation, including
different 𝜆s for the same type of agent. Here the environment with stable opponents and a
fixed payoff structure (OS-PF) is used as an example (see Fig. 2.5 for the other environments).
The matrix contains 6×6 major cells and 14×14 minor cells. The area of each minor cell is
proportional to its weight in calculating the mean payoff in the major cell it belongs to (plotted
in (B)). For each type of the utility-maximizing agents, the 𝜆s are −1/0/1 both from left to right
and from top to bottom. The plotted values are the payoffs for the “Self” agents (i.e., agents on
the rows). (B) The pairwise mean payoffs averaged over different 𝜆s within each type of agent,
for all the environments. The red dotted squares are the diagonal cells corresponding to the
evolutionarily stable strategies (ESS) in each environment. Some squares are larger than a single
cell in the matrix because some strategies (e.g., NUM, FBM and ToM in OS-PF) are equivalent
and merged into a single strategy in the ESS analysis (see Section 2.2.3). (C) The population
flow in OS-PF with only TfT, RL, and NUM (equivalent to FBM and ToM) in the environment.
The arrows only represent the flow directions, not the flow speed. The colored dots are the fixed
points (red: attractor; green: repeller; blue: saddle point).
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To simulate the evolutionary process, we need to first define the evolutionary dynamics,
i.e., how the proportions of agents change as a function of their payoffs. The classic
population dynamics in evolutionary game theory is the replicator dynamics (Taylor &
Jonker, 1978), which captures the intuition that the relative speed the population of an
agent grows (or shrinks) is proportional to its average payoff when it interacts with all
the agents in the environment with equal probability. Let 𝑛 be the number of types of
agents (6 in our case); 𝑣𝑖𝑗 be agent 𝑖’s payoff when playing against agent 𝑗, as specified
in the matrices of pairwise mean payoffs; 𝑥𝑖 be the proportion of agent 𝑖 in the popula-
tion; and 𝒙 = (𝑥1,…,𝑥𝑛) be the distribution of agents. Then the replicator dynamics are
defined in terms of the following ordinary differential equation:

𝑥̇𝑖 =𝑥𝑖⒧𝑓𝑖(𝒙)−𝜙𝑖(𝒙)⒭ , (2.2)

𝑓𝑖(𝒙) =
𝑛

𝑗=1

𝑥𝑗𝑣𝑖𝑗 , (2.3)

𝜙𝑖(𝒙) =
𝑛

𝑗=1

𝑥𝑗𝑓𝑗(𝒙),

where 𝑥̇𝑖 is the derivative of 𝑥𝑖 with respect to time, 𝑓𝑖(𝒙) is the fitness of agent 𝑖, and
𝜙𝑖(𝒙) is the weighted average population fitness. This definition guarantees that ∑𝑛

𝑖=1𝑥𝑖

is a constant (e.g., 1). We used the replicator dynamics to simulate the evolutionary
process, starting from equal proportions of the 6 types of agents in the environment
so that the agents are on an equal footing. We used a discrete-time simulation with a
time-step of 0.5 ³, and the results are shown in Fig. 2.3. In Section 2.2.3 below we will
generalize the results to arbitrary initial conditions.

First we see that the ToM agent does not have a unique advantage in the variable-
opponent (OV) environments and its behavior and performance are identical to the fixed-

³Here the time scale follows the definition of Eq. (2.2), but it can be arbitrarily rescaled by multiplying
the right-hand side of Eq. (2.2) by a constant or rescaling the payoffs. Such a rescaling does not affect the
relative proportions of the agents.
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Figure 2.3. Simulation of evolution for the 2×3 grid of stability. The ToM agent boasts a unique
advantage in the environment with stable opponents and variable payoff structures (OS-PV). The
evolutionary process is based on the pairwise mean payoffs for all the agents in each environment
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belief maximizer. This is because when the opponent changes at every round of the game,
nothing learned about the opponent is useful in the future, and the agent might as well
assume a fixed distribution of the opponent’s 𝜆. However, more interesting patterns arise
when opponents are stable.

When opponents are stable and the payoff structure is fixed to a Prisoner’s Dilem-
ma (OS-PF), the TfT agent easily dominates the environment, which replicates previous
results in IPD (Axelrod, 1984). All the utility-maximizing agents perform worse because
TfT is specifically adapted to IPD (other fixed repeated games likely have other simple
action-level strategies adapted to them), and hardly any deviation from it can improve
performance.

When opponents and the payoff structure are stable (OS-PS), the TfT agent is
no different from the random agent because the payoff structures vary and option 𝐴 is
no more likely to mean “cooperation” than option 𝐵. In contrast, the utility-maximizing
agents who can adapt to different payoff structures perform better than TfT. Nonetheless,
the RL agent performs best because when both the opponent and the payoff structure are
stable, it has the opportunity to learn the best action-level strategy for specific opponent–
payoff structure combinations. Although the ToM agent can learn about the opponent
and adapt to different payoff structures, its hypothesis space about the opponent is quite
restricted (only naïve utility maximizers) and cannot predict the behavior of other types
of agents very accurately, while the RL agent uses a model-free algorithm and does not
have such a restriction, and can exploit whatever regularities arise in the specific combi-
nation of opponent and payoff structure.

The ToM agent performs best only when opponents are stable, but the payoff
structure is variable (OS-PV). With stable opponents but variable payoffs, the RL agent
cannot learn the best action for each new payoff structure and its performance deterio-
rates to that of the random agent. Utility-maximizing agents without a ToM can adapt to
new payoff structures instantly, but they fail to adjust to their opponents. The ToM agent
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performs best in a stable-opponent, variable-payoff environment because it can adapt to
opponents with different degrees of prosociality and can use a decision model for the
opponent to generalize and predict their choices across different payoff structures.

Stability

The previous simulation only captured the evolutionary process from a single ini-
tial condition for a finite amount of time. One question that remains is whether the
converged state of the population is stable: will the converged population distribution
resist invasion from otherwise eliminated strategies? This question can be answered
through a formal analysis of the pairwise mean payoffs (Fig. 2.2B).

The classic stability concept in evolutionary game theory is the evolutionarily sta-
ble strategy (ESS)—a strategy that is impermeable by other strategies when adopted by
the full population in an environment (Maynard Smith & Price, 1973). We can apply
this concept to our evolutionary environment by abstracting one level to consider each
type of agent as a pure strategy in a standard normal-form game. At this level of abstrac-
tion, the mean outcome for agent 𝑖 playing agent 𝑗 (across many simulated game rounds,
𝑣𝑖𝑗, Fig. 2.2B) corresponds to the payoff for the row player in a symmetric normal-form
game describing the selection of agent type. In some environments there are equivalent
strategies that exhibit exactly the same behavior (e.g., in OS-PF, NUM, FBM and ToM
are equivalent). Since playing any mixture of these strategies is equivalent, we collapse
them into a single pure strategy. The formal definition of a (pure-strategy) ESS is a pure
strategy 𝑖 such that ∀𝑗 ≠ 𝑖, either (a) 𝑣𝑖𝑖 > 𝑣𝑗𝑖, or (b) 𝑣𝑖𝑖 = 𝑣𝑗𝑖 and 𝑣𝑖𝑗 > 𝑣𝑗𝑗 (Maynard Smith
& Price, 1973).

First we use this formal criterion to identify the pure ESSes in the payoff matrices
in each of our environments. Fig. 2.2B shows via red dotted squares the only pure ESSes
in each environment. For all of these pure ESSes, all paired strategies satisfy condition
(a) above, meaning that when playing against a population comprised entirely of the
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pure ESS 𝑖, all other strategies have lower mean payoffs than 𝑖 playing against itself. We
also evaluated whether any of our environments have any further mixed-strategy (rather
than pure-strategy) ESSes, and found none (see Appendix 2.B). Thus the pure strategy
ESSes shown in Fig. 2.2B are the only ESSes in these environments.

We see that there is only one ESS in each environment except for OS-PF, and
they coincide with the best-performing agents in Fig. 2.3: payoff-aware agents (NUM,
FBM and ToM) in all variable-opponent environments (OV-P*), the RL agent when op-
ponents and payoffs are stable (OS-PS), and the ToM agent when opponents are stable
but payoffs are variable (OS-PV). In OS-PF, the two ESSes roughly correspond to the two
known equilibria in IPD: tit-for-tat (TfT) and always-defect (AllD), respectively⁴ (Axel-
rod, 1984). These results indicate that the agents that won in the particular simulations
in the previous section are indeed evolutionarily stable for their respective environments.

Robustness

The previous simulation and evolutionary stability results leave open the ques-
tion of robustness: will the population converge to the ESSes regardless of the initial
conditions? It is possible for a strategy to be evolutionarily stable, but not to serve as an
attractor for the full range of population distributions in an evolutionary process (Zee-
man, 1980). Thus, here we aim to characterize the relationship between the initial
condition and the end state of the evolutionary process for our environments. We only
consider initial conditions comprised of nonzero proportions of all the agents, since the
replicator dynamics is non-innovative (i.e., if the proportion of an agent is exactly 0, it
will always stay at 0; if the proportion of an agent is nonzero, it will always be nonzero)
(Taylor & Jonker, 1978).

First, we can iteratively eliminate strictly dominated strategies because their pop-
⁴In fact, the NUM, FBM and ToM agents always defect when they have 𝜆 = −1 or 𝜆 = 0, and always

cooperates when they have 𝜆 = 1. The RL agent has the same behavior except (a) in the first several
rounds, when it has not learned the game, and (b) when playing against TfT, in which case the RL agent
with 𝜆 = 0 slowly learns to cooperate with TfT.
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ulation proportions will always converge to 0 (see Samuelson and Zhang (1992) for a
proof). A strategy is strictly dominated if it performs worse than another strategy against
any opponent⁵. When we apply this elimination process, in all the environments except
OS-PF, the unique ESSes are the only strategies left, which indicates that in these envi-
ronments the population will converge to the ESSes regardless of the initial condition.

In OS-PF, the situation is trickier because none of the four strategies (Random,
TfT, RL, NUM (equivalent to FBM or ToM)) is strictly dominated. If we have three or
fewer strategies, we can use the classification scheme of Zeeman (1980) to characterize
the population flow on the full simplex (𝑥1,…,𝑥𝑛). To our knowledge there is no general
classification of the population flow for four or more strategies⁶. To make the analysis
feasible, we treat Random as “practically” dominated and eliminate it because its popu-
lation proportion strictly decreases whenever the total proportion of the other strategies
is greater than ≈1%. The remaining three strategies correspond to the −41 stable class
in the classification scheme of Zeeman (1980), which guarantees that the population
will always converge to either of the two attractor strategies (TfT and NUM in our case).
This is confirmed by the population flow shown in Fig. 2.2C. The population converges
to either TfT or NUM regardless of the initial condition, and for the vast majority of the
initial conditions the population converges to TfT. When the population is comprised of
only TfT and NUM (the bottom edge of the simplex in Fig. 2.2C), it converges to TfT
whenever the proportion of TfT is greater than 11.6%.

These results indicate that all (most in OS-PF) initial conditions of the population
converge to the best-performing agent identified in the previous simulation. To summa-
rize, it is an evolutionarily robust result that the ToM agent performs best only in an
environment with stable opponents and variable payoff structures.

⁵Formally, strategy 𝑖 is strictly dominated iff ∃𝑗 ≠ 𝑖 such that ∀𝑘, 𝑣𝑖𝑘 < 𝑣𝑗𝑘 .
⁶In fact, chaos can arise with as few as four strategies (Skyrms, 1992).
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2.3 Behavioral experiments

From the evolutionary results, we see that the only environment that uniquely
favors ToM is one in which the opponent is stable and the payoff structure is variable.
Although the simulation is a much simplified version of the real evolutionary environ-
ment, it captures the essence of the stability of other agents and social situations that
an agent encounters, and supports the speculation that early humans evolved a ToM on
others’ WTRs toward themselves because they were once placed in a social environment
with stable opponents and variable payoff structures. This speculation can be further
supported by demonstrating that people do use a ToM on WTRs in such an environment.
However, as mentioned above, ToM is a complex capacity with many components, one of
which is being able to predict the opponent’s action in a new payoff structure instantly.
Because previous experiments in behavioral game theory have only involved one-shot
games or fixed repeated games (Camerer, 2011), we do not know whether people can
predict, and adapt to, the behavior of opponents under variable payoffs. Therefore, we
did two behavioral experiments to test people’s ToM on WTRs incrementally⁷.

2.3.1 Experiment 1

First, can people play games with variable payoff structures? To answer this, in
Experiment 1, we tested whether people have the capacity of a fixed-belief maximizer,
i.e., whether they can predict the optimal move for a utility-maximizing opponent and
choose their own best move accordingly—a prediction consistent with the naïve utility
calculus hypothesis (Jara-Ettinger et al., 2016).

Design

The experiment was implemented as a web page and can be viewed at https:
//experiments.evullab.org/var-games-8/. The participant plays a sequence of 2× 2

⁷The raw data is available at https://osf.io/54d6m/.
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normal-form games with a computer agent. The computer agent is a selfish (𝜆 = 0)
naïve utility maximizer, and we explicitly tell the participants that the computer only
cares about its own payoffs and does not adapt to the participant’s choices. Each trial
(each round of the game) is presented as a 2×2 matrix where the computer chooses a
row and the participant predicts a row that the computer chooses and chooses a column
for herself. The 8 payoff values are integers within [1,10] and they are size-, shape-
and color-coded. Other elements in the interface are shape- and color-coded. After the
participant confirms her prediction and choice, the computer’s choice is revealed, the
payoffs in the resulting cell are added to the participant’s and computer’s total payoffs
respectively via an animation, and a feedback is given as to whether the participant’s pre-
diction is correct. The computer’s total payoff is hidden because we want the participant
to focus on her own payoffs. The experiment ends after (a) the participant’s total payoff
has reached 120 (i.e., we encourage the participant to have a utility function with 𝜆 = 0),
and (b) the participant has correctly predicted the computer’s choices 20 times. At the
start of each trial (except for the first trial), the participant’s total payoff decreases by 2,
which serves as another incentive for the participant to maximize her payoffs.

Given the parametrization in Fig. 1A where the participant is player 𝑌 , each pay-
off structure in the experiment satisfies the constraint 𝑤2 +𝑤6 = 𝑤4 +𝑤8 so that the
participant’s rational choice is always contingent on the prediction of the computer’s
choice (otherwise she would be indifferent between the two options). Then the payoff
structures are selected such that𝑤1+𝑤3−𝑤5−𝑤7 and𝑤2−𝑤4 (which is equal to𝑤8−𝑤6)
vary over a large range of combinations. There are some catch trials interspersed among
the main trials to ensure that the participant is paying attention. In the catch trials, the
constraint above is replaced with (𝑤2−𝑤4)(𝑤6−𝑤8) > 0 so that the participant’s rational
choice is not contingent on the prediction of the computer’s choice. The game sequence
is fixed across participants.

Before the main trials, the participant goes through an interactive tutorial to be-
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Figure 2.4. Results of the behavioral experiments. (A) Correct prediction rates and correct choice
rates in Experiment 1. Error bars are standard error of the means (SEMs). (B) The hierarchical
Bayesian model for Experiment 2, using plate notation. The shaded nodes are observed variables
and the unshaded nodes are latent variables. (C) Opponent 𝜆 inferred by the participants (𝜆̂)
in Experiment 2, as reflected in their predictions, for different conditions of actual opponent 𝜆.
Each point-range indicates the mean and standard deviation of the posterior over 𝜇, and the blue
line is an OLS regression fit to the mean of the posterior over each 𝜆̂.

come familiar with the game and the goal. The payoff structures in the tutorial are set
in the same way as the catch trials. After the main trials, the participant completes a
questionnaire about her strategy and her interpretation of the goal of the experiment.

Participants

Nineteen participants were recruited on the UC San Diego SONA System and com-
pleted the experiment online for course credits. The number of trials they went through
ranged from 21 to 34, with 15 participants going through ≤23 trials.

Results

The proportion of trials in which participants made the correct prediction or
choice is shown in Fig. 2.4A. The correct choice is defined as the option with the higher
payoff for the participant given the actual choice of the computer. The participants had
almost perfect performance in predictions and very good performance in choices, which
indicates that people have the capacity of a fixed-belief maximizer.
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2.3.2 Experiment 2

So people can play games with variable payoff structures, but can they infer the
opponent’s degree of prosociality towards themselves? To answer this, in Experiment 2,
we tested whether people behave differently against opponents with different WTRs and
whether their behavior reveals an ability to infer the opponent’s WTR.

Design

Experiment 2 is similar to Experiment 1 and can be viewed at https://experiments.
evullab.org/var-games-9/. The main differences in the design are (a) the model of the
computer agent, and (b) how the payoff structures are generated.

The computer agent is still a naïve utility maximizer, but this time the computer’s
𝜆 varies across three between-subjects conditions: 𝜆 =−1/0/1. We tell the participants
that “the computer is simple-minded” and “has a fixed goal”, but does not tell them what
the goal is.

Each payoff structure in the experiment still satisfies the constraint 𝑤2 +𝑤6 =
𝑤4+𝑤8. As described in Appendix 2.A, the only information that the computer’s choice
offers the participant is whether the computer’s 𝜆 is greater than or less than the critical
𝜆 associated with the payoff structure. So we want the critical 𝜆 for the computer to vary
over a wide range in order to facilitate the participant’s inference of the computer’s 𝜆.
We split all the trials into blocks of 6 trials (which is opaque to the participant). Within
each block, the critical 𝜆s of the 6 trials are in the ranges [−1.3,−1.2], [−0.8,−0.7],
[−0.3,−0.2], [0.2,0.3], [0.7,0.8], and [1.2,1.3], respectively. The order of the trials
within each block and the specific payoff values are randomized. In the tutorial, the
critical 𝜆 can only be within [−1.3,−1.2] or [1.2,1.3] so that the computer’s choices are
the same across conditions.

The game sequence is still fixed across participants. Since it is easier to gain
higher payoffs when playing against an agent with a higher 𝜆, the participant’s goal for
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the total payoffs and the payoff deducted at the start of each trial are different across
conditions (70 and 2 for 𝜆 =−1, 80 and 3 for 𝜆 = 0, 90 and 4 for 𝜆 = 1).

Participants

Seventy-two participants were recruited on the UC San Diego SONA System and
completed the experiment online for course credits. Each participant is randomly as-
signed to one of the three conditions (𝑛 = 27/22/23 for 𝜆 =−1/0/1, respectively). The
number of trials they went through ranged from 21 to 48, with 56 participants going
through ≤32 trials.

Data analysis

Since the participant’s inference of the opponent’s WTR is not directly reflected
in their behavior, but indirectly reflected in their predictions and choices, we need to
assume a generative model that gives rise to the participant’s behavior, with the inferred
opponent WTR (𝜆̂) as a parameter in the model, and “invert” the generative model to
produce an estimate of 𝜆̂ in each condition. Two assumptions we make in the generative
model are (a) that the participant assumes that the computer is a naïve utility maximizer,
and (b) that the participant infers a single fixed WTR of the computer (𝜆̂). These two
assumptions cannot be entirely correct, so the participant’s predictions would appear
noisy. We make an additional assumption that the participant’s prediction in a trial is
sampled according to a softmax function over the computer’s utilities for the two choices:

𝑃(𝐴) =
exp⒧𝛽s ⋅ 𝑢(𝐴)⒭

exp⒧𝛽s ⋅ 𝑢(𝐴)⒭+exp⒧𝛽s ⋅ 𝑢(𝐵)⒭

𝑃(𝐵) = 1−𝑃(𝐴)

where 𝛽s ≥0 (“s” stands for “softmax”) is the softmax parameter. It would be undesirable
to set a common 𝛽s for all the participants because (a) what value to choose is rather
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arbitrary, and (b) some participants are noisier than others, and we want to give them
less weight when estimating the mean 𝜆̂ for a condition.

Therefore, we fit a hierarchical Bayesian model (HBM) to the prediction data to
infer each participant’s 𝜆̂ and 𝛽s and also the mean 𝜆̂ for each condition (Fig. 2.4B).
We only use the prediction data because given the way we set the payoff structures
(𝑤2+𝑤6 =𝑤4+𝑤8), predictions represent a more direct inference about the opponent’s
cooperative stance than choices, the latter of which might reflect participants’ idiosyn-
cratic preferences. Suppose there are 𝐾 participants and participant 𝑘 plays 𝑁𝑘 trials.
We assume that each participant’s softmax parameter 𝛽s is independently sampled from
a gamma distribution with shape parameter 𝛼g and rate parameter 𝛽g (“g” stands for
“gamma”), and that each participant’s 𝜆̂ is independently sampled from a normal distri-
bution with mean 𝜇 and standard deviation 𝜎. The participant’s prediction 𝑥 in a trial
is determined by 𝛽s, 𝜆̂, and the payoff structure 𝒑 in that trial. We set the priors over
𝛼g, 𝛽g and 𝜎 all to be an exponential distribution with a rate parameter of 1, and use an
(improper) uniform prior for 𝜇.

We implemented the HBM in Stan (Stan Development Team, 2021) and fit the
model to all the data in each condition separately. We used the default Markov chain
Monte Carlo parameters in CmdStan (e.g., No-U-Turn sampler, 4 chains, 1000 warmup
iterations per chain, 2000 total iterations per chain).

Results

The inferred 𝜆̂s for different conditions are illustrated in Fig. 2.4C. The OLS re-
gression on 𝜆̂ with the actual opponent 𝜆 as the predictor reveals a highly significant
positive trend (𝑝 < 0.001), indicating that people can adapt to opponents with differ-
ent 𝜆s, even when such a difference is only reflected in the opponent’s choices in the
games. This suggests that people do use a ToM on WTRs in an environment with stable
opponents and variable payoff structures.
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2.4 Discussion

We showed that a minimal form of ToM that infers the opponent’s prosociality
towards oneself boasts a unique evolutionary advantage in an environment with stable
opponents and variable payoff structures. These results highlight a key feature of the
social environment that humans find themselves in—that the specific conditions of social
interactions change at a much faster rate than the agents with whom one interacts. This
feature of an environment is necessary to create the selective pressures to evolve a ToM
capacity on WTRs, despite its computational complexity. Furthermore, we show in two
behavioral experiments that people are capable of rapid adjustment to payoffs in such
variable games, and can adapt to their opponent’s prosociality in this manner. Together,
these results show that people seem adapted to a game environment largely unexplored
in the literature, and that this environment is critical for studying human social reasoning
and behavior.

The RL agent as we define it cannot “see” the current payoff structure like the
NUM, FBM, and ToM agents. In principle, the RL agent can also be defined in terms
of the current payoff structure and potentially have similar capability as and be more
flexible than the ToM agent. However, we do not implement this possibility in this work
for two reasons. First, the RL agent is meant to be a ceiling of action-level strategies, to
illustrate that to succeed in environments with variable payoff structures and/or variable
opponents, strategies must be aware of payoff structures, and no matter how adaptive,
action-level strategies do not suffice. In settings where both payoff structures and oppo-
nents are stable or fixed, action-level strategies and learning seem to be more adaptive
than ToM-based strategies. Second, if the RL agent were defined in terms of the current
payoff structure, in order for it to accurately predict the opponent’s actions and adapt
to new payoff structures instantly, it would learn a behavioral policy that maps payoff
structures onto actions that is effectively indistinguishable from the ToM agent’s policy.
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The only difference would be that the RL agent would need some time to learn that pol-
icy, while the ToM agent derives this policy from its assumptions about the opponent’s
decision rule. We are agnostic about how people’s ToM capacity developed: it could be
an innate capacity sculpted by evolution, or could be acquired through an RL-like gen-
eral learning process, or any mixture of both. In this sense, a sufficiently flexible payoff
structure–aware RL agent achieves the same end inference state as the ToM agent, but
with a different learning trajectory, and they are, for our purposes, indistinguishable.

We explicitly do not consider reciprocity among agents—agents have fixed 𝜆s
towards one another regardless of the behavior they observe. This is, of course, an unre-
alistic description of human social interactions (Fehr & Schmidt, 2006). With reciprocity,
stable opponents will remain critical (because inferring an opponent’s 𝜆 will require suf-
ficient experience with that opponent). However, the mechanism by which ToM helps in
the context of variable games might differ slightly. Without reciprocity, ToM is useful in
variable games insofar as it allows the agent to better predict how their opponent would
behave, to effectively optimize their own choices in light of that forecast. This mechanism
of action only applies to non-decomposable games, wherein the best action is contingent
on the choice of the opponent (Messick & McClintock, 1968). With reciprocity, ToM
would offer a second advantage in variable games: allowing for unexploitable coopera-
tion in environments where behavior-level strategies like tit-for-tat fail due to variable
payoffs. Thus, we believe that our simplifying assumption of non-reciprocating agents
is sufficient to show the key environment that makes ToM advantageous; however, the
advantage of ToM in a variable-payoff, stable-opponent scenario would be even greater
in the presence of reciprocity.

Another caveat about our results pertains to the behavioral experiments. While
we observe in Experiment 2 that people adapt to their opponent’s 𝜆 towards themselves,
the range of 𝜆s they seem to infer appears to be quite limited, as though people have
a strong prior toward opponents being either neutral, or positively disposed, toward
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themselves. This is likely a well-calibrated prior, as few environments provide incentives
compatible with sustained spite (i.e., persistently negative 𝜆s toward another person).
One such setting is costly punishment (Güth et al., 1982), where people are willing to
pay a price to harm a transgressor. It would be fruitful to explore in future work whether
the restricted range of inferred 𝜆s expands in settings where costly punishment may be
expected.

Altogether, we show that human-like ToM capacities can evolve in environments
with repeated interactions with the same person, but in different payoff structures. This
result shows that it may be possible to use the tools of evolutionary game theory and
go beyond its traditional constraints such as fixed payoff structures. We believe that
with this innovation, future research might explore how other environmental features
engender richer ToM capacities and other complex abilities that constitute human social
cognition.

Data availability
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Appendices
2.A Detailed description of the agents
RL agent

The RL agent uses the Q-learning algorithm (Watkins, 1989) to learn the best
action in each round given the outcomes in the previous rounds. Each outcome is the
conjunction of the agent’s choice and the opponent’s choice in a given round. The RL
agent learns a function that maps from the outcomes in the previous 𝑘 rounds and the
current action to the expected (time-discounted) total utility in the future, so that given
the history of previous 𝑘 rounds, it can choose the current action that corresponds to a
higher total utility in the future.

Formally, a Q-learning agent’s goal is to choose an action 𝑎𝑡 at time 𝑡 to maximize
the expected total reward in the future 𝑅𝑡, with a discount factor 𝛾 ∈ (0,1]:

𝑎𝑡 = argmax
𝑎∈𝒜

𝑅𝑡

= argmax
𝑎∈𝒜

+∞

𝑡′=𝑡

𝛾𝑡′−𝑡𝑟𝑡′ ,

where𝒜 is the set of possible actions and 𝑟𝑡′ is the reward at time 𝑡′. 𝑅𝑡 is assumed to be a
function of the current state 𝑠𝑡 and action 𝑎, so the Q-learning algorithm learns a Q-table
that records an estimate of 𝑅 (called the Q-value) for each state–action combination:

𝑄 ∶𝒮×𝒜 →ℝ,

where 𝒮 is the set of possible states. For our agent, let 𝑎𝑡,𝑏𝑡 ∈𝒜 = {𝐴,𝐵} be the agent’s
choice and the opponent’s choice in round 𝑡, respectively, and 𝑜𝑡 = (𝑎𝑡,𝑏𝑡) be the outcome

90



of round 𝑡. The state is the conjunction of the outcomes in the previous 𝑘 rounds:

𝑠𝑡 = (𝑜𝑡−𝑘,𝑜𝑡−𝑘+1,…,𝑜𝑡−1) .

The reward 𝑟𝑡 is the agent’s utility (not just objective payoff, since the RL agent also has a
WTR; Eq. (2.1)) in round 𝑡. There are 4 possible outcomes in each round, so there are 4𝑘

possible states. Thus a Q-table has 4𝑘 (states)×2(actions) entries. If 𝑘 = 0, there is only
one state, and values of the possible actions are independent of the history of the game.
With a larger 𝑘, the agent will learn more slowly (because there are more entries to learn
in the Q-table; see below) but be able to adapt to more complex opponent strategies. To
make the agent learn quickly in simple scenarios while maintaining flexibility, we let the
agent learn 4 Q-tables with 𝑘 = 0,1,2,3 simultaneously.

In round 𝑡, given the state 𝑠𝑡, the agent deterministically chooses the action with
a higher estimated future reward (the Q-value) averaged across the 4 Q-tables (denoted
by 𝑄0,…,𝑄3):

𝑎𝑡 = argmax
𝑎∈𝒜

min{3,𝑡−1}

𝑘=0

𝑄𝑘(𝑠𝑡,𝑎) ,

where 𝑡 is one-based, andmin{3,𝑡−1} indicates that when 𝑡 < 4, the length of the history
is too short to be applicable to some of the Q-tables, which are ignored in calculating the
average Q-value. These Q-tables are also ignored in updating the entries according to
Eq. (2.4) below. We do not add explicit exploration to the agent, which would entail a
non-deterministic decision policy, because (a) the environment is quite simple, and (b)
the counterfactual updating mentioned below amounts to partial exploration of the state
space. If the Q-values for the two actions are exactly the same (such as in the first round),
the RL agent chooses one of the two actions with equal probability.

The learning proceeds by updating one entry in each Q-table in each round after
the outcome is observed. In round 𝑡, where the state (the previous outcomes) is 𝑠𝑡, after
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taking an action 𝑎𝑡 and receiving a reward 𝑟𝑡, the agent updates the entry in the Q-table
corresponding to 𝑠𝑡 and 𝑎𝑡 as

𝑄(𝑠𝑡,𝑎𝑡)←𝑄(𝑠𝑡,𝑎𝑡)+𝛼⒧𝑟𝑡+𝛾 ⋅max
𝑎∈𝒜

𝑄(𝑠𝑡+1,𝑎)−𝑄(𝑠𝑡,𝑎𝑡)⒭ , (2.4)

where 𝛼 ∈ (0,1] is the learning rate, and 𝑠𝑡+1 is the next state (i.e., removing the oldest
outcome 𝑜𝑡−𝑘 from 𝑠𝑡 and appending the current outcome 𝑜𝑡). We use a discount factor of
𝛾 = 0.8 and learning rates of 𝛼 = 0.05+0.25𝑘 for different 𝑘s; these choices correspond
to hand-tuning to yield effective learning, but qualitative results of the evolutionary sim-
ulation do not depend on these parameters.

Usually in the Q-learning algorithm, only one entry (𝑠𝑡,𝑎𝑡) in the Q-table is up-
dated after an action 𝑎𝑡 is taken, because the rewards for the untaken actions are un-
known. However, in our case, we can also update the entry (𝑠𝑡,𝑎′

𝑡) corresponding to
the unchosen action 𝑎′

𝑡 (the counterfactual choice), whose reward (or utility) is given by
the counterfactual outcome 𝑜′𝑡 = (𝑎′

𝑡,𝑏𝑡). Therefore, we update the entries for both the
actual choice and the counterfactual choice in each Q-table to accelerate learning.

Critical 𝜆

To formally describe how the FBM and ToM agents make choices and inferences
in light of the payoffs and (for ToM) the opponent’s choice in a given 2×2 normal-form
game, it is useful to introduce the notion of the “critical 𝜆” of such a game. Consider
the parameterization of the game shown in Fig. 2.1A. If player 𝑋 is a NUM and its 𝜆
toward 𝑌 is 𝜆𝑋 , it will choose 𝐴 if (𝑤1+𝑤3)+𝜆𝑋(𝑤2+𝑤4) > (𝑤5+𝑤7)+𝜆𝑋(𝑤6+𝑤8)
and otherwise choose 𝐵. Let 𝜆∗

𝑋 = 𝑤1+𝑤3−𝑤5−𝑤7
𝑤6+𝑤8−𝑤2−𝑤4

. Assuming 𝑤6+𝑤8−𝑤2−𝑤4 >0, player
𝑋 will choose 𝐴 if 𝜆𝑋 < 𝜆∗

𝑋 and choose 𝐵 if 𝜆𝑋 > 𝜆∗
𝑋 (the directions of the inequalities

are reversed if 𝑤6+𝑤8−𝑤2−𝑤4 < 0). We call 𝜆∗
𝑋 the critical 𝜆 for player 𝑋 because it

is the threshold of 𝜆𝑋 at which 𝑋 will switch its choice, and 𝜆∗
𝑋 is solely determined by
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the payoff structure. Thus, anyone trying to infer 𝜆𝑋 from observed behavior in a given
game gains only limited information: if 𝑋 is a NUM agent, then the only information
that player 𝑋 ’s choice in a round provides is whether 𝜆𝑋 is greater than or less than 𝜆∗

𝑋

(assuming a perfect decision rule). This constraint applies to any observer, whether it
be a ToM player 𝑌 adapting to their opponent (as in our simulations), or a researcher
studying the behavior of a person (as in our behavioral experiments).

Fixed-belief maximizer

The FBM assumes that the opponent is a NUM whose 𝜆 is sampled from a normal
distribution with 𝜇 = 0 and 𝜎 = 0.75 ⁸. This normal distribution roughly matches the ac-
tual distribution of 𝜆 in the population (𝜆 =−1/0/1with probabilities 0.25/0.5/0.25; see
Section 2.2.2). To see this, suppose 𝜆 ∼𝑁(0,0.752). Then 𝑃(𝜆 <−0.5) = 0.252 ≈ 0.25
and 𝐸(𝜆 ∣ 𝜆 < −0.5) = −0.949 ≈ −1. In each round the FBM calculates the probability
that the opponent chooses either action by calculating the probability that the oppo-
nent’s 𝜆 is greater than or less than its critical 𝜆 for the payoff structure of that round.
Formally, suppose the FBM is player 𝑌 and player 𝑋 ’s choice in round 𝑡 is 𝑥𝑡. Then

𝑃(𝑥𝑡 =𝐴|𝜇,𝜎) =
⎧⎪
⎨
⎪
⎩

𝛷𝜇,𝜎(𝜆∗
𝑋) 𝑤6+𝑤8−𝑤2−𝑤4 >0,

1−𝛷𝜇,𝜎(𝜆∗
𝑋) 𝑤6+𝑤8−𝑤2−𝑤4 <0,

(2.5)

𝑃(𝑥𝑡 =𝐵|𝜇,𝜎) = 1−𝑃(𝑥𝑡 =𝐴|𝜇,𝜎), (2.6)

where𝛷𝜇,𝜎 is the cumulative distribution function of the normal distribution with param-
eters 𝜇 and 𝜎. After calculating these probabilities, the FBM, like the NUM, determinis-
tically chooses the action with the higher expected utility for itself.

⁸For a FBM, it is equivalent to assume that 𝜆 is sampled from the normal distribution and fixed for each
opponent, versus that 𝜆 is independently resampled from the normal distribution in each round, because
it does not affect the FBM’s prediction of the opponent’s choices. However, for a ToM agent, these two
assumptions are different, and we will use the second assumption in order to accommodate the non-NUM
opponents, as described in the next section.
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ToM agent

Similar to the FBM, a ToM agent assumes that the opponent is a NUM, but instead
of assuming a fixed distribution of the opponent’s 𝜆, it tries to infer 𝜆 from the opponent’s
choices in the games, using iterated Bayesian inference. However, if the ToM agent’s
model of the opponent is strictly a NUM, who has a fixed 𝜆 and makes noiseless decisions,
the ToM agent is unable to adapt to non-NUM opponents because their decisions in
different rounds will likely be inconsistent for any fixed 𝜆 (i.e., the likelihood of any 𝜆
is 0). In order to behave sensibly against non-NUM opponents, the ToM agent needs to
either assume that the opponent’s 𝜆 is not fixed, or assume that the opponent’s decision
policy is noisy, resulting in two possible models of the opponent (and a third possible
model that assumes both, which we do not consider here).

The first model assumes that 𝜆 is not fixed, but re-sampled from a (normal) distri-
bution in each round, and the ToM agent infers simultaneously the mean 𝜇 and standard
deviation 𝜎 of such a distribution. The learned distribution of 𝜆 will have a small stan-
dard deviation for a true NUM opponent and a large standard deviation for a non-NUM
opponent. Once a 𝜆 is sampled in a given round, the opponent deterministically chooses
the action with the higher expected utility for itself. We call this model the “𝜇–𝜎 model”.

The secondmodel assumes that 𝜆 is fixed, but the decision rule is a noisy (softmax)
function over the calculated expected utilities, and the ToM agent infers simultaneously
the fixed 𝜆 and the softmax parameter 𝛽. The learned 𝛽 will be large (less noisy) for a
true NUM opponent and small (noisier) for a non-NUM opponent. We call this model
the “𝜆–𝛽 model”.

These two models are conceptually similar and yield very similar results, so it
barely matters which of them we choose. The 𝜇–𝜎 model has the slight advantages that
(a) the 𝜆–𝛽 model is sensitive to scaling of the payoffs (because of the softmax function),
while the 𝜇–𝜎 model is not, and (b) it is easier to enforce the equivalence of FBM and
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ToM in the variable-opponent (OV) environments under the 𝜇–𝜎 model since the FBM
assumes a noiseless decision rule of the opponent. Therefore, we use the 𝜇–𝜎 model
when presenting the results and describe its details here.

The ToM agent assumes that the opponent is a NUM whose 𝜆 in each round is
independently sampled from a normal distribution 𝑁(𝜇,𝜎2), and does iterated Bayesian
inference on the joint distribution of 𝜇 and 𝜎 in light of the opponent’s behavior in past
rounds. In each round of the game, the ToM agent uses the current maximum a posteriori
(MAP) estimate of (𝜇, log𝜎) (which corresponds to a single normal distribution over 𝜆)
to make a decision, in the same way a FBM does. In our simulation, the prior over 𝜇 is
𝑁(0,1) and the prior over log2𝜎 is 𝑁(log20.75,1.52), and they are independent, so that
initially the mode of (𝜇, log2𝜎) is (0, log20.75), matching the distribution assumed by
the FBM. After observing the opponent’s choice in round 𝑡, 𝑥𝑡, it updates the posterior
distribution as

𝑝(𝜇,𝜎|𝑥𝑡,𝑥𝑡−1,…,𝑥1) ∝ 𝑃(𝑥𝑡|𝜇,𝜎)𝑝(𝜇,𝜎|𝑥𝑡−1,…,𝑥1) ,

where 𝑃(𝑥𝑡|𝜇,𝜎) is the likelihood function given by Equations (2.5) and (2.6), and
𝑝(𝜇,𝜎|𝑥𝑡−1,…,𝑥1) is the posterior from the previous round. We use a two-dimensional
grid approximation over 𝜇 ({−2,−1.8,…,2}) and log2𝜎 (log20.75+{−3,−2,…,3}) for
the Bayesian inference.

2.B Mixed-strategy ESS

To look for mixed ESSes in the stability analysis of Section 2.2.3, we first elimi-
nated all strategies that cannot be in a mixed ESS, and check if any possibility of a mixed
ESS remains. The Bishop–Cannings theorem (Bishop & Cannings, 1978) tells us that no
pure ESS can be part of a mixed ESS, so we can first eliminate the pure ESSes we al-
ready found. A mixed strategy containing a strictly dominated strategy can always be
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invaded by the strategy that dominates it. Formally, if strategy 𝑖 is strictly dominated
by 𝑗, then we always have 𝑓𝑖(𝒙) < 𝑓𝑗(𝒙) (as defined in Eq. (2.3)). Therefore, according
to Eq. (2.2) we always have 𝑥̇𝑖

𝑥𝑖
< 𝑥̇𝑗

𝑥𝑗
as long as 𝑥𝑖,𝑥𝑗 > 0, and the population cannot be

stable. Thus, we can also iteratively eliminate the strictly dominated strategies. For ex-
ample, this strategy elimination process in OS-PS proceeds as follows: we first eliminate
RL because it is a pure ESS; among the remaining 5 agents, we eliminate Random, TfT
and FBM because they are strictly dominated by ToM; among the remaining 2 agents, we
eliminate NUM because it is strictly dominated by ToM, leaving only ToM. After applying
these two rounds of elimination to each of our payoff matrices, there is always only one
strategy left, which means that there is no mixed ESS in any of the environments.

2.C Raw pairwise mean payoffs for all the environ-
ments

Fig. 2.5 shows the raw pairwise mean payoffs for all the environments resulting
from the simulated tournaments described in Section 2.2.2.
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Figure 2.5. The raw pairwise mean payoffs for all the environments.
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Chapter 3

The joint evolution of theory of mind
and reciprocity in noisy games

We tackle two related evolutionary puzzles: how cooperation among genetically
unrelated individuals can evolve across varying social interactions, and how humans
evolved the ability to infer others’ interpersonal values, a component of “theory of mind”.
Modeling social interactions as repeated Prisoner’s Dilemma games with a fixed payoff
structure has enabled the identification of direct reciprocity as a mechanism driving the
evolution of cooperation. This work does not address, however, either the range of
interactions in which reciprocity can be successful or the mechanism by which it can
be achieved when payoffs vary. Human reciprocity relies on not just responding to an-
other person’s actions, but also inferring from their actions howmuch weight that person
places on one’s own welfare. Such a weight can be formalized as the welfare tradeoff
ratio (WTR), a continuous variable. In this work, we examine the evolutionary success
of agents that infer and reciprocate graded WTRs in repeated games with variable pay-
off structures. Across two experiments we also vary whether all agents perceive exactly
the same payoffs or instead face some noise in their understanding of one another’s per-
ceived payoffs, mimicking the challenges involved in real-life theory of mind. We find
that WTR-based agents succeed in both environments but only have a unique evolution-
ary advantage over simpler agents with a binary conception of cooperation and defection
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in the noisy environment. These results suggest that both variable payoff structures and
uncertainty about how others perceive those changing payoffs play a role in the evolution
of graded WTR inference and reciprocity.
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3.1 Introduction

Sayings like “one good turn deserves another” and “an eye for an eye and a tooth
for a tooth” underscore the importance of direct reciprocity in human society. Both per-
sonal relationships and market-based exchange rely on people’s tendency to respond in
kind to one another (Buunk & Schaufeli, 1999; Fehr et al., 1998). This reciprocity is
motivated by norms as well as by emotions, such as gratitude, anger, and guilt (Fessler
& Haley, 2003; Gouldner, 1960; Wubben et al., 2009). Direct reciprocity has been
shown to promote cooperation in evolutionary models (Nowak, 2006b; Trivers, 1971),
a classic example being Axelrod’s tournament in the iterated Prisoner’s Dilemma game
(Axelrod & Hamilton, 1981), where direct reciprocity amounts to returning cooperation
with cooperation and defection with defection.

Existing work leaves open questions about the nature and extent of human reci-
procity, however. One question regards why humans take a mentalistic approach to
reciprocity. Successful cooperation in the Prisoner’s Dilemma can be achieved through
the simple tit-for-tat behavioral strategy described above. And yet, people track not just
others’ specific actions but also what others’ actions suggest about their underlying social
values (Eisenbruch & Krasnow, 2022; Lim, 2012; Quillien et al., 2023). Why engage in
this computationally costly form of theory of mind? One answer is that this approach
can confer an advantage in interdependent interactions, in which participants make de-
cisions simultaneously and the payoffs of each person’s choice depend on what the other
decides to do (Qi & Vul, 2022). Being able to anticipate an opponent’s choice in this type
of interaction allows the player to maximize their own gain. However, social life is not
dominated by interactions of this sort. Instead, reciprocity often occurs in alternation
rather than simultaneously, with relationship partners making independent decisions
about what benefits to offer one another. When Alice is deciding whether to give her
umbrella to Bob, Bob is not simultaneously making a choice whose outcome would affect
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the costs and benefits of Alice’s decision.
Here we ask: are there conditions under which theory of mind supports reci-

procity in repeated interactions without strong interdependence? We address this ques-
tion using the tools of evolutionary game theory, where social interactions are modeled
with games and different strategies compete for evolutionary success. We focus on re-
peated games with variable payoff structures, an ecologically valid context identified by
Qi and Vul (2022) as an environment where WTR inference might be useful.

3.1.1 Welfare tradeoff ratio inference and adjustment

When one person’s actions benefit another person’s welfare, fully understanding
the generosity of those actions involves knowing how they affected the actor. If the actor
also benefited from the action, then they may not have been motivated by the recipient’s
welfare at all. In contrast, if the action involved a cost to the actor, then it was likely
motivated by a desire to improve the welfare of the recipient.

How much one person values another’s welfare relative to their own can be quan-
tified as a “welfare tradeoff ratio (WTR)” (Delton & Robertson, 2016; Tooby & Cosmides,
2008). Suppose Alice is interacting with Bob. Alice’s utility, which she tries to maximize
in each decision, can be written as

𝑢 =𝑤s+𝜆𝑤t , (3.1)

where 𝑤s is the welfare of Alice (the self), 𝑤t is the welfare of Bob (the “target” person),
and 𝜆 is Alice’s WTR toward Bob (Delton & Robertson, 2016; Delton et al., 2023; Tooby
& Cosmides, 2008)¹. In the rest of this paper, we mostly use WTR in the text and 𝜆

¹In this work, “welfare” or “payoff” refers to the objective welfare of an organism that directly affects
its reproductive fitness, as is standard in the WTR and evolutionary game theory literature. This is slightly
different from classic game theory, where the payoffs in games are often conceptualized as von Neumann–
Morgenstern utilities, so it is unnecessary to consider any preferences other than pure self-interest (Fu-
denberg & Tirole, 1991). Given the utility functions of the players, it is possible to rewrite the payoffs in a
game from denoting objective welfare to denoting subjective utility, but that would confound the objective

101



in equations, but they have the same meaning. The WTR is closely related to another
construct called the social value orientation that is also meant to capture how people
consider others’ welfare in their decision making (SVO; Messick & McClintock, 1968;
Murphy et al., 2011; Van Lange et al., 1997).

Alice’s WTR toward Bob at a given moment is influenced by many factors, in-
cluding Alice’s basic generosity toward everyone else (Piff et al., 2010; Van Lange et al.,
1997), Alice and Bob’s social distance and relationship (are they friends, strangers, or
foes? Jones & Rachlin, 2006; Qi et al., under review), and their recent history of inter-
actions (did Bob just do something bad to Alice, thus revealing a low WTR on Bob’s part
toward Alice? Ackermann et al., 2016; Lim, 2012). In this paper, we are mostly con-
cerned with the last-mentioned source of influence on WTRs: the adjustment of WTRs in
a reciprocal fashion, based on the ability to infer another person’s WTR toward oneself.

People can infer others’ WTRs from observing their decisions. Observers can in-
fer others’ specific WTR toward themselves, or a broader WTR toward social partners in
general (i.e., trait-level generosity or “warmth”) (Lim, 2012; Quillien et al., 2023; Sell
et al., 2017). Observers use these inferences to predict future behavior and place par-
ticular importance on others’ WTRs in partner choice and impression formation (Hackel
et al., 2015; Quillien et al., 2023; Wojciszke et al., 1998). People rationally seek out
information diagnostic of others’ WTRs toward them, and when choosing partners for
future interactions they weight WTRs over both competence and raw rewards received
from different partners in the past (Eisenbruch & Krasnow, 2022; Quillien, 2023).

People’s responses to specific decisions others make are also consistent with WTR
inference, rather than a simple strategy of reacting positively when a partner acts to ben-
efit them and negatively when a partner forgoes benefits or imposes costs. For example,
people are more grateful for cooperation if it indicates their partner’s high WTR toward
payoffs and the parameters in the utility function (WTR in our case). Since we are interested in variations
in both the objective payoffs and WTRs, we keep them separate.
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themselves, independent of the overall magnitude of the benefit they receive. Conversely,
they are more upset about defection when it indicates a very low WTR held by the de-
fector toward themselves, independent of the magnitude of costs imposed (Lim, 2012;
Sell et al., 2017; Smith et al., 2017). People also adjust their own WTRs based on such
inference in a reciprocal fashion—when they infer that their partner has a higher WTR
toward themselves than their expectation, they tend to increase their WTR toward the
partner, and vice versa (Ackermann et al., 2016; Lim, 2012).

3.1.2 The evolution of WTR inference

Why has evolution selected such sophisticated and expensive cognitive mecha-
nisms for reciprocity and partner choice? It is plausible that WTR inference and ad-
justment support the maintenance of cooperation through reciprocal altruism (Axel-
rod & Hamilton, 1981; Trivers, 1971) across varying circumstances. But despite the
widespread interest in the evolution of cooperative behavior, there has been little for-
mal work on the evolution of the capacity for WTR inference (except, e.g., Eisenbruch &
Krasnow, 2022; Qi & Vul, 2022).

Most existing formal models of reciprocal altruism are based on repeated games
with fixed payoff structures, like the iterated Prisoner’s Dilemma (Axelrod & Hamilton,
1981). When payoffs in these games are fixed and cooperation and defection can be
defined as specific, raw actions, then tit-for-tat or win–stay, lose–shift strategies defined
in terms of those raw actions are successful against a wide variety of other strategies
(Axelrod, 1984; Nowak & Sigmund, 1993). Being able to infer the opponent’s WTR
adds computational costs but does not make an agent perform better (Qi & Vul, 2022),
because in such simple games, the agent’s behavior can almost always be reduced to a
strategy defined in terms of the raw actions, at least approximately.

Qi and Vul (2022) expanded the space of game environments beyond fixed re-
peated games bymanipulating the variability of the social partners (“opponents” in game
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Figure 3.1. Decomposition of 2×2 games. A and B are possible actions, X and Y (or Self and
Opp) are the two players, and the numbers (or variables) are payoffs to the two players given
their actions. Players in square brackets are acting; otherwise they are only receiving payoffs.
(A) A non-decomposable game, which is also a coordination game. (B) A decomposable game,
which is also a Prisoner’s Dilemma, with A and B corresponding to cooperation and defection,
respectively. (C) One possible decomposition of the game in (B) into the sum of two one-player
games. (D) The parameterization of a one-player game.

theoretical terms) and the payoff structures. Out of the game environments they con-
sidered, WTR inference offers an unique advantage only in environments with stable
opponents (two agents interact with each other many times over their lifetime, i.e., they
play repeated games) and variable payoff structures (the payoffs involved are different
for each social interaction). In such game environments, WTR inference allows players
to have a more accurate model of their opponent, so that they can better predict their
opponent’s actions in games with novel payoff structures, while agents who do not make
decisions based on actual payoffs or agents with a fixed model for every opponent per-
form worse. Better predictions lead to better actions for the players themselves, so that
they can maximize their utility more effectively.

However, such an advantage depends on the strong interdependence between the
two players’ actions. In 2×2 normal form games (the class of games studied in Qi and
Vul, 2022), where two players act simultaneously, one player’s best action for herself
often depends on the other player’s action. For instance, in the game of Fig. 3.1A, player
X’s best action depends on what Y chooses: assuming X is entirely selfish (her WTR
toward Y is 0), if Y chooses action A, X would prefer A to B, and vice versa. In such
situations with strong interdependence, better predictions of the opponent’s actions lead
to higher utilities for oneself.

But there are also games without strong interdependence, such as the game of
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Fig. 3.1B. This particular Prisoner’s Dilemma² can be decomposed into the sum of two
one-player decisions, such as those depicted in Fig. 3.1C, called the decomposed game
(of the corresponding matrix game in Fig. 3.1B) (Messick & McClintock, 1968; Pruitt,
1967). The matrix game and the decomposed game are equivalent as long as the two
players act simultaneously, and either player’s best action is independent of the other
player’s action as long as they are maximizing a utility function in the form of Eq. (3.1).
Either player only needs to consider the 4 payoffs in her part of the decomposed game
to make a decision, which will be the same decision as considering the 8 payoffs in the
matrix game based on any prediction of the other player’s action. The two players are
essentially playing two independent one-player games.

Games with strong interdependence are widely studied in the game theory lit-
erature, partly because they often cannot be simply solved by iterated elimination of
dominated strategies (Fudenberg & Tirole, 1991). However, strong interdependence
seems rare in real-world social interactions. Most of our decisions that affect someone
else’s welfare are not influenced by a simultaneous decision by that person (although
they might be influenced by our predictions of how they will influence that person’s fu-
ture decisions). Even when the ambiguity about the other person’s simultaneous action
arises, we often use language or other means to resolve that ambiguity—we are rarely
stuck in a “prison” situation. Therefore, while the same behavior might have different
consequences for oneself and others in different situations, in each situation it is often
clear what the consequences are, and we are effectively playing one-player games.

In decomposable games such as Fig. 3.1B, better predictions of the other player’s
actions do not lead to better actions and higher utilities for oneself in the current game,
so WTR inference as studied in Qi and Vul (2022) would not be advantageous. One
way WTR inference might contribute to evolutionary success, even if all the games are
decomposable or one-player, is through direct reciprocity (Axelrod & Hamilton, 1981;

²Not all Prisoner’s Dilemmas are decomposable.
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Nowak, 2006b; Trivers, 1971), which is not possible in Qi and Vul (2022) because the
agents are assumed to have fixed WTRs. In other words, although there is no strong
interdependence between the two players’ actions within each one-shot game, the abil-
ity of inferring and adjusting WTRs creates interdependence between the two players’
actions over time and repeated interactions.

3.1.3 The present research

In this work, we examine the conditions under which WTR inference creates an
evolutionary advantage in an environment without strong interdependence but with re-
peated interactions. We model the interactions as alternating games (detailed below)
instead of repeated simultaneous games, while keeping the payoff structures variable
(Qi & Vul, 2022). We include different types of agents with varying complexity, and pit
them against each other in a simulated tournament, resulting in a pairwise mean payoff
matrix. We then use the pairwise mean payoff matrix to derive the relative evolutionary
viability of different agents. We also randomly perturb the hyperparameters to test the
robustness of the conclusions.

Two experiments take different approaches to noise in the repeated games. We
first consider a noiseless environment in Experiment 1. Agents in these games imple-
ment their own strategies and perceive other players’ options and choices without error.
However, real-world environments are imbued with noise. One common type of noise
relevant to theory of mind involves uncertainty about other people’s perception of the
world (Jara-Ettinger et al., 2016). In the context of cooperation, this sort of noise may
take the form of uncertainty about the payoffs another person associates with each action
or inaction. When I give my umbrella to someone, howmuch exactly does it decrease my
welfare and increase that person’s welfare? The two individuals involved can perceive
different payoffs—while I think my cost is low when I give out my umbrella since I have
another one available, the other person might not know this and might think my cost
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is high. Such asymmetry in the noise can lead to misperception of intentions; e.g., an
observer perceiving an action as more or less generous than the actor considered it to be.
Reciprocity based on graded WTR inferences may be less impacted by these mistakes
than reciprocity based on binary “cooperate” or “defect” classifications. In Experiment
2, we add noise to the recipient’s perception of the choosing player’s payoffs to test if an
agent that makes graded, probabilistic inferences about others’ WTRs has a particular
advantage in the context of this ecologically valid type of uncertainty.

3.2 Methods
3.2.1 Variable alternating games

Since there is no strong interdependence between the two players’ actions, we
could model the interactions as repeated (decomposable) simultaneous games, strictly
alternating games (two players take turns playing one-player games), or randomly alter-
nating games (in each round one player is randomly chosen to play a one-player game)
(Nowak & Sigmund, 1994). Alternating games are usually more realistic than simulta-
neous games as discussed above, and the randomly alternating games are usually more
realistic than the strictly alternating ones since one player’s decision is not necessarily
followed by the other player’s. We choose to model the interactions as strictly alternating
games, because there is already plenty of randomness in our setup due to the variable
payoff structures: in some games the player’s decision might have great significance (be-
ing cooperative and being selfish lead to different choices and very different outcomes),
while in others games the player’s decision might have little significance (the player
would choose the same action whether she is cooperative or selfish). This has a similar
effect as the randomly alternating Prisoner’s Dilemma (Nowak & Sigmund, 1994).

Two players take turns making decisions in a series of one-player games. In each
one-player game (Fig. 3.1D), called a stage game, one player is the actor and the other
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player is the observer (Self and Opp in Fig. 3.1D, respectively). Which player serves
as the actor first is determined randomly. The actor makes a binary decision between
two options, each of which leads to one payoff for the actor and another payoff for the
observer. The 4 possible payoff values (𝑤{1,2,3,4}) are i.i.d. sampled from the standard
normal distribution. The overall repeated game, called a supergame³, encompasses 200
rounds of stage games (i.e., either player makes 100 decisions).

A useful property of each stage game is the “critical WTR” of the game, denoted
by 𝜆̂, which is the threshold of the actor’s WTR at which she switches her choice given a
noiseless decision rule:

𝜆̂ =
𝑤2−𝑤1
𝑤3−𝑤4

.

For instance, in Fig. 3.1C, the one-player game for either player has 𝜆̂ = 0.5—if X’s WTR
toward Y is greater (/less) than 0.5, she will choose option A (/B); if X’s WTR toward Y
is exactly 0.5, she will be indifferent between the two options. From the actor’s choice,
the observer can gain information about whether the actor’s WTR is above or below the
critical WTR. Since 𝑤2−𝑤1 and 𝑤3−𝑤4 are independently distributed according to the
same normal distribution with zero mean, 𝜆̂ follows the standard Cauchy distribution.

It is also useful to have a general notion of cooperation and defection in this envi-
ronment. The core conflict in a social dilemma like the Prisoner’s Dilemma is the conflict
between maximizing one’s own payoff and maximizing the total payoff of the group.
Therefore, we define full cooperation as having 𝜆 = 1 (maximizing the sum of the two
players’ payoffs), and full defection as having 𝜆 = 0 (maximizing the actor’s own payoff).
Evolutionarily, full cooperation between agents with the same strategy maximizes the
payoffs they receive, which is important for cooperation to establish and maintain domi-
nance in a population. On the other hand, if strategies are non-reciprocal, full defection
performs at least as well as any other strategy given any fixed opponent, and is thus able

³“Supergame” in game theory is often a synonym of “repeated game”, but here it refers to the specific
repeated game we use.
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to invade any dominant strategy (Weibull, 1997). Having a WTR between 0 and 1 might
strike a balance between these two objectives, while having 𝜆 > 1 or 𝜆 < 0 is almost never
beneficial, unless it can induce the opponent to be more cooperative or change future
payoff structures (which are not properties of any agents or games we consider). In our
setting, we define a social dilemma to be a game whose critical WTR (𝜆̂) is between 0
and 1, where full cooperation and full defection dictate different decisions. Given the
distribution of 𝜆̂, on average 25% of games are social dilemmas.

3.2.2 Agents

We include nine types of agents of varying complexity in the environment. In
classic game theory, strategies are usually defined in terms of the raw actions in a game,
such as cooperation and defection in a Prisoner’s Dilemma, with no reference to the
payoffs, because the payoffs are often fixed (Axelrod, 1984; Fudenberg & Tirole, 1991).
We do not consider such action-level strategies because they cannot be efficiently defined
when payoffs vary from game to game (Qi & Vul, 2022). Instead, we assume that each
agent maximizes a utility function in the form of Eq. (3.1) in each round of the game,
and different agents have different patterns of WTRs toward their opponents.

The first three types of agents have fixed WTRs. Always Defect (AllD) has 𝜆 = 0,
Always Cooperate (AllC) has 𝜆 = 1, and Half Cooperate (HalfC) has 𝜆 = 0.5.

The fourth type is called tit-for-tat (TfT). It implements a form of direct reci-
procity, and is a generalization of the tit-for-tat strategy in the iterated Prisoner’s Dilem-
ma (Axelrod & Hamilton, 1981) based on the definitions of cooperation and defection
given above. Critically, TfT has a binary, not graded, notion of cooperation and defec-
tion, in contrast to the Bayesian agent described below. TfT starts with 𝜆 = 1 toward
its opponent. It assumes that its opponent is in one of two states at any instance, either
𝜆 = 0 or 𝜆 = 1. It can distinguish between these two states only after its opponent has
made a decision in a social dilemma (i.e., a game that pits the pair of payoffs with the
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higher sum against a pair of payoffs with greater value for the deciding agent), at which
point the TfT agent will update its own WTR to match its opponent’s. If the game its
opponent played was not a social dilemma, and thus provides no information about the
opponent’s WTR within the range of 0 to 1, the TfT agent’s WTR will stay the same.
Therefore, unlike tit-for-tat in the iterated Prisoner’s Dilemma which copies its oppo-
nent’s action in every round, here TfT only updates its WTR occasionally, about 25% of
the time.

Although the description of TfT here makes reference to mental processes about
inferring the opponent’s WTR, this is not the type of WTR inference we are really inter-
ested in, because people have both graded WTRs (not just 0 and 1) (Jones & Rachlin,
2006; Murphy et al., 2011; Qi et al., under review) and graded representations of other
people’s WTRs (Lim, 2012; Quillien et al., 2023). In addition, TfT can be implemented
as a heuristic rule that does not involve explicit inference of WTRs: if my opponent’s
choice led to a higher payoff for himself but a lower total payoff than the alternative,
set my WTR to 0; if the inverse is true, set my WTR to 1; otherwise keep my previous
WTR. It may seem more natural to us to express this rule as WTR inference, but compu-
tationally it is much simpler than, e.g., the Bayesian agent below. Therefore, it seems
plausible that natural selection would prefer this rule to an equivalent strategy based on
WTR inference.

The fifth type of agent is called the Naïve TfT, which behaves similarly to TfT but
has a simpler and inaccurate conception of cooperation and defection. In every game
where Naïve TfT is the observer, if its opponent chooses the option with the higher payoff
for Naïve TfT, it treats it as a cooperation; otherwise it treats it as a defection. This is
essentially a self-centered view of others’ behavior, which only considers the benefits
others generate for oneself but not the costs they incur. Like TfT, when the Naïve TfT
thinks its opponent has cooperated (/defected), it sets its own WTR to 1 (/0). This
means that Naïve TfT cooperates not by selecting the higher payoff for its opponent (i.e.,
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its definition of cooperation when perceiving the opponent’s decision), but by selecting
the pair of payoffs with the higher total value. For the Naïve TfT, every game played
by the opponent is informative, even if the game is not a social dilemma, because the
payoffs 𝑤2 and 𝑤4 are different with probability 1.

The sixth and seventh types are generous versions of TfT and Naïve TfT. In the it-
erated Prisoner’s Dilemma, when there is implementation noise (i.e., one agent makes a
mistake in its selection, which certainly happens in the real world), tit-for-tat when play-
ing against itself may be stuck in alternating cooperation and defection (in simultaneous
games) or prolonged mutual defection (in simultaneous and alternating games) (Nowak,
1990; Nowak & Sigmund, 1994). Generous tit-for-tat is a strategy that, with some prob-
ability, forgives its opponent’s defection and reverts back to cooperation, thus dealing
with this problem effectively (Nowak, 1990; Nowak & Sigmund, 1994). Similarly, in our
setting, the Generous TfT and the Generous Naïve TfT unconditionally cooperate (set
𝜆 = 1) with some probability in each round. In the iterated Prisoner’s Dilemma with
a fixed payoff structure, the optimal probability for unconditional cooperation can be
derived from the payoff values. In our setting, the analysis is more difficult, so we set a
default value of 0.1 and examine its robustness later.

In the noisy iterated Prisoner’s Dilemma, a strategy that can perform even better
than generous tit-for-tat is “win–stay, lose–shift” (Nowak & Sigmund, 1993), but it per-
forms poorly in the alternating version of the game, unless it is redefined in a much more
complex and unnatural way (Nowak & Sigmund, 1994). Therefore we do not include it
in our experiments.

The eighth type of agent, called Bayesian, is the only agent able to perform graded
WTR inference. The Bayesian agent assumes that its opponent is always maximizing a
utility function in the form of Eq. (3.1), and performs approximate Bayesian inference on
its opponent’s WTR in the 𝑖-th decision, denoted by 𝜆(𝑖)

opp. It assumes that 𝜆opp can change
gradually over time (𝑖) according to a Markov process, so its model of its opponent is a
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hidden Markov model where the hidden states are 𝜆(𝑖)
opp, and the emission probabilities

are the probability that its opponent chooses either action in game 𝑖 given 𝜆(𝑖)
opp. After

observing the 𝑖-th decision by its opponent, the Bayesian agent calculates a posterior
distribution over 𝜆(𝑖)

opp given all evidence so far, and sets its own WTR to match the pos-
terior in a tit-for-tat-like fashion. Specifically, it sets its WTR to the 55th percentile of
the posterior, but never greater than 1. This slight bias toward 1 prevents two Bayesian
agents from drifting away from mutual full cooperation, while retaining their ability to
almost exactly copy their opponent’s WTR when enough evidence has been accumulated
(i.e., the posterior has a small standard deviation). The initial distribution over 𝜆opp is a
normal distribution with mean 1 and standard deviation 0.5, so that the Bayesian agent
starts with full cooperation, like TfT. See Appendix 3.A for details of the Bayesian agent.

The last type of agent is called Slow TfT. It is inspired by the Bayesian agent’s be-
havioral signature—we wonder whether an agent who behaves similarly to the Bayesian
agent but does not have graded WTR inference can perform as well. One behavioral sig-
nature of the Bayesian agent is that when its opponent’s decision reveals a very different
WTR from its current belief, it tends to adjust its belief and its ownWTR gradually, rather
than suddenly, to match the opponent’s, especially in a noisy environment (Experiment
2 below). For instance, suppose that the Bayesian agent is playing against AllD, and all
of AllD’s decisions have a critical WTR of 0.5. In a noisy environment, the median of the
Bayesian agent’s posterior over AllD’s WTR might go through such a sequence: 1, 0.5,
0.3, 0.1, 0, … This is due to the assumption that sudden large changes in the opponent’s
WTR have low probability (which is a necessary assumption for accumulating evidence
across multiple decisions). Slow TfT mimics this kind of behavior. It still has a binary
conception of cooperation and defection, but when it infers that its opponent’s WTR is
different from its own, it adjusts its own graded WTR only partially toward that. Let 𝜆self

be its original WTR, and 𝜆opp be the opponent’s WTR it infers (0 or 1). It sets its new
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WTR to be
𝜆′
self = (1−𝑎) ⋅𝜆self+𝑎 ⋅𝜆opp ,

where 𝑎 is called the change rate, and 𝑎 = 0.55 if 𝜆opp = 1 and 𝑎 = 0.45 if 𝜆opp = 0, so
that two Slow TfT agents have a tendency to converge back to 𝜆 = 1, like the Bayesian
agent.

The nine types of agents can be grouped in terms of the level or complexity of
“theory of mind” they have. AllD, AllC and HalfC have no theory of mind whatsoever.
The TfT variants impute a binary state to their opponent—either cooperation or defec-
tion. Naïve TfT and Generous Naïve TfT have a weak theory of mind because they only
consider their own payoffs when interpreting the opponent’s actions as cooperation or
defection. TfT, Generous TfT and Slow TfT have a stronger theory of mind because
they consider both their own and their opponent’s payoffs when interpreting the oppo-
nent’s actions. The Bayesian agent has the strongest theory of mind because it imputes
a continuous state to its opponent—the graded WTR.

3.2.3 Tournament

For each pair of agents, including the same type, we simulate a supergame be-
tween them, calculate their mean payoffs per round, and repeat this process 100,000
times so that the standard errors of the mean payoffs are negligible. This results in a
9×9 pairwise mean payoff matrix, like the one in Fig. 3.2A, which is used in the evolu-
tionary analyses below.

3.2.4 Evolution

To assess the relative evolutionary success of different agents, we consider the
evolutionary game dynamics in a finite well-mixed population of size 𝑛, modeled by
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the frequency-dependent Moran process (Moran, 1962; Nowak et al., 2004)⁴. We set
𝑛 = 100 by default. At each time step, one agent in the population is randomly chosen
to die. At the same time, with probability 𝑢 (the mutation probability), a randommutant
out of the 9 possible types is added to the population; with probability 1−𝑢, an existing
agent in the population (which can be the one who is dying) is probabilistically chosen to
reproduce (i.e., create a new agent of the same type). Agent 𝑖’s probability to be chosen
for reproduction is proportional to its fitness 𝑓𝑖, which is an exponential transformation⁵
of its current mean payoff 𝑤̄𝑖:

𝑓𝑖 = exp(𝛼𝑤̄𝑖) , (3.2)

𝑤̄𝑖 =
1
𝑛 

1≤𝑗≤𝑛
𝑤𝑖𝑗 ,

where 𝛼 > 0 reflects the selection strength, and 𝑤𝑖𝑗 is agent 𝑖’s payoff when playing
against agent 𝑗 according to the pairwise mean payoff matrix. We set 𝛼 = 5 by default.

The relative success of different types of agents can be reflected in the stationary
distribution of agent types under the low-mutation limit. Under the low-mutation limit
(vanishingly small 𝑢), the population is almost always homogeneous and consists of only
one type of agents. When a mutant is introduced, it either goes extinct or takes over the
population before another mutant is introduced, and the probability that it takes over is
called the fixation probability (Nowak, 2006a). Therefore, the evolutionary process can
be described as a Markov process where the 9 possible types of agents correspond to the
9 possible states. We can analytically calculate the stationary distribution of the agents,
which reflects their average abundance in the population over very long time periods.

⁴We use a discrete-time stochastic dynamics in a finite population instead of a continuous-time de-
terministic dynamics in an infinite population, such as the replicator dynamics (Taylor & Jonker, 1978),
because (a) the former is usually more realistic, (b) the latter is sensitive to initial conditions, even when
mutation is present, and (c) for the latter, it is more difficult to calculate long-run averages.

⁵We use an exponential transformation instead of the usual linear transformation (Nowak et al., 2004)
because the former ensures that fitness is always positive, which is particularly relevant given our variable
payoffs.
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See Rand and Nowak (2012) for details of the calculation.
We also run an agent-based simulation to verify the results from the low-mutation

limit. We set 𝑢 = 0.01, initialize the population randomly, run the simulation for 107 time
steps, and calculate the average distribution of the agent types over the later 90% of the
time steps.

3.2.5 Hyperparameter perturbations

There are 14 hyperparameters we can tweak in the alternating games, the agent
definitions, and the evolutionary dynamics, which might influence the results (see Ap-
pendix 3.B for the full list of hyperparameters). To test the robustness of the results, we
perturb the 14 hyperparameters independently from their default values according to
some random distribution (see Appendix 3.B for the details of the distributions). Each
set of perturbations results in a new set of hyperparameters, which we use to simulate
the tournament for 10,000 repetitions and compute the stationary distribution of agent
types under the low-mutation limit. We do this for 200 sets of hyperparameters and
examine the variability of the distribution.

3.2.6 Noise

In Experiment 1, there is no noise in the environment. All agents observe the
payoffs and make decisions perfectly. In Experiment 2, we add noise to simulate people’s
uncertainty about one another’s expected utilities, a factor that may increase the value
of graded WTR inference. Specifically, we introduced noise to the observer’s perceptions
of the payoffs faced by the actor. In each game, the actor perceives the four actual
payoffs, while the observer’s perceived payoffs are the actual payoffs plus four error
terms sampled i.i.d. from a normal distribution with mean 0 and standard deviation 0.1
(by default). Neither player knows what exact payoffs the other player perceives, but
can have beliefs about their plausible values based on the error distribution. The only
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Figure 3.2. Main results in Experiment 1. NTfT: Naïve TfT; GTfT: Generous TfT; GNTfT: Gen-
erous Naïve TfT; Bayes: Bayesian; STfT: Slow TfT. (A) The pairwise mean payoff matrix in the
tournament. Each cell is the payoff received by the row player when playing against the column
player. When two agents of the same type play against each other (cells on the diagonal), the
payoffs of one of them are used to calculate the mean payoff. (B) The evolutionary distributions
of the agents. The thick light gray bars are the stationary distribution under the low-mutation
limit. The thin dark gray bars are the average distributions from three replications of the agent-
based simulation. The green bars and ranges show the variability of the stationary distribution
under the low-mutation limit with respect to different sets of hyperparameters. They show the
10th percentile, median and 90th percentile of each agent’s proportion in the stationary distribu-
tion.

agent that makes use of such beliefs is the Bayesian agent (see Appendix 3.A). The other
reciprocating agents rely on the individual or summed payoffs they perceive to make
binary judgments about whether the actor cooperated or defected.

3.3 Results
3.3.1 Experiment 1

The main results are shown in Fig. 3.2 and some notable behavioral traces are
shown in Fig. 3.3.
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Figure 3.3. Notable behavioral traces with respect to WTR in Experiment 1. Each panel displays
one supergame between two types of agents. Only the first 100 rounds are shown. For AllD,
AllC and HalfC, no trace is shown because they have constant WTRs. For TfT variants, each
circle dot is the agent’s WTR when making a decision. For the Bayesian agent, in each round, the
vertical line is the interquartile range of the agent’s current posterior over the opponent’s WTR,
the rhombus is the median of the posterior, and the circle dot is the WTR that the agent actually
uses when making the decision.
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Payoff matrix

From the pairwise mean payoff matrix (Fig. 3.2A), we see that the two (strict)
evolutionary stable strategies are AllD and the Bayesian agent, who cannot be invaded
by a mutant strategy after establishing dominance in the population⁶, because they re-
ceive a strictly higher payoff playing against themselves than against any other strategy
(Maynard Smith, 1982). AllC, TfT, Generous TfT and Slow TfT cooperate perfectly with
themselves. The neutrally stable strategies are TfT, Generous TfT and Slow TfT, who
can be invaded by AllC, TfT, Generous TfT or Slow TfT through neutral drift, but the
invaders cannot thrive by earning a higher payoff than the incumbent strategy (May-
nard Smith, 1982). Of these cooperative agents, TfT is the best at resisting invasion by
AllD (it gains the highest payoff while AllD gains the lowest). If AllC takes up a large
enough proportion of the population, the mutually cooperative population composed of
AllC and TfT variants can be invaded by AllD or HalfC (or even Naïve variants of TfT
because their WTRs essentially switch between 0 and 1 randomly; see below).

The Naïve versions of TfT and Generous TfT cannot cooperate well with them-
selves because they do not have an accurate conception of cooperation and defection
in varying circumstances and often mistake cooperation for defection and vice versa
(Fig. 3.3E). Their WTRs effectively switch between 0 and 1 randomly, and they are
strictly dominated by HalfC. Therefore, we mostly ignore them in the following discus-
sions. This explains why, when people form a positive or negative impression of a social
partner, they take into account not only the benefits the partner generates for themselves,
but also the costs that the partner incurs (Eisenbruch & Krasnow, 2022; Lim, 2012).

The Bayesian agent is slightly worse at cooperating with itself compared to AllC,
but only by a tiny amount. Two Bayesian agents occasionally do not cooperate perfectly

⁶This only applies to deterministic dynamics in an infinite population, like the replicator dynamics
(Taylor & Jonker, 1978). For stochastic dynamics in a finite population, like the Moran process we use
(Moran, 1962; Nowak et al., 2004), any mutant could in principle invade an evolutionary stable strategy,
although with low probability.
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because games with 𝜆̂ > 1 can lead to a posterior whose 55th percentile is less than
1, even when the opponent’s WTR is in fact always 1 (see, e.g., Fig. 3.3F, Round 2).
Despite such deviances, two Bayesian agents are likely to converge back to mutual full
cooperation due to the slight generosity in the 55th-percentile decision rule (Fig. 3.3F,
Round 51). The Bayesian agent’s ability to resist invasion by AllD is slightly worse than
TfT and similar to Slow TfT because its average WTR is slightly higher than 0 when
playing against AllD (Fig. 3.3A and B).

Slow TfT’s payoff patterns are very similar to the Bayesian agent. The biggest
differences are when the opponent is HalfC or TfT. When playing against HalfC, the
Bayesian agent’s payoff is higher than Slow TfT by 0.009. Slow TfT adjusts its WTR
upward about 59% of time (when 0.5 < 𝜆̂ < 1) and downward about 41% of time (when
0 < 𝜆̂ < 0.5) and adjusts upward more quickly than downward, so its average WTR
is significantly higher than 0.5 (Fig. 3.3D). The Bayesian agent has a better estimate
of HalfC’s WTR, although its average WTR is still slightly higher than 0.5 (Fig. 3.3C),
because (a) its estimate of HalfC’s WTR is positively biased, likely due to the fact that
there are more games with 𝜆̂ < 0.5 than with 𝜆̂ > 0.5, and (b) the Bayesian agent is
slightly generous due to the 55th-percentile rule.

When playing against TfT, Slow TfT’s payoff is higher than the Bayesian agent by
0.008. This is because occasionally the Bayesian agent’s WTR is slightly lower than 1,
and very rarely this induces TfT to start defecting.

Low-mutation limit

The relative evolutionary viability of different agents is reflected in the average
distribution of the agent types over long time periods (Fig. 3.2B, light gray bars). Under
the low-mutation limit, the Bayesian agent is the best-performing agent, taking up 33%
of the population, closely followed by TfT (27%). Even though the Bayesian agent does
not cooperate perfectly with itself, it is less invadable by AllC than TfT is because its
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average WTR toward AllC is slightly less than 1, which makes it slightly more stable than
TfT. Nevertheless, the Bayesian agent’s advantage is not decisive, and TfT’s simplicity
suggests that graded WTR inference is not very likely to evolve in this environment.

Apart from these two agents, AllD (11%), HalfC (7%), Generous TfT (8%) and
Slow TfT (13%) perform relatively well. Like in the iterated Prisoner’s Dilemma, AllD
takes up a significant share of the population whenever there are unconditional cooper-
ators (AllC and HalfC in our case), who can invade reciprocators through neutral drift
and are then quickly replaced by AllD. HalfC’s relatively good performance compared to
AllC is due to its stronger ability both to invade Generous TfT and Slow TfT (and, to a
lesser extent, the Bayesian agent) and to resist invasion by AllD. In turn, vulnerability to
invasion by HalfC makes Generous TfT and Slow TfT perform worse than TfT and the
Bayesian agent.

Effects of higher mutation rates

The results of three independent runs of the agent-based simulation based on a
higher mutation rate of 𝑢 = 0.01 are shown in Fig. 3.2B (dark gray bars). The general
pattern of the distributions matches the stationary distribution under the low-mutation
limit. The biggest differences are HalfC, whose proportion is significantly increased, and
TfT, whose proportion is significantly decreased.

To explain this, let us consider the invasion cycle AllD → TfT → Slow TfT →
HalfC → AllD (Generous TfT is similar to Slow TfT). When the mutation rate is higher,
it is more likely for a third type of agent, C, to be present in the population when type B
is trying to invade type A. The transition probabilities of TfT → Slow TfT and Slow TfT
→ HalfC remain similar to the low-mutation limit, because the relative payoffs between
the mutant and the incumbent do not change much with or without a third type of agent.
For instance, when Slow TfT is trying to invade TfT, the addition of an AllD agent only
increases the difference between TfT’s (total) payoff and Slow TfT’s payoff by 0.002
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(0.279 vs. 0.277). However, the transition probabilities of AllD → TfT and HalfC →
AllD become much smaller than under the low-mutation limit. For instance, when AllD
is trying to invade HalfC, the addition of a TfT agent increases the difference between
HalfC’s payoff and AllD’s payoff by 0.084 (0.373 vs. 0.289). This results in a higher
HalfC proportion and a lower TfT proportion.

The Bayesian agent’s proportion is also decreased for a similar reason as TfT,
except that it is more likely to be directly invaded by HalfC than first by Slow TfT.

Robustness in hyperparameters

Each agent’s proportion in the stationary distribution varies within the 200 sets
of hyperparameters we sample. The 10th percentile, median and 90th percentile of
each agent’s proportion are shown in Fig. 3.2B (green bars and ranges). Out of the 200
distributions, the Bayesian agent and TfT rank first in 65%and 36%of them, respectively,
suggesting that the results are robust to hyperparameter variations.

3.3.2 Experiment 2

In Experiment 1, where there is no noise in the game environment, we find that
the Bayesian agent—an agent with graded WTR inference and reciprocity—performs
the best, but TfT, which can be implemented as a heuristic rule, also performs well.
Therefore, it is unlikely that the costly computation of graded WTR inference can evolve
in such an environment.

As discussed above, in Experiment 2 we add noise to the payoffs perceived by the
observing player, to simulate realistic uncertainty regarding what other people expect to
be costly or valuable. We add noise only to the observer’s perception of the payoffs based
on the assumption that the actor usually has more accurate information about their own
expected payoffs than the observer. The Bayesian agent incorporates beliefs about this
error in perceiving the payoffs when inferring the actor’s WTR, in effect recognizing its
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Figure 3.4. Main results in Experiment 2. (A) The pairwise mean payoff matrix in the tourna-
ment. Each cell is the payoff received by the row player when playing against the column player.
(B) The evolutionary distributions of the agents. The thick light gray bars are the stationary dis-
tribution under the low-mutation limit. The thin dark gray bars are the average distributions
from three replications of the agent-based simulation. The green bars and ranges show the vari-
ability (10th percentile, median and 90th percentile) of the stationary distribution under the
low-mutation limit with respect to different sets of hyperparameters.

own uncertainty about tradeoffs faced by the actor.
After implementing this noise in perceived payoffs, we repeated the same pairwise

tournaments and evolutionary analyses employed in Experiment 1. The main results are
shown in Fig. 3.4 and some notable behavioral traces are shown in Fig. 3.5.

Payoff matrix

From the pairwise mean payoff matrix (Fig. 3.2B), we see that AllD and the
Bayesian agent are still the only (strict) evolutionary stable strategies. AllC still coop-
erates perfectly with itself, but this is no longer the case for TfT, Generous TfT and Slow
TfT. TfT suffers from prolonged mutual defection due to misperception (Fig. 3.5B). Gen-
erous TfT recovers from mistakes more quickly (Fig. 3.5C), but performs much worse
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Figure 3.5. Notable behavioral traces with respect to WTR in Experiment 2. For AllD, AllC and
HalfC, no trace is shown because they have constant WTRs. For TfT variants, each circle dot is
the agent’s WTR when making a decision. For the Bayesian agent, in each round, the vertical line
is the interquartile range of the agent’s current posterior over the opponent’s WTR, the rhombus
is the median of the posterior, and the circle dot is the WTR that the agent actually uses when
making the decision.
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against AllD compared to TfT or the Bayesian agent. Slow TfT is the best at cooperating
with itself out of all the TfT variants because when it mistakes an act of cooperation as
a defection, it does not adjust its WTR all the way to 0, which both reduces the costs
of mutual defection and leaves the door open for quick recovery (Fig. 3.5E). It is also
more resistant to invasion by AllD than Generous TfT with a behavioral trace similar
to Fig. 3.3B. There is no neutrally stable agent in this environment except AllD and the
Bayesian agent.

The Bayesian agent is both the second best (second to AllC) at cooperating with
itself (Fig. 3.5D) and the best at resisting invasion by AllD (Fig. 3.5A), even slightly
better than TfT, suggesting its ability to effectively deal with noise in the environment.
Slow TfT’s payoffs are very similar to the Bayesian agent. The biggest difference is when
the opponent is HalfC—the Bayesian agent’s average payoff is higher than Slow TfT by
0.007—for the same reason as in Experiment 1 (Fig. 3.3C and D).

Interestingly, while Generous TfT worked well in the iterated Prisoner’s Dilemma
(Nowak, 1990; Nowak & Sigmund, 1994), here it is almost entirely dominated by HalfC,
the Bayesian agent and Slow TfT, the three agents who can have WTRs between 0 and
1. This highlights the value of having intermediate WTRs in a noisy environment.

Low-mutation limit

In the stationary distribution under the low-mutation limit (Fig. 3.4B, light gray
bars), the Bayesian agent (47%) is the best-performing agent, and substantially outper-
forms the second place agent, AllD (23%). AllD performs better than it did in Experiment
1 because (a) the Bayesian agent is slightly more easily invaded by AllC and HalfC, which
then give way to AllD, and (b) there is one fewer agent (TfT) who can both invade AllD
and remain relatively stable against AllC and HalfC.

Compared to Experiment 1, where there was no noise, TfT’s performance de-
grades considerably, while HalfC remains strong. Generous TfT also performs badly
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because its binary conception of cooperation and defection makes it sometimes too gen-
erous and sometimes too selfish.

Effects of higher mutation rates

The results of three independent runs of the agent-based simulation based on a
higher mutation rate of 𝑢 = 0.01 are shown in Fig. 3.4B (dark gray bars). The general
pattern of the distributions matches the stationary distribution under the low-mutation
limit. The biggest differences are HalfC, whose proportion is significantly increased, and
the Bayesian agent, whose proportion is significantly decreased, with an explanation
similar to Experiment 1.

Robustness in hyperparameters

Each agent’s proportion in the stationary distribution varies within the 200 sets of
hyperparameters we sample. The 10th percentile, median and 90th percentile of each
agent’s proportion are shown in Fig. 3.4B (green bars and ranges). Out of the 200 dis-
tributions, the Bayesian agent and AllD rank first in 80% and 19% of them, respectively,
suggesting that the results are robust to hyperparameter variations.

3.4 Discussion

In this work we studied the evolutionary viability of agents that take different ap-
proaches to reciprocity in the context of alternating, independent decisions with chang-
ing payoffs. One type of agent based reciprocity on whether its opponent had previously
selected the best option for the agent. Another type of agent based reciprocity on a binary
classification of whether its opponent cooperated (i.e., made a decision that maximized
their joint payoff) or defected (i.e., took a higher payoff for itself over the best option
for the pair). A third type of agent based reciprocity on an inference of its opponent’s
graded WTR toward itself, adjusting to adopt a similar graded WTR in return. This final
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strategy was inspired by evidence that humans employ graded WTRs in their own social
inferences and decisions (Delton & Robertson, 2016; Lim, 2012; Qi et al., under review;
Quillien et al., 2023).

We showed that agents who base reciprocity on gradedWTR inference (the Bayes-
ian agent) are evolutionarily successful in game environments with or without noise. In
a noiseless environment, agents that base reciprocity on simpler, binary conception of
cooperation and defection (TfT) perform about as well, suggesting that costly WTR in-
ference is unlikely to evolve in this environment. In a more realistic noisy environment
where the actor and observer perceive slightly different payoffs, it is more important to
have graded representations of WTRs and the Bayesian agent has a decisive advantage.
This suggests that particular kinds of noise (not just “trembling hand” noise, for instance)
in the environment might have driven the evolution of graded representations and ad-
justments of WTRs, and, more generally, more sophisticated mental representations and
inference mechanisms.

3.4.1 Strategic concerns and “true WTRs”

We have assumed that the agents maximize their immediate utility in each deci-
sion based on a WTR value. This is the probably the most “proximate” conceptualization
of WTRs. Since WTRs can change rapidly, the utility function also can change rapidly.
We believe that such a conceptualization is necessary in order to explain how people
make decisions and interpret others’ decisions in varying circumstances, and it is also
supported by empirical evidence that people do represent proximate WTRs (Delton et
al., 2023; Lim, 2012).

Alternatively, WTRs could refer to a deeper concern about other people’s welfare,
which might be called “true WTRs”. True WTRs are probably more stable, and it is even
possible to assume that deep down everyone is entirely selfish, or except toward close
relatives with shared genes (Dawkins, 1976; Hamilton, 1964). If we define a person’s
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utility in terms of her true WTR, she might have strategic concerns when interacting
repeatedly with another person. For instance, she might punish a defector in the hope
of inducing him to be more cooperative in the future, thus increasing her overall mate-
rial payoff. Although true WTRs are conceptually intuitive, it is hard to pin down what
exactly they refer to and what role they play in determining people’s behavior. In evolu-
tionary game theory, it is not immediately clear whether true WTRs are useful variables
to consider because strategies can be defined without reference to an overall utility that
the strategies serve to maximize, although they might be useful when more complex
environments and more sophisticated agents are under consideration.

3.4.2 Good performance for fixed, moderate cooperation

One of our agents, HalfC, had a fixed WTR of 0.5, meaning that it cooperated
when the benefit to its opponent was substantially higher than its own cost but not when
the benefit to the opponent was only a little higher than its own cost. This type of agent,
with a fixed WTR between 0 and 1, cannot be defined in the iterated Prisoner’s Dilemma.
In the iterated Prisoner’s Dilemma, we can only define a mixed strategy who randomly
cooperates half of the time, but its behavior is closer to Naïve TfT than HalfC in our
variable games. Interestingly, HalfC performs relatively well in both the noiseless and
noisy environments, especially when the mutation rate is non-negligible. This further
highlights the limitation of fixed games in studying interesting and plausible strategies.

HalfC’s good performance depends on the existence of reciprocal agents who can
invade a fixed defector (AllD). Along with the relatively good performance of AllD, our re-
sults help explain why different people have different levels of overall generosity toward
others and also different tendency to reciprocate (Lim, 2012; Qi et al., under review;
Van Lange et al., 1997). Future work can explore a larger variety of agents who vary
continuously in these two aspects.

127



3.4.3 Complexity and optimality of the Bayesian agent

The Bayesian agent is much more complex computationally than other agents we
consider, and uses an optimal Bayesian inference scheme with correct assumptions about
the distribution of payoffs and noises in the environment (although it does so approxi-
mately). If the Bayesian agent suffers a reduction in payoffs from the computational costs
or the non-optimality of the computations, its performance likely deteriorates. Therefore,
although this work constitutes a first step toward identifying the evolutionary pressures
toward more sophisticated mental representations and processes, more work is needed
to show that graded WTR inference and reciprocity are beneficial in a wider variety of
situations among a wider variety of simpler alternative agents.

3.4.4 Reducing uncertainty through emotion and language

Like other forms of uncertainty, uncertainty about whether social partners share
one’s own perception of potential payoffs makes it harder for agents to establish cooper-
ative relationships while punishing defectors (compare, e.g., TfT, Generous TfT and the
Bayesian agent in Experiment 2). Emotion and language are powerful ways to reduce
such uncertainty. For instance, Alice’s expression of anger toward Bob signals her per-
ception of Bob’s low WTR toward her in his decision (Sell et al., 2017), which can be
assuaged through a verbal explanation from Bob that clarifies his own, differing percep-
tion of the payoffs involved in that decision. Thus verbal and non-verbal communication
can provide other routes, beyond graded and probabilistic WTR inference, to handle the
difficulty of social inference. However, emotion can be faked and language can be lies,
so the ability to represent uncertainty in payoffs is still advantageous, even when ac-
companied by these channels of communication. Given the variety of emotions people
express and the variety of functions that language serves, it is likely that their evolution
is also driven by other factors.

128



Acknowledgements

Chapter 3, in full, is currently being prepared for submission for publication of
the material. “Qi, W., Wang, B., & Powell, L. J. (in preparation). The joint evolution of
theory of mind and reciprocity in noisy games.” The dissertation author was the primary
investigator and author of this paper.

Appendices
3.A Details of the Bayesian agent

The Bayesian agent’s model of its opponent is a hidden Markov model in which
the states are 𝜆(𝑖)

opp, the transition probability density is 𝑝⒧𝜆(𝑖+1)
opp  𝜆(𝑖)

opp⒭, and the emis-
sion probability mass is 𝑃⒧𝑥(𝑖)  𝜆(𝑖)

opp,𝒘(𝑖)⒭, where 𝑥(𝑖) is the opponent’s choice in his 𝑖-th
decision and 𝒘(𝑖) is the four payoff values that the Bayesian agent observes. For simplic-
ity of notation, we will omit the superscript (𝑖) and subscript “opp” when there is no
ambiguity.

We set the prior distribution 𝑝(𝜆(0)) to be 𝑁(1,0.52).
We set the transition probability to be a mixture of two normal distributions cen-

tered on the previous state:

𝜆(𝑖+1) ∣ 𝜆(𝑖) ∼
⎧⎪
⎨
⎪
⎩

𝑁⒧𝜆(𝑖),𝜎small⒭ 𝑙 = 0

𝑁⒧𝜆(𝑖),𝜎large⒭ 𝑙 = 1
, (3.3)

𝑙 ∼ Bernoulli(𝑝large) , (3.4)

where 𝑝large is the probability that the sample comes from the normal distribution with
the larger standard deviation 𝜎large. This allows the Bayesian agent to both accommodate
rapid changes in the opponent’s WTR and effectively accumulate evidence about a fixed
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WTR across games. We set 𝜎small = 0.05, 𝜎large = 0.5, and 𝑝large = 0.05 by default.
In a noiseless environment (Experiment 1), the emission probability is either 0

or 1, depending on whether 𝜆 is less or greater than 𝜆̂, the critical WTR of that game.
Formally, using the parameterization in Fig. 3.1D,

𝑃⒧𝑥 = A  𝜆,𝒘⒭ =
⎧⎪
⎨
⎪
⎩

1 𝑤1+𝜆 ⋅𝑤2 >𝑤3+𝜆 ⋅𝑤4

0 otherwise
,

𝑃⒧𝑥 = B  𝜆,𝒘⒭ = 1−𝑃⒧𝑥 = A  𝜆⒭ .

In a noisy environment (Experiment 2), the emission probability is influenced by
noise in the payoffs. Let 𝒆 = 𝑒{1,2,3,4} be the noise values (i.i.d. sampled from 𝑁(0,𝜎2))
added to the payoffs that the opponent perceives (the actual payoffs of the game, i.i.d.
sampled from 𝑁(0,1)). We have

𝑃⒧𝑥 = A  𝜆,𝒘⒭ =
𝒆
𝑝⒧𝑥 = A,𝒆  𝜆,𝒘⒭d𝒆

=
𝒆
𝑃⒧𝑥 = A  𝜆,𝒘,𝒆⒭𝑝(𝒆 ∣𝒘)d𝒆

=
𝒆
𝑃⒧𝑤1−𝑒1+𝜆(𝑤2−𝑒2) >𝑤3−𝑒3+𝜆(𝑤4−𝑒4)⒭𝑝(𝒆 ∣ 𝒘)d𝒆

=
𝒆
𝑃⒧𝑒1−𝑒3+𝜆(𝑒2−𝑒4) <𝑤1−𝑤3+𝜆(𝑤2−𝑤4)⒭𝑝(𝒆 ∣ 𝒘)d𝒆 .

To calculate this probability, we need the conditional distribution 𝑝⒧𝑒1 − 𝑒3 + 𝜆(𝑒2 −
𝑒4)  𝒘⒭, which can be derived by considering the random vector 𝒖 = ⒧𝑒1−𝑒3+𝜆(𝑒2−
𝑒4),𝑤1,𝑤2,𝑤3,𝑤4⒭, which has a multivariate normal distribution with mean 𝟎 and co-
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variance matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2(1+𝜆2)𝜎2 𝜎2 𝜆𝜎2 −𝜎2 −𝜆𝜎2

𝜎2 1+𝜎2 0 0 0
𝜆𝜎2 0 1+𝜎2 0 0
−𝜎2 0 0 1+𝜎2 0
−𝜆𝜎2 0 0 0 1+𝜎2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

By partitioning 𝒖 into 𝒖1 = ⒧𝑒1−𝑒3+𝜆(𝑒2−𝑒4)⒭ and 𝒖2 = (𝑤1,𝑤2,𝑤3,𝑤4), we can derive
the conditional distribution 𝑝(𝒖1 ∣ 𝒖2) as (Eaton, 1983)

𝑒1−𝑒3+𝜆(𝑒2−𝑒4) ∣ 𝒘 ∼𝑁⒧
⒧𝑤1−𝑤3+𝜆(𝑤2−𝑤4)⒭𝜎2

1+𝜎2 ,
2(1+𝜆2)𝜎2

1+𝜎2 ⒭ .

Then we have

𝑃⒧𝑥 = A  𝜆,𝒘⒭ =𝛷⎛
⎝

𝑤1−𝑤3+𝜆(𝑤2−𝑤4)−
(𝑤1−𝑤3+𝜆(𝑤2−𝑤4))𝜎2

1+𝜎2

2(1+𝜆2)𝜎2
1+𝜎2

⎞
⎠

=𝛷⒧
𝑤1−𝑤3+𝜆(𝑤2−𝑤4)
2(1+𝜆2)𝜎2(1+𝜎2)

⒭ ,

where 𝛷 is the cumulative distribution function of the standard normal distribution.
We use a standard particle filtering algorithm to approximate the posterior distri-

bution after each observation 𝑝⒧𝜆(𝑖+1)  𝑥(1∶𝑖)⒭ (Arulampalam et al., 2002). We use the
transition prior 𝑝⒧𝜆(𝑖+1)  𝜆(𝑖)⒭ as the proposal distribution. We resample before sampling
from the proposal distribution if the effective sample size is below 𝑁/2, where 𝑁 is the
number of particles, which we set to 100 by default.
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3.B Hyperparameter perturbations

Table 3.1 lists the 14 hyperparameters in the simulations. We perturb each hy-
perparameter independently according to one of three types of distributions—Bernoulli,
lognormal, or beta—depending on the type and range of the hyperparameter.

The Bernoulli distribution only applies to IncludeAgents, a boolean vector of length
9 that specifies which of the 9 types of agents are considered as possible mutants. In the
main results, all 9 types of agents are included. When perturbing this hyperparameter,
the 9 elements of the vector are i.i.d. sampled from Bernoulli(0.9), meaning that each
agent has a 90% probability of being included.

The lognormal distribution applies to parameters with a lower bound of 0 and
without an upper bound. If the default value of the parameter is 𝑥∗, the distribution is
lognormal(log𝑥∗,0.3), parameterized by the mean and standard deviation of the normal
distribution on the log scale, so the median of the distribution is 𝑥∗. When 𝑥∗ = 1, the
standard deviation of the distribution is about 0.32. If the parameter is an integer, it is
rounded from the real number sampled from the distribution (same for beta below).

The beta distribution applies to parameters with both a lower bound 𝑥min and an
upper bound 𝑥max. We use beta⟨𝑥min,𝑥max⟩ to denote such a distribution. If the default
value of parameter 𝑥 is 𝑥∗, the distribution is

𝑥 = 𝑥min+𝑥′(𝑥max−𝑥min) ,

𝑥′ ∼ beta(𝛼,𝛽),

𝛼 = 50
𝑥∗−𝑥min
𝑥max−𝑥min

,

𝛽 = 50
𝑥max−𝑥∗

𝑥max−𝑥min
,

so the mean of the distribution is 𝑥∗. When 𝑥∗ = (𝑥min+𝑥max)/2, the standard deviation
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of the distribution is about 0.07(𝑥max−𝑥min).
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Table 3.1. The hyperparameters in the simulation, their default values, and the distributions
from which their perturbations are sampled.

Name Description Type Default value Distribution

IncludeAgents Whether to consider each
agent as a possible mutant

boolean vector NA Bernoulli

GameNRounds Number of rounds in the re-
peated game

integer 200 lognormal

NoiseSD Standard deviation of noise
values added to payoffs in
Experiment 2

real 0.1 lognormal

GTfTGenerousProb Generous TfT’s probability
to unconditionally cooper-
ate in each game

real 0.1 beta⟨0,1⟩

BayesianPriorSD Standard deviation of the
Bayesian agent’s prior distri-
bution over 𝜆opp

real 0.5 lognormal

BayesianNParticles Number of particles in the
Bayesian agent’s particle fil-
ter algorithm

integer 100 lognormal

BayesianSmallSD 𝜎small in Eq. (3.3) real 0.05 lognormal
BayesianLargeSD 𝜎large in Eq. (3.3) real 0.5 lognormal
BayesianLargeProb 𝑝large in Eq. (3.4) real 0.05 beta⟨0,0.5⟩
BayesianQuantile The quantile of the posterior

distribution over 𝜆opp that
the Bayesian agent uses for
making a decision

real 0.55 beta⟨0.5,1⟩

STfTChangeRateMean Slow TfT’s average change
rate between upwards and
downwards

real 0.5 beta⟨0,1⟩

STfTChangeRateDiff Slow TfT’s difference in
change rates between
upwards and downwards

real 0.1 beta⟨0,0.5⟩

PopSize Population size in the evolu-
tionary dynamics

integer 100 lognormal

Softmax Selection strength in the evo-
lutionary dynamics (𝛼 in
Eq. (3.2))

real 5 beta⟨0,10⟩
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Chapter 4

Future directions

In the three chapters of this dissertation, I have created a measure of WTRs that
supports fine-grained investigation of the dynamics of WTRs, and built evolutionary mod-
els based on variable games to explain the evolution of the capacity ofWTR inference and
adjustment. They raise some important questions to be addressed by future research.

The Lambda Slider developed in Chapter 1 makes it easier to study the dynamics
of people’s WTRs over time or space (i.e., different social partners). One interesting
area of investigation is the fine-grained patterns of people’s reciprocity in terms of WTRs
over multiple rounds of interactions. Are some participants better or faster at converging
on the same WTR they observe in their partner? Beyond responding to others’ WTRs,
people may also be able to perceive the degree of reciprocal adjustment displayed by
their partners. If so, do people behave differently when interacting with a partner who
has a fixed WTR and does not reciprocate, versus a partner who does reciprocate? In the
former situation, do people realize the non-reciprocity of the partner and choose to be
selfish even when the partner is generous? In the latter situation, what kind and strength
of the partner’s reciprocity induce the highest level of mutual cooperation? To answer
these questions, we can let participants and a computer agent (who might pretend to be
a human) take turns making decisions on the Lambda Slider and manipulate the strategy
of computer agent. As mentioned in the Discussion of Chapter 1, informing participants
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of the computer agent’s WTRs might be better achieved through a 2D presentation of
the Lambda Slider.

Apart from WTRs, other social motivations such as inequity aversion (Fehr &
Schmidt, 1999) and social norms (Fehr & Fischbacher, 2004) play important roles in
people’s social decisions. The influence of inequity aversion has been preliminarily ex-
plored in Experiment 3 of Chapter 1, but a fuller characterization of how different social
motivations influence people’s decisions in different contexts is necessary. An interest-
ing challenge is building models that can simultaneously explain people’s decisions in
different versions of simple behavioral games, such as the dictator game, the ultimatum
game, and the public goods game (Camerer, 2011). Such models might need to take
into account the nonlinearity effects of subjective utilities (Kahneman & Tversky, 1979),
and should be tested on novel predictions to combat overfitting. This line of research
is likely to benefit from better measures that can tease apart different motivations and
are theoretically rigorous, to which the Lambda Slider is only a starting point. It is also
ideally accompanied by evolutionary models that take these motivations into account
and demonstrate under what conditions they can evolve.

The data from Chapter 1 shows, consistent with social discounting theory (Jones
& Rachlin, 2006), that people have higher WTRs toward those who are closer to them in
terms of social distance and lower WTRs toward those who are more distant. This results
in a negative gradient in WTRs as a function of social distance. Evolutionarily, this might
be due to a higher probability of future interactions with people who are closer to you.
This hypothesis can be tested by formal evolutionary modeling, probably using a network
social structure (Lieberman et al., 2005). In addition, from unreported data analyses in
Chapter 1, there seems to be substantial variation in this gradient across people; i.e.,
some people are more “parochial” than others. This phenomenon can be studied in
more detail, probably using the Lambda Slider and independent variables other than
the social distance ranking, such as interaction frequency, genetic relatedness, utilitarian
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cooperation and competition, etc. Evolutionary models can include agents with different
levels of parochialism and test if they can coevolve.

Chapters 2 and 3 in this dissertation present a first step toward using more com-
plex and realistic environments to explain the evolution of more sophisticated mental
representations and processes, both in social and non-social domains. In non-social set-
tings, where an organism’s fitness does not depend on other organisms in the environ-
ment, such models are less interesting because evolution has a clear direction toward
resource rationality (Lieder & Griffiths, 2020), or maximizing fitness given particular
computational requirements of the environment. As long as a cognitive ability improves
the rewards of an organism after subtracting the computational costs, it can naturally
evolve. In social settings, where an organism’s fitness depends on other organisms in
the environment and also the social structure, detailed modeling of the environment
and the cognitive abilities can lead to unexpected findings, such as the finding in Chap-
ter 3 that graded WTR inference is not very useful in a noiseless environment even when
the payoffs are variable. An interesting future direction is understanding what game en-
vironments and social structures allow other kinds of social motivations, like inequity
aversion and social norms, to evolve.

In Chapter 3, I mentioned that having a WTR greater than 1 or less than 0 is
almost never beneficial evolutionarily. However, previous research (e.g., Duntley & Buss,
2011; Hrdy, 2009) and data in Chapter 1 show that people often exhibit WTRs greater
than 1 or less than 0. How to resolve this discrepancy? There are multiple possible
explanations that apply to different relationships (kin, mates, etc.), but here I will focus
on one that applies to genetically unrelated individuals. In the environments studied in
Chapters 2 and 3, the players’ actions do not change future payoff structures, but in the
real world this often happens. For instance, if I spend a lot of resources to teach another
person a useful skill, although it does not improve their welfare immediately, it might
significantly increase their ability to create future benefits, both for themselves and for
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me. As another extreme example, if two animals are competing for a finite resource,
killing the competitor through an extremely low WTR will significantly increase one’s
future payoffs. These situations might be reduced to a WTR between 0 and 1 over long
time horizons (in the killing example, one could say that the ultimate goal is completely
selfish), but when manifested through WTRs that affect each decision, extreme WTRs
are psychologically reasonable. Such dependencies between current actions and future
payoffs have been explored using stochastic games (Hilbe et al., 2018), but more work
is needed to establish what ecologically valid dependency structures allow the evolution
of extreme WTR values.
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