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Abstract

In this paper, we argue that techniques proposed for combining empirical and
explanation-based learning methods can also be used to detect errors in rule-based
expert systems, to isolate the blame for these errors to a small number of rules and
suggest revisions to the mles to eliminate these errors. We demonstrate that FOCL, an
extension to Quinlan's FOIL program, can learn in spite of an incorrect domain theory
(e.g., a knowledge base of an expert system that contains some erroneous rules). A
prototype knowledge acquisition tool, KR-FOCL, has been constructed that can utilize a
trace of FOCL to suggest revisions to a mle base.





Introduction
Buchanan et al. (1983) provide an overview of the expert system development process. After
identifying problem characteristics, designing representations for the available data and the
system's hypotheses, a prototype is constructed Next, a cycle is repeated in which the
prototype is expanded to cover more problems, tested and revised as necessary to improve
accuracy on known problems. Occasionally during this testing phase, it is necessary to
reconsider the choices made for representation or to clarify the problem being addressed.

Knowledge acquisition tools excel at the creation of a prototype. For example, ETS (Boose,
1984) automates the processes of eliciting problem characteristics, identifying important
domain relations, and generating initial rules for a prototype. However, once the initial
prototype is constructed the rules must be revised manually. Similarly, KNACK (Klinker et
al., 1989) and SALT (Marcus, McDermott & Wang, 1985) assist in interviewing domain
experts to elicit the knowledge required to instantiate a rule-based expert system, but do not
fully address the revision of the rule base when errors are discovered.

TEIRESIAS (Davis, 1978) supports the expert and knowledge engineer in revising a rule base.
It provides tools to explain the inference path taken by an expert system. If an expert believes
this line of reasoning to be erroneous, the rules involved can dso be modified by use of
TEIRESIAS. This knowledge refinement tool can assist the user in modifying a rule by use of
general mle models that indicate what type of information a rule should be encoding.
However, much of the effort is left to the expert and knowledge engineer to assign blame for
an error to a particular rule, to identify what particular revisions are necessary and to evaluate
the impact of making these revisions.

We are interested in providing a tool to help automate the process of revising a prototype when
an error is encountered. We restrict our attention to backward-chaining rule-based expert
systems that perform classification tasks (Clancey, 1984). The tool, KR-FOCL partially
automates the task of identifying rules responsible for errors in expert systems. KR-FO(X is
based on a machine learning program, FOCX, developed at the University of (California, Irvine
(Pazzani & Kibler, 1990). FOCL was designed to learn constant-fi^ Hom-Qause concepts by
combining explanation-based and empiricd learning. As a consequence of this combination
of learning methods, FOCCL can tolerate incomplete and incorrect domain theories (Mitchell,
Keller, & Kedar-Cabelli, 1986; Rajamoney, & DeJong, 1987). FOCL uses the rule base of an
expert system as the domain theory required by explanation-based learning and processes a
collection of examples. If the rule base correctly classifies every example, then FC3CL creates
an operational def^tion of the classifications performed by the expert system by using only
explanation-based learning techniques.^ On the other hand, if the rule base incorrectly
classifies some examples, FOCL will use some combination of explanation-based and
empirical learning techniques. In this paper, we show that the conditions learned by the
empirical techniques and a description of when the empirical techniques are needed provides

1. Note that we are not advocating replacing the rule base of the expert system with the operational
detinititxi of the coirceptcreated by explanation-based learning. This operational definition could be used to
classify new examples. However, since it removes all of the intnmediate hypotheses, the operationalconcept
willbe of little use in explaining how the expm system solveda particularproblem(Swartout, 1981).



information that focuses the assignment of blame for an error to a particular rule and the
revision of erroneous rules.

Table 1 contains a trace of an interaction with KR-FOCL. In this example, FOCL was given a
rule-base of a small expert system designed to indicate when a student is required to pay back
an educational loan. This expert system was constructed by an undergraduate student at the
University California, Irvine who was employed as a loan processor. Four errors were
intentionily introduced into the rule base. Appendix I contains a listing of the expert system
rule base. FOCL is also given a collection of 48 examples. The examples were evenly
divided between those students who were required to make a loan payment and those who were
not. With the errors introduced into the rule-base, 21 of the 24 positive examples and 11 of the
24 negative examples are processed correctly by the expert system. The revisions to the rule-
base will focus on changing the rules responsible for misclassifying these examples.

The expert system uses a LISP representationfor rules. The first element of a list is a predicate
name. The remaiiting elements are ar^ments to the predicates. Variables are preceded by
question marks. For example, the termr

(AND (filed for_bankruptcy ?s) (disabled ?s))
can be reaci as "THe studenthas fil^ for bankruptcy and the studentis disabled."

Note that KR-FOCL is intended to be used by someone familiar with the domain. This person
must approve the changes suggested and help with assignment of blame after KR-FOCL has
localiz^ blame to a stn^ number of rules.

In the remainder of this paper, we first describe the leanung system, FOCL. Next, we discuss
the class of errors in a rule base that FOCL can tolerate. Finally, we report on how KR-FOCL
can be used to revise a knowledge-base.

Background: FOIL and FOCL
In order to leam the complex concepts encoded in the knowledge-base of an expert system, it is
necessary to have a learning program capable of acquiring relational concepts. Recently,
Quinlan (1990) has introduc^ a learning system called FOIL that is capable of learning Horn
Clause concepts such as those used by backward-chaiiting rule interpreters. FOIL is a purely
inductive system. We have produced an extension to FOIL, called FOCL, that combines the
inductive component of FOIL with an explanation-based learning component.

2. Note that we have edited FOCL's notation slightly to improve readability. In particular, FOCL uses the
position of elements in a rule to indicatethe antecedent, the consequent and the presenceof conjunction. That
is, instead of:

(between ?x ?y) IF (AND (less-than ?x ?z)(leas-than ?z ?y))

FOCL uses:

((between ?x ?y ?z) (less-than ?x ?y)(less-than ?y ?z)).

In addition, since FOCL uses constant-free literals, so that
(less-than ?x 5)

must be represented as:
(AND (less-than ?x ?y)(five ?y)).



Table 1. A trace of KR-FOCL

la. Should condition (never_left_sohool ?s) be added to clause 0 of
enrolled_in_more_than_five_unit3:
(AND (enrolled ?s ?3chool ?unit3) (school ?3chool) (> ?unit3 5))

> no

lb. Should conditions (never_left_school ?s) be added to clause 0 of
continuously_enrolled:
(enrolled_in_more_than_five_units ?s)

> y«•

2. Should clause 0 of eligible_for_diaability_deferment:
(AND (filled_for_ban]cruptcy ?s) (disabled ?s) )
be replaced with (disabled ?s)

> yea

3a. Should condition (unemployed ?vl) be added as a new clause for
no_payment_due
> no

3b. should condition (unemployed ?vl) be added as a new clause for
eligible_for_disability_deferment
> no

3c. Should condition (unemployed ?vl) be added as a new clause for
eligible_for_financial_deferment
> yea

4. Clause 4 of eligible_for_deferment:
(eligible_for_di3ability_deferment ?3)
was unused. note: (eligible_for_disability_deferment ?s) has been revised
should it be deleted?

> no

5. Clause 1 of eligible_for_financial_deferment:
(AND (enrolled ?s ?c ?u) (uci ?c))

was unused. Should it be deleted?

> ye a

FOIL
FOIL (Quinlan, 1990) inductively generates constant-free Horn-clause theories in a manner
similar to that used by IDS (Quinlan, 1986) to generate decision trees with attribute-value tests.
In particular, FOIL uses a divide-and-conquer approach guided by a heuristic based on
information theory. In order to review Quinlan's approach, we need to introduce some
terminology. A Hom-clause derinition for a concept (^0 ••• ^^0,1 consists of a
disjunctive setof clauses. Eachclause consists of a head anda conjimction of literals:



(Po ?Vo,i . . . ?V. „ ) if (AND (P, ?V, , . . . ?V, ) . . . (P ?V , . . . ?V ) ) .' O.no' 1 1,1 l»ni' m m, 1 m,nm' '

We will call (p_^ ?v^ i • •• ^ variabilization of a predicate p^. Since FOIL is currently
under development, we present here only its essential characteristics. FOIL is given a
collection of labeled examples, a set of known predicates, and an unknown predicate p^ of
known arity that FOIL is to leam. The task is to determine a Horn-clause definition of p^ in
terms of the given predicates as well as (in a limited manner) thepredicate p^j.

In our description of FOIL, Pos is the set of positive instances and Neg is the set of negative
instances. Similar to AQ (Michalski, 1980), FOIL has two main phases: adding clauses to the
theory until every positive instance is covered and forming clauses that do not contain any
negative instances. Positive instances are covered as follows:

Until Poa is empty

Construct a clause that covers some positive instances
and avoids all negative instances.

Add clause to the theory.

Remove those elements of Pos that are covered by the new clause.

Constructing a clause that misses all negative instances can also be described simply. Note
that the clause (p^ ?Vjj ^ ... ?Vg if true covers all positive instances. To avoid
negative examples, this clause is specialized in the following manner:

Let (P. ?V„ , ... ?V. ) if true be the initial clause
u 0f1 Of no

Let Pos be the positive examples not satisfied by the current definition
Let Neg be the negative examples
Until Neg is empty

Choose the predicate variabilization with the maximum information

gain.

If the maximum information gain i 0, then exit with failure

Conjoin the predicate variabilization the body of the clause.
Let Pos be all extensions of Pos that are satisfied by the term.
Let Neg be all extensions of Neg that are satisfied by the term.

At this level of abstraction, FOIL is quite simple. It uses hill-climbing to add the literal with
the maximum information gain to a clause. For each variabilization of each predicate, FOIL
measures the information gain, which is defined differently from ID3. Without going into the
exact computation, (see Quinlan, 1990) we note that, in effect, the information metric
determines the number of positive and negative examples satisfied and those predicate
variabilizations that correctly classify more examples have the higher information gain.

FOCL
Our work on FCXX is motivated by three factors:

1. FOIL is a purely inductive learning system and cannot make use of any available
domain knowledge. When there is domain knowledge available, analytic learning



systems can leam from fewer examples than inductive learning systems because the
domain knowledge can be used to constrain the hypothesis space.

2. The hill-climbing control structure of FOIL can prevent it from learning some
concepts. For example, both (less-than ?a ?b) and (less-than ?b ?c) may
have negative information gain, while the conjunction of these two terms may have
positive information gain. As a consequence, FOIL is not able to leam the
conjunction of these two literals.

3. The size of the hypothesis space searched by FOIL can be quite large (see Pazzani
& Kibler, 1990 for an analysis of the complexity of FOIL). FOIL computes the
information gain of all orderings of all the bound variables and new variables for all
known predicates. By using domain knowledge, it may be possible to prune the
number of predicate variabilizations considered.

FOCL, like FOIL, uses an information-based metric to evaluate when to add a literal to a
clause under construction. However, unlike FOIL literals may be proposed either by an
inductive component or by an explanation-based component. The result of this integration is
that the system can make use of domain knowledge when available to constrain the search for a
concept definition. However, when the domain knowledge is incomplete or incorrect, the
literals proposed by the explanation-based component will have less information gain than the
literals proposed by the inductive component. As a consequence, FOCL utilizes incomplete
and incorrect domain theories and can make up for these deficiencies by relying on an
inductive component to complete the concept definition.

Like all explanation-based learning systems, FOCL requires a target concept, (i.e., a non-
operational definition of the concept to be acquired), a domain theory theory (i.e., a set of rules,
such as the rule base of the expert system, that relates the non-operational definition to
operational predicates), a set of operational predicates (i.e., features that the examples are
expressed in terms of), and a set of classified training examples.^ Table 2 displays this
information for the student loan example and a positive and a negative training example. Note
that the domain theory in Appendix I incorrectly classifies these two examples. S3 is
erroneously classified as a negative example (because the rule for disability deferment has been
modified by adding an extra condition) and nl7 is incorrectly classified as a positive example
(because an extra clause has been add^ that states that students enrolled at UCI are eligible
for a financial deferment).

FOCL differs from FOIL only in how FOCL selects literals to add to a clause. FOCL first
computes the information gain of each literal in the target concept. In Table 2, the target
concept is a single literal. Ingeneral, the target concept can be a conjunction of literals of^e
form;

(AND (P, ?V, , . . . ?V. ) . . . (P„ ?v„ , ... ?v„ „ ) ) .
^ * 1 1,1 l#ni m m, 1 ni,nBi

If any literal has positive information gain, then FOCL operationalizes that literal. Otherwise,
FO(X uses the inductive method of FOIL and computes the information gain of all

Note that FOIL only requiresa set of operational{xedicates and a set of trainingexamples.



Table 2. Input to FOCL

Target coneapt : (no_payment_due ?3)
Domain thaory: {see Appendix 1}

Oparational Prad : { (enrolled ?student ?3chool ?unit3)
(longe3t_absence_from_3chool ?student Tmonths)
(enlist ?3tudent ?organization)
(unemployed ?student) filled_for_bankruptcy
(filled_for_banlcruptcy ?student)
(disabled ?student)

(school ?organization)
(armed_forces ?organization)
(peace_corps ?organization) )

Poaitiva Examplaa: {s1,s2 . . . , s24 }
Nagatlva Examplaa: {nl,n2 . . . , n24}

A Poaitiva Example A Hagatlva Example
(longest absence_from_school s3 3) (longest_ab3ence_from_school nl7 12)
(enrolled s3 OCC 5) (enrolled nl7 OCI 10)
(disabled s3)

variabilizations of all predicates (both operational and nonoperational) and selects the predicate
variabilization with the maximum information gain. This strategy insures that FOCL uses as
much of the user provided domain theory as possible, but disregards those parts of the domain
theory that misclassify large numbers of examples.

The operationalization process in FOCL differs from that of EBL in that it is guided by an
information gain metric over a set of both positive and negative examples rather than a single
positive example. As in EBL, the operational definition for a predicate may specialize the
predicate if the domain theory is disjunctive (i.e., if there are multiple clauses for any non-
operational predicate). In EBL, the predicates that are the leaves of the proof tree of the single
training example are used as the operational definition. In FOCL, the ii^onnation gain metric
is used to determine how to expand a proof tree, in the following maimer:

operationalize(Term, Pos, Neg):
let Body be the empty set.

for each Clause in the definition of Term

compute_gain(Clause, Pos, Neg)
for the Clause with the maximum gain

for each term T in Clause

if T is operational
then add T to Body

else add operationalize (T, Pos, Neg) to Body

A final difference between FOCX and FOIL is that the inductive component of F(XX can
make use of nonoperational predicates. The inductive component of FOCL computes the



information gain of all possible variabilizations of the nonoperational predicates in the same
manner as the operational predicates. If a nonoperational predicate has the maximum
information gain, it is operationalized in the same manner that the target concept is
operationaliz^ by the explanation-based learning component of FOCL.

An example will help to illustrate how FOCL operates. Later, we will use this same example
to show how KR-FOCL can be used to revise an expert system. The trace in Table 3 shows
FOCL operating with the incorrect domain theory from Appendix I. In the first step, FOCL
tries to operationalize the concept no_payment_due. There are two clauses that can be used to
prove that no payment is due and FOCL computes the information gain of both and selects the
alternative with the highest information gain: oiigibie_for_deferment. There are five
alternative ways of proving this and eligible_for_military_deferment has the highest
gain. Finally, this rule has only one alternative. Since this alternative is operational, it is added
as a new literal. The new literal does not cover any negative examples, so it is a new clause.
In Steps 2-4, this process is repeated and rules corresponding to
eligiblG_for_financial_deferment, eligible_for_3tudent_deferment,
eligible_for_peace_corp3_deferment ate Operationalized.

In Step 5, the predicate continuouaiy_enroiied is operationalized. However, the literal
formed by operationalizing this predicate, also covers thirteen negative examples (i.e., the
expert system would erroneously report that these students should not repay their loans, but
they should). At this stage, FOCX tries to induce another literal that excludes these negative
examples, and satisfres some of the positive examples that are covered by the operationalized
literal for continuousiy_enroiied. The literal, never_ieft_8chooi, has the highest
information gain. Because this predicate is not operational (i.e., it is defined by a rule rather
than a set offacts that are true of students), this pr^cate is also operationalized The resulting
literal is conjoined with the operationalization of continuousiy_enroiied and a new clause is
formed that does not cover any remaining examples. Note that the first part of this clause was
formed by EBL (operationalizing a target concept with positive information gain) and the
second part was formed inductively (by searching all variabilization of all operational and all
nonoperational predicates).

At this point, the target concept no longer has positive information gain. This occurs because
the set of positive examples is reduced by eliminating those examples that are satisfied by each
new clause created. Since the target concept no longer will correctly classify the remaining
examples, only inductive techniques are utilized. In Step 6, it is induced that disabled persons
are not requir^ to pay back loans and in Step 7, it is determined that unemployed persons are
not requir^ to make loan payments. At this point, all positive examples are covered by some
clause, and no negative examples are covered by any clause, so the process terminates.

In this example, FOCL first operationalized as much of the domain theory as possible. Note
that the first few clauses do not require any induction. Later clauses operationdize part of the
domain theory, but use induction to add extra literals. This is a sign that the domain theory is
close to being correct Finally, FOCL uses only inductive techiuques to leam the final clauses.
This behavior is common and it is a consequence of using information gain as a metric to guide
a greedy search for a complete set of clauses that cover all positive and no negative examples.



Table3.AtraceofFOCL

1.>(continuously_enrolled?vl)gain1.4
>(eligible_for_deferment?vl)gain14.0
>operationalizing(eligible_for_deferment?vl)
>>(eligible_for_military_deferment?vl)gain6.0

>>(eligible_for_disability_deferment?vl)gain1.0
>>operationalizing(eligible_for_military_deferment?vl)
>>>(AND(enlist?vl?vl01)(armed_forces?vl01))gain6.0

NewLit*ral:(AND(enlist?vl?vl01)(armed_forces?vl01))
N«w{)

HawClauaa:(AND(enlist?vl?vl01)(armedforces?vl01))

2.HawClauaa

3.HawClauaa

4.HawClauaa

(filled_for_bankruptcy?vl)
(AND(enrolled?vl?vl03?vl02)(school?vl03)(>?vl0211))

(AND(enlist?vl?vl01)(peace_corp3?vl01))

5.>(continuously_enrolled?vl)gain1.8
>(eligible_for_deferment?vl)gain0.0
>operationalizing(continuously_enrolled?vl)
>(enrolled_in_more_than_five_unit3?vl)gain1.8
>operationalizing(enrolled_in_more_than_five_units?vl)
(and(enrolled?vl?vl03?vl02)(school?vl03)(>?vl025))gain1.8

HawLltaxal:(AND(enrolled?vl?vl03?vl02)(school?vl03)(>?vl025))

HawHagahivaa:{n23n22n20nl8nl7nl6nl5nl4nl3nl2nilnlOn9}

>(enrolled?vl?vl04?vl05)gain0.0

>(enlist?vl?vl06)gain0.0

>(disabled?vl)gain4.5
>(filled_for_bankruptcy?vl)gain0.0

>(never_left_school?vl)gain6.1
>operationalizing(never_left_school?vl)
>(AND(longest_ab3ence_from_3chool?vl?vl04)(>6?vl04))gain6.1
HawLltaxal:(AND(longest_absence_from_3chool?vl?vl04)(>6?vl04))
HawHagatlvaa:{}
HawClauaa:(AND(enrolled?vl?vl03?vl02)(school?vl03)(>?vl025)

(longe3t_absence_from_school?vl?vl04)(>6?vl04))

6.>(continuoualy_enrolled?vl)gain-2.7

>(eligible_for_deferment?vl)gain0.0

>(disabled?vl)gain9.2

>(unemployed?vl)gain4.6

HawLltaxal:(disabled?vl)

HawHagatlvaa:(}
HawClauaa:(disabled?vl)

7.HawClauaa:(unemployed?vl)



Errors in rule bases
KR-FOCL is designed to deal with four types of errors in a rule base:

1. A clause has an extra literal (or literals) added. This extra literal makes the mle
overly specific so that some positive examples will be classified incorrectly.

2. A clause has a literal (or literals) missing. This missing literal makes the rule overly
general so that some negative examples will be classified incorrectly.

3. A rule has an extra clause (or clauses) added. This extra clause makes the rule
overly general.

4. A rule has an clause (or clauses) missing. This missing clause makes the rule overly
specific.

The rule base displayed in Appendix I has one of each type of these errors. Note that
combinations of these errors can account for other erroneous mles. For example, using the
wrong literal (e.g., (> ?x 7) instead of (< ?x 7)), can be viewed as having a missing literal
and an extra lite^.

KR-FOCL: A Knowledge Revision Tool
We are advocating that part of the documentation for an expert system consists of a set of
correctly classified examples that exercise every clause of every mle of the expert system. For
example, for a fault diagnosis system, the examples might consist of mappings between sensor
readings and failures; for a m^cal expert system, the examples might consist of mappings
between patient symptoms and diseases (or treatments). These examples are probably best
collected incrementally, as each clause is entered.

FCXX is capable of using these examples to leam an operational concept definition in spite of
errors in the mle base. However, FOCL does not fix the mle base to correct these errors. KR-
FOCL is designed to use a trace of how FOCL leams to suggest revisions to the knowledge
base. The following information is retained for each clause learned:

1. The clauses (if any) of each mle that were operationalized by the explanation-based
learning component. We will call these clauses operationalized clauses.

2. The variabilized predicates (if any) that were added by the induction component
We will call these predicates induced predicates.

As FOCL mns, it records the operationalized clauses and the induced predicates for each
clause it creates. We will caQ those clauses of the domain theo^ that were never
operationalized, unoperationalized clauses. Table 4 summarizes this mformation for the
example in Table 3.

KR-FOCL analyzes the trace information to suggest revisions to the knowledge base. There
are three alternatives that can occur for each clause that FOCL leams:



Clause

1.

Table 4. Trace information used by KR-FOCL

operationalized clauses induced predicates

3 .

5.

6 .

7 .

# predicate

1 no_payment_due
0 eligible_for_deferment
0 eligible_for_military_deferment

1 no_payment_due
2 eligible_for_deferment
0 eligible_for_financiai_deferment

1 no_payment_due
3 eligible_for_deferment
0 eligible_for_student_deferment
0 enrolled_in_more_than_eleven_unita

1 no_payment_due
1 eligible_for_deferment
0 eligible_for_peace_corp_deferment

0 no_payment_due
0 continuoualy_enrolled
0 enrolled in more than five unita

{}

{ }

unoperationalized clauses:
,4 eligible_for_deferment

1 eligible_for_financial_deferment
0 eligible_for_diaability_deferment

{ }

{ }

{ )

{}

(never_left_achool ?vl)

(diaabled ?vl)

(unemployed ?vl)

1. The set of operationalized clauses is non-empty and the set of induced predicates
is empty. This is a sign that none of the operationalized clauses used need to be
modified to correcdy classify the training examples.

2. The set of operationalized clauses is non-empty and the set of induced predicates is
non-empty. This may be a sign that one or more of the operationalized clauses need
to be modified by adding an extra condition from the induced predicates. The user
is prompted to verify one of these possibilities.

3. The set of operationalized clauses is empty and the set of induced predicates is non
empty. This may be a sign that one of the unoperationalized clauses needs to be
changed. FOCL searches for clauses in the rule base that meet one of two
conditions:



a. The induced predicates subsume an unoperationalized clause. This
may bea sign that the clause can be replaced by the induced predicates.
In effect, this modificadon removes superfluous literals firom a clause.

b. The induced predicates are subsumed by an unoperationalized clause.
This also can be a sign that the clause can be replaced by the induced
predicates. ^ effect, this modification adds extra literals toa clause.

Finally, this condition may also be a sign that the induced predicates may be another
clause for the top level predicate or for a predicate that is part of an
unoperationalized clause. Note that the induced predicates in FOCL need not be
operational, so that the induced predicates can use the existing vocabulary of the
knowledge base.

KR-FOCL asks the user to confirm any changes that are suggested. Finally, KR-FOCL
suggests deleting unoperationalized clauses. The trace in Table 1 illustrates the types of
revisions that KR-FOCL suggests.

The first example in Table lis a case in which the operationalized clauses arc non-empty and
the set ofinduced predicates are non-einpty. This occurred when FOCL was learning the fifth
clause (see Table 3). In this clause, FOCL operationalized clauses for
continuou3ly_enrolled and onrolled_in_more_than_five_unit3. In this situation,
FOCL also had to induce a condition, never_ieft_3chooi, to rule out additional negative
examples. KR-FOCL asks the user todetermine if either of the operationalized clauses should
be revised by adding the induced predicate. Note that modifying either clause will result in
correct classification of this training set. The choice made by the user will best preserve the
structure of the rule base that supports understandable explanations. That is, it makes more
sense to say that a student is continuously enrolled if the student has never left school and the
student is enrolled in five or more units, than it does to say that a student is enrolled in five or
more units if the student has never left school and the number of units in which the student is
enrolled is greater than 5.

The second example in Table 1 exemplifies the case when the set of operationalized clauses
returned by FOCL is empty (see clause 6 ofTable 3). KR-FOCL finds an unoperationalized
clause, (AND (filed_for_banlcruptcy ?3) (di3abled ?3)), that is Subsumed by the
induced predicate, (diaabied ?3), and asks the user if the clause can be replaced.

The third example in Table 1 is similar to the second example. However, this time there is no
clause that is subsumed by the induced predicate (unemployed ?vi) (see clause 7 in Table 3).
In this case, KR-FOCL asks if the induced predicate can be a new clause for the top levei
clause, no_payment_due. Although this would result in correct classifications, the user
responds negatively. Next, KR-FOCL asks if the induced predicates should bea new clause of
any rule for a literal in a clause that was not operationalized. The rationale here is that some
clause may not have been operationalized not because the clause itself needs to be modified,
but because a rule used to establish one of the conditions of fhe clause may have another
alternative. In this case, clause 4 of eiigibie_for_deferment is unused and KR-FOCL next
asks if there should be a new clause for eligible_for_di3ability_deferment. The user
responds negatively. Although this would result in correct classifications, it would not make
much sense to say that a student is eligible for a disability deferment if the student is



unemployed. Finally, KR-FOCL asks the user about adding an extra clause to any rule that has
an unoperationalized clause. The user confirms that (unemployed ?vi) is another alternative
for eligible_for_financial_deferment.

Finally, KR-FOCL asks the user to confirm the deletion of any unoperationalized clauses and
warns the user about clauses that use predicates whose definition has changed. The user
decides to retain the clause that states a student is eligible for a deferment if the student is
eligible for a disability deferment (example 4 in Table 1) and decides to delete the clause that
states that a student is eligible for a financial deferment if the student is enrolled at UCI.

Limitations
The current implementation of KR-FOCL has several limitations. First, KR-FOCL does not
explain why it recommends a certain revision. We are planning an extension that would
ad^ess this problem by keeping track of the examples that motivate the recommendation. In
its current form, we are assuming that a knowledgeable expert either forgot to mention a
condition, or mentioned a superfluous condition. >^en KR-FOCL suggests a revision, it is
expected that the expert will realize that the revision will lead to improv^ performance. In the
future, we hope that by providing an expert with a summary of the examples in which the rules
in a knowledge base lead to errors, and a revision which eliminates these errors, KR-FOGL
may be used by an expert to help discover the correct rules.

Currently, we have only tested KR-FOCL on small examples with only a few errors. As the
size of the rule base and the number of errors increases, it may be necessary to find a way to
organize the possible revisions to the knowledge base. For example, instead of serially asking
verification questions about a large number of possibilities, it piay be better to present the user
with a menu of these alternatives. In addition, it might bt best to order the revisions to the
knowledge base by initially focusing on those that will most affect the accuracy of the expert
system. Finally, the capabilities of a program such as SEEK (Politakis & Weiss, 1984) to
quickly access the impact of a revision would be useful. Currently, the user must run KR-
FOCX again to determine the impact of a change.

When the operationalized clauses and induced predicates are non-empty, KR-F(XL suggests
revising every operationalized clause by adding the induced predicates. TMs typically focuses
the revisions to a small portion of the knowledge base. We could further supervise this process
by making use of rule models (Davis, 1978) that provide information concerning the classes of
predicates that are usually used in clauses that propose certain classes of hypotheses.



Finally, KR-FOCL is limited by the underlying machine learning technology.^ It cannot
operate if FOCL cannot solve the problem by using hill-climbing search, or if the problem
cannot easily be expressed by constant-free Horn-Clauses. It cannot operate with rules that
require certainty factors, rules that deal with large numbers of constants or real-valued
constants^. In addition, it cannot operate if the expert system relies on a complex conflict
resolution strategy to determine the applicability of rules.

Conclusions
In this paper, we have focused on how machine learning technology, in particular programs
that integrate empirical and explanation-based learning, can be used to revise the rule bases of
expert systems. It is worth noting that knowledge acquisition technology can also address
some problems in machine learning. For example, ETS (Boose, 1984) can help automate the
process of selecting a vocabulary for training examples. Many successful inductive programs
(e.g., Michalski & Chilausky, 1980; MicWe, 1983; Qitinlan, 1986) require an expert to
determine a set of potentially relevant features. In addition, information such as the rule
models used by TEIRESIAS may be useful in constraining the hypotheses considered by a
learning program.
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4. Note that KR-FOCL gets around a major limitation of SEEK2 (Ginsberg, 1988), in that KR-FOCL can
make use of domain theories expressed as Horn-clauses instead of purely prepositional domain thecdes.

5. Note that if there are few constants, it is practical to add predicates that are true of these constants. For
example (color ? x red) can be replied with (and (color ?x ?y) (red ?y)). This is not practical
with real numbers.
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Appendix 1. Rule base of the loan repayment expert system.

Clauses and literals that were deleted to deliberately introduce errors axe stricken. Clauses and
literals that were added are shown in bold.

(no_payment_due ?s) IF (continuoualy_enrolled ?a)
(no_payment_due ?3) IF (eligible_for_deferment ?3)

(continuoualy_enrolled ?3) IF (AND (ii« v«i_l«rL_suliuuI—Ttt)—
(enrolled_in_more_than_five_unit3 ?3))

(eligible_for_deferment ?a) IF (eligible_for_military_deferment ?3)
(eligible_for_deferment ?3) IF (eligible_for_peace_corp3_deferment ?s>
(eligible_for_deferment ?3) IF (eligible_for_financial_deferment ?3)
(eligible_for_deferment ?3) IF (eligible_for_student_deferment ?s)
(eligible_for_deferment 7a) IF (eligible_for_disability_deferment ?s)

(eligible_for_military_deferment ?a) IF (AND (enlist ?3 ?a)
(armed_forces ?a))

(eligible_for_peace_corpa_deferment,?s) IF (AND (enlist ?s ?a)
(peace_corps ?a))

(eligible_for_financial_deferment ?s) IF (filed_for_ban]cruptcy ?s)
(elly ibln_Jui._f liijimial_de£yiiiieiiL—?-s-)—tT—f
(eligible_£oz_£lnancial_d«ferment) IF (AMD (enrolled ?s ?a ?u)

(uei ?e)))

(eligible_for_3tudent_deferment ?s)IF(enrolled_in_more_than_eleven_units ?s)

(eligible_for_di3ability_deferment ?s) IF (AMD ( £lled_£or_banlcrupt cy ?•)
(disabled ?s))

(never_left_3chool ?s) IF (AND (longest_absence_from_school 7a ?a) (> 6 ?a))

(enrolled_in_more_than_five_unit3 ?s) IF (AND (enrolled ?3 ?school ?units)
(school ?school)

(> ?units 5))

(enrolled_in_more_than_eleven_units ?3) IF (AND (enrolled ?s ?3chool ?units)
(school ?school)

(> ?units 11))




