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Abstract 

Enhanced Geothermal Systems (EGS) offer the potential for a much larger energy source than 
conventional hydrothermal systems. Hot, low-permeability rocks are prevalent at depth around the world, 
but the challenge of extracting thermal energy depends on the ability to create and sustain open fracture 
networks. Laboratory experiments were conducted using a suite of selected rock cores (granite, 
metasediment, rhyolite ash-flow tuff, and silicified rhyolitic tuff) at relevant pressures (uniaxial loading up 
to 20.7 MPa and fluid pressures up to 10.3 MPa) and temperatures (150-250°C) to evaluate the potential 
impacts of circulating fluids through fractured rock by monitoring changes in fracture aperture, 
mineralogy, permeability, and fluid chemistry. Because a fluid in disequilibrium with the rocks (deionized 
water) was used for these experiments, there was net dissolution of the rock sample: this increased with 
increasing temperature and experiment duration. Thermal-hydrological-mechanical-chemical (THMC) 
modeling simulations were performed for the rhyolite ash-flow tuff experiment to test the ability to predict 
the observed changes. These simulations were performed in two steps: a THM simulation to evaluate the 
effects of compression of the fracture, and a THC simulation to evaluate the effects of hydrothermal 
reactions on the fracture mineralogy, porosity, and permeability. These experiments and simulations point 
out how differences in rock mineralogy, fluid chemistry, and geomechanical properties influence how long 
asperity-propped fracture apertures may be sustained. Such core-scale experiments and simulations can 
be used to predict EGS reservoir behavior on the field scale. 

1 Introduction 

Several studies [1-3] have highlighted the potential of Enhanced Geothermal Systems (EGS) as a source 
of energy for generating electricity in the United States from 100 GWe up to 5,157 GWe. There are a 
number of critical technical challenges that need to be addressed to make EGS a technically and 
economically viable option: these include reservoir access (through improved drilling technology), 
reservoir creation (through improved fracture stimulation methods), and reservoir sustainability. To 
address these key research topics, the US Department of Energy’s Geothermal Technologies Office has 
launched the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative to stimulate 
R&D advances needed to make EGS viable through the use of a dedicated field site. The FORGE 
Roadmap [4] identifies three critical research areas for EGS: stimulation planning and design, fracture 
control, and reservoir management. These topics involve the stimulation, control, and sustainability of 
fractures needed for circulation of a working fluid to extract heat from an EGS reservoir [5]. 

There are two main approaches to creating fracture permeability for an EGS reservoir: shear stimulation 
of critically stressed fractures, and hydraulic fracturing to create new fractures [6]. In order to keep these 
fractures open after stimulation, they either need to be injected with proppant (as is commonly done with 
hydraulic fracturing in unconventional oil and gas reservoirs), or propped open by asperities on the 
fracture surface caused by shear offsets along a rough natural fracture surface. Mixed-mode stimulation, 
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where both shear and tensile failure of fractures occur, is another possible option for increasing fracture 
permeability in an EGS reservoir [7]. 

Fracture permeability depends on fracture aperture: the cubic law is commonly used to estimate fracture 
permeability for parallel plate fractures, given by: 

              𝑘 = !!

"#
 (1) 

where 𝑘 is permeability (m2) and h is the aperture (m) [8]. In nature, fractures have rough surfaces, and 
asperities created by shear offset help create the effective aperture of the aperture [9]. However, the 
fracture aperture can be modified over time through pressure and/or chemical dissolution of self-propping 
asperities or proppant, mechanical deformation, and mineral dissolution and/or precipitation along the 
fracture surface [10-14]. Such processes are highly dependent on the rock mineralogy, fracture 
roughness, stress conditions, fluid chemistry, and temperature conditions. 

Fractures in natural hydrothermal systems often undergo cycles of opening and closing related to stress-
induced dilation, mineral precipitation, brecciation, and local dissolution and precipitation [15,16]. 
Davatzes and Hickman [15] observe that fractures containing ductile sheet silicate minerals, such as 
smectite and chlorite, are much less likely to remain open compared with those containing more brittle 
mineral phases such as quartz and calcite. Thus, the nature of both the host rock mineralogy as well as 
minerals precipitated along the fracture surfaces can play an important role in the relative reactivity of the 
fracture surface as well as its geomechanical stability – this is especially important for those phases 
forming the fracture asperities. These fracture surface features play an important role in preferential 
dissolution, self-propping, and the creation of new asperities [17]. 

The objective of this study is to evaluate the longevity of fracture apertures (and thus the sustainability of 
fluid circulation within an EGS reservoir) through a series of hydrothermal experiments using fractured 
rock samples of varying compositions at geothermally relevant pressure and temperature conditions. 
These experiments were performed using a purpose-built apparatus that allows the application of a 
normal stress to fractured core. Core samples were selected from two geothermal fields where infield 
EGS field tests have been conducted (Desert Peak [18-21] and Bradys [21]) as well as a granite, a rock 
type relevant to the Utah FORGE EGS field site [22] – these samples provide a range of lithologic types 
for potential EGS reservoirs. These well characterized tests were used to constrain THMC numerical 
models used to simulate one of the experiments. The results of the laboratory experiments and numerical 
simulations are presented in the following sections. 

2 Laboratory Experiments 
The hydrothermal-mechanical experiments were conducted in LBNL’s Geothermal Laboratory using a 
specially designed apparatus to evaluate how normal stress, fluid pressure, and water-rock interaction at 
geothermally relevant temperatures might change the flow behavior of an asperity-propped fracture. 
These tests were run using four distinct rock types. Descriptions of the test apparatus, the rock samples 
selected for these experiments, and the experimental procedures are given below. 
 
2.1 Experimental Apparatus 
A custom-built uniaxial stress frame with a heater and flow system was designed and created for these 
experiments (Fig. 1). The purpose of this system is to flow water through a fractured rock core at 
temperatures and normal stresses relevant to EGS reservoirs over time and detect any changes in fluid 
flow pressure that would reflect a change in fracture permeability. The system allows for uniaxial stress to 
be applied to a rock core with a fracture that has been created oriented perpendicular to the core axis. To 
allow water to flow into the fracture, a small diameter hole was drilled parallel to the core axis through 
where the fracture was created to allow fluid to be introduced into the center of the fracture – the resulting 
flow would be nominally radial along the fracture face to the edge of the core. 
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The pressure vessel was constructed of Grade 5 titanium (containing ~6% Al) that was cleaned and 
passivated by soaking in concentrated nitric acid and heated in an oven at 400°C for 12 hours to create 
an oxidized layer to reduce potential corrosion and contamination of the injected fluid. The system was 
sealed at the top and bottom using graphite and Kalrez® seals – both seals experienced some problems 
during the experimental runs. The graphite seal leaked a very small amount and exhibited high friction on 
the axial piston, and the Kalrez o-ring seal decomposed to produce hydrofluoric acid, which caused some 
local vessel corrosion at the o-ring vessel wall contact. 
 

 
Figure 1. Schematic depiction (left) and photograph (right) of apparatus for fracture sustainability 
experiments. In diagram, 1 – fractured rock sample, 2 – titanium pressure vessel, 3 – platform, 4 – shaft, 
5 – top, 6 – hydraulic jack, 7 – temperature equalizer bath, 8 – top seal, 9 – bottom seal, 10 - linear 
voltage differential transducer (LVDT), BPR – back pressure regulator. 
 
Stress was applied to the rock sample by means of a 10-ton hydraulic jack (Enerpac C101) that moves 
the shaft against a titanium pedestal that supports the rock core. When the jack is activated through the 
use of a syringe pump (Teledyne Isco 260D), it applies force that compresses the rock core in the 
direction perpendicular to the asperity-propped fracture. The amount of sample displacement caused by 
fracture closing is monitored by a high-temperature linear voltage differential transducer (Active Sensors 
LT-0951-010) that is attached to the shaft. 
 
Fluid is introduced into the system from a reservoir of deionized water using a high-pressure syringe 
pump (Teledyne Isco 500D). A temperature equalizer bath is used to ensure that the fluid inlet and outlet 
temperatures are kept cool. Water is injected into the top hole of the core sample at a constant flow rate 
of 0.01 mL/min, except during system start up when the volume needs to be filled. Water exiting the 
margins of the rock core fracture moves out of the pressure vessel, through a cooling bath, through a 
back pressure regulator that is controlled by a high-pressure syringe pump (Teledyne Isco 500D), and 
then collected for analysis using a fraction collector under ambient temperature and pressure (the reacted 
water is not recirculated through the system). Fluid inlet and outlet pressures are monitored continuously 
with pressure transducers, and low differential pressure (below ~ 100 kPa) was independently measured.  
 
The pressure vessel and its contents were heated by band heaters surrounding the pressure vessel, 
mediated by a ~1.6 mm-thick copper shell to distribute the thermal flux. The entire vessel, including the 
heaters, was thermally insulated with 2.54 cm-thick glass wool having a thick aluminum foil surface, to 



4 
 

stabilize the temperature of the system. A thermocouple and temperature controller were used to monitor 
and maintain a constant temperature for the experiments. This system was designed for temperatures as 
high as 300°C, however, the actual experiments were conducted at 150 and 250°C. 
 
2.2 Rock samples 

Four different rock samples were selected for these experiments – a granite, a metasedimentary 
mudstone, a rhyolite ash-flow tuff, and a silicified rhyolite tuff. The first sample was obtained from the 
Stripa mine in Sweden, the metasedimentary mudstone and the rhyolite ash-flow tuff were obtained from 
the BCH-03 well from the Bradys geothermal field, and the silicified rhyolite tuff was from the DP 35-13 
well from the Desert Peak geothermal field. Table 1 provides additional details regarding the sample 
recovery depths and mineralogy based on petrographic study and more detailed mineralogic 
characterization from the literature for the same rock type. Figure 2 depicts photomicrographs for each of 
these samples. 

Table 1: Experimental rock samples 

Rock sample Location Mineralogy Matrix perm. 
(m2) & 
porosity (%)1 

References 

Granite Stripa Mine, 
Sweden 

Quartz, microcline, 
plagioclase, muscovite, with 
minor chlorite, biotite, and 
epidote 

0.8 % [23, 24] 

Rhyolite ash-
flow tuff 

BCH-03 well, 
1202.28-1202.43 
m, Bradys 
geothermal field, 
Nevada, USA 

Phenocrysts of plagioclase, 
quartz, biotite, alkali feldspar, 
and Fe-oxides in a devitrified 
groundmass with minor 
amounts of calcite, smectite, 
chlorite, and illite 

1.78 ´ 10-19 

3.45 % 

(sample from 
1188.4 m 
depth) 

[25-27] 

Metasediment
ary mudstone 

BCH-03 well, 
1485.29-1485.5 m, 
Bradys geothermal 
field, Nevada, USA 

Fine-grained highly altered 
metasediment with chlorite, 
clay, quartz, plagioclase and 
calcite 

<9.87 ´ 10-18 

0.47 % 

(sample from 
1482.3 m 
depth) 

[25,26] 

Silicified 
rhyolite tuff 

DP 35-13 well, 
754.75-754.99 m, 
Desert Peak 
geothermal field, 
Nevada, USA 

Blocky plagioclase and 
sanidine crystals with 
subrounded feldspar and 
quartz, in a fine-grained 
silicified groundmass with 
illite-smecite, chlorite, 
kaolinite, and calcite  

2.96 ´ 10-18 

8.71 %  

(sample from 
756.8 m 
depth) 

[28,29] 

1 Reported values for correlative samples analyzed by studies listed in references column 



5 
 

    

    

Figure 2. Photomicrographs (crossed nicols) of thin sections from rock samples used in study – bottom 
dimension of all photos is 1.75 mm. Upper left – Stripa granite, with microcline (cross-hatched twinning), 
plagioclase, quartz (undulatory extinction), and muscovite (high birefringence); Upper right – BCH-03 
rhyolite ash-flow tuff, with phenocrysts of plagioclase (twinned), sanidine, quartz, and biotite (bird’s eye 
extinction) in an altered groundmass; Lower left – BCH-03 metasediment with fine grains of quartz in a 
clay-chlorite-rich groundmass, cut by a calcite vein on the right side; Lower right – DP35-13 silicified 
rhyolite tuff with large plagioclase phenocryst, smaller plagioclase, quartz, and sanidine crystals in a 
silicified groundmass. 

2.3 Experimental preparation 

Rock cores were prepared for each of the four starting rock samples. Before inducing a fracture, these 
cores had a diameter of 50.4–50.8 mm, and a length of 50.8-50.9 mm. First, a 2.6 mm-diameter hole was 
drilled along the core axis up to about 60% of the length, to serve as an injection port for the fracture flow 
experiment. Subsequently, localized compressional force was applied at 12 points on the center 
circumference of the sample via ball bearings driven by set screws, to generate a tensile fracture 
perpendicular to the core axis. The core halves were then each jacketed with a passivated titanium ring 
(Fig. 3) with an O.D. of 63 mm and an I.D. closely matched to the rock cores, which was heated and then 
slid onto the core. The objective of these sleeves was to apply lateral constraints to the deformation of the 
core sample, such as to avoid development of new fractures in the vertical direction. The rim of this ring 
has several holes for a locking pin, which allow the core sections to be rotated and slightly misaligned at a 
designed angular offset during the experiment. 
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Figure 3. Fractured core sample set-up. Left – Fractured core of BCH-03 metasedimentary rock. Pin and 
holes in titanium sleeve allow for rotational offset of core samples to create self-propped fractures. Hole in 
the right rock sample is used as a port to inject fluid into the fracture. Core samples are 50.4 mm in 
diameter. Right – Jacketed rock core samples (with fracture between titanium sleeves) ready for insertion 
into pressure vessel. 

The two fractured core faces for each sample then were carefully scanned using an optical surface 
profilometer (Nanovea PS-50) to characterize the topography of the fracture surfaces. Because of the 
limitation of the area covered by a single scan, data were collected for overlapping quarters of the rock 
face at different scan heights, and processed using ImageJ software [30]; the data were then normalized 
and stacked using a Matlab script, and the compiled quarter sections were stitched together to make a 
circular profile surface. The fracture surfaces from both top and bottom were registered to align them and 
subtracted from each other to estimate the fracture aperture; these scans could be used to estimate 
fracture apertures and asperities for rotated surfaces, and pre- and post-test fracture topographies could 
also be compared with each other to determine changes in the fracture surface resulting from the 
hydrothermal experiments. 

The two halves of the titanium-jacketed core sample were put together with a slight rotational 
misalignment to create a self-propped fracture, then placed inside of the pressure vessel, with the drilled 
hole facing upward to facilitate fluid injection into the sample. To ensure the flow was going through the 
hole and not along the sample surface, a gold foil ring gasket was placed at the inlet, which was 
squeezed and created a chemically inert seal once the axial stress was applied. Prior to conducting the 
long-term hydrothermal experiments, an initial test under ambient conditions and increasing effective 
stress was conducted for each sample to identify the effects of initial fracture closure under compression 
and resulting changes in fracture permeability. Pore pressure (10.3 MPa) was applied to the samples 
under room temperature by injecting fluid into the sample chamber, and then the effective stress on the 
rock core was increased stepwise to a value of 20.7 MPa. This effective stress would be equivalent to a 
lithostatic load at 1408 m depth assuming a bulk rock density of 2.5 g/cm3 and a water density of 1.0 
g/cm3, if the fracture was oriented horizontal.  The change in mean fracture apertures of the samples with 
increasing effective normal stress was calculated by subtracting the measured closing displacement of 
the fractures (using the linear voltage differential transducer) from the initial fracture aperture of the 
uncompressed sample.  
 
Due to sample compaction, decreases in the calculated mean fracture apertures were observed for all 
four samples (Fig. 4). The Stripa granite had the smallest initial aperture, because a smaller rotational 
mismatch than other samples was applied to this sample to create the aperture. Also note that the 
titanium sleeves applied to this sample lacked alignment/locking pin that would have prevented the core 
halves from rotating back into alignment during the test. The rhyolite ash-flow tuff was loaded into the test 
cell twice – the sample was prematurely unloaded after a week due to a problem with the experimental 
apparatus, and the resulting initial aperture of this sample for the second test was about 35% lower than 
for when it was first tested. 
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Figure 4. Initial fracture closing under uniaxial loading. The pore pressure was first set at 10.3 MPa, and 
all plotted measurements (except the final point) were conducted at room temperature. 
 
In addition to physically measuring the fracture aperture, two end-member models were used to estimate 
changes in flow within the fracture using different flow geometries: a two-dimensional, parallel plate 
model, and a one-dimensional, wormhole model. The parallel plate method involves estimating the 
effective aperture of the fractures by monitoring the difference of the inlet and outlet pressures. Assuming 
a parallel plate model with ideal flow through a flat parallel fracture, the cylindrical version of Darcy’s law, 
and the cubic law (Eq. 1), the fracture aperture estimate can be calculated as: 
 

                                                                      ℎ = $$%&'(	(*"∕*#)	𝜋(-".-#)
%
"/0

 (2) 
 
where h is the aperture, q is the volumetric flow rate, µ is the dynamic viscosity, and r and p are the radius 
and pressure at the edge (e) and the well (w). 
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The wormhole model assumes that all flow passes through a tube with uniform radius R that channels 
flow along the fracture surface from the inlet to the margin. This can be calculated using Poiseuille’s law 
as: 
 

     	𝑅 = $1%&(*".*#)
2(-".-#)

%
"/3

 (3) 
 
The likely flow conditions in an actual fracture are likely to be a combination of the two models – 
distributed flow along the fracture surface with some channelized flow along preferred flow paths with 
larger aperture. 
 
2.4 Experimental test conditions 
 
Once the samples were fully placed under the uniaxial loading normal stress, the samples were heated 
and changes in inlet and outlet flow pressures and fluid chemistry were monitored over the duration of the 
experiments. Summaries of the experimental parameters for each of the tests that were run are listed in 
Table 2. All experiments were run with a pore pressure of 10.3 MPa, an effective normal stress of 20.7 
MPa, and a fluid injection flow rate of 0.01 mL/min. 
 
Table 2. Experimental test conditions 
Test Rock type Temp. 

(°C) 
Test 
duration (h)* 

Comments 

1 Granite 150 506.0 No alignment pin was used for this experiment to 
maintain rotational offset of core. Short-term furnace 
shutoff at ~320 hours led to temperature decrease to 
~100°C, corresponding shift in LVDT indicating 
reduction in fracture aperture. 
Initial aperture = 229 µm (pre-loading), 60 µm (post-
loading)  

2 Rhyolite ash-
flow tuff 

250 3150.4 
(965.7, 
2184.7)# 

Rotation angle = 2 stops of the alignment holes (~6.4°) 
The initial experimental run failed due to the loss of 
axial stress resulting from fracturing of a thermal 
insulation block; fluid flow continued through the 
fracture at 250°C and with confining fluid pressure, but 
was not under the applied effective stress for almost 
one month. The test was halted to replace the block 
and seals, and restarted using the same core sample 
(thus the two run intervals for this test). First run: initial 
aperture = 1270 µm (pre-loading), 909 µm (post-
loading). Second run: initial aperture = 762 µm (pre-
loading), 578 µm (post-loading). 

3 Metasediment 250 673.7 Rotation angle = 1 stop of the alignment holes (~3.2°) 
Initial aperture = 1041 µm (pre-loading), 673 µm (post-
loading) 

4 Silicified 
rhyolite tuff 

250 573.9 Rotation angle = 1 stop of the alignment holes (~3.2°) 
Lab electrical shutdown 08-21-2015 UPS switching at 
~17:15, 08-22-2015 04:49 
Initial aperture = 762 µm (pre-loading), 355 µm (post-
loading) 

*Test duration based on time between when heater was turned on to when heater was turned off. 
Typically, it took 90-150 minutes for the sample chamber to attain experiment temperature. 
# This test consisted of two phases – the first value lists the total experiment run time when heated, and 
the second and third values list the heated run times before and after the experiment interruption. 
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2.5 Experimental results 
 
During the experiments, the vessel temperature, applied confining pressure, the sample displacement, 
and the differential pressure between the fluid inlet and outlets were measured continuously. Using the 
equations listed above (Eq. 2 & 3), a fracture aperture (assuming a parallel plate model) and a wormhole 
tube radius were calculated based on the measured differential inlet and outlet flow pressures; these 
values as well as the measured properties mentioned above are plotted for each of the experimental runs 
in Fig. 5. These computed hydraulic apertures provide a convenient conceptual model. It is important to 
note that the computed hydraulic apertures from pressure differentials shown in Fig. 5 do not match the 
much larger average geometric apertures shown in Table 2. This is expected because the two are 
equivalent only for the case of flat plates with uniform separation, which is rarely observed in nature and 
was not the case for the experiments. 
 

   
 

   
Figure 5. Changes in temperature, sample compression (LVDT change), differential flow pressure, and 
computed planar aperture and wormhole dimensions for test runs. Upper left – granite; Upper right – 
rhyolite ash-flow tuff (run 2); Lower left –metasediment; Lower right – silicified rhyolite tuff. 
 
After the test runs were completed, the rock samples and flow-through fluids were characterized to 
evaluate the effects of water-rock interaction at elevated temperatures and mechanical compression. The 
topography of each of the fracture surfaces was rescanned with the profilometer to determine if any 
detectable changes caused by mineral solution and/or precipitation had occurred. The surfaces were also 
examined using scanning electron microscopy (SEM) to look for evidence of mineral dissolution and 
precipitation. The identification of mineral phases on these surfaces (Figs. 7-10) was achieved through 
the use of semi-quantitative energy-dispersive X-ray spectroscopy (EDS), crystal morphology, and X-ray 
diffraction (XRD) using powdered minerals collected from the surface of the fractures. These 
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measurements were somewhat challenging due to the small amount of precipitated material, but when 
used in combination (XRD signal, chemical composition, and crystal morphology), allowed for reliable 
identification of mineral phases. 
 
Aliquots of fluid effluent from each the flow-through experiments were analyzed to determine changes in 
fluid chemistry caused by mineral dissolution and/or interaction with the experimental apparatus. An 
automated sample collection system was used to collect composite fluid chemistry samples every six 
hours – these samples were 3.6 mL in size. (In some cases, the sample collection time was extended to 
12 h – the flow rate was still the same). The effluent samples were analyzed for cation contents using an 
ICP-MS after being acidified with 2% ultrapure nitric acid. Anion concentrations were analyzed using an 
ion chromatograph – samples were diluted 5 to 12 times using ultrapure deionized water prior to analysis. 
Deionized water used in the experiments as input water had no detectable anions, cations, or silica. 
Bicarbonate concentrations were not directly measured due to experimental limitations – instead, these 
were estimated by assuming the positive charge balance of the samples was compensated entirely by 
bicarbonate. A blank system sample was run at 250°C for 88 h using a Ti plug instead of a rock core to 
estimate how the experimental apparatus may have affected the effluent fluid chemistry – the blank 
shows that elevated Al (31.9 mg/L – from the Grade 5 Ti pressure vessel), F (96.9 mg/L – from the 
elastomer seals), and SiO2 (168 mg/L – likely from contamination from previous samples in the outlet line) 
did occur. Summaries for average water chemistry compositions are presented in Table 3, and 
representative plots of changes in effluent chemistry over time for each experiment are presented in Fig. 
6. 
 
Table 3. Average water chemistry of effluent samples (mg/L). Because almost all of the Al and F in water 
are from the experimental apparatus, corrected effluent analyses without these components are also 
reported, and are used to calculate dissolved rock constituents reported in Table 4. Bicarbonate 
concentrations were estimated by charge balance. The corrected rhyolite ash-flow tuff and silicified 
rhyolite samples also have removed NaCl from the effluent (interpreted to be derived from pre-existing 
geothermal pore fluids). Titanium blank sample and representative water samples from the Bradys and 
Desert Peak geothermal fields (the former corresponding to the rhyolite ash-flow tuff and metasediment 
samples and the latter with the silicified rhyolite sample) are also reported for comparison. Water sample 
analyses represent time-averaged values – for the second run of the rhyolite ash-flow tuff experiment, the 
last three analyzed samples were averaged to extrapolate the water composition over the final 1255 h of 
the experiment.  
Sample Na K Li Ca Mg Al B Fe SiO2 F Cl SO4 NO3 HCO3 TDS 
Granite 24.4 3.09 0.05 8.69 0.07 3.24 0.20 0.01 64.3 0.92 6.32 2.22 1.03 101 216 
Granite 
corrected 

24.4 3.09 0.05 8.69 0.07 0 0.20 0.01 64.3 0 6.32 2.22 1.03 83.2 193 

Ash-flow tuff 
– 1st run 

110 5.63 0.41 0.75 0.01 5.69 0.73 0.03 416 23.4 69.2 2.55 0 148 783 

Ash-flow tuff 
– 1st run 
corrected 

65.3 5.63 0.41 0.75 0.01 0 0.73 0.03 416 0 0 2.55 0 185 676 

Ash-flow tuff 
– 2nd run 

40.2 4.27 0.36 0.34 0.01 5.56 0.12 0.01 465 21.4 0.18 0.42 0 85.7 624 

Ash-flow tuff 
– 2nd run 
corrected 

40.0 4.27 0.36 0.34 0.01 0 0.12 0.01 465 0 0 0.42 0 117 627 

Metasediment 92.2 2.66 0.26 1.02 0.04 9.76 0.63 0.05 482 32.3 2.55 2.39 0 209 836 
Metasediment 
corrected 

92.2 2.66 0.26 1.02 0.04 0 0.63 0.05 482 0 2.55 2.39 0 247 831 

Silicified tuff 61.0 8.90 0.29 1.98 0.02 3.42 0.73 0.01 369 15.3 28.6 6.80 0 98.0 594 
Silicified tuff 
corrected 

42.5 8.90 0.29 1.98 0.02 0 0.73 0.01 369 0 0 6.80 0 127 557 

Ti blank 2.11 1.96 0.20 3.13 0.34 31.9 0 0.06 168 96.9 0.12 0.48 0.06 * >305 
M-8 well1 850 36 1.5 45 0.3  5.2  164 5.8  1100 320  111 2600 
B21-22 2250 250 1.4 100 <1  16  350  3700 98  50 6800 
*Negative charge balance suggests presence of additional unanalyzed cation(s) (e.g., Ti?) 
1Bradys geothermal well water sample [31] 
2Desert Peak geothermal well water sample [31] 
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Figure 6. Plots of effluent composition vs. time for Stripa granite, rhyolite ash-flow tuff, metasediment, and 
silicified rhyolite samples. The rhyolite ash-flow tuff samples are plotted as the combination of two 
successive runs. For the second run of the rhyolite ash-flow tuff experiment, no water samples were 
analyzed after 1896 h – the “final” water composition plotted for this run is an average of the previous 
three water compositions that were analyzed for this run. 
 
There are some common trends in many of the effluent fluid composition plots depicted in Fig. 6. In most 
cases, there are initial rises in the concentrations of Na, K, Li, and Ca, followed by a decrease and a 
plateau that may represent a quasi-steady-state value. For the rhyolite ash-flow tuff sample (and also for 
the silicified rhyolite – not depicted), the elevated Cl and Na values observed in the effluent at the start of 
the run are interpreted to represent mobilized geothermal brine trapped as pore water – thus the Na and 
Cl compositions of these samples have been corrected to remove this to properly evaluate the dissolved 
mineral components (see Table 3). The short-lived spikes in K, Li, and Ca may in part also be related to 
the capture of residual geothermal brine from the rock pores or to the dissolution of highly soluble phases. 
The dissolved silica contents of the three samples heated to 250°C are consistent with equilibrated silica 
contents using the quartz (no steam loss) geothermometer [32] for the experimental run temperature, 
which should yield a value of 467 ppm SiO2. The Stripa granite sample, which was heated to 150°C, has 
silica contents (60-70 mg/L) that are about ½ that corresponding to quartz solubility at that temperature 
(125 mg/L); this may reflect slower mineral-fluid equilibration rates at this lower temperature. The 
metasediment effluent exhibits unexpected compositional variability that was not observed in any of the 
other three experiments – the cause for this is not known. 
   
Granite run results – As noted prior to starting the hydrothermal tests, the Stripa granite had the lowest 
initial fracture aperture, with a calculated hydraulic fracture aperture starting out less than one micron 
following loading of the sample: this value gradually decreased during the first day of the experiment 
(matched by an increase in the pressure differential between the inlet and outlet ports), and then 
appeared to stabilize over time. The Stripa granite sample had a lower run temperature (150°C) and a 
shorter run duration (506 h), so the amount of hydrothermal reaction for this sample should be less 
extensive than the other three rock samples. The effects of lower temperature for this run are reflected in 
the much lower silica concentrations of the effluent (64.3 mg/L); the F concentrations are lower due to 
reduced thermal degradation of the elastomer seal, and lower corrected TDS values for the fluid (193 
mg/L). Prevalent albite dissolution and diaspore precipitation are seen along the fracture surface (Fig. 7) 
– zeolites were not observed. 
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Figure 7. SEM images of granite after experiment. Left – Secondary electrons (SE) image of fracture 
surface with albite crystal with dissolution pits and newly crystallized diaspore rosette crystal aggregates. 
Right – Cross sectional backscattering (BSE) view of fracture surface indicating dissolution of albite near 
the fracture surface along microfractures (likely corresponding to cleavage planes). 
 
Rhyolite ash-flow tuff run results – This run had the longest duration of the experiments (3150 h); more 
than four times longer than any of the other runs. Significant dissolution of plagioclase 
(andesine/labradorite) is observed on the fracture surface from the dissolution images. Several phases 
were observed as precipitating minerals on the fracture surface: these include phillipsite (a calcium 
zeolite), illite/smectite, and Fe oxyhydroxides (Fig. 8). The elevated sodium and silica in the effluent water 
is consistent with plagioclase dissolution. While there was a systematic increase in the LVDT 
measurement (suggesting a compression of the sample by ~100 microns), there was little change in the 
inlet and outlet pressure differential, and thus little variation in the computed fracture aperture during the 
experiment. Fluid flow may have occurred both within the fracture and in the secondary porosity 
generated by mineral dissolution (plagioclase, quartz, and calcite) within a ~400-micron thick zone 
adjacent to the fracture surface. 
 

 
Figure 8. SEM images of rhyolite ash-flow tuff after experiment. Left – SE image of fracture surface 
depicting platy growth of illite/smectite and prismatic crystals of phillipsite. Right – Cross sectional BSE 
view of fracture surface where three distinct mineral phases can be identified by their backscatter signal 
intensity – the lightest colored phase is calcite, the intermediate density phase is plagioclase, and the 
darkest color is quartz. There is a ~400-micron thick zone adjacent to the fracture surface with abundant 
dissolution – likely of calcite, quartz, and plagioclase. A grain composed by calcite and plagioclase 
displaying a high degree of dissolution is present in the lower left of this image. 
 
Metasediment run results – The effluent from this experiment had the highest silica concentrations (482 
mg/L), and also had the highest calculated bicarbonate concentration (247 mg/L), more than 60 mg/L 
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higher than that of the next highest sample, which is consistent with dissolution features observed on 
calcite grains (Fig. 9). Precipitation of aluminosilicate phases such as phillipsite and chlorite also appears 
to have occurred on the fracture surface. There is a fairly extensive zone (~150-micron thick) of mineral 
dissolution immediately adjacent to the fracture surface – this appears to have formed by selective 
dissolution of reactive mineral phases (calcite and quartz). Although the sample exhibited little variation in 
the LVDT measurement, apart from a systematic shift at ~360 h, which would record a change in aperture 
caused by overall compression of the sample, there were repeated increases and decreases in 
differential pressure between the inlet and outlet ports, indicating fluctuating changes in fracture 
permeability during the run. These changes appear to have been caused by selective mineral dissolution 
occurring just below the fracture surface, which led to the development of dynamically evolving 
anastomosing flow paths.  
 

 
Figure 9. SEM images of metasediment after experiment. Left – SE image of calcite with abundant 
dissolution pits, and platy crystals of chlorite and prismatic crystals of phillipsite coating the surface. Right 
– Cross sectional BSE view of fracture surface indicating a ~150-micron thick zone adjacent to the 
fracture surface with abundant dissolution – likely of calcite and quartz. Note the increased relative 
abundance of the darker mineral phase (quartz) in the unreacted lower portion of the image. 
 
Silicified rhyolite tuff run results – This sample experienced very little in the way of compaction over the 
~500 h duration of the experiment. A small but gradual difference between the inlet and outlet pressures 
was observed over the first half of the experiment; however, a sharp rise in pressure differential occurring 
during the last 250 h of the run reflects a marked decrease in fracture permeability, resulting in a 
decrease in computed fracture aperture from ~200 microns during the early stages of the experiment 
down to a value of ~25 microns at the end. SEM and BSE images (Fig. 10) show clear evidence of 
dissolution of plagioclase, calcite, and quartz, along with precipitation of the zeolites phillipsite and 
wairakite, together with illite/smectite and Fe oxy-hydroxides on the fracture surface. 
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Figure 10. SEM images of silicified rhyolite tuff after experiment. Left – SE image of fracture surface 
depicting coating of illite/smectite and Fe oxy-hydroxides. Right – Cross sectional BSE view of fracture 
surface with three distinct mineral phases identified by their surface backscatter color density – the 
lightest colored phase is calcite, the intermediate density phase is plagioclase, and the darkest color is 
quartz. Dissolution appears to have occurred selectively near the fracture surface near microfractures. 
 
Weathering and precipitation on the surface were not evenly distributed: preferential flow paths 
highlighted by the precipitation of new material were clearly present in the samples. SEM images were 
taken where the dissolution and precipitation events were more clearly visible. 
 
A mass balance calculation using the dissolved species in the effluent can also be used to estimate the 
amount of net dissolution that has occurred. The amount of effluent produced during each of the runs 
(calculated by the flow rate of 0.6 mL/h and the experiment duration) along with the concentration of total 
dissolved solids can be used to estimate the total net amount of dissolution (total mass dissolution – 
mass precipitation). Table 4 lists the estimated total amount of dissolution for each of the experimental 
runs, using the corrected chemistry values in Table 3 that have removed the Al and F contributed by the 
experimental apparatus. The average value of equivalent fracture thickness that has been dissolved 
ranges from 11.4 microns (for the granite sample) up to 230 microns (for the rhyolite ash-flow tuff). This 
calculation is an upper estimate, as it assumes that all mineral dissolution occurs along the fracture 
surface, and does not occur along the 2.6 mm diameter hole drilled through the upper core section. It also 
assumes that mineral dissolution is distributed evenly along the fracture surface – however, it is most 
likely to be concentrated in the center of the fracture near the injection hole. The two samples with the 
highest calculated amounts of net dissolution (and the longest run times) also had the most secondary 
dissolution porosity observed in the backscatter electron images (Figs. 8 & 9). The ash-flow tuff had a 
~400-micron thick zone with fairly extensive dissolution – this presumably was present on both sides of 
the fracture. Using a total dissolution zone of 800 microns and the calculated dissolution thickness of 259 
microns, this would then equate to a secondary dissolution porosity of ~29%. The metasediment had a 
~150-micron thick zone with fairly extensive dissolution adjacent to each face of the fracture – using a 
total dissolution zone of 300 microns and the calculated dissolution thickness of 62 microns, this would 
then equate to a secondary dissolution porosity of ~21%. The granite sample, which had the least amount 
of net dissolution based on the total dissolved solids in the effluent (11.4 microns average thickness), had 
very little evidence of dissolution beyond the fracture surface itself, but was also run at a significantly 
lower temperature (150°C). 
 
Table 4. Calculated net dissolution amounts from fluid chemistry (using corrected fluid chemistry) 
Run Run 

duration 
(h) 

Effluent 
volume 
(mL) 

Effluent 
TDS 
(mg/L) 

Dissolved 
mass 
(mg) 

Rock grain 
density 
(g/cc) 

Estimated 
volume 
dissolved 
(mm3) 

Fracture 
surface 
area 
(mm2) 

Average 
thickness 
dissolved 
(microns) 

Granite 522* 313.2 193 60.4 2.648 22.8 1995 11.4 
Ash-flow tuff 
– 1st run 

966 579.6 676 392 2.649 148 1995 74.2 

Ash-flow tuff 
– 2nd run 

2185 1311 627 822 2.649 310 1995 156 

Combined 
ash-flow tuff 

3151 1891 642 1214 2.649 458 1995 230 

Metasediment 684** 410.4 831 341 2.798 123 1995 62 
Silicified tuff 574 344.4 557 192 2.594 84.5 1995 42 
Rock grain densities for ash-flow tuff and metasediment from [25]; rock grain density for silicified tuff from 
[29] 
*Includes 4 hours of effluent sample collection before heater was turned on and 12 hours of effluent 
sample collection after heater was turned off 
**Includes 10 hours of effluent sample collection after heater was turned off 
2.6 Overall experimental observations 
The samples run at 250°C exhibited significantly more mineral dissolution than the granite sample, which 
was reacted at 150°C. The main mineral phases that appear to have undergone dissolution in reaction 
with the deionized water were plagioclase, calcite, and quartz – the dissolution of these phases generated 
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secondary porosity near and along the fracture surface. In the granite run, diaspore rosettes were 
observed – these may be in part precipitated due to the elevated Al concentrations of the fluid resulting 
from reaction with the Al-bearing titanium pressure vessel. For the higher temperature runs, the 
secondary minerals that were observed to have precipitated along the fracture surfaces include the Ca-
zeolites phillipsite and wairakite, chlorite, illite/smectite, and Fe oxy-hydroxides. 
 
There was no clear-cut correlation between sample compaction (as measured by the linear voltage 
differential transducer (LVDT) and the pressure differential between the inlet and outlet ports), which 
reflects changes in permeability for the fracture. This suggests that a pure parallel plate model, where the 
closing of the planar fracture aperture results in a reduction in fracture permeability, does not adequately 
reflect the observed changes. Instead, it appears that flow is more likely to be somewhat channelized 
along the fracture in areas with larger asperities, and also occurs in developing flow channels created by 
dissolution that results in a zone of enhanced secondary porosity immediately adjacent to the fracture 
surface. These zones were observed to be up to 400 microns in thickness on either side of the fracture. In 
general, fracture permeability decreased over time as a result of the combination of sample compaction 
resulting from the confining pressure, mineral dissolution, and mineral precipitation. There was fairly good 
correlation between increasing net mineral dissolution based on the amount of dissolved solids in the 
effluent and the observed thickness of the dissolution zones adjacent to the fracture surfaces within the 
samples – these amounts increased with increasing reaction temperatures and experimental run times. 
 
The dissolved solids contents of the effluent fluids are considerably lower than those of equilibrated 
brines from the Bradys geothermal field (Table 3), from where two of the rock samples were obtained. 
This is due to the abbreviated time that the injected deionized water has to react with the host rock. There 
are two primary system volumes where fluid is in contact with the rock core: the injection hole drilled 
through the center of the core, and the fracture. The injection hole volume can be calculated from the hole 
length (~25 mm) and diameter (2.6 mm) – this works out to ~133 mm3. Using the injection rate of 0.01 
mL/m, this volume would be filled in 13 minutes. The fracture volume is a bit more challenging to 
estimate, as the aperture varies significantly. Using an aperture value of 600 microns (fairly 
representative of most of the post-loaded samples) (Fig. 4), and the core diameters (50.4 mm), a fracture 
volume of 1200 mm3 is calculated, which would require 2 h to fill. Thus, the total time that a batch of 
injected water would be in contact with the rock would be on the order of 2.2 hours – given that flow rates 
will vary within the fracture surface (especially for water within the secondary porosity adjacent to the 
fracture), these values will vary. Smaller aperture values would result in even shorter circulation times. 
Even with these short fluid residence times, the effluent appears to be close to equilibrium with respect to 
silica for sample runs conducted at 250°C.  

3 Modeling simulations 
The conditions of the rhyolite ash-flow tuff experiment were used to constrain two different coupled 
process models that were simulated using the TREACTMECH simulator, which combines the parallel 
TOUGHREACT thermal-hydrological-chemical (THC) code [33,34] with geomechanics [35,36]. The code 
allows modeling tensile and shear failure within elements using tangential moduli in place of original 
moduli in elements of open failure. Tangential moduli are the derivatives of stress with respect to strain, 
after accounting for the effects of failure [37]. The open fracture between the core halves was considered 
as an initial open tensile fracture. The permeability was calculated locally at the mm to sub-mm scale 
accounting for the local aperture at this resolution. Therefore, the fracture-scale permeability includes a 
significant part of the roughness from sub-mm scale asperities. Furthermore, the large aperture changes 
from geomechanical and chemical effects have a much larger effect on permeability than roughness. The 
simulations were performed in two steps: THM simulations to capture the geomechanical effects, and 
then THC simulations using the end results of the THM model as a starting point. 
 
 
3.1 THM simulations 
 
The first model simulated the THM effects of the experiment on the fracture. The reactive components of 
the experimental apparatus (including the core of rhyolite ash-flow tuff, the discrete fracture, flow-through 
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elements, and titanium pressure vessel) were fully represented in the simulations. The resulting 36 x 36 x 
12 element grid (Fig. 11) has 0.00508 m vertical spacing for most of the grid and 0.0108 m vertical 
spacing for the bottom three rows of elements. The grid blocks consist of three distinct elements: water 
flow zones, the titanium alloy piston and sleeves jacketing the core sample, and the rhyolite ash-flow tuff 
rock sample. The different properties assigned to each element are listed in Table 5. 
 

 
Figure 11. Numerical mesh developed for simulating THMC experiments. Left – Side profile with upper 
surface depicting grid blocks and elements (dark blue – water; light blue – titanium; yellow – rhyolite); 
Right – Plan view of grid 
 
Table 5. Model element properties 
Element type Porosity 

(%) 
Permeability 
(m2) 

Young’s modulus 
(GPa) 

Shear modulus 
(GPa) 

Poisson ratio 

Water 100 9 x 10-9 0.0517 0.0214 0.21 
Titanium 0 1 x 10-26 114 42.5 0.34 
Rhyolite ash-flow 
tuff1 

3.45 1.82 x 10-19 51.7 21.4 0.21 

1 Rock mechanical properties from TerraTek [38] 
 
The initial fracture aperture for the model was created by using the scanned unreacted fracture surfaces 
for the two core halves and then offsetting the matched cores (determined by best fit of the two halves) by 
a rotation of -2.3°. A three-point asperity contact model was used to calculate the initial fracture aperture. 
In the simulation, the sample was then subjected to a uniform fluid pressure of 10.3 MPa and a 10.3 MPa 
stress state (along with a small gravitational gradient) at 250°C. Fluid flow was allowed from boundary 
cells around the outer edges of the fracture, where abovementioned pressure and temperature conditions 
were maintained, with no fluid flow boundary conditions for the other elements. The top boundary was 
held at a fixed position z, and a uniform normal stress was applied at the bottom of the system 
(corresponding to the titanium piston in the actual apparatus), ramping up from the initial 10.3 MPa 
average vertical stress to 31 MPa over a 20 s period (corresponding to an average vertical effective 
stress of 20.7 MPa), and then held at these conditions for another 20 s to allow conditions to stabilize. 
With increasing vertical stress, strain on the three asperity points propping open the fracture initiates 
fracture closure. When an element in the fracture is closed, the original unmodified elastic properties are 
retained, but with zero tensile strength. Initial geomechanical modeling using shear and tensile strengths 
based on measured unconstrained compressive strength for the rhyolite ash-flow tuff [25, 37] resulted in 
shear failure of the three elements containing the contact point asperities that originally propped open the 
fracture. The model was modified to locally increase shear and tensile strengths of the tuff to prevent 
material failure beyond the initial tensile failure occurring in these fracture elements.  
 
Resultant simulated fracture apertures under 20.7 MPa average effective stress reflect a significant 
decrease in fracture aperture, with 25 elements in contact along the fracture plane. At zero vertical 
effective stress, the effective aperture is 247 microns. With the application of 20.7 MPa vertical effective 
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stress, the effective aperture decreases to 12 microns. Most of the model fracture surface elements with 
less than a 170-micron aperture decline are in contact, as illustrated in Fig. 12. 
 

 
Figure 12. Modeled fracture apertures and change in aperture for simulated rhyolite ash-flow tuff 
experiment. Left – Fracture aperture (microns) for unloaded sample. Center – Fracture aperture (microns) 
under 20.7 MPa vertical effective stress. Right – change in aperture caused by loading (microns). 
 
3.2 THC simulations 
The results of the THM model were used as the starting point for the THC simulations, using the resulting 
20.7 MPa aperture field depicted in Fig. 12. Thermodynamic and kinetic data were chosen from 
simulations of the Newberry enhanced geothermal system [39] and experiments on Desert Peak rhyolitic 
tuff. The deionized injection water was pre-equilibrated with CO2 and O2 at atmospheric pressure to 
capture the experimental conditions. The initial mineral assemblage consisted of calcite, dolomite, quartz, 
montmorillonite (Mg,Ca,Na,K), illite, clinochlore, plagioclase (albite-anorthite), sanidine, biotite (annite-
phlogopite), apatite, and hematite – this was guided by XRD analyses reported by Ayling et al. [27] for a 
correlative sample from a depth of 1189 m from the same borehole. All minerals were allowed to 
dissolve/precipitate under kinetic constraints. The rhyolite core was given a porosity of 0.0345, and a 
permeability of 1.82 x 10-19 m2.  The initial pore water was assumed to have 0.1M NaCl based on 
observations of elevated Cl- concentrations in effluent over the early part of the experiment, consistent 
with typical reservoir salinities observed in geothermal reservoirs in this area (Table 3). The THC 
simulation was run for a period of one month (720 h) – the actual experiment was conducted over a 
longer period of time (3150 h). Figure 13 shows plots of mineral precipitation, dissolution, and calculated 
changes in fracture porosity and permeability. Fluid flux distributions show flow predominantly in the hole 
and in the main fracture, as expected. The two main phases observed to dissolve were plagioclase and 
quartz, with most dissolution occurring near the injection hole at the center of the fracture. Based on 
these simulations, laumontite (a zeolite very similar to phillipsite, but which has better thermodynamic 
data) also formed, consistent with the experimental observations. Large increases in porosity (>0.15) and 
permeability (up to two orders of magnitude) were observed near the injection hole at the center of the 
fracture, with much smaller changes seen as the fluid was dispersed radially across the fracture. These 
results indicate that the geochemical effects are concentrated in the center region of the fracture. Here, 
the fluid/rock ratio will be higher due to the radial flow and the fluid is least equilibrated with the rock by 
being closest to the inlet. 
 

 0 µm

 1000-1100 µm
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Figure 13. THC modeling of changes in mineral abundance, porosity, and permeability after 1-month 
simulation. Upper row – Volume changes due to dissolution of plagioclase, quartz, and calcite. Lower row 
– Volume changes due to precipitation of laumontite, and resulting changes in fracture porosity and 
permeability.  
 
The simulated fluid chemistry for the rhyolite ash-flow tuff sample can be compared with the observed 
effluent compositions. For the simulations, the core pore water was assumed to have 0.1M NaCl, very 
similar to the reported geothermal brine composition for Desert Peak (Table 3). Figure 14 depicts the 
simulated and observed chemical trends for Na, K, SiO2, and Cl. There is fairly good agreement for the 
long-term concentrations of Na and SiO2 for these samples – the variations for the other components may 
be a result of not capturing all of the precipitating mineral phases in the simulations. 
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Figure 14. Comparison of simulated (solid red lines) and observed (solid blue lines with dots) fluid 
compositions for run 1 of the rhyolite ash-flow tuff experiment. The Na plot also includes a correction for 
NaCl (removing all of the Cl and a stoichiometrically equivalent amount of Na), plotted as a light blue line 
with dots. 

4 Discussion 
Several observations from the experimental and modeling work merit discussion, including comparing 
model system behavior vs experimental system behavior, changes in rock mechanical integrity, 
geochemistry of multi-mineralogic systems under gradients, changes in the fracture hydrological 
structure, and extension to the field. 
 
Our geochemical modeling of the experimental system resulted in behavior similar to our experimental 
observations. Due to modeling constraints, it is not realistic to incorporate the full topology of the fracture 
surfaces at the measured resolution, nor the mineralogy at that scale, and the critical scale of the 
processes that are occurring may be different. In spite of these limitations, the model results and 
experiment results show important similarities. As expected, dissolution would be expected to be most 
prominent near the inlet, and indeed that was observed in both the model and experiment. The modeling 
indicated a decrease in plagioclase, quartz, and calcite near the inlet, and experimental observations 
showed the same. SEM images show increased porosity near the inlet, and the model shows the same 
thing. We were not able to experimentally quantify permeability at the model gridblock scale for 
comparison to the model, but it stands to reason that the more open porous structure resulting from 
mineral dissolution should increase in permeability over the initial case as is indicated in Fig. 13. The 
precipitation of laumonite was indicated by the numerical modeling, whereas phillipsite was indicated in 
the experiment. These two minerals are quite similar, lending confidence in the THC modeling. Even with 
the relatively short fluid residence times in the experimental apparatus (2.1 h) and the use of deionized 
water, most effluent samples from the higher temperature experiments appear to have achieved 
equilibrium with quartz. 
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Precipitation of secondary minerals still occurred even near the inlet in spite of the deionized water and 
low fluid residence time. In the field, injection of cooler water into fractures will result in disequilibrium 
between the mineral phases and the water. Even if equilibrated water could be introduced at the injection 
well for that temperature condition, the change in temperature away from the inlet will result in 
disequilibrium, and the condition at the injection well will change as the temperature changes. The 
complexity of the mineralogy and geochemistry will result in chemistry gradients that could extend some 
distance into a fracture and will change over time as dissolution, precipitation and temperature changes 
occur. Because these gradients and dissolution and precipitation kinetics can be captured in the 
modeling, the effects of such complex processes on fracture fluid flow can be evaluated [39, 40].  
 
Observations of increased porosity near the fracture surface due to dissolution will cause reductions in 
rock mechanical strength there. The more porous rock is expected to be far less rigid than the original 
solid rock. Imaging studies [41] have shown that host rock near asperities tends to be less geochemically 
impacted by dissolution and thus maintains its mechanical strength better. That is consistent with reduced 
flow rates in tighter apertures and asperity contacts as well. This could result in dissolution and some 
erosion at locations away from asperities, having the combined effect of increasing aperture and 
enhancing local flow, but possibly generating particles that might be filtered out downstream reducing flow 
there. The dissolution process tends to be self-enhancing to a point, as increased aperture and flow will 
lead to increased dissolution. Ultimately, the asperities will carry more stress, and will become weaker as 
dissolution occurs there, and they will break, resulting in a reduced aperture.  
 
Precipitation of minerals and filtering of particles will tend to slow flow. Particle filtering will occur at narrow 
apertures, reducing the already lower flow there. Mineralization will limit or occlude flow wherever it 
occurs [42]. These processes affect the flow path as well. Water flowing through an EGS reservoir must 
be well-distributed to evenly extract heat from the rock. Self-enhancing dissolution could result in 
undesirable wormhole creation; this process would be limited by diffusive mass transfer from the location 
in the rock where dissolution is occurring to the flowing fracture, and relative flow velocities in the fracture, 
which are in turn affected by numerous processes. Precipitation and filtering will tend to alter flow paths 
as well; however, this will likely strengthen asperities. Because of these multiple processes, changes in 
the properties of interest for geothermal energy extraction of the resulting fracture are not immediately 
obvious and modeling is important to understand them on a larger scale. These models will need to take 
into consideration the specific water chemistry and rock mineralogy as well as reservoir pressure and 
temperature conditions. 
 

5 Conclusions 
Creating and sustaining fracture flow pathways is critical to the long-term performance of EGS reservoirs. 
Effective heat transfer from hot rock to a working fluid over long time periods requires creating (through 
stimulation) and retaining open fractures. While there have been numerous laboratory experiments and 
numerical modeling of field-scale processes focused on fracture stimulation for EGS [7, 18-20, 39, 40, 43-
46], there has been relatively little focus on the long-term evolution of fracture permeability related to 
continued stress under hydrothermal conditions that could lead to changes in fracture aperture caused by 
compression, shear failure, mineral dissolution, and mineral precipitation. THC modeling of field tests 
conducted at the Soultz EGS site [47, 48] suggest that mineral dissolution and precipitation can impact 
reservoir permeability and long-term flow behavior. 
 
This study provides key insights by conducting hydrothermal-mechanical experiments on EGS candidate 
rock types at relevant pressures and temperatures to evaluate temporal changes in fracture permeability. 
All of the samples in our tests experienced net dissolution, with increased dissolution associated with 
longer run times and higher temperatures. The samples with the largest amount of dissolution exhibited 
patchy bands of dissolution where plagioclase, calcite, and quartz crystals were preferentially dissolved, 
forming a spongy region of secondary porosity between 150 to 400 microns thick along both sides of the 
fracture margin. The dissolution will reduce the mechanical strength of the fracture walls, allowing some 
closing of the aperture, and also result in the generation of fines. Some secondary mineral precipitation 
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was also observed in the form of zeolites, clays, and Fe-oxyhydroxide phases. Such precipitation will also 
affect permeability by occluding flow at the formation locations or at downstream pinch points. THMC 
modeling revealed that most of the dissolution was focused near the inlet port at the center of the 
fracture, where the water/rock ratio was highest and the fluids were most out of equilibrium with the 
minerals. This dissolution led to localized increases in fracture porosity, but the experiments suggested 
that the fracture experienced an overall decrease in permeability over time resulting from the combined 
geomechanical and hydrothermal processes. The results of this combined experimental and modeling 
study can help inform the design and operation of field-scale EGS reservoirs to ensure that THMC 
processes do not result in premature degradation of the EGS fracture network. 
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Figures 
 
Figure 1. Schematic depiction (left) and photograph (right) of apparatus for fracture sustainability 
experiments. 
 
Figure 2. Photomicrographs (crossed nicols) of thin sections from rock samples used in study – bottom 
dimension of all photos is 1.75 mm. 
 
Figure 3. Fractured core sample set-up. 
 
Figure 4. Initial fracture closing under uniaxial loading. 
 
Figure 5. Changes in temperature, sample compression (LVDT change), differential flow pressure, and 
computed planar aperture and wormhole dimensions for test runs. 
 
Figure 6. Plots of effluent composition vs. time for Stripa granite, rhyolite ash-flow tuff, metasediment, and 
silicified rhyolite samples. 
 
Figure 7. SEM images of granite after experiment. 
 
Figure 8. SEM images of rhyolite ash-flow tuff after experiment. 
 
Figure 9. SEM images of metasediment after experiment. 
 
Figure 10. SEM images of silicified rhyolite tuff after experiment. 
 
Figure 11. Numerical mesh developed for simulating THMC experiments. 
 
Figure 12. Modeled fracture apertures and change in aperture for simulated rhyolite ash-flow tuff 
experiment. 
 
Figure 13. THC modeling of changes in mineral abundance, porosity, and permeability after 1-month 
simulation. 
 
Figure 14. Comparison of simulated (solid red lines) and observed (solid blue lines with dots) fluid 
compositions for run 1 of the rhyolite ash-flow tuff experiment. 
 
Tables 

Table 1. Experimental rock samples 
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Table 2. Experimental test conditions 

Table 3. Average water chemistry of effluent samples (mg/L) 

Table 4. Calculated net dissolution amounts from fluid chemistry 
 
Table 5. Model element properties 
 




