Title
Measurement of the absolute branching fractions $B \to D\pi, D^*\pi, D^{**}\pi$ with a missing mass method

Permalink
https://escholarship.org/uc/item/8fd4z7n8

Journal
Physical Review D - Particles, Fields, Gravitation and Cosmology, 74(11)

ISSN
1550-7998

Authors
Aubert, B
Bona, M
Boutigny, D
et al.

Publication Date
2006

DOI
10.1103/PhysRevD.74.111102

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
Measurement of the absolute branching fractions $B \rightarrow D\pi, D^+\pi, D^{*+}\pi$

with a missing mass method

Measurement of the Absolute Branching ...

Physical Review D 74, 111102(R) (2006)

25 Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
26 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
27 Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
28 Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
29 Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
30 Harvard University, Cambridge, Massachusetts 02138, USA
31 Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
32 Imperial College London, London, SW7 2AZ, United Kingdom
33 University of Iowa, Iowa City, Iowa 52242, USA
34 Johns Hopkins University, Baltimore, Maryland 21218, USA
35 Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
36 Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B.P. 34, F-91898 ORSAY Cedex, France
37 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
38 University of Liverpool, Liverpool L69 7ZE, United Kingdom
39 Queen Mary, University of London, E1 4NS, United Kingdom
40 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
41 University of Louisville, Louisville, Kentucky 40292, USA
42 University of Manchester, Manchester M13 9PL, United Kingdom
43 University of Maryland, College Park, Maryland 20742, USA
44 University of Massachusetts, Amherst, Massachusetts 01003, USA
45 Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
46 McGill University, Montréal, Québec, Canada H3A 2T8
47 Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
48 University of Mississippi, University, Mississippi 38677, USA
49 Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
50 Mount Holyoke College, South Hadley, Massachusetts 01075, USA
51 Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
52 NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
53 University of Notre Dame, Notre Dame, Indiana 46556, USA
54 Ohio State University, Columbus, Ohio 43210, USA
55 University of Oregon, Eugene, Oregon 97403, USA
56 Università di Padova, Dipartimento di Fisica e INFN, I-35131 Padova, Italy
57 Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
58 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
59 Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
60 Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
61 Prairie View A&M University, Prairie View, Texas 77446, USA
62 Princeton University, Princeton, New Jersey 08544, USA
63 Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
64 Université Rostock, D-18051 Rostock, Germany
65 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
66 DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
67 University of South Carolina, Columbia, South Carolina 29208, USA
68 Stanford Linear Accelerator Center, Stanford, California 94309, USA
69 Stanford University, Stanford, California 94305-4000, USA
70 State University of New York, Albany, New York 12222, USA
71 University of Tennessee, Knoxville, Tennessee 37996, USA
72 University of Texas at Austin, Austin, Texas 78712, USA
73 University of Texas at Dallas, Richardson, Texas 75083, USA
74 Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
75 Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
76 IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
77 University of Victoria, Victoria, British Columbia, Canada V8W 3P6
78 Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

*Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
† Also with Università della Basilicata, Potenza, Italy.
We present branching fraction measurements of charged and neutral B decays to $D\pi^-$, $D^\star\pi^-$, and $D^{\ast\ast}\pi^-$ with a missing mass method, based on a sample of 231×10^6 $Y(4S) \rightarrow BB$ pairs collected by the BABAR detector at the PEP-II e^+e^- collider. One of the B mesons is fully reconstructed and the other one decays to a reconstructed charged π and a companion charmed meson identified by its recoil mass, inferred by kinematics. Here "$D^{\ast\ast}\pi^-$" refers to the sum of all the nonstrange charm meson states with masses in the range 2.2–2.8 GeV/c2. We measure the branching fractions: $\mathcal{B}(B^- \rightarrow D^0\pi^-) = (4.49 \pm 0.21 \pm 0.23) \times 10^{-3}$, $\mathcal{B}(B^- \rightarrow D^{\ast0}\pi^-) = (5.13 \pm 0.22 \pm 0.28) \times 10^{-3}$, $\mathcal{B}(B^- \rightarrow D^{\ast\ast0}\pi^-) = (5.50 \pm 0.52 \pm 1.04) \times 10^{-3}$, $\mathcal{B}(B^0 \rightarrow D^\star\pi^-) = (3.03 \pm 0.23 \pm 0.23) \times 10^{-3}$, $\mathcal{B}(B^0 \rightarrow D^{\ast\star}\pi^-) = (2.99 \pm 0.23 \pm 0.24) \times 10^{-3}$, $\mathcal{B}(B^0 \rightarrow D^{\ast\ast\ast}\pi^-) = (2.34 \pm 0.65 \pm 0.88) \times 10^{-3}$, and their ratios.

Our understanding of hadronic B-meson decays has improved considerably during the past few years with the development of models based on the heavy quark effective theory (HQET), where collinear [1,2] or k_T [3,4] factorization theorems are considered. Models such as the QCD-improved factorization (QCDF) [5,6] and the soft collinear effective theory (SCET) [1,7] use the collinear factorization, while the perturbative QCD (pQCD) approach [8,9] uses the k_T factorization. In these models the amplitude of the $B \rightarrow D^{(s)}\pi$ two-body decay carries information about the difference δ between the strong-interaction phases of the two isospin amplitudes $A_{1/2}$ and $A_{3/2}$ that contribute [10,11]. A nonzero value of δ provides a measure of the departure from the heavy-quark limit and the importance of the final-state interactions in the $D^{(s)}\pi$ system. With the measurements by the BABAR [12] and BELLE [13] experiments of the color-suppressed B decay $\bar{B}^0 \rightarrow D^{(s)}\pi^0$ providing evidence for a sizeable value of δ, an improved measurement of the color-favored decay amplitudes ($B^- \rightarrow D^{(s)0}\pi^-$ and $\bar{B}^0 \rightarrow D^{(s)*\pi^-}$) is of renewed interest. In addition, the study of B decays into $D, D^\star, \text{and } D^{\ast\ast}$ mesons will allow tests of the spin symmetry [14–17] imbedded in HQET and of nonfactorizable corrections [18] that have been assumed to be negligible in the case of the excited states $D^{\ast\ast}$ [19].

In this paper we present new measurements of the branching fractions for the decays $B^- \rightarrow D^0\pi^-, D^{*0}\pi^-$, $D^{*0}\pi^-$, $D^{*0}\pi^-$, $D^{*0}\pi^-$, and $\bar{B}^0 \rightarrow D^\star\pi^-, D^{\ast\star}\pi^-, D^{\ast\star}\pi^-$. $D^{\ast\ast}\pi^-$ [20], based on a missing mass method previously used by BABAR [21]. Here "$D^{\ast\ast}\pi^-$" refers to the sum of all the nonstrange charm meson states in the range 2.2–2.8 GeV/c2. This analysis uses $Y(4S) \rightarrow BB$ events in which a B^+ or a B^0 meson, denoted B_{rec}, decays into a hadronic final state and is fully reconstructed. The decays of the recoiling \bar{B} into a charged pion and a charmed meson, i.e. $\bar{B} \rightarrow \pi^-X$, are studied. The charged pion is reconstructed and the mass of the $X = D, D^\star$, "$D^{\ast\ast}\pi^-$" is inferred from the kinematics of the two-body B decay. This method, unlike the previous exclusive measurements [22,23], does not assume that the $Y(4S)$ decays into B^+ and B^0 with equal rates, nor does it rely on the D, D^\star, or $D^{\ast\ast}$ decay branching fractions.

The measurements presented here are based on a sample of 231×10^6 BB pairs ($210 \, \text{fb}^{-1}$) recorded at the $Y(4S)$ resonance with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. The BABAR detector is described in detail elsewhere [24]. Charged-particle trajectories are measured by a 5-layer double-sided silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH), both operating in a 1.5-T solenoidal magnetic field. Charged-particle identification is provided by the average energy loss (dE/dx) in the tracking devices and by an internally reflecting ring-imaging Cherenkov detector. Photons are detected by a CsI(Tl) electromagnetic calorimeter. Muons are identified by the instrumented magnetic-flux return (IFR). We use Monte Carlo (MC) simulations of the BABAR detector based on GEANT4 [25] to optimize selection criteria and determine selection efficiencies.

We reconstruct B^+ and B^0 decays (B_{rec}) in the modes $B^+ \rightarrow D^{(s)\pi^+}, \bar{D}^{(s)}\rho^+, \bar{D}^{(s)}a_1^+, \text{and } B^0 \rightarrow D^{(s)*\pi^+}, D^{(s)*}\rho^+, D^{(s)*}a_1^+$. $D^{\ast\ast}$ candidates are reconstructed in the $K^+\pi^-, K^+\pi^-\pi^0, K^+\pi^-\pi^+\pi^-, \text{and } K_S^0\pi^+\pi^-\pi^- \text{ decay channels}$, while D^+ candidates are reconstructed in the $K^+\pi^-\pi^-, \text{ and } K^{*0}\pi^-\pi^- \text{ modes}$, and K^0_S mesons are reconstructed in the $\pi^+\pi^-\pi^- \text{ decay channels}$. $D^{\ast\star}$ candidates are reconstructed in the $D^{*\pi^-} \rightarrow D^0\pi^-\pi^-$ and $D^{*0}\rightarrow D^0\pi^0 \text{ decay modes}$. A 3$\sigma$ cut is applied to the D meson mass m_D (and to the $D^*^-\bar{D}^0$ mass difference Δm_{D^0} where $\sigma = \left(\sqrt{\sigma_{m_D}} \right)$ is the resolution on m_D (Δm_{D^0}) and is determined from data. A vertex fit is performed on $D \rightarrow \pi^+$ with the mass constrained to the nominal value [26]. Two nearly independent variables are defined to identify the fully reconstructed B^+ candidates kinematically. The first one is the beam-energy substituted mass, $m_{\text{ES}} = \sqrt{(s/2 + p_B^2)/E_i^2 - p_B^2}$, where p_B is the B_{rec} momentum and (E_i, p_i) is the four-momentum of the initial e^+e^- system, both measured in the laboratory frame. The invariant mass of the initial e^+e^- system is
The second variable is \(\Delta E = E_B - \sqrt{s}/2 \), where \(E_B \) is the \(B \) reco candidate energy in the center-of-mass frame. To define the \(B_{\text{reco}} \) sample (Fig. 1), we require \(|\Delta E| < n \sigma_{\Delta E} \), where the measured resolutions \(\sigma_{\Delta E} \) range from 12 to 35 MeV and \(n = 2 \) or 3, both depending on the \(B_{\text{reco}} \) mode. The \(B_{\text{reco}} \) candidate multiplicity is 1.4 for data as well as for the MC simulation sample. For events with more than one candidate, we select the \(B_{\text{reco}} \) with the best \(\chi^2 \) defined with the variables \(m_p, \Delta m, \) and \(\Delta E \). The MC simulation shows that the recoil variables are reconstructed well within their experimental resolution when using this selection.

The number of \(B_{\text{reco}} \) is extracted from the \(m_{\text{ES}} \) spectra (Fig. 1) in the 5.27–5.29 GeV/c\(^2\) signal region. The \(m_{\text{ES}} \) distribution is fitted to the sum of a broad combinatorial background and a narrow signal in the mass interval 5.21–5.29 GeV/c\(^2\). The combinatorial background is described by an empirical phase-space threshold function [27] and the signal with a Crystal Ball function [28] which is a Gaussian function centered at the \(B \) meson mass modified to account for photon radiation energy loss. All of the parameters specifying the functions describing the \(B_{\text{reco}} \) signal and background distributions are determined from data. The measured yields of reconstructed \(B^+ \) and \(B^0 \) candidates, \(N_{B^+} = 189 \, 474 \pm 7487 \) and \(N_{B^0} = 103 \, 169 \pm 3303 \), are obtained by subtracting the fitted and the peaking (described below) backgrounds from the total number of events found in the signal region. These \(B_{\text{reco}} \) numbers serve as the normalization of all branching fraction measurements reported in this paper. The error is dominated by the systematic uncertainties due to the fit of the combinatorial background and to the determination of the peaking background. We assign 2.3% uncertainty to \(N_{B^+} \) and 1.8% to \(N_{B^0} \) as a fit uncertainty, obtained by varying the lower boundary of the fit interval from 5.20 to 5.23 GeV/c\(^2\). The contamination of misreconstructed \(B^0 \) events in the \(B^+ \) signal (and vice versa) induces a peaking background near the \(B \) mass. From the MC simulation, the fraction of \(B^0 \) events in the reconstructed \(B^+ \) signal sample is found to be \((3.2 \pm 3.2_{\text{syst}})\% \) and the fraction of \(B^+ \) events in the reconstructed \(B^0 \) signal sample \((2.8 \pm 2.8_{\text{syst}})\% \). A 100% systematic uncertainty is conservatively assigned to these numbers taking into account the possible differences in the reconstruction efficiency in data and MC, as well as the branching fraction uncertainties for those \(B \) decay modes contributing to the peaking background. The total systematic uncertainties on \(N_{B^+} \) and \(N_{B^0} \) are 3.9% and 3.2%, respectively.

In the decay \(Y(4S) \to B_{\text{reco}} \bar{B}_X \pi \) where \(\bar{B}_X \) is the recoiling \(B \) which decays into \(\pi^- X \), the invariant mass of the \(X \) system is derived from the missing 4-momentum \(p_X \) applying energy-momentum conservation:

\[
P_X = p_{Y(4S)} - p_{\text{reco}} - p_{\pi^-}.
\]

The 4-momentum of the \(Y(4S) \), \(p_{Y(4S)} \) is computed from the beam energies and \(p_{\pi^-} \) and \(p_{B_{\text{reco}}} \) are the measured 4-momenta of the pion and of the reconstructed \(B_{\text{reco}} \), respectively. The \(B_{\text{reco}} \) energy is constrained by the beam energies. The \(\bar{B} \to \bar{D} \pi^- \), \(\bar{B} \to \bar{D}^+ \pi^- \), or \(\bar{B} \to "D^{***}\pi^- " \) signal yields peak at the \(D, D^+ \), and "\(D^{***} \)" masses in the missing mass spectrum, respectively.

The charged pion candidates, chosen among the tracks that do not belong to the \(B_{\text{reco}} \), are required to have produced at least 12 DCH hits and to have transverse momentum larger than 0.1 GeV/c. For the charged \(B_{\text{reco}} \) the pion candidate has the opposite sign to the \(B_{\text{reco}} \). For neutral \(B_{\text{reco}} \), because of the \(B^0 - B^0 \) mixing, the corresponding requirement is not applied. Muon tracks are rejected using the IFR information, electrons tracks using the energy loss in the SVT and the DCH, or the ratio of the candidate’s EMC energy deposition to its momentum \(E/p \). Protons and kaons are rejected based on information from the DC and energy loss in the SVT and the DCH. The rejection efficiency is 97% and there is no peaking trend.
The signal yields for the different decay modes are extracted from the missing mass spectra. The data distributions and the $b\bar{b}$ and the $q\bar{q}$ ($q = c, u, d, s$) background expectations are shown in Figs. 2(a) and 2(b). The shape of the background is taken from MC and the normalization is scaled to match the data in the sideband region 2.8–3.2 GeV/c^2. The error on the background normalization is 2%. This is determined using the statistical errors of MC and data samples. The $b\bar{b}$ background contribution is obtained from BB MC simulation excluding the $D\pi$, $D^*\pi$, and $D^{**}\pi$ signals using the MC truth information. The background-subtracted missing mass distributions are shown in Figs. 2(c) and 2(d).

The $D\pi$ and $D^*\pi$ signal yields are extracted by a χ^2 fit to the background-subtracted missing mass distribution in the range 1.65–2.20 GeV/c^2. The $D\pi$ and $D^*\pi$ components are each modeled by a sum of two Gaussian functions $G_{i=1,2}$ to account for tails in the mass distributions. The resulting ten parameters (two yield fractions $f(D^{(*)}) = || G_2(D^{(*)}) || / || G_1(D^{(*)}) ||$, four central values $m_i(D^{(*)})$, and four widths $\sigma_i(D^{(*)})$) are constrained in order to improve the convergence of the fit, using assumptions that have been tested with MC simulation: we fix the fractions $f(D) = f(D^*)$ and the mass differences $m_i(D^*) - m_i(D) = \Delta m$, where $\Delta m = 0.1421$ GeV/c^2 (0.1406 GeV/c^2) is the world average $D^{(*)} - D^{(*)} - D^*$ mass difference [26]. Simultaneously, we apply

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Yield</th>
<th>Efficiency</th>
<th>$\mathcal{B}(10^{-3})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^- \rightarrow D^0\pi^-$</td>
<td>677 ± 32</td>
<td>$4.49 \pm 0.21 \pm 0.23$</td>
<td></td>
</tr>
<tr>
<td>$B^- \rightarrow D^{*0}\pi^-$</td>
<td>774 ± 33</td>
<td>0.796 ± 0.007</td>
<td>$5.13 \pm 0.22 \pm 0.28$</td>
</tr>
<tr>
<td>$B^- \rightarrow D^{**}\pi^-$</td>
<td>829 ± 78</td>
<td>$5.50 \pm 0.52 \pm 1.04$</td>
<td></td>
</tr>
<tr>
<td>$B^0 \rightarrow D^+\pi^-$</td>
<td>248 ± 19</td>
<td>$3.03 \pm 0.23 \pm 0.23$</td>
<td></td>
</tr>
<tr>
<td>$B^0 \rightarrow D^{*+}\pi^-$</td>
<td>245 ± 19</td>
<td>0.793 ± 0.007</td>
<td>$2.99 \pm 0.23 \pm 0.24$</td>
</tr>
<tr>
<td>$B^0 \rightarrow D^{***}\pi^-$</td>
<td>192 ± 54</td>
<td>$2.34 \pm 0.65 \pm 0.88$</td>
<td></td>
</tr>
</tbody>
</table>

TABLE I. Signal yields, efficiencies, and branching fractions for $B \rightarrow D\pi^-$, $B \rightarrow D^*\pi^-$, and $B \rightarrow D^{**}\pi^-$. The first error is statistical except for the efficiencies for which it is mainly systematic. The second error on the branching fractions is systematic. The $B \rightarrow D^{**}\pi^-$ branching fractions are given for the 2.2–2.8 GeV/c^2 mass range which in addition to the P-wave states may include some yet unknown charm meson states.

The signal yields are extracted by a χ^2 fit to the background-subtracted missing mass distribution in the range 1.65–2.20 GeV/c^2. The $D\pi$ and $D^*\pi$ components are each modeled by a sum of two Gaussian functions $G_{i=1,2}$ to account for tails in the mass distributions. The resulting ten parameters (two yield fractions $f(D^{(*)}) = || G_2(D^{(*)}) || / || G_1(D^{(*)}) ||$, four central values $m_i(D^{(*)})$, and four widths $\sigma_i(D^{(*)})$) are constrained in order to improve the convergence of the fit, using assumptions that have been tested with MC simulation: we fix the fractions $f(D) = f(D^*)$ and the mass differences $m_i(D^*) - m_i(D) = \Delta m$, where $\Delta m = 0.1421$ GeV/c^2 (0.1406 GeV/c^2) is the world average $D^{(*)} - D^{(*)} - D^*$ mass difference [26]. Simultaneously, we apply

FIG. 2 (color online). Top: missing mass distributions obtained in the recoll of B^+ (a) and B^0 (b). The points with error bars show the data and the histograms show the background contributions ($b\bar{b}$ and $q\bar{q}$ ($q = c, u, d, s$)) predicted by the MC simulation. Bottom: background-subtracted missing mass spectra for B^+ (c) and B^0 (d). The curves show the result of the fits to the $D\pi$ and $D^*\pi$ components.
Gaussian constraints to the width ratios $\sigma_i(D^+)/\sigma_i(D) = 0.900 \pm 0.015$.

The “D^{++}” yields are defined as the excess of candidates in the missing mass range 2.2–2.8 GeV/c^2, and the $B \to D^{++} \pi^-$ branching fractions refer to the contributions of all nonstrange charm meson states in the same region. The range is chosen in order to maximize the acceptance to the four P-wave D^{*+} states predicted by the theory given the 34 MeV/c^2 mass resolution, determined from MC simulation, in the same region. The well-known narrow D_1 and D_2^* states [26] are fully contained in this range, and more than 90% of the broad D_0 and D_1, are covered if measured masses and widths [29,30] are used. The event yields, the efficiencies, and the resulting branching fractions are reported in Table I.

The uncertainty related to π reconstruction efficiency is due to the MC sample statistics and the systematic uncertainty on track reconstruction and particle identification algorithms. The uncertainty due to the yield extraction is estimated by fitting the MC sample. The difference between the generated and the fitted yield is found to be consistent with zero for each signal component and the MC sample statistical uncertainty is taken as a systematic uncertainty. We evaluate the uncertainty on the missing mass resolution in the $D\pi$ and $D^{*}\pi$ yield extraction by varying by 1 standard deviation the ratio σ_{D^0}/σ_0 while σ_D^0 and m_D^0 are allowed to vary in the fit. The difference in the yield is taken as systematic uncertainty. The uncertainty related to the background subtraction is dominated by the contribution of the $D^{(*)}\rho$ decay channels. We varied the branching fractions of these background components within the uncertainties of the most recent measurements [26] and the changes in the fitted yields are taken as systematic uncertainties. The effect of the 2% error in the background normalization is also included in the systematic uncertainties. Because of the threshold shape of $D^{(*)}\rho$ contribution and to the fast varying combinatorial background, $B \to D^{++} \pi$ branching fractions have larger systematic errors than $B \to D \pi$ and $B \to D^{*+} \pi$ branching fractions. The summary of these systematic uncertainties is reported in Table II.

Using the measured branching fractions we compute the following ratios:

$$B(B^- \to D^{*0} \pi^-)/(B(B^- \to D^0 \pi^-)) = 1.14 \pm 0.07 \pm 0.04,$$

$$B(B^- \to D^{*0+} \pi^-)/(B(B^- \to D^0 \pi^-)) = 1.22 \pm 0.13 \pm 0.23,$$

$$B(\bar{B}^0 \to D^{*+} \pi^-)/(B(\bar{B}^0 \to D^+ \pi^-)) = 0.99 \pm 0.11 \pm 0.08,$$

$$B(\bar{B}^0 \to D^{*++} \pi^-)/(B(\bar{B}^0 \to D^+ \pi^-) = 0.77 \pm 0.22 \pm 0.29.$$

The first uncertainty is statistical and the second is systematic. In addition to the cancellation of many of the systematic errors, the ratios are insensitive to the absolute normalization scale.

In summary, we have measured the branching fractions for the decays $B^- \to D^0 \pi^-$, $B^- \to D^{*0} \pi^-$, $B^- \to D^{*0+} \pi^-$, $B^- \to D^{*++} \pi^-$, $\bar{B}^0 \to D^{*+} \pi^-$, $\bar{B}^0 \to D^{*++} \pi^-$, and $\bar{B}^0 \to D^{*++} \pi^-$, using a missing mass method. This measurement does not assume that the Y(4S) decays into B^+ and B^0 with equal rates, nor does it rely on the D, D^*, or “D^{**}” intermediate branching fractions. The results for $B(B \to D \pi^-)$ and $B(\bar{B} \to D \pi^-)$ are compatible with previous world averages [26]. We have extracted a new result for $B(B \to D^{*+} \pi^-)$ branching fractions where “D^{**}” excited states correspond to the yield measured in the mass range 2.2–2.8 GeV/c^2. The isospin study [10,11] will become competitive with the exclusive measurements [23] if the statistical error is reduced by a factor of 2. With regard to spin symmetry, the values measured for the ratios $B(B^- \to D^{*0} \pi^-)/B(B^- \to D^0 \pi^-)$ and $B(\bar{B}^0 \to D^{*+} \pi^-)/B(\bar{B}^0 \to D^+ \pi^-)$ are close to 1, as predicted by different theoretical models [14–18], and their precision is comparable or better than the current world averages [26].

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions

Table II. Total relative systematic uncertainties for the branching fractions $B(B^- \to (D^0, D^{*0}, \ldots) \pi^-)$ and $B(\bar{B}^0 \to (D^+, D^{*+}, \ldots) \pi^-)$.

<table>
<thead>
<tr>
<th>Syst. Source</th>
<th>$B^- \to D^0 \pi^-$</th>
<th>$B^- \to D^{*0} \pi^-$</th>
<th>$B^- \to D^{*0+} \pi^-$</th>
<th>$\bar{B}^0 \to D^+ \pi^-$</th>
<th>$\bar{B}^0 \to D^{*+} \pi^-$</th>
<th>$\bar{B}^0 \to D^{*++} \pi^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_B</td>
<td>3.9%</td>
<td>3.9%</td>
<td>3.9%</td>
<td>3.2%</td>
<td>3.2%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Efficiency</td>
<td>0.9%</td>
<td>0.9%</td>
<td>0.9%</td>
<td>0.9%</td>
<td>0.9%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Yield extraction</td>
<td>2.7%</td>
<td>2.7%</td>
<td>5.1%</td>
<td>5.4%</td>
<td>5.1%</td>
<td>5.9%</td>
</tr>
<tr>
<td>Missing mass resolution</td>
<td>0.9%</td>
<td>0.8%</td>
<td>...</td>
<td>1.9%</td>
<td>1.1%</td>
<td>...</td>
</tr>
<tr>
<td>Background subtraction</td>
<td>1.6%</td>
<td>2.3%</td>
<td>17.7%</td>
<td>7.6%</td>
<td>8.2%</td>
<td>37.7%</td>
</tr>
<tr>
<td>Total</td>
<td>5.2%</td>
<td>5.4%</td>
<td>18.9%</td>
<td>7.6%</td>
<td>8.2%</td>
<td>37.7%</td>
</tr>
</tbody>
</table>
wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, Ministerio de Educación y Ciencia (Spain), and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation.

[20] Charge conjugate relations are assumed throughout this paper.