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ABSTRACT OF THE DISSERTATION

Econometric Analysis of Unconditional Policy Effects

by

Julián Martı́nez-Iriarte

Doctor of Philosophy in Economics

University of California San Diego, 2021

Professor Yixiao Sun, Chair

This dissertation contributes to the analysis of the unconditional effects of counterfactual

policies that manipulate the distribution of covariates. By unconditional effects we mean the

effects on any functional of the unconditional distribution of the outcome.

Chapter 1 focuses on the effect on the unconditional quantiles of the outcome. We

first show how to achieve identification under unconfoundedness. Then, we characterize the

asymptotic bias of the unconditional regression estimator that ignores the endogeneity and

elaborate on the channels that the endogeneity can render the unconditional regression estimator

inconsistent. We show that even if the treatment status is exogenous, the unconditional regression

estimator can still be inconsistent when there are common covariates affecting both the treatment

xi



status and the outcome variable.

Chapter 2 provides identification and estimation results for the case of an endogenous

binary variable. We introduce a new class of marginal treatment effects (MTE) based on the

influence function of the functional underlying the policy target. We show that an unconditional

policy effect can be represented as a weighted average of the newly defined MTEs over the

individuals at the margin of indifference. Point identification is achieved using the local instru-

mental variable approach. Furthermore, the unconditional policy effects are shown to include the

marginal policy-relevant treatment effect in the literature as a special case. Methods of estimation

and inference for the unconditional policy effects are provided. In the empirical application, we

estimate the effect of changing college enrollment status, induced by higher tuition subsidy, on

the quantiles of the wage distribution.

Chapter 3 proposes a framework to analyze the effects of counterfactual policies when

neither unconfoundedness holds nor an instrumental variable is available. For a given counter-

factual policy, we obtain identified sets for the effect of both marginal and global changes in the

proportion of treated individuals. To conduct a sensitivity analysis, we introduce the quantile

breakdown frontier, a curve that quantifies the maximum amount of selection bias consistent

with a given conclusion. To illustrate our method, we perform a sensitivity analysis on the effect

of unionizing low-income workers on the quantiles of the distribution of wages.

xii



Chapter 1

Bias in Unconditional Effects

1.1 Introduction

In this chapter we analyze different kinds of biases that arise in the estimation of un-

conditional causal effects as a result of the manipulation in the distribution of covariates. By

unconditional effects we mean the effects on any functional of the unconditional distribution

of the outcome. For concreteness, we focus on the effect on quantiles. Thus, we asses the

effect on the unconditional quantiles of the outcome as a result of a counterfactual policy that

alters the distribution of covariates. Consider a policy that increases unionization. The effect of

such a policy on the median of wages (of all workers) is an example of an unconditional effect.

We do not look at the median of each subpopulation separately; instead we pool all workers,

unionized and nonunionized, and analyze the effect on the median of this pooled, unconditional

distribution.

We work with a general model Y = r(W,U), where W are observed covariates, and U

are unobservables. The thought experiment is that of a policy maker that wants to manipulate

a target variable in W and is interested on the impact of the manipulation in a function of the

unconditional distribution1 of Y . We distinguish two cases: when the target variables is binary,

and when the target variable is continuous. In the former case, we write W = (D,X), and D is

1This is also the marginal distribution. But we employ the word marginal to denote a certain type of effect to be
defined later.
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the binary target variable. When the target is continuous, we write W = (X ,W̃ ), where X is the

target variable, and W̃ are other observed covariates.

In both cases, interventions take the form of manipulations of the mean. However, the

mechanism by which these manipulations operate differ markedly in each case. In the case of

a continuous target variable, such manipulation takes the form of a shift. That is, we analyze

a situation where X is replaced by X +δ for some quantity δ . For example, every individual

in our sample receives (in a counterfactual fashion) extra years of education. In the case of a

discrete target variable D, we cannot perform such shifts, since D+ δ makes no sense. Here

we try two approaches. The first one considers a setting where D is unconfounded and the

counterfacual D, denoted Dδ , is unconfounded as well. The parameter δ reflects a mean shift:

Pr(Dδ = 1) = Pr(D= 1)+δ . A second option is to rely in additional equation which explains the

value of D as a function of another continuous random variable. It is this underlying continuous

random variable which we intervene with a shift. For example, is D is college attendance, and Z

is college tuition, then we can think of a counterfactual policy where Z is shifted to Z +δ . In

this case, δ can be interpreted as a tuition subsidy.

For both cases we will analyze situations where commonly used identifying assumptions

break down. Moreover, we will provide closed form expression for the bias. This is of interest

because when working with observational data, this is likely to happen. Section 1.2 analyzes the

discrete case and Section 1.3 analyzes the continuous case. Both sections introduce novel results

in terms of identification and closed form solutions for the bias. Finally Section 1.4 concludes.

All proofs are relegated to the Appendix.

2



1.2 Discrete Target Variable

We will work with the potential outcomes framework. Let D be treatment status taking

values 0 and 1. For some unknown functions r0 and r1

Y (0) = r0(X ,U0),

Y (1) = r1(X ,U1),

where X are observed covariates and U0 and U1 consist of unobservables. We do not impose any

restriction on the dimension of the unobservables. As usual, we only observe either Y = Y (1)

for those individuals whose D = 1, or Y = Y (0) for those individuals whose D = 0. Thus, the

observed outcome can be written as

Y = D · r1(X ,U1)+(1−D) · r0(X ,U0) := r(D,X ,U), (1.1)

for a general nonseparable function r, and U := (U0,U1)
′. Hence, the potential outcomes

framework can be cast into a structural modeling framework with a special causal function r. We

will denote the proportion of treated individuals by p := Pr(D = 1). Here, W = (D,X)′.

In the rest of this dissertation, we maintain a continuity assumption about the outcome Y.

This is not essential to our results, but allows us to reduce the notational burden. In particular,

the assumption of a positive density is equivalent to uniqueness of the quantile, which is very

convenient.

Assumption 1.1 (Continuity). The observed outcome Y is continuous, with positive density in

its support Y .

A counterfactual policy is an alternative assignment of individuals to treatment. It is

given by a binary random variable Dδ , such that Pr(Dδ = 1) = p+δ for a fixed δ ∈ (−p,1− p).

It is called counterfactual because it may assign Dδ = 1 to an individual whose D = 0, and

3



viceversa. As δ varies over [−p,1− p], we obtain a collection of counterfactual policies which is

denoted by D . Somewhat casually, we also call the collection D a sequence of policies. When a

particular counterfactual policy Dδ belongs to D we write Dδ ∈D . The counterfactual outcome

we would observe for a given Dδ ∈D is

YDδ
= r(Dδ ,X ,U),

where we implicitly assumes that the potential outcomes are not affected by the manipulation of

D.2

Remark 1.1. Suppose D indicates union status, and Y (0) and Y (1) represent the potential (log)

wages for non-unionized and unionized individuals. A sequence of policies D can be thought of

as a manipulation of the union status of individuals: we can expand the union to cover p+δ

individuals, for δ > 0. The resulting counterfactual outcome YDδ
can be the union wage for

nonunionized worker. However, the distribution of the potential wages may well depend on

the proportion of unionized individuals. For example, we expect that the average wage for

unionization sector when everyone is unionized to be different from the case when half of the

workers are unionized. Card et al. (2004) make this point explicit by indexing the moments of

the distribution of wages by proportion of unionized workers. Thus, we may write Y (0; p) and

Y (1; p), where p = Pr(D = 1). This is a violation of the Stable Unit Value Treatment Assumption

(SUTVA, Imbens and Rubin (2015)), which is not allowed in our setting.

We will evaluate the effect of a counterfactual policy on the quantiles of the distribution

of the outcome. In particular, we look at two quantities: the global and the marginal effects. Let

F−1
Y (τ) and F−1

YD
δ

(τ) denote the τ-quantiles of Y and YDδ
respectively.3

Definition 1.1 (Global and Marginal Effects). For a given sequence of policies D , the uncondi-

2Strictly speaking, the counterfactual outcome YDδ
is not well defined until we define D , the collection of

counterfactual policies.
3Alternatively, we use yτ instead of F−1

Y (τ), and yτ,δ instead of F−1
YD

δ

(τ).

4



tional global effect at the τ-quantile is

Gτ,Dδ
:= F−1

YD
δ

(τ)−F−1
Y (τ),

and the unconditional marginal effect at the τ-quantile is

Mτ,D := lim
δ→0

F−1
YD

δ

(τ)−F−1
Y (τ)

δ

whenever this limit exists.

The global effect Gτ,Dδ
is the comparison of quantiles of the counterfactual distribution

vs. the observed distribution. For example, it could tell us what could happen to the median under

a particular policy Dδ . The marginal effect Mτ,D can be interpreted as an ordinary derivative: for

small δ , it provides an approximation to the direction of the change in a given τ-quantile. The

bigger the absolute value of the marginal effect, the stronger is the effect of a small change in the

proportion of treated individuals.

Figure 1.1 contains a graphical representation of the marginal and global effects for a

given quantile. The solid blue line is the map δ 7→ F−1
YD

δ

(τ) for a given τ and a given sequence

of policies.4 The slope of the red line, which is the tangent of δ 7→ F−1
YD

δ

(τ) at δ = 0 is the

unconditional marginal effect Mτ . For a given δ0, the green bar parallel to the Y axis is the

unconditional global effect Gτ,Dδ0
= F−1

YD
δ0
(τ)− F−1

Y (τ). Implicit is the fact that for δ = 0,

F−1
YD0

(τ) = F−1
Y (τ).

The marginal effect on the unconditional quantiles of an outcome was first studied by

Firpo et al. (2009). The identification arguments of Firpo et al. (2009) are based on a distributional

invariance assumption: the distribution of the outcome for the original treatment group (under

the original policy regime) is the same as that for the new treatment group (under the new policy

regime), and this also holds for the control groups under the two policy regimes.5 Rothe (2012)
4This map is generally unknown, but its derivative at δ = 0 is easier to identify.
5See the proof to Corollary 3 of the working paper version Firpo et al. (2007).
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δ 7→ F−1
YDδ

(τ)

δδ00−p 1− p

Gτ,Dδ0

Mτ

Figure 1.1. Global and marginal effects.

provides a general treatment for functionals of the unconditional distribution of the outcome.

What we call a global effect, Rothe (2012) refers to as a Fixed Partial Policy Effect, and what we

call a marginal effect, Rothe (2012) refers to as a Marginal Partial Distributional Policy.

Before we proceed, we will settle the question of existence of the marginal effect.

Theorem 1.1 provides a set of general sufficient conditions.

Theorem 1.1 (Existence of Marginal Effect). Consider a sequence of policies D such that

1. FYD0
(y) = FY (y) for any y ∈ Y ;

2. The map δ 7→FYD
δ
(y) is differentiable at δ = 0 uniformly in y∈Y , with derivative ḞY,D(y),

that is

lim
δ↓0

sup
y∈Y

∣∣∣∣∣FYD
δ
(y)−FY (y)

δ
− ḞY,D(y)

∣∣∣∣∣= 0;

3. The map y 7→ ḞY,D(y) is continuous at F−1
Y (τ).

Then, Mτ,D exists and is given by

Mτ,D =− ḞY,D(F−1
Y (τ))

fY (F−1
Y (τ))

.
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The conditions and the proof of this Theorem come from viewing the marginal effect as

a Hadamard derivative. The first condition, FYD0
(y) = FY (y), is particular to this setting, though.

The requirement FYD0
(y) = FY (y) states that for D0 ∈D , the limiting counterfactual distribution

FD0 matches the observed distribution FY . This might not necessarily be the case. Indeed, we

could define a marginal effect with respect to FYD0
instead which would avoid the “discontinuity”

at δ = 0. However, this would be of limited interest. The next example illustrates a case where

FYD0
(y) 6= FY (y).

Example 1.1 (Threshold Crossing Model). Suppose that individuals select into treatment by

D = 1{V ≤ 0.5} for V ∼U[0,1]. Consider the sequence of policies Dδ = 1{V ≤ 0.5+δ}, and

δ ≥ 0. Then,

FYD
δ
(y) = Pr(Y ≤ y|V ≤ 0.5+δ )(0.5+δ )+Pr(Y ≤ y|V > 0.5+δ )(1−0.5−δ ).

In this case, FYD0
= FY . However, if the sequence of policies is Dδ = 1{V > 0.5−δ}, then FYD0

might not coincide with FY .

The second condition in Theorem 1.1, that of uniform differentiability of the map

δ 7→ FYD
δ
(y), is more abstract. Essentially, it requires that small departures from 0 to δ > 0

should not induce large (uniform) changes in the counterfactual distribution FYD
δ
.

1.2.1 Double Unconfoundedness

Usually, in order to identify different parameters of interest, an unconfoundedness

assumptions is imposed: D ⊥ Y (0),Y (1)‖X . This means that, given a sufficiently rich set of

covariates, assignment to treatment is as good as random. That is, assignment is independent

of potential outcomes. Kaplan (2020) notes, however, that such requirement falls short when

dealing with counterfactual policies and, additionally, Dδ ⊥ Y (0),Y (1)‖X is necessary as well.

Using the structural model in (1.1), we can equivalently write this assumption as D,Dδ ⊥U‖X .
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Assumption 1.2 (Double Unconfoundedness). For the model given in (1.1), the following holds

1. D⊥U‖X;

2. for every Dδ ∈D , Dδ ⊥U‖X;

3. Xd is the common support of X |D = d and X |Dδ = d;

Remark 1.2. The first part of Assumption 1.2, namely, D⊥U‖X is fundamentally untestable.

However, the second part, Dδ ⊥U‖X depends on the policy maker. One way to achieve this, if

covariates are discrete, is for the policy maker to randomized Dδ by strata. Finally, the common

support assumption is made mostly for notational convenience. A sufficient condition for it

to be satisfied is that the support of X |D = 0 equals the support of X |D = 1. This is typically

an assumption that is made in order to avoid extrapolation: for any given value of X, that is,

for comparable units, we can find some that were assigned to treatment, and some that were

assigned to control.

The usefulness of Assumption 1.2 is that is allows us to point identify the counterfactual

distribution FYD
δ
. This counterfactual distribution is the basis for the global and marginal effects

that we are interested in.

Lemma 1.1. Under Assumption 1.2, the counterfactual distribution FYD
δ
(y) is

FYD
δ
(y) = (p+δ )

∫
X1

FY |D=1,X=x(y)dFX |Dδ=1(x)

+(1− p−δ )
∫
X0

FY |D=0,X=x(y)dFX |Dδ=0(x).

The counterfactual distribution, which is a marginal distribution, is given by the usual

reweighting of conditional distributions. However, we integrate against the new conditional

distribution of the covariates X |Dδ .

The result in Lemma 1.1 allows us to immediately identify the global effect. We just

need to invert the counterfactual distribution, and compare this to the inverse of the observed
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distribution of the outcome. The situation with respect to the marginal effect deserves special

attention due to the requirements for Theorem 1.1 to hold. We need the uniform convergence

of the derivative over the support Y , which is the support of both Y and YDδ
. To see what this

entails, we can write the result in Lemma 1.1 as a quotient:

FYD
δ
(y)−FY (y)

δ
= p

∫
X1

FY |D=1,X=x(y)d
(

FX |Dδ=1(x)−FX |D=1(x)
δ

)
+(1− p)

∫
X0

FY |D=0,X=x(y)d
(

FX |Dδ=0(x)−FX |D=0(x)
δ

)
+
∫
X1

FY |D=1,X=x(y)dFX |Dδ=1(x)

−
∫
X0

FY |D=0,X=x(y)dFX |Dδ=0(x)

According to Theorem 1.1, we need to take the uniform limit in y ∈ Y as δ → 0. An

important quantity involved in this limit is the propensity score, denoted by P(x) := Pr(D =

1|X = x). For a given sequence of counterfactual policies, we have a corresponding sequence

of counterfactual propensity scores Pδ (x) := Pr(Dδ = 1|X = x). The map δ 7→ Pδ (x) will play

an important role later. The counterfactual propensity scores have to satisfy the consistency

restriction

E[Pr(Dδ = 1|X)] = E[Pr(D = 1|X)]+δ = p+δ . (1.2)

The following assumptions are needed to obtain the marginal effect.

Assumption 1.3.

1. For every Dδ ∈D , Y is the common support of Y and YDδ
;

2. For every Dδ ∈ D , and d = 0,1, FX |Dδ=d(x) and FX |D=d(x) are absolutely continuous

with respect to Lebesgue measure, with densities given by fX |Dδ=d(x) and fX |D=d(x)

respectively;
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3. For d = 0,1, and every x ∈Xd ,

lim
δ→0

fX |Dδ=d(x) = fX |D=d(x);

4. For every Dδ ∈D and every x ∈Xd ,

Pδ (x)−P(x)
δ

≤ m(x)

with E[|m(X)|]< ∞, and

Ṗ(x) :=
∂Pδ (x)

∂δ

∣∣∣∣
δ=0

exists.

5. The map (y,x) 7→ FY |D=d,X=x(y) is continuous for d = 0,1;

Remark 1.3. Most of these assumptions are used to justify taking the limit under the integral sign.

The existence of Ṗ(x) is very important for our results and we will analyze its interpretation more

in detail below. In later sections, the existence of Ṗ(x) will follow from the form of the selection

equation (a threshold crossing equation) and the type of counterfactual policy considered. When

covariates are discrete, the domination assumption by the function m(x) can be dispensed of,

since we just have a finite sum, under which it is permissible to pass the limit.

Theorem 1.2. Under Assumptions 1.1, 1.2 and 1.3, the marginal effect at the τ-quantile exists,

and is given by

Mτ,D =−
E
[(

FY |D=1,X(F
−1

Y (τ))−FY |D=0,X(F
−1

Y (τ))
)

Ṗ(X)
]

fY (F−1
Y (τ))

.

When Ṗ(x)≡ 1, this is precisely the estimand Firpo et al. (2009) consider. However, their

derivation, as seen in Corollary 3 of Firpo et al. (2007), does not include covariates. Instead,
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Firpo et al. (2007) assumes what we call distributional invariance: for d = 0,1, FYD
δ
|Dδ=d(y) =

FY |D=d(y). Using this, we obtain

FYD
δ
(y) = (p+δ )FYD

δ
|Dδ=1(y)+(1− p−δ )FYD

δ
|Dδ=0(y)

= (p+δ )FY |D=1(y)+(1− p−δ )FY |D=0(y)

= FY (y)+δ
(
FY |D=1(y)−FY |D=0(y)

)
,

where the last line uses the decomposition FY (y) = pFY |D=1(y)+(1− p)FY |D=0(y). Now,

FYD
δ
(y)−FY (y)

δ
= FY |D=1(y)−FY |D=0(y)

which implies trivially that ḞY,D(y) = FY |D=1(y)−FY |D=0(y). Note further that ḞY,D is indepen-

dent of D . Thus, the result of Theorem 1.2 is a generalization of Firpo et al. (2009), not only for

the inclusion of the covariates, but also for the inclusion of the adjustment term Ṗ(x).

We refer to Ṗ(x) as the derivative of the propensity score and we will analyze it more

carefully in later sections. We can write

Ṗ(x) = lim
δ→0

Pr(Dδ = 1|X = x)−Pr(D = 1|X = x)
δ

The only term “in control” of the policy maker is Pr(Dδ = 1|X = x). Suppose the policy maker

has some weighting function ω(x) to allocate the newly treated, such that

Pr(Dδ = 1|X = x)−Pr(D = 1|X = x) = δω(x)

and E[ω(X)] = 1. In this case, in turns out that Ṗ(x)=ω(x). This sheds light on the interpretation

of the derivative of the propensity score. When Ṗ(x)≡ 1, it means that all “subpopulations” are

weighted equally by the policy maker when considering a marginal expansion of the treated

proportion.

11



Example 1.2. A counterfactual policy that weights every subpopulation equally is one where

Pr(Dδ = 1|X = x) = Pr(D = 1|X = x)+ δ . This counterfactual policy trivially satisfies the

consistency requirement in (1.2). Here, Ṗ(x)≡ 1.

Example 1.3. Suppose that X is discrete, taking values in X = {1,2, . . . ,k}. Consider the

following counterfactual policy

Pr(Dδ = 1|X = x) = Pr(D = 1|X = x)+
δ

k
1

Pr(X = x)
.

which gives less weight to the bigger subpopulations, as measured by Pr(X = x). Followiing

(1.2), we have

k

∑
x=1

Pr(Dδ = 1|X = x)Pr(X = x) = p+
k

∑
x=1

δ

k
1

Pr(X = x)
Pr(X = x) = p+δ

and Ṗ(x) = (k Pr(X = x))−1. The marginal effect is then

Mτ,D =− 1
k fY (F−1

Y (τ))

k

∑
x=1

[
FY |D=1,X=x(F

−1
Y (τ))−FY |D=0,X=x(F

−1
Y (τ))

]
.

Example 1.4. Again, suppose that X = {1,2, . . . ,k}, and that Pr(X = 1)≤ Pr(X = 2)≤ ...≤

Pr(X = k). The policy

Pr(Dδ = 1|X = x) = Pr(D = 1|X = x)+δ
x

E[X ]

allocates more weight to subpopulations with bigger values of x. In this case, Ṗ(x) = x/E[X ],

and the marginal effect is

Mτ,D =−∑
k
x=1
[
FY |D=1,X=x(F

−1
Y (τ))−FY |D=0,X=x(F

−1
Y (τ))

]
xPr(X = x)

E[X ] fY (F−1
Y (τ))

.

These examples highlight the fact that the marginal effects can be quite different depend-
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ing on the type of policies considered. The derivative of the propensity score Ṗ(x) is the term

that reflects this adjustment. Intuitively, Ṗ(x) reflects the direction in which we depart from the

status quo policy in the counterfactual policy. When the adjustment given by the derivative of the

propensity score is ignored, that is, when we incorrectly set Ṗ(x)≡ 1, the estimand will exhibit

asymptotic bias given by

Biasτ =
E
[(

FY |D=1,X(F
−1

Y (τ))−FY |D=0,X(F
−1

Y (τ))
)
(Ṗ(X)−1)

]
fY (F−1

Y (τ))
.

In the next section we are going to analyze the bias by explicitly allowing both ignoring

Ṗ(x) and departing from the double unconfoundedness assumption.

1.2.2 Threshold Crossing Model

In some cases, it is possible that even after controlling for all the observed covariates,

some correlation remains between D and U . This is the case, for example, when D follows a

threshold crossing equation, and dislike or resistance to treatment is correlated with the potential

outcomes. In this section we add some more structure to the selection equation in a manner

that the double unconfoundedness assumption does not hold. In doing so, we will obtain an

expression for the asymptotic bias in this case.

Following Heckman and Vytlacil (1999, 2001a, 2005), we assume that selection into

treatment is determined by the threshold-crossing equation

D = 1{V ≤ µ (X)} , (1.3)

where µ (X) can be regarded as the benefit from the treatment and V as the cost of the treatment.

Individuals decide to take up the treatment if and only if its benefit outweighs its cost. Alter-

natively, we can think of µ (X) as the utility and V as the disutility from participating in the

program. While we observe (D,X ,Y ), we observe neither U := (U0,U1) nor V. Also, we do not
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restrict the dependence among U,X , and V , hence, D could be endogenous.

Note that when we condition on X in the selection equation (1.3), D depends on V which

is allowed to be correlated with U . Thus, in this case, unconfoundedness will not hold.

Recall the propensity score is P(x) := Pr(D = 1|X = x). In the threshold crossing model,

it has a convenient representation. Indeed

P(x) = Pr(V ≤ µ (X) |X = x) = FV |X(µ(x)|x).

If the conditional CDF FV |X(·|x) is a strictly increasing function for all x ∈X , the support of X ,

we have

D = 1{V ≤ µ (X)}= 1
{

FV |X(V |X)≤ FV |X(µ (X) |X)
}
= 1{UD ≤ P(X)} ,

where UD = FV |X(V |X). Furthermore, UD is uniform on [0,1] and is independent of X .6

As before, we let

r (D,X ,U) = (1−D)r0(X ,U0)+Dr1(X ,U1),

then we have Y = r (D,X ,U) .

In the previous section, we consider policies that switches individuals from one group

the other or viceversa. Here, we consider a policy intervention that changes the propensity score

6To see this, we denote FV |X (v|x) := Pr(V ≤ v|X = x) by Gx (v) . We use the notation Gx (v) when we view
FV |X (V |X) as a function of v for a given x. We have

Pr(UD ≤ u|X = x) = Pr
(
FV |X (v|x)≤ u|X = x

)
= Pr

(
FV |X (v|x)≤ u|X = x

)
= Pr(Gx(V )≤ u|X = x) = Pr

(
V ≤ G−1

x (u) |X = x
)

= Gx
[
G−1

x (u)
]
= u.

By the law of iterated expectations, we have Pr(UD ≤ u) = u. Also, Pr(UD ≤ u|X = x) does not depend on x, so
UD is indeed uniform on [0,1] and is independent of X . Note that, in general, if UD is a deterministic function of
both V and X , then UD is not independent of (V,X), but this does not rule out the possibility that UD is independent
of X . Conditioning on X , UD is a deterministic function of V only, and hence UD and V are dependent conditioning
on X . See also Heckman and Vytlacil (1999).
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from P(x) to Pδ (x). Our manipulation of the propensity will be done via a manipulation of the

selection equation. We can do so because we assume a particular form of the selection equation.

The drawback is that now we do not know who are the individuals that will take treatment.

Naturally, the counterfactual propensity score will satisfy the consistency requirement as in (1.2).

That is

E [Pδ (X)] = E [P(X)]+δ .

Note that the consistency requirement does not always imply that P0(x) = P(x). However,

the particular form of the policies analyzed in this section will ensure this. Under the new policy,

our model becomes

Yδ = r (Dδ ,X ,U) = (1−Dδ )Y (0)+DδY (1) ,

Dδ = 1{UD ≤ Pδ (X)} . (1.4)

For notational convenience, when δ = 0, we drop the subscript, and we write Y , D,

and P(X) for Y0, D0, and P0 (X) , respectively. It is important to highlight that, regardless of

the value of δ , the dependence pattern between U and V given X is the same. More precisely,

the conditional distribution of (U,V ) given X is invariant to the value of δ . Equivalently, the

conditional distribution of (U,UD) given X under δ = δo for any δo is the same as that under

δ = 0.

Example 1.5. Many different policies can be used to change the propensity score. As an example,

we can increase everyone’s benefit function by the same amount sµ (δ ) with the normalization

that sµ(0) = 0. In this case, we have

Pδ (x) = Pr
[
V ≤ µ (X)+ sµ (δ ) |X = x

]
= FV |X(µ(x)+ sµ (δ ) |x), (1.5)

and P0(x) = P(x). Effectively, we induce a location change in the benefit function (or the cost
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function) while keeping intact the dependence between U and V (or UD) given X.

In this section we are concerned with a generic policy that changes the propensity score

from P(x) to Pδ (x). We are agnostic about how the policy intervention achieves this change; we

impose only the consistency restriction that E[Pδ (X)] = p+δ , and that P0(x) = P(x) for every

x ∈X .

In order to find the unconditional quantile treatment effect, we first make a support

assumption.

Assumption 1.4. Support Assumption For d = 0,1, the support of Y (d) given (UD,X) does not

depend on (UD,X).

Note that Dδ is a function of (UD,X). Under the above assumption, the support of Y (d)

given Dδ also does not depend on Dδ . We denote the support of Y (d) by Y (d), which is the

common support regardless of whether we condition on (UD,X). It is also the common support

regardless of whether we condition on Dδ .

For some ε > 0, define Nε := {δ : |δ | ≤ ε} . To simplify notation, let yτ and yτ,δ denote

the τ-quantiles of Y and YDδ
respectively.7 For every δ ∈ Nε , we have

FYδ
(yτ,δ ) = (p+δ )Pr

(
Y (1)≤ yτ,δ |Dδ = 1

)
+ (1− p−δ )Pr

(
Y (0)≤ yτ,δ |Dδ = 0

)
=

∫
Y (1)

1
{

y≤ yτ,δ

}
(p+δ ) fY (1)|Dδ

(y|1)dy

+
∫
Y (0)

1
{

y≤ yτ,δ

}
(1− p−δ ) fY (0)|Dδ

(y|0)dy, (1.6)

where we have used the support assumption so that the support of Y (d) given Dδ = d is still

Y (d) .

The goal is to linearize (p+δ ) fY (1)|Dδ
(y|1) and (1− p−δ ) fY (0)|Dδ

(y|0) around δ = 0.

To this end, we make some technical assumptions.
7We also denote these as F−1

Y (τ) and F−1
YD

δ

(τ) respectively.
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Assumption 1.5. Regularity Conditions

(a) For d = 0,1, the random variables (Y (d),UD,X) are absolutely continuous with joint density

given by fY (d),UD|X fX .

(b) (i) For d = 0,1, u 7→ fY (d)|UD,X(y|u,x) is continuous for almost all y ∈ Y (d) and almost all

x ∈X . (ii) For d = 0,1, for almost all y ∈ Y (d) ,

sup
x∈X

sup
δ∈Nε

fY (d)|UD,X(y|Pδ (x),x)< ∞.

(c) (i) p = E [P(X)] ∈ (0,1). (ii) For each x ∈X , the map δ 7→ Pδ (x) is continuously differen-

tiable on Nε . (iii) supx∈X supδ∈Nε

∣∣∣∂Pδ (x)
∂δ

∣∣∣< ∞.

Assumption 1.6. Domination Conditions For d = 0,1,

∫
Y (d)

sup
δ∈Nε

fY (d)|Dδ
(y|d)dy < ∞,

∫
Y (d)

sup
δ∈Nε

∣∣∣∣∂ fY (d)|Dδ
(y|d)

∂δ

∣∣∣∣dy < ∞.

In Assumption 1.5 the supremum over x ∈X can be replaced by the essential supremum

over x ∈X .

Lemma 1.2. Let Assumptions 1.4 and 1.5 hold. For d = 0,1, the map δ 7→ fY (d)|Dδ
(y|d) is

continuously differentiable on Nε for almost all y ∈ Y (d).

Using Lemma 1.2, we expand FYδ
(y) in (1.6) around δ = 0 to obtain the approximation

in the following lemma.

Lemma 1.3. Let Assumptions 1.4–1.6 hold. Then

FYδ
(y) = FY (y)+δE

[{
FY (1)|UD,X(y|P(X) ,X)−FY (0)|UD,X(y|P(X) ,X)

}
Ṗ(X)

]
+ o(|δ |),
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uniformly over y ∈ Y := Y (0)∪Y (1) as δ → 0, where

Ṗ(X) :=
∂Pδ (X)

∂δ

∣∣∣∣
δ=0

.

Remark 1.4. Lemma 1.3 provides a linear approximation to FYδ
, the CDF of the outcome

variable under Dδ . Essentially, it says that the proportion of individuals with outcome below y

under the new selection rule, that is, FYδ
(y), will be equal to the proportion of individuals with

outcome below y under the original selection rule, that is, FY (y), plus an adjustment given by the

marginal entrants. Consider δ > 0 and Pδ (x)> P(x) for all x ∈X as an example. In this case,

because of the policy intervention, the individuals who are on the margin, namely those with

uD = P(x), will switch their treatment status from 0 to 1. Such a switch contributes to FYδ
(y)

by the amount FY (1)|UD,X (y|P(x) ,x)−FY (0)|UD,X (y|P(x) ,x), averaged over the distribution of X

for a certain subpopulation. We will show later that the subpopulation is exactly the group of

individuals who are on the margin under the existing policy regime.

Remark 1.5. Existence of the derivative of the propensity score Ṗ(x) is guaranteed by Assump-

tion 1.5.(c).

Remark 1.6. The linear approximation to FYδ
is uniform in Y as δ → 0. We need the uniform

approximation because below we “invert” the approximation to obtain the quantiles.

Theorem 1.3. Let Assumptions 1.4–1.6 hold. Assume further that fY (yτ)> 0. Then

Mτ,D := lim
δ→0

yτ,δ − yτ

δ

=
1

fY (yτ)

∫
X

E [1{Y (0)≤ yτ}|UD = P(x) ,X = x] Ṗ(x) fX (x)dx

− 1
fY (yτ)

∫
X

E [1{Y (1)≤ yτ}|UD = P(x) ,X = x] Ṗ(x) fX (x)dx. (1.7)

Theorem 1.3 shows that, among the individuals with X = x, only those for whom

uD =P(x) will contribute to the marginal unconditional quantile effect. Among the group defined
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by X = x, there is a subgroup of individuals who are indifferent between participating and not

participating: those for whom uD = P(x), that is, those for whom v satisfies FV |X (V |x) = P(x). A

small incentive will induce a change in the treatment status only for this subgroup of individuals.

It is the change in the treatment status, and hence the change in the composition of Y (1) and

Y (0) in the observed outcome Y, that changes the unconditional quantiles of Y.

Theorem 1.3 shows that the unconditional quantile effect depends also on Ṗ(X) . Under

Assumption 1.5(c), we have

∫
X

∂Pδ (x)
∂δ

fX (x) =
∂

∂δ

∫
X

Pδ (x) fX (x) =
∂

∂δ
(p+δ ) = 1

for any δ ∈ Nε , hence E[Ṗ(X)] = 1. Thus the integrals in (1.7) can be regarded as a weighted

mean with the weight given by Ṗ(x). Note that Ṗ(x) depends on how we choose to modify the

propensity score, that is, it depends on who the marginal entrants are. Different propensity score

interventions can result in different sets of marginal entrants and different unconditional quantile

effects. As in the case of double unconfoundedness, intuitively, the derivative of the propensity

Ṗ(x) indicates the “direction” of departure from the status quo policy.

For intuition on this, consider the case where δ > 0 and Pδ (x) ≥ P(x) for all x ∈X .

Then we have

Ṗ(x) = lim
δ→0

Pr(UD ≤ Pδ (x))−Pr(UD ≤ P(x))
δ

= lim
δ→0

Pr(P(X)<UD ≤ Pδ (X) |X = x)
δ

.

Thus, Ṗ(x) measures the relative contribution to the overall improvement in the participation

rate (i.e., δ ) for the individuals with X = x. For each value of x, only individuals on the margin

(“the marginal individuals”) will change their treatment status and contribute to the overall

improvement in the participation rate. The relative “thickness” of the margin depends on x and is

measured by Ṗ(x) .
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We can use Figure 1.2 to convey the intuition behind Ṗ(X). The figure illustrates the

marginal individuals under the existing and new policy regimes. The marginal individuals are

those with uD = Pδ (x). Under the existing policy regime, the marginal individuals lie on the 45-

degree line in the (P(x),uD)-plane. For easy reference, we call it the marginal curve, which is the

set of points {(P(x),uD) : uD = P(x)} . Under the new policy regime, the marginal curve is now

{(P(x),uD) : uD = Pδ (x)} . Note that we can rewrite uD = Pδ (x) as uD = P(x)+ [Pδ (x)−P(x)] .

Thus the new marginal curve can be obtained by shifting every point on the original marginal

curve up by Pδ (x)−P(x). The magnitude of the upward shift is approximately Ṗ(x)δ , which is,

in general, different for different values of x. The integral of the difference of the two marginal

curves (i.e., the area of the gray region) weighted by the marginal density fX(·) of X is equal to

δ .8

P (X)

UD

1

1

D = Dδ = 1

D = Dδ = 0

Dδ = 1

D = 0

Marginal individuals
under Dδ = 1 {UD ≤ Pδ(X)}

Marginal individuals
under D = 1 {UD ≤ P (X)}

Figure 1.2. Marginal individuals under different policies.

To understand the weight fX (x) Ṗ(x) that appears in Theorem 1.3, let ε be a small

positive number. Then, fX (x)ε measures the proportion of individuals for whom X is in
8Note that the two marginal curves coincide in the limit as δ → 0, and so in the limit we can define the marginal

individuals as those with UD = P(x). In our discussions, “the marginal individuals” may refer to the group of
individuals with UD = P(x) or the group of individuals with UD = Pδ (x) . Which group we refer to should be clear
from the context.
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[x− ε/2,x+ ε/2] . Note that for X ∈ [x− ε/2,x+ ε/2] , the propensity scores under D and

Dδ are approximately P(x) and Pδ (x). The proportion of the individuals for whom X ∈

[x− ε/2,x+ ε/2] and who have switched their treatment status from 0 to 1 is then equal to

fX (x) · [Pδ (x)−P(x)] · ε.

Scaling this by δ , which is the overall proportion of the individuals who have switched the

treatment status, we obtain ( fX (x) · [Pδ (x)−P(x)]/δ ) · ε. Thus fX (x) · [Pδ (x)−P(x)]/δ can be

regarded as the density function of X among those who have switched the treatment status from

0 to 1 as a result of the policy intervention.

Mathematically, we have

Pr(X ∈ [x− ε/2,x+ ε/2] |D = 0,Dδ = 1)
ε

=
Pr(X ∈ [x− ε/2,x+ ε/2] ,D = 0,Dδ = 1)

ε ·Pr(D = 0,Dδ = 1)

=
Pr(X ∈ [x− ε/2,x+ ε/2] ,UD ∈ [P(x),Pδ (x)])

ε ·δ ,

so taking the limit as ε → 0, we obtain

lim
ε→0

Pr(X ∈ [x− ε/2,x+ ε/2] |D = 0,Dδ = 1)
ε

= fX (x)
Pδ (x)−P(x)

δ
.

Thus fX (x) [Pδ (x)−P(x)]/δ is the density of X among those who respond positively to the

policy intervention, that is, those with D = 0 and Dδ = 1. Graphically, fX (x) [Pδ (x)−P(x)]/δ

is the conditional density of X conditional on (P(x),UD) being in the gray region in Figure 1.2.

Letting δ → 0, we obtain

lim
δ→0

fX (x)
Pδ (x)−P(x)

δ
= fX (x) Ṗ(x) .
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That is, fX (x) Ṗ(x) is the limit of the density of X among those with D = 0,Dδ = 1. We

can therefore refer to fX (x) Ṗ(x) as the density of the distribution of X over the marginal

subpopulation that consists of all marginal individuals.

In view of the above interpretation of fX (x) Ṗ(x), Theorem 1.3 shows that the uncondi-

tional quantile effect is equal to the change in the influence functions for the marginal individuals,

weighted by the density of the distribution of X over those marginal individuals.

Noting that fX (x) is the density of the distribution of X over the entire population, we

can regard Ṗ(x) as the Radon–Nikodym (RN) derivative of the subpopulation distribution with

respect to the population distribution. Even if Ṗ(x) is not positive for all x ∈X , the Radon–

Nikodym interpretation is still valid. In this case, the distribution with density fX (x) Ṗ(x) with

respect to the Lebesgue measure is a signed measure.

The next corollary decomposes the unconditional quantile effect into an apparent compo-

nent, which neglects the adjustment given by Ṗ(X) and a bias component.

Corollary 1.4. Let the assumptions in Theorem 1.3 hold. Then

Mτ,D = Aτ −Bτ ,

where9

Aτ =
1

fY (yτ)

∫
X

E [1{Y ≤ yτ}|D = 0,X = x] fX (x)dx

− 1
fY (yτ)

∫
X

E [1{Y ≤ yτ}|D = 1,X = x] fX (x)dx, (1.8)

and10

Bτ = B1τ +B2τ ,

9The apparent term does not depend on the sequence D .
10The bias term depends on the sequence D .
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for

B1τ =
1

fY (yτ)

∫
X

[
FY (0)|D,X (yτ |0,x)−FY (1)|D,W (yτ |1,x)

][
1− Ṗ(x)

]
fX (x)dx

=
1

fY (yτ)

∫
X

[
FY |D,X (yτ |1,x)−FY |D,X (yτ |0,x)

]
Ṗ(x) fX (x)dx,

− 1
fY (yτ)

∫
X

[
FY |D,X (yτ |1,x)−FY |D,X (yτ |0,x)

]
fX (x)dx

and

B2τ =
1

fY (yτ)

∫
X

[
FY (0)|D,X (yτ |0,x)−FY (0)|UD,X (yτ |P(x) ,x)

]
Ṗ(x) fX (x)dx

− 1
fY (yτ)

∫
X

[
FY (1)|D,X (yτ |1,x)−FY (1)|UD,X (yτ |P(x) ,x)

]
Ṗ(x) fX (x)dx.

(1.9)

To facilitate understanding of Corollary 1.4, we can define and organize the average

influence functions (AIF) in a table:

Table 1.1. Average Influence Functions

Difference of Average Influence Functions

UD Ex [ψτ (Y (1))−ψτ (Y (0)) |UD = P(X)]

D Ex [ψτ (Y (1)) |D = 1]−Ex [ψτ (Y (0)) |D = 0]
Notes: The differences in each case are AIF for Y (1) minus AIF for Y (0).

where

ψτ (Y (d)) =
τ−1{Y (d)≤ yτ}

fY (yτ)
.

In the above, Ex [·] stands for the conditional mean operator given X = x. For example

Ex [ψτ (Y (0)) |D = 0] = E [ψτ (Y (0)) |D = 0,X = x] .
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Let

ψ∆,UD (x) := Ex [ψτ (Y (1))−ψτ (Y (0)) |UD = P(x)] ,

ψ∆,D (x) := Ex [ψτ (Y (1)) |D = 1]−Ex [ψτ (Y (0)) |D = 0] .

The unconditional quantile effect Mτ,D is the average of the difference ψ∆,UD (x) with respect

to the distribution of X over the marginal subpopulation. The average apparent effect Aτ is the

average of the difference ψ∆,D (x) with respect to the distribution of X over the whole population

distribution. It is also equal to the limit of the unconditional quantile estimator of Firpo et al.

(2009), where the endogeneity of the treatment selection is ignored. The discrepancy between

Mτ,D and Aτ gives rise to the asymptotic bias Bτ :

Bτ = Aτ −Mτ,D = E
[
ψ∆,D (X)

]
−E

[
ψ∆,UD (X) Ṗ(X)

]
= E

{
ψ∆,D (X)

[
1− Ṗ(X)

]}︸ ︷︷ ︸
B1τ

+E
{[

ψ∆,D (X)−ψ∆,UD (X)
]

Ṗ(X)
}︸ ︷︷ ︸

B2τ

. (1.10)

It is easy to show that the B2τ given here is identical to that given in (1.9).

Equation (1.10) decomposes the asymptotic bias into two components. The first one,

B1τ , captures the heterogeneity of the averaged apparent effects averaged over two different

subpopulations. For every x, ψ∆,D (X) is the average effect of D on [τ−1{Y ≤ yτ}]/ fY (yτ) for

the individuals with X = x. These effects are averaged over two different distributions of X : the

distribution of X for the marginal subpopulation (i.e., Ṗ(x) fX (x)) and the distribution of X for

the whole population (i.e., fX (x)). B1τ is equal to the difference of these two average effects. If

the effect ψ∆,D (x) does not depend on x, then B1τ = 0. If Ṗ(x) = 1, then the distribution of X

over the whole population is the same as that over the subpopulation, and hence B1τ = 0 in that

case as well.

The second bias component, B2τ , has a difference-in-differences interpretation. Each

of ψ∆,D (·) and ψ∆,UD (·) is the difference in the average influence functions associated with
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the counterfactual outcomes Y (1) and Y (0) . However, ψ∆,D (·) is the difference over the two

subpopulations who actually choose D = 1 and D = 0, while ψ∆,UD (·) is the difference over the

marginal subpopulation. So ψ∆,D (·)−ψ∆,UD (·) is a difference in differences. B2τ is simply the

average of this difference in differences with respect to the distribution of X over the marginal

subpopulation. This term arises because the change in the distributions of Y for those with D = 1

and those with D = 0 is different from that for those whose UD is just above P(x) and those

whose UD is just below P(x). Thus we can label B2τ as a marginal selection bias.

If ψ∆,D (x) = ψ∆,UD (x) for almost all x ∈X , then B2τ = 0. The condition ψ∆,D (x) =

ψ∆,UD (x) is the same as

Ex [ψτ (Y (1))−ψτ (Y (0)) |UD = P(x)]

= Ex [ψτ (Y (1)) |D = 1]−Ex [ψτ (Y (0)) |D = 0] .

Equivalently,

Ex [ψτ (Y (1)) |UD = P(x)]−Ex [ψτ (Y (1)) |D = 1]

= Ex [ψτ (Y (0)) |UD = P(w)]−Ex [ψτ (Y (0)) |D = 0] .

The condition resembles the parallel-paths assumption or the constant-bias assumption in a

difference-in-differences analysis. If UD is independent of (U0,U1) given X , then this condition

holds and B2τ = 0.

In general, when UD is not independent of (U0,U1) given X , and X enters the selection

equation, we have B1τ 6= 0 and B2τ 6= 0, hence Mτ,D 6= Aτ . If Ṗ(X) is not identified, then B1τ

is not identified. In general, B2τ is not identified without an instrument. Therefore, without an

instrument, the asymptotic bias can not be eliminated and Πτ is not identified.

It is not surprising that in the presence of endogeneity, the unconditional quantile estimator

of Firpo et al. (2009) is asymptotically biased. The virtue of Corollary 1.4 is that it provides a
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closed-form characterization and clear interpretations of the asymptotic bias. To the best of our

knowledge, this bias formula is new in the literature. From a broad perspective, the asymptotic

bias Bτ is the unconditional quantile counterpart of the endogenous bias of the OLS estimator in

a linear regression framework.

The bias decomposition is not unique. Corollary 1.4 gives only one possibility. We can

also write

Bτ = E
{

ψ∆,UD (X)
[
1− Ṗ(X)

]}︸ ︷︷ ︸
B̃1τ

+E
[
ψ∆,D (X)−ψ∆,UD (X)

]︸ ︷︷ ︸
B̃2τ

.

The interpretations of B̃1τ and B̃2τ are similar to those of B1τ and B2τ with obvious and minor

modifications. The non-uniqueness of the decomposition when two or more quantities change

simultaneously is well expected.11

Example 1.6. Consider a setting of full independence: V ⊥U0 ⊥U1 ⊥ X (i.e., every subset is

independent of its complement). In this case, B2τ = 0 and by equation (1.7), the UQE is

Mτ,D =
1

fY (yτ)

∫
X

E [1{Y (0)≤ yτ}|X = x] Ṗ(X) fX (x)dx

− 1
fY (yτ)

∫
X

E [1{Y (1)≤ yτ}|X = x] Ṗ(X) fX (x)dx.

Following (1.8), the apparent effect is

Aτ =
1

fY (yτ)

∫
X

E [1{Y (0)≤ yτ}|X = x] fX (x)dx

− 1
fY (yτ)

∫
X

E [1{Y (1)≤ yτ}|X = x] fX (x)dx.

In general, we will still have a bias term given by B1τ unless Ṗ(x) = 1 or the difference

E [1{Y (0)≤ yτ}|X = x]−E [1{Y (1)≤ yτ}|X = x] does not depend on x. In general, both con-

ditions fail if the covariate X enters both the outcome equations and the selection equation. In

this case, the usual unconditional quantile regression estimator will be asymptotically biased.
11Here, ψ∆,UD (·) changes to ψ∆,D (·) and Ṗ(x) fX (x) changes to fX (x).
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On the other hand, under full independence, there will be no asymptotic bias if the treat-

ment has a constant effect across the values of the covariates (i.e., E [1{Y (0)≤ yτ}|X = x]−

E [1{Y (1)≤ yτ}|X = x] does not depend on x) or if the distribution of X over the whole pop-

ulation is the same as that over the marginal subpopulation. Note that if X does not enter the

outcome equation, then E [1{Y (0)≤ yτ}|X = x] is equal to E [1{Y (1)≤ yτ}|X = x] under the

condition (U0,U1) ⊥ X . As a result, there will be no bias. If X does not enter the selection

equation so that µ(x) = µ0 for a constant µ0, then Ṗ(x) = 1, and the distribution of X over the

whole population is the same as that over the marginal subpopulation. As a result, there will be

no bias in that case, either.12

Remark 1.7. We can relate the result of Example 1.6 to the results under double unconfounded-

ness. In Example 1.6, the marginal effect (there is no bias) is

Aτ =
1

fY (yτ)

∫
X

E [1{Y (0)≤ yτ}|X = x] fX (x)dx

− 1
fY (yτ)

∫
X

E [1{Y (1)≤ yτ}|X = x] fX (x)dx.

By Assumption 1.2, D⊥U‖X, which implies

E [1{Y (0)≤ yτ}|X = x] = E [1{Y ≤ yτ}|X = x,D = 0] ,

and

E [1{Y (1)≤ yτ}|X = x] = E [1{Y ≤ yτ}|X = x,D = 1] .

Using this, we get

Aτ =−
E
[(

FY |D=1,X(yτ)−FY |D=0,X(yτ)
)]

fY (yτ)
,

12To see this, note that when Pδ (x) does not depend on x, we have that Pδ = p+δ , which implies that Ṗ = 1.
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which is the result of Theorem 1.2 for the case Ṗ(x)≡ 1.

1.2.3 UQE under Location Shift in the Cost or Benefit Function

In this subsection, we modify the propensity score by inducing a location shift in the cost

or benefit function. Note that an increase in the benefit has the same effect as reducing the cost

by the same amount. It is innocuous to focus on a location shift in the benefit function, which is

one of many ways to change the propensity score. From the perspective of policy design, we

ask and address the following question: given the dependence between U = (U0,U1) and V in

the population, how will the unconditional quantiles of Y change if we manage to improve the

benefit from participating in the program by sµ(δ ) for each individual in the population? While

U and V are dependent, the incremental change sµ(δ ) is the same for all individuals and hence

is exogenous.

Recall that Pδ (x) was given in (1.5):

Pµ

δ
(x) = Pr

[
V ≤ µ (x)+ sµ (δ ) |X = x

]
= FV |X(µ(x)+ sµ (δ ) |x). (1.11)

To emphasize that the change is induced on µ (·), we have added a subscript “µ” to Pδ (x). We

will use Pµ

δ
(x) exclusively for this case. Note that sµ (δ ) is determined implicitly by the equation

E
[
Pµ

δ
(X)
]
= p+δ . The following lemma characterizes how sµ(δ ) and Pµ

δ
(x) will change in

response to a small change in δ .

Lemma 1.4. Assume that (i) (V,X) are absolutely continuous random variables with joint density

fV,X (v,x) given by fV |X (v|x) fX (x); (ii) fV |X (v|x) is continuous in v for almost all x ∈X ; (iii)∫
X supδ∈Nε

fV |X(µ(x)+ sµ (δ ) |x) fX(x)dx < ∞; and (iv)
∫
X fV |X(µ(x)+ sµ (δ ) |x) fX(x)dx 6= 0
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for all δ ∈ Nε . Then for all δ ∈ Nε ,

∂ sµ(δ )

∂δ
=

1∫
X fV |X(µ(x)+ sµ (δ ) |x) fX(x)dx

,

∂Pµ

δ
(x)

∂δ
=

fV |X(µ(x)+ sµ (δ ) |x)∫
X fV |X(µ(x)+ sµ (δ ) |x) fX(x)dx

.

In particular,

∂ sµ(δ )

∂δ

∣∣∣∣
δ=0

=
1∫

X fV |X(µ(x)|x) fX(x)dx
,

Ṗµ (x) =
∂Pµ

δ
(x)

∂δ

∣∣∣∣∣
δ=0

=
fV |X(µ(x)|x)∫

X fV |X(µ(x)|x) fX(x)dx
.

Combining Theorem 1.3 and Lemma 1.4, we obtain a representation of the unconditional

quantile effect under a location shift in the benefit function. We use Πτ,µ to denote this effect.

Corollary 1.5. Let the assumptions in Theorem 1.3 hold. Then under the location shift in the

benefit function given by (1.11), we have

Πτ,µ =
1

fY (yτ)

∫
X

E [1{Y (0)≤ yτ}|UD = P(x) ,X = x] Ṗµ (x) fX (x)dx

− 1
fY (yτ)

∫
X

E [1{Y (1)≤ yτ}|UD = P(x) ,X = x] Ṗµ (x) fX (x)dx, (1.12)

where

Ṗµ (x) =
∂Pµ

δ
(x)

∂δ

∣∣∣∣∣
δ=0

=
fV |X(µ(x)|x)∫

X fV |X(µ(x)|x) fX(x)dx
.

To bring our setting closer to that of Firpo et al. (2009) and shed more light on Theorem

1.3, we consider the special case where µ (x) = µ0 for a constant µ0 and V is independent of X .

In this case, the selection is based on unobservables only. We have

Pµ

δ
(x) = FV |X(µ0 + sµ (δ ) |x) = FV (µ0 + sµ (δ )),
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which does not depend on x. In particular, Pµ

0 (X) = FV (µ0) = p. The selection rule becomes

D = 1{UD ≤ p} , where UD is uniform on [0,1]. Using Lemma 1.4, we find that

Ṗµ =
∂Pµ

δ
(x)

∂δ

∣∣∣∣∣
δ=0

=
fV (µ0)∫

X fV |X(µ0|x) fX(x)dx
=

fV (µ0)∫
X fV (µ0) fX(x)dx

= 1.

In fact, we can also obtain this directly from Pµ

δ
(x) = p+δ . It then follows that the distribution

of X over the whole population is the same as that over the marginal subpopulation. As a result,

one of the asymptotic bias terms, namely B1τ , disappears.

Using Theorem 1.3 and Corollary 1.4, we obtain the following corollary.

Corollary 1.6. Let the assumptions in Theorem 1.3 hold. If µ (x) = µ0 for some constant µ0 and

V is independent of X , then

Πτ,µ =
1

fY (yτ)
E [1{Y (0)≤ yτ}−1{Y (1)≤ yτ}|UD = p] . (1.13)

In addition, Πτ,µ = Aτ,µ −Bτ,µ for

Aτ,µ =
1

fY (yτ)

∫
E [1{Y ≤ yτ}|D = 0,X = x] fX (x)dx

− 1
fY (yτ)

∫
E [1{Y ≤ yτ}|D = 1,X = x] fX (x)dx (1.14)

=
1

fY (yτ)
(E [1{Y ≤ yτ}|D = 0]−E [1{Y ≤ yτ}|D = 1]) (1.15)

and

Bτ,µ =
1

fY (yτ)

[
FY (0)|D (yτ |0)−FY (0)|UD (yτ |p)

]
− 1

fY (yτ)

[
FY (1)|D (yτ |1)−FY (1)|UD (yτ |p)

]
.

The representation of Πτ,µ in (1.13) shows that the unconditional quantile effect is

equal to the difference of the influence functions averaged over the conditional distribution of
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the outcome variable given UD = p. That is, the unconditional quantile effect is driven by the

individuals for whom UD = p. These individuals are ex-ante indifferent between choosing D = 1

and D = 0. They are on the margin—a small increase in the benefit will push them to switch

from non-participating (i.e., D = 0) to participating (i.e., D = 1). It is the switch that changes the

outcome of interest, and hence its unconditional distribution and unconditional quantiles.

If UD ⊥ U , then FY (d)|D (y|d) = FY (d)|UD (y|p) = FY (d) (y) for any y ∈ Y (d) and for

d = 0 and d = 1. As a result, Bτ = 0. Thus the asymptotic bias Bτ vanishes in the absence of

endogeneity. This is, of course, well expected.

1.2.4 Examples of Asymptotic Bias

In the presence of endogeneity, it is not easy to evaluate or even sign the asymptotic

bias. In general, the joint distribution of (U,UD) given the covariate X is needed for this purpose.

This is not atypical. For a nonlinear estimator such as the unconditional quantile estimator, its

asymptotic properties often depend on the full data generating process in a non-trivial way. This

is in sharp contrast with a linear estimator such as the OLS in a linear regression model whose

properties depend on only the first few moments of the data. Next, we present some examples in

which we can derive the asymptotic bias explicitly.

Example 1.7. Non-uniformity of Endogeneity Bias across Quantiles

Consider the model

Y (d) =U ∈ R, for d = 0,1,

Y = DY (1)+(1−D)Y (0),

D = 1{V ≤ 0} ,

where U and V are correlated. Noting that Y (0) = Y (1), the treatment has no effect on the

outcome, and so

1{Y (0)≤ yτ}−1{Y (1)≤ yτ}= 0.
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As a result, Πτ,µ = 0. By Corollary 1.6, Aτ,µ = Bτ,µ , that is, the estimator of Firpo et al. (2009)

is an estimator of the asymptotic bias only. In this case, since Y =U, we have

Bτ,µ =
1

fU(uτ)

[
FU |D(uτ |0)−FU |D(uτ |1)

]
,

where uτ is the τ-quantile of U: FU(uτ) = τ. This shows that the sign of the asymptotic bias

depends on FU |D(uτ |0)−FU |D(uτ |1). In the presence of endogeneity, the two distribution func-

tions FU |D(·|0) and FU |D(·|1) are not the same. Unless one distribution function first-order

stochastically dominates the other, it is necessarily true that Bτ,µ is positive for some quantile

levels and negative for others.

Figure 1.3 shows a case where the bias is positive for higher quantiles and negative for

lower quantiles. Thus it is not sufficient to use the sign of the correlation between U and V to

sign the asymptotic bias for the unconditional quantile effect at all quantile levels.

Figure 1.3. Non-uniform bias.

Example 1.8. Asymptotic Bias with Exogenous Treatment
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Consider the model

Y (0) = q(X)+U0,

Y (1) = q(X)+β +U1,

D = 1{V ≤ µ(x)} ,

Y = (1−D)Y (0)+DY (1),

where q(·) and µ (·) are functions of X, and X is independent of (U0,U1,V ). By Theorem 1.3,

and assuming that fU0|V = fU1|V , we have

Πτ,µ =
1

fY (yτ)

∫
X

[∫ yτ−q(x)

yτ−q(x)−β

fU0|V (u|µ (X))du
]

f̃X(x)dx

where

f̃X(x) =
fV (µ(x)) fX(x)∫

X fV (µ(x̌)) fX(x̌)dx̌
.

It follows from Corollary 1.4 that the apparent effect is

Aτ,µ =
1

fY (yτ)

∫
X

∫
∞

µ(X)

[∫ yτ−q(x)
−∞ fU0|V (u|v)du

]
fV (v)dv

1−FV (µ(x))
fX(x)dx

− 1
fY (yτ)

∫
X

∫ µ(x)
−∞

[∫ yτ−q(x)−β

−∞ fU1|V (u|v)du
]

fV (v)dv

FV (µ(x))
fX(x)dx.

Details of this and the expression for fY (yτ) can be found in the supplementary appendix.

To compute Πτ,µ and Aτ,µ numerically, we set β = 2, q(x) = µ(x) = ex, and we assume

that X is standard normal and that (U0,U1,V ) is normal with mean 0 and variance

Σ =


1 0 ρ

0 1 ρ

ρ ρ 1

 ,
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where ρ is the correlation between U0 and V , and between U1 and V . Different values of ρ lead

to different degrees of endogeneity. When ρ = 0, the treatment selection is exogenous.

Figure 1.4 plots the asymptotic bias Bτ,µ := Aτ,µ −Πτ,µ as a function of τ for ρ =

0, .25, .5, .75, .9. As in Example 1.7, we can see that the asymptotic bias is not uniform across

quantiles. Hence, any attempt to sign the bias based on the “sign” or degree of the endogeneity

(i.e., the sign or magnitude of ρ) is futile.

It is intriguing to see that, even in the case of exogenous treatment selection (i.e., ρ = 0),

we still have an asymptotic bias. When ρ = 0, the asymptotic bias from the second source is 0,

as

FY (0)|D,X (yτ |0,x) = FY (0)|UD,X (yτ |P(X) ,x) = FY (0)|X (yτ |x) ,

FY (1)|D,X (yτ |1,x) = FY (1)|UD,X (yτ |P(X) ,x) = FY (1)|X (yτ |x) .

The asymptotic bias from the first source is

B1τ,µ =
1

fY (yτ)

∫
X

[
FY |D,X (yτ |1,x)−FY |D,X (yτ |0,x)

]
Ṗ(X) fX (x)dx

− 1
fY (yτ)

∫
X

[
FY |D,X (yτ |1,x)−FY |D,X (yτ |0,x)

]
fX (x)dx.

In this example, Ṗ(x) 6= 1 and

FY |D,X (yτ |0,x)−FY |D,X (yτ |1,x) = Pr(ex +U0 < yτ)−Pr(ex +β +U1 < yτ) 6= 0

for all β 6= 0. So the asymptotic bias from the first source, B1τ,µ , is not equal to 0 when β 6= 0.

Why is there a bias when the treatment is exogenous? To improve the overall participation

rate from p to p+ δ , we change the benefit function by the same amount sµ(δ ), that is, from

µ (x) to µ(x)+ sµ(δ ). Depending on the value of x, such a change in the benefit function will

have a differential effect on the treatment rate. In other words, Pδ (x)−P(x) and hence Ṗ(x) ,
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will depend on x. As a result, the distribution of X over the whole population will not be the

same as that over the marginal subpopulation. This difference creates a wedge between the

unconditional quantile effect Πτ,µ and the average apparent effect Aτ,µ when the “apparent”

difference FY |D,X (yτ |0,x)−FY |D,X (yτ |1,x) depends on x.
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Figure 1.4. Asymptotic bias for ρ = 0,0.25,0.5,0.75,0.9.

1.3 Continuous Target Variable Case

In this case, the model is Y = r(X ,W̃ ,U), and X is a target variable with absolutely

continuous distribution function FX . In this case, the thought experiment is that the policy maker

successfully manipulates X to achieve X∗, and obtain a counterfactual outcome Y ∗= r(X∗,W̃ ,U).

The goal is to characterize what happens to the unconditional distribution of the outcome. The

distribution Y is a transformation of the joint distribution of (X ,W̃ ,U). Thus, the unconditional

distribution of Y ∗ is not well-defined until we do not specify the new joint distribution of

(X∗,W̃ ,U).
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Heuristically, an identification argument runs as follows:

FY ∗(y) =
∫
X ∗

FY ∗|X∗=x(y)dFX∗(x)

by the law of iterated expectations. Suppose that FY ∗|X∗=x(y) = FY |X=x(y), and that the supports

X ∗ = X , then

FY ∗(y) =
∫
X

FY |X=x(y)dFX∗(x)

and we have identified FY ∗(y). This is, basically, the identification strategy of Firpo et al. (2009).

In this section, we try to disentangle exactly what is behind the distributional assumption

FY ∗|X∗=x(y) = FY |X=x(y), and what are the biases associated when it is not satisfied. We will also

be more careful when dealing with the support X ∗ and how it relates to X .

Assumption 1.7 (Support). The support of the target variable X is [xl,xu] ⊂ [−∞,∞], and its

density vanishes at the boundary: fX(xl) = fX(xu) = 0.

We will consider counterfactual policies in the form of a location shift. To this end, recall

that, for some ε > 0, we defined Nε := {δ : |δ | ≤ ε} .

Assumption 1.8 (Location Shift). For any ε > 0, and δ ∈ Nε , X∗ = X +δ .

We will focus on the marginal effect, which is defined as

Mτ = lim
δ→0

F−1
Y ∗ (τ)−F−1

Y (τ)

τ

whenever this limit exists, where Y ∗ = r(X +δ ,W̃ ,U) under Assumption 1.8.

We would like to characterize the counterfactual distribution FY ∗(y). Since we are

interested in X∗, we will define Ũ := (W̃ ,U)′, and denote its support by Ũ . We have

FY ∗(y) =
∫ xu+δ

xl+δ

∫
Ũ
1{r(x, ũ)≤ y} fX∗,Ũ(x, ũ)dũdx.
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Assumption 1.9 (Conditional Density). The joint density of (X ,Ũ) is given by fŨ ,X(u,x) =

fŨ |X=x(u) fX(x).

Under assumption 1.9 we can find the joint density of (X∗,Ũ). We have

Pr(X∗ ≤ x,W̃ ≤ w,U ≤ u) = Pr(X ≤ x−δ ,W̃ ≤ w,U ≤ u),

so that for x ∈ (xl +δ ,xu +δ ), we have

fX∗,Ũ(x, ũ) = fŨ ,X(ũ,x−δ ) = fŨ |X=x−δ
(ũ) fX(x−δ ).

Therefore, we can write

FY ∗(y) =
∫ xu+δ

xl+δ

∫
Ũ
1{r(x, ũ)≤ y} fŨ |X=x−δ

(ũ) fX(x−δ )dũdx

=
∫ xu

xl

∫
Ũ
1{r(x+δ , ũ)≤ y} fŨ |X=x(ũ) fX(x)dũdx

Using the indicator function to keep track of the limits of integration we have

FY ∗(y) =
∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu} fŨ |X=x−δ

(ũ) fX(x−δ )dũdx

and

FY (y) =
∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x≤ xu} fŨ |X=x(ũ) fX(x)dũdx.
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So, the gap between FY ∗(y) and FY (y) can be decomposed as

FY ∗(y)−FY (y)

=
∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu} fŨ |X=x−δ

(ũ) fX(x−δ )dũdx

−
∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x≤ xu} fŨ |X=x(ũ) fX(x)dũdx

=
∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu}

×
[

fŨ |X=x−δ
(ũ) fX(x−δ )− fŨ |X=x(ũ) fX(x)

]
dũdx

+
∫
R

∫
Ũ
1{r(x, ũ)≤ y}

[
1{xl ≤ x−δ ≤ xu}−1{xl ≤ x≤ xu}

]
fŨ |X=x(ũ) fX(x)dũdx.

The second term, the one involving the difference
[
1{xl ≤ x−δ ≤ xu}−1{xl ≤ x≤ xu}

]
is

exactly zero when xl =−∞ and xu = ∞. The first term can be further decomposed to obtain three

terms that explain the gap.

FY ∗(y)−FY (y)

=
∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu} fŨ |X=x−δ

(ũ)
[

fX(x−δ )− fX(x)
]

dũdx

+
∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu} fX(x)

[
fŨ |X=x−δ

(ũ)− fŨ |X=x(ũ)
]

dũdx

+
∫
R

∫
Ũ
1{r(x, ũ)≤ y}

[
1{xl ≤ x−δ ≤ xu}−1{xl ≤ x≤ xu}

]
× fŨ |X=x(ũ) fX(x)dũdx.

The next step is to do a Taylor expansion around δ = 0, and provided rigorous conditions

under which the remainder, which is integrated, is of order o(|δ |). We write

FY ∗(y)−FY (y) = I1(y)+I2(y)+I3(y) (1.16)

and we treat each term at a time. We need two additional assumptions. One concerning
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smoothness of densities, and one concerning domination.

Assumption 1.10 (Differentiable densities). 1. The density fX(x) is continuously differen-

tiable in (xl,xu), with derivative given by f ′X(x);

2. The map x 7→ fŨ |X=x(ũ) is continuously differentiable in (xl,xu) for every ũ ∈ W ×U ,

with derivative with respect to x given by f ′Ũ |X=x(ũ).

Assumption 1.11 (Domination). The following domination conditions hold

∫
R

∫
Ũ

sup
δ∈Nε

[
fŨ |X=x−δ

(ũ)
]

sup
δ ′∈Nε

| f ′X(x−δ
′)|dũdx < ∞, (1.17)

and

∫
R

∫
Ũ

sup
δ∈Nε

[
f ′Ũ |X=x−δ

(ũ)
]

fX(x)dũdx < ∞. (1.18)

Lemma 1.5. Under Assumptions 1.7, 1.8, 1.9, 1.10, and 1.11

lim
δ→0

sup
y∈Y

∣∣∣∣FY ∗(y)−FY (y)
δ

− Ḟ(y)
∣∣∣∣= 0

where

ḞY (y) = E
[

∂FY |X=x(y)
∂x

∣∣∣∣
x=X

]
−E

[
1
{

r(X ,Ũ)≤ y
} ∂

∂x
log

fX ,Ũ(x, ũ)

fX(x) fŨ(ũ)

∣∣∣∣
x=X ,ũ=Ũ

]
. (1.19)

Corollary 1.7. The marginal effect at the τ-quantile is then

Mτ =−
1

fY (yτ)
E
[

∂FY |X=x(yτ)

∂x

∣∣∣∣
x=X

]
︸ ︷︷ ︸

:=Aτ : Estimand of Firpo et al. (2009)

+
1

fY (yτ)
E

[
1
{

r(X ,Ũ)≤ yτ

} ∂

∂x
log

fX ,Ũ(x, ũ)

fX(x) fŨ(ũ)

∣∣∣∣
x=X ,ũ=Ũ

]
︸ ︷︷ ︸

:=Bτ : Asymptotic Bias
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Thus, the marginal effect Mτ , consists of an apparent effect Aτ , studied by Firpo et al.

(2009), and an asymptotic bias Bτ . Now, we turn our focus to the bias term. Recall that

Ũ := (W,U). So we can write

Bτ :=
1

fY (yτ)
E

[
1{r(X ,W,U)≤ yτ}

∂

∂x
log

fX ,W,U(x,w,u)
fX(x) fW,U(w,u)

∣∣∣∣
x=X ,w=W,u=U

]
.

where W is actually observable. We actually have

∂

∂x
log

fX ,W,U(x,w,u)
fX(x) fW,U(w,u)

=
∂

∂x
log

fX ,W,U(x,w,u)
fX(x) fW (w) fU(u)

Let us define

I (x,w,u) := log
fX ,W,U(x,w,u)

fX(x) fW (w) fU(u)

and

Ix(x,w,u) :=
∂

∂x
log

fX ,W,U(x,w,u)
fX(x) fW (w) fU(u)

.

We note that E
[
I (X ,Ũ)

]
is called the mutual information between X and Ũ . Thus, we

can write the bias as

Bτ :=
1

fY (yτ)
E [1{r(X ,W,U)≤ yτ}Ix(X ,W,U)] .

Remark 1.8. Unless fY is bounded away from 0, it is not possible to bound the bias uniformly

across quantiles. If, on the other hand, fY (y)> γ for some γ and every y ∈ Y . Then

|Bτ | ≤
1
γ

E [|Ix(X ,W,U)|] .

uniformly across τ .
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Remark 1.9. The sign of the bias Bτ is unlikely to be the same across quantiles. This is a source

of difficulty for practitioners when trying to asses the direction bias a priori.

1.3.1 Omitted Variable Bias

A common source of bias that worries practitioners is omitted variable bias. Suppose

that the model is Y = r(X ,W,U), but we omit W . The apparent part of the marginal effect, Aτ ,

remains unchanged and is unaffected by this omission. The following lemma contains a result

on the asymptotic bias Bτ .

Theorem 1.8. Under Assumptions 1.7, 1.8, 1.9, 1.10, 1.11, and either 1) X ,W ⊥ U, or 2)

X ⊥U |W, then

Bτ =−
1

fY (yτ)
E

[
∂FY |X=x,W=w(yτ)

∂x

∣∣∣∣
x=X ,w=W

]
−Aτ .

Thus, the marginal effect Mτ is

Mτ =−
1

fY (yτ)
E

[
∂FY |X=x,W=w(yτ)

∂x

∣∣∣∣
x=X ,w=W

]
.

This result highlights the correct way to include covariates in the (conditionally) exoge-

nous case. Furthermore, if we additionally require that X and W be independent, then

Mτ =−
1

fY (yτ)
E

[
∂FY |X=x,W=w(yτ)

∂x

∣∣∣∣
x=X ,w=W

]

=− 1
fY (yτ)

E
[

∂FY |X=x(yτ)

∂x

∣∣∣∣
x=X

]
= Aτ

and the estimation procedure is much simpler in this case, since we can safely ignore W .
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1.4 Conclusion

In this chaper we study the unconditional quantile effect with either a binary treatment

or a continuous covariate. In the first case, we find that the unconditional quantile regression

estimator that neglects endogeneity can be severely biased. Furthermore, the bias may not

be uniform across quantiles, and any attempt to sign the bias a priori requires very strong

assumptions on the data generating process. More intriguingly, the unconditional quantile

regression estimator can be inconsistent even if the treatment status is exogenously determined.

This happens when the adjustment given by the derivative of the propensity score is neglected.

For example, this is the case when treatment selection is partly determined by covariates that

also influence the outcome variable. For the second case, we show how to explicitly obtain a

bias formula for the case of the manipulation of a continuous covariate. The bias is also hard to

sign a priori, and unlikely to be uniform across quantiles.

Chapter 1, in part, is being prepared for submission for publication, and is coauthored

with Yixiao Sun. The dissertation author, Julián Martı́nez-Iriarte, was the primary author of this

chapter.
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Chapter 2

Identification and Estimation with an In-
strumental Variable

2.1 Introduction

In this chapter we show that if an instrumental variable is available, the UQE can be point

identified. We follow Heckman and Vytlacil (1999, 2001a, 2005) and use a threshold-crossing

model for treatment selection. In this case, an instrumental variable affects the selection, but it

is absent from the outcome equation. We show that the threshold-crossing model implies that

individuals who are indifferent between taking up the treatment and not taking up the treatment

will drive the unconditional quantile effect. We introduce a new class of marginal treatment

effects (MTEs) and show that the unconditional quantile effect can be represented as a weighted

average of these MTEs. The MTE we introduce is based on the influence function of the quantile

functional. It is related to the marginal treatment effect introduced by Bjorklund and Moffitt

(1987) and further studied by Heckman (1997) but is also distinctly different. Identification is

achieved using the local instrumental variable approach as in Carneiro and Lee (2009).

A second contribution is to show that the unconditional quantile effect and the marginal

policy relevant treatment effect (MPRTE) of Carneiro et al. (2010) belong to the same family of

parameters. To the best of our knowledge, this was not previously recognized in either literature.

This stems from the fact that our method is more general and allows us to estimate the effect on

any (well-behaved) functional of the outcome distribution. In this case, we just need to work
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with the influence function of this functional. Common examples of a general functional include

the quantiles, the mean, and the Gini coefficient.

Finally we develop methods of statistical inference on the UQE when the binary treatment

is endogeneous. We take a nonparametric approach but allow the propensity score function to

be either parametric or nonparametric. We establish the asymptotic distribution of the UQE

estimator. This is a formidable task, as the UQE estimator is a four-step estimator, and we have

to pin down the estimation error from each step. Perhaps surprisingly, we show that the error

from estimating the propensity score function, either parametrically or nonparametrically, does

not affect the asymptotic variance of our UQE estimator.

We are not the first to consider unconditional quantile regressions under endogeneity.

Kasy (2016) focuses on the ranking of counterfactual policies and, for the case of discrete

regressors, allows for endogeneity. However, one key difference from our approach is that the

counterfactual policies analyzed in Kasy (2016) are randomly assigned conditional on a covariate

vector. In our setting, selection into treatment follows a threshold-crossing model, where we

use the exogenous variation of an instrument to obtain different counterfactual scenarios. Our

goal is not to rank potential policies, although our method can be used to rank the class of

policies, each of which changes a different instrumental variable. For the case of continuous

endogenous covariates, Rothe (2010) shows that the control function approach of Imbens and

Newey (2009) can be used to achieve identification. Unlike Rothe (2010), we do not make the

unconfoundedness assumption here.

Our general treatment of the problem using functionals is closely related to that of Rothe

(2012). Rothe (2012) analyzes the effect of an arbitrary unconditional change in the distribution

of a target covariate, either continuous or discrete, on some feature of the distribution of the

outcome variable. By assuming a form of conditional independence, for the case of continuous

target covariates, Rothe (2012) generalizes the approach of Firpo et al. (2009). However, for the

case of a discrete treatment, bounds are obtained by assuming that either the highest-ranked or

lowest-ranked individuals enter the program under the new policy.
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More recently, Zhou and Xie (2019) provide a new form of the marginal treatment effect

parameter that conditions on the propensity score instead of on the whole vector of covariates.

Their results allow them to obtain an easy representation of the mean effect when individuals are

at the margin of indifference. While our results are also driven by individuals at the margin of

indifference, we do not use their redefinition of the marginal treatment effect parameter.

This chapter proceeds as follows: Section 2.2 develops the marginal treatment effect

approach and discusses identification. Section 2.3 considers the case of a general functional.

Section 2.4 formally establishes the link between the unconditional quantile effect and the

marginal policy relevant treatment effect. We consider estimation and inference under a paramet-

ric propensity score in Section 2.5 and under a nonparametric propensity score in Section 2.6.

We revisit the empirical application of Carneiro et al. (2011) and focus on unconditional quantile

effects in Section 2.7. Section 2.8 concludes. We relegate all proofs to the appendix.

2.2 Unconditional Quantile Regressions with an Instrument

In Chapter 1, we have shown that the estimator of Firpo et al. (2009) will be asymptotically

biased under endogeneity. It is hard to sign the bias, but more importantly, the bias may not be

uniform across quantiles, as shown in Figure 1.4. However, if a special covariate is available, the

unconditional quantile effect can be point identified and consistently estimated.

We consider the same model as before. We partition the covariates W into two parts:

W = (Z,X).

We assume that Z ∈ R is a special variable that does not enter the potential outcome equations.

In addition, we make the following assumptions, taken directly from Heckman and Vytlacil

(1999, 2001a, 2005).

Assumption 2.1. Relevance and Exogeneity
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(a) µ(Z,X) is a non-degenerate random variable conditional on X.

(b) (U0,U1,V ) is independent of Z conditional on X.

Assumption 2.1(a) is a relevance assumption: for any given level of X , the variable Z can

induce some variation in D. Assumption 2.1(b) is referred to as an exogeneity assumption. The

two assumptions are essentially the conditions for a valid instrumental variable, hence we will

refer to Z as the instrumental variable.

Assumption 2.1(b) allows us to write

UD = FV |Z,X(V |Z,X) = FV |X(V |X).

Assumption 2.1(b) then implies that (U0,U1,UD) is independent of Z conditional on X . Based

on the value UD = u, we define a marginal treatment effect for the τ-quantile, which will be a

basic building block for the unconditional quantile effect.

Definition 2.1. The marginal treatment effect for the τ-quantile is defined as1

MTEτ (u,x) = E [1{Y (0)≤ yτ}−1{Y (1)≤ yτ} |UD = u,X = x] ,

where yτ is the τ-quantile of Y = DY (1)+(1−D)Y (0), that is, Pr(Y ≤ yτ) = τ .

To aid in the understanding of MTEτ , we compare it to the marginal treatment effect of

Heckman and Vytlacil (1999, 2001a, 2005): MTE(u,x) := E[Y (1)−Y (0) |UD = u,X = x]. For

1We could also define

MTEτ (u,x) = E
[

τ−1{Y (1)≤ yτ}
fY (yτ)

− τ−1{Y (0)≤ yτ}
fY (yτ)

∣∣∣∣UD = u,X = x
]

=
1

fY (yτ)
E [1{Y (0)≤ yτ}−1{Y (1)≤ yτ} |UD = u,X = x] ,

but we omit the multiplicative factor 1
fY (yτ )

for notational simplicity.
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a given individual, Y (1)−Y (0) is the (individual-level) treatment effect, so that the MTE(u,x)

is the average treatment effect for individuals with characteristics UD = u,X = x.

Define ∆(yτ) :=1{Y (0)≤ yτ}−1{Y (1)≤ yτ}, which is the argument of the conditional

expectation in our definition of MTEτ . The random variable ∆(yτ) can take three values:

∆(yτ) =



1 if Y (0)≤ yτ and Y (1)> yτ

0 if
[
Y (0)> yτ and Y (1)> yτ

]
or
[
Y (0)≤ yτ and Y (1)≤ yτ

]
−1 if Y (0)> yτ and Y (1)≤ yτ

For a given individual, ∆(yτ) = 1 when the treatment induces the individual to “cross” the

τ-quantile yτ of Y from below, and ∆(yτ) = −1 when the treatment induces the individual to

“cross” the τ-quantile yτ of Y from above. In the first case the individual benefits from the

treatment while in the second case the treatment harms her. The intermediate case, ∆(yτ) = 0,

occurs when the treatment induces no quantile crossing of any type. Thus the unconditional

expected value E[∆(yτ)] equals the difference between the proportion of individuals who benefit

from the treatment and the proportion of individuals who are harmed by it. For the UQE, whether

the treatment is beneficial or harmful is measured in terms of quantile crossing. Among the

individuals with characteristics UD = u,X = x, MTEτ (u,x) is then the difference between the

proportion of individuals who benefit from the treatment and the proportion of individuals who

are harmed by it. Thus, MTEτ (u,x) is positive if more individuals increase their outcome above

yτ , and it is negative if more individuals decrease their outcome below yτ .

MTEτ (u,x) is different from the quantile analogue of the marginal treatment effect of

Carneiro and Lee (2009), which is defined as F−1
Y (1)|UD,X

(τ|u,x)−F−1
Y (0)|UD,X

(τ|u,x). MTEτ (u,x)

is proportional to the difference of (the conditional expectations of) the influence functions for

the τ-quantile of Y (0) and Y (1). The proportionality factor is fY (yτ), the unconditional density

of Y evaluated at the τ-quantile yτ of Y ; see footnote 1.
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2.2.1 UQE under Location Shift, Revisited

In the new setting with an instrument, it is worthwhile revisiting Corollary 1.5. Note that

if we induce a location shift in the benefit function, the unconditional quantile effect Mτ,µ is still

given by Corollary 1.5 as long as the same assumptions hold for W = (Z,X). Using Assumption

2.1(b), we can obtain a representation of Mτ,µ in terms of the marginal treatment effect for the

τ-quantile. This representation will be useful for identification, as we show later in Section 2.2.3.

Theorem 2.1. Let Assumptions 1.4–1.6 and Assumption 2.1(b) hold. Assume further that

fY (yτ)> 0. Then under the location shift in the benefit function given by (1.11), we have

Mτ,µ =
1

fY (yτ)

∫
W

MTEτ(P(w),x)Ṗµ (w) fW (w)dw,

where

Ṗµ (w) =
fV |X(µ(w)|x)

E
[

fV |X(µ(W )|X)
] .

The main difference between Theorem 2.1 and Corollary 1.5 is that conditioning on

W = w has been replaced by conditioning on X = x only. This is possible because of Assumption

2.1(b). When (U0,U1,V ) is independent of Z conditional on X , we know that (U0,U1) is

independent of Z given (UD,X) , as

fU,Z|UD,X(u,z|uD,x) =
fU,UD,Z|X(u,uD,z|x)

fUD|X(uD|x)
=

fU,UD|X(u,uD|x)
fUD|X(uD|x)

· fZ|X(z|x)

= fU |UD,X(u|uD,x) · fZ|UD,X(z|uD,x). (2.1)

Given this and the assumption that Z does not enter Y (0) or Y (1), we have, for w = (z,x),

E [1{Y (0)≤ yτ}−1{Y (1)≤ yτ} |UD = u,W = w]

= E [1{Y (0)≤ yτ}−1{Y (1)≤ yτ} |UD = u,Z = z,X = x]

= E [1{Y (0)≤ yτ}−1{Y (1)≤ yτ} |UD = u,X = x] .
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Thus we can indeed replace “conditioning on W = w” by “conditioning on X = x.”

2.2.2 UQE under Instrument Intervention

In this subsection, we consider a different kind of manipulation of the propensity score:

we shift the location of the instrumental variable Z. To be precise, suppose we shift Z to

Zδ = Z +g(W )sz(δ ), where g(·) is a measurable function to be determined in the sense that it

is user specified. Recall that we partition the covariates as W = (Z,X). Note that while sz(δ ) is

the same for all individuals, g(W ) depends on the value of W and hence it is individual specific.

Thus, we allow the intervention to be heterogeneous.

A simple homogenous intervention is obtained by setting g(·) ≡ 1, in which case we

have an additive shift in Z. An example of an heterogeneous intervention is given by g(W ) = Z,

in which case we obtain a multiplicative shift of order 1+ sz(δ ). Both of these cases have been

studied by Carneiro et al. (2010).

Selection into treatment is now governed by

Dδ = 1{V ≤ µ(Z +g(W )sz(δ ),X)} , (2.2)

where, for a given g(·), the choice of sz(δ ) guarantees that Pr(Dδ = 1) = p+δ .

Lemma 2.1. Assume that (i) (V,X) are absolutely continuous random variables with joint density

fV,X (v,x) given by fV |X (v|x) fX (x) ; (ii) fV |X (v|x) is continuous in v for almost all x ∈X ; (iii)

µ (z,x) is continuously differentiable in z for almost all x ∈X ; (iv) letting µ ′z (z,x) be the partial

derivative of µ (z,x) with respect to z, we have

E sup
δ∈Nε

[
fV |X (µ (Z +g(W )sz (δ ) ,X) |X)µ

′
z (Z +g(W )sz (δ ) ,X)

]
g(W )< ∞;
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(v) for each δ ∈ Nε ,

E
[

fV |X (µ (Z +g(W )sz (δ ) ,X) |X)µ
′
z (Z +g(W )sz (δ ) ,X)g(W )

]
6= 0.

Then

∂ sz(δ )

∂δ

∣∣∣∣
δ=0

=
1

E
[

fV |W (µ (W ) |W )µ ′z (W )g(W )
] ,

∂Pδ (z,x)
∂δ

∣∣∣∣
δ=0

=
fV |W (µ(w)|w)µ ′z (w)g(w)

E
[

fV |W (µ (W ) |W )µ ′z (W )g(W )
] .

Theorem 2.2. Let Assumptions 1.4–1.6 and 2.1(b), and the assumptions of Lemma 2.1 hold.

Assume further that fY (yτ)> 0. Then, the unconditional quantile effect of the shift in Z given in

(2.2) is

Mτ,z =
1

fY (yτ)

∫
W

MTEτ (P(w) ,x) Ṗz (w) fW (w)dw,

where

Ṗz(w) =
∂Pδ (w)

∂δ

∣∣∣∣
δ=0

=
fV |X (µ(w)|x)µ ′z (w)g(w)

E
[

fV |X (µ (W ) |X)µ ′z (W )g(W )
] .

It can be seen that the main difference between Mτ,µ in Theorem 2.1 and Mτ,z in Theorem

2.2 lies in the adjustment given by the derivative of the modified propensity score Pδ (w). For

Mτ,z, the adjustment to the population weights includes the derivative of the benefit function,

µ ′z(·), and the function g(·). Different adjustments lead to different distributions of W over the

marginal subpopulation.

Note that if µ ′z(w) is known and different from 0 for all w ∈W , then choosing g(w) =

1/µ ′z(w) yields Mτ,z = Mτ,µ . In the special case where g(w) = µ ′z(w) = 1 for all w ∈W , the two

effects coincide. Note that the condition µ ′z (w) = 1 for all w ∈W holds only if

µ (z,x) = z+ µ̃ (x)
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for some function µ̃ (·) . So, if we think of µ (·, ·) as the utility function, then the utility function

is required to take a quasilinear form with z as the numeraire. Shifts to the benefit function and

shifts to the instrument (upon choosing g(·)≡ 1) are then equivalent.

2.2.3 Identification of MTEτ

To investigate the identifiability of Mτ,z, we study the identifiability of MTEτ and the

weight function or the RN derivative ∂Pδ (w)
∂δ

∣∣∣
δ=0

separately. The proposition below shows that

MTEτ (u,x) is identified for every u = P(w) for some w ∈W .

Proposition 2.1. Let Assumptions 1.5(a), 1.5(b), and 2.1(b) hold. Then, for every u = P(w) with

w ∈W , we have

MTEτ(u,x) =−
∂E [1{Y ≤ yτ}|P(W ) = u,X = x]

∂u
. (2.3)

Proposition 2.1 can be proved using Theorem 1 in Carneiro and Lee (2009). In the

supplementary appendix, we provide a self-contained proof that is directly connected to the idea

of shifting the propensity score.

The key results that we use to establish Proposition 2.1 are

E [G (Y (1)) |P(W ) = P(w),UD ≤ P(w),X = x] = E [G (Y (1))|UD ≤ P(w),X = x] ,

E [G (Y (0))|P(W ) = P(w),UD > P(w),X = x] = E [G (Y (0))|UD > P(w),X = x] ,

where G (·) is a bounded function with G (·) = 1{· ≤ yτ} as a special case. These results hold

under the assumption of instrument exogeneity. Without them, we have only that

∂E [G (Y )|P(W ) = u,X = x]
∂u

= E [G (Y (1))|P(W ) = u,UD = u,X = x]

− E [G (Y (0))|P(W ) = u,UD = u,X = x]

+
∫ u

0

∂E [G (Y (1))|P(W ) = u,UD = ũ,X = x]
∂u

dũ

+
∫ 1

u

∂E [G (Y (0))|P(W ) = u,UD = ũ,X = x]
∂u

dũ. (2.4)
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Under the assumption of instrument exogeneity (and the assumption that Z does not affect the

potential outcomes directly), we have that

∂E [G (Y (1))|P(W ) = u,UD = ũ,X = x]
∂u

= 0

when ũ≤ u, and that

∂E [G (Y (0))|P(W ) = u,UD = ũ,X = x]
∂u

= 0

when ũ > u. Hence, the last two terms in (2.4) disappear, and conditioning on P(W ) = u in

the first two terms can be dropped. Therefore, a key identification assumption for MTEτ is the

assumption of instrument exogeneity.

2.2.4 Identification of the RN Derivative

In this subsection, we investigate the identification of the RN derivative Ṗz(w) in the

representation of Mτ,z. By Lemma 2.1 together with Assumption 2.1(b), we have

Ṗz(w) =
∂Pδ (w)

∂δ

∣∣∣∣
δ=0

=
fV |X (µ(w)|x)µ ′z (w)g(w)

E
[

fV |X (µ (W ) |X)µ ′z (W )g(W )
] ,

where µ ′z (w) := ∂ µ(z,x)
∂ z . Under Assumption 2.1(b), the propensity score becomes

P(w) = Pr(V ≤ µ (W ) |W = w)

= FV |Z,X(µ(z,x)|z,x) = FV |X(µ(z,x)|x). (2.5)

Therefore,
∂P(w)

∂ z
= fV |X(µ(z,x)|x)µ ′z (z,x) = fV |X(µ(w)|x)µ ′z (w) .

52



It is now clear that Ṗz(w) can be represented using ∂P(w)
∂ z and g(w) . We formalize this in the

following proposition.

Proposition 2.2. Let Assumption 2.1(b) and the assumptions in Lemma 2.1 hold. Then

Ṗz(w) =
∂Pδ (w)

∂δ

∣∣∣∣
δ=0

=

∂P(w)
∂ z g(w)

E
[

∂P(W )
∂ z g(W )

] . (2.6)

Since g(w) is known and ∂P(w)
∂ z is identified, Ṗz(w) is also identified. As in the case

of MTEτ identification, Assumption 2.1(b) plays a key role in identifying Ṗz(w). Without the

assumption that V is independent of Z conditional on X , we can have only that

Ṗz(w) =
fV |W (µ(w)|w)µ ′z (w)g(w)

E
[

fV |W (µ (W ) |W )µ ′z (W )g(W )
]

and
∂P(w)

∂ z
= fV |Z,X(µ(w)|w)µ ′z (w)+

∂FV |Z,X(µ(w)|z̃,x)
∂ z̃

|z̃=z.

The presence of the second term in the above equation invalidates the identification result in

(2.6).

Using Propositions 2.1 and 2.2, we can represent Mτ,z as

Mτ,z =−
1

fY (yτ)

∫
W

∂E [1{Y ≤ yτ}|P(W ) = P(w),X = x]
∂P(w)

×
∂P(w)

∂ z g(w)

E
[

∂P(W )
∂ z g(W )

] fW (w)dw. (2.7)

All objects in the above are point identified, hence Mτ,z is point identified.

We note that, in general, Mτ,µ is not point identified. Even if there is a valid instrument

such that MTEτ(u,x) is identified, Ṗµ(w), the RN derivative in the definition of Mτ,µ , may not
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be point identified. Observing that

Ṗµ(w) =
∂Pδ (w)

∂δ

∣∣∣∣
δ=0

=
fV |X (µ(w)|x)

E
[

fV |X (µ (W ) |X)
] ,

we see that, in general, Ṗµ(w) can be identified using the instrument in only the special case

where µ ′z(w) = 1 for all w ∈W . In this special case, Ṗµ(w) = Ṗz(w).

When Ṗµ(w) is not identified, Mτ,µ is also not identified. The most we can do in such

a case is to bound the unconditional quantile effect. Suppose Ṗµ(w) has the same sign so that

Ṗµ(w)≥ 0 for all w ∈W .2 Then we have

Mτ,µ =
∫
W

MTEτ(P(w),x)Ṗµ(w) fW (w)dw

∈
[

inf
w∈W

MTEτ(P(w),x), sup
w∈W

MTEτ(P(w),x)
]

because
∫
W Ṗµ(w) fW (w) = 1. We leave the details of the bound approach under partial identifi-

cation for future research.

2.3 General Unconditional Policy Effects under Endogene-
ity

Let F ∗ be the space of finite signed measures ν on Y ⊆ R with distribution func-

tion Fν (y) = ν(−∞,y] for y ∈ Y . We endow F ∗ with the usual supremum norm: for two

distribution functions Fν1 and Fν2 associated with the signed measures ν1 and ν2 on Y , we

define ‖Fν1−Fν2‖= supy∈Y |Fν1 (y)−Fν2 (y)| . In this section, we consider a general functional

ρ : F ∗→ R and study the general unconditional effect.

The baseline model is the same as in Section 2.2. As before, we modify the propensity

score to improve the treatment take-up rate from p to p+δ . The (general) unconditional policy

effect is defined to be the marginal change in ρ(FYδ
) in the limit as δ goes to 0.

2Given that
∫
W Ṗµ(w) fW (w) = 1, it is impossible that Ṗµ(w)≤ 0 for all w ∈W .
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Definition 2.2. General Unconditional Policy Effect

The general unconditional policy effect for the functional ρ is defined as

Mρ = lim
δ→0

ρ(FYδ
)−ρ(FY )

δ

whenever this limit exists.

The definition above is the same as that of the marginal partial distributional policy effect

defined in Rothe (2012). The term we use is closer to those in Firpo et al. (2009).

2.3.1 Characterization of the General Unconditional Policy Effect

We first consider a Hadamard differentiable functional ρ. For completeness, we provide

the definition of Hadamard differentiability below.

Definition 2.3. ρ : F ∗→ R is Hadamard differentiable at F ∈F ∗ if there exists a linear and

continuous functional ρ̇F :F ∗→ R such that for any G ∈F ∗ and Gδ ∈F ∗ with

lim
δ→0

sup
y∈Y
|Gδ (y)−G(y) |= 0,

we have

lim
δ→0

ρ(FY +δGδ )−ρ(FY )

δ
= ρ̇F (G) .

Recall that by Lemma 1.3 we have the expansion

FYδ
(y) = FY (y)

+ δE
[{

FY (1)|UD,W (y|P(W ) ,W )−FY (0)|UD,W (y|P(W ) ,W )
}

Ṗ(W )
]
+RF(δ ;y),

where supy∈Y |RF(δ ;y)|= o(|δ |) as δ → 0. Taking

Gδ (y) =
1
δ

[
FYδ

(y)−FY (y)
]
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and

G(y) = E
[{

FY (1)|UD,W (y|P(W ) ,W )−FY (0)|UD,W (y|P(W ) ,W )
}

Ṗ(W )
]
, (2.8)

we have

lim
δ→0

sup
y∈Y
|Gδ (y)−G(y) |= 0.

Hence, under the Hadamard differentiability of ρ, we obtain

Mρ = lim
δ→0

ρ(FYδ
)−ρ(FY )

δ
= lim

δ→0

ρ(FY +δGδ )−ρ(FY )

δ
= ρ̇F (G)

=
∫
Y

ψ(y,ρ,FY )dG(y) ,

where ψ(y,ρ,FY ) is the influence function of ρ at FY . Plugging (2.8) into this result yields the

following theorem.

Theorem 2.3. Let the assumptions in Lemma 1.3 (i.e., Assumptions 1.4–1.6) hold. Assume

further that ρ : F ∗→ R is Hadamard differentiable. Then

Mρ =
∫
Y

ψ(y,ρ,FY )E
[{

fY (1)|UD,W (y|P(W ) ,W )− fY (0)|UD,W (y|P(W ) ,W )
}

Ṗ(W )
]

dy. (2.9)

Define

MTEρ (u,w) = E [ψ(Y (1) ,ρ,FY )−ψ(Y (0) ,ρ,FY )|UD = u,W = w] . (2.10)

Then

Mρ =
∫
W

MTEρ (u,w) Ṗ(w) fW (w)dw. (2.11)

Hence, the general unconditional policy effect Mρ can be represented as a weighted average of

MTEρ (u,w) over the marginal subpopulation.

Consider the quantile functional: ρτ(F) = F−1(τ). It is well known that this functional
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ρτ(·) is Hadamard differentiable, and its influence function is

ψ(y,ρτ ,FY ) =
τ−1{y≤ yτ}

fY (yτ)
. (2.12)

Plugging this into (2.10) yields

MTEτ (u,w) =
1

fY (yτ)
E [1{Y (0)≤ yτ}−1{Y (1)≤ yτ} |UD = u,W = w] .

This is the same as MTEτ in Definition 2.1 except for the scaling factor fY (yτ) and the absence

of the instrument in the conditioning set. The representation in Theorem 2.3 is then exactly the

same as the representation in Theorem 1.3.

Following Firpo et al. (2009), we may construct an unconditional regression using

ψ(y,ρτ ,FY ) as the dependent variable and D and other covariates as the independent variables.

Like the UQR estimator, such an estimator will be inconsistent for Mρ , and its asymptotic

bias can be similarly decomposed into two sources. The identification of Mρ under instrument

intervention for a general ρ can be established in the same way as that for the quantile functional.

We omit the details here.

While Theorem 2.3 covers general functionals, it does not cover the mean functional

ρ(F) =
∫
Y ydF(y) unless Y is a bounded set. When Y is unbounded, the mean functional

is not continuous on (F ∗,‖·‖
∞
) and hence is not Hadamard differentiable (see Exercise 7 in

Chapter 20 in van der Vaart (1998)). In such a case, we opt for a direct approach by showing that

lim
δ→0

1
δ

∫
Y

ydRF(δ ;y) = 0, (2.13)
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so that

Mρ =
∫
Y

yE
[{

fY (1)|UD,W (y|P(W ) ,W )− fY (0)|UD,W (y|P(W ) ,W )
}

Ṗ(W )
]

dy

+ lim
δ→0

1
δ

∫
Y

ydRF(δ ;y)

=
∫
Y

yE
[{

fY (1)|UD,W (y|P(W ) ,W )− fY (0)|UD,W (y|P(W ) ,W )
}

Ṗ(W )
]

dy.

The result in (2.13) holds if the following stronger version of Assumption 1.6 holds:

Assumption 2.2. Stronger Domination Conditions For d = 0,1

∫
Y (d)

sup
δ∈Nε

y · fY (d)|Dδ
(y|d)dy < ∞,

∫
Y (d)

sup
δ∈Nε

∣∣∣∣y · ∂ fY (d)|Dδ
(y|d)

∂δ

∣∣∣∣dy < ∞.

Corollary 2.4. Let Assumptions 1.4, 1.5, and 2.2 hold. Then for the mean functional, we have

Mρ = E
{
[Y (1)−Y (0) |UD = P(W ),W ] Ṗ(W )

}
. (2.14)

2.4 Relationship to Marginal Policy Relevant Treatment
Effects

In this section we take a closer look at the relationship between general unconditional

effects under endogeneity and marginal policy relevant treatment effects. A policy relevant

treatment effect is a comparison of two policies with different incentives for participation. It

is assumed that the potential outcomes remain the same. Using the notation of the previous

sections, consider a baseline policy where δ = 0, versus an alternative policy where δ > 0. As

before, p = Pr(D = 1), whereas p+ δ = Pr(Dδ = 1). Here, Dδ is the treatment status under

the alternative policy. Suppose we are interested in the effect of this policy change on the
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unconditional mean of the observed outcomes. To this end, Heckman and Vytlacil (2001b, 2005)

consider the policy relevant treatment effect defined as

PRTEδ =
E(Yδ )−E(Y )
E(Dδ )−E(D)

=
E(Yδ )−E(Y )

δ
. (2.15)

Taking the limit δ → 0 yields the marginal policy relevant treatment effect (MPRTE) of Carneiro

et al. (2010):

MPRTE = lim
δ→0

PRTEδ .

Following Heckman and Vytlacil (2001b, 2005), we can show that MPRTE can be

represented in terms of the following marginal treatment effect:

MTE(u,x) := E [Y (1)−Y (0)|UD = u,X = x] .

We note that MTE(u,x) is different from MTEτ(u,x) in Definition 2.1. To simplify the notation,

we drop the covariate X . Let P and Pδ be the propensity scores, that is, P = Pr(D = 1|Z) and

Pδ = Pr(Dδ = 1|Z). This new notation for the propensity scores, P and Pδ , suppresses their

dependence on Z and highlight that P and Pδ are themselves random variables. Let fPδ
(·)

and FPδ
(·) be the pdf and CDF of Pδ , respectively. When δ = 0, we denote the pdf and CDF

of P by fP (·) and FP (·), respectively. Then

MPRTE =−
∫ 1

0
MTE(u)

∂FPδ
(u)

∂δ

∣∣∣∣
δ=0

du. (2.16)

A proof is given in the supplementary appendix.

To obtain an expression for
∂FP

δ
(u)

∂δ
|δ=0, we consider the special case µ(Z) = γZ and

γ > 0. This form of µ (·) is a simplified version of Assumption B-1 in Carneiro et al. (2010). In

this case, P = FV (γZ) and Pδ = FV (γZ+ γsz(δ ). Consider a constant shift of magnitude sz(δ )
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in Z (i.e., g(·) = 1). Under this shift, the participation rate increases by δ so that

E(Pδ ) = Pr(Dδ = 1) = Pr(D = 1)+δ = E(P)+δ .

We have

FPδ
(u) = Pr(Pδ ≤ u) = Pr(FV (γZ + γsz(δ ))≤ u)

= Pr(γZ + γsz(δ )≤ F−1
V (u)) = Pr(FV (γZ)≤ FV (F−1

V (u)− γsz(δ )))

= FP(FV (F−1
V (u)− γsz(δ ))). (2.17)

Differentiating (2.17) with respect to δ , we get

∂FPδ
(u)

∂δ
=− fPδ

(FV (F−1
V (u)− γsz(δ ))) fV (F−1

V (u)− γsz(δ ))γ
∂ sz(δ )

∂δ
. (2.18)

Using Lemma 2.1 and setting g(·) = 1, we have

∂ sz(δ )

∂δ

∣∣∣∣
δ=0

=
1∫

Z fV (γz)γ fZ(z)dz
. (2.19)

Evaluating (2.18) at δ = 0 and plugging in (2.19), we get

∂FPδ
(u)

∂δ

∣∣∣∣
δ=0

=− fP(u) fV (F−1
V (u))∫

Z fV (γz) fZ(z)dz
. (2.20)

Now, the marginal policy relevant treatment effect is

MPRTE =
∫ 1

0
MTE(u)

fP(u) fV (F−1
V (u))∫

Z fV (γz) fZ(z)dz
du.

Consider the change of variable u = P(z), where P(z) = FV (γz) in this particular case.
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Then du = γ fV (γz)dz and F−1
V (u) = γz. Note also that

FP(u) = Pr(P ≤ u) = Pr(FV (γZ)≤ u) = FZ(γ
−1F−1

V (u)).

Therefore, the density fP(u) is

fP(u) = fZ(γ
−1F−1

V (u))
γ−1

fV (F−1
V (u))

= fZ(z)
γ−1

fV (F−1
V (u))

,

and the MPRTE becomes

MPRTE =
∫
Z

MTE(P(z))
fV (γz)∫

Z fV (γz) fZ(z)dz
fZ(z)dz =

∫
Z

MTE(P(z))Ṗ(z) fZ(z)dz.

This result is precisely the one in (2.14) in Corollary 2.4 after dropping the covariate

X . This is also Example 2 in Carneiro et al. (2010) for the case where, in their notation,

qα(t) = t +α.

A formal proof of the equivalence of MPRTE to Mρ when ρ is the mean functional (as

in Corollary 2.4) in more general cases is sketched in the appendix. While our results cover

MPRTE as a special case, they also cover more general unconditional policy effects.

2.5 Estimation and Inference under a Parametric Propen-
sity Score

This section is devoted to the estimation and inference of the UQE under instrument

intervention, as described in Section 2.2. We assume that the propensity score function is

parametric, and we leave the case with a nonparametric propensity score to the next section.

Letting

m0(yτ ,P(w),x) := E [1{Y ≤ yτ}|P(W ) = P(w),X = x]
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and using (2.7), we have

Mτ,z =
1

fY (yτ)

∫
W

MTEτ (P(w) ,x) Ṗz (w) fW (w)dw

= − 1
fY (yτ)

{
E
[

∂P(W )

∂ z
g(W )

]}−1 ∫
W

∂m0(yτ ,P(w),x)
∂ z

g(w) fW (w)dw.

Note that the presence of g(·) amounts to a change of measure (from a measure with density

fW (w) to a measure with density g(w) fW (w)). In order to simplify the notation, we set g(·)≡ 1

for the remainder of this chapter. The case with a general but known g(·) can be handled with

straightforward modifications.

With g(·) = 1, we write the parameter Mτ,z as

Mτ,z =−
1

fY (yτ)
E
[

∂P(W )

∂ z

]−1

E
[

∂m0(yτ ,P(W ),X)

∂ z

]
. (2.21)

Mτ,z consists of two average derivatives and a density evaluated at a point. As shown by Newey

(1994), the two average derivatives are
√

n-estimable. However, the density at a point cannot be

estimated at the usual
√

n rate unless a parametric model is imposed.

First, we make an assumption concerning the dimensions of the variables.

Assumption 2.3. The covariate vector X is an element of RdX and Z ∈ R.

In empirical applications, we may have a few exogenous variables that affect the treatment

choice but not the outcome of interest directly. The instrument Z can be any one of these

exogenous variables, and the rest of the exogenous variables become part of the covariate vector

X . The unconditional effect is specific to the instrumental variable Z that we choose to intervene

in order to improve the treatment adoption rate.

The rest of this section is structured as follows: in Section 2.5.1 we establish the rate

of convergence of the two-step estimator of fY (yτ); in Section 2.5.2 we find the asymptotic

distribution of the terms associated with the propensity score; and in Section 2.5.3 we establish
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the asymptotic distribution of M̂τ,z and construct a pivotal test statistic for testing the null of a

zero effect.

For a given sample {Oi = (Yi,Zi,Xi,Di)}n
i=1, we use Pn to denote the empirical measure.

The expectation of a function χ (O) with respect to Pn is Pnχ = n−1
∑

n
i=1 χ(Oi).

2.5.1 Two-Step Density Estimator

For a given τ , we estimate yτ using the (generalized) inverse of the empirical distribution

function of Y :

ŷτ = inf{y : Fn(y)≥ τ} ,

where

Fn(y) :=
1
n

n

∑
i=1

1{Yi ≤ y} .

The following asymptotic result can be found in Serfling (1980).3

Lemma 2.2. If the density fY (·) of Y is positive and continuous at yτ , then

ŷτ − yτ = PnψQ(yτ)+op(n−1/2),

where

ψQ(yτ) :=
τ−1{Y ≤ yτ}

fY (yτ)
.

We use a kernel density estimator to estimate fY (y). We maintain the following assump-

tion on the kernel function.

Assumption 2.4. Kernel Assumption

The kernel function K(·) satisfies (i)
∫

∞

−∞
K(u)du = 1, (ii)

∫
∞

−∞
u2K(u)du < ∞, and (iii) K(u) =

K(−u), and it is twice differentiable with Lipschitz continuous second-order derivative K′′ (u)

3See Section 2.5.1. Actually, Serfling (1980) provides a better rate for the remainder.
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satisfying (i)
∫

∞

−∞
K′′(u)udu < ∞ and (ii) there exist positive constants C1 and C2 such that

|K′′ (u1)−K′′ (u2)| ≤C2 |u1−u2|2 for |u1−u2| ≥C1.

We also need the following rate assumption on the bandwidth.

Assumption 2.5. Rate Assumption Assume that n ↑ ∞ and h ↓ 0 such that nh3 ↑ ∞.

The non-standard condition nh3 ↑ ∞ is due to the estimation of yτ . Since we need to

expand f̂Y (ŷτ)− f̂Y (yτ), the derivative of f̂Y (y) will entail a slower decay for h. The details can

be found in the proof of Lemma 2.3. We note, however, that nh3 ↑ ∞ implies the usual nh ↑ ∞.

The estimator of fY (y) is then given by

f̂Y (y) =
1
n

n

∑
i=1

Kh (Yi− y) ,

where Kh (u) := K(u/h)/h.

Lemma 2.3. Let Assumptions 2.4 and 2.5 hold. Then

f̂Y (y)− fY (y) = Pnψ fY (y)+B fY (y)+op(h2),

where

ψ fY (y) := Kh (Y − y)−E [Kh (Y − y)] = Op(n−1/2h−1/2)

and

B fY (y) =
1
2

h2 f ′′2Y (y)
∫

∞

−∞

u2K(u)du.

Furthermore, for the quantile estimator ŷτ of yτ that satisfies Lemma 2.2, we have

f̂Y (ŷτ)− f̂Y (yτ) = fY (ŷτ)− fY (yτ)+R fY = f ′Y (yτ)PnψQ(yτ)+R fY ,

where

R fY = op(n−1/2h−1/2).
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In order to isolate the contributions of f̂ and ŷτ , we can use Lemma 2.3 to write

f̂Y (ŷτ)− fY (yτ) = f̂Y (yτ)− fY (yτ)+ fY (ŷτ)− fY (yτ)+R fY . (2.22)

The first pair of terms on the right-hand side of (2.22) represents the dominant term and reflects

the uncertainty in the estimation of fY . The second pair of terms reflects the error from estimating

yτ . In order to ensure that R fY = op(n−1/2h−1/2), we need nh3 ↑ ∞, as stated in Assumption 2.5.

We will use (2.22) repeatedly.

2.5.2 Parametric Propensity Score

In this subsection we assume that the propensity score is known up to a finite-dimensional

vector α0. For example, the propensity score is a logit function of W = (Z,X). In this case, we

estimate α0 using the maximum likelihood estimator.

Assumption 2.6. The propensity score is known up to a finite-dimensional vector α0 ∈ Rdα .

We denote the propensity by P(Z,X ,α0). Under Assumption 2.6, the parameter Mτ,z can

be written as

Mτ,z =−
1

fY (yτ)
· 1

T1
·T2, (2.23)

where

T1 = E
[

∂P(Z,X ,α0)

∂ z

]
and T2 = E

[
∂m0(yτ ,P(Z,X ,α0),X)

∂ z

]
.

First, we estimate T1, the average value of the derivative of the propensity score, by

T1n(α̂) :=
1
n

n

∑
i=1

∂P(z,x, α̂)

∂ z

∣∣∣∣
(z,x)=(Zi,Xi)

.

To save space, we slightly abuse notation and write T1n(α̂) as

T1n(α̂) =
1
n

n

∑
i=1

∂P(Zi,Xi, α̂)

∂ z
. (2.24)
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We adopt this convention in the rest of the chapter.

Lemma 2.4. Suppose that

(i) α̂ admits the linear representation

α̂−α0 = Pnψα0 +op(n−1/2); (2.25)

where ψα0(Wi) is a mean-zero dα × 1 random vector with E‖ψα0(Wi)‖2 < ∞, and ‖ · ‖

denotes the usual Euclidean norm;

(ii) the variance of ∂P(Z,X ,α0)
∂ z := ∂P(z,x,α0)

∂ z

∣∣
(z,x)=(Z,X)

is finite;

(iii) the dα ×1 derivative vector ∂ 2P(Z,X ,α)
∂α∂ z exists in an open neighborhood around α0;

(iv) the following uniform law of large numbers holds:

sup
α∈A0

∥∥∥∥∥1
n

n

∑
i=1

∂ 2P(Zi,Xi,α)

∂α∂ z
−E

[
∂ 2P(Z,X ,α)

∂α∂ z

]∥∥∥∥∥ p→ 0

where A0 is a neighborhood around α0, and

α 7→ E
[

∂ 2P(Z,X ,α)

∂α∂ z

]

is continuous on A0 .

Then T1n(α̂) can be represented as

T1n(α̂)−T1 = E
[

∂ 2P(Z,X ,α0)

∂ z∂α

]′
Pnψα0 +Pnψ∂P +op(n−1/2),

where

ψ∂P :=
∂P(Z,X ,α0)

∂ z
−E

[
∂P(Z,X ,α0)

∂ z

]
.
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We can rewrite the main result of Lemma 2.4 as

T1n(α̂)−T1 = T1n(α0)−T1 +T1n(α̂)−T1n(α0)

= T1n(α0)−T1 +E
[

∂P(Z,X , α̂)

∂ z

]
−E

[
∂P(Z,X ,α0)

∂ z

]
+op(n−1/2). (2.26)

Equation (2.26) has the same interpretation as equation (2.22). It consists of a pair of leading

terms that ignores the estimation uncertainty in α̂ but accounts for the variability of the sample

mean, and another pair that accounts for the uncertainty in α̂ but ignores the variability of the

sample mean.

We estimate the second average derivative T2 by

T2n(ŷτ , m̂, α̂) :=
1
n

n

∑
i=1

∂ m̂(ŷτ ,P(Zi,Xi, α̂),Xi)

∂ z
. (2.27)

This can be regarded as a four-step estimator. The first step estimates yτ , the second step estimates

α0, the third step estimates the conditional expectation m0(y,P(Z,X ,α0),X) using the generated

regressor P(Z,X , α̂), and the fourth step averages the derivative (with respect to Z) over X and

the generated regressor P(Z,X , α̂).

We use the series method to estimate m0. To alleviate notation, define the vector

w̃(α) := (P(z,x,α),x)′ and W̃i(α) := (P(Zi,Xi,α),Xi)
′.

Both w̃(α) and W̃i(α) are in RdX+1. Let

φ
J(w̃(α)) = (φ1J(w̃(α)), . . . ,φJJ(w̃(α)))′

be a vector of J basis functions of w̃(α) with finite second moments. Here each φ jJ (·) is a
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differentiable basis function. Then, the conditional expectation estimator is

m̂(ŷτ , w̃(α̂)) = φ
J(w̃(α̂))′b̂(α̂, ŷτ), (2.28)

where b̂(α̂, ŷτ) is the least squares estimate:

b̂(α̂, ŷτ) =

(
n

∑
i=1

φ
J(W̃i(α̂))φ J(W̃i(α̂))′

)−1 n

∑
i=1

φ
J(W̃i(α̂))1{Yi ≤ ŷτ} . (2.29)

The estimator of the derivative is then

∂ m̂(ŷτ , w̃(α̂))

∂ z
=

∂φ J(w̃(α̂))

∂ z

′
b̂(α̂, ŷτ), (2.30)

and the estimator of the average derivative becomes

T2n(ŷτ , m̂, α̂) =
1
n

n

∑
i=1

∂φ J(W̃i(α̂))

∂ z

′
b̂(α̂, ŷτ). (2.31)

We use the path derivative approach of Newey (1994) to obtain a decomposition of

T2n(ŷτ , m̂, α̂)−T2, which is similar to that in Section 2.1 of Hahn and Ridder (2013). To describe

the idea, let

O := (Y,Z,X ,D)

be the vector of observations, and let {Fθ} be a path of distributions indexed by θ ∈ R such that

Fθ0 is the true distribution of O. The parametric assumption on the propensity score need not be

imposed on the path.4 The score of the parametric submodel is

S(O) =
∂ logdFθ (O)

∂θ

∣∣∣∣
θ=θ0

.

4As we show later, the error from estimating the propensity score does not affect the asymptotic variance of
T2n(ŷτ , m̂, α̂).
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For any θ , we define

T2,θ = Eθ

[
∂mθ (yτ,θ ,W̃ (αθ ))

∂ z

]
where mθ , yτ,θ , and αθ are the probability limits of m̂, ŷτ , and α̂, respectively, when the

distribution of O is Fθ . Note that when θ = θ0, we have T2,θ0 = T2. Suppose the set of scores

{S(O)} for all parametric submodels {Fθ} can approximate in the mean square any zero-mean,

finite-variance function of O.5 If the function θ → T2,θ is differentiable at θ0 and we can write

∂T2,θ

∂θ

∣∣∣∣
θ=θ0

= E [Γ(O)S(O)] (2.32)

for some mean-zero and finite second-moment function Γ(·) and any path Fθ , then, by Theorem

2.1 of Newey (1994), the asymptotic variance of T2n(ŷτ , m̂, α̂) is E[Γ(O)2].

In the next lemma, we will show that θ → T2,θ is differentiable at θ0. Suppose for the

moment this is the case. Then, by the chain rule, we can write

∂T2,θ

∂θ

∣∣∣∣
θ=θ0

=
∂

∂θ
Eθ

[
∂mθ (yτ,θ ,W̃ (αθ ))

∂ z

]∣∣∣∣
θ=θ0

=
∂

∂θ
Eθ

[
∂m0(yτ ,W̃ (α0))

∂ z

]∣∣∣∣
θ=θ0

+
∂

∂θ
E
[

∂mθ (yτ ,W̃ (α0))

∂ z

]∣∣∣∣
θ=θ0

+
∂

∂θ
E
[

∂m0(yτ,θ ,W̃ (α0))

∂ z

]∣∣∣∣
θ=θ0

+
∂

∂θ
E
[

∂m0(yτ ,W̃ (αθ ))

∂ z

]∣∣∣∣
θ=θ0

.(2.33)

To use Theorem 2.1 of Newey (1994), we need to write all these terms in an outer-product form,

namely the form of the right-hand side of (2.32). To search for the required pathwise derivative

of Γ(·), we can examine one component of T2,θ at a time by treating the remaining components

as known, an observation due to Newey (1994).

The next lemma provides the conditions under which we can ignore the error from

estimating the propensity score in our asymptotic analysis.

Lemma 2.5. Assume that
5This is the “generality” requirement of the family of distibutions in Newey (1994).
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(i) (Z,X) is absolutely continuous with density fZX(z,x) satisfying

(a) fZX(z,x) is continuously differentiable with respect to z in Z ×X ;

(b) for each x ∈X , fZX(z,x) = 0 for any z on the boundary of its support Z (x) ;

(c) ∂ log fZ,X (Z,X)
∂ z has finite second moments;

(ii) the following conditional mean independence holds:

E
[

∂ log fW (W )

∂ z

∣∣∣∣W̃ (α0) ,
∂P(W,α0)

∂α0

]
= E

[
∂ log fW (W )

∂ z

∣∣∣∣W̃ (α0)

]
,

E
[
1{Y ≤ yτ}|W̃ (α0) ,

∂P(W,α0)

∂α0

]
= E

[
1{Y ≤ yτ}|W̃ (α0)

]
;

(iii) m(yτ , w̃(α0)) is continuously differentiable with respect to z for all orders, and for a

neighborhood Θ0 of θ0, the following holds:

E

[
sup

θ∈Θ0

∣∣∣∣ ∂

∂αθ

∂m0(yτ ,W̃ (αθ ))

∂ z

∣∣∣∣
]
< ∞,

E sup
θ∈Θ0

∣∣∣∣ ∂

∂αθ

E
[

∂ log fW (W )

∂ z

∣∣∣∣W̃ (αθ )

]∣∣∣∣< ∞,

E sup
θ∈Θ0

∣∣∣∣ ∂

∂αθ

{
m0(yτ ,W̃ (αθ ))E

[
∂ log fW (W )

∂ z

∣∣∣∣W̃ (αθ )

]}∣∣∣∣< ∞.

Then
∂

∂θ
E
[

∂m0(yτ ,W̃ (αθ ))

∂ z

]∣∣∣∣
θ=θ0

= 0.

Condition (ii) of the Lemma holds trivially if the equation system P(W,α0) = P(w,α0)

and X = x with W = (Z,X) as the unknown has a unique solution Z = z, so that the equation

system implies W = w. In this case, conditioning on ∂P(W,α0)
∂α0

becomes redundant. In general, the

equation system may not have a unique solution for Z. Condition (ii) will hold if knowing that

∂P(W,α0)

∂α0
=

∂P(w,α0)

∂α0
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does not change the solution set. As an example, we drop X and consider

P(Z,α0) =
exp
(
Z2α0

)
1+ exp(Z2α0)

, so that
∂P(Z,α0)

∂α0
= Z2 exp

(
Z2α0

)
1+ exp(Z2α0)

.

For any z > 0, P(Z,α0) = P(z,α0) has two solutions: Z = z and Z =−z. The solution set will

not change if we also know that

∂P(Z,α0)

∂α0
=

∂P(z,α0)

∂α0
.

Thus Condition (ii) holds.

The next lemma establishes a stochastic approximation of T2n(ŷτ , m̂, α̂)−T2 and provides

the influence function as well. The assumptions of the Lemma are adapted from Newey (1994).

These assumptions are not necessarily the weakest possible.

Lemma 2.6. Suppose that

(i) the support Z ×X of (Z,X) is [zl,zu]× [x1l,x1u]× [x2l,x2u]×·· ·× [xdX l,xdX u], fZX(z,x)

is bounded below by C× (z− zl)
κ(zu− z)κ

(
MdX

j=1(x− x jl)
κ(x ju− x)κ

)
for some C > 0

and κ > 0, and ∫
Z ×X

sup
θ∈Θ0

∣∣∣∣∂ fZX(z,x;θ)

∂θ

∣∣∣∣dzdx < ∞;

(ii) there is a constant C such that ∂ am(yτ , w̃(α0))/∂ za ≤Ca for all a ∈ N;

(iii) the number of series terms, J, satisfies J(n) = O(nρ) for some ρ > 0, and J7+2κ = O(n);

(iv) the map (y,z) 7→ m0(y, w̃(α0)) is differentiable, and

E

[
sup
y∈Y

∣∣∣∣m0(y,W̃ (α0))

∂y∂ z

∣∣∣∣
]
< ∞;
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(v) the following stochastic equicontinuity conditions hold:

E
[

∂ m̂(yτ ,W̃ (α0))

∂ z
− ∂m0(yτ ,W̃ (α0))

∂ z

]
=

1
n

n

∑
i=1

[
∂ m̂(yτ ,W̃i (α0))

∂ z
− ∂m0(yτ ,W̃i (α0))

∂ z

]
+op(n−1/2),

E
[

∂m0(ŷτ ,W̃ (α0))

∂ z
− ∂m0(yτ ,W̃ (α0))

∂ z

]
=

1
n

n

∑
i=1

[
∂m0(ŷτ ,W̃i (α0))

∂ z
− ∂m0(yτ ,W̃i (α0))

∂ z

]
+op(n−1/2);

(vi) the assumptions of Lemma 2.5 hold.

Then, we have the decomposition

T2n(ŷτ , m̂, α̂)−T2 = T2n(yτ ,m0,α0)−T2

+ T2n(yτ , m̂,α0)−T2n(yτ ,m0,α0)

+ T2n(ŷτ ,m0,α0)−T2n(yτ ,m0,α0)

+ op(n−1/2). (2.34)

Additionally,

T2n(ŷτ , m̂, α̂)−T2 = Pnψ∂m0−Pnψm0 +Pnψ̃Q(yτ)+op(n−1/2),

where

ψ∂m0 :=
∂m0(yτ ,W̃ (α0))

∂ z
−T2,

ψm0 :=
[
1{Y ≤ yτ}−m0(yτ ,W̃ (α0)

]
×E

[
∂ log fW (W )

∂ z

∣∣∣∣W̃ (α0)

]
,
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and

ψ̃Q(yτ) := E

[
∂ fY |W̃ (α0)

(yτ |W̃ (α0))

∂ z

]
ψQ(yτ)

= E

[
∂ fY |W̃ (α0)

(yτ |W̃ (α0))

∂ z

][
τ−1{Y ≤ yτ}

fY (yτ)

]
.

Lemma 2.6 characterizes the contribution of each stage to the final influence function.

The contribution of the estimation of m0, given by Pnψm0 , corresponds to the one in Proposition

5 of Newey (1994).

2.5.3 Estimation of the UQE

We estimate the UQE by

M̂τ,z(ŷτ , f̂Y , m̂, α̂) =− 1
f̂Y (ŷτ)

T2n(ŷτ , m̂, α̂)

T1n(α̂)
. (2.35)

With the asymptotic linear representations of the arguments f̂Y (ŷτ), T1n(α̂), and T2n(ŷτ , m̂, α̂), we

can obtain the asymptotic linear representation of M̂τ,z(ŷτ , f̂Y , m̂, α̂). The next theorem follows

from combining Lemmas 2.3, 2.4, 2.5, and 2.6.

Theorem 2.5. Under the assumptions of Lemmas 2.3, 2.4, 2.5, and 2.6, we have

M̂τ,z−Mτ,z =
T2

fY (yτ)2T1

[
Pnψ fY (yτ)+B fY (yτ)

]
+

T2

fY (yτ)2T1
f ′Y (yτ)PnψQ(yτ)

+
T2

fY (yτ)T 2
1
Pnψ∂P +

T2

fY (yτ)T 2
1

E
[

∂ 2P(Z,X ,α0)

∂ z∂α ′0

]
Pnψα0

− 1
fY (yτ)T1

Pnψ∂m0 +
1

fY (yτ)T1
Pnψm0

− 1
fY (yτ)T1

Pnψ̃Q(yτ)+RM, (2.36)
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where

RM = Op
(
| f̂Y (ŷτ)− fY (yτ)|2

)
+Op

(
n−1)+Op

(
n−1/2| f̂Y (ŷτ)− fY (yτ)|

)
+ Op

(
|R fY |

)
+op(n−1/2)+op(h2). (2.37)

Furthermore, under Assumption 2.5,
√

nhRM = op(1).

Equation (2.36) consists of six influence functions and a bias term. The bias term B fY (yτ)

arises from estimating the density and is of order O(h2). The six influence functions reflect the

impact of each estimation stage. The rate of converge of M̂τ,z is slowed down through Pnψ fY (yτ),

which is of order Op(n−1/2h−1/2). We can summarize the results of Theorem 2.5 in a single

equation:

M̂τ,z−Mτ,z = PnψMτ
+ B̃ fY (yτ)+op(n−1/2h−1/2),

where ψMτ
collects all the influence functions in (2.36) except for the bias, and

B̃ fY (yτ) :=
T2

fY (yτ)2T1
B fY (yτ).

The bias term is o(n−1/2h−1/2) by Assumption 2.5. The following corollary provides the

asymptotic distribution of M̂τ,z.

Corollary 2.6. Under the assumptions of Theorem 2.5,

√
nh
(
M̂τ,z−Mτ,z

)
=
√

nPn
√

hψMτ
+op(1)⇒N (0,Vτ),

where

Vτ = lim
h↓0

E
[
hψ

2
Mτ

]
. (2.38)

From the perspective of asymptotic theory, all the terms
√

nhPnψQ(yτ),
√

nhPnψ∂P,
√

nhPnψα0 ,
√

nhPnψ∂m0, and
√

nhPnψm0 are of order Op (h) = op (1) and hence can be ignored
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in large samples. The asymptotic variance is then given by

Vτ =
T2

fY (yτ)2T1
lim
h↓0

hψ
2
f (yτ ,h) =

T2

fY (yτ)T1

∫
∞

−∞

K2 (u)du.

However, Vτ ignores all estimation uncertainties except that in f̂Y (yτ), and we do not expect it

to reflect the finite-sample variability of
√

nh(M̂τ,z−Mτ,z) well. To improve the finite-sample

performances, we keep the dominating term from each source of estimation errors and employ a

sample counterpart of Ehψ2
Mτ

to estimate Vτ . This is done in the next subsection.

2.5.4 Estimation of the Asymptotic Variance of the UQE Estimator

The asymptotic variance Vτ in (2.38) can be estimated by the plug-in estimator

V̂τ =
h
n

n

∑
i=1

ψ̂
2
Mτ ,i, (2.39)

where, by Theorem 2.5,

ψ̂Mτ ,i =
T̂2n

f̂Y (ŷτ)2T̂1n
ψ̂ f ,i(ŷτ)+

T̂2n

f̂Y (yτ)2T̂1n
f̂ ′Y (yτ)ψ̂Q,i(ŷτ)

+
T̂2n

f̂Y (ŷτ)T̂ 2
1n

ψ̂∂P,i +
T̂2n

f̂Y (ŷτ)T̂ 2
1n

1
n

n

∑
i=1

[
∂ 2P(Wi, α̂)

∂ z∂ α̂ ′

]
ψ̂α,i

− 1
f̂Y (ŷτ)T̂1n

ψ̂∂m,i +
1

f̂Y (ŷτ)T̂1n
ψ̂m,i

− 1
f̂Y (ŷτ)T̂1n

Ê

[
∂ fY |W̃ (α0)

(yτ |W̃ (α̂))

∂ z

]
ψ̂Q,i(ŷτ).
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In this equation, T̂2n = T2n(ŷτ , m̂, α̂), T̂1n = T1n(α̂),

ψ̂ f ,i(ŷτ) = Kh ([Yi− ŷτ ])−
1
n

n

∑
j=1

Kh
([

Yj− ŷτ

])
ψ̂Q,i(ŷτ) =

τ−1{Yi ≤ ŷτ}
f̂Y (ŷτ)

,

ψ̂∂P,i =
∂P(Wi, α̂)

∂ z
− 1

n

n

∑
j=1

∂P(Wj, α̂)

∂ z
,

ψ̂α,i =

(
−1

n

n

∑
i=1

[P∂ (Wi, α̂)]2W ′i Wi

P(Wi, α̂) [1−P(Wi, α̂)]

)−1
P∂ (Wi, α̂)Wi [Di−P(Wi, α̂)]

P(Wi, α̂) [1−P(Wi, α̂)]
,

ψ̂∂m,i =
∂ m̂(yτ ,W̃i (α̂))

∂ z
− T̂2n

ψ̂m,i =
(
1{Yi ≤ ŷτ}−m0(ŷτ ,W̃i (α̂))

)
× Ê

[
∂ log fW (Wi)

∂ z

∣∣∣∣W̃i (α̂)

]
,

and

Ê

[
∂ fY |W̃ (α0)

(yτ |W̃ (α̂))

∂ z

]
=

1
n

n

∑
j=1

∂

∂ z
∑i 6= j Kh([Yi− yτ ]) ·Kh

[
W̃i (α̂)− w̃(α̂)

]
∑i6= jKh

[
W̃i (α̂)− w̃(α̂)

] ∣∣∣∣∣
w=W j

for the rescaled kernel function Kh (·) defined by

Kh ([χ1, . . . ,χ`]) =
`

∏
j=1

Kh (χ`) with [χ1, . . . ,χ`] ∈ R`.

Most of these plug-in estimates are self-explanatory. For example, ψ̂α,i is the estimated

influence function for the MLE when P(Wi, α̂) = P(Wiα̂) and P∂ (a) = ∂P(a)/∂a. If the propen-

sity score function does not take a linear index form, then we need to make some adjustment to

ψ̂α,i. The only thing we need to do is find the influence function for the MLE, which is an easy

task, and then plug α̂ into the influence function.

The only remaining quantity that needs some explanation is ψ̂m,i, which involves a
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nonparametric regression of ∂ log fW (Wi)
∂ z on W̃i (α̂) := [P(Zi,Xi, α̂),Xi] . We let

Ê
[

∂ log fW (Wi)

∂ z

∣∣∣∣W̃i (α̂)

]
=−φ

J(W̃i(α̂))

(
n

∑
`=1

φ
J(W̃`(α̂))φ J(W̃`(α̂))′

)−1

×
n

∑
`=1

∂φ J(W̃`(α̂))

∂ z
.

To see why this may be consistent for E
[

∂ log f (Wi)
∂ z

∣∣∣W̃i (α0)
]
, we note that under some conditions

the following hold:

∥∥∥∥∥1
n

n

∑
`=1

∂φ J(W̃`(α0))

∂ z
−E

∂φ J(W̃ (α0))

∂ z

∥∥∥∥∥
2

= op (1) ,∥∥∥∥∥1
n

n

∑
`=1

φ
J(W̃`(α0))

∂ log fW (W`)

∂ z
−E

[
φ

J(W̃ (α0))
∂ log fW (W )

∂ z

]∥∥∥∥∥
2

= op (1) .

But

E
∂φ J(W̃ (α0))

∂ z
=

∫
W

∂φ J(w̃(α0))

∂ z
fW (w)dw =−

∫
Z ×X

φ
J(w̃(α0))

∂ fW (w)
∂ z

dzdx

= −
∫
Z ×X

φ
J(w̃(α0))

∂ log fW (w)
∂ z

fW (w)dw

= −E
[

φ
J(W̃ (α0))

∂ log fW (W )

∂ z

]
.

Hence ∥∥∥∥∥1
n

n

∑
`=1

∂φ J(W̃`(α0))

∂ z
+

1
n

n

∑
`=1

φ
J(W̃`(α0))

∂ log fW (W`)

∂ z

∥∥∥∥∥
2

= op (1) ,

and Ê
[

∂ log fW (Wi)
∂ z

∣∣∣W̃i (α̂)
]

is approximately equal to

φ
J(W̃i(α̂))

(
n

∑
`=1

φ
J(W̃`(α̂))φ J(W̃`(α̂))′

)−1
1
n

n

∑
`=1

φ
J(W̃`(α̂))

∂ log fW (W`)

∂ z
,

which is just a series approximation to E
[

∂ log fW (Wi)
∂ z

∣∣∣W̃i (α0)
]
.
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The consistency of V̂τ can be established by using the uniform law of large numbers. The

arguments are standard but tedious. We omit the details here.

2.5.5 Testing the Null of No Effect

We can use Corollary 2.6 for hypothesis testing on Mτ,z. Since M̂τ,z converges to Mτ,z at a

nonparametric rate, in general the test will have power only against a departure of a nonparametric

rate. However, if we are interested in testing the null of a zero effect, that is, H0 : Mτ,z = 0 vs.

H1 : Mτ,z 6= 0, we can detect a parametric rate of departure from the null. The reason is that, by

(2.23), Mτ,z = 0 if and only if T2 = 0, and T2 can be estimated at the usual parametric rate. Hence,

instead of testing H0 : Mτ,z = 0 vs. H1 : Mτ,z 6= 0, we test the equivalent hypotheses H0 : T2 = 0

vs. H1 : T2 6= 0.

Our test is based on the estimator T2n(ŷτ , m̂, α̂) of T2. In view of its influence function

given in Lemma 2.6, we can estimate the asymptotic variance of T2n(ŷτ , m̂, α̂) by

V̂2 =
1
n

n

∑
i=1

ψ̂
2
2i,

where

ψ̂2i :=
∂φ J(W̃i(α̂))

∂ z

′
b̂(α̂, ŷτ)−T2n(ŷτ , m̂, α̂)

−
[

n

∑
`=1

∂φ J(W̃`(α̂))

∂ z

′][ n

∑
`=1

φ
J(W̃`(α̂))φ J(W̃`(α̂))′

]−1

× φ
J(W̃i(α̂))′

(
1{Yi ≤ ŷτ}−φ

J(W̃i(α̂))′b̂(α̂, ŷτ)
)

+ Ê
[

∂ log fW (Wi)

∂ z

∣∣∣∣W̃i (α̂)

]
· τ−1{Yi ≤ ŷτ}

f̂Y (ŷτ)
.

We can then form the test statistic:

T2 :=
√

n
T2n(ŷτ , m̂, α̂)√

V̂2
.
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By Lemma 2.6 and using standard arguments, we can show that T2⇒N (0,1). To save space,

we omit the details here.

2.6 Estimation and Inference under a Nonparametric
Propensity Score

In this section, we drop Assumption 2.6 and, using the series method, estimate the

propensity score non-parametrically. With respect to the results of the previous sections, we only

need to modify Lemma 2.4, since Lemma 2.6 shows that we do not need to account for the error

from estimating the propensity score.

Let P̂(w) denote the nonparametric series estimator of P(w). The estimator of T1 :=

E
[

∂P(W )
∂ z

]
is now

T1n(P̂) :=
1
n

n

∑
i=1

∂ P̂(w)
∂ z

∣∣∣∣
w=Wi

.

The estimator of T2 is the same as in (2.27) but with P(Wi, α̂) replaced by P̂(Wi) :

T2n(ŷτ , m̂, P̂) :=
1
n

n

∑
i=1

∂ m̂(ŷτ , P̂(Wi),Xi)

∂ z
, (2.40)

where, as in (2.27), m̂ is the series estimator of m. The formula is the same as before, and we

only need to replace P(Wi, α̂) by P̂(Wi). The UQE estimator becomes

M̂τ,z(ŷτ , f̂Y , m̂, P̂) := − 1
f̂Y (ŷτ)

[
1
n

n

∑
i=1

∂ P̂(Wi)

∂ z

]−1
1
n

n

∑
i=1

∂ m̂(ŷτ , P̂(Wi),Xi)

∂ z

= − 1
f̂Y (ŷτ)

T2n(ŷτ , m̂, P̂)
T1n(P̂)

. (2.41)

The following lemma follows directly from Theorem 7.2 of Newey (1994).

Lemma 2.7. Let Assumption (i) of Lemmas 2.5 and Assumptions (i) and (iii) of Lemma 2.6 hold.

Assume further that P(z,x) is continuously differentiable with respect to z for all orders, and that

79



there is a constant C such that ∂ aP(z,x)/∂ za ≤Ca for all a ∈ N. Then

T1n(P̂)−T1 = Pnψ∂Ps−PnψPs +op(n−1/2),

where we define

ψ∂Ps :=
∂P(W )

∂ z
−T1

and

ψPs := (D−P(W ))× ∂ log fW (W )

∂ z
.

Using a proof similar to that of Lemma 2.6, we can show that the influence functions for

T2n(ŷτ , m̂, P̂) and T2n(ŷτ , m̂,P) are the same. That is, we have

T2n(ŷτ , m̂, P̂)−T2 = Pnψ∂m0−Pnψm0 +Pnψ̃Q(yτ)+op(n−1/2),

where

ψ∂m0 :=
∂m0(yτ ,P(W ),X)

∂ z
−T2,

ψm0 := (1{Y ≤ yτ}−m0(yτ ,P(W ),X))×E
[

∂ log fW (W )

∂ z

∣∣∣∣P(W ),X
]
,

and

ψ̃Q(yτ) = E
[

∂ fY |P(W ),X(yτ |P(W ),X)

∂ z

]
ψQ(yτ).

Given the asymptotic linear representations of T1n(P̂)−T1 and T2n(ŷτ , m̂, P̂)−T2, we can

directly use Lemma 2.6, together with Lemma 2.3, to obtain an asymptotic linear representation

of M̂τ,z(ŷτ , f̂Y , m̂, P̂).
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Theorem 2.7. Under the assumptions of Lemmas 2.3, 2.6, and 2.7, we have

M̂τ,z−Mτ,z =
T2

fY (yτ)2T1

[
Pnψ fY (yτ)+B fY (yτ)

]
+

T2

fY (yτ)2T1
f ′Y (yτ)PnψQ(yτ)

+
T2

fY (yτ)T 2
1
Pnψ∂Ps−

T2

fY (yτ)T 2
1
PnψPs

− 1
fY (yτ)T1

Pnψ∂m0 +
1

fY (yτ)T1
Pnψm0

− 1
fY (yτ)T1

Pnψ̃Q(yτ)+RM, (2.42)

where

RM = Op
(
| f̂Y (ŷτ)− fY (yτ)|2

)
+Op

(
n−1)+Op

(
n−1/2| f̂Y (ŷτ)− fY (yτ)|

)
+ Op

(
|R fY |

)
+op(n−1/2)+op(h2). (2.43)

Furthermore, under Assumption 2.5,
√

nhRM = op(1).

We summarize the results of Theorem 2.7 in a single equation:

M̂τ,z−Mτ,z = PnψMτ
+ B̃ fY (yτ)+op(n−1/2h−1/2),

where ψMτ
collects all the influence functions in (2.42) except for the bias, RM is absorbed in the

op(n−1/2h−1/2) term, and

B̃ fY (yτ) :=
T2

fY (yτ)2T1
B fY (yτ).

The bias term is op(n−1/2h−1/2) by Assumption 2.5. The following corollary provides the

asymptotic distribution of M̂τ,z.

Corollary 2.8. Under the assumptions of Theorem 2.7,

√
nh
(
M̂τ,z−Mτ,z

)
=
√

nPn
√

hψMτ
+op(1)⇒N (0,Vτ),
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where

Vτ = lim
h↓0

E
[
hψ

2
Mτ

]
.

The asymptotic variance takes the same form as the asymptotic variance in Corollary

2.6. Estimating the asymptotic variance and testing for a zero unconditional effect are entirely

similar to the case with a parametric propensity score. We omit the details to avoid repetition and

redundancy. From the perspective of implementation, there is no substantive difference between

a parametric approach and a nonparametric approach to the propensity score estimation.

2.7 Empirical Application

We estimate the unconditional quantile effect of expanding college enrollment on (log)

wages. The outcome variable Y is the log wage, and the binary treatment is the college enrollment

status. Thus p = Pr(D = 1) is the proportion of individuals who ever enrolled in a college.

Arguably, the cost of tuition (Z) is an important factor that affects the college enrollment status

but not the wage. In order to alter the proportion of enrolled individuals, we consider a policy

that subsidizes tuition by a certain amount. The UQE is the effect of this policy on the different

quantiles of the unconditional distribution of wages when the subsidy goes to zero. This is the

effect that we denote UQE under instrument intervention in Section 2.2. This policy shifts Z,

the tuition, to Zδ = Z + sz(δ ) for some sz(δ ), which is the same for all individuals, and induces

the college enrollment to increase from p to p+δ . Note that we do not need to specify sz(δ )

because we look at the limiting version as δ → 0.

We use the same data as in Carneiro et al. (2010) and Carneiro et al. (2011): a sample

of white males from the 1979 National Longitudinal Survey of Youth (NLSY1979). The web

appendix to Carneiro et al. (2011) contains a detailed description of the variables. The outcome

variable Y is the log wage in 1991. The treatment indicator D is equal to 1 if the individual ever

enrolled in college by 1991, and 0 otherwise. The other covariates are AFQT score, mother’s

education, number of siblings, average log earnings 1979–2000 in the county of residence at
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age 17, average unemployment 1979–2000 in the state of residence at age 17, urban residence

dummy at age 14, cohort dummies, years of experience in 1991, average local log earnings in

1991, and local unemployment in 1991. We collect these variables into a vector and denote it by

XO.

We assume that the following four variables (denoted by Z1,Z2,Z3,Z4) enter the selection

equation but not the outcome equation: presence of a four-year college in the county of residence

at age 14, local earnings at age 17, local unemployment at age 17, and tuition at local public

four-year colleges at age 17. The total sample size is 1747, of which 882 individuals had never

enrolled in a college (D = 0) by 1991, and 865 individuals had enrolled in a college by 1991

(D = 1). We compute the UQE of a marginal shift in the tuition at local public four-year colleges

at age 17. So in our notation, Z = Z4, X = (Z1,Z2,Z3,XO), and W = (Z,X).

To estimate the propensity score, we use a parametric logistic specification. To estimate

the conditional expectation, we use a series regression using both the estimated propensity

score and the covariates X as the regressors. Due to the large number of variables involved, a

penalization of λ = 10−4 was imposed on the L2-norm of the coefficients, excluding the constant

term as in ridge regressions. We compute the UQE at the quantile level τ = 0.1,0.15, . . . ,0.9.

For each τ, we also construct the 95% (pointwise) confidence interval.

Figure 2.1 presents the results. The UQE ranges between 0.22 and 0.47 across the

quantiles, and averages to 0.37. When we estimate the unconditional mean effect, we obtain

an estimate of 0.21, which is somewhat consistent with the quantile cases. We interpret these

estimates in the following way: a marginal additive change in tuition produces a marginal change

in college enrollment which in turn produces a marginal change in (log) wages between 0.22 and

0.47 across quantiles.
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Figure 2.1. Unconditional Quantile Effects.

2.8 Conclusion

In this chapter we study the unconditional policy effect with an endogenous binary

treatment. For concreteness, we focus on the unconditional quantile effect, but the basic ideas

and insights are applicable if the policy goals are other features of the unconditional distribution

of an outcome variable.

We show that when an instrumental variable is available, it is possible to recover the

unconditional effect through an application of the local instrumental variable technique. Framing

the selection equation as a threshold-crossing model allows us to introduce a new class of

marginal treatment effects and represent the unconditional effect as a weighted average of these

marginal treatment effects. We find that the unconditional quantile effect and the marginal policy

relevant treatment effect can be seen as part of the same family of effects. It is possible to view

the latter as a robust version of the former. Both of them are examples of a general unconditional

policy effect. To the best of our knowledge, this connection has not been established in either
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literature.

Chapter 2, in part, is being prepared for submission for publication, and is coauthored

with Yixiao Sun. The dissertation author, Julián Martı́nez-Iriarte was the primary author of this

chapter. This research was conducted with restricted access to Bureau of Labor Statistics (BLS)

data. The views expressed here do not necessarily reflect the views of the BLS.
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Chapter 3

Sensitivity Analysis in Unconditional
Quantile Effects

3.1 Introduction

In this chapter we propose a sensitivity analysis on the effect of counterfactual policies

that change the proportion of treated individuals. Consider a situation where a policy maker

is interested in treating non-treated individuals. The key identification challenge is that we do

not the observe the counterfactual outcome of individuals who switch groups, that is, the newly

treated individuals. In some cases, however, it is still possible to recover the distribution of the

unobserved counterfactual outcome. For example, suppose that treatment status is randomly

assigned, and a policy maker increases the proportion of treated individuals by randomly selecting

non-treated individuals.1 Although we do not observe the counterfactual outcome of the newly

treated individuals, we know it is drawn from the same distribution as the already treated

individuals. Hence, we identified the counterfactual distribution of newly treated individuals.

When treatment status is not randomly assigned in the first place, the identification

strategy previously described breaks down. The reason is that due to the selection bias in

the original treatment status, a random selection of individuals from the control group will be

drawn from a different distribution. Thus, in the presence of selection bias, identification of the

counterfactual distribution requires that the policy maker has enough information to device a

1We assume full compliance in both randomizations.
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policy such that the (unobservable) distribution of the newly treated “matches” the distribution

of the already treated individuals. This is usually unfeasible. Even if the policy maker has this

information, such as when treatment status is randomly assigned, they might not be interested in

a policy that matches the previous selection patterns.

The previous discussion highlights that identification of counterfactual distributions re-

sults in either very stringent information requirements, or in policies that might not be interesting

for the policy maker. In both cases, the distribution of the newly treated individuals is restricted.

From the point of view of the policy maker, this can rule out many interesting policies. To see

this, consider the following example. A policy maker might like to know if an increase in the

unionization rate reduces inequality. If unionized workers are relatively high-skilled, and a policy

expands unionization with low-skilled workers, then the distribution of wages conditional on

being in the union is likely to change.

In order to analyze a richer set of counterfactual policies we impose no restrictions on

the distribution of the newly treated individuals, and provide partial identification results for

two effects: the first one is a global effect that compares the quantiles of the observed outcome,

to those of the counterfactual outcome, where the proportion of treated individuals has been

increased by δ ; and the second one is a marginal effect where we let δ go to zero, and analyze

its limiting effect on the unconditional quantiles of the outcome.

The second important contribution of this chapter is to propose a framework for a sen-

sitivity analysis on certain conclusions of interest. To do this, we quantify the departure from

point identification by the vertical distance between the distributions of the newly treated individ-

uals and the already treated individuals. We introduce a curve called the quantile breakdown

frontier, which quantifies the maximum departure from point identification such that a given set

of conclusions holds across different quantiles. Next, we bound the global effects curve using

this maximum departure derived from the quantile breakdown frontier. In this way, we obtain an

identified region for the global effect curve consistent with the desired conclusions.

The departure from point identification is due to the selection bias induced by the
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counterfactual policy being different from the original selection bias. We call this difference the

policy selection bias. The usual selection bias states that treated and non-treated individuals are

different in a sense, and that is what explains the selection in the first place. Instead, the policy

selection bias is the difference between the distributions of the newly treated individuals and

the already treated individuals. Returning to the unionization example, the policy selection bias

arises because the union wages of newly unionized workers may not be drawn from the same

distribution of the already unionized workers. Since we do not know the distribution of union

wages of newly unionized workers, hence we can only partially identify the global and marginal

effects.

The policy selection bias can be non-negligible even if the original selection into treatment

is randomly assigned. The reason is that, for the policy selection bias, what matters is who the

newly treated individuals are. Conversely, if there is selection bias initially, but the distribution of

the newly treated “matches” the distribution of the already treated individuals, then there will be

no policy selection bias. Thus, the policy selection bias depends on the particular counterfactual

policy being analyzed, not whether there is selection bias in the original selection mechanism.

It is important to highlight that we do not estimate a quantile treatment effect. The

quantile treatment effect is the difference between the τ-quantile under treatment and the τ-

quantile under control, and depends on the distribution of the covariates. In a recent contribution,

Hsu et al. (2020) investigate the changes in this effect when the distribution of the covariates is

manipulated. Aside from treatment status, we do not manipulate the distribution of covariates.

Estimation of both the quantile breakdown frontier and the bounds on the global effect

are based on empirical distribution functions and empirical quantiles, and are
√

n-consistent.

Inference is more challenging, though. The reason is that the bounds derived from the quantile

breakdown frontier are not a fully Hadamard differentiable function of the underlying distribu-

tions; there are a few kinks where differentiability fails. However, directional differentiability

holds, and we can still exploit the functional Delta method to obtain asymptotic distributions.

Since these limiting laws are not Gaussian the standard or “naive” bootstrap is not valid, as

88



shown in Fang and Santos (2019). Instead, we resort to the numerical bootstrap/Delta method of

Hong and Li (2018) to construct pointwise confidence intervals and uniform confidence bands.

We apply these methods to the study of unions and inequality, which has long been

of interest to labor economists. A recent comprehensive review of this extensive literature is

provided by Farber et al. (2020). Using the data in Firpo et al. (2009), our empirical application

considers the effect of expanding unionization on the quantiles of the distribution of (log) wages.

Using the tools developed in this chapter, we can quantify the amount of policy selection bias

that is consistent with a policy that increases the unionization rate by unionizing low earnings

workers. By looking at the global effect in the 20th and 80th quantiles of the distribution of

wages we investigate the amount of policy selection bias consistent with unions reducing overall

inequality. To this end, we ask two questions: whether the 20th quantile increases by more than

10%, and whether the 80th quantile increases less than 10%. We find that these changes are

consistent with moderate values of policy selection bias.

The chapter is organized as follows: Section 3.2 reviews the literature; Section 3.3 intro-

duces our framework and shows how to construct the identified regions; Section 3.4 introduces

the quantile breakdown frontier and explains the sensitivity analysis procedure; Section 3.5

discusses estimation and inference; Section 3.6 contains the empirical application; and Section

3.7 concludes. We relegate all proofs to Appendix.

3.2 Related Literature

There is an extensive literature devoted to the analysis of counterfactual distributions. A

good reference is Firpo et al. (2011). In this chapter, we focus on counterfactual distributions

that arise as a result of a counterfactual policy that changes the proportion of treated individuals.

The Policy Relevant Treatment Effect (PRTE) of Heckman and Vytlacil (2001b, 2005), and the

Marginal PRTE (MPRTE) of Carneiro et al. (2010, 2011) are examples of the aforementioned

global and marginal effects. The difference is that they analyze the unconditional mean of the
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outcome. Identification relies on the a separable threshold model for the selection equation, and

the availability of a continuous instrumental variable. In their setting, the proportion of treated

individuals is changed by manipulating the instrumental variable. Our analysis does not make

any assumptions on the selection equation. We do not require an instrumental variable either.

Our sensitivity analysis is based on the breakdown analysis of Kline and Santos (2013)

and Masten and Poirier (2020). Kline and Santos (2013) perform a sensitivity analysis in a

different context: departures from a missing (data) at random assumption. In a manner similar

to us, this departure is measured as the Kolmogorov-Smirnov distance between the distribution

of observed outcomes and the (unobserved) distribution of missing outcomes. Our quantile

breakdown frontier builds on the breakdown frontier introduced by Masten and Poirier (2020).

However, the quantile breakdown frontier takes advantage of the unique features of the policy

selection bias: for each quantile the breakdown frontier of Masten and Poirier (2020) is a

rectangle. This allows us to plot the higher-dimensional quantile breakdown frontier in a plane.

3.3 Counterfactual Policies and Unconditional Effects

We work with the potential outcomes framework. For some unknown functions r0 and r1

Y (0) = r0(X ,U0),

Y (1) = r1(X ,U1),

where X are observed covariates and U0 and U1 consist of unobservables. We do not impose any

restriction on the dimension of the unobservables. The observed outcome is thus

Y = D · r1(X ,U1)+(1−D) · r0(X ,U0).

:= r(D,X ,U),
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for a general nonseparable function r, where D is a binary random variable taking values 0 and 1,

and U := (U0,U1)
′. The variable D is interpreted as the treatment status, and p := Pr(D = 1) is

the proportion of treated individuals.

In the rest of the chapter, we still maintain Assumption 1.1: a continuity assumption

about the outcome Y. This is not essential to our results, but allows us to reduce the notational

burden.

A counterfactual policy is an alternative assignment of individuals to treatment. It is

given by a binary random variable Dδ , such that Pr(Dδ = 1) = p+δ for a fixed δ ∈ (−p,1− p).

It is called counterfactual because it may assign Dδ = 1 to an individual whose D = 0. As δ

varies over (−p,1− p), we obtain a collection of counterfactual policies which is denoted by

D . Somewhat casually, we also call the collection D a sequence of policies. When a particular

counterfactual policy Dδ belongs to D we write Dδ ∈D . The counterfactual outcome we would

observe for a given Dδ ∈D is

YDδ
= r(Dδ ,X ,U),

where we implicitly assume that the potential outcomes are not affected by the manipulation of

D.

We will restrict ourselves to policies that shift a portion of individuals in the control

group to the treatment group. We refer to such individuals as newly treated. This means that for

every individual, Dδ −D≥ 0. This is shown in Figure 3.1.

Assumption 3.1 (Counterfactual Policies). The sequence of policies D satisfies

1. Monotonicity: Dδ −D≥ 0;

2. Pr(Dδ = 1) = p+δ ;

3. The counterfactual outcomes YDδ
are continuous with positive density on their support Y .
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counterfactual policy

D = 1

D = 0

D = 1

Dδ = 1

D = 0

Dδ = 1

D = 0
Dδ = 0

Figure 3.1. A monotonic counterfactual policy.

The monotonicity assumption Dδ −D ≥ 0 is mainly for expositional simplicity. Note

that it implies that δ > 0. We can do without this assumption, but we need to make some minor

changes to our approach. However, there is also a practical purpose. In a context where D is

union status, and D = 1 denotes unionized individuals, Assumption 3.1 requires that we increase

the unionization rate by unionizing previously nonunionized workers. It would probably be hard

to simultaneously unionize and deunionize different workers.

Another way to look at the monotonicity assumption is by inspecting the joint distribution

of D and Dδ it induces.

Table 3.1. Monotonicity
Assumption

Dδ = 0 Dδ = 1

D = 0 1− p−δ δ

D = 1 0 p

In other words, Assumption 3.1 rules out the presence of newly untreated individuals.

Also, in the limit, when δ = 0, we return to the original distribution of individuals.

The next task is to define who are the newly treated individuals, that is, how does Dδ

determine who receives treatment among the individuals whose D = 0. In this chapter we will

focus on two types of policies: a policy that simply chooses individuals whose D = 0 at random

and assigns them to Dδ = 1, and a policy that chooses individuals based on a user-specified
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criterion. We will refer to these two types of policies as randomized policy and non-randomized

policy respectively.

Example 3.1 (Randomized policy). A randomized policy satisfies: for any δ ∈ [0,1− p)

Dδ =


1 if D = 1

0 or 1 if D = 0

and the newly treated are selected at random. Using the conditional independence notation we

write Dδ ⊥ Y (1),Y (0)‖D = 0:

Pr(Dδ = 1|D = 0) = Pr(Dδ = 1|D = 0,Y (1),Y (0)) =
δ

1− p
. (3.1)

Example 3.2 (Non-randomized policy). An example of a non-randomized policy is the following:

for any δ ∈ [0,1− p)

Dδ =


1 if D = 1

1 if D = 0 and Z ≤ F−1
Z|D=0

(
δ

1−p

)
0 otherwise

(3.2)

for some observable random variable Z. In this case, the individuals in the group {D = 0} whose

Z is less than the δ

1−p -quantile of this group are shifted to Dδ = 1. This rule guarantees that, in

expectation, an aggregate proportion δ of individuals is shifted.

The following theorem characterizes the counterfactual distribution associated with an

arbitrary policy.

Theorem 3.1 (Counterfactual Distribution). For a sequence of policies D that satisfies Assump-
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tions 3.1, the counterfactual distribution for a given Dδ ∈D is

FYD
δ
(y) = Fa(y)+δ

[
FY (1)|D=0,Dδ=1(y)−FY (1)|D=1,Dδ=1(y)

]
, (3.3)

where

Fa(y) : = (1− p−δ )FY (0)|D=0,Dδ=0(y)+(p+δ )FY (1)|D=1,Dδ=1(y)

= (1− p−δ )FY |D=0,Dδ=0(y)+(p+δ )FY |D=1,Dδ=1(y). (3.4)

The distribution Fa is called an apparent counterfactual distribution because it is obtained

by imputing FY (1)|D=1,Dδ=1 to the newly treated subpopulation.2 The true distribution, which may

not be identifiable, is FY (1)|D=0,Dδ=1, so the second term corrects this. In a sense, Fa proceeds as

if FY (1)|D=0,Dδ=1 were equal to FY (1)|D=1,Dδ=1, something which is unlikely to be true. This can

be seen in Figure 3.1. The apparent distribution ignores the red shaded area, and combines the

green and the blue areas. The second term in (3.3) is the difference between the red and green

areas.

The apparent distribution Fa is identified because the policy maker knows the composition

of the subpopulations {D = 0,Dδ = 0}, the never treated, and {D = 1,Dδ = 1}, the already

treated. For both of these subpopulations we observe the “correct” potential outcome. More

specifically, for the never treated subpopulation, we observe Y (0), and for the already treated

subpopulation, we observe Y (1). The distributions of Y , which is equal to Y (0) and Y (1),

respectively, for the two subpopulations, are identified. As a result, Fa is identified. It is worth

pointing out that, under Assumption 3.1, FY (1)|D=1,Dδ=1 = FY (1)|D=1, and FY (0)|D=0,Dδ=0 =

FY (0)|Dδ=0. We maintain the “long” notation in order to emphasize the role of Dδ . Also, while

FY (0)|D=0,Dδ=0 is identified, it may not equal FY |D=0 unless Dδ is randomized.

2The correct notation for Fa is Fa,Dδ
, that is, it should include the policy Dδ . However, to keep the notation

simple, we omit this. The reader should bear in mind that for two different sequences of policies the apparent
distributions might differ.
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The only unidentified term in (3.3) is FY (1)|D=0,Dδ=1. This is the potential outcome Y (1)

for the newly treated individuals. However, for this subgroup, we only observe Y (0). As we

mentioned before, a consequence of Assumption 3.1 is that we lose point identification of the

counterfactual distribution.

Remark 3.1 (Firpo et al. (2009)). The marginal effect Mτ,D was originally studied by Firpo et al.

(2009), where, instead of Assumption 3.1, it is assumed that for d = 0,1: FYD
δ
|Dδ=d = FY |D=d .

This yields point identification. See the proof to Corollary 3 of the working paper version Firpo

et al. (2007). When both D and Dδ are independent of U and X, then FYD
δ
|Dδ=d = FY |D=d will

be satisfied. In this particular case, a policy maker can randomize Dδ so that for a given δ , a

fraction p+δ of individuals is randomly assigned to treatment. However, if we allow for D to be

endogenous, and if, as is usually the case, the structural form of endogeneity is unknown, then

it may be impossible for the policy maker to design a sequence D , such that for every Dδ ∈D ,

FYD
δ
|Dδ=d “matches” FY |D=d . From the point of view of the policy maker, this is a significant

restriction on the types of counterfactual policies they can consider.

Remark 3.2 (Policy Relevant Treatment Effect). Heckman and Vytlacil (2001b, 2005) and

Carneiro et al. (2010, 2011) investigate the effect of a policy on the unconditional mean of the

outcome. Using our notation, the Policy Relevant Treatment Effect (PRTE) of Heckman and

Vytlacil (2001b, 2005) is

PRTEDδ
=

E(YDδ
)−E(Y )
δ

,

and taking the limit δ → 0 yields the Marginal PRTE (MPRTE) of Carneiro et al. (2010, 2011):

MPRTED = lim
δ→0

PRTEδ .

Martinez-Iriarte and Sun (2020) show how to generalize the MPRTE to cover the case of Firpo

et al. (2009) as well.

Remark 3.3 (Rothe (2012)). This paper also studies the global and marginal effects but under
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a different identifying assumption, namely a form of conditional exogeneity. This assumption

also yields an identified set. Let the outcome be Y = r(D,X ,U). For uniformly distributed

random variables Ũ1 and Ũ2, the outcome can be represented as Y = r(QD(Ũ1),QX(Ũ2),U)

where QD and QX are the quantile functions. Then QD is changed to another quantile function

Q∗D, generating a counterfactual distribution, which is identified when Ũ1 ⊥ U‖X and D is

continuous. When D is discrete, Ũ1 is not uniquely determined, so that a range of counterfactual

distributions is possible, resulting in partial identification.

3.3.1 Global Effect: Bounds and Identification Region

We define the policy selection bias as the difference between FYδ
and Fa. We denote it by

psb(y). Since different policies can induce different newly treated individuals, they can induce

different counterfactual distributions. Thus the selection bias is policy dependent, and hence the

name “policy selection bias.”

psb(y) : = FY (1)|D=0,Dδ=1(y)︸ ︷︷ ︸
newly treated

−FY (1)|D=1,Dδ=1(y)︸ ︷︷ ︸
already treated

= FY (1)|D=0,Dδ=1(y)−FY (1)|D=1(y),

where the second line follows from Assumption 3.1: the subpopulations characterized by

{D = 1}and {D = 1,Dδ = 1} are identical. Under a non-randomized policy, the random variable

Dδ is usually a function of D and other observables as in (3.2). So, even if D⊥ Y (0),Y (1), that

would lead us to

psb(y) = FY (1)|D=0,Dδ=1(y)−FY (1)|D=0(y),

which is not zero unless Dδ ⊥Y (1)‖D = 0. For example, if we want to choose individuals whose

observed outcome is below a certain threshold, then most likely Dδ will be correlated with Y (1)

conditional on D = 0. Indeed, the fact that psb(y) is unlikely to be zero seems to be an inevitable
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feature of the problem.

As a measure of departure from point identification, we will bound the the policy selection

bias both from below and from above. For simplicity, we denote by Y the common support of

Y (1)|D = 0,Dδ = 1 and Y (1)|D = 1,Dδ = 1.

Assumption 3.2 (L-U Bounds). For any Dδ ∈D , there exists a pair of real numbers L ∈ [−1,0]

and U ∈ [0,1] such that for every y ∈ Y

L≤ FY (1)|D=0,Dδ=1(y)−FY (1)|D=1,Dδ=1(y)≤U,

and either L 6=−1 or U 6= 1.

The distribution of newly treated individuals is FY (1)|D=0,Dδ=1(y), while FY (1)|D=1,Dδ=1(y)

is the distribution of the already treated individuals. A more precise way to define L is as the

infimum over the differences FY (1)|D=0,Dδ=1(y)−FY (1)|D=1,Dδ=1(y), while U is the supremum

over such differences.

If FY (1)|D=1,Dδ=1(y) first-order stochastically dominates FY (1)|D=0,Dδ=1(y), the we can

set L = 0 and U ≤ 1. In the more general case, where the two distributions cross each other,

then L ∈ [−1,0] and U ∈ [0,1], and we do not necessarily need to have U =−L. Finally, setting

L =−1 and U = 1 corresponds to a trivial bounds situation. Since this is always true, this case

is excluded from the assumption.

Assumption 3.2 implies via (3.3) that the discrepancy between the counterfactual distri-

bution FYD
δ

and the apparent distribution Fa is further shrunk by a factor of δ :

δL≤ FYD
δ
(y)−Fa(y)≤ δU. (3.5)

We are now ready to state the main result of this section.

Theorem 3.2 (Global Effect Bounds). For a given sequence of policies that satisfies Assumptions
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1.1, 3.1 and 3.2, the global effect is bounded by

Gτ,Dδ
∈
[
F−1

a (τ−δU)−F−1
Y (τ),F−1

a (τ−δL)−F−1
Y (τ)

]
(3.6)

for any τ ∈ (δU,1+δL).

The proof is best given by a picture. Figure 3.2 shows Fa(y) in solid blue, along with the

uniform bounds for FYD
δ
(y) for given values of L and U . For a fixed τ , F−1

YD
δ

(τ) must lie between

the points ` and u. The point ` satisfies Fa(`)+δU = τ , from which we obtain `= F−1
a (τ−δU).

A similar reasoning applied to u yields u = F−1
a (τ−δL). Finally, the bound for the global effect

is obtained by subtracting F−1
Y (τ) from both ` and u.

The identified region in (3.6) is obtained by correcting the evaluation point of the quantile

of the apparent distribution: instead of τ , we evaluate the quantile of the apparent distribution at

τ−δU and τ−δL. The farther away are U and L from zero, where point identification holds,

the bigger is the region where the counterfactual distribution can lie. This is reflected in the

widening of the identified region.

An important quantity that we will use later on is the apparent global effect. This is the

estimand that neglects the policy selection bias by setting L =U = 0. It is given by

Ga
τ,Dδ

:= F−1
a (τ)−F−1

Y (τ), (3.7)

where the superscript “a” conveys the fact that it captures an apparent effect. Indeed, Ga
τ,Dδ

proceeds as if the counterfactual distribution FYD
δ

equals the apparent distribution Fa.

The bounds are “monotone” in L and U as we move away from point identification,

that is, when L =U = 0. Indeed, as we move in the L direction towards −1, the upper bound

F−1
a (τ−δL)−F−1

Y (τ) increases. As we move away from point identification in the U direction

towards 1, the lower bound F−1
a (τ−δU)−F−1

Y (τ) decreases. It is important to recall that L is

non-positive, and U is non-negative, so that F−1
a (τ−δU)≤ F−1

a (τ−δL).
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Remark 3.4 (Range of τ). The requirement that τ ∈ (δU,1+δL) comes from τ−δU ≥ 0 and

τ−δL≤ 1. However, later on, when we fix τ and δ , we want U and L to not be restricted, i.e.,

they both can achieve 1 and −1 respectively. In order for this to happen, we need δ < τ < 1−δ .

In the empirical application we work with δ = 0.1, so there will not be a significant restriction

on the quantiles we can analyze.

Remark 3.5 (Trivial Bounds). In principle, the global effect need not be restricted. The trivial

bounds, U = 1 and L =−1, provide a bounded region which contains the global effect:

F−1
a (τ−δ )−F−1

Y (τ)≤ Gτ,Dδ
≤ F−1

a (τ +δ )−F−1
Y (τ),

so, in the language of Manski (1989, 1990), the trivial bounds are always informative. However,

the identified set derived from the trivial bounds always contains 0 for all quantiles. The

intuition is that for a given δ , and the common support assumption, we know the counterfactual

distributions for a proportion 1−δ of individuals. Thus, we are able to bound the quantiles. See

the Apprendix for a proof.

Remark 3.6 (c-dependence). A common way to relax D⊥Y (1) is a version3 of the c-dependence

approach of Masten and Poirier (2018), which posits a c ∈ [0,1] such that

sup
y∈supp(Y (1))

|Pr(D = 1|Y (1) = y)−Pr(D = 1)| ≤ c. (3.8)

When c = 0, then D⊥ Y (1). If c > 0, then some sort of dependence is allowed between

D and Y (1). Alas, this approach would only help us in the case of randomized policies. For non-

randomized policies, to achieve point identification we need an extra conditional independence

assumption, namely Dδ ⊥ Y (1)|D = 0. We could, in addition to the c-dependence condition in

3We do not follow exactly the definition of c-dependence of Masten and Poirier (2018) which includes covariates.
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(3.8), impose

sup
y∈supp(Y (1))

|Pr(Dδ = 1|Y (1) = y,D = 0)−Pr(Dδ = 1|D = 0)| ≤ c∗.

for some c∗ ∈ [0,1]. However, the drawback is that the relationship between c and c∗ is not at all

clear. More importantly, their interpretation is not straightforward either.

Figure 3.2. Bounds on counterfactual quantiles.

3.3.2 Marginal Effect: Bounds and Identification Region

Before we proceed, we recall the conditions of Theorem 1.1, for the marginal effect to

exists. The conditions are

1. FYD0
(y) = FY (y) for any y ∈ Y ;

2. The map δ 7→ FYD
δ
(y) is differentiable at δ = 0 uniformly in y ∈ Y , with derivative

ḞY,D(y), that is

lim
δ↓0

sup
y∈Y

∣∣∣∣∣FYD
δ
(y)−FY (y)

δ
− ḞY,D(y)

∣∣∣∣∣= 0;
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3. The map y 7→ ḞY,D(y) is continuous at F−1
Y (τ).

In this case, by Theorem 1.1, the marginal effect exists, is given by

Mτ,D =− ḞY,D(F−1
Y (τ))

fY (F−1
Y (τ))

.

As mentioned before, the conditions and the proof of this Theorem come from viewing

the marginal effect as a Hadamard derivative. A primitive condition for FYD0
(y) = FY (y) is

Assumption 3.1, because it implies the expansion of Theorem 3.1. Setting δ = 0 in (3.3) yields

FYD0
(y) = FY (y). It states that for D0 ∈ D , the limiting counterfactual distribution FD0 has to

match the observed distribution FY . Recall Example 1.1, where FYD0
(y) 6= FY (y).

To better understand what the second condition requires, consider the following rear-

rangement4 of equation (3.3):

FYD
δ
(y)−FY (y)

δ
= FY (1)|D=0,Dδ=1(y)−FY (0)|D=0,Dδ=1(y).

The right hand side is the difference in potential outcomes for the newly treated. We require

this change to be continuous in δ : small departures from 0 to δ > 0 should not induce large

(uniform) changes in the counterfactual distribution FYD
δ
. This is automatically satisfied when

the sequence of policies are randomized. The next example shows this.

Example 3.3 (Marginal Effect of Randomized Policy). For the case of a randomized policy that

satisfies Assumption 3.1, by (3.1) we can simplify the counterfactual distribution in (3.3) to

FYD
δ
(y) = FY (y)+δ

[
FY (1)|D=0(y)−FY (0)|D=0(y)

]
,

4We can write FY (y) = (1− p− δ )FY (0)|D=0,Dδ=0(y)+ δFY (0)|D=0,Dδ=1(y)+ pFY (1)|D=1,Dδ=1(y), and FY (y) =
(1− p−δ )FY (0)|D=0,Dδ=0(y)+δFY (0)|D=0,Dδ=1(y)+ pFY (1)|D=1,Dδ=1(y). Subtracting FY (y) to FYD

δ
(y) we get

FYD
δ
(y)−FY (y) = δ

(
FY (1)|D=0,Dδ=1(y)−FY (0)|D=0,Dδ=1(y)

)
.
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which implies that ḞY,D(y) = FY (1)|D=0(y)−FY (0)|D=0(y). We obtain that ḞY,D is independent of

D .

In the next example, we show how the uniform differentiability might fail with arbitrary

non-randomized policies.

Example 3.4 (Effect at the Margin). For the case of a non-randomized policy that satisfies

Assumption 3.1, equation (3.3) in Theorem 3.1 can be written as

FYD
δ
(y)−FY (y)

δ
= FY (1)|D=0,Dδ=1(y)−FY (0)|D=0,Dδ=1(y).

It is not immediate that the limit when δ goes to 0 of the right hand side exists pointwise

for any y∈Y . This is not obvious, since the conditioning set D = 0,Dδ = 1 shrinks to a measure

0 set: those individuals whose D = 0 and D = 1.

In the case of a threshold-crossing model for D, as in D = 1
{

V ≤ F−1
V (p)

}
, and a se-

quence of policies such that Dδ = 1
{

V ≤ F−1
V (p+δ )

}
, the event {D = 0,Dδ = 1} is equivalent

to the event
{

0≤V ≤ F−1
V (p+δ )

}
, so we can define the limiting conditioning probability to be

lim
δ→0

FYD
δ
(y)−FY (y)

δ
= lim

δ→0
FY (1)|D=0,Dδ=1(y)− lim

δ→0
FY (0)|D=0,Dδ=1(y)

= FY (1)|V=0(y)−FY (0)|V=0(y).

If the distributions FY (1)|V=0 and FY (0)|V=0 are continuous then pointwise convergence

is equivalent to uniform convergence. This implies that ḞY,D(y) = FY (1)|V=0(y)−FY (0)|V=0(y)

which is the familiar result (see Martinez-Iriarte and Sun (2020)) that the marginal individuals,

those whose V = 0, are the ones that drive the marginal effect in a threshold-crossing model.

The effect is policy dependent because it entails a particular departure in the selection equation.

This policy dependence is emphasized in Carneiro et al. (2010, 2011).

When ḞY,D is independent of D , two different randomized policies D and D ′ will deliver
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the same marginal effect. But at the same time, at the population level, there can only be one

randomized policy. This result reflects precisely that. On the other hand, for non-randomized

policies, the marginal effect can easily be sequence dependent.

For a randomized policy, ḞY,D is well-defined, though not necessarily identified since

it involves FY (1)|D=0. For this reason, when analyzing the marginal effect, we will focus on

randomized policies. Thus, we will write Mτ instead of Mτ,D .

The bounds for the marginal effect will be obtained as the limiting bounds, as δ goes to

0, for the global effect under a randomized policy. That is, the bounds for Mτ will be given by

lim
δ→0

F−1
a (τ−δU)−F−1

Y (τ)

δ
,

and

lim
δ→0

F−1
a (τ−δL)−F−1

Y (τ)

δ
,

provided these limits exist.

These limits can be seen as derivatives with respect to δ of δ 7→ F−1
a (τ−δL) at δ = 0.

There is a minor complication which makes the computation a bit more involved. The reason

is that δ plays a dual role in the map δ 7→ F−1
a (τ − δL): first, it enters in the argument of

F−1
a (τ−δL); second it is used in the construction of the apparent distribution Fa := (1− p−

δ )FY |D=0 +(p+δ )FY |D=1 (see (3.4)). We resort to the chain rule and treat each case separately.

The first case can be solved as an ordinary derivative of the inverse of a function, while the

second case takes advantage of the Hadamard differentiability of the function δ 7→ Fa, which

maps a scalar into the space of right-continuous functions with left limits, composed with the

function Fa 7→ F−1
a (τ) which maps an increasing right-continuous function with left limits into
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the real numbers. The details can be found in the Appendix. Heuristically, we have

lim
δ→0

F−1
a (τ−δU)−F−1

Y (τ)

δ
= lim

δ→0

F−1
Y (τ−δU)−F−1

Y (τ)

δ
+ lim

δ→0

F−1
a (τ)−F−1

Y (τ)

δ
,

where the first term can be dealt with the inverse function theorem, and the second term with a

Hadamard derivative to account how the function F−1
a moves when we move δ .

Theorem 3.3 (Marginal Effect Bounds). For a sequence of randomized policies that satisfies

Assumptions 1.1, 3.1 and 3.2 the marginal effect is bounded by

− U
fY (F−1

Y (τ))
≤Mτ −Ma

τ ≤−
L

fY (F−1
Y (τ))

(3.9)

for any τ ∈ (0,1), where

Ma
τ :=−

FY |D=1(F
−1

Y (τ))−FY |D=0(F
−1

Y (τ))

fY (F−1
Y (τ))

(3.10)

is the apparent effect.

The apparent effect in (3.10) is the estimand of Firpo et al. (2009). Hence, Theorem

3.3 states that the usual estimand should be enlarged by − U
fY (F−1

Y (τ))
and − L

fY (F−1
Y (τ))

in order to

contain Mτ . Recall that L is non-positive, and U is non-negative. As opposed to the bounds on

the global effect, the result in Theorem 3.3 holds for any τ ∈ (0,1). However, there is not much

to gain from this because as τ approaches 0 or 1, the density fY (F−1
Y (τ)) is likely to approach

zero and the bounds will diverge to +∞ or −∞.

Remark 3.7 (Trivial Bounds). Setting L =−1 and U = 1 corresponds to a trivial bounds case.

It is a matter of simple algebra to show that 0 will always be in the identified set in this case.

For example, if Ma
τ ≥ 0, then 0 ∈ [Ma

τ −1/ fY (F−1
Y (τ)),Ma

τ +1/ fY (F−1
Y (τ))]. As in the case with

the global effect, the boundedness of the outcome is not needed for the trivial bounds to be

informative.

104



3.4 Quantile Breakdown Frontier

In our framework, the amount of policy selection bias is controlled by L and U . Figure

3.3 shows this in the L×U plane. When L =U = 0, there is no policy selection bias, and hence

we achieve point identification. Any other value of L ∈ [−1,0) and U ∈ (0,1] admits some policy

selection bias, and consequently the effects are only partially identified. A special case of this

are the trivial bounds: when L = −1 and U = 1. We refer to any combination (L,U) distinct

from (0,0) as a departure from point identification.

The following language convention is important. Because L is always non-positive, we

say that we have more policy selection bias (due to L) in the point (L,U) = (−1,u) than in the

point (L,U) = (−0.5,u), even though L is bigger in the latter, −0.5, than in the former, −1.

Thus, we quantify the selection as how far we move (L,U) from (0,0), rather than by the value

of L or U .

The quantile breakdown frontier is a curve that quantifies the amount of policy selection

bias compatible with a given conclusion of interest across quantiles. Suppose we are interested in

a certain policy Dδ , and we would like to know if its global effect on the median of Y is positive.

That is, we want to know whether G.5,Dδ
> 0 or not. If we were certain that there is no policy

selection bias, we would just estimate the apparent effect Ga
.5,Dδ

using (3.7):

Ga
.5,Dδ

= F−1
a (.5)−F−1

Y (.5).

However, it is very likely that the apparent effect Ga
.5,Dδ

is biased for the true global effect G.5,Dδ
.

Sensitivity analysis, in a sense, asks the reverse question: how much policy selection bias is

compatible with G.5,Dδ
> 0? The quantile breakdown frontier answers this question by indicating

the amount of departure from point identification such that the conclusion holds.

In order to answer the question posed by sensitivity analysis, we recall Theorem 3.2
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Figure 3.3. Point and partial identification.

which states that there are L and U such that

F−1
a (.5−δU)−F−1

Y (.5)≤ G.5,Dδ
≤ F−1

a (.5−δL)−F−1
Y (.5). (3.11)

Hence, for G.5,Dδ
> 0 to hold, we need that the lower bound in (3.11) be greater than

zero. That is, we need all the values of U such that

0 < F−1
a (.5−δU)−F−1

Y (.5)≤ G.5,Dδ
(3.12)

First, we note that F−1
a (.5−δU) is decreasing in U . Suppose G.5,Dδ

¿0. We start with

U = 0 and then move it towards 1. On the other hand, L is left unrestricted. So, all the

values of U such that (3.12) holds and any value of L ∈ [−1,0] are compatible with G.5,Dδ
> 0.

In particular, let U.5 be the value of U such that the lower bound in (3.12) is equal to zero:

0 = F−1
a (.5−δU.5)−F−1

Y (.5). Thus, the combination of L and U compatible with G.5,Dδ
> 0
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are

{(L,U) :−1≤ L≤ 0 and 0≤U <U.5} (3.13)

A value of U greater than U.5 induces too much bias and fails to guarantee that G.5,Dδ
> 0.

The left panel of Figure 3.4 shows the compatible values of L and U in the L×U plane.

Figure 3.4. Compatible values for G.5,Dδ
> 0 and G.8,Dδ

< 0.

Now suppose we are also interested in the 80th quantile. However, it may be the case

that there is no value of U such that

0 < F−1
a (.8−δU)−F−1

Y (.8).

holds. That is, for any value of U ,

F−1
a (.8−δU)−F−1

Y (.8)≤ 0,

or equivalently Ga
.8,Dδ
≤ 0, thus, no combination of L and U can guarantee that G.8,Dδ

> 0 holds.

Therefore, we look at the reverse conclusion G.8,Dδ
< 0, and find all the values of L such that

G.8,Dδ
≤ F−1

a (.8−δL)−F−1
Y (.8)< 0.
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We denote by L.8 the value of L that solves: F−1
a (.8−δL)−F−1

Y (.8) = 0. The values of

L and U such that G.8,Dδ
< 0 are

{(L,U) : L.8 < L≤ 0 and 0≤U ≤ 1} , (3.14)

and are shown in the right panel of Figure 3.4.

The extension of this procedure to more than two quantiles gives rise to the quantile

breakdown frontier. For a collection of conclusions indexed by τ ∈ (δ ,1− δ ),5 for example

Gτ,Dδ
> gτ , the quantile breakdown frontier shows the combinations of L and U compatible with

each conclusion.

Figure 3.5 contains an hypothetical quantile breakdown frontier constructed for all

τ ∈ (δ ,1−δ ). On the left side, at τ = .5, we can see that below the curve we have the region

described in (3.13) under which G.5,Dδ
> 0 holds. At τ = .8, we have that above the curve we

have the region described in (3.14) where G.8,Dδ
< 0 holds. The right hand side shows this for

all the quantiles in (δ ,1−δ ). Values of U in the red area include possible negative values of the

global effect. The green area is the counterpart of the blue area: a robust region for Gτ,Dδ
< 0.

Finally, the orange area is the counterpart of the red area: values of L such that the global effect

might be positive.

Consider again the left panel in Figure 3.5. We can use the values L.8 and U.5 to construct

bounds for the global effect curve: τ 7→ Gτ,Dδ
. These bounds have the property that at τ = 0.5,

the identified region for the global effect is positive, while at τ = 0.8, the identified region for

the global effect is negative. Moreover, the identified region for the global effect derived from

L.8 and U.5 will provide statements about the global effect at other quantiles as well. This can

be seen in Figure 3.6. The solid line in upper left panel shows the trivial bounds. These are

obtained by setting L = −1 and U = 1 in (3.6). Note how the identified region of the trivial

bounds contains 0 for all the quantiles, in line with Remark 3.5. The upper right panel shows

5See Remark 3.4 for an explanation of this restriction.
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Figure 3.5. Quantile Breakdown Frontier.

the restriction on U such that G.5,Dδ
> 0: the lower bounds is tightened and crosses 0 at τ = 0.5.

Similarly, the lower left panel tightens the upper bound consistent with restricting L to be L.8 in

order for G.8,Dδ
< 0 to hold. Note how the upper bound now crosses 0 at τ = 0.8. The lower

right panel gives simultaneous bounds for the global effect such that G.5,Dδ
> 0 and G.8,Dδ

< 0.

The interpretation of the grey shaded area in the lower right panel of Figure 3.6 is the following:

the global effect curve has to lie in the gray area in order for the conclusions G.5,Dδ
> 0 and

G.8,Dδ
< 0 to hold.

One of the building blocks for the construction of the quantile breakdown frontier is the

breakdown frontier of Masten and Poirier (2020). Figure 3.4 shows two examples a breakdown

frontier. The quantile breakdown frontier takes advantage of the fact that the frontiers in Figures

3.4 are straight lines. This simplicity allows us to plot the higher dimensional quantile breakdown

frontier in a plane as in Figure 3.5.

In the rest of this section we will derive analytical expressions for Lτ , Uτ , the quantile

breakdown frontier, and the bounds on the global effect. We will also derive the quantile

breakdown frontier for the sign of the marginal effect.
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Figure 3.6. Bounds on the global effect.

3.4.1 Global Effect

Suppose that, for a given τ and Dδ , we are interested in the global effect. By Theorem

3.2, there are L and U such that

F−1
a (τ−δU)−F−1

Y (τ)≤ Gτ,Dδ
≤ F−1

a (τ−δL)−F−1
Y (τ).

In order not to impose restrictions of L and U , we will focus on τ ∈ (δ ,1− δ ) (See

Remark 3.4). We further recall that the bounds are “centered” around Ga
τ,Dδ

:= F−1
a (τ)−F−1

Y (τ).

For a given τ we are interested in the values of L and U such that either Gτ,Dδ
> gτ or Gτ,Dδ

< gτ

holds. In order to build the breakdown frontier we must look at the location of Ga
τ,Dδ

with respect

to gτ .

Figure 3.7 illustrates the case of Ga
τ,Dδ

> gτ . The blue part of the axis shows the possible

values of Gτ,Dδ
. The dashed lines show three different combination of L and U . The two blue

dashed lines allow us to conclude that the effect is greater than gτ . The red dashed line include
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values lower than gτ , and hence it is excluded. Since only the lower bounds concern us, this

means that we do not want U to get too close to 1. Thus there is a maximum departure from

point identification due to U that ensures that Gτ,Dδ
> gτ holds in the case where Ga

τ,Dδ
> gτ .

gτ Gaτ,Dδ

7

3

3

Figure 3.7. Maximum departure from U = 0.

This maximum U is denoted by Uτ , and it solves (see middle dashed line in Figure 3.7)

F−1
a (τ−δUτ)−F−1

Y (τ) = gτ .

which implies that

Uτ = min

{
max

{
0,

τ−Fa(F−1
Y (τ)+gτ)

δ

}
,1

}
. (3.15)

Figure 3.8 shows the other possibility, which is Ga
τ,Dδ

< gτ . In this case we can analyze

conclusions of the form Gτ,Dδ
< gτ . As we move L towards −1, the right end of the identified

regions approaches gτ . In the red segment, L is too close to −1, so the identified region contains

values contrary to the conclusion. So, it is excluded.

gτGaτ,Dδ

7

3

3

Figure 3.8. Maximum departure from L = 0.
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In this case, we have

Lτ = max

{
min

{
0,

τ−Fa(F−1
Y (τ)+gτ)

δ

}
,−1

}
. (3.16)

The common ingredient for Uτ in (3.15) and Lτ in (3.16) is

θ(τ) =
τ−Fa(F−1

Y (τ)+gτ)

δ
. (3.17)

The map τ 7→ θ(τ) is the quantile breakdown frontier. Alternatively, for a given τ , the

quantile breakdown frontier is value of the policy selection bias such that the global effect

Gτ,Dδ
= gτ . If this value is positive, it is taken to be U , if it is negative, it is taken to be L.

Continuity of the quantile breakdown frontier is important for inference purposes. In-

spection of the formulas in (3.17) shows that continuity of Fa, F−1
Y , and of the map τ 7→ gτ is

enough. Continuity of Fa and F−1
Y is true by assumption, but continuity of τ 7→ gτ is up to the

user. In our empirical application we will choose a gτ which is constant-across-τ . An arbitrary

collection of {gτ : τ ∈ (δ ,1−δ )} might be problematic.

Summarizing, we follow the following steps. First, we need to fix the set of quantiles τ in

which we are interested and compute the quantile breakdown frontier for a given collection of gτ .

Then, we have to check the sign of the quantile breakdown frontier at these τ’s. If the quantile

breakdown frontier is positive, we can derive the values of U such that positive conclusions

hold: Gτ,Dδ
> gτ . If the quantile frontier is negative, we can derive the values of L such that the

negative conclusions hold: Gτ,Dδ
< gτ .

3.4.2 Bounds derived from the QBF

Often times, researchers are interested in quantile contrasts: for example Farber et al.

(2020) examine 10th vs. 90th of a marginal increase in unionization. In this case, following

Masten and Poirier (2020) we can visualize the result in a joint breakdown frontier/robust region.
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This is shown in Figure 3.9. The intersection contains the values of L and U compatible with

both conclusions of interest. We can use the quantile breakdown frontier to derive bounds on the

L

U

0
0

−1

1

Uτ1

Lτ2

Figure 3.9. Joint Breakdown Frontier.

global effect for every τ ∈ (δ ,1−δ ):

τ 7→ Gτ,Dδ
.

To do so, we find τ1 and τ2 such that we can analyze Gτ1 > 0 and Gτ2 < 0. That is, the

quantile breakdown is positive at τ1 and negative at τ2.6 Following Theorem 3.2, we can use

Uτ1 to construct a lower bound for the global effect, and Lτ2 to construct an upper bound for the

global effect. These bounds are given by

τ 7→ B(Uτ1;τ) := F−1
a (τ−δUτ1)−F−1

Y (τ), (3.18)

and

τ 7→ B(Lτ2;τ) := F−1
a (τ−δLτ2)−F−1

Y (τ). (3.19)

6The empirical quantile breakdown frontier might be negative or positive everywhere. In that case this analysis
would not apply. However, in our empirical analysis, the quantile breakdown is positive in a region, and negative in
another region.
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and are shown in Figure 3.6.

3.4.3 Marginal Effect

For the marginal effect the situation is a bit more delicate, and some care must be

exercised with the density in the denominator. By Theorem 3.3, the identified region for Mτ is

[
Ma

τ −
U

fY (F−1
Y (τ))

,Ma
τ −

L
fY (F−1

Y (τ))

]

where recall that

Ma
τ :=−

FY |D=1(F
−1

Y (τ))−FY |D=0(F
−1

Y (τ))

fY (F−1
Y (τ))

.

Consider a single quantile τ . For the conclusion Mτ > gτ to hold, then, as before, the

restriction on U , denoted by Uτ , solves

−
FY |D=1(F

−1
Y (τ))−FY |D=0(F

−1
Y (τ))

fY (F−1
Y (τ))

− Uτ

fY (F−1
Y (τ))

= gτ

which implies

Uτ = min
{

1,max
{

0,FY |D=0(F
−1

Y (τ))−FY |D=1(F
−1

Y (τ))−gτ fY (F−1
Y (τ))

}}
.

For the opposite conclusion, Mτ < gτ , similar calculations, this time on the upper bound,

yield

Lτ = max
{

min
{

0,FY |D=0(F
−1

Y (τ))−FY |D=1(F
−1

Y (τ))−gτ fY (F−1
Y (τ))

}
,−1

}
.

When it comes to estimation, the quantile breakdown frontier contains a non-parametric

ingredient, namely the density fY evaluated at a quantity that must estimated: F−1
Y (τ). This

can be avoided if we set gτ = 0 for every τ . In such a case, we are interested in the sign of the

marginal effect. This is natural conclusion to be interested in since the marginal effect has the
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interpretation of a derivative. When gτ = 0, these expressions simplify to

Uτ = min
{

max
{

0,FY |D=0(F
−1

Y (τ))−FY |D=1(F
−1

Y (τ))
}
,1
}
,

and

Lτ = max
{

min
{

0,FY |D=0(F
−1

Y (τ))−FY |D=1(F
−1

Y (τ))
}
,−1

}
.

The quantile breakdown frontier for the sign of marginal effect is then given by

τ 7→ θ(τ) = FY |D=0(F
−1

Y (τ))−FY |D=1(F
−1

Y (τ)). (3.20)

Remark 3.8. Coincidentally, in this case where g = 0 for every τ , the quantile breakdown

frontiers for the global and the marginal effects coincide. This reflects the fact that the apparent

marginal effect and the apparent global effects have the same sign. Of course, the true effects

might differ in sign. To see this, we note that the apparent distribution can be written as7

Fa(y) = F(y) + δ
[
FY |D=1,Dδ=1(y)−FY |D=0,Dδ=1(y)

]
. So, that for g = 0, and plugging the

previous expression for Fa(y) in (3.17), we obtain (3.20).

3.5 Estimation and Inference

There are two main results in the sensitivity analysis we propose. The first one is the

quantile breakdown frontier τ 7→ θ(τ). The second important result is the case when we use

the estimated values of Uτ1 and Lτ2 to construct bounds for the effect across all quantiles in the

manner of Figure 3.6. We will provide asymptotic results both pointwise, for a given τ , and

uniform, when the objects are seen as a random function.

We work in the space `∞(δ ,1−δ ) of bounded real-valued functions defined on (δ ,1−δ ).

7See the proof for the statement of Remark 3.5.
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As usual, we endow this space with the supremum norm: ‖x‖∞ := supt∈(δ ,1−δ ) |x(t)|. The reason

we restrict the space to be `∞(δ ,1−δ ) and not `∞(0,1) is due to the fact that for a given δ , we

cannot reach quantiles below δ or above 1−δ . See Remark 3.4 above.

In order to simplify notation, and ensure the continuity of the quantile breakdown frontier,

we are going to focus on the case where the threshold gτ is constant across τ .

Assumption 3.3 (Constant Threshold). For some scalar g, the threshold gτ satisfies gτ = g for

any τ ∈ (δ ,1−δ ).

This assumption can be relaxed at the expense of more complicated notation. However,

we still require smoothness in the map τ 7→ gτ . For the case of the quantile breakdown for the

sign of the marginal effect, we will set g = 0.

3.5.1 Quantile Breakdown Frontier: Global Effect

Under Assumption 3.3, the quantile breakdown frontier is

θ(τ) :=
τ−Fa(F−1

Y (τ)+g)
δ

.

The empirical apparent distribution is

F̂a(y) = (1− p̂−δ )F̂Y |D=0,Dδ=0(y)+(p̂+δ )F̂Y |D=1,Dδ=1(y),

where p̂ := n−1
∑

n
i=1 Di, and

F̂Y |D=0,Dδ=0(y) :=
∑

n
i=11{Yi ≤ y}(1−Di)(1−Dδ ,i)

∑
n
i=1(1−Di)(1−Dδ ,i)

,

F̂Y |D=1,Dδ=1(y) :=
∑

n
i=11{Yi ≤ y}DiDδ ,i

∑
n
i=1 DiDδ ,i

.

The empirical quantiles F̂−1
Y , are computed using the generalized inverse: F̂−1

Y (τ) :=

inf
{

y : F̂Y (y)≥ τ
}

. Here, F̂Y (y) := n−1
∑

n
i=11{Yi ≤ y} is the empirical CDF. For given τ,g and
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δ , the estimated counterpart of θ(τ) is then

θ̂(τ) :=
τ− F̂a(F̂−1

Y (τ)+g)
δ

. (3.21)

We can view the map τ 7→ θ̂(τ) as a random element of `∞(δ ,1− δ ). In that case,

we denote it simply by θ̂ . We want to investigate the weak convergence of
√

n(θ̂ − θ) in

`∞(δ ,1−δ ):

√
n(θ̂ −θ) =− 1

δ

√
n
(
F̂a ◦ (F̂−1

Y +g)−Fa ◦ (F−1
Y +g)

)
.

This is similar to a quantile-quantile transformation (see Exercise 4 in Chapter 3.9 in van der

Vaart and Wellner (1996)). We base our proof of the asymptotic distribution of
√

n(θ̂ −θ) on

the proof of Lemma A.1 in Beare and Shi (2019).8 The main assumption is

Assumption 3.4 (Functional CLT). The following multivariate functional central limit theorem

holds

√
n



F̂Y −FY

F̂Y |D=0,Dδ=0−FY |D=0,Dδ=0

F̂Y |D=1,Dδ=1−FY |D=1,Dδ=1

p̂− p


 



GY

G0,0

G1,1

Zp


,

where GY , G0,0, and G1,1 are Brownian bridges in `∞(Y ), and Zp is a (real-valued) normal

random variable.

The following assumption is needed to establish the Hadamard differentiable of different

functions used in the construction of θ .

Assumption 3.5 (Conditions for Hadamard Differentiability).
8Beare and Shi (2019) also offer some interesting historical context for the result.
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1. For some ε > 0, FY is continuously differentiable in [F−1
Y (δ )− ε,F−1

Y (1−δ )+ ε]⊂ Y

with strictly positive derivative fY .

2. The distribution functions FY |D=0,Dδ=0(y) and FY |D=1,Dδ=1(y) are differentiable, with

uniformly continuous and bounded derivatives on their support Y .

The first item in Assumption 3.5 concerns the support Y and the smoothness of FY .

It is used to guarantee the Hadamard differentiability of the quantile process τ 7→ F−1
Y (τ) for

τ ∈ (δ ,1− δ ). The second item ensures that the apparent distribution Fa(y) has a uniformly

continuous and bounded derivative. This derivative is denoted by fa(y). It is needed to establish

the Hadamard differentiability of the composition map (Fa,F−1
Y ) 7→ Fa ◦ (F−1

Y +g).9

Theorem 3.4 (Asymptotic Distribution of QBF). Under Assumptions 3.3, 3.4, and 3.5

√
n(F̂a−Fa) Ga := (1−δ )G0,0 +δG1,1 +(FY |D=1,Dδ=1−FY |D=0,Dδ=0)Zp,

where Ga is a Gaussian tight element of `∞(Y ), and

√
n(θ̂ −θ) Gθ :=− 1

δ
Ga ◦ (F−1

Y +g)+
1
δ

fa ◦ (F−1
Y +g)

GY ◦F−1
Y

fY ◦F−1
Y

,

where Gθ is Gaussian tight element of `∞(δ ,1−δ ).

The second convergence result of Theorem 3.4 is uniform in τ ∈ (δ ,1−δ ). If we are

interested in a particular quantile τ , we can evaluate
√

n(θ̂ −θ) at τ to obtain

√
n(θ̂(τ)−θ(τ)) Gθ (τ) =−

1
δ
Ga ◦ (F−1

Y (τ)+g)

+
1
δ

fa ◦ (F−1
Y (τ)+g)

GY ◦F−1
Y (τ)

fY ◦F−1
Y (τ)

.

Instead of providing a closed form expression and a consistent estimator for the variance

9Section 3.9 in van der Vaart and Wellner (1996) studies the Hadamard differentiability of composition maps.
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of Gθ (τ), we note that, by Theorem 23.9 in van der Vaart (1998), the empirical bootstrap is valid.

Confidence intervals for θ(τ) can be constructed in the following way:

Algorithm 1 (Bootstrap for θ(τ)).

1. Given the data
{

Yi,Di,Dδ ,i
}n

i=1 and a value τ ∈ (δ ,1−δ ), compute θ̂(τ) as in (3.21).

2. Obtain B bootstrap samples of size n from
{

Yi,Di,Dδ ,i
}n

i=1, and compute
√

n(θ̂ b(τ)−

θ̂(τ)), where θ̂ b(τ) is computed as in (3.21) for b = 1, . . . ,B.

3. For
{√

n(θ̂ b(τ)− θ̂(τ))
}B

b=1, obtain the (100×α/2)% and (100× (1−α/2))% per-

centiles. These are denoted ξα/2,θ(τ) and ξ1−α/2,θ(τ).

The 1−α confidence intervals are then computed as

C I (θ(τ),α) =

[
θ̂(τ)−

ξ1−α/2,θ(τ)√
n

, θ̂(τ)−
ξα/2,θ(τ)√

n

]
.

It is also possible to construct uniform confidence bands for τ ∈ (δ ,1−δ ). In this case,

we look for the smallest scalar c such that, under the bootstrap probability measure,

Pr∗
(

sup
τ∈(δ ,1−δ )

∣∣√n(θ̂(τ)∗− θ̂(τ))
∣∣≤ c

∣∣∣∣{Yi,Di,Dδ ,i
}n

i=1

)
≥ 1−α.

The unknown scalar c can be obtained by the simulation procedure outlined below.

Algorithm 2 (Bootstrap for θ ).

1. Given the data
{

Yi,Di,Dδ ,i
}n

i=1 and a grid of values {τk}K
k=1 ⊂ (δ ,1−δ ), compute θ̂(τk)

as in (3.21) for each k = 1, . . . ,K.

2. Obtain B bootstrap samples of size n from
{

Yi,Di,Dδ ,i
}n

i=1, and compute

max
k=1,...,K

∣∣∣√n(θ̂ b(τk)− θ̂(τk))
∣∣∣ ,

where θ̂ b(τk) is computed as in (3.21) for b = 1, . . . ,B and each k = 1, . . . ,K.
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3. Obtain the (100× (1−α))% percentile of
{

maxk=1,...,K
∣∣√n(θ̂ b(τk)− θ̂(τk))

∣∣}B
b=1. This

is denoted ξ1−α,θ .

The 1−α confidence bands are then computed as

C B(θ(τ),α) =

[
θ̂(τ)− ξ1−α,θ√

n
, θ̂(τ)+

ξ1−α,θ√
n

]
.

3.5.2 Bounds on the Global Effect

An important case is when we are interested in two conclusions Gτ1 > g and Gτ2 < g for

τ1 6= τ2, both in (δ ,1−δ ). This is the case in Figure 3.6. For the case of the global effect, by

Theorem 3.2, the bounds are τ 7→ F−1
a (τ−δUτ1)−F−1

Y (τ), and τ 7→ F−1
a (τ−δLτ2)−F−1

Y (τ),

for fixed values of Uτ1 and Lτ2 . The goal is to make inference on these bounds when Uτ1 , Lτ2 ,

F−1
a and F−1

Y are estimated.10

Define B(Uτ1;τ) := F−1
a (τ−δUτ1)−F−1

Y (τ) and B(Lτ2;τ) := F−1
a (τ−δLτ2)−F−1

Y (τ).

The estimated counterparts are

B̂(Ûτ1;τ)

B̂(L̂τ2;τ)

=

F̂−1
a (τ−δÛτ1)− F̂−1

Y (τ)

F̂−1
a (τ−δ L̂τ2)− F̂−1

Y (τ)

 ,

where by (3.15), and (3.16) we have

Ûτ1

L̂τ2

=

 min{max{0, θ̂(τ1)},1}

max{min{0, θ̂(τ2)},−1}

 .

To find the distributions of Ûτ1 and L̂τ2 , we define the map φ : `∞(δ ,1−δ ) 7→ [−1,0]×
10It is assumed that both Uτ1 and Lτ2 exist, in the sense that there is a robust region for the conclusions Gτ1 > g

and Gτ2 < g.
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[0,1] given by

φ(H) =

 min{max{0,H(τ1)} ,1}

max{min{0,H(τ2)} ,−1}

 . (3.22)

Though continuous, the composition of max and min (and vice versa) is not smooth.

However, a form of differentiability, namely Hadamard directional differentiability, is still

preserved. More importantly, the Delta method is still valid under this weaker differentiability

notion. See Shapiro (1990), Dümbgen (1993), and, more recently and with applications to

econometric theory, Fang and Santos (2019).

Theorem 3.5. Under the Assumptions of Theorem 3.4,

√
n

Ûτ1−Uτ1

L̂τ2−Lτ2

 φ
′
θ (Gθ ),

where

φ
′
θ (Gθ )

=

 Gθ (τ1)1{0<θ(τ1)<1}+max(0,Gθ (τ1))1{θ(τ1)=0}+min(0,Gθ (τ1))1{θ(τ1)=1}

Gθ (τ2)1{−1<θ(τ2)<0}+min(0,Gθ (τ2))1{θ(τ2)=0}+max(0,Gθ (τ2))1{θ(τ2)=−1}

 .

(3.23)

It is important to point out that the distribution of φ ′
θ
(Gθ ) is not Gaussian. This is not

only due to the presence of the min and max functions, but also because when θ(τ1) /∈ [0,1] the

first coordinate is degenerate in 0. The same comment applies to the second coordinate, which

is degenerate when θ(τ2) /∈ [−1,0]. See Example 2.1 in Fang and Santos (2019) for a similar

situation.

We need the following assumption in order to establish the Hadamard differentiability of
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the quantile process τ 7→ F−1
a (τ) for τ ∈ (δ ,1−δ ). Recall that the support of Fa is assumed to

be Y .

Assumption 3.6. For some ε > 0, Fa is continuously differentiable in [F−1
a (δ )−ε,F−1

a (1−δ )+

ε]⊂ Y with strictly positive derivative fa.

When the bounds are viewed as a map in `∞(δ ,1−δ )× `∞(δ ,1−δ ), we use “·” to keep

track of where the argument of the function should be, and we write

√
n

B̂(Ûτ1; ·)−B(Uτ1 ; ·)

B̂(L̂τ2; ·)−B(Lτ2 ; ·)

 (3.24)

Theorem 3.6. Under Assumptions 3.3, 3.4, 3.5, and 3.6

√
n

B̂(Ûτ1; ·)−B(Uτ1; ·)

B̂(L̂τ2; ·)−B(Lτ2; ·)

 
GUτ1

GLτ2


a tight process in `∞(δ ,1−δ )× `∞(δ ,1−δ ) given by

GUτ1

GLτ2

 :=

−Ga◦F−1
a ( · −δUτ1)

fa◦F−1
a ( · −δUτ1)

− δφ ′
θ
(Gθ )2

fa◦F−1
a ( · −δUτ1)

− GY ◦F−1
Y (·)

fY ◦F−1
Y (·)

−Ga◦F−1
a ( · −δLτ2)

fa◦F−1
a ( · −δLτ2)

− δφ ′
θ
(Gθ )1

fa◦F−1
a ( · −δLτ2)

− GY ◦F−1
Y (·)

fY ◦F−1
Y (·)

 , (3.25)

where the map φ ′
θ
(Gθ ) is given in (3.23), and φ ′

θ
(Gθ )1 and φ ′

θ
(Gθ )2 are the first and second

coordinates respectively.

The limiting process in (3.25) is not Gaussian because of the presence of φ ′
θ
(Gθ ) given

in Theorem 3.4. Hence, by Corollary 3.1 in Fang and Santos (2019), the standard bootstrap

will fail. This means that if we attempt to construct confidence intervals in the usual way by

resampling B̂(Ûτ1 ;τ) and B̂(L̂τ2;τ), we will not obtain correct asymptotic coverage. Instead, we

use the numerical bootstrap of Hong and Li (2018, 2020). For a given τ , we write the map in
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(3.24) as

ψ(Fa,FY ,Ûτ1, L̂τ2;τ) =

F−1
a (τ−δÛτ1−F−1

Y (τ)

F−1
a (τ−δ L̂τ2−F−1

Y (τ)

 (3.26)

The idea is that we can approximate (GUτ1
(τ),GLτ2

(τ))′ using a standard bootstrap for

F̂a and F̂Y and a numerical bootstrap for Ûτ1 and L̂τ2 . First, fix Ûτ1 and L̂τ2 , and let F̂∗a and F̂∗Y be

the bootstrap counterparts of F̂a and F̂Y . Then, define

ψ̂
•
aY (F̂

∗
a , F̂

∗
Y ;τ) =

√
n
(
ψ(F̂∗a , F̂

∗
Y ,Ûτ1, L̂τ2;τ)−ψ(F̂a, F̂Y ,Ûτ1 , L̂τ2;τ)

)
. (3.27)

Now, fix F̂a and F̂Y , let θ(τ1)
∗ and θ̂(τ2)

∗ be the bootstrap counterparts of θ̂(τ1) and

θ̂(τ2), and define the perturbed parameters

θ̂(τ1)
p := θ̂(τ1)+ εn

√
n(θ̂(τ1)

∗− θ̂(τ1)), (3.28)

and

θ̂(τ2)
p := θ̂(τ2)+ εn

√
n(θ̂(τ2)

∗− θ̂(τ2)), (3.29)

where the sequence εn is constrained to satisfy εn→ 0 and εn
√

n→∞, as n→∞. In the empirical

application we set εn = n−1/3. Define, the perturbed version of Uτ1 and Lτ2 as

Û p
τ1

L̂p
τ2

=

 min{max{0, θ̂(τ1)
p},1}

max{min{0, θ̂(τ2)
p},−1}

 . (3.30)

Then, define

ψ̂
•
UL(Û

p
τ1, L̂

p
τ2;τ) =

1
εn

(
ψ(F̂a, F̂Y ,Û

p
τ1, L̂

p
τ2;τ)−ψ(F̂a, F̂Y ,Ûτ1 , L̂τ2;τ)

)
. (3.31)
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The approximation to (GUτ1
(τ),GLτ2

(τ))′ is given by the distribution of

ψ̂
•
aY (F̂

∗
a , F̂

∗
Y ;τ)+ ψ̂

•
UL(Û

p
τ1, L̂

p
τ2;τ),

which, in turn, is approximated by the simulated procedure below.

Algorithm 3 (Bootstrap for B̂(Ûτ1;τ) and B̂(L̂τ2;τ)).

1. Given the data
{

Yi,Di,Dδ ,i
}n

i=1, compute ψ(F̂a, F̂Y , θ̂(τ1), θ̂(τ2);τ) given in (3.26).

2. Obtain B bootstrap samples of size n from
{

Yi,Di,Dδ ,i
}n

i=1.

3. For b = 1, . . . ,B, following (3.27), compute

ψ̂
•
aY (F̂

b
a , F̂

b
Y ;τ) =

√
n
(

ψ(F̂b
a , F̂

b
Y ,Ûτ1, L̂τ2;τ)−ψ(F̂a, F̂Y ,Ûτ1, L̂τ2;τ)

)
. (3.32)

4. For b = 1, . . . ,B, following (3.21), compute θ̂(τ1)
b and θ̂(τ2)

b. Following (3.28) and

(3.29), compute the perturbed parameters as

θ̂(τ1)
p,b := θ̂(τ1)+ εn

√
n(θ̂(τ1)

b− θ̂(τ1)),

and

θ̂(τ2)
p,b := θ̂(τ2)+ εn

√
n(θ̂(τ2)

b− θ̂(τ2))

Following (3.30) compute

 L̂p,b
τ2

Û p,b
τ1

=

max{min{0, θ̂(τ2)
p,b},−1}

min{max{0, θ̂(τ1)
p,b},1}

 .
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5. For b = 1, . . . ,B, following (3.31), compute

ψ̂
•
UL(Û

p,b
τ1 , L̂p,b

τ2 ;τ) =
1
εn

(
ψ(F̂a, F̂Y ,Û

p,b
τ1 , L̂p,b

τ2 ;τ)−ψ(F̂a, F̂Y ,Ûτ1, L̂τ2;τ)
)
.

6. For b = 1, . . . ,B, define

ψ̂
′(b,τ) = ψ̂

•
aY (F̂

b
a , F̂

b
Y ;τ)+ ψ̂

•
UL(Û

p,b
τ1 , L̂p,b

τ2 ;τ). (3.33)

7. Obtain the (100×α/2)% and (100× (1−α/2))% percentiles from the first coordinate

of (3.33). These are denoted ξα/2,τ,Uτ1
and ξ1−α/2,τ,Uτ1

.

8. Obtain the (100×α/2)% and (100×(1−α/2))% percentiles from the second coordinate

of (3.33). These are denoted ξα/2,τ,Lτ2
and ξ1−α/2,τ,Lτ2

.

The 1−α confidence intervals are then computed as

C I (B(Uτ1;τ),α) =

[
B̂(Ûτ1;τ)−

ξ1−α/2,τ,Uτ1√
n

, B̂(Ûτ1;τ)−
ξα/2,τ,Uτ1√

n

]
,

C I (B(Lτ2;τ),α) =

[
B̂(L̂τ2;τ)−

ξ1−α/2,τ,Lτ2√
n

, B̂(L̂τ2 ;τ)−
ξα/2,τ,Lτ2√

n

]
.

The simultaneous 1−α confidence intervals, by the Bonferroni correction,11 are given

by the Cartesian product

C I (B(Uτ1;τ),B(Lτ2;τ),α) = C I (B(Uτ1;τ),α/2)×C I (B(Lτ2;τ),α/2).

Alternatively, simultaneous 1−α confidence intervals can be constructed using a lower

confidence interval for B(Uτ1;τ): B̂(Ûτ1;τ)− ξ1−α/2,τ,Uτ1√
n , and upper confidence interval for

B(Lτ2;τ): B̂(L̂τ2;τ)− ξα/2,τ,Lτ2√
n .

11If we want simultaneous 1−α confidence intervals, for each coordinate the confidence intervals must be
constructed at the 1−α/2 level.
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We can construct uniform confidence bands for τ ∈ (δ ,1−δ ) in the following way.

Algorithm 4 (Bootstrap for B̂(Ûτ1; ·) and B̂(L̂τ2; ·)).

1. Given a grid of values {τk}K
k=1 ⊂ (δ ,1−δ ), following (3.33), compute for b = 1, . . . ,B

ψ̂
′(b) = max

k=1,...,K

∣∣∣∣ψ̂•aY (F̂
b
a , F̂

b
Y ;τk)+ ψ̂

•
UL(Û

p,b
τ1 , L̂p,b

τ2 ;τk)

∣∣∣∣ (3.34)

2. Obtain the (100× (1−α))% percentile from the first coordinate of (3.34). This is denoted

ξ1−α,Uτ1
.

3. Obtain the (100× (1−α))% percentile from the second coordinate of (3.34). This is

denoted ξ1−α,Lτ2
.

The one-sided or two-sided 1−α confidence bands are computed as before.

3.5.3 Quantile Breakdown Frontier: Marginal Effect

The quantile breakdown frontier for the sign of the marginal effect is given by (see

(3.20)) the map τ 7→FY |D=0(F
−1

Y (τ))−FY |D=1(F
−1

Y (τ)), and the estimated counterpart is θ̂(τ) =

F̂Y |D=0(F̂
−1

Y (τ))− F̂Y |D=1(F̂
−1

Y (τ)), where

F̂Y |D=0(y) :=
∑

n
i=11{Yi ≤ y}(1−Di)

∑
n
i=1(1−Di)

,

and

F̂Y |D=1(y) :=
∑

n
i=11{Yi ≤ y}Di

∑
n
i=1 Di

.

As before, we want to investigate the weak convergence of
√

n(θ̂ −θ) in `∞(0,1):

√
n(θ̂ −θ) =

√
n
(
F̂Y |D=0 ◦ F̂−1

Y − F̂Y |D=1 ◦ F̂−1
Y −

(
FY |D=0 ◦F−1

Y −FY |D=1 ◦F−1
Y
))

.

126



Recall that the bounds on the marginal effect can be computed for any τ ∈ (0,1), as

opposed to the global effect, where we are constrained to τ ∈ (δ ,1−δ ). The main assumption is

Assumption 3.7 (Functional CLT). The following multivariate functional central limit theorem

holds

√
n


F̂Y −FY

F̂Y |D=0−FY |D=0

F̂Y |D=1−FY |D=1

 

GY

G0

G1

 ,

where GY , G0, and G1 are Brownian bridges in `∞(Y ), where Y is the common support of Y ,

Y |D = 0, and Y |D = 1.

The next assumption is needed to establish the Hadamard differentiability of the compo-

sition map, and the quantile process.

Assumption 3.8 (Conditions for Hadamard Differentiability).

1. The distribution functions FY |D=0(y) and FY |D=1(y) are differentiable, with uniformly

continuous and bounded derivatives on their support Y . The derivatives are fY |D=0(y)

and fY |D=1(y) respectively.

2. The support Y is the compact set [yl,yu].

3. FY (y) is continuously differentiable on Y with strictly positive derivative fY .

Theorem 3.7 (Asymptotic Distribution of QBF for Marginal Effect). Under Assumptions 3.7

and 3.8

√
n(θ̂ −θ) =

√
n
(
F̂Y |D=0 ◦ F̂−1

Y − F̂Y |D=1 ◦ F̂−1
Y −

(
FY |D=0 ◦F−1

Y −FY |D=1 ◦F−1
Y
))

 G0,Y −G1,Y ,
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where, for d = 0,1, Gd,Y := Gd ◦F−1
Y − fY |D=d ◦F−1

Y · GY ◦F−1
Y

fY ◦F−1
Y

are tight Gaussian elements of

`∞(0,1).

Confidence intervals/bands can be constructed following the same procedures outlined in

Algorithms 1 and 2, because by Theorem 23.9 in van der Vaart (1998), the empirical bootstrap is

valid. We skip the details to avoid repetition.

3.6 Empirical application: What do unions do?

There is an extensive literature that studies unions and inequality. A recent contribution

by Farber et al. (2020) contains a review of the literature. In our empirical application, in

particular, we look at how unions affect the distribution of wages for all workers. Unions can

have a variety of effects on the distribution of wages. As argued by Freeman (1980), unions can

raise the wages of unionized workers relative to non-unionized workers, possibly through more

bargaining power. So, if higher paid workers unionize, the dispersion of wages can increase, but

if lower paid workers unionize, the dispersion of wages can decrease. Furthermore, within a

given industry, the union can reduce the dispersion of wages by standardizing the wages. This

will impact the distribution of wages more or less depending on the size of the industry and the

wages it pays.

A key difficulty in identifying the causal effect of unions on wages is that selection

into unions is non-random. Hence, any measurement of the union premium, the difference

in wages between similar union and nonunion workers, will be biased for the causal effect.

Indeed, this has been a long standing concern of labor economists. With respect to selection into

unions, Card (1996) argues that unionized workers with low observed skills, tend to have high

unobserved skills. The reverse happens with high skilled unionized workers: they tend to have

low unobservable skills. Due to this selection bias, it might be impossible for a policy maker

to device a policy where the newly unionized workers are selected in a way such that they are

drawn from the distribution of the already unionized workers.
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Using the techniques developed in this chapter, we are going to consider the effect of

both globally and marginally expanding union coverage. We will explicitly allow for non-

random selection into unions. Moreover, as opposed to Firpo et al. (2009), we will not assume

distributional invariance: the distribution of the newly unionized workers can be different from

the distribution of the already unionized workers. That is, we do not use any imputation method

to impute the union premium of the newly unionized workers

Following Freeman (1980), Card (2001) and Card et al. (2004) we consider a two sector

economy. Each worker has a well-defined pair of potential (log) wages: Yi(1) for the unionized

sector and Yi(0) for the nonunionized sector. Under Assumption 3.1, and for any policy Dδ , we

have the following classification of individuals:

Table 3.2. Clasification of individuals

Dδ = 0 Dδ = 1

D = 0 nonunionized newly unionized

D = 1 - unionized

The relevant unobserved distribution is then FY (1)|newly unionized: the union wages of the

newly unionized workers. So, we look at departures of FY (1)|newly unionized from FY (1)|unionized,

which is observed. This difference is what we refer to as the policy selection bias.

Using the data in Firpo et al. (2009) we estimate the quantile breakdown frontier for

marginal and global effects of different type of policies on the distribution of real log hourly

wages. We use the 1983-1985 Outgoing Rotation Group (ORG) Supplement of the Current

Population Survey. Our sample consists of 266,956 observations on U.S. males. See Lemieux

(2006) for more details about the data.

The unionization rate in the dataset is 0.26. Figure 3.10 shows the typical hump-shaped

pattern of the unionization rates by quantiles of the distribution of wages. For lower quantiles,

unionization rates are quite low. They peak in the past the middle of the distribution and then

drop at the higher quantiles. We will analyze a randomized policy and a non-randomized policy.
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In the first case, we will analyze the policy that marginally increases unionization by selecting

workers at random. We will look at the quantile breakdown frontier for the sign of the marginal

effect. That is, we set g = 0 and look at whether the marginal effect is positive or negative.

Figure 3.11 shows the result for a grid of τ ∈ (0.1,0.9), along with 95% pointwise confidence

intervals and uniform confidence bands. We can see that along almost all quantiles, the quantile

breakdown frontier is positive, and it peak at around 0.27 for τ = 0.4. This means that if the

selection bias due to U is greater than 0.27, then the conclusion Mτ > 0 does not hold for any τ .

In the second case, we will analyze a non-randomized policy. Consider a 10% increase

in the unionization rate by unionizing workers whose wages are below the .10/(1− p)-quantile

≈ 0.14-quantile of the wages of the nonunionized sector. In the notation of this chapter, we have

D = 1 if a worker is unionized, Dδ = 1 if a worker is unionized under the policy, Y is (log) wage,

and δ = 0.1. That is, Dδ is given by

Dδ =


1 if D = 1

1 if D = 0 and Y ≤ F−1
Y |D=0(0.14)

0 otherwise

This guarantees that the unionization rate increases by roughly 10%. Indeed, the mean

of Dδ is now 0.36. Figure 3.12 shows the quantile breakdown frontiers for gτ = 0.1 for a grid

of τ ∈ (0.1,0.9). This is the empirical counterpart of the right side of Figure 3.5. Pointwise

confidence intervals (shaded) and uniform confidence bands (dashed) are also shown, both at

the 95% level. Since the dependent variable is log wages, gτ = 0.1 amounts to a 10% change in

wages for a given quantile.

For lower quantiles, if we want the policy to result in an increase of wages higher than

10%, then the departure from point identification is given by Uτ in the positive part of the curve:

for example, for the 20th quantile, U.2 ≈ 0.45. For higher quantiles, if we want the policy to result

in changes of wages lower than 10%, then the maximum departure from point identification, Lτ ,
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is given by the negative part of the curve. For example, for the 80th quantile, L.8 ≈−0.36. In

terms of our notation, if we are interested in the conclusions G.2,D.1 > 0.1 and G.8,D.1 < 0.1, then

the robust region is

{(L,U) :−1≤ L≤−0.36 and 0≤U ≤ 0.45}

Recall that U and L come from Assumption 3.2:

L≤ FY (1)|newly unionized(y)−FY (1)|unionized(y)≤U.

So if we are interested in the 20th and 80th quantile, we need

−0.36≤ FY (1)|newly unionized(y)−FY (1)|unionized(y)≤ 0.45. (3.35)

for the conclusions to hold. This does not rule out either direction of first-order stochastic

domination, but it does put a bound on it. Since FY (1)|unionized(y) can be estimated, then simulation

exercises can be carried out on possible CDFs that satisfy (3.35), i.e., they are not too far away

from the empirical counterpart of FY (1)|unionized(y). Figure 3.13 shows the estimated bounds for

the global effect when setting L.8 ≈ −0.36 and U.2 ≈ 0.45. For τ = 0.2, we can see that the

identified region lies above 0.10, and for τ = 0.8, the identified region lies below 0.10. Pointwise

confidence intervals (shaded) and uniform confidence bands (dashed) are also shown, both at the

95% level.

We repeat the same exercise for the global effect, this time for g = 0.05. We keep δ = 0.1.

The quantile breakdown frontier and the bounds on the global effect can be seen in Figures 3.14

and 3.15. At the 20th quantile, U.2 ≈ 0.67, while at the 80th quantile, L.8 ≈−0.05. This means

that the hypothesis G.8,D.1 < 0.05 is not very robust: any policy selection bias above given L in

[−1,−0.05) result in identification regions for G.8,D.1 that contain values greater than 0.05.

Figures 3.13 and 3.15 show that, because of the continuity of the quantile breakdown
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frontier, when we focus on conclusions at the 20th and 80th quantiles, we are also deriving

bounds for the global effect at other quantiles. Thus, in Figure 3.13, we can see that the global

effect, which is consistent with G.2,D.1 > 0.1 and G.8,D.1 < 0.1 is positive up to τ = 0.6. In other

words, the combinations of L and U that ensure that G.2,D.1 > 0.1 and G.8,D.1 < 0.1, imply that

Gτ,D.1 > 0 for τ ∈ (0.1,0.6).

Figure 3.10. Unionization rates by quantiles of the distribution of wages.

3.7 Conclusion

In this paper we show how to perform a sensitivity analysis on the effect of counterfactual

policies on the quantiles of an outcome of interest. We focus on counterfactual policies which

increase the proportion of treated individuals and obtain partial identified sets for both global and

marginal effects on the unconditional quantiles. In the former, the increase δ in the proportion is

fixed, while in the latter goes to 0. By dropping the standard distributional invariance assumption,

we are able to broaden the scope of policies that can be analyzed. Our partial identification results

are used to perform a sensitivity analysis based on the departure from point identification. The

sensitivity analysis is greatly simplified by the introduction of the quantile breakdown frontier, a

curve that quantifies the maximum amount of selection bias compatible with a given conclusion
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Figure 3.11. Quantile Breakdown Frontier for the sign of the marginal effect.

Figure 3.12. Quantile Breakdown Frontier for the global effect and g = 0.1.

at each quantile. A further use of the quantile breakdown frontier, is to bound the global effect

curve in order for it to be consistent with a set of desired conclusions.

Our empirical application takes another look at the relationship between unions and
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Figure 3.13. Bounds on the global effect for L.8 ≈−0.36 and U.2 ≈ 0.45 and g = 0.1.

Figure 3.14. Quantile Breakdown Frontier for the global effect and g = 0.05.

inequality. In particular, we perform a sensitivity analysis on a policy that increases unionization

by 10%. This is done by selecting nonunionized workers who are below a certain threshold of
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Figure 3.15. Bounds on the global effect for L.8 ≈−0.05 and U.2 ≈ 0.67 and g = 0.05.

income. We then look at the effect of this policy on the 20th and 80th quantiles of the distribution

of wages. We are interested in the following conclusion: the change in the 20th quantile of wages

is greater than 10%, while the change at the 80th quantile is less than 10%. We derive the values

of selection bias consistent with the conclusion. Our results show that this policy is consistent

with moderate values of selection bias.

Chapter 3 is currently being prepared for submission for publication of the material. The

dissertation author, Julián Martı́nez-Iriarte, was the sole author of this material.
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Appendix A

Supplementary Proofs

Proof of Theorem 1.1. Let Γτ [F ] be the τ-quantile of F . The Hadamard derivative at F is (See

Lemma 21.3 in van der Vaart (1998))

Γ
′
τ,F [h] =−

r(F−1(τ))

f (F−1(τ))
.

for any h ∈ D[−∞,∞] continuous at F−1(τ).1 We write the marginal effect as

Mτ,D = lim
δ↓0

Γτ

[
FYD

δ

]
−Γτ [FY ]

δ

= lim
δ↓0

Γτ

[
FYD0

+δ

(
FYD

δ
−FYD0
δ

)]
−Γτ [FY ]

δ

= lim
δ↓0

Γτ

[
FY +δ

(
FYD

δ
−FY

δ

)]
−Γτ [FY ]

δ

= Γ
′
τ,FY

[ḞY,D ]

=
ḞY,D(F−1

Y (τ))

fY (F−1
Y (τ))

.

1For [a,b]⊂ [−∞,∞], D[a,b] is the Skorohod space: the set of all real-valued cadlag functions: right continuous
with left limits everywhere in [a,b]. D[a,b] is equipped with the uniform norm: ‖x‖∞ := supt∈[a,b] |x(t)|.
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The third equality follows from FYD0
= FY . The fourth equality follows from

lim
δ↓0

sup
y∈Y

∣∣∣∣∣FYD
δ
(y)−FY (y)

δ
− ḞY,D(y)

∣∣∣∣∣= 0,

which is required by Lemma 21.3 in van der Vaart (1998).

Proof of Lemma 1.1. Using our notation, we follow Kaplan (2020) closely. We start with the

model given in (1.1).

FYD
δ
(y) = (p+δ )

∫
X1

FYD
δ
|Dδ=1,X=x(y)dFX |Dδ=1(x)

+(1− p−δ )
∫
X0

FYD
δ
|Dδ=0,X=x(y)dFX |Dδ=0(x)

= (p+δ )
∫
X1

∫
Y

1{r(1,x,U)≤ y}dFU |Dδ=1,X=x(u)dFX |Dδ=1(x)

+(1− p−δ )
∫
X0

∫
Y

1{r(0,x,U)≤ y}dFU |Dδ=0,X=x(u)dFX |Dδ=0(x)

= (p+δ )
∫
X1

∫
Y

1{r(1,x,U)≤ y}dFU |D=1,X=x(u)dFX |Dδ=1(x)

+(1− p−δ )
∫
X0

∫
Y

1{r(0,x,U)≤ y}dFU |D=0,X=x(u)dFX |Dδ=0(x)

= (p+δ )
∫
X1

FY |D=1,X=x(y)dFX |Dδ=1(x)+(1− p−δ )
∫
X0

FY |D=0,X=x(y)dFX |Dδ=0(x).

Proof of Theorem 1.2. We need to find the limit of

FYD
δ
(y)−FY (y)

δ
= p

∫
X1

FY |D=1,X=x(y)d
(

FX |Dδ=1(x)−FX |D=1(x)
δ

)
+(1− p)

∫
X0

FY |D=0,X=x(y)d
(

FX |Dδ=0(x)−FX |D=0(x)
δ

)
+
∫
X1

FY |D=1,X=x(y)dFX |Dδ=1(x)−
∫
X0

FY |D=0,X=x(y)dFX |Dδ=0(x),

137



and show that convergence holds uniformly in y ∈ Y .

We do this term by term. Consider the first term

p
∫
X1

FY |D=1,X=x(y)d
(

FX |Dδ=1(x)−FX |D=1(x)
δ

)

Under Assumption 1.3(2) we can write this as

p
∫
X1

FY |D=1,X=x(y)
(

fX |Dδ=1(x)− fX |D=1(x)
δ

)
dx (A.1)

Now,

fX |Dδ=1(x) = Pr(Dδ = 1|X = x)
fX(x)
p+δ

and

fX |D=1(x) = Pr(D = 1|X = x)
fX(x)

p

So we have

fX |Dδ=1(x)− fX |D=1(x) = Pr(Dδ = 1|X = x)
fX(x)
p+δ

−Pr(D = 1|X = x)
fX(x)

p

=
fX(x)
p+δ

(Pr(Dδ = 1|X = x)−Pr(D = 1|X = x))

+Pr(D = 1|X = x)
(

fX(x)
p+δ

− fX(x)
p

)
=

fX(x)
p+δ

(Pr(Dδ = 1|X = x)−Pr(D = 1|X = x))

−Pr(D = 1|X = x) fX(x)
δ

(p+δ )p
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Dividing through by δ , we obtain

fX |Dδ=1(x)− fX |D=1(x)
δ

=
fX(x)
p+δ

Pr(Dδ = 1|X = x)−Pr(D = 1|X = x)
δ

−Pr(D = 1|X = x)
fX(x)

(p+δ )p

Plugging this back in (A.1), we obtain

p
∫
X1

FY |D=1,X=x(y)d
(

FX |Dδ=1(x)−FX |D=1(x)
δ

)
=

p
p+δ

∫
X1

FY |D=1,X=x(y)
Pr(Dδ = 1|X = x)−Pr(D = 1|X = x)

δ
dFX(x)

− 1
p+δ

∫
X1

FY |D=1,X=x(y)Pr(D = 1|X = x)dFX(x)

Under Assumption 1.3(4), we can use dominated convergence theorem to pass the limit,

and conclude (pointwise in y) that

lim
δ→0

p
∫
X1

FY |D=1,X=x(y)d
(

FX |Dδ=1(x)−FX |D=1(x)
δ

)
=
∫
X1

FY |D=1,X=x(y)Ṗ(x)dFX(x)−FY |D=1(y) (A.2)

To show that convergence is uniform in y∈Y , we show that each term in (A.2) separately

converges uniformly. To alleviate notation, recall that P(x) := Pr(D = 1|X = x) and that Pδ (x) :=

Pr(Dδ = 1|X = x). So, for the first term (ignoring the p
p+δ

) factor, we have

∣∣∣∣∫
X1

FY |D=1,X=x(y)
[

Pδ (x)−P(x)
δ

− Ṗ(x)
]

dFX(x)
∣∣∣∣≤ ∫

X1

∣∣∣∣Pδ (x)−P(x)
δ

− Ṗ(x)
∣∣∣∣dFX(x)

which does not depend on y. Thus, convergence holds uniformly. For the second term, the

dependence on δ is given by the leading factor 1
p+δ

. Thus, uniform convergence holds trivially,

since FY |D=1(y) is bounded.2

2To see this, consider a real valued sequence an→ a, and a real-valued function g(y). Then |ang(y)−ag(y)| ≤
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Now consider the second term

(1− p)
∫
X0

FY |D=0,X=x(y)d
(

FX |Dδ=0(x)−FX |D=0(x)
δ

)

which we can write as

(1− p)
∫
X0

FY |D=0,X=x(y)
(

fX |Dδ=0(x)− fX |D=0(x)
δ

)
dx (A.3)

because of Assumption 1.3(2). Now

fX |Dδ=0(x) = Pr(Dδ = 0|X = x)
fX(x)

1− p−δ

=
fX(x)

1− p−δ
−Pr(Dδ = 1|X = x)

fX(x)
1− p−δ

and

fX |D=0(x) = Pr(D = 0|X = x)
fX(x)
1− p

=
fX(x)
1− p

−Pr(D = 1|X = x)
fX(x)
1− p

|an−a|sup |g(y)|. So we need g(y) to be bounded.
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Taking the difference, we get

fX |Dδ=0(x)− fX |D=0(x) =
fX(x)

1− p−δ
− fX(x)

1− p

+Pr(D = 1|X = x)
fX(x)
1− p

−Pr(Dδ = 1|X = x)
fX(x)

1− p−δ

= fX(x)
δ

(1− p−δ )(1− p)

− fX(x)
(1− p−δ )

[Pr(Dδ = 1|X = x)−Pr(D = 1|X = x)]

+Pr(D = 1|X = x)
(

fX(x)
1− p

− fX(x)
1− p−δ

)
= Pr(D = 0|X = x) fX(x)

δ

(1− p−δ )(1− p)

− fX(x)
(1− p−δ )

[Pr(Dδ = 1|X = x)−Pr(D = 1|X = x)] .

Plugging this back into (A.3), we get

(1− p)
∫
X0

FY |D=0,X=x(y)d
(

FX |Dδ=0(x)−FX |D=0(x)
δ

)
=

1
1− p−δ

∫
X0

FY |D=0,X=x(y)Pr(D = 0|X = x)dFX(x)

− 1− p
1− p−δ

∫
X0

FY |D=0,X=x(y)
(

Pr(Dδ = 1|X = x)−Pr(D = 1|X = x)
δ

)
dFX(x)

Under Assumption 1.3(4), we can use dominated convergence theorem to pass the limit,

and conclude (pointwise in y) that

lim
δ→0

(1− p)
∫
X0

FY |D=0,X=x(y)d
(

FX |Dδ=0(x)−FX |D=0(x)
δ

)
= FY |D=0(y)−

∫
X0

FY |D=0,X=x(y)Ṗ(x)dFX(x). (A.4)

By the same arguments given for the case of (A.2), both of these results hold uniformly

in y ∈ Y .

141



Finally, we want the limit as δ → 0 of

sup
y∈Y

∣∣∣∣∫
X1

FY |D=1,X=x(y)dFX |Dδ=1(x)
∣∣∣∣

and

sup
y∈Y

∣∣∣∣∫
X0

FY |D=0,X=x(y)dFX |Dδ=0(x)
∣∣∣∣

Under Assumption 1.3(3) we have that the measures dFX |Dδ=0 and dFX |Dδ=1 converge

weakly to dFX |D=0 and dFX |D=1 respectively. Combining this with Assumption 1.3(5), and

noting that x 7→ FY |D=d,X=x(y) is bounded by definition, we have that

lim
δ→0

∫
X1

FY |D=1,X=x(y)dFX |Dδ=1(x) =
∫
X1

FY |D=1,X=x(y)dFX |D=1(x) = FY |D=1(y).

and

lim
δ→0

∫
X0

FY |D=0,X=x(y)dFX |Dδ=0(x) =
∫
X0

FY |D=0,X=x(y)dFX |D=0(x) = FY |D=0(y).

To make this uniform in y ∈ Y , we have

lim
δ→0

sup
y∈Y

∣∣∣∣∫
X1

FY |D=1,X=x(y)
(
dFX |Dδ=1(x)−dFX |D=1(x)

)∣∣∣∣= 0. (A.5)

which goes to 0 as δ → 0. Thus, we also have that

sup
y∈Y

∣∣∣∣∫
X0

FY |D=0,X=x(y)
(
dFX |Dδ=0(x)−dFX |D=0(x)

)∣∣∣∣≤ ∫
X0

∣∣dFX |Dδ=0(x)−dFX |D=0(x)
∣∣

(A.6)

Thus, combining (A.2), (A.4), (A.5), and (A.6), we obtain that
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lim
δ→0

sup
y∈Y

∣∣∣∣∣FYD
δ
(y)−FY (y)

δ
−
∫
X1

FY |D=1,X=x(y)Ṗ(x)dFX(x)+
∫
X0

FY |D=0,X=x(y)Ṗ(x)dFX(x)

∣∣∣∣∣
= 0

We can write the uniform derivative as E
[(

FY |D=1,X(y)−FY |D=0,X(y)
)

Ṗ(X)
]
. Now,

using the notation of Theorem 1.1, we have that

ḞY,D(y) = E
[(

FY |D=1,X(y)−FY |D=0,X(y)
)

Ṗ(X)
]
.

and which is a continuous map, since y 7→ FY |D=d,X=x(y) is continuous for every x ∈Xd , and

d = 0,1 by Assumption 1.3(5). Now, by Theorem 1.1, we have

Mτ,D =− ḞY,D(F−1
Y (τ))

fY (F−1
Y (τ))

=−
E
[(

FY |D=1,X(F
−1

Y (τ))−FY |D=0,X(F
−1

Y (τ))
)

Ṗ(X)
]

fY (F−1
Y (τ))

where by Assumption 1.1 fY (F−1
Y (τ))> 0.
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Proof of Lemma 1.2. Using the selection equation Dδ = 1{UD ≤ Pδ (X)} , we have

FY (1)|Dδ
(y|1) = Pr(Y (1)≤ y|Dδ = 1)

= Pr(Y (1)≤ y|UD ≤ Pδ (X)) =
Pr(Y (1)≤ y,UD ≤ Pδ (X))

Pr(UD ≤ Pδ (X))

=

∫
X Pr(Y (1)≤ y,UD ≤ Pδ (x)|X = x) fX(x)dx

p+δ

=

∫
X FY (1),UD|X(y,Pδ (x)|x) fX(x)dx

p+δ

=
1

p+δ

∫
X

∫ y

−∞

∫ Pδ (x)

−∞

fY (1),UD|X(ỹ, ũ|x) fX(x)dũdỹdx

=
1

p+δ

∫ y

−∞

∫
X

[∫ Pδ (x)

−∞

fY (1),UD|X(ỹ, ũ|x)dũ
]

fX(x)dxdỹ,

where the order of integration can be switched because the integrands are non-negative. It then

follows that

fY (1)|Dδ
(y|1) = 1

p+δ

∫
X

[∫ Pδ (x)

−∞

fY (1),UD|X(y, ũ|x)dũ
]

fX(x)dx. (A.7)

Under Assumptions 1.5(b) and 1.5(c), we can differentiate both sides of (A.7) with

respect to δ under the integral sign to get

∂ fY (1)|Dδ
(y|1)

∂δ
=

1
p+δ

∫
X

fY (1),UD|X(y,Pδ (x)|x)
∂Pδ (x)

∂δ
fX(x)dx

− 1
(p+δ )2

∫
X

[∫ Pδ (x)

−∞

fY (1),UD|X(y, ũ|x)dũ
]

fX(x)dx

=
1

p+δ

∫
X

fY (1)|UD,X(y|Pδ (x),x)
∂Pδ (x)

∂δ
fX(x)dx−

fY (1)|Dδ
(y|1)

p+δ
(A.8)

where the last line follows from (A.7).

Under Assumptions 1.5(b.i) and 1.5(c.ii), fY (1)|UD,X(y|Pδ (x),x)∂Pδ (x)/∂δ is continuous

in δ for each y ∈ Y (d) and x ∈X . In view of Assumptions 1.5(b.ii) and 1.5(c.iii), we can

invoke the dominated convergence theorem to show that the map δ 7→ ∂ fY (1)|D
δ
(y|1)

∂δ
is continuous
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for each y ∈ Y (d).

For the case of fY (0)|Dδ
(y|0), we have

∂ fY (0)|Dδ
(y|0)

∂δ
=

∂

∂δ

∂FY (0)|Dδ
(y|0)

∂y
.

Using the selection equation, we can xrite FY (0)|Dδ
(y|0) as

FY (0)|Dδ
(y|0) = Pr(Y (0)≤ y|Dδ = 0)

= Pr(Y (0)≤ y|UD > Pδ (X)))

=
Pr(Y (0)≤ y,UD > Pδ (X))

1− p−δ

=
Pr(Y (0)≤ y)−Pr(Y (0)≤ y,UD ≤ Pδ (X))

1− p−δ

=
FY (0)(y)−

∫
X FY (0),UD|X(y,Pδ (x) |x) fX(x)dx

1− p−δ

=
1

1− p−δ

[
FY (0)(y)−

∫
X

∫ y

−∞

∫ Pδ (x)

−∞

fY (0),UD|X(ỹ, ũ|x) fX(x)dũdỹdx
]

=
1

1− p−δ

[
FY (0)(y)−

∫ y

−∞

∫
X

∫ Pδ (x)

−∞

fY (0),UD|X(ỹ, ũ|x) fX(x)dũdxdỹ
]
,

where the orders of integrations can be switched because the integrands are non-negative.

Therefore,

fY (0)|Dδ
(y|0) = 1

1− p−δ

[
fY (0)(y)−

∫
X

∫ Pδ (x)

−∞

fY (0),UD|X(y, ũ|x) fX(x)dũdx
]
. (A.9)

Using Assumptions 1.5(b) and 1.5(c), we have

∂ fY (0)|Dδ
(y|0)

∂δ
=

fY (0)|Dδ
(y|0)

1− p−δ
− 1

1− p−δ

∫
X

fY (0),UD|X(y,Pδ (x))|x)
∂Pδ (x)

∂δ
fX(x)dx. (A.10)

The continuity of δ 7→ ∂ fY (0)|D
δ
(y|0)

∂δ
follows from the same arguments for the continuity of δ 7→

∂ fY (1)|D
δ
(y|1)

∂δ
. Therefore, we have established that δ 7→ fY (0)|Dδ

(y|0) is continuously differentiable.
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Proof of Lemma 1.3. For any δ in Nε , we have

FYδ
(y) = Pr(Yδ ≤ y)

= Pr((1−Dδ )Y (0)+DδY (1)≤ y)

= (p+δ )Pr(Y (1)≤ y|Dδ = 1)+(1− p−δ )Pr(Y (0)≤ y|Dδ = 0)

=
∫
Y (1)

1{ỹ≤ y}(p+δ ) fY (1)|Dδ
(ỹ|1)dỹ

+
∫
Y (0)

1{ỹ≤ y}(1− p−δ ) fY (0)|Dδ
(ỹ|0)dỹ. (A.11)

We proceed to take the first order Taylor expansion of δ 7→ (p+ δ ) fY (1)|Dδ
and δ 7→

(1− p−δ ) fY (0)|Dδ
around δ = 0, which is possible by Lemma 1.2: fY (d)|Dδ

are continuously

differentiable with respect to δ . We have

(p+δ ) fY (1)|Dδ
(ỹ|1)

= p fY (1)|D(ỹ|1)+δ ·
[

p
∂ fY (1)|Dδ

(ỹ|1)
∂δ

∣∣∣∣
δ=0

+ fY (1)|D(ỹ|1)
]
+R(δ ; ỹ,1), (A.12)

where

R(δ ; ỹ,1) := δ ·
[

p
∂ fY (1)|Dδ

(ỹ|1)
∂δ

∣∣∣∣
δ=δ̃1

− p
∂ fY (1)|Dδ

(ỹ|1)
∂δ

∣∣∣∣
δ=0

]
+ δ ·

[
fY (1)|Dδ

(ỹ|1)− fY (1)|D0(ỹ|1)
]

(A.13)

and 0 ≤ δ̃1 ≤ δ . The middle point δ̃1 depends on δ . For the case of d = 0, we have a similar
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expansion.

(1− p−δ ) fY (0)|Dδ
(ỹ|0)

= (1− p) fY (0)|D(ỹ|0)+δ ·
[
(1− p)

∂ fY (0)|Dδ
(ỹ|0)

∂δ

∣∣∣∣
δ=0
− fY (0)|D(ỹ|0)

]
+ R(δ ; ỹ,0), (A.14)

where

R(δ ; ỹ,0) := δ ·
[
(1− p)

∂ fY (0)|Dδ
(ỹ|0)

∂δ

∣∣∣∣
δ=δ̃0

− (1− p)
∂ fY (0)|Dδ

(ỹ|0)
∂δ

∣∣∣∣
δ=0

]
+ δ ·

[
fY (0)|D(ỹ|0)− fY (0)|Dδ

(ỹ|0)
]

(A.15)

and 0≤ δ̃0 ≤ δ . The middle point δ̃0 depends on δ .

Consider the first order derivative that appears in (A.12), when δ = 0, using (A.8) we

have

∂ fY (1)|Dδ
(ỹ|1)

∂δ

∣∣∣∣
δ=0

=
1
p

∫
X

fY (1),UD|X(ỹ,P(x)|x)Ṗ(x) fX(x)dx−
fY (1)|D(ỹ|1)

p

=
1
p

[∫
X

fY (1),UD|X(ỹ,P(x)|x)Ṗ(x) fX(x)dx− fY (1)|D(ỹ|1)
]

=
1
p

[∫
X

fY (1)|UD,X(ỹ|P(x),x) fUD|X (P(x) |x) Ṗ(x) fX(x)dx− fY (1)|D(ỹ|1)
]

=
1
p

[∫
X

fY (1)|UD,X(ỹ|P(x),x)Ṗ(x) fX(x)dx− fY (1)|D(ỹ|1)
]

(A.16)

where we define

Ṗ(x) =
∂Pδ (x)

∂δ
|δ=0.

Note that we have used that UD|X is uniform on [0,1].
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Now we substitute (A.16) in (A.12) to get

(p+δ ) fY (1)|Dδ
(ỹ|1) = p fY (1)|D(ỹ|1)+δ

∫
X

fY (1)|UD,X(ỹ,P(x)|x)Ṗ(x) fX(x)dx

+ R(δ ; ỹ,1). (A.17)

The first derivative in (A.14) can be handled similarly for δ = 0 using (A.10):

∂ fY (0)|Dδ
(ỹ|0)

∂δ

∣∣∣∣
δ=0

=−
∫
X fY (0)|UD,X(ỹ|P(x) ,x)Ṗ(x) fX(x)dx

1− p
+

fY (0)|D(ỹ|0))
1− p

. (A.18)

Plugging (A.18) into (A.14), we get

(1− p−δ ) fY (0)|Dδ
(ỹ|0) = (1− p) fY (0)|D(ỹ|0)−δ

∫
X

fY (0)|UD,X(ỹ|P(x) ,x)Ṗ(x) fX(x)dx

+ R(δ ; ỹ,0). (A.19)

Now we substitute (A.17) and (A.19) in (A.11), leading to

FYδ
(y) =

∫
Y (1)

1{ỹ≤ y}
[

p fY (1)|D(ỹ|1)+δ

∫
X

fY (1)|UD,X(ỹ|P(x),x)Ṗ(x) fX(x)dx
]

dỹ

+
∫
Y (0)

1{ỹ≤ y}
[
(1− p) fY (0)|D(ỹ|0)

− δ

∫
X

fY (0)|UD,X(ỹ|P(x) ,x)Ṗ(x) fX(x)dx
]

dỹ

+ R̃(δ ;y)

= FY (y)+δ

∫
Y (1)

∫
X
1{ỹ≤ y} fY (1)|UD,X(ỹ|P(x),x)Ṗ(x) fX(x)dxdỹ

− δ

∫
Y (0)

∫
X
1{ỹ≤ y} fY (0)|UD,X(ỹ|P(x) ,x)Ṗ(x) fX(x)dxdỹ+RF(δ ;y) (A.20)

where the remainder RF(δ ;y) is

RF(δ ;y) :=
∫
Y (1)

1{ỹ≤ y}R(δ ; ỹ,1)dỹ+
∫
Y (0)

1{ỹ≤ y}R(δ ; ỹ,0)dỹ. (A.21)
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The next step is to show that the remainder in (A.21) is o(|δ |) uniformly over y ∈

Y = Y (0)∪Y (1) as δ → 0, that is,

lim
δ→0

sup
y∈Y

∣∣∣∣RF(δ ;y)
δ

∣∣∣∣= 0.

Using (A.13) and (A.15), we get

sup
y∈Y

∣∣∣∣RF(δ ;y)
δ

∣∣∣∣≤ p
∫
Y (1)

∣∣∣∣∣∂ fY (1)|Dδ
(ỹ|1)

∂δ

∣∣∣∣
δ=δ̃1

−
∂ fY (1)|Dδ

(ỹ|1)
∂δ

∣∣∣∣
δ=0

∣∣∣∣∣dỹ

+(1− p)
∫
Y (0)

∣∣∣∣∣∂ fY (0)|Dδ
(ỹ|0)

∂δ

∣∣∣∣
δ=δ̃0

−
∂ fY (0)|Dδ

(ỹ|0)
∂δ

∣∣∣∣
δ=0

∣∣∣∣∣dỹ

+
∫
Y (1)

∣∣ fY (1)|D(ỹ|1)− fY (1)|Dδ
(ỹ|1)

∣∣dỹ

+
∫
Y (0)

∣∣ fY (0)|D(ỹ|0)− fY (0)|Dδ
(ỹ|0)

∣∣dỹ.

Assumption 1.6 allows us to take the limit δ → 0 under the integral signs. Also, by

Lemma 1.2, both fY (d)|Dδ
(ỹ|d) and

∂ fY (d)|D
δ
(ỹ|d)

∂δ
are continuous in δ . Therefore

lim
δ→0

sup
y∈Y

∣∣∣∣RF(δ ;y)
δ

∣∣∣∣= 0,

and we get the desired result:

FYδ
(y) = FY (y)+δ

∫
Y (1)

∫
X
1{ỹ≤ y} fY (1)|UD,X(ỹ|P(x),x)Ṗ(x) fX(x)dxdỹ

− δ

∫
Y (0)

∫
X
1{ỹ≤ y} fY (0)|UD,X(ỹ|P(x) ,x)Ṗ(x) fX(x)dxdỹ+o(|δ |) (A.22)

uniformly over y ∈ Y as δ → 0. This can be written more compactly as

FYδ
(y) = FY (y)+δE

[
FY (1)|UD,X(y|P(X) ,X)Ṗ(X)

]
−δE

[
FY (0)|UD,X(y|P(X) ,X)Ṗ(X)

]
+o(|δ |)
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uniformly over y ∈ Y as δ → 0.

Proof of Theorem 1.3. Using Lemma 1.3, we have

FYδ
(yτ,δ ) = FY (yτ,δ )+δE

[
FY (1)|UD,X(yτ,δ |P(X) ,X)Ṗ(X)

]
− δE

[
FY (0)|UD,X(yτ,δ |P(X) ,X)Ṗ(X)

]
+o(|δ |).

Noting that FYδ
(yτ,δ ) = FY (yτ) = τ, we have

FY (yτ) = FY (yτ,δ )+δE
[
FY (1)|UD,X(yτ,δ |P(X) ,X)Ṗ(X)

]
− δE

[
FY (0)|UD,X(yτ,δ |P(X) ,X)Ṗ(X)

]
+o(|δ |). (A.23)

Note that

∣∣E [FY (d)|UD,X(yτ,δ |P(X) ,X)Ṗ(X)
]∣∣≤ E

∣∣Ṗ(X)
∣∣< ∞.

Letting δ → 0 on both sides of (A.23) yields

lim
δ→0

FY (yτ,δ ) = FY (yτ).

Under the assumption that fY (yτ)> 0, FY (·) is continuous and strictly increasing at yτ .

Combining this with the above limit result, we conclude that limδ→0 yτ,δ = yτ .

Going back to (A.23), we have

lim
δ→0

FY (yτ,δ )−FY (yτ)

δ

= lim
δ→0

E
[
FY (0)|UD,X(yτ,δ |P(X) ,X)Ṗ(X)

]
− lim

δ→0
E
[
FY (1)|UD,X(yτ,δ |P(X) ,X)Ṗ(X)

]
= E

[
FY (0)|UD,X(yτ |P(X) ,X)Ṗ(X)

]
−E

[
FY (1)|UD,X(yτ |P(X) ,X)Ṗ(X)

]
.
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Therefore, we have that the unconditional quantile effect is

lim
δ→0

yτ,δ − yτ

δ
=

1
fY (yτ)

{
E
[
FY (0)|UD,X(yτ |P(X) ,X)Ṗ(X)

]
− E

[
FY (1)|UD,X(yτ |P(X) ,X)Ṗ(X)

]}
. (A.24)

Proof of Corollary 1.4. For each d = 0 and 1, we have

1
fY (yτ)

∫
X

E [1{Y (d)≤ yτ}|UD = P(x) ,X = x] Ṗ(x) fX (x)dx

=
1

fY (yτ)

∫
X

E [1{Y (d)≤ yτ}|D = d,X = x] Ṗ(x) fX (x)dx

+
1

fY (yτ)

∫
X

E [1{Y (d)≤ yτ}|UD = P(x) ,X = x] Ṗ(x) fX (x)dx

− 1
fY (yτ)

∫
X

E [1{Y (d)≤ yτ}|D = d,X = x] Ṗ(x) fX (x)dx

=
1

fY (yτ)

∫
X

E [1{Y (d)≤ yτ}|D = d,X = x] fX (x)dx

− 1
fY (yτ)

∫
X

E [1{Y (d)≤ yτ}|D = d,X = x] fX (x)
[
1− Ṗ(x)

]
dx

− 1
fY (yτ)

∫
X

[
FY (d)|D,X (yτ |d,x)−FY (d)|UD,X (yτ |P(x) ,x)

]
Ṗ(x) fX (x)dx

:= Aτ (d)−B1τ (d)−B2τ (d)

where

Aτ (d) =
1

fY (yτ)

∫
X

E [1{Y (d)≤ yτ}|D = d,X = x] fX (x)dx,

B1τ (d) =
1

fY (yτ)

∫
X

E [1{Y (d)≤ yτ}|D = d,X = x] fX (x)
[
1− Ṗ(x)

]
dx,

B1τ (d) =
1

fY (yτ)

∫
X

[
FY (d)|D,X (yτ |d,x)−FY (d)|UD,X (yτ |P(x) ,x)

]
Ṗ(x) fX (x)dx.
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So

Mτ = Aτ (0)−B1τ (0)−B2τ (0)− [Aτ (1)−B1τ (1)−B2τ (1)]

= Aτ −B1τ −B2τ ,

where

Aτ = Aτ (0)−Aτ (1)

=
1

fY (yτ)

∫
X

E [1{Y ≤ yτ}|D = 0,X = x] fX (x)dx

− 1
fY (yτ)

∫
X

E [1{Y ≤ yτ}|D = 1,X = x] fX (x)dx,

B1τ = B1τ (0)−B1τ (1)

=
1

fY (yτ)

∫
X

[
FY (0)|D,X (yτ |0,x)−FY (1)|D,X (yτ |1,x)

][
1− Ṗ(x)

]
fX (x)dx,

and

B2τ = B2τ (0)−B2τ (1)

=
1

fY (yτ)

∫
X

[
FY (0)|D,X (yτ |0,x)−FY (0)|UD,X (yτ |P(x) ,x)

]
Ṗ(x) fX (x)dx

+
1

fY (yτ)

∫
X

[
FY (1)|UD,X (yτ |P(x) ,x)−FY (1)|D,X (yτ |1,x)

]
Ṗ(x) fX (x)dx.

Proof of Lemma 1.4. For a given δ , sµ(δ ) satisfies Pr(Dδ = 1) = p+δ . But

Pr(Dδ = 1) = E [Pδ (X)] =
∫
X

FV |X(µ(x)+ sµ (δ ) |x) fX(x)dx,

152



and so

p+δ =
∫
X

FV |X(µ(x)+ sµ (δ ) |x) fX(x)dx. (A.25)

Note that sµ(0) = 0. We need to find the derivative of the implicit function sµ(δ ) with respect to

δ . Define

t(δ ,s) = p+δ −
∫
X

FV |X(µ(x)+ s|x) fX(x)dx. (A.26)

By Theorem 9.28 in Rudin (1976), we need to show that t is continuously differentiable

in a neighborhood around (0,0) of (δ ,s). We do this, by showing that the partial derivatives of

(A.26) with respect to δ and s exist and are continuous (See Theorem 9.21 in Rudin (1976)).

For the partial derivative with respect to δ , we have ∂ t(δ ,s)/∂δ = 1, which is obviously

continuous in (δ ,s). For the partial derivative with respect to s, we use Assumption (iii) in the

lemma to obtain
∂ t(δ ,s)

∂ s
=−

∫
X

fV |X(µ(x)+ s|x) fX(x)dx.

The function is trivially continuous in δ . In view of the continuity of fV |X (v|x) in v for almost all

x, the dominated convergence theorem implies that ∂ t(δ ,s)/∂ s is also continuous in s. Therefore,

we can apply the implicit function theorem to obtain s′µ(δ ) in a neighborhood of δ = 0. Taking

the derivative of (A.25) with respect to δ , we get

∂ sµ(δ )

∂δ
= s′µ(δ ) =

1∫
X fV |X(µ(x)+ sµ (δ ) |x) fX(x)dx

.

In particular, for δ = 0, we have

s′µ(0) =
1∫

X fV |X(µ(x)|x) fX(x)dx
.

For the propensity score, we have

Pµ

δ
(x) = FV |X(µ(x)+ sµ (δ ) |x)
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and so

∂Pµ

δ
(x)

∂δ
= fV |X(µ(x)+ sµ (δ ) |x)

∂ sµ(δ )

∂δ

=
fV |X(µ(x)+ sµ (δ ) |x)∫

X fV |X(µ(x)+ sµ (δ ) |x) fX(x)dx
.

Evaluating the above at δ = 0 gives us

Ṗµ (x) =
fV |X(µ(x)|x)∫

X fV |X(µ(x)|x) fX(x)dx
.

Proof of Corollary 1.6. It follows from Theorem 1.3 that

Mτ,µ =
1

fY (yτ)

∫
X

E [1{Y (0)≤ yτ}|UD = P(x),X = x] fX (x)dx,

− 1
fY (yτ)

∫
X

E [1{Y (1)≤ yτ}|UD = P(x),X = x] fX (x)dx. (A.27)

Since the propensity score does not depend on x because µ(·) = µ0, a constant, we have

UD = P(x) = p, where p := FV (µ0) = Pr(D = 1). But UD is independent of X , so

Mτ,µ =
1

fY (yτ)

∫
X

E [1{Y (0)≤ yτ}|UD = p,X = x] fX |UD (x|p)dx

− 1
fY (yτ)

∫
X

E [1{Y (1)≤ yτ}|UD = p,X = x] fX |UD (x|p)dx

=
1

fY (yτ)
E [1{Y (0)≤ yτ}−1{Y (1)≤ yτ}|UD = p] . (A.28)

In the decomposition Mτ,µ = Aτ,µ −Bτ,µ , the formula for Aτ,µ follows from the same argument

as above, and the formula for Bτ,µ follows from Corollary 1.4 because B1τ = 0 and B2τ simplifies

to the given expression.
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Proof of Lemma 1.5. We deal with each term at a time of (1.16). We have

I1 =
∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu} fŨ |X=x−δ

(ũ)
[

fX(x−δ )− fX(x)
]

dũdx

=−δ

∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu} fŨ |X=x−δ

(ũ) f ′X(x)dũdx+R1(δ ,y)

where f ′X(x) is the derivative of the density and the remainder R(δ ,y) is

R1(δ ,y) :=−δ

∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu} fŨ |X=x−δ

(ũ)

×
[

f ′X(x− δ̃ )− f ′X(x)
]

dũdx

where 0≤ δ̃ ≤ δ , and δ̃ depends on x.

Now we show that supy∈Y |R(δ ,y)|= o(|δ |) as δ → 0.

R1(δ ,y) =−δ

∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu} fŨ |X=x−δ

(ũ) f ′X(x− δ̃ )dũdx

+δ

∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu} fŨ |X=x(ũ) f ′X(x)dũdx

+δ

∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu})

[
fŨ |X=x−δ

(ũ)− fŨ |X=x(ũ)
]

f ′X(x)dũdx.

The first term and the second term, leaving aside the factor δ have the same limit uniformly in

y ∈ Y because both indicator functions are bounded, and because of the domination assumption

(1.17). For the third term, we use (1.17) to pass the limit, so that it is also o(|δ |) uniformly in

y ∈ Y . Hence,

sup
y∈Y

R1(δ ,y) = o(|δ |).
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Therefore, we can write

I1(y)
δ

=−
∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu} fŨ |X=x−δ

(ũ) f ′X(x)dũdx+o(1)

where the o(1) term does not depend on y. Now we need to pass the limit as δ → 0 inside the

integral. Again, we can use (1.17). We have that

lim
δ→0

1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu} fŨ |X=x−δ
(ũ) f ′X(x)

= 1{r(x, ũ)≤ y}1{xl ≤ x≤ xu} fŨ |X=x(ũ) f ′X(x)

and the sequence is dominated by

∣∣∣1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu} fŨ |X=x−δ
(ũ) f ′X(x)

∣∣∣≤ fŨ |X=x−δ
(ũ)
∣∣ f ′X(x)∣∣

= sup
δ∈Nε

fŨ |X=x−δ
(ũ) sup

δ ′∈Nε

| f ′X(x−δ
′)|

which is integrable by Assumption 1.11. Therefore, we have

lim
δ→0

sup
y∈Y

∣∣∣∣I1(y)
δ

+
∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x≤ xu} fŨ |X=x(ũ) f ′X(x)dũdx

∣∣∣∣= 0.

which can be written as

lim
δ→0

sup
y∈Y

∣∣∣∣I1(y)
δ

+
∫ xu

xl

∫
Ũ
1{r(x, ũ)≤ y} fŨ |X=x(ũ) f ′X(x)dũdx

∣∣∣∣= 0. (A.29)

Now, for the next term, I2(y), using Assumption 1.10, we do a Taylor expansion to

obtain

I2(y) =−δ

∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu} fX(x) f ′Ũ |X=x(ũ)dũdx+R2(y,δ )
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where the remainder is

R2(y,δ ) :=−δ

∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x−δ ≤ xu} fX(x)

×
[

f ′Ũ |X=x−δ̃
(ũ)− f ′Ũ |X=x(ũ)

]
dũdx

for δ̃ such that 0≤ δ̃ ≤ δ , and it depends on both x and ũ. Under equation (1.18) in Assumption

1.10, R2(y,δ ) = o(|δ |), uniformly in y ∈ Y . Thus we have that

lim
δ→0

sup
y∈Y

∣∣∣∣I2(y)
δ

+
∫
R

∫
Ũ
1{r(x, ũ)≤ y}1{xl ≤ x≤ xu} fX(x) f ′Ũ |X=x(ũ)dũdx

∣∣∣∣= 0 (A.30)

with no domination required since the only function of δ that remains is 1{xl ≤ x−δ ≤ xu}.

The last term is

I3(y) :=
∫
R

∫
Ũ
1{r(x, ũ)≤ y}

[
1{xl ≤ x−δ ≤ xu}−1{xl ≤ x≤ xu}

]
fŨ |X=x(ũ) fX(x)dũdx,

which captures the discrepancy in the supports of the target variable. While it converges to 0 as

δ → 0, we are actually interested in I3(y)/δ as δ → 0. For a positive δ we have

1{xl ≤ x−δ ≤ xu}−1{xl ≤ x≤ xu}=


−1 if x ∈ [xl,xl +δ )

0 if x ∈ [xl +δ ,xu]

1 if x ∈ (xu,xu +δ ]

Thus, we can write I3(y) as

I3(y) :=
∫ xu+δ

xu

∫
Ũ
1{r(x, ũ)≤ y} fŨ |X=x(ũ) fX(x)dũdx

−
∫ xl+δ

xl

∫
Ũ
1{r(x, ũ)≤ y} fŨ |X=x(ũ) fX(x)dũdx

157



By the Fundamental Theorem of Calculus, we have that

lim
δ→0

I3(y)
δ

:=
∫
Ũ
1{r(xu, ũ)≤ y} fŨ |X=xu

(ũ) fX(xu)dũ (A.31)

−
∫
Ũ
1{r(xl, ũ)≤ y} fŨ |X=xl

(ũ) fX(xl)dũ

= fX(xu)FY |X=xu(y)− fX(xl)FY |X=xl
(y)

= 0. (A.32)

by Assumption 1.7 because fX(xl) = fX(xu) = 0.3 Thus, using equations (A.29), (A.30), and

(A.31) we have

lim
δ→0

sup
y∈Y

∣∣∣∣FY ∗(y)−FY (y)
δ

− Ḟ(y)
∣∣∣∣= 0,

where

ḞY (y) =−
∫ xu

xl

∫
Ũ
1{r(x, ũ)≤ y} fŨ |X=x(ũ) f ′X(x)dũdx

−
∫ xu

xl

∫
Ũ
1{r(x, ũ)≤ y} fX(x) f ′Ũ |X=x(ũ)dũdx

Since Y = r(X ,Ũ), we can write ḞY (y) as

ḞY (y) =−
∫ xu

xl

FY |X=x(y) f ′X(x)dx−
∫ xu

xl

∫
Ũ
1{r(x, ũ)≤ y}

f ′Ũ |X=x(ũ)

fŨ |X=x(ũ)
fX ,Ũ(x, ũ)dũdx

3Note that if we do not assume that fX (x) = 0 on the boundary of its support, i.e., at xl and xu, convergence may
not hold uniformly since:∣∣∣∣I3(y)−

∫
Ũ
1{r(xu, ũ)≤ y} fŨ |X=xu

(ũ) fX (xu)dũ−
∫

Ũ
1{r(xl , ũ)≤ y} fŨ |X=xl

(ũ) fX (xl)dũ
∣∣∣∣

≤
∣∣∣∣∫ xu+δ

xu

∫
Ũ
1{r(x, ũ)≤ y} fŨ |X=x(ũ) fX (x)dũdx−

∫
Ũ
1{r(xu, ũ)≤ y} fŨ |X=xu

(ũ) fX (xu)dũ
∣∣∣∣

+

∣∣∣∣∫ xl+δ

xl

∫
Ũ
1{r(x, ũ)≤ y} fŨ |X=x(ũ) fX (x)dũdx−

∫
Ũ
1{r(xl , ũ)≤ y} fŨ |X=xl

(ũ) fX (xl)dũ
∣∣∣∣

and that bound will likely depend on y.

158



Using Assumption 1.7, we can write the first term on the right hand side as an average

derivative

−
∫ xu

xl

FY |X=x(y) f ′X(x)dx =
∫ xu

xl

∂FY |X=x(y)
∂x

fX(x)dx = E
[

∂FY |X=x(y)
∂x

∣∣∣∣
x=X

]
,

which is what Firpo et al. (2009) obtain. The second term of ḞY (y), will be the bias term. We

have

f ′Ũ |X=x(ũ)

fŨ |X=x(ũ)
=

∂ fŨ |X=x(ũ)

∂x
1

fŨ |X=x(ũ)

=
∂ log fŨ |X=x(ũ)

∂x
=

∂

∂x
log

fŨ |X=x(ũ)

fŨ(ũ)
=

∂

∂x
log

fX ,Ũ(x, ũ)

fX(x) fŨ(ũ)

So, we write

ḞY (y) = E
[

∂FY |X=x(y)
∂x

∣∣∣∣
x=X

]
−E

[
1
{

r(X ,Ũ)≤ y
} ∂

∂x
log

fX ,Ũ(x, ũ)

fX(x) fŨ(ũ)

∣∣∣∣
x=X ,ũ=Ũ

]
.

Proof of Theorem 1.8. Under X ,W ⊥U , we have a simpler expression for Ix(x,w,u). Indeed

Ix(x,w,u) :=
∂

∂x
log

fX ,W,U(x,w,u)
fX(x) fW (w) fU(u)

=
∂

∂x
log

fX ,W (x,w)
fX(x) fW (w)

=: Ix(x,w)

thus we can ignore U . The bias is then

Bτ :=
1

fY (yτ)
E [1{r(X ,W,U)≤ yτ}Ix(X ,W )]

=
1

fY (yτ)
E
[
FY |X ,W (yτ)Ix(X ,W )

]
,
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Thus the bias can be computed from the data. Alternatively, let’s analyze the bias more closely.

Under Assumption 1.7

Bτ =
1

fY (yτ)
E

[
FY |X ,W (yτ)

∂

∂x
log

fX ,W (x,w)
fX(x) fW (w)

∣∣∣∣
x=X ,w=W

]

=
1

fY (yτ)

∫ xu

xl

∫
W

FY |X=x,W=w(yτ)
∂ fW |X=x(x,w)

∂x
1

fW |X=x(x,w)
fX ,W (x,w)dxdw

=
1

fY (yτ)

∫ xu

xl

∫
W

FY |X=x,W=w(yτ)
∂ fW |X=x(x,w)

∂x
fX(x)dxdw

=− 1
fY (yτ)

∫ xu

xl

∫
W

∂FY |X=x,W=w(yτ)

∂x
fW |X=x(x,w) fX(x)dxdw

− 1
fY (yτ)

∫ xu

xl

∫
W

FY |X=x,W=w(yτ) fW |X=x(x,w) f ′X(x)dxdw

=− 1
fY (yτ)

∫ xu

xl

∫
W

∂FY |X=x,W=w(yτ)

∂x
fW |X=x(x,w) fX(x)dxdw

− 1
fY (yτ)

∫ xu

xl

FY |X=x(yτ) f ′X(x)dx

=− 1
fY (yτ)

∫ xu

xl

∫
W

∂FY |X=x,W=w(yτ)

∂x
fW |X=x(x,w) fX(x)dxdw

+
1

fY (yτ)

∫ xu

xl

∂FY |X=x(yτ)

∂x
fX(x)dx

=− 1
fY (yτ)

∫ xu

xl

∫
W

∂FY |X=x,W=w(yτ)

∂x
fW |X=x(x,w) fX(x)dxdw

−Aτ .

Now, suppose that X ⊥U |W . Then, we have fX ,U |W=w(x,u) = fX |W=w(x) fU |W=w(u). So
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that

Ix(x,w,u) :=
∂

∂x
log

fX ,W,U(x,w,u)
fX(x) fW (w) fU(u)

=
∂

∂x
log

fX ,U |W=w(x,w,u)
fX(x) fU(u)

=
∂

∂x
log

fX |W=w(x) fU |W=w(u)
fX(x) fU(u)

=
∂

∂x
log

fX |W=w(x)
fX(x)

=
∂ log fW |X=x(w)

∂x

So the bias is now (using the law of iterated expectations)

Bτ :=
1

fY (yτ)
E

[
1{r(X ,W,U)≤ yτ}

∂ log fW |X=x(w)
∂x

∣∣∣∣
x=X ,w=W

]

=
1

fY (yτ)
E

[
FY |X ,W (yτ)

∂ log fW |X=x(w)
∂x

∣∣∣∣
x=X ,w=W

]

=
1

fY (yτ)

∫ xu

xl

∫
W

FY |X=x,W=w(yτ)
∂ log fW |X=x(w)

∂x
fX ,W (x,w)dwdx

=
1

fY (yτ)

∫ xu

xl

∫
W

FY |X=x,W=w(yτ)
∂ fW |X=x(w)

∂x
fX ,W (x,w)
fW |X=x(w)

dwdx

=
1

fY (yτ)

∫ xu

xl

∫
W

FY |X=x,W=w(yτ)
∂ fW |X=x(w)

∂x
fX(x)dwdx
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Under Assumption 1.7, we do integration by parts to obtain that the bias is 0.

Bτ :=− 1
fY (yτ)

∫ xu

xl

∫
W

FY |X=x,W=w(yτ) f ′X(x) fW |X=x(w)dwdx

− 1
fY (yτ)

∫ xu

xl

∫
W

∂FY |X=x,W=w(yτ)

∂x
fX(x) fW |X=x(w)dwdx

=− 1
fY (yτ)

∫ xu

xl

FY |X=x(yτ) f ′X(x)dx

− 1
fY (yτ)

E

[
∂FY |X=x,W=w(yτ)

∂x

∣∣∣∣
x=X ,w=W

]

=−Aτ −
1

fY (yτ)
E

[
∂FY |X=x,W=w(yτ)

∂x

∣∣∣∣
x=X ,w=W

]

We get the same result as when X ,W ⊥U .

Proof of Theorem 2.1. Follows directly from an application of Assumption 2.1(b) to Corollary

1.5.

Proof of Lemma 2.1. For a given δ , sz(δ ) satisfies Pr(Dδ = 1) = p+δ . But

Pr(Dδ = 1) = E [Pδ (W )] =
∫
W

FV |W (µ(z+g(w)sz (δ ) ,x)|w) fW (w)dw,

and so

p+δ =
∫
W

FV |W (µ(z+g(w)sz (δ ) ,x)|w) fW (w)dw. (A.33)

Note that sz(0) = 0. We need to find the derivative of the implicit function sz(δ ) with respect to

δ . Define

t(δ ,s) = p+δ −
∫
W

FV |W (µ(z+g(w)s,x)|w) fW (w)dw. (A.34)

By Theorem 9.28 in Rudin (1976), we need to show that t is continuously differentiable
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in a neighborhood around (0,0) of (δ ,s). We do this, by showing that the partial derivatives of

(A.34) with respect to δ and s exist and are continuous (See Theorem 9.21 in Rudin (1976)).

For the partial derivative with respect to δ , we have ∂ t(δ ,s)/∂δ = 1, which is obviously

continuous in (δ ,s). For the partial derivative with respect to s, we use Assumption (iii) in the

Lemma to obtain

∂ t(δ ,s)
∂ s

=−
∫
W

fV |W (µ(z+g(w)s,x)|w)µ ′z (z+g(w)s,x)g(w) fW (w)dw.

The function is trivially continuous in δ . In view of the continuity of fV |W (v|w) in v for almost all

w, the dominated convergence theorem implies that ∂ t(δ ,s)/∂ s is also continuous in s. Therefore,

we can apply the implicit function theorem to obtain s′z(δ ) in a neighborhood of δ = 0. Taking

the derivative of (A.33) with respect to δ , we get

∂ sz(δ )

∂δ
=

1∫
W fV |W (µ (z+g(w)sz (δ ) ,x) |w)µ ′z (z+g(w)sz (δ ) ,x)g(w) fW (w)dw

=
1

E
[

fV |W (µ (Z +g(W )sz (δ ) ,X) |W )µ ′z (Z +g(W )sz (δ ) ,X)g(W )
] .

Next, we have

Pδ (z,x) = Pr(Dδ = 1|Z = z,X = x) = FV |W (µ(z+g(w)sz(δ ),x)|w) .

So

∂Pδ (z,x)
∂δ

= fV |W (µ(z+g(w)sz(δ ),x)|w)µ
′
z (z+g(w)sz(δ ),x)g(w)

∂ sz (δ )

∂δ

=
fV |W (µ(z+g(w)sz(δ ),x)|w)µ ′z (z+g(w)sz(δ ),x)g(w)

E
[

fV |W (µ (Z +g(W )sz (δ ) ,X) |W )µ ′z (Z +g(W )sz (δ ) ,X)g(W )
] .

163



It then follows that

∂ sz(δ )

∂δ

∣∣∣∣
δ=0

=
1

E
[

fV |W (µ (W ) |W )µ ′z (W )g(W )
] ,

and
∂Pδ (z,x)

∂δ

∣∣∣∣
δ=0

=
fV |W (µ(w)|w)µ ′z (w)g(w)

E
[

fV |W (µ (W ) |W )µ ′z (W )g(W )
] .

Proof of Theorem 2.2. The theorem follows directly from an application of Lemma 2.1 to Theo-

rem 1.3.

Proof of Corollary 2.4. It is easy to see that

∫
Y

yE
[{

fY (1)|UD,W (y|P(W ) ,W )− fY (0)|UD,W (y|P(W ) ,W )
}

Ṗ(W )
]

dy

= E
{
[Y (1)−Y (0) |UD = P(W ),W ] Ṗ(W )

}
.

Hence it suffices to show that limδ→0 δ−1 ∫
Y ydRF(δ ;y) = 0. Under Assumption 2.2, we have

∣∣∣∣ 1δ
∫
Y

ydRF(δ ;y)
∣∣∣∣≤ p

∫
Y (1)
|ỹ| ·
∣∣∣∣∣∂ fY (1)|Dδ

(ỹ|1)
∂δ

∣∣∣∣
δ=δ̃1

−
∂ fY (1)|Dδ

(ỹ|1)
∂δ

∣∣∣∣
δ=0

∣∣∣∣∣dỹ

+(1− p)
∫
Y (0)
|ỹ| ·
∣∣∣∣∣∂ fY (0)|Dδ

(ỹ|0)
∂δ

∣∣∣∣
δ=δ̃0

−
∂ fY (0)|Dδ

(ỹ|0)
∂δ

∣∣∣∣
δ=0

∣∣∣∣∣dỹ

+
∫
Y (1)
|ỹ| ·
∣∣ fY (1)|D(ỹ|1)− fY (1)|Dδ

(ỹ|1)
∣∣dỹ

+
∫
Y (0)
|ỹ| ·
∣∣ fY (0)|D(ỹ|0)− fY (0)|Dδ

(ỹ|0)
∣∣dỹ.

As in the proof of Lemma 1.3, each term in the above upper bound converges to zero as δ → 0.
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Therefore,

lim
δ→0

1
δ

∫
Y

ydRF(δ ;y) = 0,

as desired.

Proof of Lemma 2.3. We have

f̂Y (y)− fY (y) =
1

nh

n

∑
i=1

K
(

Yi− y
h

)
− fY (y)

=
1
n

n

∑
i=1

1
h

K
(

Yi− y
h

)
−E f̂Y (y)+E f̂Y (y)− fY (y)

=
1
n

n

∑
i=1

1
h

K
(

Yi− y
h

)
−E f̂Y (y)+B fY (y)+op(h2),

where

B fY (y) =
1
2

h2 f ′′2Y (y)
∫

∞

−∞

u2K(u)du.

We write this concisely as

f̂Y (y)− fY (y) =
1
n

n

∑
i=1

ψ fY ,i(y,h)+B fY (y)+op(h2),

where

ψ fY ,i(y,h) :=
1
h

K
(

Yi− y
h

)
−E

1
h

K
(

Yi− y
h

)
= Op(n−1/2h−1/2).

Since K(u) is twice continuously differentiable, we use a Taylor expansion to obtain

f̂Y (ŷτ)− f̂Y (yτ) = f̂ ′Y (yτ)(ŷτ − yτ)+
1
2

f̂ ′′ (ỹτ)(ŷτ − yτ)
2 (A.35)

for some ỹτ between ŷτ and yτ . The first and second derivatives are

f̂ ′Y (y) =−
1

nh2

n

∑
i=1

K′
(

Yi− y
h

)
, f̂ ′′Y (y) =

1
nh3

n

∑
i=1

K′′
(

Yi− y
h

)
.
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To find the order of f̂ ′′Y (y), we calculate its mean and variance. We have

E
[

f̂ ′′Y (y)
]

=
1

nh3

n

∑
i=1

K′′
(

Yi− y
h

)
= O

(
1
h2

)
,

var
[

f̂ ′′Y (y)
]
≤ n

(nh3)
2 E
[

K′′
(

Yi− y
h

)]2

= O
(

1
nh5

)
.

Therefore, when nh3→ ∞,

f̂ ′′Y (y) = Op
(
h−2) ,

for any y. That is, for any ε > 0, there exists an M > 0 such that

Pr
(

h2 ∣∣ f̂ ′′Y (yτ)
∣∣> M

2

)
<

ε

2

when n is large enough.

Suppose we choose M so large that we also have

Pr
(√

n |ỹτ − yτ |> M
)
<

ε

2

when n is large enough. Then, when n is large enough,

Pr
(

h2 f̂ ′′Y (ỹτ)>
M
2

)
≤ Pr

(
h2 ∣∣ f̂ ′′Y (ỹτ)− f̂ ′′Y (yτ)

∣∣> M
2

)
+Pr

(
h2 ∣∣ f̂ ′′Y (yτ)

∣∣> M
2

)
≤ Pr

(
h2 [ f̂ ′′Y (ỹτ)− f̂ ′′Y (yτ)

]
>

M
2

)
+

ε

2

≤ Pr
(

h2 [ f̂ ′′Y (ỹτ)− f̂ ′′Y (yτ)
]
>

M
2
,
√

n |ỹτ − yτ |< M
)
+ ε. (A.36)

When
√

n |ỹτ − yτ |<
√

h, we have

h2 ∣∣ f̂ ′′Y (ỹτ)− f̂ ′′Y (yτ)
∣∣ ≤ 1

nh

n

∑
i=1

∣∣∣∣K′′(Yi− yτ

h

)
−K′′

(
Yi− ỹτ

h

)∣∣∣∣
≤ LK ·

1
h2

√
hM√
n

= LK ·
M√
nh3
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by the Lipschitz continuity of K′′ (·) with Lipschitz constant LK. When
√

h≤√n |ỹτ − yτ |< M,

we have ∣∣∣∣Yi− yτ

h
− Yi− ỹτ

h

∣∣∣∣= √n |ỹτ − yτ |
h

>
1√
h
→ ∞.

Using the second condition on K′′ (·) , we have, for
√

h≤√n |ỹτ − yτ |< M,

∣∣∣∣K′′(Yi− yτ

h

)
−K′′

(
Yi− ỹτ

h

)∣∣∣∣≤C2
M

nh2 ,

and

h2 ∣∣ f̂ ′′Y (ỹτ)− f̂ ′′Y (yτ)
∣∣ ≤ 1

nh

n

∑
i=1

∣∣∣∣K′′(Yi− yτ

h

)
−K′′

(
Yi− ỹτ

h

)∣∣∣∣
≤ C2

1
nh3 = O

(
1√
nh3

)
.

Hence, in both cases, h2
∣∣ f̂ ′′Y (ỹτ)− f̂ ′′Y (yτ)

∣∣= Op

(
n−1/2h−3/2

)
. As a result,

Pr
(

h2 [ f̂ ′′Y (ỹτ)− f̂ ′′Y (yτ)
]
>

M
2
,
√

n |ỹτ − yτ |< M
)
→ 0.

Combining this with (A.36), we obtain

h2 f̂ ′′Y (ỹτ) = Op (1) and f̂ ′′Y (ỹτ)(ŷτ − yτ)
2 = Op

(
n−1h−2) .

In view of (A.35), we then have

f̂Y (ŷτ)− f̂Y (yτ) = f̂ ′Y (yτ)(ŷτ − yτ)+Op(n−1h−2).
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Now, using Theorem 2.2, we can write

f̂Y (ŷτ)− f̂Y (yτ) = f ′Y (yτ)(ŷτ − yτ)+
[

f̂ ′Y (yτ)− f ′Y (yτ)
]
(ŷτ − yτ)+Op(n−1h−2).

= f ′Y (yτ)
1
n

n

∑
i=1

ψQ,i(yτ)+R fY ,

where

R fY :=
[

f̂ ′Y (yτ)− f ′Y (yτ)
]
[ŷτ − yτ ]+op(n−1/2)+Op(n−1h−2)

and the op(n−1/2) term is the error of the linear asymptotic representation of ŷτ − yτ .

In order to the obtain the order of R fY , we use the following results:

f̂ ′Y (y) = f ′Y (y)+Op

(
1√
nh3

+h2
)
,

ŷτ = yτ +Op

(
1√
n

)
.

The rate on the derivative of the density can be found on page 56 of Pagan and Ullah (1999).

Therefore,

R fY = op(n−1/2)+Op

(
1√
nh3

+h2
)

Op

(
1√
n

)
+Op(n−1h−2).

= op(n−1/2)+Op

(
n−1h−3/2

)
+Op

(
n−1/2h2

)
+Op(n−1h−2).

= op(n−1/2)+Op

(
n−1h−3/2

)
+Op(n−1h−2).

because, since by Assumption 2.5, h ↓ 0, so Op

(
n−1/2h2

)
= op(n−1/2). We need to show that

√
nhR fY = op(1). We do this term by term. First,

√
nh×op(n−1/2) = op(h1/2) = op(1)
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because h ↓ 0. Second,

√
nh×Op

(
n−1h−3/2

)
= Op

(
n−1/2h−1

)
= op(1)

as long as nh2 ↑ ∞, which is guaranteed by Assumption 2.5, since it is implied by nh3 ↑ ∞.

Finally,
√

nh×Op(n−1h−2) = Op(n−1/2h−3/2) = op(1)

since by Assumption 2.5 nh3 ↑ ∞. Therefore,
√

nhR fY = op(1).

Proof of Lemma 2.4. We have the following decomposition:

1
n

n

∑
i=1

∂P(Zi,Xi, α̂)

∂ z
−E

[
∂P(Z,X ,α0)

∂ z

]
=

1
n

n

∑
i=1

∂P(Zi,Xi, α̂)

∂ z
− 1

n

n

∑
i=1

∂P(Zi,Xi,α0)

∂ z

+
1
n

n

∑
i=1

∂P(Zi,Xi,α0)

∂ z
−E

[
∂P(Z,X ,α0)

∂ z

]
.

Under the assumption of finite variance for ∂P(Z,X ,α0)
∂ z , we have

1
n

n

∑
i=1

∂P(Zi,Xi,α0)

∂ z
−E

[
∂P(Z,X ,α0)

∂ z

]
=

1
n

n

∑
i=1

ψ∂P,i = Op(n−1/2),

where

ψ∂P,i =
∂P(Zi,Xi,α0)

∂ z
−E

[
∂P(Z,X ,α0)

∂ z

]
.

For the first term, we have by applying the mean value theorem coordinate-wise

1
n

n

∑
i=1

∂P(Zi,Xi, α̂)

∂ z
− 1

n

n

∑
i=1

∂P(Zi,Xi,α0)

∂ z
=

(
1
n

n

∑
i=1

∂ 2P(Zi,Xi, α̃)

∂α∂ z

)′
(α̂−α0),

where α̃ is a vector with (not necessarily equal) coordinates between α0 and α̂ . Under the

uniform law of large numbers given in the lemma and the continuity of α 7→ E
[

∂ 2P(Z,X ,α)
∂α∂ z

]
, we
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have
1
n

n

∑
i=1

∂ 2P(Zi,Xi, α̃)

∂α∂ z
p→ E

[
∂ 2P(Z,X ,α0)

∂α∂ z

]
. (A.37)

Using (A.37) together with (2.25), we obtain

1
n

n

∑
i=1

∂P(Zi,Xi, α̂)

∂ z
− 1

n

n

∑
i=1

∂P(Zi,Xi,α0)

∂ z

=

{
E
[

∂ 2P(Z,X ,α0)

∂α∂ z

]′
+op (1)

}{
Pnψα0 +op(n−1/2)

}
= E

[
∂ 2P(Z,X ,α0)

∂α∂ z

]′
Pnψα0 +op(n−1/2).

The decomposition is then

T1n(α̂)−T1 =
1
n

n

∑
i=1

∂P(Zi,Xi, α̂)

∂ z
−E

[
∂P(Z,X ,α0)

∂ z

]
= E

[
∂ 2P(Z,X ,α0)

∂α∂ z

]′
Pnψα0 +Pnψ∂P +op(n−1/2).

Proof of Lemma 2.5. Recall that

m0 (yτ , w̃(αθ )) := m0 (yτ ,P(w,αθ ),x)

= E [1{Y ≤ yτ}|P(W,αθ ) = P(w,αθ ),X = x] .

In order to emphasize the dual roles of αθ , we define

m̃0(yτ ,u,x;P(·,αθ2)) = E [1{Y ≤ yτ}|P(W,αθ2) = u,X = x] .

Since yτ is fixed, we regard m̃0 as a function of (u,x) that depends on the function P(·,αθ2) .
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Then

m̃0(yτ ,P(w,αθ1),x;P(·,αθ2))|θ1=θ2=θ = E [1{Y ≤ yτ}|P(W,αθ ) = P(w,αθ ),X = x]

= m(yτ ,P(w,αθ ),x) .

As in Hahn and Ridder (2013), we employ m̃0 (yτ ,u,x;P(·,αθ2)) as an expositional device only.

The functional of interest is

H [m0] =: H [m0 (yτ ,P(·,αθ ), ·)] =
∫
W

∂m0 (yτ ,P(w,αθ ),x)
∂ z

fW (w)dw

=
∫
W

∂ m̃0(yτ ,P(w,αθ1),x;P(·,αθ2))

∂ z

∣∣∣∣
θ1=θ2=θ

fW (w)dw.

Under Condition (iii) of the lemma, we can exchange ∂

∂αθ
with E and obtain

∂

∂αθ

H [m0]

∣∣∣∣
θ=θ0

=
∫
W

∂

∂ z
∂ m̃0(yτ ,P(w,αθ1),x;P(·,αθ2))

∂αθ1

∣∣∣∣
θ1=θ2=θ0

fW (w)dw

+
∫
W

∂

∂ z
∂ m̃0(yτ ,P(w,αθ1),x;P(·,αθ2))

∂αθ2

∣∣∣∣
θ1=θ2=θ0

fW (w)dw

=
∫
W

∂

∂ z

[
m̃′0,α

(
yτ ,P(w,αθ0),x;P

(
·,αθ0

))]
fW (w)dw,

where

m̃′0,α (yτ ,P(w,αθ ),x;P(·,αθ )) =
∂ m̃0(yτ ,P(w,αθ1),x;P(·,αθ ))

∂αθ1

+
∂ m̃0(yτ ,P(w,αθ ),x;P(·,αθ2))

∂αθ2

∣∣∣∣
θ1=θ2=θ

.
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Under Condition (i) of the lemma, we can do integration by parts, and we have

∫
W

∂

∂ z

[
m̃′0,α

(
yτ ,P(w,αθ0),x;P

(
·,αθ0

))]
fW (w)dw

=
∫
X

∫ zU (x)

zL(x)

∂

∂ z

[
m̃′0,α

(
yτ ,P(w,αθ0),x;P

(
·,αθ0

))]
fZ|X (z|x)dz · fX (x)dx

=
∫
X

m̃′0,α
(
yτ ,P(w,αθ0),x;P

(
·,αθ0

))
fZ|X (z|x)

∣∣zU (x)
zL(x)

fX (x)dx

−
∫
W

m̃′0,α
(
yτ ,P(w,αθ0),x;P

(
·,αθ0

)) ∂ log fZ|X (z|x)
∂ z

fW (w)dw

= −
∫
W

m̃′0,α
(
yτ ,P(w,αθ0),x;P

(
·,αθ0

)) ∂ log fW (w)
∂ z

fW (w)dw.

Define

ν (u,x;P(·,αθ )) = E
[

∂ log fW (W )

∂ z

∣∣∣∣P(W,αθ ) = u,X = x
]
.

By the law of iterated expectations, we have

∫
W

m̃0 (yτ ,P(w,αθ ),x;P(·,αθ ))ν
(
P(w,αθ ),x;P(·,αθ0)

)
fW (w)dw

= E
[
1{Y ≤ yτ}ν

(
P(W,αθ ),X ;P(·,αθ0)

)]
.

Differentiating the above with respect to αθ and evaluating the resulting equation at θ = θ0, we

have

E

 ∂ m̃0(yτ ,P(W,αθ1),X ;P
(
·,αθ0

)
)

∂αθ1

∣∣∣∣∣
θ1=θ0

ν
(
P(W,αθ ),X ;P(·,αθ0)

)
+ E

[
∂ m̃0(yτ ,P(W,αθ0),X ;P(·,αθ2))

∂αθ2

∣∣∣∣
θ2=θ0

ν
(
P(W,αθ ),X ;P(·,αθ0)

)]

= E

[1{Y ≤ yτ}−m
(
yτ ,P(W,αθ0),X

)] ∂ν
(
P(W,αθ ),X ;P(·,αθ0)

)
∂αθ

∣∣∣∣∣
θ=θ0

(A.38)

where we have used Condition (iii) to exchange the differentiation with the expectation.
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Using (A.38) and Condition (ii) of the lemma, we have

∫
W

∂

∂ z

[
m̃′0,α

(
yτ ,P(w,αθ0),x;P

(
·,αθ0

))]
fW (w)dw

= −
∫
W

m̃′0,α
(
yτ ,P(w,αθ0),x;P

(
·,αθ0

)) ∂ log fW (w)
∂ z

fW (w)dw

=
∫
W

m̃′0,α
(
yτ ,P(w,αθ0),x;P

(
·,αθ0

))
ν
(
P(w,αθ0),x;P(·,αθ0)

)
fW (w)dw

= E

{[
1{Y ≤ yτ}−m

(
yτ ,P(W,αθ0),X

)] ∂ν
(
P(w,αθ0),x;P(·,αθ0)

)
∂αθ0

}
= 0.

This implies that
∂

∂θ
E
[

∂m0(yτ ,P(Z,X ,αθ ),X)

∂ z

]∣∣∣∣
θ=θ0

= 0.

Proof of Lemma 2.6. First, we prove that the decomposition in (2.34) is valid. We start by

showing that

T2,θ = Eθ

[
∂mθ (yτ,θ ,W̃ (αθ ))

∂ z

]
is differentiable at θ0. For this, it suffices to show that each of the four derivatives below exists at

θ = θ0 :

∂

∂θ
Eθ

[
∂m0(yτ ,W̃ (α0))

∂ z

]
;

∂

∂θ
E
[

∂mθ (yτ ,W̃ (α0))

∂ z

]
;

∂

∂θ
E
[

∂m0(yτ,θ ,W̃ (α0))

∂ z

]
;

∂

∂θ
E
[

∂m0(yτ ,W̃ (αθ ))

∂ z

]
. (A.39)

By Lemma 2.5, the last derivative exists and is equal to zero at θ = θ0. We deal with the

rest three derivatives in (A.39) one at a time. Consider the first derivative. Under Conditions (i)
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and (ii) of the lemma, Eθ

[
∂m0(yτ ,W̃ (α0))

∂ z

]
is differentiable in θ and

∂

∂θ
Eθ

[
∂m0(yτ ,W̃ (α0))

∂ z

]∣∣∣∣
θ=θ0

= E
[

∂m0(yτ ,W̃ (α0))

∂ z
S(O)

]
.

Hence, the contribution associated with the first derivative is simply the influence function of

T2n(yτ ,m0,α0)−T2.

Now, for the second derivative in (A.39), Theorem 7.2 in Newey (1994) shows that the

assumptions of the lemma imply the following:

1. There is a function γm(o) and a measure F̂m such that E[γm(O)] = 0, E[γm(O)2]< ∞, and

for all m̂ such that ‖m̂−m0‖ is small enough,

E
[

∂ m̂(yτ ,P(Z,X ,α0),X)

∂ z
− ∂m0(yτ ,P(Z,X ,α0),X)

∂ z

]
=
∫

γm(o)dF̂m(o).

2. The following approximation holds

∫
γm(o)dF̂m(o) =

1
n

n

∑
i=1

γm(Oi)+op(n−1/2).

For a parametric submodel Fθ , we then have, when θ is close enough to θ0 :

1
θ −θ0

E
[

∂mθ (yτ ,P(Z,X ,α0),X)

∂ z
− ∂m0(yτ ,P(Z,X ,α0),X)

∂ z

]
=

1
θ −θ0

∫
γm(o)d

[
Fθ (o)−Fθ0 (o)

]
,

since E[γm(O)] =
∫

γm(o)dFθ0 (o) = 0. If
∫

γm(o)2dFθ (o) is bounded in a neighborhood θ = θ0,

then, by Lemma 7.2 in Ibragimov and Hasminskii (1981), the second derivative exists and

satisfies

∂

∂θ
E
[

∂mθ (yτ ,P(Z,X ,α0),X)

∂ z

]∣∣∣∣
θ=θ0

=
∂

∂θ

∫
γm(o)dFθ (o)

∣∣∣∣
θ=θ0

= E[γm(O)S(O)].
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This shows that γm(o) is the influence function of E
[

∂ m̂(yτ ,P(Z,X ,α0),X)
∂ z

]
. That is

E
[

∂ m̂(yτ ,P(Z,X ,α0),X)

∂ z

]
−E

[
∂m0(yτ ,P(Z,X ,α0),X)

∂ z

]
=

1
n

n

∑
i=1

γm(Oi)+op(n−1/2).

This, combined with the stochastic equicontinuity assumption, implies that

T2n(yτ , m̂,α0)−T2n(yτ ,m0,α0) =
1
n

n

∑
i=1

γm(Oi)+op(n−1/2),

and γm(o) is the influence function of T2n(yτ , m̂,α0)−T2n(yτ ,m0,α0).

Now, the dominating condition in condition (iv) ensures that the third derivative in (A.39)

exists and

∂

∂θ
E
[

∂m0(yτ,θ ,W̃ (α0))

∂ z

]∣∣∣∣
θ=θ0

= E
[

∂ 2m0(yτ ,W̃ (α0))

∂yτ∂ z

]
∂yτ,θ

∂θ

∣∣∣∣
θ=θ0

.

Given the approximation

ŷτ − yτ = PnψQ(yτ)+op(n−1/2),

from Lemma 2.2, we have
∂yτ,θ

∂θ

∣∣∣∣
θ=θ0

= E [ψQ(yτ)S(O)] .

Hence,

∂

∂θ
E
[

∂m0(yτ,θ ,W̃ (α0))

∂ z

]∣∣∣∣
θ=θ0

= E
[

∂ 2m0(yτ ,W̃ (α0))

∂yτ∂ z

]
E [ψQ(yτ)S(O)] .

This gives us the contribution from the estimation of yτ . Alternatively, this expression gives us

the influence function of

E
[

∂m0(ŷτ ,W̃ (α0))

∂ z

]
−E

[
∂m0(yτ ,W̃ (α0))

∂ z

]
,
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because

E
[

∂m0(ŷτ ,W̃ (α0))

∂ z

]
−E

[
∂m0(yτ ,W̃ (α0))

∂ z

]
= E

[
∂ 2m0(yτ ,W̃ (α0))

∂yτ∂ z

]
(ŷτ − yτ)+op(n−1/2).

Using the stochastic equicontinuity assumption, we then get that

T2n(ŷτ ,m0,α0)−T2n(yτ ,m0,α0) = E
[

∂ 2m0(yτ ,W̃ (α0))

∂yτ∂ z

]
(ŷτ − yτ)+op(n−1/2)

= E

[
∂ fY |W̃ (α0)

(yτ |W̃ (α0))

∂ z

]
PnψQ(yτ)+op(n−1/2).

To sum up, we have shown that

T2n(ŷτ , m̂, α̂)−T2 = [T2n(yτ ,m0,α0)−T2]+ [T2n(yτ , m̂,α0)−T2n(yτ ,m0,α0)]

+ [T2n(ŷτ ,m0,α0)−T2n(yτ ,m0,α0)]+op(n−1/2).

To obtain the influence function of the first and second terms in the right-hand side of

(2.34), we just need to invoke Theorem 7.2 in Newey (1994) to obtain

T2n(yτ , m̂,α0)−T2 =
1
n

n

∑
i=1

∂m0(yτ ,W̃i (α0))

∂ z
−T2

− Pn
[
1{Y ≤ yτ}−m0(yτ ,W̃ (α0))

]
E
[

∂ log fW (W )

∂ z

∣∣∣∣W̃ (α0)

]
+ op(n−1/2), (A.40)

because

T2n(yτ , m̂,α0)−T2 = T2n(yτ ,m0,α0)−T2 +T2n(yτ , m̂,α0)−T2n(yτ ,m0,α0).

The first term in (A.40) is simply the influence function of a sample mean. The second term in

(A.40) is the adjustment due to the estimation of m0.
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Proof of Theorem 2.5. Consider the following difference

Mτ,z− M̂τ,z =
1

f̂Y (ŷτ)

T2n(ŷτ , m̂, α̂)

T1n(α̂)
− 1

fY (yτ)

T2

T1

=
T2n(ŷτ , m̂, α̂) fY (yτ)T1− f̂Y (ŷτ)T1n(α̂)T2

f̂Y (ŷτ)T1n(α̂) fY (yτ)T1

=
fY (yτ)T1

f̂Y (ŷτ)T1n(α̂) fY (yτ)T1
[T2n(ŷτ , m̂, α̂)−T2]

− f̂Y (ŷτ)T1n(α̂)T2− fY (yτ)T1T2

f̂Y (ŷτ)T1n(α̂) fY (yτ)T1

=
fY (yτ)T1

f̂Y (ŷτ)T1n(α̂) fY (yτ)T1
[T2n(ŷτ , m̂, α̂)−T2]

− T1n(α̂)T2

f̂Y (ŷτ)T1n(α̂) fY (yτ)T1

[
f̂Y (ŷτ)− fY (yτ)

]
− T2 fY (yτ)

f̂Y (ŷτ)T1n(α̂) fY (yτ)T1
[T1n(α̂)−T1] . (A.41)

We can rearrange (A.41) as

M̂τ,z−Mτ,z =
T2

f̂Y (ŷτ) fY (yτ)T1

[
f̂Y (ŷτ)− fY (yτ)

]
+

T2

f̂Y (ŷτ)T1n(α̂)T1
[T1n(α̂)−T1]

− 1
f̂Y (ŷτ)T1n(α̂)

[T2n(ŷτ , m̂, α̂)−T2] . (A.42)

By appropriately defining the remainders, we can express (A.42) as

M̂τ,z−Mτ,z =
T2

fY (yτ)2T1

[
f̂Y (ŷτ)− fY (yτ)

]
+

T2

fY (yτ)T 2
1
[T1n(α̂)−T1]

− 1
fY (yτ)T1

[T2n(ŷτ , m̂, α̂)−T2]+R1 +R2 +R3. (A.43)

The definitions of R1, R2 and R3 can be found below. Now we are ready to separate the
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contribution of each stage of the estimation. We shall use equations (2.22), (2.26), and (2.34).

M̂τ,z−Mτ,z =
T2

fY (yτ)2T1

[
f̂Y (yτ)− fY (yτ)

]
+

T2

fY (yτ)2T1
[ fY (ŷτ)− fY (yτ)]

+
T2

fY (yτ)T 2
1
[T1n(α0)−T1]+

T2

fY (yτ)T 2
1

{
E
[

∂P(W, α̂)

∂ z

]
−T1

}
− 1

fY (yτ)T1
[T2n(yτ ,m0,α0)−T2]

− 1
fY (yτ)T1

[T2n(yτ , m̂,α0)−T2n(yτ ,m0,α0)]

− 1
fY (yτ)T1

[T2n(ŷτ ,m0,α0)−T2n(yτ ,m0,α0)]

+ R1 +R2 +R3 +
T2

fY (yτ)2T1
R fY +op(n−1/2). (A.44)

Finally, we establish the rate for the remainders R1, R2 and R3 in (A.43). We deal with

each component of the remainder separately. The first remainder is

R1 =
T2

f̂Y (ŷτ) fY (yτ)T1

[
f̂Y (ŷτ)− fY (yτ)

]
− T2

fY (yτ)2T1

[
f̂Y (ŷτ)− fY (yτ)

]
=

T2

fY (y)T1

[
f̂Y (ŷτ)− fY (yτ)

][ 1
f̂Y (ŷτ)

− 1
fY (yτ)

]
= − T2

fY (y)2T1 f̂Y (ŷτ)

[
f̂Y (ŷτ)− fY (yτ)

]2
= Op

(
| f̂Y (ŷτ)− fY (yτ)|2

)
. (A.45)
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The second remainder is

R2 =
T2

f̂Y (ŷτ)T1n(α̂)T1
[T1n(α̂)−T1]−

T2

fY (yτ)T 2
1
[T1n(α̂)−T1]

=
T2

T1
[T1n(α̂)−T1]

[
1

f̂Y (ŷτ)T1n(α̂)
− 1

fY (yτ)T1

]
=

T2

T1
[T1n(α̂)−T1]

[
fY (yτ)T1− f̂Y (ŷτ)T1n(α̂)

f̂Y (ŷτ)T1n(α̂) fY (yτ)T1

]
=

T2

T1
[T1n(α̂)−T1]

[
fY (yτ)(T1−T1n(α̂))−T1n(α̂)( f̂Y (ŷτ)− fY (yτ))

f̂Y (ŷτ)T1n(α̂) fY (yτ)T1

]
= Op

(
|T1n(α̂)−T1|2

)
+Op

(
|T1n(α̂)−T1|| f̂Y (ŷτ)− fY (yτ)|

)
= Op

(
n−1)+Op

(
n−1/2| f̂Y (ŷτ)− fY (yτ)|

)
. (A.46)

The third remainder is

R3 =
1

fY (yτ)T1
[T2n(ŷτ , m̂, α̂)−T2]−

1
f̂Y (ŷτ)T1n(α̂)

[T2n(ŷτ , m̂, α̂)−T2]

= Op (|T2n(ŷτ , m̂, α̂)−T2||T1n(α̂)−T1|)

+ Op
(
|T2n(ŷτ , m̂, α̂)−T2|| f̂Y (ŷτ)− fY (yτ)|

)
= Op

(
n−1)+Op

(
n−1/2| f̂Y (ŷτ)− fY (yτ)|

)
(A.47)

because it has the same denominator as R2 in (A.46). Finally, we compute the rate for f̂Y (ŷτ)−

fY (yτ). To do so, we use the results in Lemma 2.3. Equation (2.22) tells us

f̂Y (ŷτ)− fY (yτ) = f̂Y (yτ)− fY (yτ)+ fY (ŷτ)− fY (yτ)+R fY

= Op(n−1/2h−1/2)+O(h2)+op(h2)+Op(n−1/2)+Op(|R fY |)

= Op(n−1/2h−1/2)+O(h2)+op(h2)+Op(n−1/2)+Op(|R fY |)

= Op(n−1/2h−1/2)+O(h2)+op(n−1/2)+Op(|R fY |). (A.48)
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Thus we have

Op
(
| f̂Y (ŷτ)− fY (yτ)|2

)
= Op(n−1h−1)+O(h4)+op(n−1)+Op(|R fY |2).

The remainder RM is defined as

RM := R1 +R2 +R3 +
T2

fY (yτ)2T1
R fY +op(n−1/2)+op(h2).

So,

RM = Op
(
| f̂Y (ŷτ)− fY (yτ)|2

)
+Op

(
n−1)+Op

(
n−1/2| f̂Y (ŷτ)− fY (yτ)|

)
+ Op

(
|R fY |

)
+op(n−1/2)+op(h2)

= Op
(
| f̂Y (ŷτ)− fY (yτ)|2

)
+Op

(
n−1/2| f̂Y (ŷτ)− fY (yτ)|

)
+ Op

(
|R fY |

)
+op(n−1/2)+op(h2), (A.49)

because Op(n−1) is op(n−1/2) as n→ ∞.

Now we show that
√

nhRM = op(1) under Assumption 2.5. We do this term by term in

(A.49):
√

nhop(h2) = op(n1/2h5/2) = op(1) as nh5 ↓ 0;

√
nhop(n−1/2) = op(h1/2) = op(1) as h ↓ 0;

√
nhOp

(
|R fY |

)
= op(1) by Lemma 2.3;

√
nhOp

(
n−1/2| f̂Y (ŷτ)− fY (yτ)|

)
= h1/2Op

(
| f̂Y (ŷτ)− fY (yτ)|

)
= op(1),

since f̂Y (ŷτ)− fY (yτ) = op(1). Finally,

√
nhOp

(
| f̂Y (ŷτ)− fY (yτ)|2

)
= op(1),
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since f̂Y (ŷτ)− fY (yτ) = Op(n−1/2h−1/2 +h2 +n−1/2 +R fY ) by (2.22).

Details of Example 1.8. The propensity score under the new policy regime is

Pµ

δ
(w) = Pr

[
V ≤ µ (w)+ sµ (δ ) |W = w

]
= FV |W (µ(w)+ sµ (δ ) |w),

and so
∂Pµ

δ
(w)

∂δ

∣∣∣∣∣
δ=0

=
fV (µ(w))

E( fV (µ(W )))
.

By Theorem 1.3, we have

Mτ,µ =
1

E( fV (µ(W ))) fY (yτ)

∫
W

E [1{Y (0)≤ yτ}|V = µ(w),W = w] fV (µ(w)) fW (w)dw

− 1
E( fV (µ(W ))) fY (yτ)

∫
W

E [1{Y (1)≤ yτ}|V = µ(w),W = w] fV (µ(w)) fW (w)dw.

Using the potential outcome equations, we get

E [1{Y (0)≤ yτ}|V = µ(w),W = w] = E [1{q(w)+U0 ≤ yτ}|V = µ(w)]

= Pr(U0 ≤ yτ −q(w)|V = µ(w))

= FU0|V (yτ −q(w)|µ (w))

and

E [1{Y (1)≤ yτ}|V = µ(w),W = w] = E [1{q(w)+β +U1 ≤ yτ}|V = µ(w)]

= Pr(U1 ≤ yτ −q(w)−β |V = µ(w))

= FU1|V (yτ −q(w)−β |µ (w)).
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Hence,

Mτ,µ =
1

fY (yτ)

∫
W

FU0|V (yτ −q(w)|µ (w)))
fV (µ(w)) fW (w)∫

W fV (µ(w)) fW (w)dw
dw

− 1
fY (yτ)

∫
W

{
FU1|V (yτ −q(w)−β |µ (w))

} fV (µ(w)) fW (w)∫
W fV (µ(w)) fW (w)dw

dw

=
1

fY (yτ)

∫
W

[∫ yτ−q(w)

−∞

fU0|V (u|µ (w))du
]

f̃W (w)dw

− 1
fY (yτ)

∫
W

[∫ yτ−q(w)−β

−∞

fU1|V (u|µ (w))du
]

f̃W (w)dw.

It follows from Corollary 1.4 that the apparent effect is

Aτ,µ =
1

fY (yτ)

∫
∞

−∞

E [1{Y ≤ yτ}|D = 0,W = w] fW (w)dw

− 1
fY (yτ)

∫
∞

−∞

E [1{Y ≤ yτ}|D = 1,W = w] fW (w)dw.

Using the explicit forms of the potential outcomes, we get

E [1{Y ≤ yτ}|D = 0,W = w] = E [1{Y (0)≤ yτ}|D = 0,W = w]

= E [1{q(W )+U0 ≤ yτ}|D = 0,W = w]

= E [1{q(W )+U0 ≤ yτ}|V > µ (w) ,W = w]

= Pr(U0 ≤ yτ −q(w)|V > µ(w))

=

∫
∞

µ(w)

[∫ yτ−q(w)
−∞ fU0|V (u|v)du

]
fV (v)dv)

1−FV (µ(w))
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and

E [1{Y ≤ yτ}|D = 1,W = w] = E [1{Y (1)≤ yτ}|D = 1,W = w]

= E [1{q(W )+β +U1 ≤ yτ}|D = 1,W = w]

= E [1{q(W )+β +U1 ≤ yτ}|V ≤ µ(W ),W = w]

= Pr(U1 ≤ yτ −q(w)−β |V ≤ µ(w))

=

∫ µ(w)
−∞

[∫ yτ−q(w)−β

−∞ fU1|V (u|v)du
]

fV (v)dv

FV (µ(w))
.

Hence

Aτ,µ =
1

fY (yτ)

∫
W

∫
∞

µ(w)

[∫ yτ−q(w)
−∞ fU0|V (u|v)du

]
fV (v)dv

1−FV (µ(w))
fW (w)dw

− 1
fY (yτ)

∫
W

∫ µ(w)
−∞

[∫ yτ−q(w)−β

−∞ fU1|V (u|v)du
]

fV (v)dv

FV (µ(w))
fW (w)dw.

Now, for the scaling factor fY (·), we have a mixture

fY (yτ) = fY (1)|D(yτ |1)Pr(D = 1)+ fY (0)|D(yτ |0)Pr(D = 0).

The mixing weights are

Pr(D = 1) = Pr(V ≤ µ(W )),
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and Pr(D = 1) = 1−Pr(D = 0). To obtain the mixing densities, we note that

FY (0)|D(yτ |0) = Pr(Y (0)≤ yτ |D = 0) =
Pr(Y (0)≤ yτ ,D = 0)

Pr(D = 0)

=
1

Pr(D = 0)
Pr(q(W )+U0 ≤ yτ ,V > µ (W ))

=
1

Pr(D = 0)

∫
W

Pr(q(w)+U0 ≤ yτ ,V > µ (w)) fW (w)dw

=
1

Pr(D = 0)

∫
W
[FU0(yτ −q(w))−FU0,V (yτ −q(w),µ (w))] fW (w)dw.

Hence, the density fY (0)|D(yτ |0) is

fY (0)|D(yτ |0) =
1

Pr(D = 0)

∫
W

[
fU0(yτ −q(w))−

∫
µ(w)

−∞

fU0,V (yτ −q(w), w̌)dw̌
]

fW (w)dw.

For the other case, we have

FY (1)|D(yτ |1) = Pr(Y (1)≤ yτ |D = 1) =
Pr(Y (1)≤ yτ ,D = 1)

Pr(D = 1)

=
1

Pr(D = 1)
Pr(q(W )+β +U1 ≤ yτ ,V ≤ µ (W ))

=
1

Pr(D = 1)

∫
W

Pr(q(w)+β +U1 ≤ yτ ,V ≤ µ (w)) fW (w)dw

=
1

Pr(D = 1)

∫
W

FU1,V (yτ −q(w)−β ,µ (w)) fW (w)dw,

and so the density fY (1)|D(yτ |1) is

fY (1)|D(yτ |1) =
1

Pr(D = 1)

∫
W

[∫
µ(w)

−∞

fU1,V (yτ −q(w)−β , w̌)dw̌
]

fW (w)dw.

The density fY (yτ) is then

fY (yτ) =
∫
W

[
fU0(yτ −q(w))−

∫
µ(w)

−∞

fU0,V (yτ −q(w), w̌)dw̌
]

fW (w)dw

+
∫
W

[∫
µ(w)

−∞

fU1,V (yτ −q(w)−β , w̌)dw̌
]

fW (w)dw.
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Proof of Proposition 2.1. Note that for any bounded function G (·) , we have

E [G (Y )|P(W ) = P(w),X = x] = E [G (Y (1))|D = 1,P(W ) = P(w),X = x]

×Pr(D = 1|P(W ) = P(w),X = x)

+E [G (Y (0))|D = 0,P(W ) = P(w),X = x]

×Pr(D = 0|P(W ) = P(w),X = x).

But, using D = 1{UD ≤ P(W )} , we have

Pr(D = 1|P(W ) = P(w),X = x) = Pr(UD ≤ P(W )|P(W ) = P(w),X = x)

= Pr(UD ≤ P(w)|P(W ) = P(w),X = x)

= P(w),

because UD is independent of W . So,

E [G (Y )|P(W ) = P(w),X = x] = E [G (Y (1))|D = 1,P(W ) = P(w),X = x]P(w)

+E [G (Y (0))|D = 0,P(W ) = P(w),X = x] (1−P(w)).

= E [G (Y (1)))|UD ≤ P(w) ,P(W ) = P(w),X = x]P(w)

+E [G (Y (0))|UD > P(w) ,P(W ) = P(w),X = x] (1−P(w))

= E [G (Y (1)))|UD ≤ P(w) ,X = x]P(w)

+E [G (Y (0))|UD > P(w) ,X = x] (1−P(w)),

where the last line follows because U = (U0,U1) is independent of Z given X and UD (see (2.1)).
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Now

E [G (Y (1))|UD ≤ P(w),X = x] = E {E [G (Y (1))|UD,X = x] |UD ≤ P(w),X = x}

= E {E [G (Y (1))|UD,X = x] |UD ≤ P(w)}

=

∫ P(w)
0 E [G (Y (1))|UD = u,X = x]du

P(w)
,

where the first equality uses the law of iterated expectations, the second equality uses the

independence of UD from X , and the last equality uses UD ∼ uniform on [0,1]. Similarly,

E [G (Y (0))|UD > P(w) ,X = x] =

∫ 1
P(w)E [G (Y (1))|UD = u,X = x]du

1−P(w)
.

So we have

E [G (Y )|P(W ) = P(w),X = x] =
∫ P(w)

0
E [G (Y (1))|UD = u,X = x]du

+
∫ 1

P(w)
E [G (Y (0))|UD = u,X = x]du.

By taking G (·) = 1{· ≤ yτ}, we have

E [1{Y ≤ yτ}|P(W ) = P(w),X = x] =
∫ P(w)

0
E [1{Y (1)≤ yτ}|UD = u,X = x]du

+
∫ 1

P(w)
E [1{Y (0)≤ yτ}|UD = u,X = x]du.

Under Assumptions 1.5(a) and 1.5(b), we can invoke the fundamental theorem of calculus to

obtain

∂E [1{Y ≤ yτ}|P(W ) = P(w),X = x]
∂P(w)

= E [1{Y (1)≤ yτ}|UD = P(w),X = x]

− E [1{Y (0)≤ yτ}|UD = P(w),X = x]

= MTEτ(P(w),x). (A.50)
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That is,

MTEτ(u,x) =
∂E [1{Y ≤ yτ}|P(W ) = u,X = x]

∂u

for any u such that there is a w ∈W satisfying P(w) = u.

Proof of Equation (2.16). Note that

E(Yδ ) =
∫ 1

0
E(Yδ |Pδ = t) fPδ

(t)dt. (A.51)

Now, consider E(Yδ |Pδ = t). Depending on the value of Pδ relative to the index UD, we

observe the potential outcome Y (0) or Y (1) . By the independence of Pδ from UD and the law

of iterated expectations, we have

E(Yδ |Pδ = t) =
∫ 1

0
E(Yδ |Pδ = t,UD = u)du

=
∫ t

0
E(Y (1)|UD = u)du+

∫ 1

t
E(Y (0)|UD = u)du

=
∫ 1

0

[
1{0≤ u≤ t}E(Y (1)|UD = u)

+ 1{t ≤ u≤ 1}E(Y (0)|UD = u)
]

du (A.52)

Plugging (A.52) back into (A.51) we get

E(Yδ )

=
∫ 1

0

{∫ 1

0

[
1{0≤ u≤ t}E(Y (1)|UD = u)+1{t ≤ u≤ 1}E(Y (0)|UD = u)

]
du
}

× fPδ
(t)dt

=
∫ 1

0

{∫ 1

0

[
1{u≤ t ≤ 1}E(Y (1)|UD = u)+1{0≤ t ≤ u}E(Y (0)|UD = u)

]
fPδ

(t)dt
}

× du

=
∫ 1

0

[
(1−FPδ

(u))E(Y (1)|UD = u)+FPδ
(u)E(Y (0)|UD = u)

]
du. (A.53)
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Going back to (2.15) using (A.53), we get

PRTE =
1
δ

∫ 1

0

[
(1−FPδ

(u))E(Y (1)|UD = u)+FPδ
(u)E(Y (0)|UD = u)

]
du

− 1
δ

∫ 1

0

[
(1−FP(u))E(Y (1)|UD = u)−FP(u)E(Y (0)|UD = u)

]
du

=
1
δ

∫ 1

0
MTE(u)(FP(u)−FPδ

(u))du. (A.54)

Taking the limit in (A.54) as δ → 0 yields

MPRTE = lim
δ→0
− 1

δ

∫ 1

0
MTE(u)(FPδ

(u)−FP(u))du

= −
∫ 1

0
MTE(u)

∂FPδ
(u)

∂δ

∣∣∣∣
δ=0

du.

Proof of the Equivalence of MPRTE to Mρ for the Mean Functional. The proof is heuristic, and

we do not claim to deal rigorously with all the mathematical issues that arise, even though the

proof can be made rigorous with additional technical details. It is hoped that the formal proof

given here, combined with the rigorous proof for a special case given in the main text, is

enough to convince a reader that the representation we establish here coincides with the existing

presentation of the MPRTE.

Note that

FPδ
(u) = Pr(Pδ ≤ u) = Pr(FV |X(µ(Z + sz(δ ),X)|X)≤ u)

=
∫
W
1
{

FV |X(µ(z+ sz(δ ),x)|x)≤ u
}

FW (w)dw.

Let Gσ be a smooth CDF such that as σ → 0, Gσ (u) approaches the step function 1{u≥ 0} and
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its derivative G′σ approaches the Dirac Delta function G′0. We have

lim
δ→0

1
δ

[
FPδ

(u)−FP(u)
]

= lim
δ→0

∫
W

1
{

FV |X(µ(z,x)|x)−u > 0
}
−1

{
FV |X(µ(z+ sz(δ ),x)|x)−u > 0

}
δ

fW (w)dw

= lim
δ→0

∫
W

lim
σ→0

Gσ

[
FV |X(µ(z,x)|x)−u

]
−Gσ

[
FV |X(µ(z+ sz(δ ),x)|x)−u

]
δ

fW (w)dw

= −
∫
W

G′0
(
FV |X(µ(z,x)|x)−u

)
fV |X (µ (z,x) |x)µz (z,x)

∂ sz(δ )

∂δ

∣∣∣∣
δ=0

fW (w)dw.

Therefore,

−
∫ 1

0
MTE(u,x) lim

δ→0

1
δ

[
FPδ

(u)−FP(u)
]

du

=
∫ 1

0

∫
W

MTE(u,x)G′0
(
FV |X(µ(z,x)|x)−u

)
fV |X (µ (z,x) |x)µz (z,x)

∂ sz(δ )

∂δ

∣∣∣∣
δ=0

× fW (w)dwdu

=
∫
W

MTE(P(w),x) fV |X (µ (z,x) |x)µz (z,x)
∂ sz(δ )

∂δ

∣∣∣∣
δ=0

fW (w)dwdu

=
∫
W

MTE(P(w),x)Ṗ(w) fW (w)dwdu

= E
{
[Y (1)−Y (0) |UD = P(W ),X ] Ṗ(W )

}
= Mρ .

Proof of Theorem 3.1. Using the fact that YDδ
= DδY (1)+(1−Dδ )Y (0), we have

FYD
δ
(y) = Pr(D = 0,Dδ = 0)FY (0)|D=0,Dδ=0(y)+Pr(D = 0,Dδ = 1)FY (1)|D=0,Dδ=1(y)

+Pr(D = 1,Dδ = 0)FY (0)|D=1,Dδ=0(y)+Pr(D = 1,Dδ = 1)FY (1)|D=1,Dδ=1(y).
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Under Assumption 3.1, the probability weights are

Pr(D = 0,Dδ = 0) = 1− p−δ ,

Pr(D = 0,Dδ = 1) = δ ,

Pr(D = 1,Dδ = 0) = 0,

Pr(D = 1,Dδ = 1) = p.

Therefore, we rewrite FYD
δ
(y) as

FYD
δ
(y) = (1− p−δ )FY (0)|D=0,Dδ=0(y)+δFY (1)|D=0,Dδ=1(y)

+ pFY (1)|D=1,Dδ=1(y),

We add and subtract δFY (1)|D=1,Dδ=1(y), to get

FYD
δ
(y) = Fa(y)+δ

[
FY (1)|D=0,Dδ=1(y)−FY (1)|D=1,Dδ=1(y)

]
.

Proof of Remark 3.5. We want to show that

F−1
a (τ−δ )−F−1

Y (τ)≤ 0,

and

F−1
a (τ +δ )−F−1

Y (τ)≥ 0.
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Manipulating equation (3.4) in Theorem 3.1 we can obtain that Fa and FY are related by4

Fa(y) = FY (y)+δ
[
FY (1)|D=0,Dδ=1(y)−FY (1)|D=1,Dδ=1(y)

]
.

Since −1≤ FY (1)|D=0,Dδ=1(y)−FY (1)|D=1,Dδ=1(y)< 1, then

FY (y)−δ ≤ Fa(y)≤ FY (y)+δ .

Therefore, we have

F−1
a (FY (y)−δ )≤ y≤ F−1

a (FY (y)+δ ).

Since the previous display is valid for any y ∈ Y , we set y = F−1
Y (τ). This implies that

F−1
a (τ−δ )≤ F−1

Y (τ)≤ F−1
a (τ +δ ).

Thus, we have that F−1
a (τ−δ )−F−1

Y (τ)≤ 0 and F−1
a (τ +δ )−F−1

Y (τ)≥ 0.

Proof of Theorem 3.3. The lower bound is the limit when δ goes to 0 of

F−1
a (τ−δU)−F−1

Y (τ)

δ
. (A.55)

We will show that this limit exists and compute its value. Recall that by (3.1) we can simplify

the apparent distribution in (3.4) to

Fa(y) = (1− p−δ )FY |D=0(y)+(p+δ )FY |D=1(y)

4This follows from noting that FY (y) = (1− p−δ )FY |D=0,Dδ=0(y)+δFY |D=0,Dδ=1(y)+ pFY |D=1,Dδ=1(y), while
by (3.4), Fa(y) = (1− p−δ )FY |D=0,Dδ=0(y)+(p+δ )FY |D=1,Dδ=1(y). So, if we add and subtract δFY |D=0,Dδ=1(y),
we obtain Fa(y) = F(y)+δ

[
FY |D=1,Dδ=1(y)−FY |D=0,Dδ=1(y)

]
.

191



We will write Fa,δ (y) to make explicit the fact that the apparent distribution depends on

δ . Define

g(δ1,δ2) = F−1
a,δ1

(τ−δ2U)

to emphasize the double role played by δ . The map δ1 7→ g(δ1,δ2) for a fixed δ2 is the

composition

δ1 ∈ R h7→ Fa,δ1 ∈ D[−∞,∞]
Γ7→ F−1

a,δ1
(τ−δ2U) ∈ R.

For [a,b]⊂ [−∞,∞], D[a,b] is the set of all real-valued cadlag functions: right continuous

with left limits everywhere in [a,b]. D[a,b] is equipped with the uniform norm ‖ · ‖∞. The first

map h : δ1 ∈ R 7→ Fa,δ1 ∈ D[−∞,∞] has Hadamard derivative given by FY |D=1(y)−FY |D=0(y),

while the second map has Hadamard derivative given by (See Lemma 21.3 in van der Vaart

(1998))

Γ
′
Fa,δ1

[G] =−
G(F−1

a,δ1
(τ−δ2C))

fa,δ1(F
−1
a,δ1

(τ−δ2U))
.

for G ∈ D[−∞,∞] continuous at F−1
a,δ1

(τ − δ2C). Then, the derivative of the composite map

δ1 7→ Γ◦h(δ1) is Γ′Fa,δ1
[h′(δ1)], which is for a δ2 = 0

∂F−1
a,δ1

(τ)

∂δ1
=−

FY |D=1(F
−1
a,δ1

(τ))−FY |D=0(F
−1
a,δ1

(τ))

fa,δ1(F
−1
a,δ1

(τ))
.

which is continuous at δ1 = 0. The derivative of the second map δ2 7→ g(δ1,δ2), for a fixed

δ1 = 0, can be obtained via the identity

Fa,δ1

(
F−1

a,δ1
(τ−δ2U)

)
= τ−δ2U.
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Differentiating through with respect to δ2, we obtain

∂F−1
a (τ−δ2U)

∂δ2
=− U

fY (F−1
Y (τ−δ2U))

.

which is continuous with respect to δ2.

Therefore, both partial derivatives of the map (δ1,δ2) 7→ g(δ1,δ2) exist and are continu-

ous, hence the limit in (A.55) exists and is equal to

lim
δ→0

F−1
a (τ−δU)−F−1

Y (τ)

δ
=

∂g(δ1,0)
∂δ1

∣∣∣∣
δ1=0

+
∂g(0,δ2)

∂δ2

∣∣∣∣
δ2=0

=−
FY |D=1(F

−1
Y (τ))−FY |D=0(F

−1
Y (τ))

fY (F−1
Y (τ))

− U
fY (F−1

Y (τ))
.

For the upper bound, we have the analogous result

lim
δ→0

F−1
a (τ−δL)−F−1

Y (τ)

δ
=−

FY |D=1(F
−1

Y (τ))−FY |D=0(F
−1

Y (τ))

fY (F−1
Y (τ))

− L
fY (F−1

Y (τ))
.

Proof of Theorem 3.4. We introduce some new notation related to Assumption 3.5. Let Dδ ⊂

`∞(Y ) denote the set of all restrictions of distribution functions on R to [F−1
Y (δ )− ε,F−1

Y (1−

δ )+ ε]. Additionally, Cδ is the set of continuous functions on [F−1
Y (δ )− ε,F−1

Y (1− δ )+ ε].

Also, UC(Y ) is the set of uniformly continuous functions defined on Y .

The estimator of the apparent counterfactual distribution Fa is given by

F̂a(y) = (1− p̂−δ )F̂Y |D=0,Dδ=0(y)+(p̂+δ )F̂Y |D=1,Dδ=1(y)
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The apparent counterfactual can be written as the map D(Y )2× (0,1) 7→D(Y ) given by

ψ(FY |D=0,Dδ=0,FY |D=1,Dδ=1, p) = (1− p−δ )FY |D=0,Dδ=0 +(p+δ )FY |D=1,Dδ=1

= (1−δ )FY |D=0,Dδ=0 +δFY |D=1,Dδ=1

+(FY |D=1,Dδ=1−FY |D=0,Dδ=0)p.

This map is linear, so the Hadamard derivative tangentially to `∞(Y )2 × (0,1) at

(FY |D=0,Dδ=0,FY |D=1,Dδ=1, p) is the map

ψ
′
FY |D=0,D

δ
=0,FY |D=1,D

δ
=1,p(h1,h2,h3) = (1−δ )h1 +δh2 +(FY |D=1,Dδ=1−FY |D=0,Dδ=0)h3.

By the functional Delta method (see Theorem 20.8 in van der Vaart (1998)) and Assump-

tion 3.4, we have

√
n(F̂a−Fa) =

√
n(ψ(F̂Y |D=0,Dδ=0, F̂Y |D=1,Dδ=1, p̂)−ψ(FY |D=0,Dδ=0,FY |D=1,Dδ=1, p))

 Ga := (1−δ )G0,0 +δG1,1 +(FY |D=1,Dδ=1−FY |D=0,Dδ=0)Zp.

and convergence takes place in `∞(Y ). The random element Ga is Gaussian. Indeed, for any

y ∈ Y

Ga(y) = (1−δ )G0,0(y)+δG1,1(y)+(FY |D=1,Dδ=1(y)−FY |D=0,Dδ=0(y))Zp

is a linear combination of normal random variables.

Now we deal with

√
n(θ̂ −θ) =− 1

δ

√
n
(
F̂a(F̂−1

Y +g)−Fa(F−1
Y +g)

)
This can be written as the composition of two maps. The first one is φ : D(Y )×Dδ 7→
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D(Y )×`∞(δ ,1−δ ) given by φ(H1,H2) 7→ (H1,H−1
2 ). The second one is ψ :D(Y )×`∞(δ ,1−

δ ) 7→ `∞(δ ,1−δ ) given by ψ(H1,H2) 7→ H1 ◦ (H2 +g). Thus

ψ ◦φ(Fa,FY ) = Fa(F−1
Y +g).

By Assumption 3.5 and Lemma 21.4(i) in van der Vaart (1998), φ has Hadamard deriva-

tive at (Fa,FY ) tangentially to `∞(Y )×Cδ given by the map

φ
′
(Fa,FY )

(h1,h2) =

(
h1,−

h2 ◦F−1
Y

fY ◦F−1
Y

)
.

The second map ψ : D(Y )× `∞(δ ,1− δ ) 7→ `∞(δ ,1− δ ) is given by ψ(H1,H2) 7→

H1 ◦ (H2 +g). It has Hadamard derivative tangentially to UC(Y )× `∞(δ ,1−δ ) at any H1 such

that its derivative h1 is bounded and uniformly continuous on Y , and any H2. To see, this we

combine Lemmas 3.9.25 and 3.9.27 in van der Vaart and Wellner (1996). Let αt→ α and βt→ β

in D(Y ) and `∞(δ ,1−δ ) respectively, as t→ 0.

ψ(H1 + tαt ,H2 + tβt)−ψ(H1,H2)

t
−α ◦ (H2 +g)−h1 ◦ (H2 +g) ·β

=
H1 ◦ (H2 +g+ tβt)+ tαt ◦ (H2 +g+ tβt)−H1 ◦ (H2 +g)

t
−α ◦ (H2 +g)−h1 ◦ (H2 +g) ·β

= (αt−α)◦ (H2 +g+ tβt)+α ◦ (H2 +g+ tβt)−α ◦ (H2 +g)

+
H1 ◦ (H2 +g+ tβt)−H1 ◦ (H2 +g)

t
−h1 ◦ (H2 +g) ·β

The first term, (αt −α) ◦ (H2 + g+ tβt), converges to 0 in D(Y ) (that is, uniformly)

because convergence of αt → α is uniform. The second term, α ◦ (H2 +g+ tβt)−α ◦ (H2 +g),

converges to 0 in D(Y ) because α is uniformly continuous on Y . For the last term, fix a
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τ ∈ (δ ,1−δ ). By the mean-value theorem

H1(H2(τ)+g+ tβt(τ))−H1(H2(τ)+g)
t

−h1(H2(τ)+g) ·β (τ)

= h1(ετ,t)βt(τ)−h1(H2(τ)+g) ·β (τ)

= h1(ετ,t)(βt(τ)−β (τ))+(h1(ετ,t)−h1(H2(τ)+g)) ·β (τ)

The first term, h1(ετ,t)(βt(τ)−β (τ)), converges uniformly to 0 because h1 is bounded

on Y , and βt converges uniformly to β . The second term converges to 0 uniformly because h1 is

uniformly continuous on Y .

Hence, by Assumption 3.5, ψ has Hadamard derivative at (Fa,F−1
Y ) tangentially to

UC(Y )× `∞(δ ,1−δ ) given by the map

ψ
′
(Fa,F−1

Y )
(h1,h2) = h1 ◦ (F−1

Y +g)+ fa ◦ (F−1
Y +g) ·h2.

We use the chain rule (see Theorem 20.9 in van der Vaart (1998)) to conclude that ψ ◦φ

has Hadamard derivative at (Fa,FY ) tangentially to UC(Y )×Cδ given by the map

(ψ ◦φ)′(Fa,FY )
(h1,h2) = ψ

′
φ(Fa,FY )

◦φ
′
(Fa,FY )

(h1,h2)

= ψ
′
(Fa,F−1

Y )
◦ (h1,−h2(F−1

Y )/ fY (F−1
Y ))

= h1 ◦ (F−1
Y +g)− fa ◦ (F−1

Y +g)
h2 ◦F−1

Y

fY ◦F−1
Y

.

By the functional Delta method (see Theorem 20.8 in van der Vaart (1998)) and the
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continuous mapping theorem (because of the −1/δ factor), we have that

√
n(θ̂ −θ) =− 1

δ

√
n
(
F̂a ◦ (F̂−1

Y +g)−Fa ◦ (F−1
Y +g)

)
 − 1

δ
(ψ ◦φ)′(Fa,FY )

(Ga,GY ))

:=Gθ =− 1
δ
Ga ◦ (F−1

Y +g)+
1
δ

fa ◦ (F−1
Y +g)

GY ◦F−1
Y

fY ◦F−1
Y

.

To see that Gθ is indeed Gaussian, we evaluate it at τ ∈ (δ ,1−δ ) to get

Gθ (τ) =−
1
δ
Ga(F−1

Y (τ)+g)+
1
δ

fa(F−1
Y (τ)+g)

GY (F−1
Y (τ))

fY (F−1
Y (τ))

,

which is a linear combination of two normal random variables: Ga(F−1
Y (τ)+g) and GY (F−1

Y (τ)).

Proof of Theorem 3.5. The map given in (3.22) is

φ(H) =

 min{max{0,H(τ1)},1}

max{min{0,H(τ2)},−1}

 .

is the composition of an evaluation map θ ∈ `∞(δ ,1−δ ) 7→ (θ(τ1),θ(τ2)) and of the max/min

composition. The evaluation map is linear, hence fully Hadamard differentiable. The composition

of max/min is Hadamard directional differentiable by the chain rule for Hadamard directional

differentiable maps (see Proposition 3.6 in Shapiro (1990); Lemma C2 of Masten and Poirier

(2020)). Hence, another application of the chain rule yields that φ(H) is Hadamard directional

differentiable at any H ∈ `∞(δ ,1−δ ) tangentially to `∞(δ ,1−δ ). By direct computation, the
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derivative, for any h ∈ `∞(δ ,1−δ ), is given by the map

φ
′
H(h) =

 h(τ1)1{0<H(τ1)<1}+max(0,h(τ1))1{H(τ1)=0}+min(0,h(τ1))1{H(τ1)=1}

h(τ2)1{−1<H(τ2)<0}+min(0,h(τ2))1{H(τ2)=0}+max(0,h(τ2))1{H(τ2)=−1}

 .

(A.56)

Combining (A.56) with Theorem 2.1 in Fang and Santos (2019) and the result of Theorem

3.4, we arrive at

√
n

Ûτ1−Uτ1

L̂τ2−Lτ2

=
√

n(φ(θ̂)−φ(θ)) φ
′
θ (Gθ ),

where

φ
′
θ (Gθ ) =

 Gθ (τ1)1{0<θ(τ1)<1}+∨(0,Gθ (τ1))1{θ(τ1)=0}+∧(0,Gθ (τ1))1{θ(τ1)=1}

Gθ (τ2)1{−1<θ(τ2)<0}+∧(0,Gθ (τ2))1{θ(τ2)=0}+∨(0,Gθ (τ2))1{θ(τ2)=−1}

 .

where ∧ is the min operator and ∨ is the max operator.

Proof of Theorem 3.6. Recall that by (3.22)

φ(θ) =

Uτ1

Lτ2

 ,

This map is not fully differentiable with respect to θ , only directional differentiable.

Now, for fixed τ , consider the map

ψ(Fa,FY ,θ ,τ) =

F−1
a (τ−δφ(θ)1)−F−1

Y (τ)

F−1
a (τ−δφ(θ)2)−F−1

Y (τ)

 , (A.57)
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where φ(θ)1 and φ(θ)2 are the first and second coordinates of φ(θ) respectively. We want to

find the distribution of

√
n
(
ψ(F̂a, F̂Y , θ̂ ,τ)−ψ(Fa,FY ,θ ,τ)

)
Recall the notation introduced before: Dδ ⊂ `∞(Y ) denotes the set of all restrictions of

distribution functions on R to [F−1
Y (δ )− ε,F−1

Y (1−δ )+ ε] for some ε > 0. Additionally, Cδ is

set of continuous functions on [F−1
Y (δ )− ε,F−1

Y (1−δ )+ ε].

Consider the map from D2
δ
× `∞(δ ,1−δ ) 7→ `∞(δ ,1−δ )2× [0,1]× [−1,0] given by

m(H1,H2,H3) = (H−1
1 ,H−1

2 ,φ(H3)1,φ(H3)2), (A.58)

for φ defined in (3.22). Now consider the map from `∞(δ ,1−δ )2× [0,1]× [−1,0] 7→ `∞(δ ,1−

δ )2 given by

q(H1,H2,H3,H4) =

H1(·−δH3)−H2(·)

H1(·−δH4)−H2(·)

 . (A.59)

We can see that ψ in (A.57) is the composition

ψ(Fa,FY ,θ , ·) = q◦m(Fa,FY ,θ).

By Assumptions 3.5 and 3.6, Lemma 21.4(i) in van der Vaart (1998), Theorem 3.4 and

the chain rule for Hadamard directional differentiable maps, the map m is Hadamard directional

differentiable (see Proposition 3.6 in Shapiro (1990); Lemma C2 of Masten and Poirier (2020))

at (Fa,FY ,θ(τ1),θ(τ2)) tangentially to C2
δ
× `∞(δ ,1−δ ), with derivative given by the map

m′(Fa,FY ,θ)
(h1,h2,h3) =

(
−h1 ◦F−1

a

fa ◦F−1
a

,−h2 ◦F−1
Y

fY ◦F−1
Y

,φ ′θ (h3)1,φ
′
θ (h3)2

)
(A.60)
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where the map h 7→ φ ′H(h) is given in (A.56), and φ ′H(h)1 and φ ′H(h)2 are the first and second

coordinates respectively.

The map q(H1,H2,H3,H4) in (A.59) has Hadamard derivative at (F−1
a ,F−1

Y ,Uτ1,Lτ2)

tangentially to UC(δ ,1−δ )× `∞(δ ,1−δ )× [0,1]× [−1,0] given by the map

q′
(F−1

a ,F−1
Y ,Uτ1 ,Lτ2)

(h1,h2,h3,h4) =

h1(·−δUτ1)− δh4
fa◦F−1

a (·−δUτ1)
−h2(·)

h1(·−δLτ2)− δh3
fa◦F−1

a (·−δLτ2)
−h2(·)

 .

We use the chain rule to conclude that the map q◦m has Hadamard directional derivative

at (Fa,FY ,θ) tangentially to C2
δ
× `∞(δ ,1−δ ) given by the map

(q◦m)′(Fa,FY ,θ)
(h1,h2,h3) = q′m(Fa,FY ,θ)

◦m′(Fa,FY ,θ)
(h1,h2,h3)

= q′
(F−1

a ,F−1
Y ,Lτ2 ,Uτ1)

◦
(
−h1 ◦F−1

a

fa ◦F−1
a

,−h2 ◦F−1
Y

fY ◦F−1
Y

,φ ′θ (h3)1,φ
′
θ (h3)2

)

=

−h1◦F−1
a (·−δUτ1)

fa◦F−1
a (·−δUτ1)

− δφ ′
θ
(h3)2

fa◦F−1
a (·−δUτ1)

− h2◦F−1
Y

fY ◦F−1
Y (·)

−h1◦F−1
a (·−δLτ2)

fa◦F−1
a (·−δLτ2)

− δφ ′
θ
(h3)1

fa◦F−1
a (·−δLτ2)

− h2◦F−1
Y

fY ◦F−1
Y (·)

 .

Using Assumption 3.4, Theorem 3.4 and Theorem 2.1 in Fang and Santos (2019), we

conclude that

√
n
(
ψ(F̂a, F̂Y , θ̂ , ·)−ψ(Fa,FY ,θ , ·)

)
 (q◦m)′(Fa,FY ,θ)

(Ga,GY ,Gθ )

=

−Ga◦F−1
a (·−δUτ1)

fa◦F−1
a (·−δUτ1)

− δφ ′
θ
(Gθ )2

fa◦F−1
a (·−δUτ1)

− GY ◦F−1
Y (·)

fY ◦F−1
Y (·)

−Ga◦F−1
a (·−δLτ2)

fa◦F−1
a (·−δLτ2)

− δφ ′
θ
(Gθ )1

fa◦F−1
a (·−δLτ2)

− GY ◦F−1
Y (·)

fY ◦F−1
Y (·)

 ,

and convergence takes place in `∞(δ ,1−δ )× `∞(δ ,1−δ ).
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Proof of Theorem 3.7. For d = 0 or d = 1, we find the asymptotic distribution of

√
n(F̂Y |D=d ◦ F̂−1

Y −FY |D=d ◦F−1
Y )

. Consider first the map ψ : D(Y )2→D(Y )×`∞(0,1), given by ψ(H1,H2) = (H1,H−1
2 ). Here,

D(Y ) is the set of all restrictions of distribution functions on R to Y = [yl,yu], such that they

give mass 1 to (yl,yu]. Also, C(Y ) is the set of all (uniformly) continuous functions defined on

Y .

By Lemma 21.4.(ii) in van der Vaart (1998), and Assumption 3.8, ψ is Hadamard

differentiable tangentially to `∞(Y )×C(Y ) at (FY |D=d,FY ), with derivative given by the map

ψ
′
(FY |D=d ,FY )

(h1,h2) =

(
h1,−

h2 ◦F−1
Y

fy ◦F−1
Y

)
.

Now, consider the map φ : D(Y )× `∞(0,1)→ `∞(0,1) given by φ(H1,H2) = H1 ◦H−1
2 .

By Lemmas 3.9.25 and 3.9.27 in van der Vaart and Wellner (1996), and Assumption 3.8, φ has

Hadamard derivative at (FY |D=d,F
−1

Y ) tangentially to UC(Y )× `∞(0,1) given by the map

φ
′
(FY |D=d ,F

−1
Y )

(h1,h2) = h1 ◦F−1
Y + fY |D=d ◦F−1

Y ·h2.

We use the chain rule (see Theorem 20.9 in van der Vaart (1998)) to conclude that φ ◦ψ

has Hadamard derivative at (FY |D=d,FY ) tangentially to UC(Y )×C(Y ) given by the map

(φ ◦ψ)′(FY |D=d ,FY )
(h1,h2) = φ

′
φ(FY |D=d ,FY )

◦ψ
′
(FY |D=d ,FY )

(h1,h2)

= φ
′
(FY |D=d ,F

−1
Y )
◦ (h1,−h2 ◦F−1

Y / fY ◦F−1
Y )

= h1 ◦F−1
Y − fY |D=d ◦F−1

Y · h2 ◦F−1
Y

fY ◦F−1
Y

.
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By the functional Delta method (see Theorem 20.8 in van der Vaart (1998)) we have that

√
n(F̂Y |D=d ◦ F̂−1

Y −FY |D=d ◦F−1
Y ) (φ ◦ψ)′(FY |D=d ,FY )

(Gd,GY ))

Gd,Y :=Gd ◦F−1
Y − fY |D=d ◦F−1

Y · GY ◦F−1
Y

fY ◦F−1
Y

.

By the continuous mapping theorem

√
n(θ̂ −θ) =

√
n
(
F̂Y |D=0 ◦ F̂−1

Y − F̂Y |D=1 ◦ F̂−1
Y −

(
FY |D=0 ◦F−1

Y −FY |D=1 ◦F−1
Y
))

 G0,Y −G1,Y .
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