UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Interactive Student Modeling in a Computer-based Lisp Tutor

Permalink
https://escholarship.org/uc/item/8ff6030j

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 6(0)

Authors

Farrell, Robert G.
Anderson, John R.
Reiser, Brian J.

Publication Date
1984

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/8ff6030j
https://escholarship.org
http://www.cdlib.org/

152

Interactive Student Modelling in a Computer-based Lisp Tutor

Robert G. Farrell
John R. Anderson
Brian J. Reiser

Advanced Computer Tutoring Project
Department of Psycholugy
Carnegie-Mellon University

Pittsburgh, PA 15213

Students have extreme difficulty learning their first programming language. This
difficulty is magnified by the learning environment - a cold terminal, an unforgiving
textbook, and an inaccessible teacher. The student may be entirely lost until a teaching
assistant or more experienced student volunteers his or her expertise. We estimate that
private instruction is somewhere between two and four times as effective as classroom
instruction. Our research program is aimed at finding those aspects of private tutoring
that can be implemented as a computer program, so that we can provide automated
private tutoring to a large number of students.

In this paper we describe an initial version of a computer-based tutor for LISP that
incorporates some of the ingradients of good human tutoring. We will first describe how
we have applied our previous cognitive modelling work to the domain of intelligent
tutoring. We then describe the structure of our tutoring system for LISP. We show how
this tutor makes learning easier by conveying the problem-space structure, reducing
working-memoaory demands, and directing problem-solving. Finally, we report the results
of some initial evaluation studies with our tutor and give some future directions for our
research.

Interactive Student Modelling

To interactively model a student, a tutoring system must continually recognize students’
goals and their procedures to achieve those goals. We developed a Goal-Restricted
Production System (GRAPES) to model how novices write LISP functions (Sauers and
Farrell, 1982) to achieve programming goals. We have used GRAPES to construct an ideal
model that incorporates all of the correct procedures that students might use in a
particular tutoring session. During students’ problem-solving, the tutoring system must
discover which procedures or deviations from procedures a student is actually using. We
also developed a knaowledge compilation mechanism for GRAPES which accounts for the
difference in performance between novices and advanced students (Anderson, 1983).
Using knowledge compilation, we can adjust instruction according to the student's



153

learning rate.
Tutorial Interaction

Qur LISP tutor consists of a domain-independent interpreter that incorporates tutoring
strategies, a seat of LISP programming rules for modelling the student, a set of tutorial
rules that analyze student code and provide feedback, and various problems characterized
by an initial goal and a problem statement.

Qur tutoring system interacts with the student by first explaining a LISP problem-solving
goal; the student reads the goal description and enters an answer that should achieve
that goal. If the student's choice is acceptable, the tutor pursues the chosen path and
generates more problem-solving goals. If the student’s choice is unacceptable, the tutor
explains why the choice was incorrect and permits the student to try again. If the student
cannot generate a good answer, the system will explain the best possible response.

We plan to use our tutor to teach a short course in LISP, including basic structures and

functions, function definition, conditionals and predicates, helping functions, recursion, and
iteration.

Conveying Problem Space Structure

Producing a program in any language consists of a medley of algorithm design, coding,
and debugging (Brooks). A good human tutor can converse with the student in a variety
of problem spaces. In this section we describe how our tutor communicates in the
problem-spaces involved in algorithm design and coding. We are not concerned with

debugging since we never allow the student to produce an final solution that is incorrect.

Our tutor currently utilizes four problem spaces for coding and algorithm design:

* The LISP coding problem space is used in normal problem-solving. The
student enters LISP code in a syntax-based editor. The hierarchical structure
of the problem is represented by symbols to be expanded. For instance, (cons

<1> <2>) tells the student that he or she can choose to produce code for
either <1> or <2>.

The means-ends analysis space is used when the student is having trouble
producing code for a problem that can be characterized by a set of
successive operations on an example. The student produces a solution by
supplying LISP operators that reduce differences between the current state
and the goal state in the example.

The problem decomposition space is used wl;en the student is having trouble
producing code for a problem that can be easily decomposed into pieces.
The system displays a menu of possible decompositions of the problem and



154

the student must pick a correct decomposition.

* The case analysis problem space is used when the student is having trouble
producing code for a problem that has a decomposable input-output behavior.
The student specifies an action for each input-output case and then produces
code that achieves all of the actions.

Reducing Working Memory Demands

In previous work (Anderson, Farrell, and Sauers., 1983) we estimated that half of
students’ time spent solving programming problems is spent recovering from working
memory failures. A good human tutor constantly reminds the student of the information
necessary to solve the problem that the student is attempting. Our tutor reduces working
memory demands in the following ways:

* The tutor always displays the problem statement in a separate window.

* The tutor displays the entire student answer and that portion of the answer
that is correct so far.

* The tutor provides a tree-structured help facility that describes all of the LISP
operators that the student has learned so far.

Directing Problem Solving

Novices spend a large amount of time exploring incorrect solutions that result in little
learning. A good human tutor directs the student toward correct answers, while still
letting the student learn from mistakes. Lewis and Anderson (1984) have shown that
students learn more siowly when they are given feedback about their erroneous
applications of operators only after a delay.

Qur tutor directs problem-solving by first focusing the student on a single problem-
solving goal. The tutor formulates a query that directs the student to supply a particular
piece of LISP code to do a specific task. The tutor can supply examples to illustrate a
vsample input or output to the code it is requesting.

The tutor keeps the student from generating incorrect solutions by providing immediate
feedback on errors. If the student cannot solve a problem subtask after a small number
of tries, the tutor explains the best answer. Both explanations and queries are generated
by instantiating natural language patterns associated with each rule or goal. The resulting
english is modified by a set of transformational rewrite rules to enhance readibility.



Conclusion

We have constructed a computer-based tutor for LISP based upon some abilities of
good human tutors. The tutor can interact with the student in a number of different
problem spaces, corresponding to different student solution strategies. Our tutor reduces
working memory demands by use of pop-up windows and directed dialogue. It also
directs problem-solving by immediately intervening when a student generates an
unacceptable answer. Qur system interactively models the student by updating a set of
production rules. We have performed an evaluation study on our tutor which confirms our
belief that our tutor is about twice as effective as classroom instruction, but is only hailf
as effective as a good private tutor. We plan to further test the pedagogical effectiveness
of our tutor by automating a short LISP course taught in the fall of 1984,

155



	cogsci_1984_152-155



