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Optimal Accuracy-Privacy Trade-off of Inference as
Service

Yulu Jin and Lifeng Lai

Abstract—In this paper, we propose a general framework to
provide a desirable trade-off between inference accuracy and
privacy protection in the inference as service scenario (IAS).
Instead of sending data directly to the server, the user will
preprocess the data through a privacy-preserving mapping, which
will increase privacy protection but reduce inference accuracy.
To properly address the trade-off between privacy protection and
inference accuracy, we formulate an optimization problem to find
the privacy-preserving mapping. Even though the problem is non-
convex in general, we characterize nice structures of the problem
and develop an iterative algorithm to find the desired privacy-
preserving mapping, with convergence analysis provided under
certain assumptions. From numerical examples, we observe that
the proposed method has better performance than gradient
ascent method in the convergence speed, solution quality and
algorithm stability.

I. INTRODUCTION

The Internet of Things (IoT) is an emerging communication
paradigm that aims at connecting different kinds of devices
to the Internet [2]–[4]. Within the past decade, the number
of IoT devices being introduced in the market has increased
dramatically due to its low cost and convenience [5]. Sensors
of IoT devices could generate contexts at a high velocity and
the inference with the contexts becomes an essential com-
ponent for IoT applications [6]. However, building inference
systems is costly due to the overhead of maintaining contexts
repositories, running inference algorithms and learning from
the inference results for further applications of inference tasks.
One of the emerging solutions to this problem is so-called
inference-as-a-service (IAS) [7], [8]. In IAS, the devices will
send data to a server in the cloud, who will make inference
using sophisticated algorithms. However, the IAS paradigm
brings privacy issues, as the devices will send their data
to the cloud without knowing where these data is stored
or what future purposes these data might serve. There are
some interesting works that attempt to address this issue using
Homomorphic Encryption (HE) technique [9]–[11]. Unfortu-
nately, the complexity of HE-based solution is very high, and
its privacy relies on the (unproved) assumption that certain
mathematical problems are difficult to solve.

The goal of our paper is to address the fundamental trade-off
between inference accuracy and privacy protection from infor-
mation theory perspective. Instead of sending data directly to
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the server, the user will preprocess the data through a privacy-
preserving mapping. This privacy-preserving mapping has two
opposing effects. On one hand, it will prevent the server from
observing the data directly and hence enhance the privacy
protection. On the other hand, this might reduce the inference
accuracy. To properly address the trade-off between these two
competing goals, we formulate an optimization problem to find
the privacy-preserving mapping. As the inference accuracy is
directly related to the mutual information between parameters
of interest and post-mapping data, we use mutual information
to measure the inference accuracy. However, determining the
privacy measure is tricky, as there are many existing informa-
tion leakage measures [12], each of which is useful for certain
specific scenarios. Hence, in our problem formulation, instead
of using a specific privacy leakage measure, we propose a
general framework that is applicable for different privacy
metrics. The proposed framework is defined by a continuous
function f with certain properties. Different choices of f lead
to different privacy measures. For example, if f is chosen
to be − log function, the proposed privacy leakage metric is
the same as mutual information, a widely used information
leakage measure. Moreover, we introduce a parameter β to
represent the relative weight between these two measures.
Thus, the trade-off problem between privacy and accuracy can
be solved through a maximization problem where the objective
function is composed of a weighted sum of accuracy and
privacy terms.

To solve the maximization problem, if we optimize over
the space of the privacy-preserving mapping directly, the
formulated problem is a complicated non-concave problem
with multiple constraints. Through various transformations
and variable augmentations, we transform the optimization
problem into a form that has three dominating arguments
with certain nice concavity properties. In particular, if any two
arguments are fixed, the problem is concave in the remaining
argument. We then exploit this structure and design an algo-
rithm with two nested loops to solve the optimization problem
for general f by iterating between those three dominating
arguments until reaching convergence. For the outer loop,
we solve the optimization on the first dominating argument,
for which we have a closed-form update formula. For the
inner loop, using certain concavity properties of the objective
function on the other two dominating arguments, we apply
the Alternating Direction Method of Multipliers (ADMM)
to solve the non-convex problem efficiently. Compared with
solving the optimization problem using gradient ascent in the
space of the privacy-preserving mapping directly, the proposed



method does not need parameter tuning, converges much
faster and finds solutions that have much better qualities. To
further illustrate the proposed framework and algorithm, we
also provide several examples by specializing f to particular
function choices and provide numerical results.

Moreover, we provide the convergence analysis of the
proposed method. Since there are two nested loops in the
proposed algorithm, we first prove the convergence of the inner
loop, which is the convergence proof of the ADMM procedure.
Although there are many existing convergence proofs for
typical ADMM, most of them focus on separable problems
only. In our case, the considered optimization problem has
non-separable structure. Inspired by recent research works
about convergence analysis of ADMM with non-separable
objective functions [13]–[15], we provide two proofs with
different assumptions on f . Based on the convergence proof
of ADMM, we further prove that the function value is non-
decreasing between two iterations of the outer-loop. Then with
a guarantee that the objective function is upper-bounded, the
proposed algorithm is shown to converge.

There exist many other privacy-preserving techniques that
are based on perturbations of data, which provide privacy
guarantees at the expense of a loss of accuracy [16]–[20]. k-
anonymity is proposed by Samarati and Sweeney [16], which
requires that each record is indistinguishable from at least k–1
other records within the dataset. Differential privacy works
by adding a pre-determined amount of randomness into a
computation performed on a data set [17]. For example, a
local randomization approach is proposed in [20] to solve
the privacy concern in distributed machine learning whose
privacy-preserving property is measured by local differential
privacy, and ADMM is used as a parallel computing approach.
These concepts and techniques are very useful for the privacy
protection of data analysis through a dataset or database,
which is different from the setup considered in this paper.
Moreover, various minimax formulations and algorithms have
also been proposed to defend against inference attacks in
different scenarios [21]–[23]. Bertran et al. [21] proposed an
optimization problem where the terms in the objective function
were defined in terms of mutual information, showed the
performance bound for the optimization problem and learned
the sanitization transform in a data-driven fashion using an
adversarial approach with Deep Neural Networks (DNNs).
Under their formulation, they analyzed a trade-off between
utility loss and attribute obfuscation under the constraint of
the attribute obfuscation I(A;Z) ≤ k. Feutry et al. [22]
measured the utility and privacy by expected risks, formulated
the utility-privacy trade-off as a min-diff-max optimization
problem and proposed a learning-based and task-dependent
approach to solving this problem, while only deterministic
mechanisms are considered. To address this issue, a privacy-
preserving adversarial network was proposed in [23] by em-
ploying adversarially-trained neural networks to implement
randomized mechanisms and to perform a variational approxi-
mation of mutual information privacy. Different from them, we
propose a more general framework of privacy protection and

avoid the reliance on DNNs to derive the privacy-preserving
mapping.

This journal paper is an extension of conference paper
[1]. Compared with [1], the algorithms in this paper are
significantly improved with theoretical convergence guarantee.
In particular, while the algorithm in our conference paper
[1] converges in various numerical examples, there is no
convergence proof. It is in fact difficult to provide theoretical
convergence guarantee for the algorithm in [1]. In this journal
paper, by designing an improved iterative algorithm with two
nested loops involving ADMM procedure, we can provide
convergence guarantee both theoretically and numerically.

The remainder of the paper is organized as follows. In
Section II, we introduce the problem formulation. In Sec-
tion III, we present the proposed algorithm and provide the
convergence analysis. In Section IV, we present numerical
results. Finally, we offer concluding remarks and future work
directions in Section V.

II. PROBLEM FORMULATION

Consider an inference problem, in which one would like to
infer the parameter S ∈ S of data Y ∈ Y , in which Y has a
finite alphabet. In the inference as service scenario, one would
send Y to the server who will determine the parameter S using
its sophisticated models and powerful computing capabilities.
However, directly sending data Y to the server brings the
privacy issue, as now the server knows Y perfectly. To reduce
the privacy leakage, instead of sending Y directly, one can
employ a privacy-preserving mapping to transform data Y to
U ∈ U and send U to the server. Here, U also has a finite
alphabet and is allowed to be different from Y . Without loss
of generality, we will employ a randomized privacy-preserving
mapping and use p(u|y) to denote the probability that data
Y = y will be mapped to U = u and the whole mapping
is denoted as PU |Y . Furthermore, we use PS to denote the
prior distribution of S and PY |S to denote the conditional
distribution Y given S, while the lower-case letter p is used to
denote the component-wise probability (e.g., p(s), p(y), p(y|s)
will be used in the sequel).

To measure the inference accuracy, note that the distri-
butional difference between PS and PS|U characterizes the
information about S contained in U . Since the inference
at the server side is solely based on U , such information
determines the inference accuracy. As I(S;U) is the averaged
Kullback–Leibler (KL) divergence between PS and PS|U , we
use it to measure the inference accuracy. We would like to
make I(S;U) as large as possible, which means that we would
like to retain as much information about the parameter of
interest S in U as possible so that the server can make a
more accurate inference.

To measure the privacy leakage, instead of choosing one
particular privacy metric, we intend to investigate a general
form EY,U [d(y, u)] that is applicable for different privacy
metrics. Here, d(y, u) = f( p(y)

p(y|u) ) and f is a continuous
function defined on (0,+∞). We note that EY,U [d(y, u)] =

EY,U [f( p(y)
p(y|u) )] measures the distributional distance between



PY and PY |U , where PY is the prior distribution of Y and
PY |U is the posterior distribution of Y after observing U .
Hence, the smaller the distance, the less information U can
provide about Y and the better the privacy protection. Note
that p(y)

p(y|u) = p(u)
p(u|y) . Hence we will also use p(u)

p(u|y) as the
argument to f in the sequel. Since p(u|y) shows in the
denominator, we assume that ε ≤ p(u|y) ≤ 1,∀y, u, where
ε > 0.

To balance the inference accuracy and privacy protection,
we propose to find the privacy-preserving mapping PU |Y by
solving the following optimization problem

max
PU|Y

F [PU |Y ] , I(S;U)− βEY,U
[
f

(
p(y)

p(y|u)

)]
, (1)

s.t. p(u|y) ≥ ε,∀y, u,∑
u

p(u|y) = 1,∀y. (2)

Here, β ∈ (0,∞) is a trade-off parameter that indicates the
relative importance of maximizing I(S;U) (i.e., maximizing
inference accuracy) and minimizing the distance EY,U [d(y, u)]
between PY and PY |U (i.e., maximizing the privacy).

Another possible problem formulation is to maximize the
inference accuracy under the constraint that the privacy leak-
age is less than certain threshold δ:

max
PU|Y

I(S;U) (3)

s.t. EY,U
[
f

(
p(y)

p(y|u)

)]
≤ δ,

p(u|y) ≥ ε,∀y, u,∑
u

p(u|y) = 1,∀y.

However, directly solving such constrained optimization prob-
lems is very challenging. A typical way to solve this kind
of problems is to form the Lagrangian of the maximization
problem, whose objective is written as the weighted sum of
the original objective and the constraints. Hence, our problem
formulation can be viewed as the Lagrangian of the problem
formulation (3). The trade-off parameter β can be treated as
the Lagrangian multiplier. Different value of β corresponds
to different privacy constraint δ in (3), whose value depends
on different applications. In particular, using the proposed
algorithms, solutions can be computed for a broad range of
β. We can then obtain the Pareto optimal curve for accuracy
and privacy leakage, where each point corresponds to one sub-
problem solved to maximize the inference performance subject
to a certain upper bound of privacy leakage. Then the user
can select an operating point from the Pareto optimal curve
depending on the user’s preference and the constraint imposed
by the applications.

For the privacy measure function f , we assume that
(a) f(·) is strictly convex;
(b) f(·) is twice-differentiable;
(c) f

′
(t) is lf - Lipschitz continuous of t.

Here we provide some comments about these assumptions.
(a) guarantees certain convexity of the problem. In particular,

under (a), the sub-problems are shown to be convex, which
ensures the feasibility and simplification of the proposed
method. (b) and (c) are needed to ensure the convergence of the
proposed method. These assumptions are fairly weak. As will
be discussed in Section IV, most of the widely used distance
measures satisfy these assumptions.

The proposed framework in (1) is very general. Different
choices of f will lead to different privacy measures. For
example, if we choose f to be − log(·), then we have

EY,U [d(y, u)] = −
∑
y,u

p(y)p(u|y) log

(
p(u)

p(u|y)

)
=
∑
y

p(y)DKL[PU |y ‖ PU ] = I[U ;Y ],

in which DKL(· ‖ ·) is the KL divergence. As the result,
choosing f to be the − log function means we will use mutual
information between U and Y to measure the information
leakage, a very common choice in information theory study.
More examples will be provided in Section IV.

III. ALGORITHMS AND CONVERGENCE PROOF

In this section, we discuss how to solve the optimization
problem defined in (1) for general f . One natural approach
to solving (1) is to apply the gradient ascent (GA) algorithm.
However, GA faces several challenges such as proper step size,
computation complexity, convergence speed and the quality of
the optimal point found etc. To overcome these challenges,
we propose a new algorithm that transforms the maximization
problem over single argument to an alternative maximization
problem over multiple arguments and then employ ideas from
ADMM to solve the transformed problem.

A. Algorithm

We first have the following lemma that are useful for
transforming the objective function.

Lemma 1:

I(S;U) = I(S;Y )−
∑
u,y

p(y)p(u|y)DKL[PS|y ‖ PS|u].

Proof: Please refer to Appendix A.
By Lemma 1, the objective function defined in (1) can be

written as

F [PU |Y , PU , PS|U ] = I(S;Y )− βEY,U [d(y, u)]

−
∑
u,y

p(y)p(u|y)DKL[PS|y ‖ PS|u].

Note that I(S;Y ), p(y) and p(s|y) are fixed, hence the cost
function can be viewed as a function of three arguments
PU |Y , PU and PS|U . For consistency, we require the following
equations to be satisfied simultaneously

p(u) =
∑
y

p(u|y)p(y),∀u, (4)

p(s|u) =

∑
y p(u|y)p(s, y)

p(u)
,∀u,∀s. (5)



By (5), we further require that p(u) > 0,∀u. As the result, we
can reformulate (1) as the following alternative optimization
problem

max
PS|U ,PU ,PU|Y

F [PU |Y , PU , PS|U ]. (6)

s.t. p(u|y) ≥ ε,∀y,∀u,
∑
u

p(u|y) = 1,∀y,

p(u) > 0,∀u,
∑
u

p(u) = 1,

p(u) =
∑
y

p(u|y)p(y),∀u,

p(s|u) ≥ 0,∀u,∀s,
∑
s

p(s|u) = 1,∀u,

p(s|u) =

∑
y p(u|y)p(s, y)

p(u)
,∀u,∀s.

The following lemma illustrates the nice property of the al-
ternative formulation (6): the alternative optimization problem
is convex in each argument given the other two arguments.

Lemma 2: Suppose that f(·) is a strictly convex function.
Then for given PU , PS|U , F [PU |Y , PU , PS|U ] is concave in
each PU |yi ,∀yi ∈ Y . Similarly, for given PU |Y , PS|U ,
F [PU |Y , PU , PS|U ] is concave in PU . For given PU |Y , PU ,
F [PU |Y , PU , PS|U ] is concave in PS|U .

Proof: Please refer to Appendix B.
Using this lemma, a natural approach to maximizing the
objective function in (6) is to alternately iterate between PU |Y ,
PU and PS|U until reaching convergence. In particular, we
propose an iterative algorithm with two blocks to obtain a
solution to (6): update of PS|U and update of PU |Y , PU .
Firstly, for a given PU and PU |Y , we update PS|U by solving
the maximization on PS|U and derive an analytical result as a
function of PU and PU |Y . Secondly, for the derived PS|U ,
we update PU and PU |Y by using the ADMM scheme to
solve the maximization on PU and PU |Y . In this paper, we
show that the proposed algorithm will converge. We would
like to note that, however, as the problem in (6) is non-convex
in the product space of {PU |Y , PU , PS|U}, the derived limit
point is not expected to be the global optimal solution of (6).
In the following, we provide details for each iteration. The
convergence proof of the proposed algorithm will be presented
in Section III-B.

1) Updating PS|U : For the PS|U subproblem, the maxi-
mization problem is

max
PS|U

F [PS|U |PU |Y , PU ],

s.t. p(s|u) ≥ 0,∀u,∀s, (7)∑
s

p(s|u) = 1,∀u, (8)

p(s|u) =

∑
y p(u|y)p(s, y)

p(u)
,∀u,∀s. (9)

Lemma 3: The solution to the PS|U subproblem is

p(s|u) =

∑
y p(u|y)p(s, y)

p(u)
. (10)

Proof: Please refer to Appendix C.
2) Updating PU |Y and PU : Now, for a given PS|U , we

discuss how to update PU |Y and PU by solving

max
PU|Y ∈PU|Y ,PU∈PU

F [PU |Y , PU |PS|U ], (11)

s.t. δ(u) = p(u)−
∑
y

p(u|y)p(y) = 0,∀u, (12)

where

PU |Y = {PU |Y : p(u|y) ≥ ε,
∑
u

p(u|y) = 1}, (13)

PU = {PU : p(u) > 0,
∑
u

p(u) = 1}, (14)

and (12) corresponds to the consistency requirement (4).
Moreover, note that each row in the matrix PU |Y is inde-

pendent and we further show that the objective function in
(11) can be written as the sum of |Y| terms, each of which
depends only on one row of PU |Y .

F [PU |Y , PU |PS|U ] = −β
|Y|∑
i=1

[
p(yi)

∑
u

p(u|yi)d
(

p(u)

p(u|yi)

)]

−
|Y|∑
i=1

[
p(yi)

∑
u

p(u|yi)DKL[PS|yi ‖ PS|u]

]
+ I(S;Y )

=

|Y|∑
i=1

F ′i
[
PU |Y , PU |PS|U

]
+ I(S;Y ), (15)

where

F ′i
[
PU |Y , PU |PS|U

]
= p(yi)

[
−β
∑
u

p(u|yi)f
(

p(u)

p(u|yi)

)

−
∑
u

p(u|yi)DKL[PS|yi ‖ PS|u]

]
. (16)

Thus, the optimization on PU |Y can be divided into |Y|-
problems, each of which corresponds to one row in PU |Y .

As the result, although (11) is a non-convex problem in
(PU |Y , PU ) jointly, it is a convex problem of one argument
given the others, as shown in Lemma 2. This motivates us to
apply the ADMM approach to solve the problem.

The augmented Lagrangian for the above problem is

L[PU |Y , PU , PS|U ; Λ]

=F [PU |Y , PU |PS|U ] +
∑
u

λ(u)δ(u)− ρ

2

∑
u

δ2(u),(17)

where Λ is a vector of size |U| and each component is
denoted as λ(u). Since PS|U is given, we will omit it from
the expression of L.

In the ADMM approach, there are updates of PU |Y , PU and
Λ respectively. Exploiting the structure in (15), we can solve
(11) using the following iterative procedure



P t+1
U |yi = arg max

PU|yi∈PU|yi
L[PU |yi , P

t+1
U |Y (i−) , P

t
U |Y (i+) , P

t
U ; Λt],

i = 1, 2, · · · , |Y|, (18)
P t+1
U = arg max

PU∈PU
L[P t+1

U |Y , PU ; Λt], (19)

Λt+1 = Λt − ρ(P t+1
U − (P t+1

U |Y )TPY ), (20)

or λt+1(u) = λt(u)− ρ[pt+1(u)−
∑
y

pt+1(u|y)p(y)]

= λt(u)− ρδt+1(u),

where PU |yi = {PU |yi : p(u|y) ≥ ε,
∑
u p(u|yi) = 1},

PU |Y (i−) denotes all rows before the i-th row in the matrix
PU |Y and PU |Y (i+) denotes all rows after the i-th row. Note
that here we use Gauss–Seidel ADMM where the local vari-
ables are updated sequentially in the Gauss–Seidel order and
current conditional distributions (P t+1

U |Y i− and P tU |Y i+ ) are used
to obtain P t+1

U |yi . Another update approach is to use P tU |Y i− to
update PU |yi in the (t + 1)-th iteration. It has been shown
that for multi-block problems, Gauss–Seidel ADMM often
performs numerically better in practice than the directly ex-
tended ADMM [24]–[28], as the updated information P t+1

U |Y i−
is immediately utilized.

For PU |yi , the optimization problem is

max
PU|yi

L[PU |yi , P
t+1
U |Y (i−) , P

t
U |Y (i+) , P

t
U ; Λt], (21)

s.t. p(u|yi) ≥ ε,∀u,
∑
u

p(u|yi) = 1.

We have the following lemma regarding the objective function
in (21). The proof follows similar steps to the proof of
Lemma 2.

Lemma 4: The objective function in (21) is a strictly concave
function.

Proof: Please refer to Appendix D.
Hence, each sub-problem is a convex optimization problem
with |U| inequality constraints and one equality constraint. In
practice, under a specified f(·), the sub-problem can be solved
numerically.

The sub-problem with respect to PU is

max
PU

L[P t+1
U |Y , PU ; Λt], (22)

s.t. p(u) > 0,∀u,
∑
u

p(u) = 1.

Following similar steps of Lemma 2, we can prove the
following lemma.

Lemma 5: The objective function in (22) is a strictly concave
function.

Proof: Please refer to Appendix D.
Although there is a constraint, PU ∈ PU , in this sub-problem,
we can ignore it first and in the convergence proof, we will
show that for the limit point, the constraint is naturally satis-
fied. We represent the solution to the unconstrained problem
as P t+1

U = arg maxPU L[P t+1
U |Y , PU ; Λt].

After solving two sub-problems on PU |Y and PU respec-
tively, we update the value of Λ.

In summary, we employ two nested loops to find the
privacy-preserving mapping. In the outer loop, there are two
update steps: update of PS|U and update of (PU |Y , PU ), where
the update of (PU |Y , PU ) is performed by ADMM (which
will be referred to as the inner loop). In the inner loop,
we update PU |Y and PU by going through the process of
(18), (19), (20). We will use (j) to denote the j-th outer
iteration and use (j), t to denote the arguments at the t-th
inner iteration of the j-th outer iteration. The algorithm is
summarized in Algorithm 1. To quantify the matrix differ-
ences, we use the Frobenius norm [29], where for an m × n
matrix A, ‖A‖F =

√∑m
i=1

∑n
j=1 |ai,j |2. To quantify the

vector differences, we use the `2 norm, where for vector
b = (b1, b2, · · · , bn), ‖b‖22 =

∑n
i=1 b

2
i . For the thresholds,

η is chosen to be a small value such that the function value
is converged and ηp is chosen to be a small value such that
L[P t+1

U |Y , P
t+1
U ; Λt] ≥ L[P t+1

U |Y , P
t
U ; Λt] ≥ L[P tU |Y , P

t
U ,Λ

t] is
true.

Algorithm 1 Design the privacy-preserving mapping
Input:

Prior distribution PS and conditional distribution PY |S .
Trade-off parameter β.
Converge parameter η, ηp, ηd.
Output:

A mapping PU |Y from Y ∈ Y to U ∈ U .
Initialization:

Randomly initiate PU |Y and calculate PU , PS|U by (4) and
(5).

1: j = 1.
2: while

∥∥∥P (j)
S|U − P

(j−1)
S|U

∥∥∥
F
> η do

3: P
(j),1
U = P

(j−1)
U .

4: P
(j),1
U |Y = P

(j−1)
U |Y .

5: t = 1.
6: while t = 1 or

∥∥∥P (j),t
U − P (j),t−1

U

∥∥∥2

2
> ηp do

7: Update PU |yi by solving (21).
8: Update PU by solving (22).
9: Update Λ by (20).

10: t = t+ 1.
11: Update P (i)

S|U by (10).
12: j = j + 1.
13: return PU |Y

B. Convergence Analysis

In this section, we provide the convergence proof for Al-
gorithm 1. To prove the convergence of the proposed iterative
algorithm, we need to verify that the value of the functional
F does not decrease while iterating, and that this functional
is bounded from above.

The following lemma shows that F is upper-bounded.



Lemma 6: For a continuous function f(·),
F [PU |Y , PU , PS|U ] is bounded from above.

Proof: Please refer to Appendix E.
Then we prove that the value of F is non-decreasing

between two iterations of the outer loop. There are two
steps in the outer loop, updating PS|U by (10), and updating
(PU |Y , PU ) by applying ADMM. For the update of PS|U ,
since the optimization with respect to PS|U is a convex
optimization problem and has a closed-form solution as the
update function, the objective function F is non-decreasing
in this step. To show that the value of F is non-decreasing
for the limit point found by ADMM, it is necessary to prove
that the proposed ADMM procedure converges subsequently.
Otherwise, the consistency requirement between PU and PU |Y
may not be satisfied. In particular, in the following we prove
that any sequence generated by the proposed ADMM proce-
dure is bounded and has a limit point that is also the stationary
point of (11), and the value of F is upper-bounded and non-
decreasing between iterations of ADMM.

We note that the convergence proof of the proposed ADMM
procedure for our problem setup is non-trivial, as the con-
sidered objective function has more than 2 local variables
and is non-separable with respect to these local variables.
Directly using multi-block ADMM may be non-convergent,
even if the functions are separable with respect to these blocks
of variables [30], and numerous research efforts have been
devoted to analyzing the convergence of multi-block ADMM
under certain assumptions [26], [27], [31]. In contrast to the
separable case, studies on the convergence properties of n-
block ADMM with non-separable objective, even for n = 2,
are limited [15], [32], and the convergence is not guaranteed
and has to be handled differently.

To make the presentation clear, in the following, we consider
the case |Y| = 2 and the proof can be easily generalized
to the case when Y has a finite alphabet. For |Y| = 2, the
optimization problem in (1) can be further represented as

max −

[
p(y1)

∑
u

p (u|y1)DKL[PS|y1
‖ PS|u]

+p(y2)
∑
u

p (u|y2)DKL[PS|y2
‖ PS|u]

]

−β
∑
u

[
p (u|y1) p(y1)f

(
p(u)

p(u|y1)

)
+p(u|y2)p(y2)f

(
p(u)

p(u|y2)

)]
,

s. t p(u|yi) ≥ ε,∀u,
∑
u

p(u|yi) = 1, i = 1, 2,

p(u) > 0,∀u,
∑
u

p(u) = 1,

−p(u|y1)p(y1)− p(u|y2)p(y2) + p(u) = 0,∀u,

in which the last constraint can also be written in the vector
form, −p(y1)PU |y1

− p(y2)PU |y2
+ PU = 0.

For presentation convenience, we denote

hi(PU |yi) = −p(yi)
∑
u

p(u|yi)DKL[PS|yi ‖ PS|u],

i = 1, 2,

g(PU |y1
, PU |y2

, PU ) = −β
∑
u

[
p(u|y1)p(y1)f

(
p(u)

p(u|y1)

)
+p(u|y2)p(y2)f

(
p(u)

p(u|y2)

)]
.

Thus, the objective function is

h1(PU |y1
) + h2(PU |y2

) + g(PU |y1
, PU |y2

, PU ),

and the augmented Lagrangian is

L[PU |Y , PU , PS|U ; Λ]

= F [PU |Y , PU |PS|U ] +
∑
u

λ(u)δ(u)− ρ

2

∑
u

δ(u)2

= h1(PU |y1
) + h2(PU |y2

) + g(PU |y1
, PU |y2

, PU )

+
∑
u

λ(u)δ(u)− ρ

2

∑
u

δ(u)2.

For the update of the dual variable Λ, we have the following
lemma which characterizes the relationship between the dual
variable Λ and the primal variables.

Lemma 7: Suppose that f(·) is twice-differentiable and f
′
(t)

is lf - Lipschitz continuous of t. We have∥∥Λt+1 − Λt
∥∥2

2
≤lΛ

(∥∥∥P t+1
U |y1
− P tU |y1

∥∥∥2

2
+
∥∥∥P t+1

U |y2

−P tU |y2

∥∥∥2

2
+
∥∥P t+1

U − P tU
∥∥2

2

)
,

(23)

with lΛ =
16β2l2f
ε4 .

Proof: Please refer to Appendix F.
For the ascent of L between two iterations, we have the

following lemma.
Lemma 8: Suppose that f(·) is twice-differentiable and f

′
(t)

is lf - Lipschitz continuous of t. We have

L
[
P t+1
U |Y , P

t+1
U ; Λt+1

]
− L

[
P tU |Y , P

t
U ; Λt

]
≥

[
ρ

2
p(y1)2 − ly1

2
− lΛ

ρ

]
‖P t+1

U |y1
− P tU |y1

‖22

+

[
ρ

2
p(y2)2 − ly2

2
− lΛ

ρ

] ∥∥∥P t+1
U |y2
− P tU |y2

∥∥∥2

2

+

(
ρ− lu

2
− lΛ

ρ

)∥∥P t+1
U − P tU

∥∥2

2
, (24)

where ly1 = ly2 =
βlf
ε3 , lu =

βlf
ε .

Proof: Please refer to Appendix G.
With these supporting results, we now analyze the con-

vergence of the proposed ADMM procedure. We first show
that L is monotonic and upper-bounded, and the sequence
{PU |Y , PU ,Λ}t generated by ADMM is bounded.

Proposition 1: Suppose that f(·) is twice-differentiable and
f
′
(t) is lf -Lipschitz continuous of t. We have that



1) if min{ρ2p(y1)2 − ly1
2 −

lΛ
ρ ,

ρ
2p(y2)2 − ly2

2 −
lΛ
ρ ,

ρ−lu
2 −

lΛ
ρ } ≥ 0, L[P t+1

U |Y , P
t+1
U ; Λt+1] ≥ L[P tU |Y , P

t
U ,Λ

t];
2) ∀t ∈ N, L[P tU |Y , P

t
U ; Λt] is upper-bounded;

3) {PU |Y , PU ,Λ}t is bounded.
Proof: Please refer to Appendix H.

We then show the asymptotic regularity of the sequence
{PU |Y , PU ,Λ}t.

Proposition 2: Suppose that f(·) is twice-differentiable and
f
′
(t) is lf - Lipschitz continuous of t. When ρ is sufficiently

large such that min{ρ2p(y1)2 − ly1
2 −

lΛ
ρ ,

ρ
2p(y2)2 − ly2

2 −
lΛ
ρ ,

ρ−lu
2 − lΛ

ρ } ≥ 0, as t→∞, we have

1)
∥∥∥P t+1

U |y1
− P tU |y1

∥∥∥2

2
→ 0,

2)
∥∥∥P t+1

U |y2
− P tU |y2

∥∥∥2

2
→ 0,

3)
∥∥P t+1

U − P tU
∥∥2

2
→ 0.

4)
∥∥Λt+1 − Λt

∥∥2

2
→ 0,

5) P t+1
U − p (y1)P t+1

U |y1
− p (y2)P t+1

U |y2
→ 0.

Proof: Please refer to Appendix I.
Proposition 3: The sequence {PU |Y , PU ,Λ}t has a limit

point (P̂U |Y , P̂U , Λ̂), which is also a stationary point of (11).
Proof: Please refer to Appendix J.

We now summarize the convergence results in the following
theorem.

Theorem 1: Suppose that f(·) is twice-differentiable and
f
′
(t) is lf -Lipschitz continuous of t. Choose ρ such that

min{ρ2p(y1)2− ly1
2 −

lΛ
ρ ,

ρ
2p(y2)2− ly2

2 −
lΛ
ρ ,

ρ−lu
2 − lΛ

ρ } ≥ 0.
The proposed ADMM procedure could converge subsequently,
that is, staring from any (P 0

U |Y , P
0
U ,Λ

0), it generates a se-
quence that is bounded, has a limit point (P̂U |Y , P̂U , Λ̂), and
the limit point is a stationary point of (11).

Proof: Please refer to Appendix K.
Therefore, for the limit point (P̂U |Y , P̂U , Λ̂), the value of

F is non-decreasing after the ADMM procedure. Then F is
also non-decreasing between two iterations of the outer loop,
which indicates that the proposed algorithm will converge.

For the case |Y | = k, there will be (k + 1) terms on the
right hand side of (23) and (24). Then Propositions 1, 2, 3 and
Theorem 1 still hold in a similar manner and the convergence
analysis also applies.

C. Stronger Convergence for f with More Assumptions

In Section III-B, for the convergence analysis of ADMM,
the value of ρ should be chosen large enough such that
min{ρ2p(y1)2− ly1

2 −
lΛ
ρ ,

ρ
2p(y2)2− ly2

2 −
lΛ
ρ ,

ρ−lu
2 − lΛ

ρ } ≥ 0.
Thus, the feasible set of ρ will depend on the choice of ε. In
this subsection, we propose another ADMM procedure with
Bregman distance and make stronger assumptions on f to
provide a convergence analysis with weaker constraints on ρ.

First we introduce the definition of Bregman distance. Let
φ : Rn → R be a continuously differentiable and strictly
convex function. Denote ∇φ(y) as the gradient of φ on y.
Then the Bregman distance induced by φ is defined as

∆φ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉, (25)

where φ is called the kernel function or distance-generating
function. From the property of Bregman distance, we have that
∆φ(x, y) is convex in x for fixed y [33]. The Bregman distance
plays an important role in iterative algorithms. In particular,
Bregman divergences are used to replace the quadratic penalty
term in the standard ADMM (see δ2(u) in (17)). Then we
can choose a suitable Bregman divergence so that the sub-
problems can be solved more efficiently [33].

To solve the optimization problem in (11), for notation
simplicity, we denote x1 : PU |y1

, x2 : PU |y2
, and v : PU .

Recall the definition of h1(·), h2(·), g(·) in Section III-B.
We propose an algorithm starting with

(
x0

1, x
0
2, v

0
)

and
Λ0. Suppose that ϕ1, ϕ2, φ are differentiable and strictly
convex functions. Then with the given iteration point
wk =

(
xk1 , x

k
2 , v

k,Λk
)
, the new iteration point wk+1 =(

xk+1
1 , xk+1

2 , vk+1,Λk+1
)

is given as:

xk+1
1 = arg max

{
h1 (x1) +

(
x1 − xk1

)T ∇x1g
(
xk1 , x

k
2 , v

k
)

−ρ
2

∥∥∥∥p(y1)x1 + p(y2)xk2 − vk −
Λk

ρ

∥∥∥∥2

2

−∆ϕ1

(
x1, x

k
1

)}
,

xk+1
2 = arg max

{
h2 (x2) +

(
x2 − xk2

)T ∇x2
g
(
xk1 , x

k
2 , v

k
)

−ρ
2

∥∥∥∥p(y1)xk+1
1 + p(y2)x2 − vk −

Λk

ρ

∥∥∥∥2

2

−∆ϕ2

(
x2, x

k
2

)}
,

vk+1 = arg max
{
g
(
xk+1

1 , xk+1
2 , v

)
−ρ

2

∥∥∥∥p(y1)xk+1
1 + p(y2)xk+1

2 − v − Λk

ρ

∥∥∥∥2

2

−∆φ

(
v, vk

)}
,

Λk+1 = Λk − ρ
(
p(y1)xk+1

1 + p(y2)xk+1
2 − vk+1

)
, (26)

where ∆ϕ1

(
x1, x

k
1

)
,∆ϕ2

(
x2, x

k
2

)
, and ∆φ

(
v, vk

)
are the

Bregman distances associated with ϕ1, ϕ2, and φ respectively.
Here, ϕ1, ϕ2, and φ should be properly chosen with respect
to different f(·) adopted in the privacy measure.

To guarantee that the algorithm converges, we assume that

(i) ∇g is lg-Lipschitz continuous;
(ii) ∇ϕ1,∇ϕ2,∇φ are Lipshitz continuous with the modulus

lϕ1 , lϕ2 , lφ, respectively;
(iii) ϕ1, ϕ2, φ are strongly convex with the modulus

δϕ1
, δϕ2

, δφ, and δϕ1
, δφ2

> lg .

Then we have
Lemma 9:

∥∥Λk+1 − Λk
∥∥2

2

≤ 3l2g

(∥∥xk+1
1 − xk1

∥∥2

2
+
∥∥xk+1

2 − xk2
∥∥2

2

)
+ 3

(
l2g + l2φ

) ∥∥vk+1 − vk
∥∥2

2
+ 3l2φ

∥∥vk − vk−1
∥∥2

2
.

(27)

Proof: Please refer to Appendix L.
By considering the updates of 3 primal variables, we have



Lemma 10: (
L
(
wk+1

)
−

3l2φ
ρ

∥∥vk+1 − vk
∥∥2

2

)

−

(
L
(
wk
)
−

3l2φ
ρ

∥∥vk − vk−1
∥∥2

2

)

≥

(
δϕ1
− lg
2

−
3l2g
ρ

)∥∥xk+1
1 − xk1

∥∥2

2

+

(
δϕ2
− lg
2

−
3l2g
ρ

)∥∥xk+1
2 − xk2

∥∥2

2

+

(
δφ
2
−

3l2g + 6l2φ
ρ

)∥∥vk+1 − vk
∥∥2

2
.

Proof: Please refer to Appendix M.
Proposition 4: Under assumptions (i), (ii), (iii), we have

1) if ρ ≥ max{ 6l2g
δϕ1
−lg ,

6l2g
δϕ2
−lg ,

6l2g+12l2φ
δφ

} (feasible un-

der assumption (iii)),
(
L
(
wk+1

)
− 3l2φ

ρ

∥∥vk+1 − vk
∥∥2

2

)
−
(
L
(
wk
)
− 3l2φ

ρ

∥∥vk − vk−1
∥∥2

2

)
≥ 0;

2) ∀k ∈ N, L[wk] is upper-bounded;
3) {w}k is bounded.
Then following similar analysis in Section III-B, when ρ is

chosen properly such that ≥ max{ 6l2g
δϕ1
−lg ,

6l2g
δϕ2
−lg ,

6l2g+12l2φ
δφ

},

we have
∥∥xk+1

1 − xk1
∥∥2

2
→ 0,

∥∥xk+1
2 − xk2

∥∥2

2
→ 0, and∥∥vk+1 − vk

∥∥2

2
→ 0. By Lemma 9, we have

∥∥Λk+1 − Λk
∥∥2

2
→

0. Moreover, the limit point of {w}k can also be shown to be
the stationary point of (11). Thus, when replacing the ADMM
procedure in Section III-A with this ADMM procedure with
Bregman distance, Algorithm 1 converges in a similar manner.

IV. EXAMPLES AND NUMERICAL RESULTS

In this section, we first give examples of different choices of
f and then provide numerical results with specific f to show
the performance of the proposed method.

A. Examples of f

We now provide examples of f , each of which leads to a
well-known and widely used divergence measure.

In the first example, we consider f(t) = − log(t). As shown
in Section II, if f(t) = − log(t), the privacy measure is then
the mutual information. For the algorithm proposed in this
chapter, we check whether all the assumptions are satisfied.
Since ε ≤ p(u|y) ≤ 1, we have ε ≤ p(u)

p(u|y) ≤
1
ε . Then we

first have that − log(·) is strictly convex on
[
ε, 1
ε

]
. Secondly,

we have that f ′(t) = − 1
t is Lipschitz continuous since it is

everywhere differentiable on
[
ε, 1
ε

]
and the absolute value of

the derivative is bounded above by 1
ε2 .

In the second example, we consider the following
strictly convex function f(t) = t log 2t

t+1 + log 2
t+1 .

This choice leads to the Jensen-Shannon divergence
[34]: EY,U [d(y, u)] =

∑
y p(y)JS[PU |y, PU ], in which

JS[PU |y, PU ] =DKL

[
PU |y ‖

PU|y+PU
2

]
+DKL

[
PU ‖

PU|y+PU
2

]
.
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Fig. 1. Conditional distribution p(y|s)

To check the assumption (b), we have f ′(t) =
log 2t

t+1 , f
′′(t) = 1

t(t+1) ≤
1

ε(ε+1) , and thus it is Lipschitz
continuous.

In the third example, consider the strictly convex function
f(t) = (1 − t)2/(2t + 2), which leads to the Le Cam
divergence [35] as the privacy measure, EY,U [d(y, u)] =∑
y p(y)LC[PU |y ‖ PU ], in which

LC[PU |y ‖ PU ] =
1

2

∑
u

[p(u)− p(u|y)]
2

p(u|y) + p(u)
. (28)

For this choice of f , again, assumptions (b) and (c) are
satisfied.

In the fourth example, we consider the following function
f(t) = (1−

√
t)2, which corresponds to the squared Hellinger

distance [36]. It is easy to check that the assumptions are
satisfied.

B. Numerical results

In this subsection, we provide numerical examples to show
that our methods converge much faster than GA, and the
solution found by our methods has much better quality than
the one found by GA. Moreover, we explore how the weight
parameter β and the alphabet size of U affects the privacy
protection as well as the inference accuracy.

In the first example, we set the prior distribution PS =
{ 1

3 ,
1
3 ,

1
3} and let |Y| = 10, |U| = 12. The conditional

distributions PY |S under each s are shown in Fig. 1. Under
this setup, we will perform both Algorithm 1 and GA to find
the transition mapping PU |Y that maximizes the functional
defined in (1). Suppose that the trade-off parameter β = 2
and Jensen-Shannon divergence is used as the privacy metric.
The initial mapping PU |Y is obtained by selecting random
numbers conforming to uniform distribution and normalizing
them.

For the convergence speed, we investigate the relationship
between F and the outer iteration, which is illustrated in Fig 2.
We notice that the function value is increasing and converges
as the iterative process progresses. For comparison purposes,
we also plot the corresponding figures for GA in Fig. 3 (with
step size 0.0001) and Fig. 4 (with step size 0.00005). From
these figures, we can see that Algorithm 1 converges within
20 iterations. On the other hand, for gradient ascent algorithm,
even for a pretty small step size 0.0001, the function value
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Fig. 3. Function value v.s. iteration (GA)

fails to keep increasing, which indicates that the step size is
too large. Then for a smaller step size 0.00005, the function
value converges as shown in Fig. 4. However, the value of
the objective function found by GA is smaller than the value
found by Algorithm 1.

For the relationship between β and the privacy protec-
tion, after random initialization, we run Algorithm 1 and
GA until they terminate. The stopping criterion is either
||P t+1

U |Y − P
t
U |Y ||F < 10−5 (convergence case) or a maximum

number of iterations is reached (divergence case). We repeat
this procedure 100 times for each β. Recall that the smaller
the term E[d(y, u)], the better the privacy protection. In
particular, we set E[d(y, u)] to be 1 for divergence cases
since the maximum E[d(y, u)] under the converge scenario is
smaller than 1. As shown in Fig. 5, we notice that E[d(y, u)]
decreases as β increases for our proposed method while it is
non-decreasing for GA. By setting the maximum number of
iterations to be 3000, GA diverges under many choices of β.
Even for the scenarios where GA converges, compared with
Algorithm 1, the privacy protection obtained by GA is weaker.
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Fig. 4. Function value v.s. iteration (GA)
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Fig. 6. β v.s. inference accuracy (Algorithm 1)

Therefore, the privacy-preserving mapping designed by GA
could hardly guarantee the protection of privacy. In addition,
we also explore the relationship between β and the information
accuracy. As shown in Fig. 6, the inference accuracy measure
I(S;U) decreases as β increases, which indicates that the
predictive ability becomes weaker. The reason is that as U
leaks less information about Y when β increases, it also
provides less information about the parameter of interest,
which will reduce the predictive performance. However, Fig. 6
shows that the reduction of I(S;U) is not very large, which
implies that the model still has good predictive ability when
there are stronger protections for privacy.

To explore other privacy measures, we now set f as f(t) =
(1−t)2/(2t+2), which corresponds to the Le Cam divergence
as discussed in Section IV-A. We again compare Algorithm 1
and GA. The results are shown in Table I. From the table, we
can see that the maximum function value found by our method
is greater than those found by GA.

Methods Convergent value
Algorithm 1 -6.697e-14

Gradient ascent(α = 0.05) -0.251
Gradient ascent(α = 0.07) -0.245
Gradient ascent(α = 0.1) -0.317

Gradient ascent(α = 0.15) -0.235
Gradient ascent(α = 0.2) Diverge

TABLE I
CONVERGENT VALUE OF ALGORITHM 1 AND GA

To compare different privacy measures, we set the trade-off
parameter β = 8, which indicates that the privacy term is dom-
inant in the objective function. As shown in Fig. 7, although
the function values under JS-divergence and LC-divergence
are different, the convergence speed and convergence curve
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Fig. 8. Function value v.s. Alphabet size of U (Algorithm 1)

are almost the same, which shows that the proposed algorithm
can converge in a similar manner under different metrics.
However, the optimal privacy-preserving mapping PU |Y found
by those two privacy measures are different. Therefore, in
practical applications, an appropriate task-oriented privacy
measure needs to be chosen.

Finally, we explore the relationship between |U| and the
privacy protection. Note that in the proposed method, the
alphabet sizes of Y and U are not necessarily equal. Thus,
for |Y| = 10, we explore how |U| affects the convergent
function value. Here, we set β = 8 and use the LC-divergence
to measure the privacy leakage. From Fig. 8, it is shown that
although the function value is increasing as |U| increases, the
alphabet size |U| has limited effects on the function value
when |U| ≥ 7, which indicates that a large alphabet size of
U is not necessary to derive a satisfactory privacy-preserving
mapping. By setting |Y| to different values, we notice that
when |U|

|Y| ≥ 0.8, the convergent function value is relatively
large.

V. CONCLUSION

We have proposed a general framework to design privacy-
preserving mapping to achieve privacy-accuracy trade-off in
the IAS scenarios. We have formulated optimization problems
to find the desirable mapping. We have discussed the structure
of the formulated problems and designed an iterative method
to solve these complicated optimization problems. We have
also proved the convergence of the proposed method under
certain assumptions. Moreover, we have provided numerical
results showing that this method has better performance than
GA in the convergence speed, solution quality and algorithm
stability.

In terms of future work, we will address the limitations of
the currently work along the following lines. Firstly, we have
several technical assumptions on the function f . In the future,
we will try to weaken those assumptions. Secondly, for the
proposed algorithm, we are only able to show the convergence,
but we have not characterized the convergence rate, of the
proposed algorithms. Moreover, the proposed method is only
guaranteed to converge but not to the global optima. Thus, it
is of interest to further modify the proposed method to find
the global optimal solution and determine the corresponding
convergence rate. Thirdly, we are also interested in comparing
our proposed privacy protection scheme with other existing
private mechanisms. Finally, in this work, we only consider the
case when Y is discrete and generate the privacy-preserving
mapping PU |Y . In the future, we will consider the continuous
case and find the optimal conditional pdf fU |Y .

APPENDIX A
PROOF OF LEMMA 1

I(S;U) +
∑
u,y

p(y)p(u|y)DKL[PS|y ‖ PS|u]

=
∑
s,u,y

p(s, u, y) log
p(s|u)

p(s)

+
∑
s,u,y

p(y)p(u|y)p(s|y) log
p(s|y)

p(s|u)

(a)
=

∑
s,u,y

p(s, u, y)

[
log

p(s|u)

p(s)
+ log

p(s|y)

p(s|u)

]
=

∑
s,y

p(s, y) log
p(s|y)

p(s)
= I(S;Y ),

where (a) uses the fact that S → Y → U is a Markov chain
since given Y , S and U are independent.

APPENDIX B
PROOF OF LEMMA 2

First, prove that F [PU |Y ] is concave with respect to PS|U .
By applying Lemma 1, (1) can be written in the following
form,

F [PU |Y ] = I(S;Y )− βEY,U [d(y, u)]

−
∑
u,y

p(y)p(u|y)DKL[PS|y ‖ PS|u]. (29)

Note that I(S;Y ) is a constant under our setup. Given PU |Y
and PU , EY,U [d(y, u)] is independent of PS|U . Moreover, PS|u
and PS|u′ are two independent vectors. For given u and y, we
have

DKL[PS|y ‖ PS|u] =
∑
s

p(s|y) log
p(s|y)

p(s|u)
. (30)

Since a log(x) is concave in x, (30) is convex in PS|u and
F [PU |Y ] is concave with respect to PS|U .

Second, we prove that F [PU |Y ] is concave w.r.t PU when f
is strictly convex. Note that PU only shows up in EY,U [d(y, u)]



and since f is strictly convex, taking the sum doesn’t change
the concavity and F [PU |Y ] is also concave in PU .

Third, we consider PU |Y . There are |Y| conditional dis-
tributions in the mapping PU |Y , where PU |y and PU |y′ are
independent when y 6= y′. Then we consider a particular row
PU |y and prove the concavity. The Hessian matrix of F with
respect to PU |y is

HF =


∂2F [p(u|y)]
∂p(u1|y)2 · · · ∂2F [PU|Y ]

∂p(u1|y)∂p(u|U||y)

· · · · · · · · ·
∂2F [p(u|y)]

∂p(u|U||y)∂p(u1|y) · · · ∂2F [p(u|y)]
∂p(u|U||y)2

 .
Then we calculate each element in HF . Assume that i 6= j.

Taking derivative based on the form in (29), we have

∂2F [PU |Y ]

∂p(ui|y)2
= −β ∂

2EY,U [d(y, u)]

∂p(ui|y)2
,

∂2F [PU |Y ]

∂p(ui|y)∂p(uj |y)
= −β ∂2EY,U [d(y, u)]

∂p(ui|y)∂p(uj |y)
,

in which

∂2EY,U [d(y, u)]

∂p(ui|y)2
= p(y)

[
f ′(t)

−p(ui)
p(ui|y)2

− f ′(t) −p(ui)
p(ui|y)2

−tf ′′(t) −p(ui)
p(ui|y)2

]
= p(y)f ′′(t)

t2

p(ui|y)
> 0,

∂2EY,U [d(y, u)]

∂p(ui|y)∂p(uj |y)

(a)
= 0,

where t = p(ui)
p(ui|y) and (a) is due to the fact that t is

independent of p(uj |y) when i 6= j and PU is given. Then
we have ∂2F [PU|Y ]

∂p(ui|y)2 < 0 and ∂2F [PU|Y ]

∂p(ui|y)∂p(uj |y) = 0. Thus, the
Hessian matrix HF is a diagonal matrix with negative entries,
which indicates that the objective function F is concave in
PU |yi and the lemma is proved.

APPENDIX C
PROOF OF LEMMA 3

We first ignore (7), (9) and solve the optimization problem
subject to (8) only. We will then check that the obtained
solution satisfy constraints (7), (9).

For a u ∈ U , the Lagrangian is

LS|u = F [PS|U |PU |Y , PU ] + α

(∑
s

p(s|u)− 1

)
,

where α is the Lagrangian multiplier with respect to constraint
(8) . Since PU and PU |Y are given, LS|u is a convex function
with respect to PS|u. By taking the derivative, we have

∂LS|u
∂p(s|u)

=

∑
y p(y)p(u|y)p(s|y)

p(s|u)
+ α = 0,

which indicates

p(s|u) =

∑
y p(y)p(u|y)p(s|y)

−α
. (31)

Since
∑
s p(s|u) = 1, we have∑

s

p(s|u) =
∑
s

∑
y p(y)p(u|y)p(s|y)

−α
= 1

=⇒ α = −
∑
s

∑
y

p(y)p(u|y)p(s|y)

= −
∑
y

p(y)p(u|y)
∑
s

p(s|y)

= −
∑
y

p(y)p(u|y) = −p(u).

Plugging the value of α into (31), we have

p(s|u) =

∑
y p(u|y)p(s, y)

p(u)
≥ 0,

which guarantees the non-negativity condition in (7). It is also
easy to check that this satisfies the constraint in (9) exactly,
preserves the consistency of different arguments and thus is
the solution to the PS|U subproblem.

APPENDIX D
PROOF OF LEMMA 4 AND 5

Note that for i 6= j,

∂2
∑m
i=1 λ(ui)δ(ui)− ρ

2

∑m
i=1 δ(ui)

2

∂p(ui|y)2
= −ρp2(y) ≤ 0,

∂2
∑m
i=1 λ(ui)δ(ui)− ρ

2

∑m
i=1 δ(ui)

2

∂p(ui|y)∂p(uj |y)
= 0.

In Lemma 2, we have shown that ∂2F [PU|Y ]

∂p(ui|y)2 < 0 and
∂2F [PU|Y ]

∂p(ui|y)∂p(uj |y) = 0. Hence, we have

∂2L[PU |Y ]

∂p(ui|y)2
=
∂2F [PU |Y ]

∂p(ui|y)2
− ρp2(y) < 0,

∂2L[PU |Y ]

∂p(ui|y)∂p(uj |y)
= 0,

and that the Hessian matrix HL is negative-definite. Moreover,
the constraint

∑m
i=1 p(ui|y) = 1,∀y ∈ Y defines a convex

set and thus the sub-problem on PU |yi is a convex problem.
Similarly, we also have ∂2L[PU ]

∂p(ui)2 < 0 and ∂2L[PU ]
∂p(ui)∂p(uj)

= 0,
which indicates that the Hessian matrix of L with respect
to PU is negative-definite. Combined with the fact that the
constraint set is convex, the sub-problem on PU is a convex
optimization problem.

APPENDIX E
PROOF OF LEMMA 6

First, note that I(S;U) ≤ H(S), which is bounded. Thus,
F [PU |Y ] is upper bounded if EY,U [d(y, u)] is bounded from
above. Let t(y, u) = p(u)

p(u|y) . We have that

EY,U [d(y, u)] =
∑
y,u

p(y)p(u|y)f(t(y, u))

=
∑
y,u

p(y)p(u)
f(t(y, u))

t(y, u)
,



where p(y)p(u) ≤ 1. Since ε ≤ p(u|y) ≤ 1, we have that
t(y, u) ∈

[
ε, 1
ε

]
,∀y, u. Since f is continuous, it’s natural to

have f(t(y,u))
t(y,u) < +∞. Then EY,U [d(y, u)] is bounded from

above.

APPENDIX F
PROOF OF LEMMA 7

By the optimality of PU , we have
0 = ∇PU g

(
P t+1
U |y1

, P t+1
U |y2

, P t+1
U

)
− ρ

(
−p(y1)P t+1

U |y1
− p(y2)P t+1

U |y2
+ P t+1

U

)
+ Λt,

Λt+1 = Λt − ρ
(
−p(y1)P t+1

U |y1
− p(y2)P t+1

U |y2
+ P t+1

U

)
,

which implies

0 = ∇PU g
(
P t+1
U |y1

, P t+1
U |y2

, P t+1
U

)
+ Λt+1. (32)

Then we have ∥∥Λt+1 − Λt
∥∥2

2

=
∥∥∥∇PU g (P t+1

U |y1
, P t+1

U |y2
, P t+1

U

)
−∇PU g

(
P tU |y1

, P tU |y2
, P tU

)∥∥∥2

2

=
∑
u∈U

(
∂g(P t+1

U |y1
, P t+1

U |y2
, P t+1

U )

∂pt+1(u)

−
∂g(P tU |y1

, P tU |y2
, P tU )

∂pt(u)

)2

. (33)

Given that f
′
(t) is lf -Lipschitz continuous of t, we further

have that for any given u,(
∂g(P t+1

U |y1
, P t+1

U |y2
, P t+1

U )

∂pt+1(u)
−
∂g(P tU |y1

, P tU |y2
, P tU )

∂pt(u)

)2

=

(
βp(y1)

[
f ′
(

pt(u)

pt(u|y1)

)
− f ′

(
pt+1(u)

pt+1(u|y1)

)]
+βp(y2)

[
f ′
(

pt(u)

pt(u|y2)

)
− f ′( pt+1(u)

pt+1(u|y2)
)

])2

≤ β2l2f

[
p(y1)

∣∣∣∣ pt(u)

pt(u|y1)
− pt+1(u)

pt+1(u|y1)

∣∣∣∣
+p(y2)

∣∣∣∣ pt(u)

pt(u|y2)
− pt+1(u)

pt+1(u|y2)

∣∣∣∣]2

≤ 2β2l2f

[
p(y1)2

(
pt(u)

pt(u|y1)
− pt+1(u)

pt+1(u|y1)

)2

+p(y2)2

(
pt(u)

pt(u|y2)
− pt+1(u)

pt+1(u|y2)

)2
]
, (34)

where pt(u)
pt(u|y1) −

pt+1(u)
pt+1(u|y1) = pt(u)pt+1(u|y1)−pt+1(u)pt(u|y1)

pt(u|y1)pt+1(u|y1) .
Using the assumption that 1

p(u|y) ≤
1
ε <∞, we have∣∣∣∣ pt(u)

pt(u|y1)
− pt+1(u)

pt+1(u|y1)

∣∣∣∣
≤

(
1

ε

)2 ∣∣pt(u)pt+1(u|y1)− pt+1(u)pt(u|y1)
∣∣ .

To further bound
∣∣pt(u)pt+1(u|y1)− pt+1(u)pt(u|y1)

∣∣, we
have ∣∣∣∣pt(u)pt+1(u|y1)− pt+1(u)pt(u|y1)

pt(u)− pt+1(u)

∣∣∣∣
= pt+1(u|y1) + pt+1(u)

|pt+1(u|y1)− pt(u|y1)|
|pt(u)− pt+1(u)|

≤ 1 +
|pt+1(u|y1)− pt(u|y1)|
|pt(u)− pt+1(u)|

,

and ∣∣∣∣pt(u)pt+1(u|y1)− pt+1(u)pt(u|y1)

pt+1(u|y1)− pt(u|y1)

∣∣∣∣
= pt(u) + pt(u|y1)

|pt(u)− pt+1(u)|
|pt+1(u|y1)− pt(u|y1)|

≤ 1 +
|pt(u)− pt+1(u)|

|pt+1(u|y1)− pt(u|y1)|
.

Moreover, min
{
|pt+1(u|y1)−pt(u|y1)|
|pt(u)−pt+1(u)| , |pt(u)−pt+1(u)|

|pt+1(u|y1)−pt(u|y1)|

}
≤

1. Then we have

min{
∣∣∣∣pt(u)pt+1(u|y1)− pt+1(u)pt(u|y1)

pt(u)− pt+1(u)

∣∣∣∣ ,∣∣∣∣pt(u)pt+1(u|y1)− pt+1(u)pt(u|y1)

pt+1(u|y1)− pt(u|y1)

∣∣∣∣} ≤ 2,

and thus

|pt(u)pt+1(u|y1)− pt+1(u)pt(u|y1)|
≤ 2|pt(u)− pt+1(u)|+ 2|pt+1(u|y1)− pt(u|y1)|,

and thus ∣∣∣∣ pt(u)

pt(u|y1)
− pt+1(u)

pt+1(u|y1)

∣∣∣∣
≤ 2

ε2
[
|pt(u)− pt+1(u)|+ |pt+1(u|y1)− pt(u|y1)|

]
. (35)

Similarly, for
(

pt(u)
pt(u|y2) −

pt+1(u)
pt+1(u|y2)

)
, we have∣∣∣∣ pt(u)

pt(u|y2)
− pt+1(u)

pt+1(u|y2)

∣∣∣∣
≤ 2

ε2
[
|pt(u)− pt+1(u)|+ |pt+1(u|y2)− pt(u|y2)|

]
. (36)

Plugging (35) and (36) into (34) and (33), we have∥∥Λt+1 − Λt
∥∥2

2

=
∑
u∈U

(
∂g(P t+1

U |y1
, P t+1

U |y2
, P t+1

U )

∂pt+1(u)

−
∂g(P tU |y1

, P tU |y2
, P tU )

∂pt(u)

)2

≤ 2β2l2f

(
2

ε2

)2 ∑
u∈U

{
p(y1)2[|pt(u)− pt+1(u)|

+|pt+1(u|y1)− pt(u|y1)|]2

+p(y2)2[|pt(u)− pt+1(u)|
+|pt+1(u|y2)− pt(u|y2)|]2

}



≤ 2β2l2f

(
2

ε2

)2 ∑
u∈U

{
2p(y1)2[(pt(u)− pt+1(u))2

+(pt+1(u|y1)− pt(u|y1))2]

+2p(y2)2[(pt(u)− pt+1(u))2

+(pt+1(u|y2)− pt(u|y2))2]
}

= 4β2l2f

(
2

ε2

)2 ∑
u∈U

[
p(y1)2(pt+1(u|y1)− pt(u|y1))2

+p(y2)2(pt+1(u|y2)− pt(u|y2))2

+(p(y1)2 + p(y2)2)(pt(u)− pt+1(u))2
]

≤ 4β2l2f

(
2

ε2

)2 ∑
u∈U

[
(pt+1(u|y1)− pt(u|y1))2

+(pt+1(u|y2)− pt(u|y2))2

+(pt(u)− pt+1(u))2
]

= lΛ

(∥∥∥P t+1
U |y1
− P tU |y1

∥∥∥2

2
+
∥∥∥P t+1

U |y2
− P tU |y2

∥∥∥2

2

+
∥∥P t+1

U − P tU
∥∥2

2

)
,

where lΛ = 4β2l2f
(

2
ε2

)2
=

16β2l2f
ε4 .

APPENDIX G
PROOF OF LEMMA 8

Since f ′(t) is lf -Lipschitz continuous and t =
p(u)
p(u|yi)∈ (0, 1

ε ), we have that g is differentiable and
∇PU|y1 g,∇PU|y2 g,∇PU g are Lipschitz continuous with con-
stants ly1 , ly2 , lu for PU |y1

, PU |y2
, PU respectively. In partic-

ular, we have ly1
= ly2

=
βlf
ε3 and lu =

βlf
ε . Then we have

L[P t+1
U |y1

, P tU |y2
, P tU ; Λt]− L[P tU |y1

, P tU |y2
, P tU ; Λt]

= F [P t+1
U |y1

, P tU |y2
, P tU ]−F [P tU |y1

, P tU |y2
, P tU ]

+〈Λt, p(y1)(P tU |y1
− P t+1

U |y1
)〉

+
ρ

2
‖P tU − p(y1)P tU |y1

− p(y2)P tU |y2
‖22

−ρ
2
‖P tU − p(y1)P t+1

U |y1
− p(y2)P tU |y2

‖22
(a)
= F [P t+1

U |y1
, P tU |y2

, P tU ]−F [P tU |y1
, P tU |y2

, P tU ]

+〈Λt, p(y1)(P tU |y1
− P t+1

U |y1
)〉

+〈ρ(P tU − p(y1)P t+1
U |y1
− p(y2)P tU |y2

),

p(y1)(P t+1
U |y1
− P tU |y1

)〉+
ρ

2
‖p(y1)(P tU |y1

− P t+1
U |y1

)‖22
= F [P t+1

U |y1
, P tU |y2

, P tU ]−F [P tU |y1
, P tU |y2

, P tU ]

+
ρ

2
‖p(y1)(P tU |y1

− P t+1
U |y1

)‖22 + 〈P t+1
U |y1
− P tU |y1

,

−p(y1)Λt + p(y1)ρ(P tU − p(y1)P t+1
U |y1
− p(y2)P tU |y2

)〉
= F [P t+1

U |y1
, P tU |y2

, P tU ]−F [P tU |y1
, P tU |y2

, P tU ]

+
ρ

2
‖p(y1)(P tU |y1

− P t+1
U |y1

)‖22 − 〈P t+1
U |y1
− P tU |y1

,

∇PU|y1F [P t+1
U |y1

, P tU |y2
, P tU ]〉

(b)

≥
[
ρ

2
p(y1)2 − ly1

2

]
‖P t+1

U |y1
− P tU |y1

‖22, (37)

where (a) follows from the cosine rule and (b) follows from
the fact that F = h1 + h2 + g, hi(PU |yi) is linear in PU |yi ,
and ∇PU|y1 g is ly1 -Lipschitz continuous of PU |y1

.
Similarly, for the update of PU |y2

, we have

L[P t+1
U |y1

, P t+1
U |y2

, P tU ; Λt]− L[P t+1
U |y1

, P tU |y2
, P tU ; Λt]

≥
[
ρ

2
p(y2)2 − ly1

2

]
‖P t+1

U |y1
− P tU |y1

‖22. (38)

For the update of PU and Λ, we have

L[P t+1
U |y1

, P t+1
U |y2

, P t+1
U ; Λt+1]− L[P t+1

U |y1
, P t+1

U |y2
, P tU ; Λt]

= g(P t+1
U |Y , P

t+1
U )− g(P t+1

U |Y , P
t
U ) + 〈Λt+1, P t+1

U − P tU 〉

+
ρ

2
‖P t+1

U − P tU‖22 −
1

ρ
‖Λt+1 − Λt‖22

≥ ρ− lu
2
‖P t+1

U − P tU‖22 −
1

ρ
‖Λt+1 − Λt‖22. (39)

Combining (37), (38) and (39), we have

L[P t+1
U |Y , P

t+1
U ; Λt+1]− L[P tU |Y , P

t
U ; Λt]

≥
[
ρ

2
p(y1)2 − ly1

2

]
‖P t+1

U |y1
− P tU |y1

‖22

+

[
ρ

2
p(y2)2 − ly2

2

] ∥∥∥P t+1
U |y2
− P tU |y2

∥∥∥2

2

+
ρ− lu

2

∥∥P t+1
U − P tU

∥∥2

2
− 1

ρ

∥∥Λt+1 − Λt
∥∥2

2

(c)

≥
[
ρ

2
p(y1)2 − ly1

2
− lΛ

ρ

]
‖P t+1

U |y1
− P tU |y1

‖22

+

[
ρ

2
p(y2)2 − ly2

2
− lΛ

ρ

] ∥∥∥P t+1
U |y2
− P tU |y2

∥∥∥2

2

+

(
ρ− lu

2
− lΛ

ρ

)∥∥P t+1
U − P tU

∥∥2

2
,

where (c) follows from Lemma 7.

APPENDIX H
PROOF OF PROPOSITION 1

1) If min{ρ2p(y1)2 − ly1
2 −

lΛ
ρ ,

ρ
2p(y2)2 − ly2

2 −
lΛ
ρ ,

ρ−lu
2 −

lΛ
ρ } ≥ 0, according to Lemma 8, we have

L[P t+1
U |Y , P

t+1
U ; Λt+1]− L[P tU |Y , P

t
U ,Λ

t] ≥ 0.

2) ∀t ∈ N, L[P tU |Y , P
t
U , P

t
S|U ; Λt] is upper-bounded.

Assume that there exists P ′U , such that P ′U−(P tU |Y )TPY = 0.
Then we have

L[P tU |Y , P
t
U ; Λt]

= h1(P tU |y1
) + h2(P tU |y2

) + g(P tU |y1
, P tU |y2

, P tU )

+
∑
u

λt(u)δt(u)− ρ

2

∑
u

δt(u)2

= h1(P tU |y1
) + h2(P tU |y2

) + g(P tU |y1
, P tU |y2

, P tU )

+(Λt)T [P tU − (P tU |Y )TPY ]

−ρ
2

[P tU − (P tU |Y )TPY ]T [P tU − (P tU |Y )TPY ]



≤ h1(P tU |y1
) + h2(P tU |y2

) + g(P tU |y1
, P tU |y2

, P tU )

+(Λt)T [P tU − (P tU |Y )TPY ]

= h1(P tU |y1
) + h2(P tU |y2

) + g(P tU |y1
, P tU |y2

, P tU )

+〈Λt, P tU − P ′U 〉
(a)
= h1(P tU |y1

) + h2(P tU |y2
) + g(P tU |y1

, P tU |y2
, P tU )

−〈∇PU g
(
P tU |y1

, P tU |y2
, P tU

)
, P tU − P ′U 〉

(b)

≤ h1(P tU |y1
) + h2(P tU |y2

) + g(P tU |y1
, P tU |y2

, P ′U )

+
lu
2
‖P tU − P ′U‖22

< ∞,

where (a) follows from (32) and (b) is true as ∇PU g is lu-
Lipschitz continuous.

3) {P tU |Y , P
t
U ,Λ

t} is bounded.
Since ∀t ∈ N, P tU |y1

, P tU |y2
are PMFs, {PU |Y }t is bounded.

Similarly, {PU}t is also bounded. For Λt, Lemma 7 can be
generalized to the case where the iteration difference is k and
we have∥∥Λt+k − Λt

∥∥2

2
≤ lΛ

(∥∥∥P t+kU |y1
− P tU |y1

∥∥∥2

2

+
∥∥∥P t+kU |y2

− P tU |y2

∥∥∥2

2
+
∥∥P t+kU − P tU

∥∥2

2

)
,∀k ∈ N+.

Thus, since {PU |Y }t and {PU}t are bounded, {Λ}t is also
bounded.

APPENDIX I
PROOF OF PROPOSITION 2

When ρ is sufficiently large, e.g. ρ =
7βlf

ε3 min{p(y1)2,p(y2)2} ,

we will have min{ρ2p(y1)2 − ly1
2 −

lΛ
ρ ,

ρ
2p(y2)2 − ly2

2 −
lΛ
ρ ,

ρ−lu
2 − lΛ

ρ } ≥ 0. In this case, since L[PU |Y , PU ; Λ] is
non-decreasing between iterations and upper-bounded, there
exists t0, such that

∞ >

∞∑
t=t0

∣∣∣L [P tU |y1
, P tU |y2

, P tU ; Λt
]

−L
[
P t+1
U |y1

, P t+1
U |y2

, P t+1
U ; Λt+1

]∣∣∣
(b)

≥
[
ρ

2
p(y1)2 − ly1

2
− lΛ

ρ

] ∞∑
t=t0

‖P t+1
U |y1
− P tU |y1

‖22

+

[
ρ

2
p(y2)2 − ly2

2
− lΛ

ρ

] ∞∑
t=t0

∥∥∥P t+1
U |y2
− P tU |y2

∥∥∥2

2

+

(
ρ− lu

2
− lΛ

ρ

) ∞∑
t=t0

∥∥P t+1
U − P tU

∥∥2

2
,

where (b) is from Lemma 8. Then as t → ∞, we have∥∥∥P t+1
U |y1
− P tU |y1

∥∥∥
2
→ 0,

∥∥∥P t+1
U |y2
− P tU |y2

∥∥∥
2
→ 0 , and∥∥P t+1

U − P tU
∥∥

2
→ 0. By Lemma 7, we have

∥∥Λt+1 − Λt
∥∥

2
→

0, which implies

P t+1
U − p (y1)P t+1

U |y1
− p (y2)P t+1

U |y2
→ 0.

APPENDIX J
PROOF OF PROPOSITION 3

Since {P tU |Y , P
t
U ,Λ

t} is bounded, there exists a
subsequence {P tsU |Y , P

ts
U ,Λ

ts} that converges to the limit
point (P̂U |Y , P̂U , Λ̂), i.e. lims→∞(P tsU |Y , P

ts
U ,Λ

ts) =

(P̂U |Y , P̂U , Λ̂). For the limit point (P̂U |Y , P̂U , Λ̂), we will
show that it is the stationary point of (11).

By the optimality of PU |y1
, PU |y2

and PU , we have

0 ∈ ∂PU|y1F [P
ts+1

U |y1
, P tsU |y2

]− p(y1)Λts

+ρp(y1)[P tsU − p(y1)P
ts+1

U |y1
− p(y1)P tU |y2

],

0 ∈ ∂PU|y2F [P
ts+1

U |Y ]− p(y2)Λts

+ρp(y2)[P tsU − (P
ts+1

U |Y )TPY ],

0 ∈ ∂PU g
(
P
ts+1

U |y1
, P

ts+1

U |y2
, P

ts+1

U

)
+ Λts

−ρ
(
P
ts+1

U − p(y1)P
ts+1

U |y1
− p(y2)P

ts+1

U |y2

)
.

Taking the limit along the subsequence and using Proposi-
tion 2, we have

0 ∈ ∂PU|y1F [P̂U |y1
]− p(y1)Λ̂

0 ∈ ∂PU|y2F [P̂U |y2
]− p(y2)Λ̂

0 ∈ ∂PUF [P̂U ] + Λ̂,

which indicates that the stationary condition is satisfied at the
limit point (P̂U |Y , P̂U , Λ̂).

Now we check all constraints in (11) are also satisfied at
the limit point.

• Since P tsU |Y ∈ PU |Y ,∀s, and PU |Y is a closed set, we
have P̂U |Y ∈ PU |Y ;

• By taking limit along the subsequence on both sides of
the equation in Proposition 2 5), we have

P̂U = p(y1)P̂U |y1
+ p(y2)P̂U |y1

; (40)

• Based on (40), we have p̂(u) > 0,∀u, and∑
u

p̂(u) =
∑
u

∑
y

p̂(u|y)p(y)

=
∑
y

p(y)
∑
u

p̂(u|y) =
∑
y

p(y) = 1,

which indicate that P̂U ∈ PU .

APPENDIX K
PROOF OF THEOREM 1

Since L[P tU |Y , P
t
U ,Λ

t] is non-decreasing between iterations
and bounded from above, we have that L[P tsU |Y , P

ts
U ,Λ

ts ] is
also monotonic non-decreasing and upper-bounded. Then we
have lims→∞ L[P tsU |Y , P

ts
U ,Λ

ts ] = L[P̂U |Y , P̂U , Λ̂] as L is
continuous for PU |Y ∈ PU |Y , PU ∈ PU , and Theorem 1 is
proved following from Proposition 3.



APPENDIX L
PROOF OF LEMMA 9

The optimality condition of v-subproblem yields

0 =∇vg
(
xk+1

1 , xk+1
2 , vk+1

)
− Λk + ρ

(
p(y1)xk+1

1

+p(y2)xk+1
2 − vk+1

)
−∇φ

(
vk+1

)
+∇φ

(
vk
)
.

As Λk+1 = Λk − ρ
(
p(y1)xk+1

1 + p(y2)xk+1
2 − vk+1

)
, we

have Λk+1 = ∇vg
(
xk+1

1 , xk+1
2 , vk+1

)
− ∇φ

(
vk+1

)
+

∇φ
(
vk
)
. Thus,∥∥Λk+1 − Λk

∥∥2

2

=
∥∥∇vg (xk+1

1 , xk+1
2 , vk+1

)
−∇vg

(
xk1 , x

k
2 , v

k
)

−∇φ
(
vk+1

)
+∇φ

(
vk
)

+∇φ
(
vk
)
−∇φ

(
vk−1

)∥∥2

2

≤ 3
(∥∥∇vg (xk+1

1 , xk+1
2 , vk+1

)
−∇vg

(
xk1 , x

k
2 , v

k
)∥∥2

2

+
∥∥∇φ (vk−1

)
−∇φ

(
vk
)∥∥2

2
+
∥∥∇φ (vk)−∇φ (vk+1

)∥∥2

2

)
≤ 3l2g

(∥∥xk+1
1 − xk1

∥∥2

2
+
∥∥xk+1

2 − xk2
∥∥2

2

)
+ 3

(
l2g + l2φ

) ∥∥vk+1 − vk
∥∥2

2
+ 3l2φ

∥∥vk − vk−1
∥∥2

2
.

APPENDIX M
PROOF OF LEMMA 10

From the update of x1, we have

h1

(
xk+1

1

)
+
〈
xk+1

1 − xk1 ,∇x1
g
(
uk
)〉

+
〈
Λk, p(y1)xk+1

1 + p(y2)xk2 − vk
〉

− ρ

2

∥∥p(y1)xk+1
1 + p(y2)xk2 − vk

∥∥2

2
−∆ϕ1

(
xk+1

1 , xk1
)

≥ h1

(
xk1
)

+
〈
Λk, rk

〉
− ρ

2
‖rk‖22 ,

where uk = (xk1 , x
k
2 , y

k)T and rk = p(y1)xk1 + p(y2)xk2 − vk.
From the update of x2, we have

h2

(
xk+1

2

)
+
〈
xk+1

2 − xk2 ,∇x2
g
(
uk
)〉

+
〈
Λk, p(y1)xk+1

1 + p(y2)xk+1
2 − vk

〉
− ρ

2

∥∥p(y1)xk+1
1 + p(y2)xk+1

2 − vk
∥∥2

2
−∆ϕ2

(
xk+1

2 , xk2
)

≥ h2

(
xk2
)

+
〈
Λk, p(y1)xk+1

1 + p(y2)xk2 − vk
〉

− ρ

2

∥∥p(y1)xk+1
1 + p(y2)xk2 − vk

∥∥2

2
.

From the update of v, we have

g
(
uk+1

)
+
〈
Λk, rk+1

〉
− ρ

2
‖rk+1‖22 −∆φ

(
vk+1, vk

)
≥ g

(
xk+1

1 , xk+1
2 , vk

)
− ρ

2

∥∥p(y1)xk+1
1 + p(y2)xk+1

2 − vk
∥∥2

2

+
〈
Λk, p(y1)xk+1

1 + p(y2)xk+1
2 − vk

〉
,

where uk+1 = (xk+1
1 , xk+1

2 , yk+1)T and rk+1 = p(y1)xk+1
1 +

p(y2)xk+1
2 − vk+1.

Adding up the above three inequalities, we have

L
(
xk+1

1 , xk+1
2 , vk+1,Λk

)
= h1

(
xk+1

1

)
+ h2

(
xk+1

2

)
+ g

(
uk+1

)
+
〈
Λk, rk+1

〉
− ρ

2
‖rk+1‖22

≥ h1

(
xk1
)

+ h2

(
xk2
)

+ g
(
xk+1

1 , xk+1
2 , vk

)
+
〈
Λk, rk

〉
−
[〈
xk+1

1 − xk1 ,∇x1
g
(
uk
)〉

+
〈
xk+1

2 − xk2 ,∇x2
g
(
uk
)〉]

+ ∆ϕ1

(
xk+1

1 , xk1
)

+ ∆ϕ2

(
xk+1

2 , xk2
)

+ ∆φ

(
vk+1, vk

)
− ρ

2
‖rk‖22

= h1

(
xk1
)

+ h2

(
xk2
)

+ g
(
uk
)

+
〈
Λk, rk

〉
− ρ

2
‖rk‖22

− g
(
uk
)

+ g
(
xk+1

1 , xk+1
2 , vk

)
−
〈(
xk+1

1 − xk1 , xk+1
2 − xk2 , 0

)
,∇g

(
uk
)〉

+ ∆ϕ1

(
xk+1

1 , xk1
)

+ ∆ϕ2

(
xk+1

2 , xk2
)

+ ∆φ

(
vk+1, vk

)
= L

(
wk
)

+ g
(
xk+1

1 , xk+1
2 , vk

)
− g

(
uk
)

−
〈(
xk+1

1 − xk1 , xk+1
2 − xk2 , 0

)
,∇g

(
uk
)〉

+ ∆ϕ1

(
xk+1

1 , xk1
)

+ ∆ϕ2

(
xk+1

2 , xk2
)

+ ∆φ

(
vk+1, vk

)
(a)

≥ L
(
wk
)
− lg

2

[∥∥xk+1
1 − xk1

∥∥2

2
+
∥∥xk+1

2 − xk2
∥∥2

2

]
+
δϕ1

2

∥∥xk+1
1 − xk1

∥∥2

2
+
δϕ2

2

∥∥xk+1
2 − xk2

∥∥2

2

+
δφ
2

∥∥vk+1 − vk
∥∥2

2
,

where (a) follows from the assumption 3) and the fact from
[37] that if h : Rn −→ R is a continuous differentiable
function where gradient ∇h is Lipschitz continuous with
the modulus lh > 0, then for any x, y ∈ Rn, we have
|h(y) − h(x) − 〈∇h(x), y − x〉| ≤ lh

2 ‖y − x‖22, and apply
this result on g here.

By using the fact that

〈Λk+1 − Λk, rk+1〉 = −1

ρ
‖Λk+1 − Λk‖22,

we have

L
(
wk+1

)
− L

(
wk
)

= L
(
wk+1

)
− L

(
xk+1

1 , xk+1
2 , vk+1,Λk

)
+L

(
xk+1

1 , xk+1
2 , vk+1,Λk

)
− L

(
wk
)

= −1

ρ

∥∥Λk+1 − Λk
∥∥2

2

+L
(
xk+1

1 , xk+1
2 , vk+1,Λk

)
− L

(
wk
)

≥

(
δϕ1 − lg

2
−

3l2g
ρ

)∥∥xk+1
1 − xk1

∥∥2

2

+

(
δϕ2 − lg

2
−

3l2g
ρ

)∥∥xk+1
2 − xk2

∥∥2

2

+

(
δφ
2
−

3l2g + 3l2φ
ρ

)∥∥vk+1 − vk
∥∥2

2

−
3l2φ
ρ

∥∥vk − vk−1
∥∥2

2
,



which implies (
L
(
wk+1

)
−

3l2φ
ρ

∥∥vk+1 − vk
∥∥2

2

)

−

(
L
(
wk
)
−

3l2φ
ρ

∥∥vk − vk−1
∥∥2

2

)

≥

(
δϕ1
− lg
2

−
3l2g
ρ

)∥∥xk+1
1 − xk1

∥∥2

2

+

(
δϕ2
− lg
2

−
3l2g
ρ

)∥∥xk+1
2 − xk2

∥∥2

2

+

(
δφ
2
−

3l2g + 6l2φ
ρ

)∥∥vk+1 − vk
∥∥2

2
.
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