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Abstract

Contributions to Descriptive Inner Model Theory

by

Trevor Miles Wilson

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor John R. Steel, Chair

Descriptive inner model theory is the study of connections between descript-

ive set theory and inner model theory. Such connections form the basis of

the core model induction, which we use to prove relative consistency results

relating strong forms of the Axiom of Determinacy with the existence of a

strong ideal on ℘ω1
(R) having a certain property related to homogeneity.

The main innovation is a unified approach to the “gap in scales” step of

the core model induction.
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Introduction

We will prove the following relative consistency statements.

Main Theorem.

(1) Assuming ZF + ADR + “Θ is regular,” there is a forcing extension where ZFC holds,

(a) The nonstationary ideal NSω1,R is strong and pseudo-homogeneous, and

(b) There is a c-dense pseudo-homogeneous ideal on ℘ω1
(R).

(2) Assuming ZFC and the existence of a strong pseudo-homogeneous ideal on ℘ω1
(R),

there is an inner model of ZF + AD + θ0 < Θ containing all the reals and ordinals.

The theories ADR + “Θ is regular” and AD + θ0 < Θ are both natural strengthenings of

AD, the Axiom of Determinacy. Strength is a property of ideals introduced in [1] that is

intermediate between precipitousness and pre-saturation. Pseudo-homogeneity is a property

of ideals introduced in Chapter 1 that is similar to homogeneity except that it pertains to

the theory of the generic ultrapower rather than to that of the generic extension. The ideals

in the conclusions of (1a) and (1b) both satisfy the hypothesis of (2), and in turn the model

of AD + θ0 < Θ in the conclusion of (2) is a significant step toward constructing a model of

ADR + “Θ is regular” and thereby acheving equiconsistency.

Throughout the text we assume the following base theory unless otherwise noted:

Assume ZF + DCR.

So a theorem is a theorem of ZF + DCR, and AD means AD + ZF + DCR, for example.

Part (1) of the Main Theorem, the forcing direction, is established in Chapter 1. We

define a fairly general class of forcing notions P that can be used to force the conclusion of

(1). This class of forcing notions contains P = Col(ω1,R) and P = Pmax, showing respectively

that we can add CH or ¬CH to the conclusion. These forcing extensions satisfy c-DC and we

get full AC by a second forcing with Col(Θ, ℘(R)) whose role in the argument is negligible.

We show that these forcing extensions have ideals I with the ordinal covering property,

which says that for every function ℘ω1
(R) → Ord there are densely many I-positive sets

on which the function agrees with a function in the ground model. The ordinal covering

property in turn can be used to show that I is strong, and together with the homogeneity

of P, to show that I is pseudo-homogeneous.

The remaining chapters are all devoted to establishing the inner model direction (2) of

the Main Theorem. From a strong pseudo-homogeneous ideal on ℘ω1
(R) we construct an

inner model of AD + θ0 < Θ via a core model induction. The basic idea of the core model

induction is to analyze the extent of determinacy using mice with Woodin cardinals. The

mice with Woodin cardinals themselves are obtained by core model theory, namely the Kc

constructions of [40] and relativized versions that we call Kc,F constructions. Our core model

induction argument is similar to that used to prove the following related theorem:

Theorem (Ketchersid [18]). If ZFC + CH holds, the nonstationary ideal NSω1 is ω1-

dense below a stationary set, and the corresponding generic elementary embedding j � Ord
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is independent of the generic filter, then there is an inner model of AD + θ0 < Θ containing

all the reals and ordinals.

By a theorem whose proof is outlined in Sargsyan’s thesis [30], the conclusion of Ketcher-

sid’s theorem can be strengthened to the existence of an inner model of ADR +“Θ is regular”

containing all the reals and ordinals. This produces an equiconsistency because Woodin has

shown in unpublished work that the hypothesis can be forced from ADR + “Θ is regular” by

a similar method to the one we use to prove (1) of the Main Theorem.

The primary difference from Ketchersid’s theorem is that our ideal is not assumed to be

dense or even pre-saturated but merely strong. A generic ultrapower Ult(V,H) by a strong

ideal may fail to contain all the reals of the generic extension V [H]. Although strong ideals

were introduced thirty years ago in [1] it was not known how to derive significant large

cardinal strength from them until recently. In [3] the existence of a strong ideal is shown to

be equiconsistent with the existence of a Woodin cardinal.

Another difference is that we take a new approach to the “gap in scales” case of the

core model induction, which first occurs when going beyond hyperprojective determinacy.

In Chapter 3, which can be read independently of the rest of the paper, we develop some

descriptive-set-theoretic tools for analyzing a gap in scales. Then in Chapters 4 and 5 we

present two parallel methods for “sealing” the gap; one using weakly homogeneous trees

and the other using directed systems of quasi-iterable pre-mice. These methods are inter-

changable in our argument except that the latter depends on a conjecture (Conjecture 5.1.2)

and so it is not officially part of the proof of the Main Theorem.

Changing the approach to the “gap in scales” case is not necessary to prove the Main

Theorem but we have chosen to do so because it results in a substantial simplification of

the argument. In particular, it erases the distinctions between weak and strong gaps, and

between gaps that end inside a premouse over R and those that do not.

The Main Theorem is a step toward our original goal, which was to find a theory sat-

isfied by the Pmax extension of a model of ADR + “Θ is regular” that is equiconsistent with

the theory ADR + “Θ is regular.” Originally it was anticipated that this theory would in-

volve forcing axioms and properties of the nonstationary ideal on ω1 because these are the

statements that Pmax was designed to force. For example, under ADR + “Θ is regular” the

forcing axiom MM(c), which is Martin’s Maximum for posets no larger than the continuum,

is forced by Pmax. In turn MM(c) implies that AD holds in L(R) (Steel–Zoble [38]) and is

expected to be stronger, possibly equiconsistent with ADR + “Θ is regular” itself. However,

determining the consistency strength of MM(c) appears to be a hard problem because the

known methods for getting a model of AD + θ0 < Θ, including those of Chapters 4 and 5,

do not seem to apply.
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CHAPTER 1

Forcing strong ideals from determinacy

In this chapter we prove the forcing direction (1) of the Main Theorem. We define the

relevant properties of ideals and give examples of such ideals in forcing extensions of models

of “ADR + Θ is regular.” In Sections 1.1 and 1.2 we introduce the elements of determinacy

theory required for the analysis of these forcing extensions. In Section 1.3 we introduce

some properties of ideals and discuss their relations to one another. In Sections 1.4 and 1.5

we exhibit some ideals with these properties: the nonstationary ideal NSω1,R on ℘ω1
(R) in

Section 1.4, and an induced ideal on ℘ω1
(R) in Section 1.5.

In this chapter, and only in this chapter, we work under the assumption

ZF + ADR + Θ is regular + V = L(℘(R)).

Strategies for real games are coded by sets of reals, so ADR is absolute to L(℘(R)) and the

consistency of this assumption follows from that of ZF + ADR + Θ is regular.

1.1. The theory “ADR + Θ is regular”

The Axiom of Determinacy (AD) is the statement, proposed as an axiom by Mycielski and

Steinhaus in [29], that every two-player ω-length game of perfect information on the integers

is determined. By “determined” we mean that one player or the other has a winning strategy

in the game. Such a game is specified by its payoff set, the subset of ωω corresponding to

wins by the first player. By convention we use the symbol R to denote the “logician’s reals,”

that is, the Baire space

R = ωω.

So for every set of reals A ⊂ R there is a corresponding game GA where player I wins if the

sequence of integers played is in A and player II wins if it is in the complement of A. We

say “A is determined” if the game GA is determined.

Open and closed integer games are determined by the Gale–Stewart Theorem [5]. That

is, if A ⊂ R is an open or closed set then the game GA is determined. Because the Axiom

of Choice implies the existence of undetermined integer games, AD does not describe the

universe itself, but rather the realm of “nice” sets of reals. For example, AD implies that

every set of reals is Lebesgue measurable and has the Baire Property and the Perfect Set

Property. Another consequence of AD is that sets of reals are pre-wellordered by the Wadge

ordering ≤W defined by

A ≤W B ⇐⇒ A = f−1(B) or A = f−1(R \B) for some continuous function f.
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The Wadge hierarchy extends and refines the hierarchy of Borel sets studied in analysis.

Given a set A of reals, its rank |A|W in this prewellordering is a natural way to measure its

logical complexity by an ordinal number. We define

℘α(R) = {A ⊂ R : |A|W < α}.

If AD holds then it holds in L(R) because strategies for integer games are coded by reals.

Therefore if AD is consistent then so is AD + V = L(R). So far it seems that all natural

theories that imply the consistency of AD (such as large cardinals) actually imply that AD

holds in L(R). Moreover AD can be used to develop a nice structure theory for L(R) that

avoid the trivialities of V = L. For these reasons AD is often regarded as a good candidate

for the true theory of L(R). The theory AD has considerable large cardinal strength. For

example, it implies that ω1 is a measurable cardinal as witnessed by the club filter (Solovay,

see [28]). In fact, it is equiconsistent with the existence of infinitely many Woodin cardinals

(see [31].)

The axiom ADR states that every two-player ω-length game of perfect information on

the reals is determined. The consistency strength of ADR is strictly greater than that of AD,

and the former cannot hold in L(R). The further strengthening “ADR + Θ is regular” simply

says that the ordinal Θ defined by

Θ = sup{α ∈ Ord : there is a surjection R→ α}

is a regular cardinal. (In general under AD it is a strong limit cardinal.) Notice that the

regularity of Θ is equivalent to the nonexistence of a cofinal map R → Θ: if there were a

cofinal map f : R→ Θ then Θ would be singular as witnessed by a map from the order type

of ran f , and the converse is clear. Methods of forcing over models of “ADR + Θ is regular”

are developed in Woodin’s book [45].

The relative strength of extensions of AD such as ADR and “ADR + Θ is regular” can be

analyzed in terms of the Solovay sequence, a natural sequence of markers along the Wadge

hierarchy, defined as follows.

Definition 1.1.1. The Solovay sequence {θα : α < Ω} is defined by

• θ0 = sup{|A|W : A ∈ OD},
• θα+1 = sup{|A|W : A ∈ ODB} for any B ⊂ R with |B|W = θα if it exists, and

• θλ = sup{θα : α < λ} if λ is limit.

The height Θ of the Wadge hierarchy is equal to θΩ.

1.2. Col(ω,R)-generic ultrapowers

One consequence of ADR that is particularly relevant for us is that every subset of ℘ω1
(R)

either contains, or is disjoint from, a club set (Solovay, [33]). So the club filter is a measure

(the “Solovay measure”, denoted here by µ,) that witnesses the R-supercompactness of ω1.

µ = {A ⊂ ℘ω1
(R) : A contains a club set}
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If we wish to force the Axiom of Choice then of course such large cardinal properties of ω1

must be destroyed. However, in later sections we will show that there are useful “traces” of

the R-supercompactness of ω1 apparent in certain generic extensions satisfying AC.

Under our assumption of ADR + Θ is regular + V = L(℘(R)) we have DC, the Axiom

of Dependent Choice. To see this, first notice that it suffices to show DC for relations on

℘(R) because every set is definable from a set of reals and an ordinal. Second, because Θ

is regular, for every total relation R on ℘(R) there is an α < Θ such that the restriction

R ∩ (℘α(R) × ℘α(R)) is total. This restriction is coded by a set of reals, so it remains to

notice that DC for sets of reals follows from uniformization for relations on R, which in turn

follows from ADR.

The ultrapower Ult(Ord, µ) of the ordinals by the Solovay measure is wellfounded: If

(αi : i < ω) is a decreasing sequence of ordinals in the generic ultrapower, we can use DC to

choose functions Fi : ℘ω1
(R) → Ord representing αi. By the countable completeness of the

Solovay measure there is a club of σ such that (Fi(σ) : i < ω) is a decreasing sequence of

ordinals in V , a contradiction.

Therefore we can define the µ-ultrapower map

jµ : Ord→ Ord.

We can extend jµ in a natural way to act on any hereditarily wellorderable set. In particular

if S ⊂ Ord we can define

jµ : HODS → Ult(HODS, µ).

We cannot extend jµ to an elementary embedding on V because  Lòs’s Theorem need not

hold in the absence of AC. The relevant failure of choice here is that we cannot choose an

ω-length enumeration f(σ) of each σ ∈ ℘ω1
(R), or else the choice function would represent

an ω-length enumeration [f ]µ of R in the ultrapower, which is impossible.

However, if we are given a generic enumeration of R then can generically extend jµ to an

ultrapower map defined on all of V by the following argument due to Woodin (unpublished.)

Definition 1.2.1. Let A ⊂ Rω.

• For p ∈ Col(ω,R) we say A is weakly comeager below p if, for a club set of countable

σ ⊂ R, the set A ∩ σω is comeager1 below p in σω

• A is weakly comeager if it is weakly comeager below ∅.

Lemma 1.2.2. Let A ⊂ Rω and p ∈ Col(ω,R). Either A is weakly comeager below p, or

Rω \ A is weakly comeager below some condition q ≤ p in Col(ω,R).

Proof. If A is not weakly comeager below p, then because the club filter is an ultrafilter

there is a club set of countable σ ⊂ R such that the set A ∩ σω is not comeager below

p. For such σ, because the topological space σω is homeomorphic to R every subset of σω

has the Property of Baire by AD, so there is a condition q ∈ Col(ω, σ) such that the set

1We equip σω with the product of the discrete topologies on σ, so it is homeomorphic to R.
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¬A∩ σω is comeager below q. By the normality of the club filter, there is a single condition

q ∈ Col(ω,R) such that, for a club set of σ, the set ¬A ∩ σω is comeager below q. �

Given a V -generic filter h ⊂ Col(ω,R) we can define a filter on the subsets of Rω in V by

Uh = {A ⊂ Rω : A is weakly comeager below some condition p ∈ h).

By Lemma 1.2.2 this filter is an ultrafilter on V .

Theorem 1.2.3. Given a V -generic filter h ⊂ Col(ω,R),  Lòs’s Theorem holds for the

ultrapower Ult(V, Uh) = {F : Rω → V }V /Uh. In particular, we get an elementary embedding

jh : V → Ult(V, Uh) ⊂ V [h].

Proof. We lack the Axiom of Choice, so we must verify the existential quantification

step in the proof of  Lòs’s Theorem. That is, given a formula ϕ in the language of set theory

and a function F : Rω → V such that the set A = {f ∈ Rω : ∃X ϕ[F (f), X]} is in Uh, we must

show that there is a function G : Rω → V such that the set A′ = {f ∈ Rω : ϕ[F (f), G(f)]}
is in Uh. In fact we do not need to shrink the set at all: A′ = A works.

Because V = L(℘(R)), every set X ∈ V is OD from a set of reals. Because Θ is regular,

there is an ordinal η < Θ such that for all f ∈ A we have ϕ[F (f), X] for some set X that

is OD from a set of reals of Wadge rank < η. By ADR and in particular by uniformization

for relations on Rω × ℘η(R), which is a surjective image of R, there is a choice function

C : Rω → ℘η(R) such that for all f ∈ A we have ϕ[F (f), X] for some set X that is OD from

C(f). Define G(f) to be the least set X that is OD from C(f), in the natural wellordering

of such sets, such that ϕ[F (f), X] holds. �

Lemma 1.2.4. Given a function F : Rω → Ord and a condition p ∈ Col(ω,R), there is a

function F0 : ℘ω1
(R)→ Ord and a condition q ≤ p in Col(ω,R) such that the set

A = {f ∈ Rω : F (f) = F0(ran f)}

is weakly comeager below q.

Proof. For σ ∈ ℘ω1
(R) the topological space σω is homeomorphic to R, so it is not a

wellordered union of meager sets by AD. Define F0(σ) as the least ordinal α such that the

set {f ∈ σω : F (f) = α} is nonmeager in σω. This set is comeager below some condition

q ∈ Col(ω, σ). By the normality of the club filter, there is a single condition q ∈ Col(ω,R)

such that for a club set of σ, the set

{f ∈ σω : F (f) = F0(σ)}

is comeager in σω below q. It remains to observe that for comeager many f ∈ σω we have

σ = ran f . �

As an immediate consequence, we see that the Uh-ultrapower is wellfounded and extends

the µ-ultrapower:
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Theorem 1.2.5. Let h ⊂ Col(ω,R) by V -generic. There is an isomorphism

Ult(Ord, µ)→ Ult(Ord, Uh)

[F0]µ 7→ [F0 ◦ ran]Uh .

In particular, Ult(Ord, Uh) is wellfounded and jh � Ord = jµ � Ord.

Proof. First we show that this definition gives a well-defined embedding Ult(Ord, µ)→
Ult(Ord, Uh). Let R denote the relation =, 6=, ∈, or /∈. Suppose F0, F1 : ℘ω1

(R)→ Ord are

such that F0(σ) R F1(σ) for a club set of σ. Then for each σ in this club, comeager many

f ∈ σω have range σ, so this club witnesses that F0(ran f)RF1(ran f) for a weakly comeager

set of functions f : Rω → Ord. Now the surjectivity of this embedding follows from Lemma

1.2.4. �

By the same argument, we get jh � HODS = jµ � HODS for any set of ordinals S.

Lemma 1.2.6. Let h ⊂ Col(ω,R) be V -generic. The generic ultrapower Ult(V, Uh) con-

tains all the reals of the generic extension V [h].

Proof. Let ẋ be a Col(ω,R)-term for a real. We define the associated continuous

function F : Rω → R by

F (f) =
⋃{

s ∈ ω<ω : (∃i < ω) (f � i  s ⊂ ẋ)
}
,

a routine calculation shows that [F ]Uh = ẋh. �

We say that a set A ⊂ R is R-universally Baire if there are trees S and T such that

A = p[S] = R \ p[T ] and V Col(ω,R) |= p[S] = R \ p[T ].

Corollary 1.2.7. Every set of reals is R-universally Baire.

Proof. Under ADR every set of reals A is Suslin and co-Suslin. Let S and T be trees

with p[S] = ¬p[T ] = A. Take a generic enumeration h ⊂ Col(ω,R) and let jh : V →
Ult(V, h) denote the associated elementary embedding. The trees S∗ = jµ(S) = jh(S) and

T ∗ = jµ(T ) = jh(T ) are in V and project to complements in Ult(V, Uh). Because Ult(V, Uh)

contains all the reals of V [h], this shows that A is R-universally Baire. �

Corollary 1.2.8. jµ(ω1) = Θ.

Proof. Take a generic enumeration h ⊂ Col(ω,R). Forcing with Col(ω,R) does not

collapse Θ because it is regular, so we have jµ(ω1) = jh(ω1) = ω
Ult(V,Uh)
1 = ω

V [h]
1 = Θ. �

1.3. A covering property for ideals in generic extensions

Still working under the assumption “ADR + Θ is regular + V = L(℘(R)),” we consider

ideals in certain generic extensions

V [G][H] |= ZFC
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where G is V -generic for a poset P with the following properties (two examples to keep in

mind are P = Col(ω1,R) and P = Pmax):

• P is coded by a set of reals,

• P is σ-closed,

• P is homogeneous,

• 1 P R is wellorderable, and

• 1 P c-DC, dependent choice for c-sequences,

and H is V [G]-generic for Col(Θ, ℘(R))V [G].

Because Θ is regular we have Θ = c+ in V [G]. Because the forcing Col(Θ, ℘(R))V [G] is

c-closed in V [G], it does not add any sets of reals or subsets of ℘ω1
(R). Notice that the proof

of this basic forcing fact requires dependent choice for c-sequences. So we have Θ = c+ in

V [G][H]. Finally, notice that V [G][H] satisfies AC because it has a wellordering of ℘(R)V

and V = L(℘(R)).

We use the term “ideal” to refer to what is more correctly called a normal, fine, countably

complete, and proper ideal:

Definition 1.3.1. An ideal on ℘ω1
(R) is a set I ⊂ ℘ω1

(R) with the properties that

• if S, T ∈ I then S ∪ T ∈ I,

• if S ∈ I and T ⊂ S then T ∈ I,

• ∅ ∈ I and R /∈ I (properness,)

• if x ∈ R then {σ ∈ ℘ω1
(R) : x /∈ σ} ∈ I (fineness,)

• if {Si : i < ω} ⊂ I then
⋃
i<ω Si ∈ I (countable completeness,) and

• if {Sx : x ∈ R} ⊂ I then {σ ∈ ℘ω1
(R) : ∃x ∈ σ (σ ∈ Sx)} ∈ I (normality.)

We use I+ to denote ℘ω1
(R) \ I, the collection of I-positive sets. Under the Axiom

of Choice normality can be characterized by Fodor’s property: every function F : S → R
on a I-positive set S is constant on a I-positive set. Every (normal) ideal I contains the

nonstationary ideal.

Given an ideal I ∈ V [G][H] and a V [G][H]-generic ultrafilter K ⊂ I+/I we can define

a generic elementary embedding

jK : V [G][H] 7→ Ult(V [G][H], K) ⊂ V [G][H][K].

Normality implies that RV [G][H] (= RV ) is represented in Ult(V [G][H], K) by the identity

function on ℘ω1
(R). We list some commonly studied properties of ideals in descending order

of strength—that is, each property implies the next under ZFC.

Definition 1.3.2 (ZFC). Let I be an ideal on ℘ω1
(R).

• I is c-dense ideal if there is a family of c many I-positive sets (Sα : α < c) such

that for each S ∈ I+ there is α < c with Sα \ S ∈ I.

• I is saturated ideal if there is no family of c+ many I-positive sets (Sα : α < c+)

that is an antichain: Sα ∩ Sβ ∈ I when α 6= β.

6



• I is pre-saturated ideal if for every sequence of antichains (Ai : i < ω) there is a

I-positive set S such that for each i < ω we have |{T ∈ Ai : T ∩ S ∈ I+}| ≤ c.

• I is strong ideal if it is precipitous (see below) and 1 I+/I j(ω1) = c+.

• I is precipitous ideal if 1 I+/I (Ult(V,K) is wellfounded).

These implications are all trivial except the one from pre-saturation to strength, which is

a consequence of the well-known facts that in the forcing extension by a pre-saturated ideal

on ℘ω1
(κ) the cardinal successor κ+ is not collapsed and the generic ultrapower is closed

under countable sequences. We define a property of ideals in V [G][H] relative to the ground

model V .

Definition 1.3.3. In V [G][H], an ideal I has the ordinal covering property with respect

to V if for every function F : ℘ω1
(R)→ Ord and every I-positive set S there is an I-positive

subset S0 ⊂ S and a function F0 : ℘ω1
(R)→ Ord in V such that F � S0 = F0 � S0.

Just like with Lemma 1.2.4 on functions Rω → Ord, we can use this property to show

that the generic ultrapower extends jµ.

Lemma 1.3.4. In V [G][H], if I is an ideal on Pω1(R) with the ordinal covering property

with respect to V and K ⊂ I+ \ I is a V [G][H]-generic filter, then

(a) the corresponding generic embedding jK � Ord is equal to jµ � Ord, and

(b) I is strong.

Proof. (a) For any function F : ℘ω1
(R) → Ord there are densely many I-positive sets

S ⊂ ℘ω1
(R) such that F � S = F0 � S for some F0 ∈ V so by genericity there is S ∈ K with

this property. We have K ∩ V = µ, so this shows that

{F : ℘ω1
(R)→ Ord}V [G][H]/K = {F : ℘ω1

(R)→ Ord}V /K

= {F : ℘ω1
(R)→ Ord}V /µ

and also that jK � Ord = jµ � Ord.

(b) By part (a) and Corollary 1.2.8 applied in V we have jK(ω1) = jµ(ω1) = ΘV = c+. �

Using the homogeneity of P we can derive an additional consequence of the ordinal

covering property:

Definition 1.3.5 (ZFC). An ideal I on ℘ω1
(R) is pseudo-homogeneous if, whenever

α ∈ Ord, s ∈ Ordω, λ < c+, and θ is a formula of set theory, the statement

Ult(V,K) |= θ[α, j(s), j“(λω)]

is independent of the choice of generic filter K ⊂ I+ \ I.

One consequence of pseudo-homogeneity is that jK � Ord is independent of the generic

filter K. Another consequence is that the class HOD of the generic ultrapower is a subclass

of V and is independent of the generic filter, because HOD is coded by the theory of the

ordinals.
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Lemma 1.3.6. In V [G][H], if I is an ideal on ℘ω1
(R) with the ordinal covering property

relative to V then I is pseudo-homogeneous.

Proof. Let α ∈ Ord, s ∈ Ordω, λ < c+, and let θ be a formula of set theory. Take

a function F0 : ℘ω1
(R) → Ord in V representing α in Ult(V, µ). By the ordinal covering

property F0 also represents α in Ult(V [G][H], K). In both ultrapowers j(s) is represented by

the constant function F1 given by F1(σ) = s, which is in V because the forcing P is countably

closed. Let π : R → λω be a surjection in V . In both ultrapowers RV is represented by

the identity function on ℘ω1
(R), so j“(λω) is represented by the function F2 ∈ V given by

F2(σ) = π“σ.

So we have Ult(V [G][H], K) |= θ[α, j(s), j“(λω)] if and only if the set

S = {σ : V [G][H] |= θ[F0(σ), F1(σ), F2(σ)]}

is in K. We have S ∈ V by the homogeneity of P, so it is in K if and only if it is in µ—that

is, if and only if it contains a club. �

In the remaining two sections of this chapter we will prove (1) of the Main Theorem using

Lemmas 1.3.4 and 1.3.6. In Section 1.4 we will show that the nonstationary ideal has the

ordinal covering property in V [G][H], establishing (1a), and in Section 1.5 we will construct

a c-dense ideal in V [G][H] with the ordinal covering property, establishing (1b).

1.4. The covering property for NSω1,R

We continue to work in V [G][H] under the assumptions stated at the beginning of Section

1.3. The material in this section is adapted from the proofs of Lemmas 9.143 and 9.144 in

[45], which are related results about JNS, the nonstationary ideal on ω2 restricted to ordinals

of cofinality ω, in the Pmax extension. We instead consider NSω1,R, the nonstationary ideal

on ℘ω1
(R), and generalize to the class of forcings defined in Section 1.3.

To establish the ordinal covering property for NSω1,R in V [G][H]—or equivalently in

V [G]—we will need the following lemma, which gives a criterion for a subset of ℘ω1
(R) to

be stationary.

Lemma 1.4.1. Let Ṡ be a P-name for a subset of ℘ω1
(R). The following are equivalent:

(1) p  Ṡ contains a club

(2) For a club of σ, we have

(∀∗g ⊂ P � σ containing p)(∀q ≤ g) (q  σ ∈ Ṡ)(*)

where ∀∗ denotes the category quantifier for filters and “q ≤ g” is shorthand for

“q ≤ r for all r ∈ g.”

Proof. Assume (1) holds, and let ḟ be a P-name for a function R<ω → R such that

p forces Ṡ to contain the club generated by ḟ . Assume without loss of generality that the

conditions of P are reals. To establish (2) it is enough to observe that there is a club of σ
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such that for every t ∈ σ<ω, the set

Dt = {q ∈ P ∩ σ : (∃x ∈ σ) (q  ḟ(t) = x)}

is dense below p in P ∩ σ.

Now assume (2). Take N = Lα(Pβ(R)) satisfying “ADR + Θ is regular” and a reasonable

fragment of ZF, containing the set of reals

A = {(q, x) : x codes σ ∈ ℘ω1
(R) and q  σ ∈ Ṡ},

and admitting a surjection F : R → N . Under ADR, every set of reals is R-universally

Baire, including the sets of reals coding the first-order theory of the structure (Vω+1,∈, A).

Therefore a club C of σ ∈ ℘ω1
(R) have the following properties:

• property (*) holds,

• defining Xσ = F“σ we have Xσ ≺ N and Xσ ∩ R = σ, and

• defining πσ : Xσ
∼= Nσ as the transitive collapse of Xσ, we have

(Vω+1 ∩Nσ[h],∈, A ∩Nσ[h]) ≺ (Vω+1,∈, A)

for any Nσ-generic filter h ⊂ Col(ω, σ).

All σ ∈ C have the following property:

Nσ |= p gP�σ

(
1 hCol(ω,σ) (∀q ≤ g)

(
(q, σh) ∈ πσ(A)g×h)

))
,(**)

where by σh we mean the real generically coding σ relative to h, and by πσ(A)g×h we mean

the unique extension of πσ(A) to a set of reals in Nσ[g][h]—which can be rearranged as a

generic extension of Nσ by Col(ω, σ)—given by universal Baire-ness.

Now given an V -generic filter G ⊂ P containing p, there is a club of σ such that σ ∈ C
and Xσ[G] ≺ N [G] and Xσ[G] ∩ V = Xσ. Given any σ in this club, take g = G ∩ σ. The

set of conditions q ≤ p that are either below every element of g or incompatible with some

element of g is dense below p. Therefore we can take q ≤ g in G. Any lower bound q ≤ g

forces σ ∈ Ṡ by (**). So this club witnesses (1). �

Theorem 1.4.2. In V [G][H], the nonstationary ideal NSω1,R has the ordinal covering

property with respect to V .

Proof. Suppose that the condition p0 forces that Ḟ is an ordinal-valued function defined

on a stationary set Ṡ ⊂ ℘ω1
(R). By Lemma 1.4.1 an equivalent condition for stationarity

is that for all p ≤ p0, the formula (*) fails for a term for the complement of Ṡ, that is, for

stationary many (in fact club many by ADR) countable σ ⊂ R we have

(∃∗g ⊂ P � σ containing p)(∃q ≤ g) (q  σ ∈ Ṡ).

Under AD a wellordered union of meager sets is meager, so we can let F0(σ) be the least

ordinal α such that

(∃∗g ⊂ P � σ containing p)(∃q ≤ g) (q  Ḟ (σ) = α).
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Using our equivalent condition for stationarity again, we see that p0 forces the set of σ ∈ Ṡ
such that Ḟ (σ) = F0(σ) to be stationary. �

Together with Lemmas 1.3.4 and 1.3.6 this completes the proof of (1a) of the Main

Theorem.

1.5. A c-dense ideal with the covering property

We continue to work in V [G][H] under the assumptions stated at the beginning of Section

1.3. In this section we slightly generalize a theorem of Woodin, originally proved for P =

Col(ω1,R). It easily generalizes to the class of forcing extensions P we are considering.

Lemma 1.5.1. If h ⊂ Col(ω,R) is V [H]-generic and G ∈ V [h], then letting jh : V →
Ult(V, Uh) ⊂ V [h] denote the corresponding elementary embedding, in V [h][H] there is an

Ult(V, Uh)-generic filter G′ ⊂ jh(P) extending jh“G.

Proof. The poset jh(P) is countably closed in Ult(V, Uh) by elementarity and is coded

by a set of reals there. We have R ∩ V [h] = R ∩ Ult(V, Uh) by Lemma 1.2.6, so jh(P) is

countably closed in V [h]. Therefore jh“G has a lower bound p in jh(P) because it is countable

in V [h].

A subset of jh(P) in Ult(V, Uh) is represented by a function Rω → ℘(P) in V , which

in turn is coded by a set of reals in V . Therefore in V [h] there is a surjection ℘(R)V →
℘(jh(P))Ult(V,Uh). In V [G][H], by the definition of H, there is a surjection ω

V [h]
1 = ΘV →

℘(R)V whose proper initial segments are in V [G] ⊂ V [h]. So composing these surjections we

get a surjection ω
V [h]
1 → ℘(jh(P))Ult(V,Uh) whose proper initial segments are in V [h]. We can

use this surjection to recursively define a decreasing ω1-sequence (pα : α < ω1) of conditions

in jh(P) below p whose proper initial segments are in V [h] and which generates the desired

filter G′. (The reason that we want the proper initial segments to be in V [h] is that this is

is the model in which jh(P) is countably closed.) �

We can use such a generic G′ to extend jh to an elementary embedding j∗h on V [G] and

then define the induced ideal from j∗h (see [4]). This induced ideal will automatically have

the ordinal covering property.

Theorem 1.5.2. In V [G][H] there is a c-dense ideal on ℘ω1
(R) with the ordinal covering

property relative to V .

Proof. The size of the poset P is the continuum, so P×Col(ω,R) is forcing-equivalent

to Col(ω,R). This means that in V [G][H] there is a Col(ω,R)-term h such that

∅ Col(ω,R) h ⊂ Col(ω,R) is a V [H]-generic filter and G ∈ V [h].

Therefore by Lemma 1.5.1, forcing with Col(ω,R) over V [G][H] adds an Ult(V, Uh)-generic

filter G′ ⊂ jh(P) extending j“G . We can extend jh to an elementary embedding j∗h : V [G]→
Ult(V, Uh)[G

′] by defining j∗h(τG) = jh(τ)G′ . Because V [G] contains all the subsets of ℘ω1
(R)
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in V [G][H], we can define an ideal I on ℘ω1
(R) in V [G][H] by

S ∈ I ⇐⇒ ∅ Col(ω,R) Ř /∈ j∗h(Š).

The quotient ℘(℘ω1
(R))/I is isomorphic to the subalgebra B = {||Ř ∈ j∗h(Š)|| : S ⊂ ℘ω1

(R)}
of the regular-open algebra RO(Col(ω,R)).

Clearly I is a fine ideal. If (Sx : x ∈ R) is a family of subsets of ℘ω1
(R) and S is its

diagonal union, then

||Ř ∈ j∗h(S)|| = ||∃x ∈ Ř (Ř ∈ j∗h(Sx))|| = sup
x∈R
||Ř ∈ j∗h(Sx)||.

Therefore I is normal and B is an c-complete subalgebra of RO(Col(ω,R)). Because the

Boolean algebra RO(Col(ω,R)) has size c+ and has the c+-chain condition, B is a complete

subalgebra. In general, if κ is a cardinal then every complete subalgebra of a complete

κ-dense Boolean algebra is κ-dense, so B is c-dense.

We will show that I has the ordinal covering property relative to V . In V [G][H], suppose

that F : S → Ord where S ∈ I+. Note that F ∈ V [G] because H does not add any functions

from ℘ω1
(R). Take p ∈ Col(ω,R) forcing Ř ∈ j∗(S). Take q ≤ p forcing j∗h(F )(Ř) = α for

some ordinal α. Take a function F0 : ℘ω1
(R) → Ord in V such that [F0]µ = α. The empty

condition forces [F0]µ = jh(F0)(Ř) = j∗h(F0)(Ř), so q forces j∗h(F )(Ř) = j∗h(F0)(Ř). Therefore

the set {σ ∈ S : F (σ) = F0(σ)} is I-positive. �

Together with Lemmas 1.3.4 and 1.3.6 this completes the proof of (1b) of the Main

Theorem.
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CHAPTER 2

The core model induction

The core model theory in a core model induction can be summarized by the KF existence

dichotomy, which is a straightforward extension of the K existence dichotomy to a kind of

relativized mice. We call the new mice hybrid mice. They are relativised in two ways: by

starting with some fixed transitive set x as a first level, and by closing under some fixed

function F . We think of F as the “small next step” function of a hybrid premouse. In

ordinary premice, the small next steps consist in moving from P to rud(P), so ordinary

premice will be F -premice where F (P) = rud(P). The “large next steps” in an F -premouse,

as in an ordinary premouse, come from adding extenders.

We can start with any transitive set x. All the critical points of extenders on the sequence

of a mouse M over x are above rank(x), so all iterations of M fix x. We put x ∪ {x} into

all hulls we take, because we are only looking for fine structure “above x.” Therefore the

iterates and hulls of mice over x are themselves mice over x. Everything works just as in the

case x = ∅, with no additional difficulty except for some small points in the case x is not

equipped with a well-ordering.1

Not all functions F will do. For example, we want the appropriately elementary hulls

of an F -mouse over x to also be F -mice over x. Because F will be defined throughout

the universe of our mouse, we cannot simply work above it as we did with x. We need a

condensation property of F that says roughly that if F (a) = b, and (ā, b̄) is the image of (a, b)

in a sufficiently elementary collapse, then F (ā) = b̄. Condensation for F also enables us to

construct iteration strategies for F -mice whose associated iteration maps move F to itself,

so that the iterates remain F -mice.2 The restriction that F condenses to itself is actually

quite severe, but there are important examples that will play a crucial role in our core model

induction.

All unattributed results in Sections 2.1, 2.2, and 2.3 are due to Steel. Some of the

language and structure of these sections (and in this introduction to the chapter) was taken

with permission from a draft of the book [32], subject to minor adaptations.

1In particular, we must require that ifM is an active premouse then the measures forming its top extender are
complete with respect to intersections of sequences of size a×γ inM for all γ less than the critical point. This
ensures that the relevant version of  Loś’s theorem holds for ultrapowers ofM and that if g ⊂ Col(ω, a) is aM-
generic filter thenM[g] can be reorganized as a premouse over the real ag = {(m,n) : (

⋃
g)(m) ∈ (

⋃
g)(n)}.

2To do this, we apply condensation to a map realizing the iterate in a level of some Kc construction relative
to F .
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2.1. Model operators

Definition 2.1.1. Let L0 be the language of set theory expanded by unary predicate

symbols Ė, Ḃ, and Ṡ, and constant symbols l̇ and ȧ. Let a be a given transitive set. A

model with parameter a is an L0-structure of the form

M = (M ;∈, E,B,S, l, a)

such that M is a transitive rud-closed set containing a, the structureM is amenable, ȧM = a,

and S is a (possibly empty) sequence of models with parameter a such that, letting Sξ be

the universe of Sξ,

• ṠSξ = S � ξ for all ξ ∈ domS, and ṠSξ ∈ Sξ if ξ is a successor ordinal,

• Sξ =
⋃
α<ξ Sα for all limit ξ ∈ dom(S),

• if dom(S) is a limit ordinal, then M =
⋃
α∈dom(S) Sα and l = 0, and

• if dom(S) is a successor ordinal, then dom(S) = l.

Here we are thinking of M as a potential level of one of our hybrid premice. The set a

is some parameter fixed in advance and put in at the bottom of all mice of the type being

considered. The predicates E and B capture the new information added at level M—in a

typical example E codes an extender over M added in a relativized Kc construction, and

B codes some other kind of information. The predicate S is the sequence of previous levels

and l− 1 is the index of the immediately preceding level, if there is one. The previous levels

must also be models with parameter a, so “model with parameter a” is being defined by

∈-recursion.

Definition 2.1.2. LetM be a model with parameter a. Then |M| denotes the universe

ofM. We define the length ofM by l(M) = dom(ṠM) and setM|ξ = ṠMξ for all ξ < l(M).

The modelM|0 is called the base model ofM. We setM|l(M) =M. If l(M) is a successor

ordinal then we set M− =M|(l(M)− 1).

Definition 2.1.3. Let M be a model with parameter a. The coarse projectum of M,

denoted by ρ(M), is the least ordinal ρ ≤ l(M) such that A ∩ |M|ρ| 6∈ M for some set

A ⊆M that is definable from parameters over the structure M.

We remark that the coarse projectum ofM is equal to its ωth projectum ifM is ω-sound,

which will always be the case in our applications, but in general it could be lower. (The

notions of ωth projectum and ω-soundness will be defined later.)

Definition 2.1.4. Let ν be an uncountable cardinal, and let a ∈ Hν . A model operator

with parameter a on Hν is a function F that maps every model M ∈ Hν with parameter a

to a model F (M) ∈ Hν with parameter a such that

• Whenever x ∈ |F (M)| and y ∈ |M|ρ(M)|, we have x ∩ y ∈ |M|,
• F (M) = Hull

F (M)
Σ1

(|M|),
14



• ĖF (M) = ∅,3 and

• ṠF (M) = ṠM_M.

The first examples of model operators F that we will encounter, beyond the rudimentary

closure operator

F (M) = (rud(M),∈, ∅, ∅, ṠM_M, l(M) + 1, a),

are derived from mouse operators J such as the M ]
n operator mapping M to M ]

n(M). To

define the M ]
n operator we first introduce the following standard notation.

Definition 2.1.5 (Lp). LetM be a transitive set (e.g. a model over a.) The lower part

mouse Lp(M) is defined as the union of ω-sound premice P over M, projecting to M, and

with the property that whenever π : P̄ → P is an elementary embedding with P̄ countable

and π(M̄) =M we have that P̄ is an (ω1 + 1)-iterable premouse over M̄.

This is enough iterability for comparison, so Lp(M) can be reorganized as a premouse

over M, and we will tend to confuse it with its reorganization as such. We remark that the

extenders on the sequence of a premouse P over M are all above M, and in the definition

of ω-soundness the set M is included in all hulls that we take.

Definition 2.1.6. Let M be a transitive set (e.g. a model over a.)

• M] is the least level of Lp(M) that is active, if it exists.

• M ]
n(M) is the least level of Lp(M) that is active and has n cardinals that are

witnessed to be Woodin by extenders on the extender sequence of Lp(M), if it

exists.

Next we define a notion of mouse operator that generalizes the essential features of

the sharp operator and the M ]
n operators. Some sources use the term “first-order mouse

operator” instead. We have no use for any other kind of mouse operator, so we omit “first-

order” from the name.

Definition 2.1.7. A mouse operator with parameter a on Hν is a function J that assigns

to every transitive setM∈ Hν containing the set a a structure J(M) that is the least level

of Lp(M) satisfying ϕ[M, a] for some fixed rQ formula ϕ(v1, v2) in the language of premice.

For the definition of an rQ formula, see [24, Def. 2.3.9]. The relevant properties are

that “I am an active premouse” and “I am a passive premouse” can be expressed by rQ

formulas, and rQ formulas are preserved downward under Σ1-elementary embeddings and

upward under 0-embeddings and Σ2-elementary embeddings.

Given a mouse operator, we can define a corresponding model operator.

Definition 2.1.8 (FJ). Let J be a mouse operator with parameter a on Hν . We code

J into a model operator FJ with parameter a on Hν as follows. Let M be a model with

parameter a in Hν .

3The E-predicate is reserved for extenders that may be added at limit stages of a Kc,F construction as
defined in the next section.
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(1) If every set in J(M) is amenable to M|ρ(M), then FJ(M) is simply J(M) with

the appropriate predicates added. Namely, we let (M,∈, B) be the amenable code

of M (which we usually identify with M) and we let

FJ(M) = (M ;∈, ∅, B, ṠM_M, l(M) + 1, a).

(2) If some set in J(M) is not amenable to M|ρ(M), let (ξ, n) be lexicographically

least such that some Σ˜ J(M)|ξ
n+1 set is not amenable toM|ρ(M). Let (N,∈, B) be the

nth master code of the premouse J(M)|ξ and define

FJ(M) = (N ;∈, ∅, B, ṠM_M, l(M) + 1, a).

Notice that even if P is an active premouse, its top extender is coded in the Ḃ predicate of

FJ(M) and not the Ė predicate.

Ordinary mouse operators J and their associated model operators FJ will be enough to

prove hyperprojective determinacy. Going beyond this, the “gap in scales” step of the core

model induction requires consideration of term-relation hybrid mouse operators. A term-

relation hybrid mouse is like an ordinary mouse except that at certain limit stages we add a

“term relation” for a self-justifying system that seals the gap in scales. If ~A is a self-justifying

system then a hybrid mouse with term relations for ~A is called a ~A-mouse. The notion of
~A-mouse will be defined more precisely in Chapter 4.

We will need to define some notions of elementarity for maps between models with pa-

rameter a.

Definition 2.1.9. Let π : M → N be an elementary embedding between models M
and N with parameter a.

• π is a 0-embedding if it is Σ0-elementary and its range is ∈-cofinal in N .

• π is a weak 0-embedding if there is a set X such that |M| =
⋃
X and π is Σ1-

elementary on tuples from X.

These notions are important because in general, Σ0 ultrapower maps of premice are

0-embeddings, and lifting (or resurrection) maps from one ultrapower to another copied

version of it are weak 0-embeddings. More generally, Σn ultrapower maps of premice are

n-embeddings, which can be considered as 0-embeddings of the corresponding nth master

code structures. For more information on these notions, see [24].

We will only be interested in model operators which condense to themselves in the fol-

lowing sense.

Definition 2.1.10. Let F be a model operator with parameter a on Hν . We say that

F condenses well if it satisfies both of the following conditions:

(1) Let M0,N0 ∈ Hν be models with parameter a. In V Col(ω,M0) whenever we have a

model M with parameter a such that M− =M0, and an embedding

M π−→ F (N0)
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fixing a and its elements that is either a 0-embedding or is Σ2-elementary, we have

M = F (M0).

(2) Let P0,M0,N0 ∈ Hν be models with parameter a. In V Col(ω,M0) whenever we have

a model M with parameter a such that M− =M0, and embeddings

F (P0)
σ−→M π−→ F (N0)

fixing a and its elements, where σ is a 0-embedding or is Σ2-elementary, π is a weak

0-embedding, and π ◦ σ ∈ V , we have M = F (M0).

The next lemma on uniqueness of extensions shows that a model operator with parameter

a that condenses well is determined by its action on H|a|+ .

Lemma 2.1.11. Let ν be an uncountable cardinal and let a ∈ Hν. Let F be a model

operator with parameter a on H|a|+ that condenses well. Then F has at most one extension

to Hν. (That is, to a model operator with parameter a on Hν that condenses well.)

Proof. Let F ′ and F ′′ be extensions of F to Hν and suppose toward a contradiction

that there is a model M ∈ Hν with F ′(M) 6= F ′′(M). Let π : H → Hν be an elementary

embedding whose range containsM, F ′(M), and F ′′(M), say π(M̄) =M. Because F ′ and

F ′′ condense well we have π(F ′(M̄)) = F ′(M) and π(F ′′(M̄)) = F ′′(M). But F ′(M̄) and

F ′′(M̄) are both equal to F (M̄) and so are equal to each other, a contradiction. �

While one can certainly construct pathological model operators using the Axiom of

Choice, model operators that condense well are rare and interesting objects. The model

operators derived from mouse operators condense well, as do the model operators derived

from the term relation hybrid mouse operators that we will define in Chapter 4.

Lemma 2.1.12. If J is a mouse operator with parameter a on Hν, then FJ is a model

operator with parameter a on Hν and it condenses well.

Proof. Let N ∈ Hν be a model with parameter a. In the first case, we assume that

every set in J(N ) is amenable to N|ρ(N ), so we are in case (1) of the definition of FJ (2.1.8)

and FJ(N ) is simply J(N ) with the appropriate predicates added.4 Being a premouse

is expressible by an rQ sentence, and so is the defining property of J(N ). Therefore, both

clauses of the definition of “condenses well” (2.1.10) follow from the fact that rQ formulas are

preserved downward under Σ1-elementary embeddings and upward under 0-embeddings and

Σ2-elementary embeddings, and iterability is preserved downward under weak 0-embeddings.

In the second case, there is a proper initial segment N|ξ of N and a least n such that

some Σ˜N|ξn+1 set A is not amenable to N|ρ(N ). Then we are in case (2) of the definition of

FJ , and FJ(N ) is the nth master code of N|ξ with the appropriate predicates added. The

proof of condensation in this case is similar, using the fact that a Σ1-elementary embedding

of nth master codes induces a Σn+1-elementary embedding of the underlying premice. �

4Recall that our premice are coded in an amenable way; otherwise we would have to say C0(J(N )) here.
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2.2. F -mice

Let F be a model operator with parameter a on Hν that condenses well. We will define

the notion of F -premouse—roughly speaking, a model with parameter a whose successor

levels come from applying F to the previous level, and whose limit levels come from taking

unions and then perhaps adding an extender. Such an extender must cohere with the model

to which we add it, in the following sense.

Definition 2.2.1 (Coherence). Let M be a model with parameter a, and let E be a

pre-extender over M. Let κ = crit(E), ν = ν(E), and λ = lh(E). We say that E coheres

with M if

• M |= “℘(κ) exists,”

• The extender E is the trivial completion5 of E � ν and is not of type Z,

• iE(ṠM) � (λ + 1) = ṠM_M where λ = l(M) and iE : M → Ult(M, E) is the

canonical embedding, and

• (Closure under initial segment) Let η < ν, let G be the trivial completion of E � η,

and suppose G is not of type Z. Let λ̄ = lh(G) and ν̄ = ν(G). Then either

– G is the extender coded by ĖM|λ̄, or

– ĖM|ν̄ codes an extender H, and letting N = Ult(M|ξ,H), we have that G is

the extender coded by ĖN|λ̄.

Definition 2.2.2. Let F be a model operator with parameter a on Hν that condenses

well. A potential F -premouse is a model M with parameter a such that

• M|(η + 1) = F (M|η) for all ordinals η < l(M), and

• if λ ≤ l(M) is a limit ordinal, then ḂM|λ = ∅, and either ĖM|λ = ∅, or ĖM|λ codes

an extender that coheres with M|λ.

If F is the rud-closure operator, then a potential F -premouseM is basically an ordinary

potential premouse as in [24, Definition 1.0.5], but over the model M|0.

More generally, if J is a mouse operator and F = FJ , then potential F -premice are just

ordinary potential premice which have been re-stratified by collapsing certain intervals in

their hierarchy. So we get nothing new in this case beyond a point of view that is sometimes

useful. Later we shall consider information other than extenders which can be fed into

canonical inner models. Most importantly, we will look at extender models that are also

being told term relations for a self-justifying system. In this case, the associated model

operators will give us truly new F -premice.

It is easy to see that there is a fixed Σ1 formula ϕ of L0 such that whenever M is a

potential F -premouse, ϕ defines a surjection h : |M|0| × l(M)<ω → |M| over M. We

can also arrange these surjections to fit together in the sense that for η < l(M) we have

5We define the trivial completion of E to be the equivalent extender of length θ(ν × a)Ult(M,E) where for
a set X the notation θ(X) indicates the least ordinal that is not a surjective image of X. So if the base
model M|0 comes with a well-ordering of a, then the trivial completion of E has length (ν+)Ult(M,E) as in
the usual Mitchell–Steel indexing of extenders.
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ϕM|η ⊆ ϕM. In practice,M|0 very often has a Σ1-definable wellorder, and then we easily get

from ϕ uniformly Σ
M|η
1 wellorders ofM|η that end-extend one another. The main exceptions

to this rule are premice over the reals, that is,M such that |M|0| is the rud-closure of Vω+1.

In order to see that there is a reasonable fine structure theory for potential F -premice,

we need the following straightforward consequence of Definition 2.1.10.

Lemma 2.2.3 (Condensation Lemma). Let F be a model operator with parameter a on

Hν that condenses well.

(1) Let M,N ∈ Hν be models with parameter a. If N is a potential F -premouse and

in V Col(ω,M) there is an embedding

M π−→ N

fixing a and its elements that is a 0-embedding or is Σ2-elementary, then M is also

a potential F -premouse.

(2) Let P ,M,N ∈ Hν be models with parameter a. If P and N are potential F -premice

and in V Col(ω,M) there are embeddings

P σ−→M π−→ N

fixing a and its elements such that σ is a 0-embedding or is Σ2-elementary, π is a

weak 0-embedding, and π ◦ σ ∈ V , then M is also a potential F -premouse.

A trivial consequence of the Condensation Lemma 2.2.3 is that if M is a potential F -

premouse then we have

M = HullMΣ1
(|M|0| ∪OrdM).

That is,M is the Σ1-hull generated insideM from the ordinals inM together with elements

of the base model M|0.

Next we define some fine structural notions for potential F -premice that are parallel to

those for ordinary potential premice. For the reader’s convenience we have borrowed some

of the exposition of fine structure from [43] here, making only the obvious changes required

by the relativization to F .

We note that because we always code extenders by amenable predicates and our premice

are squashed when appropriate (in the active type III case—see [24],) an F -premouseM is

literally equal to its Σ0 code C0(M). Accordingly, we will not use the notation C0 in what

follows.

Definition 2.2.4. Let F be a model operator that condenses well and let M be a

potential F -premouse.

The Σ1-projectum of M, denoted by ρ1(M), is the least ordinal α < l(M) such that

there is a subset ofM|α that is Σ1-definable overM with parameters but is not an element

of M. Note that the parameter in the definition can be taken to be a finite sequence of

ordinals and elements of |M|0|.
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The first standard parameter of M, denoted by p1(M), is the lexicographically least

finite decreasing sequence of ordinals p ∈ l(M)<ω such that there is a subset of M that is

Σ1-definable overM from p and parameters in the base model |M|0| but whose intersection

with M|ρ1(M) is not an element of M.

The first core ofM, denoted by C1(M), is the transitive collapse of the substructure given

by all elements ofM that are Σ1-definable overM from parameters inM|ρ1(M)∪{p1(M)}.

One can check that C1(M) is itself a potential F -premouse. For the potential F -premice

we construct in practice, the first standard parameter will have the following nice properties.

Definition 2.2.5. Let F be a model operator that condenses well and let M be a

potential F -premouse.

We say that p1(M) is 1-universal if every subset of M|ρ1(M) that is in M is also in

C1(M).

We say that p1(M) is 1-solid if, letting p1(M) = (α0, . . . , αn), for every i < n and for

every subset A ⊂M that is Σ1-definable from (α0, . . . , αi) and parameters in the base model

|M|0|, we have A ∩M|αi+1 ∈M.

If p1(M) is 1-universal then ρ1(C1(M)) = ρ1(M) and p1(C1(M)) is the image of p1(M)

under the transitive collapse map.

Definition 2.2.6. Let F be a model operator that condenses well and let M be a

potential F -premouse.

• M is 1-solid if p1(M) is 1-universal and 1-solid.

• M is 1-sound if p1(M) is 1-universal and 1-solid, and M = C1(M).

Continuing in this manner, for every integer n such that M is n-solid we can define the

notions Cn+1(M), ρn+1(M), pn+1(M), (n+1)-universality, and (n+1)-solidity from Cn(M)6

just like we defined C1(M) fromM except that we replace Σ1 formulas with Σn+1 formulas.

Finally, we say:

• M is ω-solid if it is n-solid for every integer n.

• M is ω-sound if it is n-sound for every integer n.

If M is ω-solid then we have ρ1(M) ≥ ρ2(M) ≥ · · · and we let ρω(M) and Cω(M) be the

eventual values of ρn(M) and Cn(M) respectively.

Let n ≤ ω and let M be an n-solid F -premouse, so that the nth core Cn(M) is defined.

Using the Condensation Lemma 2.2.3 one can show that Cn(M) is an n-sound F -premouse

with the same base model as M.

Definition 2.2.7. IfM is n-sound, a (weak) n-embedding ofM is a (weak) 0-embedding

of the corresponding nth master code structure.

If M is n-sound, this is equivalent to the usual definition (see [24].) We have no use for

the notion of (weak) n-embedding of M when M is not n-sound.

6Not from M!
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Definition 2.2.8. Let F be a model operator with parameter a on Hν that condenses

well. An F -premouse is a potential F -premouse M whose proper initial segments M|ξ,
where ξ < l(M), are all ω-sound. A hybrid premouse is an F -premouse for some model

operator F .

The most basic examples of F -premice are the levels of LF , which is the least transitive

model closed under F . More precisely:

Definition 2.2.9. Let ν be an uncountable cardinal. Suppose that F is a model operator

with parameter a on Hν that condenses well. Let P be a model with parameter a. By LFν (P)

we denote the unique F -premouse M with base model P and length l(M) = ν with no

extender on its E-sequence, that is, ĖM�ξ = ∅ for all ξ ≤ l(M). We also write LF (P) for

LFν (P) if ν =∞.

Regarding ordinary premice, we refer the reader to [43] for the notions of a k-maximal

iteration tree, putative iteration tree, (k, λ, θ)-iteration strategy, and the degree degT of a

model or branch of an iteration tree. For F -premice, we make the following modifications.

Definition 2.2.10. Let ν be an uncountable cardinal. Suppose that F is a model

operator with parameter a on Hν that condenses well. Let M be an F -premouse.

• An iteration tree onM is like an iteration tree on an ordinary premouse except that

the requirement that all the models are well-founded is strengthened to say that all

the models are F -premice.

• M is (k, λ, θ)-iterable if there is a (k, λ, θ)-iteration strategy Σ for M such that if

M∗ is an iterate of M∗ according to Σ, then M∗ is an F -premouse.

Note that iteration trees are only allowed to use extenders on the E-sequences of its models,

where the E-sequence of a hybrid premouse M is the sequence of extenders (ĖM|α : α ≤
l(M)).

Definition 2.2.11 (LpF ). Let ν be an uncountable cardinal, let F be a model operator

with parameter a on Hν that condenses well, and let P be a model with parameter a. The

lower part F -mouse over P , called LpF (P), is the union of all ω-sound hybrid premice M
with base model P , projecting to P , and such that whenever π : M̄ →M is an elementary

embedding with M̄ ∈ H|a|+ , π(P̄) = P , and π � (a ∪ {a}) = id, we have that M̄ is an

(|a|+ + 1)-iterable F -premouse.

This is enough iterability for comparison, so LpF (P) may be reorganized as a hybrid

premouse with base model P and we will tend to confuse it with its reorganization as such.

Note that LpF (P) may not literally be an F -premouse—we are not requiring P to be in Hν ,

so F might not be defined on it.

Next we define some important examples of F -premice.

Definition 2.2.12. Let ν be an uncountable cardinal, let F be a model operator with

parameter a on Hν that condenses well, and let P be a model with parameter a.
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• F ](P) is the least F -premouse MC LpF (P), if it exists, that is active.7

• MF,]
n (P) is the least F -premouse M C LpF (P), if it exists, that is active and has

n many Woodin cardinals that are witnessed to be Woodin by extenders on its

E-sequence.

Here we writeMCN ifM = N|ξ for some ξ < l(N ). Note that MF,]
0 (P) is just another

name for F ](P). Also note that the Woodin cardinals of MF,]
n (P) must be below the critical

point of the top extender.

We can define the notion of an F -mouse operator in much the same way as a mouse

operator. Some examples are given by the maps P 7→ F ](P) and P 7→ MF,]
n (P). We can

derive a model operator FJ from an F -mouse operator J just like we would derive a model

operator from an ordinary mouse operator.

In the next section we will show how to construct F -mice (that is, iterable F -premice)

by carefully putting extenders on the E-sequence.

2.3. The Kc,F construction and the KF existence dichotomy

In this section we work in ZFC, although the author does not know whether it is necessary

to assume the Axiom of Choice. Let z be a real and let F be a model operator with parameter

z on Hν that condenses well. (In our application we only need to consider model operators

whose parameters are reals.) Assume that the F -mouse operator F ] is total on Hν , that is,

for every model M∈ Hν with parameter z, the F -mouse F ](M) exists.

Let P be a countable model with parameter z. The Condensation Lemma 2.2.3 for

F -premice will be the key tool for showing that the Kc,F (P) construction succeeds unless

MF,]
1 (P) exists. We are now going to inductively define F -premice Nξ over P in much the

same way as in the definition of Kc in [43, Definition 6.3], except that we start with P rather

than with (Vω;∈), and we use F rather than the rudimentary closure operator at successor

stages of the construction. More precisely:

Definition 2.3.1. Let ν be an uncountable cardinal, let F be a model operator with real

parameter z on Hν that condenses well, and let P be a countable model over z. A Kc,F (P)

construction is a sequence (Nξ : ξ ≤ θ), where θ ≤ ν, of F -premice in Hν with base model

P such that the following conditions hold true.

(1) N0 = P .

(2) If ξ + 1 < θ, then Nξ is an ω-solid F -premouse with base model P , and either

(a) Nξ+1 = F (M) where M = Cω(Nξ), or

(b) Nξ is passive of limit length, that is, it has the form (|Nξ|;∈, ∅, ∅,S, 0, z), there

is an extender E that coheres with Nξ and is countably certified in the sense

of [43, Definition 6.2], and

Nξ+1 = (|Nξ|;∈, E∗, ∅,S, 0, z)

7A premouse or F -premouse is active if ĖM 6= ∅.
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where E∗ is the amenable code of the extender E, and in the case that E has

type III, we replace Nξ+1 with the squash of this structure.

(3) If λ < θ be a limit ordinal, then for ξ < λ we let Nξ = (|Nξ|;∈, Eξ, Bξ,Sξ, lξ, z) and

let S be the unique maximal sequence of models such that for all β < lh(S) the

initial segment Sξ � β is eventually equal to S � β as ξ → λ. Then we define

Nλ = (
⋃
S;∈, ∅, ∅,S, 0, z).

Note that we need iterability to prove the solidity used to define the cores, so the con-

struction might break down. The simplest instance of a Kc,F (P) construction is the one that

produces LFθ (P), that is, the one in which case (2b) never occurs, but there may be more

complicated ones. For example, if the F -mouse operator F ] is total on Hν then extenders

may be added at cofinally many points below ν in the construction. As in [40] one can show

that if λ ≤ θ is a regular cardinal, then OrdNλ = l(Nλ) = λ.

Definition 2.3.2 (Realizable branch). Let ν be an uncountable cardinal, let F be a

model operator with real parameter z on Hν that condenses well, and let P be a countable

model over z. Let (Nξ : ξ ≤ θ) be a Kc,F (P) construction where θ ≤ ν. Let π : N̄ → Ck(Nξ)
be a weak k-embedding where N̄ is countable, and let T be a countable k-maximal iteration

tree on N̄ . A realizable branch of T is a branch b of T such that letting l = degT (b), either

• b does not drop and there is a weak l-embedding σ : MT
b → Cl(Nξ) such that

σ ◦ iTb = π, or

• b drops and there is a weak l-embedding σ :MT
b → Cl(Nξ̄) for some ξ̄ < ξ.

Lemma 2.3.3. Let ν be an uncountable cardinal, let F be a model operator with real

parameter z on Hν that condenses well, and let P be a countable model over z. Let (Nξ :

ξ ≤ θ) be a Kc,F (P) construction where θ ≤ ν. Let π : N̄ → Ck(Nξ) be a weak k-embedding

where N̄ is countable and let T be a countable k-maximal iteration tree on N̄ . If b is a

realizable branch of T then the branch model MT
b is an F -premouse.

Proof. Let l = degT (b). Apply clause 2 of the Condensation Lemma to the composition

of maps

MT
η

iTη,b−−→MT
b

σ−→ Cl(Nξ̄)

where η is large enough such that the branch embedding iTb exists, that is, there is no further

dropping along b, and the map σ and ordinal ξ̄ are as in the definition of a realizable branch.

(If the branch b does not drop then we can take η = 0 and ξ̄ = ξ.) Note that the modelMT
η

is an F -premouse by the definition of an iteration tree on an F -premouse. �

Theorem 2.3.4 (Branch existence). Let ν be an uncountable cardinal, let F be a model

operator with real parameter z on Hν that condenses well, and let P be a countable model

over z. Let (Nξ : ξ ≤ θ) be a Kc,F (P) construction where θ ≤ ν. Let π : N̄ → Ck(Nξ) be

a weak k-embedding where N̄ is countable and let T be a countable k-maximal iteration tree

on N̄ . Then
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• If T has a last model MT
η , then the branch [0, η]T is realizable.

• If T has limit length then it has a maximal realizable branch (not necessarily cofinal.)

This theorem is shown by the method of [40, §9]. We will combine it with a theorem

on the uniqueness of branches to show that all models from a Kc,F (P) construction are

“sufficiently iterable” under favorable circumstances.

Definition 2.3.5. An F -premouse is F -small if for any ordinal ξ ≤ l(M) such that the

level M|ξ of M is active, letting κ = crit(ĖM|ξ) we have

M|κ |= “no cardinal is witnessed to be Woodin by extenders on the E-sequence.”

So MF,]
1 (P) is the least level of LpF (P) that is not F -small, if it exists. Note that if a

model Nξ of a Kc,F (P) construction is F -small then so is every preceding model Nξ̄ where

ξ̄ < ξ. If a Kc,F (P) construction produces a model that is not F -small, and Nξ is the first

such model produced, then Cω(Nξ) = MF,]
1 (P).

Definition 2.3.6. Let N be an F -premouse and let T be an iteration tree on N .

• δ(T ) = sup{lh(ETα ) : α < lh T }
• M(T ) =

⋃
{MT

α | lh(ETα ) : α < lh T }, organized as a passive F -premouse.

Notice that M(T ) EMT
b for any cofinal branch b of T . The following definition is the

standard one (see [43]) adapted to F -mice in a straightforward way.

Definition 2.3.7 (Q-structure). Let N be an F -premouse and let T be a k-maximal

iteration tree on N . Let b be a cofinal branch of T . The Q-structure for b, if it exists, is the

least level Q = MT
b |ξ of the branch model MT

b such that either

(1) ξ < l(MT
b ) and δ(T ) is not Woodin in MT

b |(ξ + 1), or

(2) ξ = l(MT
b ), the branch b drops, and ρk(M

T
b |ξ) < δ(T ).

Note that if b drops in either model or degree then the Q-structure exists as in (2).

Definition 2.3.8 (F ]-guided branch). Let ν be an uncountable cardinal and let F be

a model operator with real parameter z on Hν that condenses well. Let N ∈ Hν be an

F -premouse and let T ∈ Hν be an iteration tree on N . We say that a cofinal branch b of T
is F ]-guided if b has a Q-structure Q such that either Q E LF (M(T )), or F ](M(T )) exists

and Q = F ](M(T )).

An important observation is that an iteration tree T can have at most one F ]-guided

branch. If T has two F ]-guided branches b0 and b1, then their Q-structures Q0 and Q1 are

both initial segments of LF (M(T )), or of F ](M(T )) if it exists, so by minimality we must

have Q0 = Q1. Then by standard arguments as in [43] we have b0 = b1. This argument

shows that an F ]-guided branch, if it exists, is unique even in generic extensions of V .

Theorem 2.3.9 (Branch uniqueness). Let ν be an uncountable cardinal, let F be a model

operator with real parameter z on Hν that condenses well, and let P be a countable model

over z. Let Nξ be a model of a Kc,F (P) construction.
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Suppose that either Nξ is either an F -small model with no Woodin cardinal, or Cω(Nξ) =

MF,]
1 (P). Let k ≤ ω and let π : N̄ → Ck(Nξ) be a weak k-embedding where N̄ is count-

able. Let T be a k-maximal iteration tree on N̄ of countable limit length. Then any cofinal

realizable branch b of T is F ]-guided. Therefore T has at most one cofinal realizable branch.

Proof. By Lemma 2.3.3 the branch model MT
b is an F -premouse. Note that b must

have a Q-structure Q. If b drops this is true on general grounds and if it doesn’t drop then

this follows from the assumption of no Woodin cardinals. If Nξ is F -small, then so is MT
b

and we must have Q E LF (M(T )). If Cω(Nξ) = MF,]
1 (P) then either Q E LF (M(T )), or

F ](M(T )) exists and Q = F ](M(T )). In any case b is F ]-guided, and F ]-guided branches

are unique. �

Definition 2.3.10. Let F be a model operator with real parameter z on Hν that con-

denses well and let N ∈ Hν be an F -premouse.

• An iteration tree T ∈ Hν on N is F ]-guided if for every limit ordinal λ < lh(T ),

the branch [0, λ)T of T � λ is F ]-guided.

• A partial (ω, ν, ν)-iteration strategy Σ for N is F ]-guided if whenever T is F ]-guided

and the branch b = Σ(T ) is defined, b is F ]-guided.

We will refer to the maximal partial iteration strategy that is F ]-guided as “the” F ]-

guided partial iteration strategy, and say that N is iterable by the F ]-guided strategy if this

partial iteration strategy is total—that is, if every F ]-guided tree on N has an F ]-guided

branch.

As a consequence of the branch existence and uniqueness theorems 2.3.4 and 2.3.9 we

derive the following iterability result.

Corollary 2.3.11. Let ν be an uncountable cardinal, let F be a model operator with real

parameter z on Hν that condenses well, and let P be a countable model over z. Let k ≤ ω

and let Nξ be a model of a Kc,F (P) construction.

Suppose that either Nξ has no Woodin cardinal and is F -small, or Cω(Nξ) = MF,]
1 (P).

Let π : N̄ → Ck(Nξ) be a weak k-embedding where N̄ is countable. Then N̄ is (k, ω1, ω1)-

iterable by the F ]-guided strategy.

Proof. Let Σ be the partial iteration strategy for N̄ defined by choosing realizable

cofinal branches if they exist. We know that realizable cofinal branches are F ]-guided and

therefore unique. Therefore it suffices to show that Σ is total. Let T be a putative iteration

tree on N̄ as in the definition of (k, ω1, ω1)-iterability with the property that the branch

[0, λ)T is realizable for every limit ordinal λ < lh(T ). We want to show that T itself has a

cofinal realizable branch.

If T has successor length η + 1 on N̄ then by the branch existence theorem 2.3.4 the

main branch [0, η]T is realizable. Therefore by Lemma 2.3.3 the last model MT
η is an F -

premouse—and in particular is wellfounded—so the putative iteration tree T is in fact an

iteration tree.
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If T has limit length then by the branch existence theorem 2.3.4 it has a maximal

realizable branch b. It remains to see that this branch is cofinal. If not, then letting λ = sup b

the branch [0, λ)T was played according to Σ, so it is also realizable and applying the branch

uniqueness theorem 2.3.9 to the tree T � λ shows that b = [0, λ)T . But then we can extend

b to the branch [0, λ]T , contradicting its maximality. �

Definition 2.3.12. Let ν be an uncountable cardinal, let F be a model operator with

real parameter z on Hν that condenses well, and let P be a countable model over z. Let

θ ≤ ν be an ordinal. The sequence (Nξ : ξ ≤ θ) is called a maximal Kc,F (P) construction

of height θ if for all limit ordinals ξ ≤ θ such that the core M = Cω(Nξ) is passive, say

M = (|M|;∈, ∅, ∅,S, 0, z), and there is an extender E that coheres withM and is countably

certified, we have Nξ+1 = (|M|;∈, E, ∅,S, 0, z) for some such extender E. That is, extenders

must be added in the construction whenever possible.

Using the iterability provided by Corollary 2.3.11 we may inductively prove that if every

model of the Kc,F (P) construction is F -small—for example, if MF,]
1 (P) does not exist—then

every standard parameter of every Cω(Nξ) is solid and universal and there is exactly one

maximal Kc,F (P) construction over P of any given height θ ≤ ν (cf. [43, §6.3]).

Definition 2.3.13. Let ν be an uncountable cardinal and let F be a model operator

with real parameter z on Hν that condenses well. Let P be a countable model over z.

Moreover assume that ν is regular. We shall then write Kc,F (P)|ν for the last model Nν of

the maximal Kc,F (P) construction (Nξ : ξ ≤ ν) of height ν, provided that the construction

exists and is unique. (For example, if the F ] operator is total and MF,]
1 (P) does not exist,

in which case the requisite iterability is provided by Corollary 2.3.11.)

If the F ] operator is total on Hν but MF,]
1 (P) does not exist, then Corollary 2.3.11 implies

that every model of Kc,F (P) is countably iterable by the F ]-guided strategy. We can use

the following general lemma to give an F ]-guided iteration strategy for Kc,F (P) itself.

Lemma 2.3.14 (Q-structure reflection). Let ν be an uncountable cardinal and let F be a

model operator with real parameter z on Hν that condenses well. Assume that the F ] operator

is total on Hν. Let k ≤ ω and let N be a k-sound F -premouse such that any countable k-

sound F -premouse N̄ admitting a weak k-embedding N̄ → N is (k, ω1, ω1)-iterable via the

F ]-guided iteration strategy. Then N itself is (k, ν, ν)-iterable via the F ]-guided iteration

strategy.

Proof. Let T be a putative iteration tree on N as in the definition of (k, ν, ν)-iterability,

and such that T is F ]-guided. Take an elementary embedding π : H → Vν+2 such that H is

a countable transitive set and N , T , F ∈ ran(π). Write N̄ = π−1(N ) and T̄ = π−1(T ). By

the condensation lemma we have that π−1(F ) = F � H, and that the tree T̄ is F ]-guided.

If the trees T and T̄ have successor length then because the main branch of T̄ is F ]-

guided, its last model is an F -premouse by our iterability hypothesis. By the elementarity

of π the last model of T is also an F -premouse and we are done.
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If the trees T and T̄ have limit length, then by our iterability hypothesis T̄ has an F ]-

guided cofinal branch. The generic extension HCol(ω,T̄ ) contains a real coding F ](M(T̄ )),

so by absoluteness for Σ1
1 formulas it also contains an F ]-guided cofinal branch for T̄ . By

the elementarity of π, the generic extension V Col(ω,T ) contains an F ]-guided cofinal branch

for T . Because the F ]-guided branch is unique even in generic extensions, it is in V by the

homogeneity of Col(ω, T ). �

As an immediate consequence of Corollary 2.3.11 and Lemma 2.3.14, we have:

Lemma 2.3.15. Let ν be an uncountable cardinal, let F be a model operator with real

parameter z on Hν that condenses well, and let P be a countable model over z. Assume that

the F ] operator is total on Hν. Let Nξ be a model of a Kc,F (P) construction. Suppose that

either Nξ has no Woodin cardinal and is F -small, or Cω(Nξ) = MF,]
1 (P). Then Cω(Nξ) is

(ω, ν, ν)-iterable via the F ]-guided iteration strategy.

We shall now be interested in isolating KF (P), the “true” F -core model over P . In

order for this to work out as in [40] we need to see that Kc,F (P)|ν is “fully iterable” in a

sense to be made precise. In order to develop the theory of KF (P), it is useful (but not

necessary, see [10]) to assume that ν, henceforth written Ω, has large cardinal properties.

For simplicity we will assume that Ω is measurable, but in our applications it is important

that the argument can be done inside an active premouse where Ω is the critical point of the

top extender. We will need the following general lemma, which is easy to prove using the

condensation property of F .

Lemma 2.3.16. If Ω is measurable and F is a model operator on HΩ with parameter

a ∈ HΩ that condenses well, then

(1) F has a unique extension to HΩ+ (uniqueness is guaranteed by Lemma 2.1.11,) and

(2) if N is an F -premouse with length l(N ) ≤ Ω and base model N|0 ∈ HΩ, and N is

(ω,Ω,Ω)-iterable by the F ]-guided strategy, then N is (ω,Ω,Ω + 1)-iterable by the

F ]-guided strategy.

Theorem 2.3.17 (KF existence dichotomy). Let Ω be a measurable cardinal. Let F be a

model operator with real parameter z on HΩ that condenses well. Let P be a countable model

with parameter z. Let Kc,F (P) denote the model Kc,F (P)|Ω. Then the following statements

hold true.

(1) If the Kc,F (P) construction reaches MF,]
1 (P) then MF,]

1 (P) is (ω,Ω,Ω + 1)-iterable

via the F ]-guided strategy.

(2) If the Kc,F (P) construction does not reach MF,]
1 (P), then the model Kc,F (P) itself

is (ω,Ω,Ω + 1)-iterable via the F ]-guided strategy.

Proof. First notice that by Lemma 2.3.16 we can extend F to HΩ+ . Then using the

measurability of Ω it is easy to show that the F ] operator is total on HΩ. Applying Lemma

2.3.16 again, we can extend F ] to HΩ+ .
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(1) If the Kc,F (P) construction reaches MF,]
1 (P) then MF,]

1 (P) is (ω,Ω,Ω)-iterable via the

F ]-guided strategy by Lemma 2.3.15, so by Lemma 2.3.16 it is in fact (ω,Ω,Ω + 1)-iterable

by the F ]-guided strategy. (In fact, any iteration strategy for MF,]
1 (P) must be F ]-guided.)

(2) If the Kc,F (P) construction does not reach MF,]
1 (P) then each of its models is F -small.

Every stack in HΩ of normal trees on Kc,F (P) is based on Kc,F (P)|ν for some inaccessible

cardinal ν < Ω. Because the F ] operator is total, the model Nν = Kc,F (P)|ν satisfies

F ](Nν |ξ) C Nν for all ξ < ν and so by F -smallness it has no Woodin cardinals. Applying

Lemma 2.3.15 to Nν we see that Nν , and therefore Kc,F (P), is (ω,Ω,Ω)-iterable via the F ]-

guided iteration strategy. Then Lemma 2.3.16 shows that Kc,F (P) is (ω,Ω,Ω + 1)-iterable

by the F ]-guided iteration strategy. �

If (2) holds, then following [40] one can define the true F -core model KF (P).

2.4. MF,]
1 from a strong pseudo-homogeneous ideal

Let F be a model operator with real parameter z on Hω1 that condenses well and is

definable from a countable sequence of ordinals. In this section we will need a variant of the

“lower part” F mouse LpF .

Definition 2.4.1 (Lp′F ). Let F be a model operator with real parameter z on Hω1 that

condenses well and is definable from a countable sequence of ordinals. Assume that ωV1 is

measurable in HODs for any countable sequence of ordinals s. For example, this holds if

there is a pseudo-homogeneous ideal on ℘ω1
(R).

Let P be a model over z. We define Lp′F (P) as the union of all ω-sound hybrid premiceM
with base model P , projecting to P , and such that whenever π : M̄ →M is an elementary

embedding such that M̄ is countable we have that M̄ is an F -premouse that is ω1-iterable

via a strategy definable from a countable sequence of ordinals s. Such models can be co-

iterated in the model HODs, which thinks that ωV1 is a measurable cardinal, so they are

comparable and Lp′F (P) may be reorganized as a hybrid premouse with base model P . We

will tend to confuse it with its reorganization as such.

We remark that LpF (P) is contained in Lp′F (P), because a countable ω-sound F -premouse

M̄ that projects to its base model P̄ and is (ω1 + 1)-iterable has a unique (ω1 + 1)-iteration

strategy, which is definable from F , and therefore definable from a countable sequence of

ordinals. In all cases that interest us, Lp′ and Lp will turn out to be the same.

This definition will be used in conjunction with several abuses of notation. First, Lp′F (R)

we will mean Lp′F (P) where P = (Vω+1,∈, ∅, ∅, ∅, ∅, z). Second, if J is an F -mouse operator

we will write Lp′J(R) for Lp′FJ (R) where FJ is the model operator coding J . Third, we will

contradict our earlier definition of the MF,]
n operator by writing:

• MF,]
n (P) is the least F -premouse M C Lp′F (P), if it exists, that is active and has

n many Woodin cardinals that are witnessed to be Woodin by extenders on its

E-sequence.
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The reason for this complication is that we do not know in advance that F and F ] can

be extended to act on Hc+ . Eventually it will turn out that F and F ] can be so extended.

Then because MF,]
n (P) has an F ]-guided iteration strategy, the Q-structure reflection lemma

2.3.14 will show that it is c+-iterable. In particular it will be (ω1 + 1)-iterable, so it will be

an initial segment of LpF (P) and the definitions will coincide after all.

To get Woodin cardinals (and thereby determinacy) from a strong pseudo-homogeneous

ideal on ℘ω1
(R) we will use the following theorem. The argument, which is similar to that

from the hypothesis “CH + there is a homogeneous presaturated ideal on ω1” in [32], will

take the remainder of this section.

Definition 2.4.2. Let F be a model operator on Hν with real parameter z. We say that

F relativizes well if there is a formula θ such that for every pair of models P and Q in Hν

with parameter z such that P ∈ Q, and every transitive model M of ZF− containing F (Q),

we have F (P) ∈M and the formula θ defines F (P) from F (Q) in M .

Definition 2.4.3. Let F be a model operator on Hν with real parameter z. We say

that F determines itself on generic extensions if there is a formula θ such that whenever M

is a countable transitive model of ZF− that is closed under F , and g ∈ V is an M -generic

filter on a poset in M , the generic extension M [g] is also closed under F , and the formula θ

defines F �M [g] in M [g] from F �M .

The notions of “condenses well” and “determines itself on generic extensions” can be

defined for (hybrid) mouse operators J as well as for model operators, either by substituting

J or FJ for F in the definitions. If F condenses well, relativizes well, and determines itself

on generic extensions, then so do the F -mouse operators F ] and MF,]
n , if they exist. (To

show this for MF,]
n one uses LF [ ~E] constructions, which are the fully backgrounded versions

of Kc,F constructions.)

Theorem 2.4.4 (ZFC). Let F be a model operator with real parameter z on Hω1 that

condenses well, relativizes well, determines itself on generic extensions, and is definable

from a countable set of ordinals. Let I be a strong pseudo-homogeneous ideal on ℘ω1
(R).

Then the following statements hold.

(1) F ](P) exists for every countable model P with parameter z.

(2) F ]](P) exists for every countable model P with parameter z.

(3) MF,]
1 (P) exists for every countable model P with parameter z.

We will prove that (2) implies (3). The proof of (1) and the proof that (1) implies (2)

are both simplifications of this proof based on the fact that if F ](P) does not exist then

the core model KF (P) is simply LF (P), and if the F ] operator is total but F ]](P) does not

exist, then KF (P) is simply LF
]
(P).

Suppose that the F ]] operator is defined on every countable model with parameter z.

Let H ⊂ I+ \ I be V -generic and let

j : V → Ult(V,H) ⊂ V [H]
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denote the corresponding elementary embedding. Define

M = j(F ]])(RV ).

We haveM∈ V by pseudo-homogeneity. Furthermore, in V we haveMCLp′F (R), because

if M̄ is a countable hybrid premouse that elementarily embeds into M in V , then M̄
elementarily embeds into M in Ult(V,H) also, so it is a j(F )-premouse there and is j(ω1)-

iterable. Then we apply the elementarity of j to see that M̄ is an F -premouse in V that is

ω1-iterable by the trivial strategy. Take an M-generic filter G ⊂ Col(ω1,RV ) in Ult(V,H).8

Notice that the generic extensionM[G] satisfies the Axiom of Choice, and that RM[G] = RV .

It has a cardinal Ω that resembles a measurable cardinal, namely the critical point of the

top extender of M. Moreover, it is closed under the j(F ]) operator because in the generic

ultrapower, j(F ]) relativizes well and determines itself on generic extensions.

Now let P be a countable model with parameter z. It suffices to show that inM[G], the

Kc,j(F )(P)|Ω construction reaches M
j(F ),]
1 (P). Because RM[G] = RV and j(F ) � (Hω1)V = F ,

the hybrid mouse M
j(F ),]
1 (P) would then satisfy the definition of MF,]

1 (P) in V , completing

the proof.

Therefore we suppose toward a contradiction that the Kc,j(F )(P)|Ω construction ofM[G]

does not reach M
j(F ),]
1 (P). Then we can define the core model Kj(F )(P)|Ω in M[G]. We

shed some of this notation by writing

KF = (Kj(F )(P)|Ω)M[G].

This should not cause any confusion because (Kj(F )(P)|Ω)M[G] is in V by the homogeneity of

the forcing Col(ω1,RV ), and because j(F ) condenses well in Ult(V,H) we can apply Lemma

2.1.11 inM[G] to show that j(F ) �M[G] is uniquely determined by j(F ) � (Hω1)M[G], which

is simply F � (Hω1)V . Therefore KF is independent of the choice of pseudo-homogeneous

ideal I and of the choice of generic filter H ⊂ I+/I.

The following claim will lead to a contradiction because a Shelah cardinal is stronger

than a Woodin cardinal.

Claim 2.4.5. ωV1 is a Shelah cardinal in j(KF ).

Proof. By homogeneity of the forcing poset Col(ω1,R) we have j(KF ) ∈ HOD
Ult(V,H)
P,j(F ) ,

so because F is definable from a countable sequence of ordinals, by the pseudo-homogeneity

of I we have j(KF ) ∈ V .

Let κ = ωV1 and let E be the (κ, j(κ))-extender on j(KF ) derived from j. We will

show that E ∈ Ult(V,H) and that the fragments E � α for α < j(κ) are in j(KF ) and

witness that κ is Shelah in j(KF ). Because j(KF ) ∈ V we have that κ is inaccessible in

KF , so j(κ) is inaccessible in j(KF ). In particular κ+j(KF ) < j(κ) = c+.9 Take a surjection

8The author does not know if this step is really necessary. Perhaps the facts about Kc,F and KF that we
use can be proved without the Axiom of Choice.
9Because κ+j(KF ) ≤ ω2 is automatic, if CH fails then we do not need to use the fact that I is strong here
and a precipitous pseudo-homogeneous ideal would suffice to give PD. However in general the gap case of
the core model induction will need the strength of I regardless of CH.
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π : R→ ℘(κ)∩ j(KF ) in V . Now an observation due to Kunen gives that j � (℘(κ)∩ j(KF ))

is in Ult(V,H): It is represented in the ultrapower by the function

σ 7→ {(π(x) ∩ κ, π(x)) : x ∈ σ}.

Therefore E ∈ Ult(V,H) as desired. Let f : κ→ κ be a function in j(KF ). Take an ordinal

α < j(κ) such that α > j(f)(κ) and α > κ. Because KF and j(KF ) agree up to κ, we have

that j(KF ) and j(j(KF )) agree up to j(κ). The natural factor map k : Ult(j(KF ), E � α)→
j(j(KF )) has crit(k) ≥ α, so j(KF ) and Ult(j(KF ), E � α) agree up to α and in particular

up to j(f)(κ). In fact they agree up to iE�α(f)(κ) because

iE�α(f)(κ) ≤ k(iE�α(f)(κ)) = j(f)(k(κ)) = j(f)(κ).

So it remains to show that the extender E � α is in j(KF ). Notice that j(KF ) is the core

model Kj(F )(P) as defined in some (equivalently, in any) generic extension j(M)[G′], where

G′ ⊂ j(Col(ω1,RV )) is j(M)-generic. By increasing α we may assume it is a cardinal of

j(KF ). For technical reasons, rather than working with j(KF ) itself we will work with the

canonical soundness witness W for j(KF ) � α that is obtained by the iteration of KF that

hits the order zero measure on each measurable cardinal ≥ α of KF exactly once. (Notice

that W is also in V .)

The first step is to show that the phalanx (W,Ult(W,E � α), α) is (j(Ω) + 1)-iterable

in j(M)[G′]. Because j(M)[G′] is closed under the j(j(F ])) operator, by a Q-structure

reflection argument (like Lemma 2.3.14 but for phalanxes) it’s enough to show that if Q and

R are countable j(F )-premice over P admitting elementary embeddings

σ : Q → W, crit(σ) ≥ α,

τ : R → Ult(W,E � α), crit(τ) ≥ α,

then the phalanx (Q,R, α) is ω1-iterable in j(M)[G′] via the strategy guided by j(j(F ])),

or equivalently by j(F ]). By the inductive definition of KF in j(M)[G′] it suffices to show

that Q and R are both α-strong in j(M)[G′]. Here the inductive definition of KF , and the

definition of α-strong, are just as for K in [40].

The fact that Q is α-strong in j(M)[G′] follows immediately from the definition. It

remains to show that R is α-strong in j(M)[G′]. In Ult(V,H) there is an elementary em-

bedding

τ ′ : R → j(W ), crit(τ ′) ≥ α.

This is because in V [H] composing τ with the natural factor map Ult(W,E � α) → j(W )

gives such an embedding, so by absoluteness there is also such an embedding in Ult(V,H). In

V , take functions (αρ : ρ ∈ ℘ω1
(R)) and (τ ′ρ : ρ ∈ ℘ω1

(R)) representing α and τ ′ respectively.

For H-almost-every ρ ∈ ℘ω1
(R) we have that τ ′ρ is an elementary embedding Rρ → W with

critical point ≥ αρ. For such ρ, we have such an elementary embedding in j(M)[G′] by

absoluteness, so W witnesses that Rρ is αρ-strong in j(M)[G′]. So by the elementarity of j
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and the homogeneity of the forcings to wellorder the reals, we have that Rρ is αρ-strong in

M[G] as well. It follows that R is α-strong in j(M)[G′].

Now we will use this iterability to show that the extender fragment E � α is in W

and therefore in j(KF ). This part is exactly the same as in the proof of Theorem 7.1 of

[40], where the hypothesis is the existence of a generic almost huge embedding, except that

we have replaced K by KF . Nevertheless we will reproduce that argument here for the

convenience of the reader. In j(M)[G′], compare W with the phalanx (W,Ult(W,E � α), α).

The comparison terminates at some stage θ and we get iteration trees T on W and U on

(W,Ult(W,E � α), α) of length θ + 1. So U0 = W and U1 = j(W ).

We claim that MU
θ is above Ult(W,E � α) in the tree U . If it is above W instead, then

because W is universal the branch embeddings iU0,θ and iT0,θ are defined and the branch models

are equal, say Mθ =MT
θ =MU

θ . Let ∆ be the set of common fixed points of iU0,θ and iT0,θ,

so ∆ is thick in W and in Mθ. The construction of U guarantees that crit iU0,θ < α, so by

the definability property of W at all γ < α we have that crit iU0,θ is the least γ not in the

hull HMθ(∆). We have crit iT0,θ = γ also for the same reason, so by the hull property of W

at γ we have iT0,θ(A) = iU0,θ(A) for all A ⊂ γ in W . Therefore the first extenders used in each

branch are equal, a contradiction.

SoMU
θ is above Ult(W,E � α) in U . Now Ult(W,E � α) is universal in j(M)[G′] because

the set of fixed points of iE�α is β-club in j(Ω) for all sufficiently large regular β, so that

Ult(W,E � α) computes β+ correctly for stationary many α < Ω. Therefore iU0,θ and iT0,θ are

defined and the branch models are equal, sayMθ =MT
θ =MU

θ . Let Γ be the set of common

fixed points of iT0,θ and iU1,θ ◦ iE�α, so Γ is thick in W and inMθ. Now κ = crit(iU1,θ ◦ iE�α), so

by the definability property of W at all γ < α we have that κ is the least γ not in HMθ(Γ).

We have crit iT0,θ = κ also for the same reason, so by the hull property of W at κ we have

iT0,θ(A) = iU1,θ ◦ iE�α(A) for all A ⊂ κ in W .

Let MT
η+1 be the successor of the root node W in T . Then we have crit(iTη+1,θ) ≥ α

because ETη , like all extenders used in the comparison, has length > α and sup of generators

≥ α. Also by the construction of U we have crit(iU1,θ) ≥ α. So iT0,η+1(A) ∩ α = iE�α(A) ∩ α
for all A ⊂ κ in W . Therefore the extender fragment E � α is equal to ETη � α, which is in

MT
η and therefore in W by coherence. �

It remains to show that our MF,]
1 (P) is the real MF,]

1 (P), that is, it is (ω1 + 1)-iterable.

To do this, by a Q-structure reflection argument it suffices to show that the F ] operator can

be extended to act on Hc+ . We will do this by showing that the F ] operator is c+-universally

Baire.

First we show that the F ] operator is ω1-universally Baire. Letting M∞ be the direct

limit of all countable iterates of MF,]
1 in V , a boolean-valued comparison argument shows

thatM∞ is also the direct limit of all countable iterates of MF,]
1 in V Col(ω,ω). We can define

an <ω1-absolutely complementing pair of trees S and T that project to the code sets of

the F ] operator and its complement respectively: a branch looks for an integer n, a real x

coding a countable model P , an elementary embedding of a countable model N into M∞,
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an N -generic filter g for Col(ω, δN ) such that x ∈ N [g], and a verification that n is in (resp.

is not in) the code of F ](P) relative to x, where F ](P) is defined in N [g] using the fact that

the F ] operator relativizes well. Using genericity iterations of MF,]
1 in V Col(ω,ω) we can see

that these trees have enough branches.

To show that the F ] operator is c+-universally Baire using our pseudo-homogeneous ideal

I on ℘ω1
(R), we take a V -generic filter H ⊂ I+/I and let j : V → Ult(V,H) ⊂ V [H] be

the corresponding generic elementary embedding. The trees j(S) and j(T ) are in V by

pseudo-homogeneity. Let g ⊂ Col(ω,RV ) be a V [H]-generic filter. Then Ult(V,H)[g] is just

the extension of Ult(V,H) by a Cohen real, so j(S) and j(T ) project to complements there.

The model Ult(V,H)[g] contains all the reals of V [g], so the trees j(S) and j(T ) also project

to complements in V [g], as desired.

2.5. The coarse and fine-structural mouse witness conditions

The following definition is standard (see, e.g., [32].)

Definition 2.5.1 (W ∗
γ ). We say that the coarse mouse witness condition W ∗

γ holds if,

whenever U ⊂ R and both U and its complement have scales in Lp(R)|γ,10 then for all k < ω

and x ∈ R there is a coarse (k, U)-Woodin mouse containing x with an (ω1 + 1)-iteration

strategy whose restriction to Hω1 is in Lp(R)|γ.

If W ∗
γ holds then one can prove exactly as in [32] that every set of reals in Lp(R)|γ is

determined.

Definition 2.5.2. An ordinal γ is a critical ordinal in Lp(R) if there is some U ⊂ R
such that U and R \ U have scales in Lp(R)|(γ + 1) but not in Lp(R)|γ. In other words, γ

is critical in Lp(R) just in case W ∗
γ+1 does not follow trivially from W ∗

γ .

Next we define a notion of mouse witnesses for Σ2
1 formulas. Our definition is equivalent

to [36, Def. 9.2].

Definition 2.5.3. Suppose that θ(v) is a Σ2
1 formula saying that v has a Σ1

k(A) property

ϕ for some set of reals A. A (θ, z)-prewitness is an ω-sound premouse N over z, projecting

to z, in which there are ordinals δ0 < · · · < δk and trees S and T such that N satisfies

• ZFC and δ0, . . . , δk are Woodin cardinals,

• S and T are δk-absolutely complementing trees on ω ×Ord, and

• N |= ϕ[p[T ], z].

If in addition there we have N C Lp(z), we call N a (θ, z)-witness.

The following lemma, which can be proved using genericity iterations, justifies the name

witness. It is phrased in terms of the notion of a good iteration strategy defined in [36,

p. 10]. The iteration strategies arising in practice are all good.

10That is, the sequence of norms is in Lp(R)|γ
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Lemma 2.5.4. Let θ(v) be a Σ2
1 formula and let z be a real. If there is a (θ, z)-witness

whose (ω1 + 1)-iteration strategy is good, then θ[z] holds.

We will be proving a sort of converse to this as we go along in a core model induction,

namely

Definition 2.5.5 (Wγ). We say that the (fine-structural) mouse witness condition Wγ

holds if, whenever θ(v) is a Σ2
1 formula, z ∈ R, and Lp(R)|γ |= θ[z], there is a (θ, z)-witness

with an (ω1 + 1)-iteration strategy whose restriction to Hω1 is in Lp(R)|γ.

We will need the following result (see [32]) to convert our coarse mice into fine-structural

mice as we go along.

Lemma 2.5.6. Assume that there is no inner model of AD + θ0 < Θ containing all the

reals and ordinals. Let γ be a limit ordinal. If W ∗
γ holds, then Wγ holds.

By [30] the hypothesis can be weakened to “there is no inner model of the theory ADR +

“Θ is regular” containing all the reals and ordinals, but we will not need this because we are

only trying to get a model of AD + θ0 < Θ.

2.6. Hyperprojective determinacy from a strong pseudo-homogeneous ideal

In this section we will prove the following proposition.

Proposition 2.6.1 (ZFC). Assume that there is a strong pseudo-homogeneous ideal on

℘ω1
(R). Then every hyperprojective set of reals is determined.

In order to prove Proposition 2.6.1 we will argue to establish a more general fact that

implies it, namely Proposition 2.6.2 below. To state this more general fact we need to define

an ordinal that measures our progress in the core model induction. We let α be the strict

supremum of the ordinals γ such that

(1) The coarse mouse witness condition W ∗
γ+1 holds,

(2) γ is a critical ordinal in Lp(R), and

(3) γ + 1 begins a Σ1-gap in Lp(R).

We have AD in Lp(R)|α because if γ is a critical ordinal in Lp(R) and W ∗
γ+1 holds then

the coarse mice can be used to prove determinacy in Lp(R)|(γ + 1) as in [32]. The level

Lp(R)|α is a passive premouse over R. The ordinal α is a limit of ordinals beginning Σ1-gaps

in Lp(R), so α itself begins a Σ1-gap in Lp(R).

Proposition 2.6.1 will follow from the following proposition because the hyperprojective

sets of reals are exactly the ones in the least admissible level of Lp(R), namely LκR(R).

Proposition 2.6.2 (ZFC). Assume that there is no inner model of AD + θ0 < Θ con-

taining all the reals and ordinals. Let α be the strict supremum of the ordinals γ such that

W ∗
γ+1 holds, γ is critical in Lp(R), and γ + 1 begins a Σ1-gap in Lp(R). If there is a strong

pseudo-homogeneous ideal on ℘ω1
(R), then Lp(R)|α is admissible.
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Proof. Suppose to the contrary that Lp(R)|α is inadmissible. We begin by constructing

the “next operator” J , which will be an F -mouse operator for some model operator F . (In

contrast to the “gap case” this F will exist already in Lp(R)|α.) We define F and J according

to cases. If α = 0, we simply let F and J be the rudimentary closure operator coded in the

appropriate ways.

If α = γ + 1 then we may assume that the coarse mice witnessing W ∗
γ+1 actually come

from F -mouse operators MF,]
n , n < ω for some model operator F on Hω1 with some real

parameter z that condenses well. This assumption is harmless because whenever we prove

the coarse witness condition we prove it this way.11 We define a new F -mouse operator J

as follows. For every countable model P with parameter z, we define J(P) to be the least

F -premouse MC LpF (P) such that MF,]
n (P|ξ)C P for every n < ω and ξ < l(M).

If α is a limit ordinal (of either countable or uncountable cofinality) then from W ∗
α we can

get the fine-structural mouse witness condition Wα. In this case our next operator J will be

an ordinary mouse operator (the “diagonal operator”) so we let F = rud. Because α begins

a Σ1-gap there is a partial surjection R → Lp(R)|α that is Σ1-definable over Lp(R)|α. So

some real parameter witnesses the failure of admissibility. That is, there is a real z and a Σ1

formula ϕ(v0, v1) such that α is least with the property that Lp(R)|α |= (∀y ∈ R) (ϕ[z, y]).

Given a model P with parameter z, we define J to be approximately12 the least premouse

M C Lp(P) such that every Col(ω,P)-generic extension M[g] is a witness for the formula

(∀y ∈ L1[xg] ∩ R) (ϕ[z, y]) where xg is the generic code of P relative to g.

Now that we have our next F -mouse operator J one can show as in [39] (see also [32])

one can show that the associated model operator FJ condenses well, relativizes well, and

determines itself on generic extensions, and apply Theorem 2.4.4 repeatedly to get more

F -mouse operators MJ,]
n , n < ω. These operators MJ,]

n can also be considered as FJ -mouse

operators—recall that MJ,]
n is a synonym for MFJ ,]

n . Note that applying Theorem 2.4.4 to the

model operator coding MJ,]
n actually gives us something a bit stronger than MJ,]

n+1, but this is

okay. Each operator MFJ ,]
n condenses well, relativizes well, and determines itself on generic

extensions because FJ has these properties. As in [39] (see also [32]) one can show that the

coarse mice given by the MJ,]
n operators witness that W ∗

α+1 holds and that Lp(R)|(α + 1)

satisfies AD. They also witness that α is critical. The ordinal α begins a Σ1-gap in Lp(R)

because it is a limit of ordinals beginning Σ1-gaps in Lp(R). The gap is trivial because α is

inadmissible (cf. [32].) That is, the gap has the form [α, α], so α+ 1 also begins a Σ1-gap in

L(R). This is a contradiction, because α is defined to be greater than every ordinal γ such

that W ∗
γ+1 holds, γ is critical in Lp(R), and γ + 1 begins a Σ1-gap in Lp(R). �

For the “gap in scales” case we will need the following theorem.

Theorem 2.6.3 (Steel [37]). Let M be a passive level of Lp(R) such that M |= AD.

Then the pointclass consisting of all ΣM1 sets of reals has the scale property.

11We will later see that the model operator F will code either an ordinary mouse operator, or an ~A-mouse
operator for some self-justifying system ~A. We will define the notion of ~A-mouse operator in Chapter 4.
12The correct definition can be found in [32, §4.2] or [39, §1.3].
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If there is a strong pseudo-homogeneous ideal on ℘ω1
(R), then either there is already an

inner model of AD + θ0 < Θ containing all the reals and ordinals, or Lp(R)|α is admissible

by Proposition 2.6.2. In the latter case the pointclass Γ = Σ
Lp(R)|α
1 is closed under real quan-

tifiers, so although it has the scale property we cannot use the second periodicity theorem

to propogate scales on Γ sets. In fact by a theorem of Martin that we will mention in the

next chapter, there is no scale on a universal Γ̌ set in Lp(R)|(α+ 1). Hence we have a “gap

in scales” and α is not a critical ordinal in Lp(R).

We say a pointclass is inductive-like if it is ω-parameterized, closed under ∃R, ∀R, and

recursive substitution, and has the scale property.

Proposition 2.6.4. Assume that there is no inner model of AD + θ0 < Θ containing

all the reals and ordinals. Let α be the strict supremum of the ordinals γ such that W ∗
γ+1

holds, γ is critical in Lp(R), and γ+1 begins a Σ1-gap in Lp(R). If there is a strong pseudo-

homogeneous ideal on ℘ω1
then the pointclass Γ = Lp(R)|α is inductive-like, and its boldface

ambiguous part ∆˜ Γ is determined.

Proof. By Proposition 2.6.2 the model Lp(R)|α is admissible, so Σ
Lp(R)|α
1 is closed under

real quantifiers. It is clear that the pointclass Γ = Σ
Lp(R)|α
1 is ω-parameterized and closed

under recursive substitution. The scale property follows from Theorem 2.6.3. The pointclass

∆˜ Γ is equal to Lp(R)|α∩℘(R) by admissibility, so it is determined by Proposition 2.6.2. �

The next chapter will consist of a general analysis of inductive-like pointclasses Γ such

that ∆˜ Γ is determined.
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CHAPTER 3

The next Suslin cardinal in ZF + DCR

In this chapter we reformulate the notion of the envelope of an inductive-like pointclass

Γ in such a way that many of its essential properties can by derived without assuming full

AD. This generalizes classical results proved under AD in [21]. A modern reference for this

material is [7]. By an argument similar to that for the Kechris–Woodin transfer theorem

in [17], we prove that if ∆˜ Γ is determined then so is the envelope Env˜ (Γ)—this extra

determinacy is enough for the analysis.

A product space is a space of the form

X = X1 × · · · ×Xn, Xi = R or Xi = ω for all i ≤ n.

A pointset is a subset of a product space. A pointclass is a collection of pointsets, typically

an initial segment of some complexity hierarchy for pointsets.

Definition 3.0.5. A pointclass Γ is inductive-like if it is ω-parameterized, closed under

∃R, ∀R, and recursive substitution, and has the scale property.

For the rest of this chapter we let Γ be an inductive-like pointclass, although some of

the results can be proved even if the scale property of Γ is weakened to the pre-wellordering

property. As usual we denote the dual of Γ and the ambiguous part of Γ by

Γ̌ = {¬A : A ∈ Γ} and

∆Γ = Γ ∩ Γ̌

respectively. We also define the boldface pointclasses Γ˜ =
⋃
x∈R Γ(x) and ∆˜ Γ =

⋃
x∈R ∆Γ(x).

We will be operating under the following determinacy assumption:

∆˜ Γ is determined.

Examples are Γ = IND assuming HYP
˜

determinacy [25], and Γ = (Σ2
1)L(R) assuming

(∆˜ 2
1)L(R) determinacy [23]. Let T be the tree of a Γ-scale on a universal Γ set. Let κ be the

supremum of the lengths of the ∆˜ Γ prewellorderings of R.

3.1. A local notion of ordinal definability

Let Γ be an inductive-like pointclass. We define the pointclass OD<Γ as follows.

Definition 3.1.1. A pointset A ⊂X is in OD<Γ if there are Γ pointsets U,W ⊂ R×X ,

a Γ-norm ϕ, and an ordinal α < κ such that A = Ux = ¬Wx for every x ∈ dom(ϕ) with

ϕ(x) = α.
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In terms of a future definition, Definition 3.4.3, we remark that a set A ⊂ ω of integers is

in OD<Γ if and only if it is in CΓ, the largest countable Γ set of reals. Indeed, the pointclass

OD<Γ can be considered as a natural generalization of CΓ from sets of integers to sets of

reals.

For complexity calculations involving sets in OD<Γ it is helpful to use the notion of the

companion of Γ from Mochovakis in [27]. Notice that in Moschovakis, the companion is

defined for Γ˜ where Γ is an inductive-like pointclass, but the adaptation to our lightface

situation is straightforward.

A structure (M ;∈, R1, . . . , Rn), where R1, . . . , Rn are relations on M , is called admissible

if it is transitive, nonempty, closed under pairing and union, and satisfies the ∆0-separation

and ∆0-collection axiom schemas. In contrast to Moschovakis, we allow all formulas to

refer to the relations R1, . . . , Rn. In particular we have ∆0-separation and ∆0-collection for

formulas containing R1, . . . , Rn. Note that an admissible structure must in fact satisfy the

ostensibly stronger axiom schemas of ∆1-separation and Σ1-collection.

Also in contrast to Moschovakis we do not allow arbitrary reals as unstated parameters

in our formulas. We do, however, allow R itself as an unstated parameter in our formulas,

so that real quantification counts as bounded quantification.

Definition 3.1.2. A companion of an inductive-like pointclass Γ is a structure M =

(M ;∈, ~R) such that

• M is a transitive set and R ∈M ,

• ~R = R1, . . . , Rn is a finite sequence of relations on M ,

• M is admissible,

• M is projectible on R, that is, there is a ∆M
1 partial surjection R→M ,1

• M is resolvable, that is, there is a ∆M
1 sequence (Mα : α < OrdM) called a resolution

such that M =
⋃
αMα, and

• Γ is the pointclass of all ΣM
1 relations on product spaces.

We may speak loosely of “the” companion of Γ by the following theorem.

Theorem 3.1.3 ([27]). Let Γ be an inductive-like pointclass.

(1) Γ has a companion M = (M ;∈, ~R).

(2) If M = (M ;∈, ~R) and M ′ = (M ′;∈, ~R′) are companions of Γ, then M = M ′ and

moreover the ΣM
1 subsets of M are exactly the ΣM ′

1 subsets of M ′.

For any a companion MΓ = (MΓ;∈, ~RΓ), the set MΓ consists of the transitive collapses of

all wellfounded binary relations in ∆˜ Γ. Here we relax the definition of “transitive collapse”

to apply to non-extensional relations, so many relations will collapse to the same set. The

set MΓ can also be characterized as the smallest admissible set such that ∆˜ Γ ⊂ MΓ. The

ordinal height OrdMΓ of the companion is equal to κ.

The following lemma is essential to many complexity calculations.

1The domain of the partial surjection need not be ∆M
1 , only ΣM

1 .
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Lemma 3.1.4. If Γ is an inductive-like pointclass and ϕ is a Γ-norm on a Γ set, then ϕ

is ∆MΓ
1 for any companion MΓ of Γ. (By this we mean that the graph of ϕ is ∆MΓ

1 , although

in general the domain of ϕ is only ΣMΓ
1 .)

Proof. The proper initial segments of the norm relation ≤ϕ are all in ∆˜ Γ and therefore

in MΓ, so by admissibility all of the corresponding initial segments of the norm ϕ are all in

MΓ as well. We have ϕ(x) = α if and only if f(x) = α for some—or equivalently for every—

initial segment of ϕ of length α+ 1. A function f from a set of reals onto α+ 1 is an initial

segment of ϕ if and only if for some x ∈ R we have

y1, y2 ∈ dom f & f(y1) ≤ f(y2) ⇐⇒ y1, y2 ∈ domϕ & ϕ(y1) ≤ ϕ(y2) ≤ ϕ(x).

Because ϕ is a Γ-norm and every Γ pointset is ΣMΓ
1 , this calculation shows that ϕ is a ∆MΓ

1

relation. �

The notion of the companion will be useful in complexity calculations involving OD<Γ

pointsets because it allows us to gloss over the details of coding ordinals α < κ by reals.

We will use the following equivalent characterizations of OD<Γ without further comment

throughout the chapter.

Proposition 3.1.5. Let Γ be an inductive-like pointclass and let MΓ = (MΓ;∈, RΓ) be

a companion of Γ. Take a resolution (Mα : α < κ) of MΓ = (MΓ;∈, RΓ) and define the

structure Mα = (Mα;∈, RΓ ∩Mα). Then for a pointset A ⊂ X , the following statements

are equivalent.

(1) A ∈ OD<Γ,

(2) A is ∆1-definable over MΓ from ordinal parameters,

(3) A is ∆1-definable over Mα from ordinal parameters for some α < κ,

(4) A is definable over Mα from ordinal parameters for some α < κ,

(5) A is in MΓ and {A} is Σ1-definable over MΓ from ordinal parameters.

(6) A is in MΓ and {A} is ∆1-definable over MΓ from ordinal parameters.

Proof. The implication (2) =⇒ (3) can be seen by using the admissibility of MΓ to

bound the indices α of models α where the witnesses to the Σ1 formulas defining A and its

complement appear. The chain of implications (3) =⇒ (4) =⇒ (5) =⇒ (6) =⇒ (2) is

easy to check, using the fact that the resolution sequence (Mα : α < κ) is ∆MΓ
1 . It remains

to see the equivalence (1) ⇐⇒ (2).

Suppose that (1) holds, that is, A ∈ OD<Γ. Take a Γ-norm ϕ, a pair of Γ pointsets

U,W ⊂ R × X , and an ordinal α < κ such that A = Ux = ¬Wx for all x ∈ dom(ϕ)

such that ϕ(x) = α. Then the pointset A is defined over the structure MΓ by the formula

∃x ∈ dom(ϕ) (ϕ(x) = α & y ∈ Ux) and also by the formula ∀x ∈ dom(ϕ) (ϕ(x) = α =⇒
y /∈ Wx). By Lemma 3.1.4 these formulas are equivalent to a Σ1 formula and a Π1 formula

respectively, so (2) holds.

Conversely, if (2) holds we can take an ordinal α < κ and Σ1 formulas θ and ψ such

that y ∈ A is equivalent to MΓ |= θ(α, y) and also to MΓ |= ¬ψ(α, y). Then the pointsets
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U,W ⊂ R×X defined by

(x, y) ∈ U ⇐⇒ x ∈ dom(ϕ) & MΓ |= θ(ϕ(x), y)

(x, y) ∈ W ⇐⇒ x ∈ dom(ϕ) & MΓ |= ψ(ϕ(x), y),

are ΣMΓ
1 by Lemma 3.1.4, so they are in Γ. We have A = Ux = ¬Wx for every real x ∈ dom(ϕ)

with ϕ(x) = α. Therefore (1) holds. �

The pointclass of OD<Γ sets is Σ1-definable over the model MΓ, just as full ordinal-

definability is Σ1-definable in the presence of the full Axiom of Replacement. This suggests

that OD<Γ is the natural notion of ordinal-definability for the structure MΓ. Using a reso-

lution sequence of MΓ, an easy computation establishes the following useful result.

Proposition 3.1.6. There is an enumeration of the OD<Γ pointsets in order type κ that

is ∆MΓ
1 -good, meaning that the sequence of its initial segments is ∆MΓ

1 .

3.2. The envelope of a pointclass

Under AD the envelope of the boldface pointclass Γ˜ is defined as follows.

Definition 3.2.1 (Martin, AD). For a product space X and a pointset A ⊂X , we say

A ∈ Λ˜ (Γ˜, κ) if there is a sequence (Aα : α < κ) of ∆˜ Γ subsets of X such that for every

countable σ ⊂X there is an α < κ with A ∩ σ = Aα ∩ σ.2

Under ZFC, if κ ≥ c then we trivially have every pointset in Λ˜ (Γ˜, κ). Even if the

continuum is large, this seems unlikely to be an interesting definition in the absence of AD.

We give another definition of the envelope, Env, that differs from Martin’s in two ways. First,

Γ and Env(Γ) are lightface rather than boldface pointclasses, and second, our definition of

Env makes sense without full AD—in particular, in an ambient universe satisfying ZFC.

Definition 3.2.2. For a product space X and a pointset A ⊂X , define

• A ∈ Env(Γ) if for every countable set σ ⊂ X there is a set A′ ∈ OD<Γ such that

A ∩ σ = A′ ∩ σ.

• A ∈ Env˜ (Γ) if A ∈ Env(Γ(x)) for some x ∈ R.

When the choice of product space is not important, we will sometimes speak of pointsets

A ⊂ R and leave the generalization to other product spaces to the reader. Notice that for a

set A ⊂ ω of integers, the statements A ∈ Env(Γ), A ∈ OD<Γ, and A ∈ CΓ are all equivalent.

Our definition of Env˜ (Γ) generalizes Martin’s definition of Λ˜ (Γ˜, κ):

Proposition 3.2.3 (AD). For a pointset A ⊂X , the following are equivalent:

(1) A ∈ Env˜ (Γ), and

(2) A ∈ Λ˜ (Γ˜, κ).

2The original definition may have used sequences of Γ˜ sets, but this is equivalent: see [7].
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Proof. (1 =⇒ 2) If A ∈ Env(Γ(x)) for x ∈ R, then taking any enumeration (Aα : α <

κ) of the OD<Γ(x) subsets of X shows that A ∈ Λ˜ (Γ˜, κ).

(2 =⇒ 1) Let (Aα : α < κ) be a sequence of ∆˜ Γ subsets of X witnessing A ∈ Λ˜ (Γ˜, κ).

Take a Γ-norm ϕ onto κ. Let U ⊂ R×X be a universal Γ set. By the Moschovakis Coding

Lemma (see [28]) the relations

{(x, y) : x ∈ dom(ϕ) & Aϕ(x) = Uy} and

{(x, y) : x ∈ dom(ϕ) & Aϕ(x) = ¬Uy}

have choice sets in Γ˜, say in Γ(z) where z ∈ R. So the relation {(x, α) : x ∈ Aα} is ∆1(z)

over the expanded structure (MΓ;∈, RΓ, ϕ), which is also a companion of Γ. Therefore each

Aα is OD<Γ(z), so A ∈ Env(Γ(z)). �

The following argument is derived from Kechris–Woodin [17]. It is also similar to the

proof in [15] that ∆1
2-determinacy implies that OD-determinacy holds in L[x] for a cone of

reals x.

Theorem 3.2.4. Let Γ be an inductive-like pointclass3 and suppose that ∆˜ Γ is deter-

mined. Then Env˜ (Γ) is determined.

Proof. Let A ∈ Env(Γ); the proof will easily relativize to any real. Let (Aα : α < κ) be

a ΣMΓ
1 -good enumeration of the OD<Γ sets of reals. Suppose our set A is not determined.

Given t ∈ R, by DCR there is a countable Turing ideal M ⊂ R containing t such that for all

σ ∈ M there are x, y ∈ M such that σ ∗ y /∈ Aα and x ∗ σ ∈ A. That is, in the game GA

neither player has a strategy in M (coded by a real in M , technically) that wins against all

plays in M . Because M is countable there is an α < κ such that Aα ∩M = A ∩M .

Define α(t) as the least α < κ such that there is a countable Turing ideal M 3 t with

the property that for all σ ∈ M there are x, y ∈ M such that σ ∗ y /∈ Aα and x ∗ σ ∈ Aα.

The function R → κ given by t 7→ α(t) is total and ∆1-definable over MΓ, so the following

game is in ∆ and is therefore determined:

I x0, z0 x1, z1 . . .

II y0, s0 y1, s1, . . .
I wins ⇐⇒ x⊕ y ∈ Aα(z⊕s).(G)

Assume that player I has a winning strategy σG in G. (The other case is similar.) Fix a

real s coding σG. By the definition of α(s) we may fix a countable Turing ideal M 3 s such

that for every σ ∈M there is y ∈M such that σ ∗y /∈ Aα(s). Let σ be the strategy for player

I in the game GAα(s)
that is obtained from σG by pretending that s was played alongside y

by player II in G, and ignoring the z produced alongside x by σG. That is, for ȳ ∈ ωn we

have

σ(ȳ) = x̄ ⇐⇒ σG(ȳ, s � n) = (x̄, z̄) for some z̄ ∈ ωn.

This strategy σ can be computed from s, so it is in M . Therefore there is some y ∈ M
with σ ∗ y /∈ Aα(s). On the other hand, because σG is a winning strategy for player I in G

3The proof shows that the scale property of Γ is not needed, only the pre-wellordering property.
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there is a real z ∈ M such that σ ∗ y ∈ Aα(z⊕s). We will derive a contradiction by showing

that α(z⊕ s) = α(s). The function α is increasing by definition so we have α(z⊕ s) ≥ α(s).

But z ⊕ s ∈ M , so α(z ⊕ s) ≤ α(s) by the minimization in the definition of α. This is a

contradiction. �

The following proposition shows that sets in Env(Γ), being pieced together from OD<Γ

sets, themselves satisfy a form of ordinal-definability related to Γ:

Proposition 3.2.5. Let Γ be an inductive-like pointclass and suppose that ∆˜ Γ is deter-

mined. Then for any universal Γ set U , there is a well-ordering of Env(Γ) of order type ≤ Θ

definable from U .

Proof. Let (Aα : α < κ) be a ΣMΓ
1 -good enumeration of the OD<Γ sets of reals. For

A ∈ Env(Γ) and d a Turing degree define

αd(A) = the least α such that (∀x ≤T d) (x ∈ A ⇐⇒ x ∈ Aα).

for A′, B′ ∈ OD<Γ the sets

{d : αd(A
′) < αd(B

′)}, {d : αd(A
′) = αd(B

′)}, and {d : αd(A
′) > αd(B

′)}

are in OD<Γ, so for A,B ∈ Env(Γ), the sets

{d : αd(A) < αd(B)}, {d : αd(A) = αd(B)}, and {d : αd(A) > αd(B)}

are in Env(Γ) and by Theorem 3.2.4 exactly one of them contains a cone. Therefore we can

define a prewellordering of Env(Γ) by

A < B ⇐⇒ A <W B, or

A ≡W B & αd(A) < αd(B) for a Turing cone of d.

This is clearly a pre-wellordering. Because it refines the Wadge pre-wellordering, each of its

proper initial segments is a surjective image of R and therefore its length is at most Θ. If

A 6= B then αd(A) 6= αd(B) on a cone, so it is in fact a wellordering. It is definable from

MΓ, which in turn is definable from any universal Γ set. �

The following theorem is due to Martin in the context of AD. We follow the proof given

in [7], checking that it works under our limited determinacy hypothesis with our modified

definition of the envelope.

Theorem 3.2.6. Let Γ be an inductive-like pointclass and suppose that ∆˜ Γ is determined.

Then Env(Γ) is closed under real quantification.

Proof. Let A ∈ Env(Γ), say A ⊂X × R. We will show that the set B = ∃RA ⊂X is

in Env(Γ). The case of universal quantification is completely analogous. Let (Aα : α < κ)

be a ΣMΓ
1 -good enumeration of the OD<Γ subsets of X ×R. We consider a real z as coding

a countable partial function fz with dom(fz) ⊂ X and ran(fz) ⊂ {0, 1}. Given a Turing
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degree d let αz(d) be the least α < κ, if it exists, such that for all x ∈ dom(fz) we have

fz(x) = 1 ⇐⇒ ∃y ≤T d (x, y) ∈ Aα.

Define C ⊂ R to be the set of z ∈ R such that αz(d) is defined for a cone of d. We have

C ∈ ΣMΓ
1 by the admissibility of the companion, so C ∈ Γ. Given z, z′ ∈ C, take a Turing

degree d0 be such that αz(d) and αz′(d) are defined for all d ≥T d0. The sets

{d ≥T d0 : αz(d) < αz′(d)},
{d ≥T d0 : αz(d) = αz′(d)}, and

{d ≥T d0 : αz(d) > αz′(d)}

are all ∆MΓ
1 (z, z′, d0) and therefore in ∆˜ Γ, so by ∆˜ Γ-determinacy exactly one of them contains

a cone. So we can define a regular norm ϕ on C by ϕ(z) ≤ ϕ(z′) if αz(d) ≤ αz′(d) for a cone

of d. The relations ≤∗ϕ and <∗ϕ defined by

z ≤∗ϕ z′ ⇐⇒ z ∈ C & (z′ ∈ C =⇒ ϕ(z) ≤ ϕ(z′)) and

z <∗ϕ z
′ ⇐⇒ z ∈ C & (z′ ∈ C =⇒ ϕ(z) < ϕ(z′))

are Σ1-definable over MΓ and are therefore in Γ, so ϕ is a Γ-norm. Therefore ran(ϕ) ⊂ κ and

we assume that the companion MΓ has been expanded by a relation for ϕ—in particular,

this does not change its notion of Σ1-definability.

Now let σ ⊂X be countable. Take z ∈ R with dom(fz) = σ and ∀x ∈ σ fz(x) = 1 ⇐⇒
x ∈ B. Notice that we have z ∈ C. Let α = ϕ(z). Notice that for every x ∈ R there is a

z′ ∈ C with ϕ(z′) = α and x ∈ dom(fz′). So the set B′ ⊂X defined by

x ∈ B′ ⇐⇒ ∃z′ ∈ C (ϕ(z′) = α & x ∈ dom(fz′) & fz′(x) = 1)

⇐⇒ ∀z′ ∈ C (ϕ(z′) = α & x ∈ dom(fz′) =⇒ fz′(x) = 1),

is ∆MΓ
1 (α) and satisfies B′ ∩ σ = B ∩ σ. �

We haven’t actually showed that the envelope contains any sets beyond OD<Γ itself. The

following lemma does this and has a few other uses as well.

Lemma 3.2.7. If A ⊂ R is ΣMΓ
1 (~α) for some ~α ∈ κ<ω then A ∈ Env(Γ).

Proof. Let σ ⊂ R be countable and take a Σ1 formula θ such that

x ∈ A ⇐⇒ MΓ |= θ[x, ~α].

Let (Mξ : ξ < κ) be a resolution of the companion MΓ = (MΓ;∈, RΓ). We may assume that

Mξ ⊆Mξ′ for ξ < ξ′. Let

Mξ = (Mξ;∈, RΓ ∩Mξ).

Because σ is countable and cof(κ) > ω, if we choose a sufficiently large ξ < κ—in particular

larger than max(~α)—and we define a set of reals A′ by

x ∈ A′ ⇐⇒ Mξ |= θ[x, ~α],
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then we have A ∩ σ = A′ ∩ σ. The set A′ is OD<Γ, so it witnesses that A ∈ Env(Γ). �

Next we establish a few more closure properties of the envelope.

Theorem 3.2.8. Let Γ be an inductive-like pointclass and suppose that ∆˜ Γ is determined.

(1) Env(Γ) contains Γ and is closed under ¬, ∧, ∨, ∃R, ∀R, and recursive substitution.

(2) Env˜ (Γ) contains Γ˜ and is closed under ¬, ∧, ∨, ∃R, ∀R, and Wadge reducibility.

Proof. We have Γ ⊂ Env(Γ) by the special case of Lemma 3.2.7 where ~α = ∅. The

closure of Env(Γ) under Boolean combinations is immediate from the closure of OD<Γ under

Boolean combinations, and the closure of Env(Γ) under real quantifiers is Theorem 3.2.6.

Now let A ∈ Env(Γ) and let g : R→ R be a recursive function. Given a countable σ ⊂ R
the image g“σ is also countable, so we can take A′ ∈ OD<Γ with A ∩ g“σ = A′ ∩ g“σ. Then

g−1(A′) ∈ OD<Γ and g−1(A) ∩ σ = g−1(A′) ∩ σ, so we have shown that g−1(A) ∈ Env(Γ).

Part (2) follows easily from part (1). �

Lastly we use the following theorem to place a limitation on the extent of the envelope.

Theorem 3.2.9 (Martin [20]). The Γ̌ relation {(x, y) : y /∈ CΓ(x)} cannot be uniformized

by a set in Env˜ (Γ).

Proof. The relation {(x, y) : y /∈ CΓ(x)} is ΠMΓ
1 and is therefore indeed in Γ̌. Let

f : R → R be in Env˜ (Γ), say in Env(Γ(x)) where x ∈ R. By the closure properties of

Env(Γ(x)) in Theorem 3.2.8 relativized to x, we have f(x) ∈ Env(Γ(x)) and if we let A ⊂ ω

code f(x) in any natural way then A ∈ Env(Γ(x)). But A is a set of integers, so this

is equivalent to saying that A ∈ OD<Γ and also to saying that A ∈ CΓ. So x ∈ CΓ, a

contradiction. �

3.3. Digression: gaps in L(R)

Following [35] we define the notions of weak and strong gaps in L(R). We use the Jensen

hierarchy (Jα : α ∈ Ord) for L(R) but the reader would not miss much by pretending that

Jκ(R) = Lκ(R). However we should note here that the ordinal height of Jα(R) is ωα and

not α.

Definition 3.3.1. A Σ1-gap—or simply a gap—in L(R) is a maximal interval of ordinals

[κ, β] such that Jκ(R) ≺R
1 Jβ(R) and β ≤ ΘL(R).

The superscript R means that real parameters are allowed. Recall that by convention R
itself is allowed as an unstated parameter in all formulas. The gaps partition the interval

[0,ΘL(R)]. We say κ begins a gap in L(R) if [κ, β] is a gap for some β. This means that

new Σ1 facts about reals are witnessed cofinally often below κ in the Jensen hierarchy. If κ

begins a gap then there is a Σ
Jκ(R)
1 partial surjection R 7→ Jκ(R). In general, we take the

expression ρ
Jκ(R)
n = R (“the nth projectum of Jκ(R) is R”) to mean that there is a Σ

Jκ(R)
n

partial surjection R 7→ Jκ(R). This is equivalent to the existence of a Σ
Jκ(R)
n set of reals that

is not in Jκ(R).
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If κ begins a gap and Jκ(R) satisfies AD then the pointclass Σ
Jκ(R)
1 has the scale property

by [35]. If Jκ(R) is not admissible (does not satisfy Σ1-collection) then we have Π
Jκ(R)
2 =

∀RΣ
Jκ(R)
1 ,Σ

Jκ(R)
3 = ∃RΠ

Jκ(R)
2 and so on, and if these pointclasses are determined then they all

have the scale property by the second periodicity theorem.

Assume now that κ begins a gap and Jκ(R) satisfies AD and is admissible. Define the

pointclass

Γ = Σ
Jκ(R)
1 .

This pointclass is closed under real quantifiers and therefore is inductive-like, and the corre-

sponding pointclass ∆˜ Γ is equal to Jκ(R) ∩ ℘(R) and therefore is determined. The prewell-

ordering ordinal of ∆˜ Γ is κ itself by admissibility.

The underlying set of the companion MΓ is given by MΓ = Jκ(R) because this is the

least admissible set containing all ∆˜ Γ sets of reals.

So in this case we have

OD<Γ = OD<κ

where for an ordinal β we say a pointset A is in OD<β if it is ordinal-definable over the

structure (Jα(R);∈) for some α < β. Similarly, we write ODβ for OD<(β+1), the class of

sets A ⊂ R that are definable over Lβ(R) itself from ordinal parameters by any formula (not

necessarily ∆1.) So in this notation we have A ∈ Env(Γ) if and only if for every countable

σ ⊂ R there is a set A′ ∈ OD<κ with A ∩ σ = A′ ∩ σ.

We would like to analyze the extent of the envelope in terms of the Jensen hierarchy. To

do this we need to use a reflection property introduced by Steel in [35].

Definition 3.3.2 ([35]). The Σ1-gap [κ, β] in L(R) is strong if Jκ(R) is admissible, and

letting n < ω be least such that ρn(Jβ(R)) = R, every Σn-type realized in Jβ(R) is realized in

Jα(R) for some α < β (and therefore for some α < κ by the definition of a gap.) Otherwise

we say the gap is weak.

We remark that this definition differs from the standard one in that it considers an

“improper” admissible gap [κ, κ] to be strong. Under this definition, the first example of

a strong gap is [κR, κR] where JκR(R) is the first admissible level of L(R). In this example

the pointclass Σ
Jκ(R)
1 is equal to IND, the pointclass of sets definable by positive elementary

induction on R.

Proposition 3.3.3. If Jκ(R) is an admissible level of L(R) satisfying AD and [κ, β] is

a gap, then

(1) OD<β ⊂ Env(Σ
Jκ(R)
1 ), and

(2) ODβ ⊂ Env(Σ
Jκ(R)
1 ) if [κ, β] is a strong gap.

Proof. (1) Given a set of reals A ∈ OD<β and a countable set σ ⊂ R, let a = A ∩ σ.

Then in Jβ(R) the pair (σ, a) satisfies the Σ1 formula saying “there is a set of reals A′ that

is ordinal-definable over some level, and such that A′ ∩ σ = a.” Applying the definition of
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a Σ1-gap to some real coding the pair (σ, a), this formula is also true of (σ, a) in Jκ(R), so

there is a set A′ ∈ OD<κ with A′ ∩ σ = a = A ∩ σ.

(2) Let n be least such that ρn(Jβ(R)) = R. Averaging over real parameters, we get a

partial surjection R→ Jβ(R) that is Σn-definable over Jβ(R) from ordinal parameters only, so

the ODβ sets of reals are generated under Boolean combinations and real quantification from

sets of reals that are Σ
Jβ(R)
n in ordinal parameters. The envelope is closed under Boolean

combinations and real quantification by Theorem 3.2.8, so it is enough to show that it

contains the set A ⊂ R given by

x ∈ A ⇐⇒ Jβ(R) |= θ[x, β̄]

where β̄ ∈ (ωβ)<ω and θ is a Σn formula.

Given a countable set of reals σ, take a real z coding σ. By the definition of a strong gap

the Σn-type of (z, β̄) in Jβ(R) is realized in some Jα(R) with α < κ. The real z is determined

by its type, so there is a finite sequence of ordinals ᾱ ∈ (ωα)<ω such that the Σn-type of

(z, ᾱ) in Jα(R) is equal to the Σn-type of (z, β̄) in Jβ(R). Then we have A ∩ σ = A′ ∩ σ
where A′ ∈ OD<κ is the set defined by x ∈ A′ ⇐⇒ Jα(R) |= θ[x, ᾱ]. This shows that

A ∈ Env(Γ). �

Relativizing Lemma 3.3.3 to arbitrary reals, we see that if Jκ(R) is an admissible level

of L(R) satisfying AD and [κ, β] is a gap, then

(1′) Jβ(R) ∩ ℘(R) ⊂ Env˜ (Σ
Jκ(R)
1 ), and

(2′) Jβ+1(R) ∩ ℘(R) ⊂ Env˜ (Σ
Jκ(R)
1 ) if [κ, β] is a strong gap.

Part (1′) does not give us any more information about the extent of determinacy in L(R)—we

already know that AD holds in Jβ(R) by the definition of a gap because it is a Π1 statement.

However part (2′) gives us a nontrivial determinacy transfer theorem, whose original proof

interleaved proofs of Theorems 3.2.4 and 3.2.6 without explicitly using the notion of the

envelope.

Corollary 3.3.4 (Kechris–Woodin [17]). If Jκ(R) is an admissible level of L(R) satis-

fying AD and beginning a strong gap [κ, β], then Jβ+1(R) |= AD.

Proof. Given a set of reals A ∈ Jβ+1(R), we have A ∈ Env˜ (Σ
Jκ(R)
1 ) by Proposition

3.3.3, so A is determined by Theorem 3.2.4. �

As another corollary we can show that no new reals become ordinal-definable at the end

of a strong gap:

Corollary 3.3.5 (Martin [20]). If Jκ(R) is an admissible level of L(R) satisfying AD

and beginning a strong gap [κ, β], then every real x ∈ ODβ is in OD<κ, or equivalently, is in

CΓ where Γ = Σ
Jκ(R)
1 .

Proof. Code x ∈ ODβ as a set of integers A ⊂ ω. By Proposition 3.3.3 we have A ∈
Env(Γ). Because A ⊂ ω this means A ∈ OD<Γ by definition, or equivalently, A ∈ OD<κ. �
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3.4. The models L[T, x]

Let Γ be an inductive-like pointclass and suppose that ∆˜ Γ is determined. Let T be the

tree of a Γ-scale on a universal Γ set. For some applications of the envelope we will need

to relate Env(Γ) to the models L[T, x] where x is a real. For the most part the proofs in

this section are not new; we just have to check that our assumption of ∆˜ Γ determinacy is

enough.

Lemma 3.4.1. Let Γ be an inductive-like pointclass and suppose that ∆˜ Γ is determined.

Let κ be the pre-wellordering ordinal of Γ and let T on ω × κ be the tree of a Γ-scale on a

universal Γ set. Then the ordinal κ is a regular cardinal in L[T ].

Proof. This is a straightforward adaptation of the “projective set theory” introduced

in Harrington–Kechris [6], which is used to show under PD that the projective ordinal δ˜1
2n+1

is a regular cardinal in L[T2n+1] where T2n+1 is the tree of a Π1
2n+1-scale on a universal Π1

2n+1

set. We sketch the adaptation of that argument to the following projective-like hierarchy (a

type IV hierarchy in the terminology of [16]):

• Γ˜0 = Γ˜,

• Γ˜1 is the class of sets A ∩B where A ∈ Γ˜ and B ∈ Γ̌˜,

• Γ˜2n+2 = ∃RΓ˜2n+1, and

• Γ˜2n+3 = ∀RΓ˜2n+2.

These pointclasses are contained in Env˜ (Γ) by Theorem 3.2.8 so they are all determined.

By [16] they all have the prewellordering property. Let δ˜n be the supremum of the lengths

of the ∆˜ Γn prewellorderings. As in [6] one can show that each δ˜n cannot be singularized by

functions coded by pointsets in
⋃
i<ω Γ˜i and that there is a measure defined on the subsets

of δ˜n that are coded by sets of reals in
⋃
i<ω Γ˜i. Moreover, sufficiently large δ˜n’s are Silver

indiscernibles for L[T ], and T ] exists and is coded by an ω-sequence of sets in
⋃
i<ω Γ˜i. This

shows that every subset of κ in L[T ] is coded by a set in
⋃
i<ω Γ˜i and therefore cannot

singularize κ. �

We collect some related lemmas on L[T ] and OD<Γ here:

Lemma 3.4.2. Let Γ be an inductive-like pointclass and suppose that ∆˜ Γ is determined.

Let κ be the pre-wellordering ordinal of Γ and let T on ω× ω× κ be the tree of a Γ-scale on

a universal Γ set.

(1) If y ∈ L[T ] ∩ R then y ∈ OD<Γ,

(2) the set of OD<Γ reals is a countable Γ set, and

(3) every countable Γ set of reals is contained in L[T ].

Proof. (1) Because κ is regular in L[T ] by Lemma 3.4.1, a Skolem hull argument shows

that y ∈ Lα[T � γ] for some ordinals α and γ with γ < α < κ. Say T is the tree of the

Γ-scale ~ϕ. By Lemma 3.1.4 the norms of ~ϕ are all ∆MΓ
1 , and the uniformity in the proof

shows that the scale ~ϕ itself is ∆MΓ
1 . Therefore the tree T is ∆MΓ

1 and we can calculate that

y is ∆MΓ
1 .
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(2) The set of OD<Γ reals is a ΣMΓ
1 pointset and is therefore in Γ. To see that it

is countable, let (Mα : α < κ) be a resolution of the companion MΓ = (MΓ;∈, RΓ) of

Γ, so that the OD<Γ reals are exactly the reals that are OD over one of the structures

Mα = (Mα;∈, RΓ ∩Mα) for some α < κ.

For any β < κ, the set OD<β of reals that are OD over Mα for some α < β has a

natural wellordering definable from x and β inside the AD model MΓ, so it is countable. By

the admissibility of MΓ, the nondecreasing ∆MΓ
1 function κ → ω1 taking β to the length of

this wellordering of OD<β must be eventually constant or else we would get a ∆MΓ
1 function

ω1 → κ singularizing κ. This shows that the entire set of OD<Γ reals is countable.

(3) If A is a countable Γ set of reals, or in fact any thin Γ set of reals—that is, not

containing a perfect set—we have A = p[S] for some tree S ∈ L[T ] and therefore A = p[S] ⊂
L[T ] by the Mansfield–Solovay theorem [19, 34]. �

Therefore the following notion from Kechris [13] is well-defined in our context.

Definition 3.4.3. CΓ denotes the largest countable Γ set of reals.

We can use this definition of CΓ to rewrite Lemma 3.4.2 as an equivalence. We emphasize

that the proof of this equivalence was already in [6] and [13] and we are just checking that

it goes through under our limited determinacy hypothesis.

Corollary 3.4.4. Let Γ be an inductive-like pointclass and suppose that ∆˜ Γ is deter-

mined. Let κ be the pre-wellordering ordinal of Γ and let T on ω× κ be the tree of a Γ-scale

on a universal Γ set. The we have

CΓ = L[T ] ∩ R

= OD<Γ ∩ R.

In particular, the set L[T ] ∩ R is countable.

The preceding results about CΓ, OD<Γ, and L[T ] all relativize in a straightforward way

to CΓ(x), OD<Γ(x), and L[T, x] for any real x. We can use the models L[T, x] to formulate

and prove an equivalent definition of the envelope. We use the proof from [8], checking that

∆˜ Γ determinacy is enough.

Theorem 3.4.5. Let Γ be an inductive-like pointclass and suppose that ∆˜ Γ is determined.

Let κ be the pre-wellordering ordinal of Γ and let T on ω × κ be the tree of a Γ-scale on a

universal Γ set. Then for any set A ⊂ R the following conditions are equivalent.

(1) A ∈ Env(Γ), and

(2) A ∩ L[T, x] ∈ OD
L[T,x]
T for every x ∈ R.

Proof. (1 =⇒ 2) Let x ∈ R. The set L[T, x] ∩ R is countable by Lemma 3.4.2, so we

can take A′ ∈ OD<Γ with A ∩ L[T, x] = A′ ∩ L[T, x]. We may take our companion of Γ to

be MΓ = (MΓ;∈, RΓ, ϕ) where ϕ is the first norm of the scale giving T . Let (Aα : α < κ)

be a ∆MΓ
1 enumeration of the OD<Γ sets of reals and fix η < κ such that A′ = Aη. The
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relation B = {(z, y) : z ∈ Aϕ(y)} on R × R is Σ1 over MΓ, so it is in Γ and there is a tree

S ∈ L[T ] definable from T with p[S] = B. The proof of the Becker–Kechris theorem [2]

shows that in L[T ] we may use T (and S, which is definable from T ) to define a family of

games {Gη(z) : z ∈ R} on κ such that

• Gη(z) is closed uniformly in z,4 and

• z ∈ Aη if and only if player II has a winning strategy for Gη(z).

That is, there is a set Xη ⊂ κ<ω × ω<ω in OD
L[T,x]
T such that

z ∈ Aη ⇐⇒ (af ∈ κω)(∀n < ω) (f � n, z � n) ∈ Xη.

The right-hand side is absolute to L[T, x], so Aη ∩ L[T, x] ∈ OD
L[T,x]
T .

(2 =⇒ 1) By Lemma 3.4.1 and a Skolem hull argument every set of reals A ∈ OD
L[T,x]
T

is OD
Lγ [T �β,x]
T �β for some ordinals β and γ with β < γ < κ. So for a Turing degree d, taking

MΓ = (MΓ;∈, RΓ, T ) as our companion shows that there is an enumeration (Aα,d : α < κ) of

all OD
L(T,d)
T sets of reals that is ΣMΓ

1 -good uniformly in d. (There are really only countably

many such sets of reals, but this doesn’t matter at the moment.)

We consider a real z to code a countable partial function fz with dom(fz) ⊂ R and

ran(fz) ⊂ {0, 1}. Given a Turing degree d ≥T z let αz(d) by the least α < κ such that

∀x ∈ dom(fz) (fz(x) = 1 ⇐⇒ x ∈ Aα,d),

if it exists. Let C = {x ∈ R : ∀∗dαz(d) exists}.
For z, z′ ∈ C we define z � z′ if αd(z) ≤ αd(z

′) for a cone of d. To see that the relation

� is a prewellordering it suffices to verify that any elements z and z′ of C are comparable.

Indeed, if we take d0 such that αz(d) and αz′(d) are defined for all d ≥T d0 then the sets

{d ≥T d0 : αz(d) < αz′(d)}, {d ≥T d0 : αz(d) = αz′(d)}, and {d ≥T d0 : αz(d) > αz′(d)} are

all ∆MΓ
1 (z, z′, d0) and therefore ∆˜ Γ, so by ∆˜ Γ-determinacy exactly one of them contains a

cone. The sets

{(z, z′) : z ∈ C & (z′ ∈ C =⇒ z � z′)}
{(z, z′) : z ∈ C & (z′ ∈ C =⇒ z ≺ z′)}

are ΣMΓ
1 and are therefore in Γ. So we get a Γ-norm ϕ : C → κ with ϕ(z) ≤ ϕ(z′) ⇐⇒ z �

z′. We can add expand the companion by a predicate for ϕ.

Let σ ⊂ R be countable. Take z ∈ R with dom(fz) = σ and fz(x) = 1 ⇐⇒ x ∈ A. By

our assumption on A we have z ∈ C. Let α = ϕ(z). Notice that for every x ∈ R there is a

z′ ∈ C with ϕ(z′) = α and x ∈ dom fz′ . So the set A′ ⊂ R defined by

x ∈ A′ ⇐⇒ ∃z′ ∈ C (ϕ(z′) = α & x ∈ dom(fz′) & fz′(x) = 1)

⇐⇒ ∀z′ ∈ C (ϕ(z′) = α & x ∈ dom(fz′) =⇒ fz′(x) = 1),

is ∆MΓ
1 (α) and satisfies A′ ∩ σ = A ∩ σ, witnessing that A ∈ Env(Γ). �

4It is closed uniformly in z and η, but the Becker–Kechris theorem used only the uniformity in η and the
present argument uses only the uniformity in z.
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Remark 3.4.6. Under AD the weaker property that A ∩ L[T, x] ∈ L[T, x] for a cone of

x is also equivalent to A ∈ Env˜ (Γ). See [8] for a proof. We do not know if the equivalence

is valid in ZF + DCR assuming only ∆˜ Γ determinacy.

We can also characterize the subsets of κ that lie in L[T, z] for some real z. Here it is

important that an arbitrary real parameter is allowed—we do not know whether there is a

useful “lightface” class of subsets of κ.

Lemma 3.4.7. Let Γ be an inductive-like pointclass and suppose that ∆˜ Γ is determined.

Let κ be the pre-wellordering ordinal of Γ and let T on ω × κ be the tree of a Γ-scale on a

universal Γ set. Then for any set of ordinals Y ⊂ κ, the following statements are equivalent:

(1) Y ∈ ∆MΓ
1 (z) for some z ∈ R.

(2) Y ∈ ΣMΓ
1 (z) for some z ∈ R.

(3) Y ∈ L[T, z] for some z ∈ R.

Proof. Property (1) trivially implies property (2). If property (2) holds, then letting

ϕ be a Γ-norm onto κ the set {x ∈ dom(ϕ) : ϕ(x) ∈ Y } is ΣMΓ
1 (z) and therefore Γ(z), so

property (3) holds by the Becker–Kechris theorem of [2].

Now assume that property (3) holds. As in the proof of Lemma 3.4.1, one can use the

projective set theory of [6] to show that the sets Y and κ \ Y in L[T, z] are each coded by

a set in the projective-like hierarchy Γ˜0,Γ˜1, . . . over Γ˜. Therefore the sets {x ∈ dom(ϕ) :

ϕ(x) ∈ Y } and {x ∈ dom(ϕ) : ϕ(x) /∈ Y } are in Γ˜n for some n. The pointclasses Γ˜n are

determined, so these sets are actually in Γ˜ by the Coding Lemma. This shows that property

(1) holds, although not necessarily with the same real parameter z. �

3.5. Countably complete measures and towers

As usual, in this section we let Γ be an inductive-like pointclass and suppose that ∆˜ Γ is

determined. We let T be the tree of a Γ-scale on a universal Γ set.

Definition 3.5.1. ℘Γ˜(κ) is the σ-algebra consisting of subsets Y ⊂ κ that are ∆MΓ
1 (z)

for some real z.

By Lemma 3.4.7 it is equivalent to require that Y is ΣMΓ
1 (z) for some real z or that

Y ∈ L[T, x] for some real z.

Definition 3.5.2. measΓ˜(κ) is the set of countably complete measures on ℘Γ˜(κ).

By part 2 of Lemma 3.4.7—the “Σ1” characterization of ℘Γ˜(κ)—we can code elements

of ℘Γ˜(κ) by reals via a map x 7→ Yx such that the relation {(x, α) : α ∈ Yx} is ΣMΓ
1 . For an

example of such a coding, fix a Γ-norm ϕ onto κ and a universal Γ set U ⊂ R× R and say

α ∈ Yx if there is y ∈ dom(ϕ) with ϕ(y) = α and (x, y) ∈ U . This coding induces a coding

of measures:

Definition 3.5.3. For a measure µ ∈ measΓ˜(κ), the code set Cµ of µ is defined by

Cµ = {x ∈ R : Yx ∈ µ}.
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The following fact was proved by Martin in the AD context, where ℘Γ˜(κ) = ℘(κ) by

the Coding Lemma and measΓ˜(κ) is the set of all measures in κ because all measures are

countably complete.

Lemma 3.5.4. Let Γ be an inductive-like pointclass and suppose that ∆˜ Γ is determined.

Then the code set Cµ is in Env(Γ) for every measure µ ∈ measΓ˜(κ).

Proof. Let σ ⊂ R be countable. By the countable completeness of µ we can take an

ordinal α < κ such that

∀x ∈ σ (Yx ∈ µ ⇐⇒ α ∈ Yx).

Then we have Cµ ∩ σ = Cµα ∩ σ where µα is the principal measure generated by α. We

have Cµα = {x ∈ R : α ∈ Yx}, which is ΣMΓ
1 (α), so in turn by Lemma 3.2.7 there is a set

A′ ∈ OD<Γ with Cµα ∩ σ = A′ ∩ σ. �

Note that everything in this section can be generalized from κ to κ<ω in a routine way

using a ∆MΓ
1 bijection κ → κ<ω. So we can define ℘Γ˜(κn), measΓ˜(κn), ℘Γ˜(κ<ω), and

measΓ˜(κ<ω). By countable completeness, every measure in measΓ˜(κ<ω) concentrates on

℘Γ˜(κn) for some n. Combining Lemma 3.5.4 with Proposition 3.2.5 on the wellordering of

the envelope yields the following result.

Proposition 3.5.5. Let Γ be an inductive-like pointclass and suppose that ∆˜ Γ is deter-

mined. For any universal Γ set U , there is a well-ordering of measΓ˜(κ<ω) of order type ≤ Θ

that is definable from U .

In fact we could improve this result a bit to get a well-ordering of the measures that

is definable from Γ˜, using the proof of Kunen’s theorem that under AD all measures are

ordinal-definable, which can be found in [12]. The pointclass Γ˜ itself might not be OD if

there are divergent models of AD.

In [14] Kechris gives a different way of coding measures under AD, which assumes the

stronger hypothesis of determinacy for real-integer games whose payoffs are Γ˜ subsets of

Rω × ωω, and proves the stronger conclusion that measΓ˜(κ<ω) has size strictly less than Θ.

We use the following notation for basic functions on sets and measures:

Definition 3.5.6.

• For X ∈ ℘Γ˜(κi) and j ≥ i, define the extension

exti,j(X) = {s ∈ κj : s � i ∈ X}.

• For F : κi → Ord in L˜[T ] and j ≥ i, define the extension exti,j(F ) : κj → Ord by

exti,j(F )(s) = F (s � i).

• For µ ∈ measΓ˜(κj) and i ≤ j, define the projection

projj,i(µ) = {X ∈ ℘Γ˜(κi) : exti,j(X) ∈ µ}.
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Definition 3.5.7.

• A tower of measures on ℘Γ˜(κ<ω) is a sequence µ̄ = (µi : i < ω) such that µi ∈
measΓ˜(κi) for all i < ω, and µi = projj,i µj when i < j.

• A tower of measures µ̄ on ℘Γ˜(κ<ω) is countably complete if for all sequences (Xi :

i < ω) with Xi ∈ µi for all i, there is a function f ∈ κω such that f � i ∈ Xi for all

i < ω.

For a measure µ ∈ measΓ˜(κi), we define the ultrapower Ult(Ord, µ) using functions

κi → Ord in L˜[T ]. Because µ is countably complete, this ultrapower is wellfounded—DCR

is enough to show this because every element of L˜[T ] is ordinal-definable from T and a real.

So let

jµ : Ord→ Ord

denote the µ-ultrapower map. If µi = projj,i µj then we let jµi,µj be the factor map defined

by

jµi,µj([F ]µi) = [exti,j(F )]µj .

We have jµj = jµi,µj ◦ jµi .

Lemma 3.5.8. For a tower of measures µ̄ = (µi : i < ω) on ℘Γ˜(κ<ω) the following

statements are equivalent:

(1) µ̄ is not countably complete,

(2) there is a function h : ω → Ord with jµi,µi+1
(h(i)) > h(i+ 1) for all i < ω, and

(3) the direct limit of Ord under the ultrapower maps (jµi,µj : i ≤ j < ω) is illfounded.

Proof. (1) =⇒ (2) If the tower µ̄ is not countably complete, take a sequence of

measure one sets (Xi : i < ω) witnessing this. By shrinking the sets we may assume that

Xj ⊂ exti,j Xi whenever i < j, so the set U =
⋃
i<ωXi is a wellfounded tree with µi-measure

one for each µi. We have U ∈ L˜[T ], so its rank function rankU is in L˜[T ] and we can define

a function h : ω → Ord by h(i) = [rankU ]µi . Then we have jµi,µi+1
(h(i)) > h(i + 1) for all

i < ω.

(2) =⇒ (3) Given such a function h, the direct limit of the ordinals contains an infinite

decreasing sequence jµ0;∞(h(0)) > jµ1;∞(h(1)) > · · · .
(3) =⇒ (1) If the direct limit of the ordinals is illfounded, then we may use DCR to

choose a sequence of functions Fi : κni → Ord in L˜[T ] such that for each i < ω we have

ni+1 > ni and jµni ,µni+1
([Fi]µni ]) > [Fi+1]µni+1

. If we let

Xn = {s ∈ κn : ∀i < ω (ni+1 ≤ n =⇒ Fi(s � ni) > Fi+1(s � ni+1))},

then the sequence (Xn : n < ω) witnesses that µ̄ is not countably complete. Each Xn has µn-

measure one, but if f ∈ κω were to satisfy f � n ∈ Xn for all n < ω then (Fi(f � ni) : i < ω)

would be a decreasing sequence in κ, a contradiction. �
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We may therefore call a tower of measures on ℘Γ˜(κ<ω) wellfounded if it is countably

complete and illfounded if it is not countably complete when we wish to emphasize property

(3). We call a function h as in statement (2) a witness to the illfoundedness of µ̄.

For every illfounded tower µ̄, the pointwise minimum of any family of functions ω → Ord

witnessing the illfoundedness of the tower µ̄ itself witnesses the illfoundedness of µ̄, so there

is a pointwise least witness to the illfoundedness of µ̄. Next we prove that the least witness

has a special form that will occasionally be useful.

Lemma 3.5.9. If µ = (µi : i < ω) is an illfounded tower of measures on ℘Γ˜(κ<ω) then

there is a wellfounded tree U ∈ ℘Γ˜(κ<ω) on which each measure µi concentrates, such that

the function g : ω → Ord defined by g(i) = [rankU ]µi is a pointwise least witness to the

illfoundedness of µ̄.

Proof. Take a pointwise least witness h : ω → Ord to the illfoundedness of µ̄. We can

use countable choice for reals to choose for each i < ω a function Fi : κi → Ord such that

[Fi]µi = h(i). Defining the tree U by

s ∈ U ⇐⇒ (∀i < |s|)
(
Fi(s � i) > F|s|(s)

)
,

we have that U ∈ µi for all i < ω and we have a well-defined function F =
⋃
i<ω Fi � U that

is order-preserving as a function (U,)) → (Ord, <). Therefore for all s ∈ U ∩ κi we have

rankU(s) ≤ F (s) = Fi(s), so [rankU ]µi ≤ h(i) as desired. �

3.6. Semi-scales with norms in the envelope

As usual we let Γ be an inductive-like pointclass such that ∆˜ Γ is determined, and we let

T be the tree of a Γ-scale on a universal Γ set.

Definition 3.6.1. Given a tree S ∈ L[T ] on ω×κ and a set of measures σ ⊂ measΓ˜(κ<ω),

the putative semi-scale on R \ p[S] given by σ is the set of norms {ϕµ : µ ∈ σ} on R \ p[S]

defined by

ϕµ(x) = [rankSx ]µ

where rankSx(t) denotes the rank of the node t in the tree Sx, and is considered to be zero

if t /∈ Sx and undefined if Sx is illfounded below t.

This is an abuse of terminology because the set of norms is indexed by σ and not ω.

However, the ordering of the norms does not matter for our purposes. We will say that the

putative semi-scale {ϕµ : µ ∈ σ} is a semi-scale just in case for some (equivalently, for any)

enumeration (µi : i < ω) of σ the sequence of norms (ϕµi : i < ω) is a semi-scale on R \ p[S]

in the usual sense.

Lemma 3.6.2. Given a tree S ∈ L[T ] on ω×κ and a measure µ ∈ measΓ˜(κ<ω), the norm

relation ≤µ defined by x ≤µ y ⇐⇒ ϕµ(x) ≤ ϕµ(y) is in Env(Γ).
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Proof. By Theorem 3.4.5 it suffices to show that given any z ∈ R, the restriction

≤µ∩L[T, z] of the norm relation ≤µ is OD
L[T,z]
T . Indeed, there are only countably many reals

in L[T, z] by Lemma 3.4.2 and the measure µ is countably complete, so we can take s ∈ κ<ω
such that for all reals x, y ∈ L[T, z] we have

[rankSx ]µ ≤ [rankSy ]µ ⇐⇒ rankSx(s) ≤ rankSy(s).

This shows that the restriction ≤µ ∩ L[T, z] of the norm relation ≤µ is definable in L[T, z]

from s and S and it remains to note that S ∈ ODL[T,z]
T . �

Definition 3.6.3. Given a tree S ∈ L[T ] on ω×κ and a set of measures σ ⊂ measΓ˜(κ<ω),

define the following game, which is closed for player I:

I n0, α0, h0 n1, α1, h1 . . .

II µ1 µ2 . . .
(Gσ

S)

We let µ0 denote the trivial measure on κ0.

Rules for I: ((n0, . . . , ni), (α0, . . . , αi)) ∈ S and jµi,µi+1
(hi) > hi+1.

Rules for II: µi+1 ∈ σ is a measure on κi+1 projecting to µi and concentrating on

the set S(n0,...,ni) ⊂ κi+1.

The first player to deviate from these rules loses, and if both players follow the rules for all

ω moves then player I wins.

In other words, player I is trying to build a real x and a branch ~α of Sx, player II is trying

to build a tower ~µ of measures in σ concentrating on Sx, and player I is trying to build a

continuous witness h to the illfoundedness of ~µ. Notice that no relation between ~α and ~µ is

required by the rules.

The game Gσ
S is a closed game on a wellordered set, so by the Gale–Stewart theorem it

is determined. The following lemma was proved by Woodin for the ordinary measures on

℘(κ<ω), but easily adapts in our situation to the ℘Γ˜(κ<ω) version we state below, which has

somewhat wider applicability.

Lemma 3.6.4 (Woodin [46]). Let S ∈ L[T ] be a tree on ω × κ, and let σ ⊂ measΓ˜(κ<ω)

be a countable set of measures. If player II has a winning strategy in the game Gσ
S then the

putative semi-scale on R \ p[S] given by σ is a semi-scale.

Proof. Suppose it is not a semi-scale. We will describe a winning strategy for player I.

Take a convergent sequence of reals (xk : k < ω) witnessing that the norms (ϕµ : µ ∈ σ) do

not form a semiscale. That is, xk /∈ p[S] for each k < ω, and the sequence (ϕµ(xk) : k < ω)

has an eventually constant value h(µ) for each µ ∈ σ, but the limit x = limk<ω xk is in p[S].

Take a branch ~α of Sx.

A winning strategy for player I is immediately suggested by the notation: on the ith turn

play (x(i), αi, h(µi)). The rule jµi,µi+1
(hi) > hi+1 is satisfied because µi+1 ∈ σ is a measure

on κi+1 projecting to µi and concentrating on the set Sx�(i+1) ⊂ κi+1, then for sufficiently
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large k we have

jµi,µi+1
(h(µi)) = jµi,µi+1

([rankSxk ]µi)

= [exti,i+1 rankSxk ]µi+1
> [rankSxk ]µi+1

= h(µi+1). �

This lemma is used to prove the following theorem, which was first proved by Martin

using a different method under the additional assumption of a Suslin cardinal above κ. See

also the paper [22] of Martin and Woodin for a proof that is similar to the one below, but uses

a normal fine measure on ℘ω1
(R ∪ Env(Γ)) rather than just a fine measure on ℘ω1

(Env(Γ)).

Theorem 3.6.5 (Woodin [46], AD). Let Γ be an inductive-like pointclass. If Env˜ (Γ) 6=
℘(R) then every Γ̌ set has a semi-scale with norms in Env(Γ).

Proof. If Env˜ (Γ) 6= ℘(R) then by Wadge’s lemma Env˜ (Γ) is a surjective image of R.

So by the coding of measures in Lemma 3.5.4 there is a surjection F : R→ measΓ˜(κ<ω), and

by Turing determinacy we have a fine, countably complete measure U on ℘ω1
(measΓ˜(κ<ω))

defined by Z ∈ U if {F (y) : y ≤T x} ∈ Z for a cone of x ∈ R.

Let A ⊂ R be a Γ̌ set and take a tree S ∈ L[T ] on ω × κ with p[S] = R \ A. To get

the desired semi-scale on A it suffices by Lemma 3.6.4 to show that player II has a winning

strategy in the game Gσ
S for some countable set of measures σ. In fact we will show that

player II has a winning strategy in U -almost every σ.

Assuming the contrary, for U -almost every σ the proof of the Gale–Stewart theorem gives

a canonical winning strategy F σ for player I: always play the least move leading to a subgame

where player II still has no winning strategy. We define a tower of measures ~µ from σ that

is a valid play against F σ for U -almost every σ.

Let µ0 be the trivial measure on κ0. Let nσ0 and ασ0 denote the moves played as “n0” and

“α0” respectively by the strategy F σ on turn zero. Define a measure µ1 ∈ measΓ˜(κ<ω) by

X ∈ µ1 ⇐⇒ ∀∗Uσ (ασ0 ∈ X).

More generally, let nσi and ασi denote the moves played as “ni” and “αi” respectively by

the strategy F σ on turn i against the play (µ1, . . . , µi) by player II, and define a measure

µi+1 ∈ measΓ˜(κ<ω) by

X ∈ µi+1 ⇐⇒ ∀∗Uσ ((ασ0 , . . . , α
σ
i ) ∈ X).

By the countable completeness of U there is a real x such that U -almost every σ have

the property that for every i < ω we have nσi = x(i). Each measure µi concentrates on Sx
because (ασ0 , . . . , α

σ
i ) ∈ Sx for U -almost every σ. It’s easy to check that µi+1 projects to µi,

so the measures form a tower ~µ = (µi : i < ω).

For any σ with the above property and such that µi ∈ σ for every i < ω, the sequence ~µ

is a legal play by player II in the game Gσ
S, so the moves hσi played as “hi” by the strategy

F σ on turn i against the play (µ1, . . . , µi) by player II form a sequence witnessing that the

tower ~µ is illfounded.
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On the other hand, for any sequence of sets (Xi : i < ω) with Xi ∈ µi the countable

completeness of U and the definition of µi+1 give a countable set σ ⊂ measΓ˜(κ<ω) such

that (ασ0 , . . . , α
σ
i ) ∈ Xi for all i < ω. This shows that the tower ~µ is countably complete, a

contradiction. �

Notice that the semi-scale itself generally cannot be in Env(Γ) or even in Env˜ (Γ). If

Env˜ (Γ) were to contain a semi-scale on the Γ̌ set A = {(x, y) : y /∈ CΓ(x)}, then the

uniformization given by leftmost branches would also be in Env˜ (Γ), contradicting Martin’s

anti-uniformization theorem (Theorem 3.2.9.) Therefore the norm relations are generally

Wadge-cofinal in Env˜ (Γ).

3.7. Digression: ADR from divergent models of AD+

We can use Theorem 3.2.4 and Lemma 3.5.4 to give a simpler proof of a theorem of

Woodin. The original proof, which is unpublished, used Sacks forcing. We say that models

M0 and M1 of AD+ with R∪Ord ⊂M0,M1 are divergent if neither M0∩℘(R) nor M1∩℘(R)

contains the other. (By Wadge’s Lemma, this implies that no model of determinacy contains

both M0 and M1.)

Theorem 3.7.1 (Woodin, ZF + DCR). If M0 and M1 are divergent models of AD+, then

the model M = L(M0 ∩ M1 ∩ ℘(R)) satisfies “every set of reals is Suslin” (and therefore

ADR.)

Proof. Notice that M satisfies AD+, and also that M ∩℘(R) = M0∩M1∩℘(R) because

both M0 and M1 are closed under constructibility. Suppose toward a contradiction that M

does not satisfy “all sets are Suslin.” Then M has a largest Suslin cardinal κ by AD+. Let

S(κ) denote the pointclass of Suslin sets in M , or equivalently by the Coding Lemma, the

pointclass of κ-Suslin sets in M0 or in M1. The pointclass S(κ) is R-parameterized, non-

selfdual, closed under ∃R, ∀R, and Wadge reducibility, and has the scale property. (See [7].)

By a theorem of Becker we have S(κ) = Γ˜ for some inductive-like pointclass Γ. We could

also define the companion M of the boldface pointclass S(κ) as in Moschovakis and then

define the lightface pointclass Γ = ΣM
1 .

Notice that Env˜ (Γ)M0 and Env˜ (Γ)M1 are both contained in Env˜ (Γ)V . All three envelopes

are determined and closed under continuous reducibility, so by Wadge’s Lemma we may

assume without loss of generality that Env˜ (Γ)M0 ⊂ Env˜ (Γ)M1 . Because M0 and M1 are

divergent we have Env˜ (Γ)M0 6= ℘(R) ∩ M0 and by Theorem 3.6.5 there is a semi-scale

~ϕ ∈ M0 on a universal Γ̌ set B whose norm relations are in Env˜ (Γ)M0 . We also have

Env˜ (Γ)M0 6= ℘(R) ∩M1, so by Wadge’s Lemma M1 contains all countable sequences from

Env˜ (Γ)M0 and our semi-scale ~ϕ is in M1 as well. So B is Suslin in the intersection model

M , a contradiction. �

3.8. Digression: ADR in certain derived models

This section is devoted to the proof of the following proposition.
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Proposition 3.8.1 (ZFC). If δ is a limit of Woodin cardinals and either

(1) δ is δ+-strongly compact, or

(2) δ is weakly compact in V Col(δ,δ+),

then the derived model L(R∗,Hom∗) at δ satisfies ZF + ADR + DC.

Similar results are obtained using the theory of Kc in [11]. The conclusion there is

slightly stronger in terms of consistency strength, and the hypothesis is weaker, lacking the

assumption that δ is a limit of Woodin cardinals. On the other hand, Proposition 3.8.1

gives ADR in the derived model itself, which may lie beyond the reach of current methods

of inner model theory. (For example, it seems possible that the derived model could contain

an iteration strategy for a mouse with a superstrong cardinal.)

We say a tree T is <δ-absolutely complemented, or <δ-a.c., if there is a tree S such that

p[S] = R \ p[T ] in any generic extension of V by a poset of size less than δ. If δ is a limit of

Woodin cardinals and G ⊂ Col(ω,<δ) is a V -generic filter, then we define the sets

R∗G =
⋃
α<δ

R ∩ V [G � α] and

Hom∗G = {p[T ] ∩ R∗G : ∃α < δ (T ∈ V [G � α] & V [G � α] |= T is <δ-a.c.}

The model L(R∗G,Hom∗G) is called a derived model at δ. The forcing poset Col(ω,<δ) is

homogeneous, so when the particular generic G is not important we may speak of “the”

derived model L(R∗,Hom∗) at δ. The general facts we will use about derived models can all

be found in [42]. Most importantly, the derived model at a limit of Woodin cardinals always

satisfies ZF + AD + DCR. If δ is regular—and therefore inaccessible—then the derived model

at δ satisfies DC.

The derived model satisfies ADR if and only if, for every set of reals A ∈ Hom∗, every

Σ2
1(A)L(R∗,Hom∗) set of reals is also in Hom∗. We will show this to be the case assuming the

hypotheses of Proposition 3.8.1. Let A ∈ Hom∗, say A = p[T0] where T0 is in V [G � α] and

is <δ-absolutely complemented there. The pointclass

Γ = Σ2
1(A)L(R∗,Hom∗)

is inductive-like; in particular, it has the scale property. Notice that R∗ = RV [G] because δ

is inaccessible. Let T be the tree of a Γ-scale on a universal Γ set. The tree T is definable

from T0 in V [G], so by the homogeneity of the factor forcing we have T ∈ V [G � α]. We

want to show that T is <δ-absolutely complemented in V [G � β] for some β < δ.

In V [G] we have c+ = δ+ = δ+V , and by Proposition 3.5.5 on the wellordering of measures

there is a surjection

π : δ+ → measΓ˜(κ<ω)

that is definable from T . We remark that if measΓ˜(κ<ω) has size ≤ δ and not δ+, then the

weak compactness of δ suffices for the following argument. Proposition 3.8.1 now follows

from the following claim.
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Claim 3.8.2. Assume either

(1) δ is δ+-strongly compact, or

(2) δ is weakly compact in V Col(δ,δ+).

Then T is <δ-absolutely complemented in V [G � β] for some β < δ.

Proof from (1). This can be proved by the argument of Theorem 3.6.5 except that

our fine, countably complete measure on ℘ω1
(R∗)V (R∗) comes from the strong compactness

measure in the ground model via the Levy–Solovay theorem rather than from Turing determ-

inacy. However, for the sake of variety we will give a proof that instead uses the embedding

characterization of strong compactness.

Let U be a countably complete fine measure on ℘δ(δ
+) and let j : V → N = Ult(V,U)

denote the correponding ultrapower embedding. We can extend j to j∗ : V [G] → N [H]

where H ⊂ Col(ω,< j(δ)) is V [G]-generic. Define the set of measures σ = j∗(π)“([id]U)

where id denotes the identity function on ℘δ(δ
+). The relevant properties of this set σ are

that it is countable in N [H] and we have

j∗“measΓ˜(κ<ω) ⊂ σ.

We will show that in N [H], player II has a winning strategy in the game Gσ
j(T ). By the

absoluteness of the existence of winning strategies for closed games it is okay to step outside

of N [H] while describing our strategy.

If player I has played integers n0, . . . , ni < ω, ordinals α0, . . . , αi < j(κ), and ordinals

h0, . . . , hi, we define the measure µ̄i+1 ∈ measΓ˜(κ<ω)V [G] by

X ∈ µ̄i+1 ⇐⇒ (α0, . . . , αi) ∈ j∗(X) for all X ∈ ℘Γ˜(κ<ω).

Notice that j∗(X) does not depend on H because j∗ � L˜[T ] does not depend on H. So we

have µ̄i+1 ∈ V [G]. Clearly the measure µ̄i+1 is countably complete in V [G]. So we let player

II play the measure µi+1 = j∗(µ̄i+1).

To see that this describes a winning strategy for player II in the game Gσ
j(T ), suppose

toward a contradiction that player I is able to follow the rules for all ω rounds. Then the

sequence of ordinals (hi : i < ω) played by player I witnesses that the tower of measures

(µi : i < ω) is illfounded. By the elementarity of j∗ the tower of measures (µ̄i : i < ω) is also

illfounded. Take a sequence of sets (Xi : i < ω) with Xi ∈ µ̄i witnessing that (µ̄i : i < ω) is

not countably complete. Then by the elementarity of j∗ the sequence of sets (j∗(Xi) : i < ω)

witnesses that (µi : i < ω) is not countably complete. But (α0, . . . , αi−1) ∈ j∗(Xi) for each

i < ω, a contradiction.

Now by the elementarity of j∗ there is a countable set of measures

σ̄ ∈ ℘ω1
(measΓ˜(κ<ω))V [G]

such that player II wins the game Gσ̄
T as defined in the model V [G]. So by Lemma 3.6.4 the

putative semi-scale defined from σ̄ is in fact a semi-scale on RV [G] \ p[T ]. The tree T̃ of this

semi-scale is definable in V [G] from T and a countable set of ordinals, namely π−1“σ̄. So
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we have T̃ ∈ V [G � β] for some β < δ. In V [G � β], the trees T and T̃ are <δ-absolutely

complementing. �

Proof from (2). Let h ⊂ Col(δ, δ+)V be a V [G]-generic filter. In V [G], the forcing

poset Col(δ, δ+)V is homogeneous and does not add reals. So every element of Env(Γ)V [G][h]

is ODT in V [G][h] and is therefore in V [G]. Membership in Env(Γ) is absolute between tran-

sitive models containing Γ with the same reals and ordinals, so Env(Γ)V [G] = Env(Γ)V [G][h].

In particular we have

measΓ˜(κ<ω)V [G] = measΓ˜(κ<ω)V [G][h].

In V [G][h] the set measΓ˜(κ<ω) has size δ because we have collapsed δ+V without adding

any measures on ℘Γ˜(κ<ω). Our assumption is that δ is weakly compact in V [h], and weak

compactness is preserved by small forcing, so δ is weakly compact in V [G � α][h] as well.

Working in V [G � α][h], let M ≺ H(δ+) be a transitive model of size δ with Vδ∪{T} ⊂M

and M<δ ⊂M . Because δ+V < δ+ we have δ+V ⊂M , so

measΓ˜(κ<ω)V [G][h] = measΓ˜(κ<ω)M [G].

Take an elementary embedding j : M → N with N transitive and crit(j) = δ. Taking a

V [G][h]-generic filter H ⊂ Col(ω,<j(δ)) with G ⊂ H, we can extend j to an elementary

embedding

j∗ : M [G]→ N [H]

τG 7→ j(τ)H .

The set of measures

σ = j∗“(measΓ˜(κ<ω)M [G])

is in N [H] and is countable there. We will show that in N [H], player II has a winning

strategy in the game Gσ
j(T ). By the absoluteness of the existence of winning strategies for

closed games it is okay to step outside of N [H] while describing our strategy.

If player I has played integers n0, . . . , ni < ω, ordinals α0, . . . , αi < j(κ), and ordinals

h0, . . . , hi, we define the measure µ̄i+1 by

X ∈ µ̄i+1 ⇐⇒ (α0, . . . , αi) ∈ j∗(X) for all X ∈ ℘Γ˜(κ<ω).

Notice that j∗(X) does not depend on H because j∗ � L˜[T ] does not depend on H. So

we have µ̄i+1 ∈ V [G][h]. In fact we have µ̄i+1 ∈ M [G] because measΓ˜(κ<ω)V [G][h] ⊂ M [G].

Clearly the measure µ̄i+1 is countably complete in M [G]. So we let player II play the measure

µi+1 = j∗(µ̄i+1).

To see that this describes a winning strategy for player II in the game Gσ
j(T ), suppose

toward a contradiction that player I is able to follow the rules for all ω rounds. Then the

sequence of ordinals (hi : i < ω) played by player I witnesses that the tower of measures

(µi : i < ω) is illfounded. By the elementarity of j∗ the tower of measures (µ̄i : i < ω) is also

illfounded. Take a sequence of sets (Xi : i < ω) with Xi ∈ µ̄i witnessing that (µ̄i : i < ω) is
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not countably complete. Then by the elementarity of j∗ the sequence of sets (j∗(Xi) : i < ω)

witnesses that (µi : i < ω) is not countably complete. But (α0, . . . , αi−1) ∈ j∗(Xi) for each

i < ω, a contradiction.

Now by the elementarity of j∗ there is a countable set of measures

σ̄ ∈ ℘ω1
(measΓ˜(κ<ω))M [G]

such that player II wins the game Gσ̄
T as defined in the model M [G]. So by Lemma 3.6.4

the putative semi-scale defined from σ̄ is in fact a semi-scale on RV [G] \ p[T ]. The tree T̃ of

this semi-scale is definable in V [G] from T and a countable set of ordinals, namely π−1“σ̄.

So we have T̃ ∈ V [G � β] for some β < δ. In V [G � β], the trees T and T̃ are <δ-absolutely

complementing. �
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CHAPTER 4

Sealing the envelope

In this chapter we work under the hypotheses of Chapter 3. Namely, Γ is an inductive-

like pointclass whose boldface ambiguous part ∆˜ Γ is determined. Let κ be the supremum

of the lengths of the ∆˜ Γ prewellorderings of R. By T we denote the tree of a Γ-scale on a

universal Γ set. As before, we assume the base theory ZF + DCR.

We give a general method for constructing a self-justifying system ~A ∈ Env˜ (Γ) such

that A0 is a universal Γ set. We say that such a self-justifying system seals the envelope of

Γ. Under a mouse capturing hypothesis, this allows us to construct a term relation hybrid

mouse operator beyond the envelope. Applying this method to the inductive-like pointclass

arising in the “gap in scales” case of the core model induction, we complete the proof of the

Main Theorem.

4.1. Scales with norms in the envelope

To construct a model operator beyond ∆˜ Γ, the semi-scales given by the technique of

Section 3.6 are not good enough and we need to construct a scale on a universal Γ̌ set with

norms in the envelope. To do this we use a combination of Woodin’s argument in Section 3.6

with an idea of Jackson in [9]. The reader should be aware that our definition of stability is

a bit different from Jackson’s.

We recall Definition 3.6.1. Given a tree S ∈ L[T ] on ω × κ and a set of measures σ ⊂
measΓ˜(κ<ω), the putative semi-scale on R \ p[S] given by σ is the set of norms {ϕµ : µ ∈ σ}
on R \ p[S] defined by

ϕµ(x) = [rankSx ]µ

where rankSx(t) denotes the rank of the node t in the tree Sx, and is considered to be zero

if t /∈ Sx and undefined if Sx is illfounded below t.

This is an abuse of terminology because no enumeration of the norms is given, and indeed

our definition does not even require σ to be countable.

Definition 4.1.1. Given a tree S ∈ L[T ] on ω × κ, a set of measures σ ⊂ measΓ˜(κ<ω),

and a measure µ ∈ σ, we say that σ stabilizes µ if, whenever (xk : k < ω) is a sequence of

reals in R \ p[S] converging to a limit x and such that for each µ′ ∈ σ, the ordinals ϕµ′(xk)

are eventually constant, we have ϕµ(x) ≤ limk→ω ϕµ(xk). (In particular, ϕµ(x) <∞.)

Some remarks on the definition:

• If σ stabilizes the trivial measure µ0, then the putative semi-scale {ϕµ : µ ∈ σ} on

R \ p[T ] is in fact a semi-scale.
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• The putative semi-scale {ϕµ : µ ∈ σ} is a scale if and only if σ stabilizes every

measure µ ∈ σ.

To get a set of measures σ stabilizing a given measure µ, we define a variant of Woodin’s

game from Definition 3.6.3:

Definition 4.1.2. Given a countable set of measures σ ⊂ measΓ˜(κ<ω) and a measure

µ ∈ σ, let µ0, . . . , µn denote the projections of µ in order. We define the following game,

which is closed for player I:

I m0, . . . ,mn, sn, hn mn+1, sn+1, hn+1 . . .

II µn+1 µn+2 . . .
(Gσ,µ

S )

Rules for I:

• mi < ω

• S(m0,...,mn−1) ∈ µ
• si ∈ jµi(S(m0,...,mi)), and in particular si ∈ jµi(κ)i+1

• sn ) [id]µn
• jµi,µi+1

(si) ( si+1

• hi ∈ Ord

• jµi,µi+1
(hi) > hi+1

Rules for II:

• µi+1 ∈ σ is a measure on κi+1 projecting to µi
• µi+1 concentrates on the set S(m0,...,mi) ⊂ κi+1

The first player to deviate from these rules loses, and if both players follow the rules for all

ω moves then player I wins.

In other words, player I builds a real x = (m0,m1, . . .), player II is trying to build a tower

~µ of measures in σ concentrating on Sx, and player I is trying to build a continuous witness
~h to the illfoundedness of ~µ as well a special kind of branch (ji,∞(si) : i ≥ n) through the

direct limit j0,∞(Sx) of Sx along ~µ.

The game Gσ,µ
S is a closed game on a wellordered set, so by the Gale–Stewart theorem

it is determined. The following lemma adapts Woodin’s Lemma 3.6.4 from the game Gσ
S to

the game Gσ,µ
S .

Lemma 4.1.3. Let S ∈ L[T ] be a tree on ω× κ, let σ ⊂ measΓ˜(κ<ω) be a countable set of

measures, and let µ ∈ σ be a measure. If player II has a winning strategy in the game Gσ,µ
S

then σ stabilizes µ.

Proof. Suppose not. We will describe a winning strategy for player I. Take a convergent

sequence of reals (xk : k < ω) witnessing that σ does not stabilize µ. That is, xk /∈ p[S]

for each k < ω, and the sequence of ordinals (ϕν(xk) : k < ω) has an eventually constant

value h(ν) for each measure ν ∈ σ, but the limit x of the sequence of reals satisfies ϕµ(x) >

limk→∞ ϕµ(xk). (This includes the possibility that ϕµ(x) =∞.)
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Define the integers mi = x(i) and the ordinals h(ν) = limk→∞ ϕν(xk). Let n be such that

the measure µ concentrates on κn, and let µ0, . . . , µn denote the projections of µ in order.

We have rankjµn (Tx)([id]µn) = ϕµn(x) by definition, and this is strictly greater than h(µn),

so there is a successor sn ) [id]µn with rank at least h(µn) in the tree jµn(Tx). On the first

turn, player I plays integers m0 = x(0), . . . ,mn = x(n), the least such finite sequence sn,

and the ordinal hn = h(µn). For i ≥ n player I inductively maintains the inequality

rankjµi (Tx)(si) ≥ h(µi).

When player II plays a measure µi+1 according to the rules of the game, we have the inequality

rankjµi+1 (Tx)(jµi,µi+1
(si)) = jµi,µi+1

(rankjµi (Tx)(si)) ≥ jµi,µi+1
(h(µi)) > h(µi+1),

so player I can choose a successor si+1 ) jµi,µi+1
(si) of rank at least h(µi+1) in the tree

jµi+1
(Tx), maintaining the inequality. Then player I plays the integer mi+1 = x(i + 1), the

least such finite sequence si+1, and the ordinal hi+1 = h(µi+1), maintaining the inequality.

In this way player I can follow the rules forever. �

We may now improve “semi-scale” to “scale” in Woodin’s theorem 3.6.5. The conclusion

of the theorem below was proved was proved by Woodin (unpublished) under an additional

mouse capturing hypothesis. From just the hypotheses below, Jackson proved in [9] a weaker

conclusion where the norms are ODT,x for some real x.

Theorem 4.1.4 (AD). Let Γ be an inductive-like pointclass. If Env˜ (Γ) 6= ℘(R) then

every Γ̌ set has a scale with norms in Env(Γ).

Proof. If Env˜ (Γ) 6= ℘(R) then by Wadge’s lemma Env˜ (Γ) is a surjective image of R.

So by the coding of measures in Lemma 3.5.4 there is a surjection F : R→ measΓ˜(κ<ω), and

by Turing determinacy we have a fine, countably complete measure U on ℘ω1
(measΓ˜(κ<ω))

defined by Z ∈ U if {F (y) : y ≤T x} ∈ Z for a cone of x ∈ R.

Let B ∈ Γ̌, say B = R\p[S] for a tree S ∈ L[T ] on ω×κ. For a measure µ ∈ measΓ˜(κ<ω),

notice that if a set of measures σ ⊂ measΓ˜(κ<ω) stabilizes µ then so does every superset of

measures σ′ ⊇ σ. So to get a countable set of measures σ stabilizing each of its elements,

it suffices by DCR to show that any given measure µ is stabilized by some countable set of

measures σ. In fact, we will show that U -almost every set of measures σ stabilizes µ.

Assume toward a contradiction that there is a measure µ that U -almost every set σ fails

to stabilize. Then Lemma 4.1.3 says that for U -almost every σ, player II has no winning

strategy in the game Gσ,µ
S and so the proof of the Gale–Stewart theorem gives a canonical

winning strategy F σ for player I. To get a contradiction, we define a single tower of measures

~µ from σ that is a winning play against the strategy F σ for U -almost every σ.

Let n be such that the measure µ concentrates on κn, and let µ0, . . . , µn denote the

projections of µ in order. Let mσ
0 , . . . ,m

σ
n and sσn denote the moves played as “m0, . . . ,mn”

and “sn” respectively by the strategy F σ on the first turn, n, where we number the turns
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starting with n for notational convenience. Define a measure µn+1 ∈ measΓ˜(κ<ω) by

X ∈ µn+1 ⇐⇒ ∀∗Uσ (sσn ∈ jµn(X)).

For i ≥ n let mσ
i and sσi denote the moves played as “mi” and “si” respectively by the

strategy F σ on turn i against the play (µn+1, . . . , µi) by player II, and define a measure

µi+1 ∈ measΓ˜(κ<ω) by

X ∈ µi+1 ⇐⇒ ∀∗Uσ (sσi ∈ jµi(X)).

By the countable completeness of U there is a real x such that U -almost every set σ

has the property that mσ
i = x(i) for every i < ω. The measures µ0, . . . , µn all concentrate

on Sx by the rule for player I concerning m0, . . . ,mn, and the measures µi+1 for i ≥ n all

concentrate on Sx as well because sσi ∈ jµi(Sx) for U -almost every σ by the rules for player

II. It’s easy to check that µi+1 projects to µi, so the measures form a tower ~µ = (µi : i < ω).

For any set of measures σ with the above property and such that µi ∈ σ for every i < ω,

the tower of measures ~µ = (µi : i > n) is a legal play by player II in the game Gσ,µ
S , so the

moves hσi played as “hi” by the strategy F σ against ~µ form a sequence witnessing that ~µ is

illfounded.

Take a wellfounded tree W ∈ L˜[T ] on κ on which each measure µi in the tower concen-

trates, and such that the function h : ω → Ord defined by h(i) = [rankW ]µi is a pointwise

minimal witness to the illfoundedness of ~µ as in Lemma 3.5.9. Actually we only need the

minimality of h(n). By the countable completeness of U and the definition of µi+1, there

is some countable σ ⊂ measΓ˜(κ<ω) with all the properties mentioned above as well as the

property that sσi ∈ jµi(W ) for every i < ω. Define a function h′ : ω → Ord by

h′(i) = rankjµi (W )(s
σ
i ).

Then by the rules for player I concerning the finite sequences si we have jµi,µi+1
(h′(i)) > h′i+1

and also h′(n) < rankjµn (W )([id]µn) = h(n), contradicting the minimality of h(n). �

4.2. Local term-capturing

Definition 4.2.1. Let c be a countable transitive set, let M be a transitive model of a

sufficient fragment of ZFC with c ∈M , and let A be a set of reals. The local capturing term

τMA,c is the unique standard Col(ω, c)-term in M , if it exists, such that

(τMA,c)g = A ∩M [g]

for every M -generic filter g ⊂ Col(ω, c). If the local capturing term τ = τMA,c exists then we

say that M locally term-captures A at c via τ .1

As usual, we let Γ be an inductive-like pointclass such that ∆˜ Γ is determined, and let T

be the tree of a Γ-scale on a universal Γ set. The following lemma shows that constructing

from T adds local capturing terms for every set in the envelope. This is not vacuous because

1Some authors write “understands” in place of “locally term-captures.”
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if M = L(T, c) then M -generic filters on Col(ω, c) actually exist: taking a real x coding c,

there are only countably many reals in L[T, x] by Corollary 3.4.4, so there are only countably

many subsets of Col(ω, c) in the model M .

Lemma 4.2.2 (Local term-capturing). Let Γ be an inductive-like pointclass such that ∆˜ Γ

is determined, and let T be the tree of a Γ-scale ~ϕ on a universal Γ set. Let c be a countable

transitive set and let A be a set of reals. Let M = L(T, c).

(1) If A ∈ OD<Γ then the term τMA,c exists.

(2) If A ∈ Env(Γ) then the term τMA,c exists and is equal to τMA′,c for some A′ ∈ OD<Γ.

Proof. (1) Let ϕ be the first norm of the scale ~ϕ. Let (Aα : α < κ) be a ∆MΓ
1

enumeration of the OD<Γ sets of reals and fix η < κ such that A = Aη. The norm ϕ is ∆MΓ
1 ,

so the relation

B = {(x, y) : y ∈ dom(ϕ) & x ∈ Aϕ(y)}

on R × R is Σ1 over MΓ. Therefore B is in Γ and there is a tree S ∈ L[T ] with p[S] = B.

The proof of the Becker–Kechris theorem [2] shows that in L[T ] we may use T and S to

define a family of games {Gη(x) : x ∈ R} on κ such that

• Gη(x) is closed uniformly in x,2 and

• x ∈ Aη if and only if player II has a winning strategy for Gη(x).

That is, there is a set Sη ⊂ κ<ω × ω<ω in L[T ] such that

x ∈ Aη ⇐⇒ (af ∈ κω)(∀n < ω) (f � n, x � n) ∈ Sη.

In M we define a Col(ω, c) term τ for a set of reals by

(p, ẋ) ∈ τ ⇐⇒ p  (af ∈ κω)(∀n < ω) (f � n, x � n) ∈ Sη

For every M -generic filter g ⊂ Col(ω, c) we have τg = A ∩M [g] by the absoluteness of the

existence of winning strategies for closed games. Therefore the term τ satisfies the definition

of τMA,c.

(2) By part 1 we may define the set X = {τMA′,c : A′ ∈ OD<Γ} of local capturing terms

for sets of reals in OD<Γ. Although there are uncountably many OD<Γ sets of reals, the set

X is countable by Corollary 3.4.4. Suppose toward a contradiction that none of the terms

τ ∈ X satisfies the definition of τMA,c. Then by countable choice for reals we may choose for

each term τ ∈ X a real xτ witnessing this failure to satisfy the definition, that is,

xτ ∈ τg ⇐⇒ xτ /∈ A ∩M [g].

for some M -generic filter g ⊂ Col(ω, c). Let σ ⊂ R be the countable set {xτ : τ ∈ X} and

take A′ ∈ OD<Γ such that A ∩ σ = A′ ∩ σ. Considering the local capturing term τMA′,c ∈ X
immediately leads to a contradiction. �

2It is closed uniformly in x and η, but the Becker–Kechris theorem used only the uniformity in η and the
present argument uses only the uniformity in x.
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The term-capturing lemma easily relativizes to Env(Γ(z)) for any real z ∈ L(T, c), and

consequently every set of reals A ∈ Env˜ (Γ) has all of the classical regularity properties:

it has the perfect set property and the property of Baire, and is Lebesgue measurable and

completely Ramsey. Of course, all of these properties of A except the last one are already

known to follow from the determinacy of Env˜ (Γ). However the term-capturing lemma gives

some extra information in the lightface context; for example, if A ∈ Env(Γ) then either

A ⊂ L[T ] (equivalently A ⊂ CΓ) or else A contains a perfect set.

Our main application of the term-capturing lemma will be to define local capturing terms

for the sets in a self-justifying system. In the next section, we will obtain a self-justifying

system from a scale.

4.3. Self-justifying systems and condensation

Definition 4.3.1. A pointclass Λ has the weak scale property if every set in Λ has a

scale ~ϕ = (ϕi : i < ω) whose norms ϕi are all Λ-norms.

Notice that in this definition no uniformity is required—~ϕ need not be a Λ-scale or even

a Λ˜ -scale. The following theorem is proved by the same argument as in [7], but as usual we

must be careful to check that we have enough determinacy:

Theorem 4.3.2. Let Γ be an inductive-like pointclass and suppose that ∆˜ Γ is determined.

If there is a scale on a universal Γ̌ set whose norm relations are in Env˜ (Γ), then Env˜ (Γ)

has the weak scale property.

Proof. Let U be a universal Γ̌ set and let ~ϕ = (ϕi : i < ω) be a scale on U with each

norm relation ≤i in Env˜ (Γ). By Theorem 3.2.9 there is a Γ̌ relation on R × R with no

uniformization in Env˜ (Γ), so the norm relations must be Wadge-cofinal in Env˜ (Γ).

Let A ∈ Env˜ (Γ) and let Γ˜0 ( Env˜ (Γ) be a non-self-dual boldface pointclass with

the prewellordering property and closed under ∃R and ∀ω, such that A is contained in the

ambiguous part ∆˜ Γ0 of Γ˜0. We can find such a pointclass by analysis of the projective-like

hierarchy containing A because Env˜ (Γ) is projectively closed by Theorem 3.2.8. Then Γ˜0 is

closed under wellordered unions of sequences that are coded by sets in Env˜ (Γ) (see [7].)

Take n < ω such that the norm relation ≤n is not in Γ˜0. In particular we have that Γ˜0 is

closed under wellordered unions of sequences that are coded by sets projective in ≤n. This

implies that there is an ordinal α < ran(ϕn) such that the set

Uα = {x ∈ U : ϕn(x) < α}

is not in ∆˜ Γ0 . Suppose to the contrary that every Uα is in ∆˜ Γ0 . Then we could show by

induction on α that the initial segment ≤n � Uα×Uα of ≤n is in Γ˜0. The base case is trivial.

If ≤n � Uα × Uα is in Γ˜0 then so is ≤n � Uα+1 × Uα+1 because we have

ϕn(x) ≤ ϕn(y) < α + 1 ⇐⇒
ϕn(x) ≤ ϕn(y) < α or ϕn(x) < α & ϕn(y) = α or ϕn(x) = ϕn(y) = α.
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The limit step follows by closure under wellordered unions. The norm relation ≤n itself is

not in Γ˜0, so at stage α = ranϕn we get a contradiction.

So take an ordinal α such that Uα is not in ∆˜ Γ0 and therefore A <W Uα. By the lower

semi-continuity property of the scale ~ϕ, the restrictions (ϕi � Uα : i < ω) give a scale on Uα.

For each i < ω the norm relation of the restriction ϕi � Uα is in Env˜ (Γ). Taking a continuous

function f such that A = f−1(Uα), we have a scale on A given by ((ϕi ◦ f) � A : i < ω)

whose norm relations are in Env˜ (Γ). �

Definition 4.3.3. A sequence of pointsets ~A = (Ai : i < ω) is a self-justifying system if

the set {Ai : i < ω} is closed under complements and every set An, where n < ω, has a scale

whose norm relations are all in the set {Ai : i < ω}.

The following corollary of Theorem 4.3.2 is immediate by DCR. The author does not

know whether the corresponding statement holds for the lightface envelope Env(Γ).

Corollary 4.3.4. Let Γ be an inductive-like pointclass and suppose that ∆˜ Γ is deter-

mined. If there is a scale on a universal Γ̌ set U whose norm relations are in Env˜ (Γ), then

there is a self-justifying system ~A ∈ Env˜ (Γ)ω with A0 = U .

The primary motivation for the definition and study of self-justifying systems comes from

the following condensation property.

Theorem 4.3.5 (Woodin). Let (Ai : i < ω) be a self-justifying system. Let c be a

countable transitive set and let M be a transitive model of a sufficiently large fragment of

ZFC such that c ∈M . Suppose that M locally term-captures each set Ai at c. Let π : M̄ →M

be an elementary embedding with c ∈ ran(π) and {τMAi,c : i < ω} ⊂ ran(π), say π(c̄) = c and

π(τ̄i) = τMAi,c. Then we have τ̄i = τMAi,c̄. That is, M̄ locally term-captures Ai at c̄ via τ̄i.

We need to relativize Lemma 3.4.2 on CΓ to arbitrary countable transitive sets with

the following Lemma. We note that equivalence of (2), (3), and (4) was proved under the

assumption of AD in [44].

Lemma 4.3.6. Let Γ be an inductive-like pointclass such that ∆˜ Γ is determined. Let

κ be the prewellordering ordinal of Γ and let T on ω × κ be the tree of a Γ-scale on a

universal Γ set. Let a be a countable transitive set. Given a surjection g : ω → a, let

ag = {(m,n) : g(m) ∈ g(n)} denote the relation on ω coding the set a relative to g. For any

subset b ⊂ a, the following statements are equivalent:

(1) b ∈ OD<Γ(a, x) for some set x ∈ a.3

(2) g−1“(b) ∈ CΓ(ag) for every surjection g : ω → a.

(3) g−1“(b) ∈ CΓ(ag) for comeager many surjections g : ω → a.

(4) b ∈ L(T, a).

In particular, ℘(a)L(T,a) is countable.

3That is, b ∈ ∆MΓ
1 (a, x, α) for some α < κ.
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Proof. Let a be a countable transitive set and let b ⊂ a.

(1) implies (2): If b ∈ OD<Γ(a, x) for some set x ∈ a then for any surjection g : ω → a,

we have g−1“(b) ∈ OD<Γ(ag), and therefore g−1“(b) ∈ CΓ(ag) by Lemma 3.4.2.

(2) implies (3): Immediate.

(3) implies (4): The model L(T, a) has only countably many subsets of a by the rela-

tivization of Lemma 3.4.2 to any real coding a, so we can build L(T, a)-generic filters on

Col(ω, a). Let G ⊂ Col(ω, a) be a L(T, a)-generic filter such that the function g =
⋃
G

satisfies g−1“(b) ∈ CΓ(ag). Therefore we have g−1“(b) ∈ L[T, ag] by Lemma 3.4.2 relativized

to the real ag. The model L(T, a)[g] is equal to L[T, ag], so it contains g−1“(b) and therefore

b itself. Now in the same way we can take an L(T, a)[g]-generic filter h ⊂ Col(ω, a) such that

b ∈ L(T, a)[h] also, so b was already in the ground model L(T, a).

(4) implies (1): The ordinal κ is a regular cardinal in L(T, a) by the proof of Lemma

3.4.1. Therefore if b ∈ L(T, a) a Skolem hull argument shows that b ∈ Lα(T � γ, a) for some

ordinals α and γ with γ < α < κ. Take x ∈ a such that y is ordinal-definable from T � γ, a,

and x in Lα(T � γ, a). Then b is ∆1-definable from α, γ, a, and x over the companion MΓ

of Γ because T is ∆MΓ
1 . �

Definition 4.3.7. Let Γ be an inductive-like pointclass such that ∆˜ Γ is determined. Let

a be a countable transitive set.

• CΓ(a) denotes the collection of subsets b ⊂ a satisfying the equivalent conditions of

Lemma 4.3.6.

• LpΓ(a) is the union of all ω-sound premice over a projecting to a with ω1-iteration

strategies in ∆˜ Γ, or equivalently in Γ˜, reorganized as a premouse.

Notice that under AD a countable premouse is (ω1 + 1)-iterable if and only if it is ω1-

iterable, because ω1 is a measurable cardinal. If in addition every set of reals is Suslin, which

is the case in MΓ by [7, p. 1790], this iterability is also equivalent to (ω1, ω1)-iterability

and also to (ω1, ω1 + 1)-iterability (see [36, p. 66].) Next we define two versions of mouse

capturing, a global version and a local version.

Definition 4.3.8.

• Assume AD. Then MC, mouse capturing, is the statement that for every countable

transitive set a and every subset b ⊂ a that is OD from elements of a∪{a} we have

b ∈ Lp(a).

• Assume that Γ is an inductive-like pointclass and ∆˜ Γ is determined. Then Γ-MC is

the statement that for every countable transitive set a and every b ∈ CΓ(a) we have

b ∈ LpΓ(a).

Notice that the converses of MC and Γ-MC are always true, because mice can be compared

and mice with iteration strategies in MΓ can be compared inside MΓ. Therefore Γ-MC implies

that CΓ(a) = LpΓ(a) ∩ ℘(a).
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Definition 4.3.9 ( ~A-mouse, etc.). Let Γ be an inductive-like pointclass such that ∆˜ Γ

is determined and Γ-MC holds. Let z be a real such that there is a self-justifying system
~A = (Ai : i < ω) in Env(Γ(z))ω where A0 is a universal Γ set.

For a countable model M with parameter z the model M⊕ ~A is defined (essentially as

in [36]) as (M+;∈, B) where M+ = LpΓ
ω(M) and B is the term relation for ~A, namely the

set of pairs (i, τ) where i < ω and τ is the term that locally captures the pointset
⊕

i<nAi
over LpΓ

ω(M) at the cardinal δi. Note that M⊕ ~A is an amenable structure.

An ~A-mouse N is like an ordinary mouse except that the B-predicates of appropriate

levels are allowed to code term relations, and for every level MCN we have M⊕ ~AEN .

An ~A-mouse operator is defined by analogy with an ordinary mouse operator. (Recall

that all our mouse operators are first-order.) An example of an ~A-mouse operator would

be the M
~A,]
n operator, which maps a countable model P with parameter z to the ~A-mouse

M
~A,]
n (P) defined as the least ~A-mouse with base model P that is active, ω-sound, projects

to P , and has n Woodin cardinals as witnessed by extenders on its E-sequence.

The model operator FJ coding an ~A-mouse operator J is defined just like for an ordinary

mouse operator. That is, FJ(M) is the model coding the least initial segment of J(M)

projecting below ρω(M) if it exists, and is the model coding J(M) itself if there is no such

initial segment.

The following proposition, which can be proved using Woodin’s condensation theorem

4.3.5, allows us to construct ~A-mice using Kc,F constructions.

Proposition 4.3.10. Let Γ be an inductive-like pointclass such that ∆˜ Γ is determined

and Γ-MC holds. Let z be a real and let ~A = (Ai : i < ω) be a self-justifying system in

Env(Γ(z))ω such that A0 is a universal Γ set. Then for any ~A-mouse operator J , then the

corresponding model operator FJ condenses well.

4.4. Sealing the envelope with a strong pseudo-homogeneous ideal

Now we apply the techniques developed in this chapter to our proof of the inner model

direction (2) of the Main Theorem, and in particular to the “gap in scales” case of the

core model induction. That is, once we have used a strong, pseudo-homogeneous ideal I on

℘ω1
(R) to construct an inductive-like pointclass Γ, we will construct scales beyond Γ.

The first time the “gap in scales” case arises is when Γ is equal to IND, the pointclass

of inductive sets. In this case we do not need to use our hypothesis on the ideal I to get

the scales beyond Γ; they exist on general descriptive-set-theoretic grounds by Moschovakis

[26]. In fact, for a long time the scales are given by Steel’s analysis of scales in L(R) and

K(R) [35, 37, 41] without using our hypothesis. However, the hypothesis will eventually

be needed to reach a model of ZF + AD + θ0 < Θ, so we may as well assume it from the start

and use the argument below to handle every gap in scales in a uniform way.
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Proposition 4.4.1 (ZFC). If there is a strong pseudo-homogeneous ideal I on ℘ω1
(R)

and Γ is an inductive-like pointclass such that ∆˜ Γ is determined and every set in Γ is definable

from a countable sequence of ordinals, then Env˜ (Γ) has the weak scale property.

Before proving this, we note that the hypothesis is reasonable because all the determined

sets of reals that we construct in our proof of the Main Theorem are definable from count-

able sequences of ordinals. The conclusion of the proposition implies that there is a model

operator F with condensation that determines itself on generic extensions and is coded by a

set of reals just beyond Env˜ (Γ). We will later use the argument for PD with the core model

K replaced by its relativization KF to construct determined sets of reals beyond Env˜ (Γ).

We begin by proving a lemma on the size of the envelope. Note that the hypothesis

follows from the existence of a strong ideal on ℘ω1
(R).

Lemma 4.4.2 (ZFC). Suppose that every function ℘ω1
(R)→ ω1 is bounded on a stationary

set by a canonical function for some ordinal γ < c+. If Γ is an inductive-like pointclass such

that ∆˜ Γ is determined, then
∣∣Env˜ (Γ)

∣∣ ≤ c.

Proof. We will prove the corresponding statement for the lightface envelope, namely

that |Env(Γ)| ≤ c, which is equivalent. Fix a ∆MΓ
1 enumeration (Aα : α < κ) of the OD<Γ

sets of reals. For every Turing degree d and every set of reals A ∈ Env(Γ) define fd(A) to

be the least ordinal α < κ such that x ∈ A ⇐⇒ x ∈ Aα for every real x ≤T d. For

A,B ∈ Env(Γ) define A < B if fd(A) < fd(B) for a cone of d. By the proof of Proposition

3.2.5, this defines a well-ordering of Env(Γ). Let λ be the length of this well-ordering. We

need to see that λ < c+.

For σ ∈ ℘ω1
(R) choose any Turing degree d(σ) above all the reals in σ and let F (σ) be

the order type of the subset of κ given by {fd(σ)(A) : A ∈ Env(Γ)}. We have F (σ) < ω1

because CΓ({x : x ≤T d}) is countable.

Take a countable elementary substructure X ≺ Vω+3 containing the well-ordering < of

Env(Γ) and let σ = X ∩ R. For any A,B ∈ X ∩ Env(Γ) we have A < B ⇐⇒ fd(σ)(A) <

fd(σ)(B): this inequality holds for a cone of d and by elementarity the base of some such cone

is in σ and therefore below d(σ). Therefore for a club of countable elementary substructures

X ≺ Vω+3 we have

o.t.(X ∩ λ) ≤ F (X ∩ R).

Now taking γ < c+ such that F is bounded by the γth canonical function ℘ω1
(R)→ ω1 one

can show that λ ≤ γ by standard arguments. �

Proof of Proposition 4.4.1. Let G ⊂ I+ \ I be a V -generic filter and let j : V →
Ult(V,G) ⊂ V [G] be the associated elementary embedding. Let T be the tree of a Γ-scale

on a universal Γ set. Then T is definable from a countable sequence of ordinals, so by the

pseudo-homogeneity of I its image j(T ) is independent of the generic filter G and is therefore

in V .
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Let λ be the length of the wellordering of Env(Γ) from Proposition 3.2.5. By Lemma

4.4.2 we have λ < c+, so j“λ ∈ Ult(V,G). Therefore the set of measures

σ = j“(measΓ˜(κ<ω))

is in Ult(V,G) and is countable there. We will show that for every measure µ ∈ σ, player

II has a winning strategy in the game Gσ,µ
j(T ) from Definition 4.1.2 as defined in the generic

ultrapower Ult(V,G). Then by the elementarity of j there is a countable set of measures

σ̄ ⊂ measΓ˜(κ<ω) stabilizing each of its measures, so Env˜ (Γ) has the weak scale property by

Theorem 4.3.2.

We will describe a winning strategy for player II in the game G
σ,j(µ)
j(T ) as defined in the

generic ultrapower Ult(V,G). By the absoluteness of the existence of winning strategies for

closed games, it is okay to work in V [G] when defining the strategy. Let µ0, . . . , µn denote

the projections of µ in order and let µ̄0, . . . , µ̄n denote their preimages under j, that is,

j(µ̄i) = µi for all i ≤ n.

At the beginning of the game, which we will call turn n for notational convenience,

player I plays integers m0, . . . ,mn, a finite sequence sn ∈ jµn(j(κ))n+1 satisfying sn ∈
jµn(j(Tm0,...,mn)), and an ordinal hn. Notice the fact that

jµi ◦ j = j ◦ jµ̄i
for all i, which we will use without comment several times. Define the measure µ̄n+1 ∈
measΓ˜(κ<ω) by

X ∈ µ̄n+1 ⇐⇒ sn ∈ jµn(j(X)).

Notice that jµn(j(X)) does not depend on the generic G by pseudo-homogeneity: X is

definable from T and a real, µ̄n is definable from T and an ordinal by Proposition 3.5.5,

and T itself is definable from a countable sequence of ordinals, so jµ̄n(X) is definable from

a countable sequence of ordinals. Therefore we have µ̄n+1 ∈ V . Also notice that because

sn ∈ j(jµ̄n(T(m0,...,mn))) and sn ) j([id]µ̄n), the new measure µ̄n+1 concentrates on the set

T(m0,...,mn) and projects to µ̄n. Player II then plays the measure µn+1 = j(µ̄n+1).

On the turn numbered i where i > n, player I plays an integer mi, a finite sequence

si ∈ jµi(j(κ))i+1 satisfying si ∈ jµi(j(Tm0,...,mi)), and an ordinal hi. Define the measure

µ̄i+1 ∈ measΓ˜(κ<ω) by

X ∈ µ̄i+1 ⇐⇒ si ∈ jµi(j(X)).

As before, jµi(j(X)) does not depend on the generic G by pseudo-homogeneity so we have

µ̄i+1 ∈ V . It is easy to check that µ̄i+1 concentrates on the set T(m0,...,mi) and projects to µ̄i.

Player II then plays the measure µi+1 = j(µ̄i+1).

Assume toward a contradiction that player I is able to follow the rules forever against the

strategy that we have described. Then we get a real x = (m0,m1, . . .), a tower of measures

(µi : i < ω) from σ, and a sequence of ordinals (hi : i < ω) witnessing the illfoundedness of

71



this tower. So by the elementarity of j the corresponding tower (µ̄i : i < ω) of measures in

V is also illfounded.

Take a wellfounded tree W ∈ L˜[T ] on κ on which each measure µ̄i in this tower concen-

trates, and such that the function h̄ : ω → Ord defined by h̄(i) = [rankW ]µi is a pointwise

minimal witness to the illfoundedness of the tower (µ̄i : i < ω) as in Lemma 3.5.9. Then by

the elementarity of j, the function h = j(h̄) is a pointwise minimal witness to the illfound-

edness of the tower (µi : i < ω). Actually we only need the minimality of h(n).

Because µ̄i concentrates on W we have si ∈ jµn(j(W )) for all i < ω. Define a function

h′ : ω → Ord by h′(i) = rankjµn (j(W ))(si). Then from the rules for player I concerning the

finite sequences si we have jµi,µi+1
(h′(i)) > h′i+1 and also h′(n) < rankjµn (j(W ))([id]µn) = h(n),

contradicting the minimality of h(n). �

4.5. AD from a strong pseudo-homogeneous ideal

Recall the ordinal that we considered in Section 2.6, which measures our progress in the

core model induction in Lp(R). Namely, we let α be the strict supremum of the ordinals γ

such that

(1) The coarse mouse witness condition W ∗
γ+1 holds,

(2) γ is a critical ordinal in Lp(R), and

(3) γ + 1 begins a Σ1-gap in Lp(R).

We have AD in Lp(R)|α because if γ is a critical ordinal in Lp(R) and W ∗
γ+1 holds then the

coarse mice can be used to prove determinacy in Lp(R)|(γ + 1).

Now assume that there is a strong pseudo-homogeneous ideal on ℘ω1
(R). If there is a

model of AD + θ0 < Θ then we are done, so we work under the “smallness assumption” that

there is no such model. Then Lp(R)|α is admissible by Proposition 2.6.2. By Steel’s theorem

2.6.3 the pointclass

Γ = Σ
Lp(R)|α
1

has the scale property, which combined with the admissibility of Lp(R)|α shows that Γ is

inductive-like. Admissibility also implies that, defining the ambiguous part ∆Γ = Γ ∩ Γ̌,

the corresponding boldface pointclass ∆˜ Γ is equal to (Lp(R)|α) ∩ ℘(R). Therefore ∆˜ Γ is

determined, which implies that the envelope Env˜ (Γ) is determined.

By Proposition 4.4.1 there is a self-justifing system ~A ∈ Env˜ (Γ)ω containing a universal

Γ set. We note that the elements of this self-justifying system must be Wadge-cofinal in

Env˜ (Γ) because in general the envelope of an inductive-like pointclass Γ cannot contain

a scale on a universal Γ̌ set. The next step in proving more determinacy is the following

lemma.

Lemma 4.5.1. Let α be the strict supremum of the ordinals γ such that W ∗
γ+1 holds, γ

is a critical ordinal in Lp(R), and γ + 1 begins a Σ1-gap in Lp(R). Define the pointclass

Γ = Σ
Lp(R)|α
1 . Suppose there is no model of AD + θ0 < Θ. If there is a strong pseudo-

homogeneous ideal I on ℘ω1
(R) then Env˜ (Γ) = Lp(R) ∩ ℘(R).
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Proof. Let D ∈ Env˜ (Γ), say D ∈ Env(Γ(x)) where x ∈ R. We will show that D ∈
Lp(R). Let j : V → Ult(V,G) ⊂ V [G] be the elementary embedding associated to a V -

generic filter G ⊂ I+/I. Then the set D, which is equal to j(D) ∩ RV , is in Cj(Γ)(RV ).

By the mouse capturing principle j(Γ)-MC in the generic ultrapower, which follows from

the coarse mouse witness condition together with our smallness assumption that there is no

model of AD + θ0 < Θ, we have D ∈M for some ω-sound premouse M over RV projecting

to RV with a j(ω1)-iteration strategy in j(Lp(R)|α). The least such M is ordinal-definable

from RV in the generic ultrapower and so we haveM∈ V by the pseudo-homogeneity of I.

Every countable elementary substructure M̄ of M in V is also a countable elementary

substructure of M in Ult(V,G), so it has a j(ω1)-iteration strategy in j(Lp(R)|α), namely

the pullback of such a strategy for M. Therefore by the elementarity of j the premouse M̄
has an ω1-iteration strategy in Lp(R)|α. Given any set of reals B ∈ Lp(R)|α—for example,

the set coding this iteration strategy—there is a pair of ω-absolutely complementing trees

(T, S) ∈ Lp(R)|α with p[T ] = B. The trees j(S) and j(T ) are in V by pseudo-homogeneity,

and the pair (j(S), j(T )) is R-absolutely complementing: it is complementing in V [h] where

h ⊂ Col(ω,RV ) is V [G]-generic, because Ult(V,G)[h] is a Cohen generic extension of the

model Ult(V,G), where the pair (j(S), j(T )) is ω-absolutely complementing. Therefore M̄
has a c+-iteration strategy. This shows that MC Lp(R), so D ∈ Lp(R).

Now assume toward a contradiction that this inclusion is proper; that is, Env˜ (Γ) (
Lp(R) ∩ ℘(R). Let β be least such that Lp(R)|(β + 1) ∩ ℘(R) 6⊂ Env˜ (Γ). Then because

Env˜ (Γ) is projectively closed we have

Env˜ (Γ) = Lp(R)|β ∩ ℘(R).

We have α ≤ β because ∆˜ Γ ⊂ Env˜ (Γ).4 Because Lp(R)|β projects to R every countable

sequence from Env˜ (Γ) is in Lp(R)|(β + 1). Let ~A = (An : n < ω) be a self-justifing system

sealing Env˜ (Γ) as given by Proposition 4.4.1, that is, A0 is a universal Γ set and each An
is in Env˜ (Γ). Some subsequence (Ani : i < ω) is a scale on a universal Γ̌ set U . So the set

U has a scale in Lp(R)|(β + 1), but it cannot have a scale already in Lp(R)|β because the

envelope cannot contain a uniformization of U . Therefore β is a critical ordinal in Lp(R).

We want to relate β to the Σ1-gap structure of Lp(R). For any ordinal β∗, if Lp(R)|α ≺R
1

Lp(R)|β∗ then Lp(R)|β∗ ∩ ℘(R) ⊂ Env˜ (Γ) by the proof of Proposition 3.3.3. Therefore we

can take β∗ ≤ β such that [α, β∗] is a Σ1-gap in Lp(R). We either have β∗ = β or β∗ = β−1.5

We cannot have β∗ < β − 1; otherwise the pointclass Σ
Lp(R)|(β∗+1)
1 has the scale property by

Steel’s theorem 2.6.3, but the envelope cannot contain any scaled pointclass beyond Γ. In

any case the ordinal β + 1 begins a Σ1-gap in Lp(R).

Now taking a real z such that each setAi is in Env(z) we can get a sequence (M
~A,]
n : n < ω)

of ~A-mouse operators on Hω1 with parameter z from repeated applications of Theorem 2.4.4

just as in our proof of projective determinacy, but starting with the model operator FJ

4In fact α < β because Γ˜ ⊂ Env˜ (Γ).
5Using the construction of scales at the end of a weak gap from [41], one can show that these cases are the
weak gap case and strong gap case respectively, but the distinction does not matter for us.
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coding the ~A-mouse operator given by J(M) = M⊕ ~A. These ~A-mouse operators are all

projective in ~A and are cofinal in the projective-like hierarchy containing ~A, or equivalently

in the Levy hierarchy of sets of reals definable from parameters over Lp(R)|β. Together

they can be used to establish the coarse mouse witness condition W ∗
β+1 in Lp(R). Therefore

β < α by the definition of α, which is a contradiction. �

Now it is a simple matter to get a model of AD.

Theorem 4.5.2. If there is a strong pseudo-homogeneous ideal on ℘ω1
(R) then AD holds

in L(R).

Proof. We have L(R)∩℘(R) ⊂ Lp(R)∩℘(R) = Env˜ (Γ) by Lemma 4.5.1, or else there

is a model of AD + θ0 < Θ. The pointclass Env˜ (Γ) is determined, so in either case AD holds

in L(R). �

At this point we can apply Σ1 reflection in the model L(Lp(R)) combined with the fact

that the pointclass ∆˜ Γ, which is equal to Lp(R)|α∩℘(R), is the class of Suslin co-Suslin sets

of this model, to see that

Γ = Σ
Lp(R)
1 .

The reason that the Σ1-reflection principle holds in the model L(Lp(R)) is that this model

satisfies ZF + AD and has a largest Suslin cardinal, namely α. This observation that Γ =

Σ
Lp(R)
1 is not necessary for the following argument and we will use it only to simplify the

notation by omitting mention of α in several places.

4.6. AD + θ0 < Θ from a strong pseudo-homogeneous ideal

Let Γ be the pointclass Σ
Lp(R)
1 and let ~A = (An : n < ω) be a self-justifing system sealing

Env˜ (Γ) as given by Proposition 4.4.1. That is, A0 is a universal Γ set and each An is in

Env˜ (Γ). We suppose that there is no inner model of AD + θ0 < Θ containing all the reals

and ordinals, because otherwise we are done. Under this smallness assumption we have

Env˜ (Γ) = Lp(R) ∩ ℘(R) by Lemma 4.5.1, so each An is in Lp(R), but ~A itself cannot be in

Lp(R) because Env˜ (Γ) cannot contain a scale on a universal Γ̌ set.

Take a real z such that each set Ai is in Env(Γ(z)). Notice that ~A is definable from a

countable sequence of ordinals because each Ai is definable from z, an ordinal, and a universal

Γ set that is itself definable. So we are still in the realm of sets where pseudo-homogeneity

is a useful property.

Definition 4.6.1 (Lp
~A). For a model P over z, let Lp

~A(P) denote LpF (P) where F is

the model operator FJ coding the ~A-mouse operator given by J(M) =M⊕ ~A. Let Lp
~A(R)

denote Lp
~A(P) where P = (Vω+1;∈, ∅).

The proof that Lp(R) |= AD can be relativized to ~A to show that Lp
~A(R) |= AD. To do

this, we begin by defining an ordinal that represents the progress of our core model induction

through Lp
~A(R). First we make the following definition.

74



Definition 4.6.2 (W
~A,∗
γ ). The coarse mouse witness condition W

~A,∗
γ says that for any

set U ⊂ R such that both U and its complement have scales in Lp
~A(R)|γ, for all k < ω and

x ∈ R there is a coarse (k, U)-Woodin mouse containing x with an (ω1 +1)-iteration strategy

whose restriction to Hω1 is in Lp
~A(R)|γ.

We say that γ is critical in Lp
~A(R) if some set of reals has a scale in Lp

~A(R)|(γ + 1) but

not in Lp
~A(R)|γ, so that W

~A,∗
γ+1 does not follow trivially from W

~A,∗
γ .

Then we let α ~A be the strict supremum of the ordinals γ such that

• The coarse mouse witness condition W
~A,∗
γ+1 holds,

• γ is a critical ordinal in Lp
~A(R), and

• γ + 1 begins a Σ1-gap in Lp
~A(R).

When dealing with Σ1 formulas and Σ1-gaps in Lp
~A(R), the following remark is important

to keep in mind.

Remark 4.6.3. A Σ1 formula in the language of ~A-premice is allowed to refer to the

term relation, so in particular it can define ~A itself over Lp
~A(R).

We have AD in Lp
~A(R)

∣∣α ~A because if γ is a critical ordinal in Lp
~A(R) and W

~A,∗
γ+1 holds

then the coarse mice can be used to prove determinacy in Lp
~A(R)|(γ+ 1). We can relativize

the proof of Proposition 2.6.2 to ~A to get

Proposition 4.6.4 (ZFC). Suppose that there is no model of AD + θ0 < θ containing

all the reals and ordinals. Let α be the strict supremum of the ordinals γ such that W
~A,∗
γ+1

holds, γ is critical in Lp
~A(R), and γ + 1 begins a Σ1-gap in Lp

~A(R). If there is a strong

pseudo-homogeneous ideal on ℘ω1
(R), then Lp

~A(R)
∣∣α ~A is admissible.

The very first step of the proof is to show that W
~A,∗

1 holds using the ~A-mouse operators

M
~A,]
n for n < ω, which implies determinacy for sets of reals projective in ~A. These ~A-mouse

operators are obtained just as in the “gap in scales” case in the proof of Lp(R) in Lemma

4.5.1. The only difference is that here the gap does not end inside Lp(R) but instead ends

just beyond it.

We omit the full proof of admissibility, remarking only that under our smallness assump-

tion that there is no model of AD + θ0 < θ containing all the reals and ordinals, for limit

ordinals γ the coarse mouse witness condition W
~A,∗
γ implies the ~A-mouse witness condition

W
~A
γ , which is the relativization of Wγ saying that Σ1 facts true in Lp

~A(R)|γ are witnessed

by ~A-mice with ω1-iteration strategies in Lp
~A(R)|γ. The proof of Wγ from W ∗

γ in [44] and

[36] relativizes to show this by using Kc,F constructions in the coarse mice in place of Kc

constructions, where F is the model operator FJ corresponding to the ~A-mouse operator

given by J(M) =M⊕ ~A.

As with W ∗
γ the coarse mice that witness W

~A,∗
γ will not be particularly coarse. Often

they will just be ~A-mice. However, to cross a gap in scales in Lp
~A(R) we will need to
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consider “two-step” term relation hybrid mice with term relations both for ~A and for some

self-justifying system ~B that seals the gap in scales. We will call these ( ~A, ~B)-mice. The

implication W
~A,∗
γ =⇒ W

~A
γ for limit ordinals γ is needed to show that these self-justifying

systems do not pile up as we go along, so we never need to consider ( ~A, ~B, ~C)-mice—or, what

would be more problematic, hybrid mice with uncountably many self-justifying systems.

Relativizing Steel’s theorem on scales in Lp(R) in [37] to Lp
~A(R), one can show that the

pointclass

Γ ~A = Σ
Lp

~A(R)

∣∣α ~A
1

has the scale property. The condensation property of ~A-premice plays a crucial role in

relativizing the proof. Combined with the admissibility of Lp
~A(R)

∣∣α ~A this scale property

shows that the pointclass Γ ~A is inductive-like. Admissibility also implies that, defining

the ambiguous part ∆ ~A = Γ ~A ∩ Γ̌ ~A, the corresponding boldface pointclass ∆˜ Γ ~A
is equal to

(Lp
~A(R)

∣∣α ~A)∩℘(R). Therefore ∆˜ Γ ~A
is determined, which implies that the envelope Env˜ (Γ ~A)

is determined. The next lemma is just the relativization of Lemma 4.5.1 to ~A.

Lemma 4.6.5. Suppose that there is no model of AD + θ0 < θ containing all the reals and

ordinals. Let α be the strict supremum of the ordinals γ such that W
~A,∗
γ+1 holds, γ is critical in

Lp
~A(R), and γ+1 begins a Σ1-gap in Lp

~A(R). Define the pointclass Γ ~A = Σ
Lp

~A(R)|α ~A
1 . If there

is a strong pseudo-homogeneous ideal I on ℘ω1
(R) then we have Env˜ (Γ ~A) = Lp

~A(R)∩℘(R).

Proof. Let D ∈ Env˜ (Γ ~A), say D ∈ Env(Γ ~A(x)) where x ∈ R. We will shows that

D ∈ Lp
~A(R). Let j : V → Ult(V,G) ⊂ V [G] be the elementary embedding associated to a

V -generic filter G ⊂ I+/I. Then the set D, which is equal to j(D) ∩ RV , is in Cj(Γ ~A)(RV ).

By j( ~A)-mouse capturing6 in j(Lp
~A(R)

∣∣α ~A) we have that D ∈ M for some ω-sound j( ~A)-

premouseM over RV projecting to RV with a j(ω1)-iteration strategy in j(Lp
~A(R)

∣∣α ~A). The

least such M is ordinal-definable from RV and j( ~A) in the generic ultrapower. Because ~A

is definable from a countable sequence of ordinals in V , this gives M ∈ V by the pseudo-

homogeneity of I.

Every countable elementary substructure M̄ of M in V is also a countable elementary

substructure of M in Ult(V,G). Therefore by the condensation lemma for j( ~A)-premice,

M̄ is also a j( ~A)-premouse. Moreover M̄ has a j(ω1)-iteration strategy in j(Lp
~A(R)

∣∣α ~A),

namely the pullback of such a strategy forM. So by the elementarity of j the structure M̄
is an ~A-premouse with an ω1-iteration strategy in Lp

~A(R)
∣∣α ~A. As in the proof of Lemma

4.5.1 one can show that every set of reals in Lp
~A(R)

∣∣α ~A is c+-universally Baire, so this ω1-

iteration strategy can be extended to a c+-iteration strategy. This shows thatMCLp
~A(R),

so D ∈ Lp
~A(R).

6That is, capturing of j(CΓ ~A
) by j( ~A)-mice with iteration strategies in j(∆˜ Γ ~A

), which follows from the coarse

mouse witness condition W
j( ~A),∗
j(α ~A) in the generic ultrapower under the smallness assumption that there is no

model of AD + θ0 < θ containing all the reals and ordinals.
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Now assume toward a contradiction that this inclusion is proper; that is, Env˜ (Γ ~A) (
Lp

~A(R) ∩ ℘(R). Let β be least such that Lp
~A(R)|(β + 1) ∩ ℘(R) 6⊂ Env˜ (Γ ~A). Then because

Env˜ (Γ ~A) is projectively closed we have

Env˜ (Γ ~A) = Lp
~A(R)|β ∩ ℘(R).

We have α ~A ≤ β because ∆˜ Γ ~A
⊂ Env˜ (Γ ~A). Because Lp

~A(R)|β projects to R every countable

sequence from Env˜ (Γ ~A) is in Lp
~A(R)|(β+1). Let ~B = (Bn : n < ω) be a self-justifing system

sealing Env˜ (Γ ~A) as given by Proposition 4.4.1, that is, B0 is a universal Γ ~A set and each Bn

is in Env˜ (Γ ~A). Some subsequence (Bni : i < ω) is a scale on a universal Γ̌ ~A set U . So the

set U has a scale in Lp
~A(R)|(β + 1), but it cannot have a scale already in Lp

~A(R)|β because

the envelope cannot contain a uniformization of U . Therefore β is a critical ordinal. As in

the proof of Lemma 4.5.1 one can show that β + 1 begins a Σ1-gap in Lp
~A(R). (Recall that

Σ1 formulas are allowed to refer to the term relation for ~A.)

Taking a real t such that each set Bi is in Env(Γ ~A(t)) we can get a sequence of “two-

step” hybrid ( ~A, ~B)-mouse operators (M
~A, ~B,]
n : n < ω) on Hω1 with parameter (z, t). If P

is a countable model with parameter (z, t) then M
~A, ~B,]
n (P) denotes the least term relation

hybrid premouse over P that is active, ω-sound, projects to P , has n Woodin cardinals,

and has term relations for both ~A and ~B. An ( ~A, ~B)-premouse is like an ~A-premouse, but

in addition to adding the term relation for ~A at appropriate limit levels that are full with

respect to ordinary mice, we also add the term relation for ~B at appropriate limit levels that

are full with respect to ~A-mice with ω1-iteration strategies in Lp
~A(R)

∣∣α ~A. Because CΓ ~A
is

captured by such mice, this amount of fullness suffices to locally term-capture each set Bn.

We get these ( ~A, ~B)-mouse operators from repeated applications of Theorem 2.4.4 just as

in our proof of projective determinacy, but starting with the model operator FJ coding the

( ~A, ~B)-mouse operator given by J(M) =M⊕ ~A⊕ ~B. These operators are all projective in
~B and are cofinal in the projective-like hierarchy containing ~B, or equivalently in the Levy

hierarchy of sets of reals definable from parameters over Lp
~A(R)|β. Together they can be

used to establish the coarse mouse witness condition W
~A,∗
β+1, so β < α ~A by the definition of

α ~A, which is a contradiction. �

Now we are ready to complete the proof of the main theorem.

Theorem 4.6.6 (Main Theorem, part 2). If there is a strong pseudo-homogeneous ideal

on ℘ω1
(R), then there is a model of AD + θ0 < Θ containing all the reals and ordinals.

Proof. Assume not. We will obtain a contradiction by showing that the model M =

L(Lp
~A(R)) is such a model, where ~A is a self-justifying system sealing Lp(R). Lemma 4.6.5

together with the determinacy of the envelope implies that M |= AD. We complete the proof

of the theorem by showing that ~A is not ordinal-definable from a real in M . (Here we do

not equip M with the term relation for ~A.)

Under our smallness assumption the existence of coarse mouse witnesses in M implies

(ordinary) mouse capturing in M . That is, if σ is a countable transitive set and the subset
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a ⊂ σ is ODσ∪{σ} in M , then a is in a premouse over σ with an ω1-iteration strategy in M .

By Σ1-reflection in M , we can take the iteration strategy to be Suslin and co-Suslin in M .

If ~A is ODx in the model M for some real x, then ~A = j( ~A)∩RV is OD{RV ,x} in the model

j(M) and so ~A is in an ω-sound premouseM over RV projecting to RV with a j(ω1)-iteration

strategy in j(M). (We could have used a more general theorem of Steel in [36] on capturing

via R-mice, but the presence of a pseudo-homogeneous ideal allows this easier argument.)

The least such M is ordinal-definable from RV and j( ~A) in the generic ultrapower, so we

have M∈ V by the pseudo-homogeneity of I.

Every countable elementary substructure M̄ of M in V is also a countable elementary

substructure of M in Ult(V,G), so it has a j(ω1)-iteration strategy that is Suslin and co-

Suslin in j(M), namely the pullback of such a strategy forM. Therefore by the elementarity

of j the premouse M̄ has an ω1-iteration strategy in that is Suslin and co-Suslin in M . As in

the proof of Lemma 4.6.5 one can show that every Suslin co-Suslin set of M is c+-universally

Baire, so this iteration strategy can be extended to a c+-iteration strategy. This shows that

MCLp(R), so ~A ∈ Lp(R). This is a contradiction, because ~A computes a scale on a universal

Π
Lp(R)
1 set, so it cannot be in Lp(R). Therefore the Wadge rank of ~A in M must be at least

θ0. (In fact one can easily show that it is exactly θ0 and that M satisfies Θ = θ1.) �
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CHAPTER 5

Sealing the envelope: an alternative method

The goal of this chapter is to discuss a method for constructing a countable hullM∞ of

the direct limit premosueM∞ (see Definition 5.1.5) and an iteration strategy forM∞ that

is fullness-preserving and has branch condensation. The method is essentially the same as

Ketchersid’s thesis [18] (see also [32]) but in sections 5.2 and 5.3 we prove some intermediate

results in a more general context. We also make two simplifications to the arguments, namely

we do not use the fact that M∞ “computes HOD” in a determinacy model, and we do not

require that assumption that the envelope has countable cofinality (this can be deduced at

the end instead.)

We also work more locally, defining a direct limit premouse MΓ
∞ that is usually only

considered when Γ is the pointclass Σ2
1 of a model of ZF+AD+MC, for example, Γ = (Σ2

1)L(R).

Our generalization pertains to pointclasses with fewer closure properties, such as Γ = IND.

The idea is to unify all “gap in scales” cases of the core model induction into a single case.

The main inner-model-theoretic tool we will need for this generalization is only a conjecture

at this point (Conjecture 5.1.2,) so for the Main Theorem we must rely on the descriptive

set-theoretic approach to the “gap in scales” case that is given in Chapter 4.

5.1. Quasi-iterable pre-mice and M∞

Definition 5.1.1. Let Γ be an inductive-like pointclass such that ∆˜ Γ is determined and

Γ-MC holds. A countable premouse P is Γ-suitable if it has a unique Woodin cardinal δP ,

and P = LpΓ
ω(P|δP), but no ordinal η < δP is a Woodin cardinal in LpΓ(P|η).

We refer the reader to [32, Ch. 7] for the definitions of the ordinals γPA and hulls HPA for

A ∈ Env(Γ), the notions of Lp-guided tree, short tree, and maximal tree, suitable sequence,

A-good interval, A-guided partial quasi-iteration map πAP,Q, quasi-limit of a suitable sequence,

A-quasi-iterable, and strongly A-quasi-iterable.

Conjecture 5.1.2 (Quasi-iterability conjecture). Let Γ be an inductive-like pointclass

such that ∆˜ Γ is determined and Γ-MC holds. Then for every A ∈ Env(Γ) then there is a

strongly A-quasi-iterable premouse.

If Γ = (Σ2
1)M where M |= ZF + AD + MC and R ⊂ M and Env(Γ) ⊂ M then we have

Env(Γ) = ODM ∩ ℘(R) and the conjecture holds by the following theorem:

Theorem 5.1.3 (Woodin, unpublished). Assume ZF + AD + MC. Then for every OD

set of reals A, there is a strongly A-quasi-iterable premouse.
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If P is A-quasi-iterable and Q is strongly B-quasi-iterable then comparing P and Q
gives a common quasi-iterate R that is strongly (A⊕B)-quasi-iterable where ⊕ denotes the

operation of recursive join. This leads us to define the following directed system.

Definition 5.1.4. FΓ
∞ is the directed system whose indices are pairs (P , A) where A ∈

Env(Γ) and P is a Γ-suitable, strongly A-quasi-iterable premouse, ordered by (P , A) ≤F∞
(Q, B) if Q is a quasi-iterate of P and A is obtained from B by a recursive substitution, and

whose maps are the quasi-iteration maps πAP,Q : HPA → HQA .

Our definition is a bit different than the standard one, which has finite tuples ~A ∈
Env(Γ)<ω rather than single sets, and the ordering says that ran( ~A) ⊂ ran( ~B) rather than

saying that A is obtained from B by a recursive substitution. The difference is purely

cosmetic.

Definition 5.1.5. We define the premouse

MΓ
∞ = lim−→F

Γ
∞,

to be the direct limit of FΓ
∞ under the partial quasi-iteration maps πAP,Q.

The direct limit is well-founded because for any countable sequence ((Pi, A) : i < ω)

from FΓ
∞ we can quasi-compare all of the Pi’s simultaneously to get a premouse P . Then

the partial quasi-iteration maps πAiPi,∞ all factor through the wellfounded model P , so their

range cannot contain an infinite decreasing sequence of ordinals.

When the pointclass Γ is clear from context we may omit it from the notation and refer

to FΓ
∞ and MΓ

∞ as F∞ and M∞ respectively.

5.2. Full hulls

Definition 5.2.1. Let j : N → H(2c)+ be an elementary embedding where N is countable

and transitive, and Γ ∈ ran(j). Let j(Γ̄) = Γ and j(Env(Γ)) = Env(Γ). We say that N is

Γ-full if A ∩N ∈ Env(Γ) for every for every A ∈ Env(Γ).

The definition of Γ-fullness is quite robust, and it is straightforward to verify the following

equivalences.

• N is Γ-full if and only if A ∩N ∈ N for every A ∈ Env(Γ),

• N is Γ-full if and only if A ∩N ∈ N for every A ∈ OD<Γ,

• N is Γ-full if and only if A ∩N ∈ Env(Γ) for every A ∈ Env(Γ), and

• N is Γ-full if and only if A ∩N ∈ Env(Γ) for every A ∈ OD<Γ.

Note that for a countable premouse P ∈ N and a set A ∈ Env(Γ), if A∩N ∈ N then we

have τPA = (τPA∩N)N .

The following proposition establishes the properties of Γ-full hulls that will be useful to

us in the core model induction.
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Proposition 5.2.2. Let j : N → H(2c)+ be an elementary embedding where N is count-

able and transitive, and Γ ∈ ran(j). Let j(Γ̄) = Γ and j(Env(Γ)) = Env(Γ). Let j(F∞) = F∞
and j(M∞) =M∞. Suppose that N is Γ-full. Then we have

(1) the direct limit premouseM∞ is Γ-suitable and strongly j(Ā)-quasi-iterable for every

Ā ∈ Env(Γ), and

(2) the restriction j �M∞ :M∞ →M∞ is the union of the maps π
j(Ā)

M∞,∞
of the system

F∞ for Ā ∈ Env(Γ).

Proof. Choose a cofinal sequence ((Pi, Āi) : i < ω) in the directed system F∞ of N .

Then M∞ is equal to the direct limit of the system

{(Pi, Āi) : i < ω}(C)

under the partial quasi-iteration maps π̄ĀiPi,Pj where π̄ is used to denote partial quasi-iteration

maps computed in N . The sequence (Pi : i < ω) is a Γ-suitable sequence, so it has a Γ-

suitable quasi-limit Q, which is by definition the limit of the directed system

{(Pi, A) : i < ω & A ∈ Env(Γ)}(Q)

under whichever partial quasi-iteration maps πAPi,Pj happen to be defined. Let A ∈ Env(Γ).

Because N is Γ-full the terms (τPiA∩N)N and τPiA are equal for all i < ω, so for all i, j < ω with

i ≤ j the quasi-iteration maps π̄A∩NPi,Pj and πAPi,Pj are equal or are both undefined. Therefore

the quasi-limit premouse Q is also equal to the limit of the directed system

{(Pi, Ā) : i < ω & Ā ∈ Env(Γ)}(Q̄)

under whichever partial quasi-iteration maps π̄ĀPi,Pj of N happen to be defined. The directed

system (C) is cofinal in (Q̄) as well as in F∞. Therefore the direct limits of all four systems

F∞, (C), (Q), and (Q̄) are equal. This shows that M∞ = Q, so it is Γ-suitable. For

every i < ω the premouse Pi is strongly Āi-quasi-iterable in N , so it is strongly j(Āi)-quasi-

iterable in V . The direct limitM∞ is equal to Q, so it is a quasi-iterate of Pi and is therefore

strongly j(Āi)-quasi-iterable as well. The Āi’s are cofinal, so this shows thatM∞ is strongly

j(Ā)-quasi-iterable for every Ā ∈ Env(Γ), thereby establishing part (1).

The fact that the premouse Pi is strongly j(Āi)-quasi-iterable also implies that the partial

quasi-iteration map π
j(Āi)

Pi,M∞
is defined and is equal to the direct limit map π̄ĀiPi,∞ of the system

F∞, or equivalently of (C) or (Q̄). To show that the map j �M∞ is equal to the union of

the maps π
j(Ā)

M∞,∞
, because the domain is a direct limit of the (C) system it suffices to show

that their compositions with the maps π̄ĀiPi,∞ are equal for all i < ω. Indeed, we have

j ◦ π̄ĀiPi,∞ = j(π̄ĀiPi,∞) = π
j(Āi)
Pi,∞ = π

j(Āi)

M∞,∞
◦ πj(Āi)Pi,M∞

= π
j(Āi)

M∞,∞
◦ π̄ĀiPi,∞,

establishing part (2). �
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Definition 5.2.3. Let S ⊂ Env(Γ) be a countable set closed under recursive join. Let P
be a suitable premouse that is strongly A-quasi-iterable for each A ∈ S. For a quasi-iterate

N of P ,

• The S-hull HPS of P is the union of the hulls HPA for A ∈ S.

• The S-guided map πSP,N is the union of the maps πAP,N for A ∈ S, for any quasi-

iterate N of P .

• The S-guided map πSP,∞ is the union of the maps πAP,∞ for A ∈ S.

Notice that πSP,∞ is only a total map on P if P = HPS . For a Γ-full hull j : N → H(2c)+

in the situation of Proposition 5.2.2 where j(Env(Γ)) = Env(Γ) and j(M∞) =M∞, letting

S = j“Env(Γ) we have that πSM∞,∞ is a total map M∞ →M∞ and is equal to j �M∞.

5.3. The full factors property

Proposition 5.2.2 gave us a way to construct countable hulls M∞ of M∞ that are Γ-

suitable, and in particular are LpΓ-full. Next we consider the LpΓ-fullness of premice that

are intermediate between M∞ and M∞. In a more general context, we make the following

definition.

Definition 5.3.1. Let Γ be an inductive-like pointclass such that ∆˜ Γ is determined and

Γ-MC holds. Let j :M→R be an elementary embedding whereM and R are premice and

M is Γ-suitable. We say that the map j has the LpΓ-full factors property, or just the full

factors property when Γ is clear from context, if whenever P is a countable premouse and

there are elementary embeddings

M i−→ P k−→ R

such that k ◦ i = j, then P is LpΓ-full.

A sufficient condition for the full factors property is that we can “carry a tree along on

top” of j in the following sense.

Lemma 5.3.2. Let Γ be an inductive-like pointclass such that ∆˜ Γ is determined and Γ-MC

holds. Let j : M → R be an elementary embedding where M and R are premice and M
is Γ-suitable. Let T be the tree of a Γ-scale on a universal Γ set and let Ej be the extender

of length OrdR derived from j. If the ultrapower Ult(L[T,M], Ej) is well-founded, then the

map j has the full factors property.

Proof. First note that becauseM is LpΓ-full it is a cardinal initial segment of the model

L[T,M] by Γ-MC, so we really can apply the extender Ej to this model. Now suppose j

factors as k ◦ i where we have

M i−→ P k−→ R

for some countable premouse P . We want to show that P is LpΓ-full. Letting Ei be the

extender of length OrdP derived from i, we can define the ultrapower map i∗ : L[T,M] →
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Ult(L[T,M], Ei). The ultrapower is wellfounded because it embeds into the larger ultrapower

Ult(L[T,M], Ej) via the map k∗ defined by

k∗(i∗(f)(s)) = j(f)(k(s)).

The ordinal OrdM has cofinality ω in L[T,M] by the definition of a suitable premouse, so

it is a continuity point of i∗ and we have

i∗ : L[T,M]→ L[i∗(T ),P ] and i∗(M) = P .

Therefore the premouse P is a rank initial segment of L[i∗(T ),P ] by the elementarity of iE.

Consider every real x as coding a structure Px. Define the set

U = {x : Px is not a LpΓ-full premouse}.

Then we have U ∈ Γ. By Becker–Kechris [2] if we let S be the tree of a Γ-scale on U we

have S ∈ L[T ]. Because M is LpΓ-full, if we take an L[T,M]-generic filter g ⊂ Col(ω,M)

then we have

L[T,M][g] |= ẋ /∈ p[S]

where ẋ denotes the term for the generic real code of M. So by the definability of forcing

and the elementarity of i∗, if we take an L[i∗(T ),P ]-generic filter h ⊂ Col(ω,OrdP) then we

have

L[i∗(T ),P ][h] |= ẋ /∈ p[i∗(S)]

where ẋ denotes the term for the generic real code of P . Let x = ẋh be the generic real

code of P corresponding to h. The tree i∗(S)x is wellfounded in the wellfounded model

L[i∗(T ),P ][h], so it is really wellfounded. The tree Sx embeds into it by i∗, so Sx is also

wellfounded. Therefore x /∈ U and the premouse P = Px is LpΓ-full. �

Given a countable hullM ofM∞ as in Proposition 5.2.2, if we additionally assume that

the map M→M∞ has the full factors property, then we can get an iteration strategy for

M∞. The first step is the following preservation lemma.

Lemma 5.3.3. Let S ⊂ Env(Γ) be a countable set closed under recursive join. LetM be a

suitable premouse that is strongly A-quasi-iterable for every A ∈ S. Suppose that HMS =M
and the S-guided map πSM,∞ : M → M∞ has the full factors property. Let N be a quasi-

iterate N ofM. Then HNS = N and the S-guided map πSN ,∞ : N →M∞ has the full factors

property.

Proof. First we show that the hull HNS of N , defined as the union of the hulls HNA for

A ∈ S, is equal to N itself. The S-guided map πSM,∞ factors through HNS , so it also factors

through the transitive collapse P of HNS . Therefore P is LpΓ-full by the full factors property

of πSM,∞. Each hull HNA is transitive below δN by definition, so HNS ∩δN is an ordinal η ≤ δN .

This ordinal η is Woodin in the transitive collapse P , which is full, so we must have η = δN

by the suitability of N . Now from the fact that P is full and N is suitable it follows that P
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is all of N , and moreover that the uncollapsed hull HNS is all of N . Therefore the S-guided

map πSN ,∞ is a total map N →M∞. It has the full factors property because it factors into

a map with the full factors property: πSM,∞ = πSN ,∞ ◦ πSM,N . �

The following lemma shows that if πSM,∞ is total onM and has the full factors property

then it guides an ω1-iteration strategy. We will later improve this to an (ω1, ω1)-iteration

strategy.

Lemma 5.3.4. IfM is a suitable, quasi-iterable premouse and S ⊂ Env(Γ) is a countable

set, closed under recursive join, such that the S-guided map πSM,∞ is total on M and has

the full factors property, then for any quasi-iterate P of M by a maximal iteration tree T ,

there is a unique non-dropping cofinal branch b of T with the property that MT
b = P and

iTb = πSM,P .

Proof. Let (Ai : i < ω) be a sequence of sets of reals that is cofinal in S under recursive

substitution. Let bi be an Ai-good branch of T . Then by definition the partial quasi-iteration

map πAiM,P is equal to iTbi � H
Ai
M.

If i < j < ω then for every α < lh T with lhETα < γPi (or even with critETα < γPi )

we have α ∈ bi ⇐⇒ α ∈ bj: If bi and bj were to disagree at some α with critETα < γPi
then ran iTbi ∩ ran iTbj ⊂ critETα by the “zipper argument”, but because both branches are

Ai-good their ranges both contain the set of points definable from τPAi , which is cofinal in

γPAi , a contradiction.

We claim that the limit branch

b = {α < lh T : (∃i < ω) (lhETα < γPAi & α ∈ bi)}

= {α < lh T : (∀i < ω) (lhETα < γPAi =⇒ α ∈ bi)}

is a non-dropping cofinal branch of T . The limit branch b cannot drop because none of the

branches bi drops. Suppose toward a contradiction that b is not cofinal, and let η = sup b.

By Lemma 5.3.3 we have that P =
⋃{

HPAi : i < ω
}

, so we can take i < ω such that

γPAi > lhETη . Branches are closed, so η ∈ bi. Let ETξ be the extender applied to MT
η in bi.

We have critETξ < lhETη < γPAi . We also have lhETξ ≥ γPi ; otherwise ξ would be in b. But

then ran bi cannot be cofinal in γPAi , a contradiction.

We can define an elementary embedding

k :MT
b → P

iTb (f)(s) 7→ πSM,P(f)(s), for f ∈M and s ∈ δ(T )<ω.

To see that k is well-defined, if iTb (f)(s) = iTb (g)(t) then take α < lh(T ) with lhETα >

max(s ∪ t), and take i < ω such that γPAi > lhETα and f, g ∈ HMAi . Then we have

πSM,P(f)(s) = iTbi(f)(s) = iTα,bi(i
T
0,α(f)(s)) = iTα,bi(i

T
0,α(g)(t)) = iTbi(g)(t) = πSM,P(g)(t)

We have HPAi ⊂ ran k for each i < ω, so because P =
⋃{

HPAi : i < ω
}

we have that

ran k = P and k is the identity map. This shows that MT
b = P and iTb = πSM,P .
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The branch b is unique with the property that MT
b = P and iTb = πSM,P by the zipper

argument because ran πSM,P is cofinal in δP . �

Proposition 5.3.5. If M is a suitable, quasi-iterable premouse and S ⊂ Env(Γ) is a

countable set, closed under recursive join, such that the S-guided map πSM,∞ is total on M
and has the full factors property, then there is a unique (ω1, ω1)-iteration strategy Λ for M
such that for every quasi-iterate P of M

• P is a non-dropping Λ-iterate of M, and

• the Λ-iteration map i :M→ P equals the S-guided map πSM,P .

Moreover, the strategy Λ has the property that whenever i : M → P is a Λ-iteration map

factors as a composition of maps M→ N → P, then N is LpΓ-full. In particular P itself

is full.

Proof. Take a suitable sequence (Mα : α ≤ γ) with γ < ω1 such that M0 = M and

Mγ = P . Let ~T = (Tα : α < γ) be the trees used in this sequence. The proof is by induction

on γ. Assume the claim holds with respect to the sequences (Mα : α ≤ β) for β < γ.

If γ = β + 1 for some β, then the S-guided map πSMβ ,∞ (and therefore also the S-guided

map πSMβ ,Mβ+1
, which factors into it) is total on Mβ and has the full factors property by

Lemma 5.3.3. If Tβ is short, then the quasi-iterate Mβ+1 is defined as MTβ
b where b is

the unique branch satisfying Q(M(T ))M
T
b = Q(M(T )). For every A ∈ S this branch is

A-correct because M is A-quasi-iterable. Therefore we can and must define Λ(~T ) = b. If

Tβ is maximal, then we can and must define Λ(~T ) to be the unique branch given by Lemma

5.3.4.

If γ is a limit ordinal then the branch Λ(~T ) can and must be defined as the concatenation

of the branches Λ(~Tα), α < γ. The Λ-iteration map M0 → Mγ is the direct limit of the

Λ-iteration maps Mα → Mβ for α < β < γ, and the S-guided map πSM0,Mγ
is the direct

limit of the S-guided maps πSMα,Mβ
for α < β < γ, so the claim follows from the induction

hypothesis.

The “moreover” follows from the full factors property of the S-guided map πSM,∞, because

the Λ-iteration map M → P equals the S-guided map πSM,P , which factors into πSM,∞. So

every mapM→N that factors into the Λ-iteration mapM→ P also factors into πSM,∞. �

We summarize the conclusion of Proposition 5.3.5 by saying that S guides an iteration

strategy for M with the full factors property. Note that in particular such a strategy Λ has

the property of being fullness-preserving : the Λ-iterates of M are themselves LpΓ-full. The

full factors property for iteration strategies was called “weak condensation” in [18] and [32],

but here we will use a more descriptive name.

5.4. Application to strong pseudo-homogeneous ideals

Theorem 5.4.1 (ZFC). Assume that there is a strong pseudo-homogeneous ideal I on

℘ω1
(R). Let Γ be an inductive-like pointclass such that ∆˜ Γ is determined, Γ-MC holds, and

every set in Γ is definable from a countable sequence of ordinals. Then there is a Γ-suitable
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premouse P and an (ω1, ω1)-iteration strategy for P that is Γ-fullness preserving, has branch

condensation, and is definable from a countable sequence of ordinals.

Proof. Let j : V → Ult(V,H) ⊂ V [H] be the generic embedding associated to a V -

generic filter H ⊂ I+ \ I. Let T be the tree of a Γ-scale on a universal Γ set. The tree T is

definable from a countable sequence of ordinals, so j(T ) ∈ V by pseudo-homogeneity.

The pointclass Env˜ (Γ) has size ≤ c by Lemma 4.4.2 because we have a strong ideal on

℘ω1
(R). Take an elementary embedding σ : N → H(2c)+ where N is a transtive set of size

c with Env˜ (Γ) ⊂ N . Then N is in Ult(V,H) and is countable there. Moreover the map

j(σ) ◦ (j � N) is in Ult(V,H), and is an elementary embedding N → j(H(2c)+).

Note that N is j(Γ)-full: for any set A ∈ j(Env(Γ)) we have A ∩ RV ∈ Cj(Γ)(RV ), so

A ∈ L(j(T ),RV ). Because j(T ) ∈ V , we have A ∈ V , so A ∈ N . Therefore by Proposition

5.2.2, the direct limit premouse M∞ is j(Γ)-suitable and strongly j(A)-quasi-iterable for

every set A ∈ Env(Γ), and j � M∞ is the union of the partial quasi-iteration limit maps

π
j(A)
M∞,∞ as defined in the generic ultrapower.

First we will get an iteration strategy with the full factors property. Let Ej be the

extender on M∞ of length j(OrdM∞) derived from j. The ultrapower of L[j(T ),M∞] by

Ej factors into the map j � L[j(T ),M∞], so it is wellfounded. Therefore the map j �M∞

has the j(Γ)-full factors property by Lemma 5.3.2. Now from Proposition 5.3.5 we see that

there is a unique iteration strategy for M in the generic ultrapower that is guided by the

collection of sets j“ Env(Γ), and it has the Γ-full factors property.

Pulling this statement back to V with the elementarity of j, we see that there is a

suitable premouseM and a countable collection of sets S ⊂ Env(Γ) that guides an iteration

strategy Λ for M with the full factors property. This strategy is definable from M and S
and therefore from a countable sequence of ordinals.

Now we use the fact that, for any countable sequence π ∈ Ordω and any OD set B ⊂ Ord

there is an inner model containing π and B in which ωV1 is measurable. This is a trivial

consequence of pseudo-homogeneity. As in [18] (see also [32]) this fact can be used to get

a tail of Λ with branch condensation, letting B code M∞ and letting π code the S-guided

map M→M∞ (which is equal to the direct limit of all Λ-iteration maps.) �

We conclude this chapter by remarking that the author does not know whether getting

branch condensation from the full factors property actually requires any special hypothesis

(such as the aforementioned inner model where ωV1 is measurable.) A general method for

getting fullness-preserving strategies with branch condensation remains a key problem in the

area.
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