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Full length article

Development of over 30-years of high spatiotemporal resolution air 
pollution models and surfaces for California
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Arash Mohegh b

a School of Public Health, University of California, Berkeley Berkeley, CA 94720 the United States of America
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A B S T R A C T

California’s diverse geography and meteorological conditions necessitate models capturing fine-grained patterns 
of air pollution distribution. This study presents the development of high-resolution (100 m) daily land use 
regression (LUR) models spanning 1989–2021 for nitrogen dioxide (NO2), fine particulate matter (PM2.5), and 
ozone (O3) across California. These machine learning LUR algorithms integrated comprehensive data sources, 
including traffic, land use, land cover, meteorological conditions, vegetation dynamics, and satellite data. The 
modeling process incorporated historical air quality observations utilizing continuous regulatory, fixed site 
saturation, and Google Streetcar mobile monitoring data. The model performance (adjusted R2) for NO2, PM2.5, 
and O3 was 84 %, 65 %, and 92 %, respectively.

Over the years, NO2 concentrations showed a consistent decline, attributed to regulatory efforts and reduced 
human activities on weekends. Traffic density and weather conditions significantly influenced NO2 levels. PM2.5 
concentrations also decreased over time, influenced by aerosol optical depth (AOD), traffic density, weather, and 
land use patterns, such as developed open spaces and vegetation. Industrial activities and residential areas 
contributed to higher PM2.5 concentrations. O3 concentrations exhibited no significant annual trend, with higher 
levels observed on weekends and lower levels associated with traffic density due to the scavenger effect. Weather 
conditions and land use, such as commercial areas and water bodies, influenced O3 concentrations.

To extend the prediction of daily NO2, PM2.5, and O3 to 1989, models were developed for predictors such as 
daily road traffic, normalized difference vegetation index (NDVI), Ozone Monitoring Instrument (OMI)–NO2, 
monthly AOD, and OMI-O3. These models enabled effective estimation for any period with known daily weather 
conditions.

Longitudinal analysis revealed a consistent NO2 decline, regulatory-driven PM2.5 decreases countered by 
wildfire impacts, and spatially variable O3 concentrations with no long-term trend. This study enhances un-
derstanding of air pollution trends, aiding in identifying lifetime exposure for statewide populations and sup-
porting informed policy decisions and environmental justice advocacy.

1. Introduction

Air pollution remains a persistent threat to public health (Fuller et al. 
2022), requiring accurate methodologies to assess exposure and 
comprehend its complex spatiotemporal dynamics. In relating air 

pollution to health, Land Use Regression (LUR) models are typically 
used to develop spatiotemporal surfaces that align with the occurrence 
of a health outcome being studied. “Surfaces” in this context refers to 
spatially continuous data representations of air pollutant concentrations 
across a geographic area. LUR models estimate air pollution 

Abbreviations: AOD, Aerosol Optical Depth; CARB, California Air Resources Board; Caltrans, California Department of Transportation; EOS, Earth Observing 
System; EPA, U.S. Environmental Protection Agency; ESRI, Environmental Systems Research Institute; LUR, Land Use Regression; MAIAC, Multi-angle Imple-
mentation of Atmospheric Correction; MODIS, Moderate Resolution Imaging Spectroradiometer; NASA, National Aeronautics and Space Administration; NLCD, 
National Land Cover Database; NO2, Nitrogen Dioxide; NTL, Nighttime Lights; NVDI, Normalized Difference Vegetation Index; O3, Ozone; OMI, Ozone Monitoring 
Instrument; PM2.5, Fine particulate matter with diameter ≤ 2.5 µm; USGS, United States Geological Survey; VKT, Vehicle Kilometers Traveled.
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concentrations at specific monitoring sites using geographic predictors, 
including land use, traffic volume, and environmental characteristics 
(Hoek et al. 2008; Ryan and LeMasters 2007). Several LUR models have 
been developed in California at regional level, mainly in Southern Cal-
ifornia, focusing on annual or multiple-year single surface prediction of 
pollutant concentrations (Jones et al. 2020; Lee et al. 2016; Moore et al. 
2007; Ross et al. 2006; Su et al. 2009). Recently, machine learning (ML) 
algorithms have been used for air pollution modeling in California 
(Castelli et al. 2020; Reid et al. 2015), including the Deletion/Substi-
tution/Addition (D/S/A) algorithm (Beckerman et al. 2013a; Su et al. 
2015a). While D/S/A is fundamentally an ML approach, its application 
in air pollution research serves the same purpose as a LUR model by 
capturing the spatiotemporal variability of air pollution based on 
various land use and environmental predictors. However, D/S/A lever-
ages the strengths of both LUR and ML techniques, providing better 
prediction accuracy and flexibility in handling complex, high- 
dimensional datasets (Beckerman et al. 2013a; Ren et al. 2020; Su 
et al. 2015b; Zhang et al. 2021). These traditional and ML integrated 
LUR models, however, either do not have statewide coverage, have 
coarser resolution (e.g., over 1 km resolution), or lack many years of 
continuous coverage (e.g., over 30 years) to identify the very fine-scale 
variations in pollutant concentrations for statewide multiple decade 
health studies.

With a land area of 423,970 km2 and a multitrillion-dollar gross 
domestic product, the State of California in the U.S. would rank as the 
world’s eighth-largest national economy if it were a nation (Mecklin 
2014). California’s distinctive geography and meteorological conditions 
result in pronounced spatial and temporal variations in air quality (Ostro 
et al. 2010). Sources and concentrations of air pollutants vary signifi-
cantly across coastal regions, inland valleys, urban centers, and rural 
landscapes (Hu et al. 2014; Wikipedia contributors 2024). This vari-
ability requires models that capture fine-grained spatiotemporal pat-
terns, enhancing the accuracy of exposure assessments (Brokamp et al. 
2018; Jerrett et al. 2005).

High-resolution models are essential for understanding the complex 
relationships between pollutant exposures and health outcomes, 
including respiratory and cardiovascular diseases, adverse birth out-
comes, and mortality (Di et al. 2017; Gauderman et al. 2015; Ha et al. 
2014; Pope III et al. 2009a; Pope III et al. 2004; Pope III et al. 2015). 
Some health outcome studies, such as those investigating the impact of 
air pollution on life expectancy (Correia et al. 2013; Pope III et al. 
2009b; Yin et al. 2020) and comprehending the lifelong consequences of 
air pollution (Pope 3rd 2000), necessitate extensive longitudinal studies 
such as those over a span exceeding 30 years. The traditional and ML 
integrated models provide the foundation for evidence-based policy 
interventions aimed at reducing pollution exposure misclassification 
and mitigating health risks, particularly in vulnerable populations 
(Craig et al. 2008; Giles et al. 2011; Kaufman et al. 2020). The identi-
fication of pollution hotspots and the elucidation of disparities in 
exposure also support environmental justice efforts, ensuring that pol-
icies are informed by a comprehensive understanding of both spatial and 
temporal variations in air quality (Houston et al. 2004; Liu and Marshall 
2023; Morello-Frosch and Jesdale 2006; Morello-Frosch et al. 2002; Zou 
et al. 2014). Understanding the temporal aspects of air quality becomes 
crucial for immediate health outcomes and discerning the lifelong 
impact of air pollution on health.

Among air pollutants, fine particulate matter (PM2.5) is of particular 
concern due to its ability to infiltrate the lungs and enter the blood-
stream, contributing to the occurrence of respiratory and cardiovascular 
diseases (Fasola et al. 2020; Horne et al. 2018; Pope III et al. 2018). 
Nitrogen Dioxide (NO2), a key indicator of traffic-related air pollution, 
has been associated with exacerbated respiratory conditions such as 
asthma (Naidoo 2019; Studnicka et al. 1997). Ozone (O3), formed 
through photochemical reactions involving precursor emissions, plays 
an important role in the formation of ground-level ozone (smog), which 
is known to aggravate pulmonary disorders (Chuang et al. 2009; Kinney 

1999; Rich et al. 2020). In California, the major health concerning 
criteria pollutants are NO2, PM2.5 and O3.

In terms of spatial distribution, NO2 exhibits a steep spatial gradient, 
with concentrations decreasing significantly as distance from emission 
sources increases (Monn et al. 1997; Su et al. 2009; Tack et al. 2017). 
PM2.5, comprising both primary and secondary particles, displays a 
more gradual spatial attenuation (Wang et al. 2020). Conversely, O3 
distribution tends to exhibit an inverse spatial relationship to NO2, 
influenced by the NOx titration effect (Kumar et al. 2008; Wang 2020). 
The distinct spatial characteristics and health impacts of PM2.5, NO2, 
and O3 underscore their centrality to our study and highlight the 
importance of capturing their respective distribution patterns in expo-
sure assessment models.

Mobile monitoring significantly improves the capture of detailed 
spatial and temporal variations in pollutant concentrations, leading to 
more accurate and comprehensive air pollution modeling. By incorpo-
rating data from Google Streetcar measurements, particularly those near 
highway roadways, we enhance spatiotemporal coverage beyond 
traditional regulatory air quality monitors. This approach allows for a 
finer resolution of data across diverse environments, contributing to a 
deeper understanding of exposure patterns and their potential health 
impacts.

In this research, we propose developing daily air pollution models of 
30 m resolution across three decades using the D/S/A integrated LUR 
modeling technique (Beckerman et al. 2013b; Su et al. 2015a; Su et al. 
2015b; Su et al. 2020) for NO2, PM2.5 and O3. This approach in-
corporates diverse datasets, including traffic, land use, land cover, 
vegetation dynamics, meteorological conditions, satellite remote 
sensing data, and other data sources. The modeling approach integrates 
air pollution measurements data from government regulatory moni-
toring, fixed site saturation monitoring and Google Streetcar mobile 
monitoring. Additionally, we extend predictors to periods with no ob-
servations for ensuring the temporal continuity of the models, allowing 
for a comprehensive and consistent analysis of air pollution dynamics 
across an extended timeframe.

The research results will be used to help identify life-time air 
pollution exposure to statewide patients, including adverse birth out-
comes and population life expectancy over 30 years, particularly for 
those vulnerable in California. These models and surfaces also provide 
the ability to identify historical environmental exposure disparities and 
trends due to their high spatial resolution. This work will also support 
future air pollution research studies that require high-precision air 
pollution surfaces over an extended period to help identify their asso-
ciation with major health outcomes of interest.

2. Methodology

2.1. 1. Acquiring and processing air pollution data from regulatory 
monitoring

We acquired and processed daily air pollution data and their spatial 
locations from the U.S. Environmental Protection Agency (https://aqs. 
epa.gov/aqsweb/airdata/download_files.html). The regulatory data 
measurements were obtained from monitoring sites equipped with 
standardized instruments for measuring air pollutants. Specifically, NO2 
was measured using instruments coded as 42602, which typically 
involve chemiluminescence techniques, recognized for their accuracy in 
detecting nitrogen dioxide levels in ambient air. PM2.5 concentrations 
were measured using Federal Reference Method (FRM) or Federal 
Equivalent Method (FEM) instruments coded as 88101, which involve 
either gravimetric or continuous monitoring techniques to capture fine 
particulate matter in the air. Ozone (O3) measurements were conducted 
using instruments coded as 44201, which commonly utilize ultraviolet 
photometry to accurately measure ozone concentrations. In California, 
the spatial distribution of the regulatory air quality monitoring data for 
NO2, PM2.5 and O3 are presented in Fig. 1 (left for NO2, middle for PM2.5 
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and right for O3) and the respective unique number of regulatory sites is 
presented in Table 1.

The trend for NO2 measurement sites shows a slight decline during 
the early 1990 s, with the number of unique sites decreasing from 151 in 
1990 to 147 in 2000. This downward trend continued until 2006, when 

the number of monitoring sites reached its lowest point. After 2006, the 
number of unique NO2 measurement sites fluctuated between 127 and 
135, suggesting variability in monitoring efforts. Overall, there is no 
consistent upward or downward trend in NO2 monitoring, indicating 
that the focus on this pollutant has varied over the years. The total 
number of unique NO2 air quality monitors is 277. In contrast, the trend 
for PM2.5 reveals a clear upward trajectory in the number of unique 
measurement sites. Starting with 183 sites in 1999, the number steadily 
increased to 252 by 2021. This growth is particularly evident from 2000 
onward, demonstrating a growing recognition of the importance of this 
pollutant and dedicated resources to understanding and mitigating its 
impacts. The total number of unique PM2.5 air quality monitors is 331. 
For O3, the trend indicates a generally stable pattern with a gradual 
increase in monitoring sites over time. The number of unique O3 mea-
surement sites increased from 194 in 1990 to 198 in 2008, with some 
fluctuations throughout the years. Although the overall growth in O3 
monitoring efforts is less pronounced than that of PM2.5, it still dem-
onstrates a steady commitment to tracking this pollutant. The total 
number of unique O3 air quality monitors is 379.

In our modeling process, we also applied fixed site saturation 
monitoring data in our analysis. A detailed description of the saturation 
monitoring data can be found in Su et al. (2020).

2.2. Acquiring and processing air pollution data from from Google 
Streetcar monitoring

Google Streetcar had mobile monitoring of the three criteria pol-
lutants across San Francisco Bay (counties of Alameda, Contra Costa, 
San Francisco and San Mateo), Los Angeles County, and Central Valley 
regions (see: https://www.google.com/earth/outreach/special-proje 
cts/air-quality/). The Google Streetcar mobile measurements for each 
region are highly spatially autocorrelated due to the intense sampling of 
air pollutants on its road network. To ensure that our models captured a 
wide range of variability in road traffic patterns while minimizing the 
influence of spatial autocorrelation, we selected 150 road segments for 
each region through a location-allocation algorithm (Kanaroglou et al. 

Fig. 1. The spatial distributions of the regulatory monitors for NO2 (left panel), PM2.5 (middle panel), and O3 (right panel) over the observable time periods.

Table 1 
The unique number of regulatory monitoring sites with the respective effective 
measurements of NO2, PM2.5 and O3 across the study period.

Year Number of Unique Sites
NO2 PM2.5 O3

1989   182
1990 151  194
1991 150  201
1992 149  205
1993 159  199
1994 164  208
1995 163  
1996 159  
1997 156  
1998 154  
1999 148 183 
2000 147  
2001 153  
2006 127  186
2007 129 213 195
2008 136 221 198
2009 130 225 192
2010 132 228 194
2011 127 229 196
2012 132 248 198
2013 129 242 190
2014 132 246 189
2015 133 240 185
2016 135 238 185
2017 132 240 184
2018 129 246 180
2019 128 241 181
2020 124 247 182
2021 127 252 178
Total 277 331 379
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2005). Spatial autocorrelation can lead to inflated model performance 
metrics and reduced generalizability by over-representing certain areas 
or patterns. By using the location-allocation algorithm, we distributed 
the selected road segments more evenly across each region, reducing 
clustering and ensuring that our models are better representative of the 
broader spatial patterns across California. This approach helped in 
developing more robust and interpretable models by preventing over-
fitting to localized traffic conditions. A total of 150 road segments with 
each road segment having at least 100 measurements was selected for 
each of the four regions: Alameda and Contra Costa; San Francisco and 
San Mateo; Los Angeles, and Central Valley. Each region had (1) 50 road 
segments selected from locations within 500 m of highways allowing 
truck traffic, or within 500 m of major California ports (i.e., goods 
movement corridors or GMCs), (2) 50 road segments selected from lo-
cations within 500 m of highways not allowing truck traffic or within 
300 m of major roadways (i.e., non-goods movement corridors or 
NGMCs), and (3) locations not encompassed in the first and second parts 
(i.e., control areas or CTRLs). The detailed selection process is docu-
mented in the Supplementary file. The Google Streetcar measured NO2 
and O3 concentrations in the unit of ppb – the same as regulatory 
monitoring; however, PM2.5 concentrations were in total number of 
particles instead of the typical concentrations in µg m− 3. The daily 
concentration of PM2.5 in µg m− 3 of road segment i of traffic corridor k 
on day j was estimated through: 

Ci,j,k = Gi,j,k*R̂j,k
/

Ĝj,k (1) 

where Ci,j,k and Gi,j,k represent the converted and original measures. R̂j,k 

and Ĝj,k are respectively the mean PM2.5 concentrations in µg/m− 3(− |-) 
from all the regulatory monitors and the mean PM2.5 particle numbers 
from all the selected 50 road segments for day j in corridor k. The PM2.5 
concentrations were estimated separately for each region.

2.3. Acquiring and processing air pollution predictors from the 
observation period

For the predictors (Table 2), the availability of daily traffic data 
varied across 12 California Department of Transportation (Caltrans) 
districts (Figure S2), with the earliest traffic data available from 2000 to 
2005. We used the data collected by the Caltrans Performance Mea-
surement System (PeMS) to derive roadway daily traffic. PeMS data are 

collected in real-time from nearly 40,000 individual detectors spanning 
the freeway system across all major metropolitan areas of the State of 
California and provide an Archived Data User Service that provides over 
fifteen years of data for historical analysis. The detector measured traffic 
flow covered ~ 5 % highway segments and we summed hourly traffic to 
daily traffic for all the stations across California. The interconnected 
steps were then used to derive daily traffic for all the California high-
ways. Please refer to the Supplementary file for the details of traffic 
assignment.

The land use data was derived from the 2019 statewide parcel data, 
combined by the California Air Resources Board (CARB) from individual 
County Assessor’s Offices, and we considered them consistent across all 
the years. The land cover data was acquired from the National Land 
Cover Database (NLCD) at five-year intervals (2001, 2006, 2011, 2016, 
and 2019) (Yang et al. 2018). The assumption was that land cover 
remained constant until the subsequent available measurement. Vege-
tation dynamics were assessed through the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) instrument-derived data, specifically 
the Normalized Difference Vegetation Index (NDVI) (Lunetta et al. 
2022), computed at 16-day intervals since 2000. We assumed the 
vegetation index remained constant from its previous measurements 
within 16 days. Daily meteorological data were acquired from the 
GridMet dataset (Abatzoglou 2013), covering 1989 to 2021 at a 4 km 
spatial resolution. For satellite remote sensing data, daily measurements 
from the Ozone Monitoring Instrument (OMI) (Levelt et al. 2018) for 
NO2 and O3 were accessible from 2005 to 2021. The aerosol optical 
depth (AOD) data (Zhang et al. 2011) was available from 2000 to 2021.

2.4. Extending air pollution predictors to unobserved periods

Backcasting daily traffic.
The earliest traffic data available for California ranged from 2000 to 

2004 (Table 2). The range of dates for traffic data availability is due to 
increased efforts by Caltrans to manage traffic across California. They 
initially focused on densely populated areas, such as the San Francisco 
Bay Area in District 4 and Los Angeles in District 7 (Figure S2), before 
expanding to other less populated districts. We used a linear mixed- 
effects model to estimate missing traffic for the unobserved period. 
The linear mixed-effects model allowed us to account for both fixed and 
random effects to accurately predict daily traffic. The fixed effect was 
the year, capturing any overarching trends in traffic volume over time. 

Table 2 
LUR predictors and available time periods in the modeling process.

Variables Source Spatial Resolution Temporal Resolution Time Period Extension Period

Trafficδ CalTrans 30 m Daily 2005–2021 1989–2004
Land useθ CARB 30 m One time 2019 Use 2019
Land cover¥ NLCD 30 m Every 5 years 2001–2019 Use 2001
Vegetation index (NDVI) € MODIS 250 m Every 16 days 2000–2021 1989–1999
Meteorological data£ GridMet 4 km Daily 1989–2021 None
AOD dataξ MAIAC 1 km Daily 2000–2021 1989–1999
OMI-NO2 dataξ NASA’s OMI 25 km Daily 2005–2021 1989–2004
OMI-O3 dataξ NASA’s OMI 25 km Daily 2005–2021 1989–2004
Distance to highway and major roadwaysǂ ESRI 30 m One time 2018 None
Distance to coastǂ USGS 30 m One time 2015 None
Elevation from digital elevation modelǂ USGS 30 m One time 2015 None
Distance to portsǂ ESRI 30 m One time 2018 None

ξ: MAIAC AOD data: Data from the Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm using MODIS Terra and Aqua satellites; OMI-NO2 and 
OMI-NO3 data are derived from the National Aeronautics and Space Administration Ozone Monitoring Instrument.

δ : Traffic data are derived from the California Department of Transportation (CalTrans).
θ : Land use data are provided by the California Air Resources Board (CARB), which combined the parcel data from all the 58 counties in California.
¥ : Land cover data is derived from the NLCD (National Land Cover Database) provided by the U.S. Geological Survey (USGS).
€ : The NDVI (Normalized Difference Vegetation Index) data is provided by MODIS (Moderate Resolution Imaging Spectroradiometer) from NASA’s Earth Observing 

System (EOS).
£ : The meteorological data is sourced from GridMet provided by the University of Idaho.
ǂ : Traditional predictors include distance to the nearest highway and major roadway derived from the ESRI Street data layer for 2018, distance to coast and 

elevation data derived from the USGS for 2015, and distance to major ports derived from the ESRI data layer for 2018.
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Meanwhile, the random effects included the road segment’s route, the 
county in which it was located, the specific month, season, and whether 
the day in question was a weekday or weekend. For each Caltrans dis-
trict, we developed separate models that reflected the district-specific 
relationships between these factors and daily traffic. This district- 
specific modeling was crucial as traffic patterns can vary significantly 
across California’s diverse regions. Once the models were established for 
each district, they were applied to estimate daily traffic on road seg-
ments for days where traffic data was missing, specifically targeting the 
years without observations.

Backcasting daily NDVI data:
No MODIS NDVI data is available before 2000, as indicated in 

Table 2. We used a multiple linear regression modeling technique to 
backcaste daily NDVI data. In this approach, we used long-term monthly 
average NDVI values as the baseline and modeled the relationship be-
tween daily NDVI values and various meteorological variables (such as 
precipitation, temperature, relative humidity, wind speed, and wind 
direction) as predictors. We recognize that meteorological conditions 
such as temperature, precipitation, and humidity directly impact vege-
tation growth and health. NDVI, which is a measure of vegetation 
density and health, can vary significantly with changes in these mete-
orological factors. For instance, higher temperatures and varying pre-
cipitation levels can affect plant growth cycles and chlorophyll content, 
thus influencing NDVI values. This regression model allowed us to es-
timate daily NDVI values for the period before 2000, extending back to 
1989.

Backcasting daily OMI-NO2 data:
In constructing the daily NO2 model, we identified OMI-NO2 satellite 

remote sensing data with the highest t-score, indicating its significant 
impact on predicting daily NO2 values. However, OMI-NO2′s spatial 
resolution of 25 km led to edge effects along the resolution cells, and the 
data did not cover periods before 2005 (Table 2). To address these 
challenges, we incorporated NASA’s (National Aeronautics and Space 
Administration) annual NO2 re-analysis data at a 1 km resolution for 
1990, 1995, 2000, and 2005–2020 (Anenberg et al. (2023)). This 
augmentation aimed to enhance the spatial resolution of OMI-NO2 data 
and extend it back to 1989. For the missing years in the NO2 re-analysis 
data, we employed multiple linear regression to estimate values based 
on available data from adjacent years, incorporating variables such as 
temperature, wind speed, and population density.. All the data were 
resampled to a spatial resolution of 1 km during the modeling process. 
We assumed that there are relationships between long-term average 
OMI-NO2 values for specific days of the month (e.g., the 1st day) and for 
specific months (e.g., January), and the OMI-NO2 values for the corre-
sponding specific dates (e.g., January 1, 2005). Additionally, we 
assumed a long-term trend in OMI-NO2 values and used variable year in 
a linear regression model to extend annual OMI-NO2 values from 2005 
to 2021 to 1989–2004. By incorporating annual, long-term monthly, and 
long-term daily (day 1–31) OMI-NO2 data with annual NO2 reanalysis 
data, we were able to accurately model and predict daily OMI-NO2 
values through a multiple regression model.. The modeling outcomes 
were then used to derive daily OMI-NO2 values from 1989 to 2021, with 
an improved spatial resolution of 1 km.

Backcasting monthly AOD data:
The earliest dates available for AOD data were in 2000 (Table 2). In 

our modeling of PM2.5, we opted to use monthly AOD median values in 
our modeling process due to extensive missing data from cloud impact at 
the daily level. To extend monthly AOD data to 1989, we used the 
annual PM2.5 data of resolution 1 km for 1989–2016 from Washington 
University in St. Louis (Van Donkelaar et al. 2019). We assumed simi-
larities in AOD values between a specific month (e.g., January 2005) and 
its long-term month (e.g., January) and year (e.g., 2005). Additionally, 
we assumed a long-term annual trend in AOD values and conducted 
grid-wise linear regression trend analysis to extend annual AOD values 
from 2000 to 2021 to 1989–1999. Integrating long-term year and month 
AOD values with Van Donkelaar et al. (2019) annual PM2.5 data enabled 

the prediction of monthly AOD values. The modeling outcomes were 
then used to derive monthly AOD values from 1989 to 1999, with a 
spatial resolution of 1 km.

Backcasting daily OMI-O3 data:
Like OMI-NO2 data, OMI-O3 data lacks coverage for periods before 

2005 (Table 2). We utilized a linear regression modeling approach to 
estimate daily OMI-O3 values based on their long-term daily (1–31), 
monthly (1–12), and yearly (2005–2021) values. Additionally, we 
included daily OMI-NO2 data as a predictor in the model. Subsequently, 
the modeling results were used to extend daily OMI-O3 data back to 
1989. In the modeling process, yearly OMI-O3 values for 1989–2004 
were extrapolated through trend analysis, and daily OMI-NO2 data for 
1989–2004 were obtained using the above extension procedure.

2.5. Developig daily air pollution models through ML integrated LUR 
approach

The D/S/A algorithm initiates the selection process by starting with a 
base model, typically the intercept-only model unless a different starting 
point is specified. The algorithm then iteratively adds, deletes, or sub-
stitutes terms to improve the model’s predictive performance. During 
each iteration, potential modifications to the model, such as adding 
polynomial terms or interaction effects, are evaluated based on a pre-
defined criterion, usually the reduction of the cross-validated error or 
the improvement in some other model performance metric. The selec-
tion process continues iteratively, with the algorithm testing various 
combinations of terms and retaining the modifications that lead to the 
greatest improvement in model performance. This process is similar to a 
guided search through the space of possible models, where each step is 
evaluated to ensure it moves toward a better fit. The algorithm halts its 
iterations when no further modifications result in a significant 
improvement in the model’s performance, according to the predefined 
stopping criteria. These criteria could include a threshold for the mini-
mum improvement in cross-validated R-squared or reaching a maximum 
number of iterations (15 in our research). At this point, the model with 
the optimal combination of terms is selected as the final model, repre-
senting the best balance between complexity and predictive accuracy. 
To enhance the interpretability of our modeling results, we limited the 
predictors to linear terms and avoided interaction terms..

For regulatory and saturation monitoring data, each was treated 
independently, randomized, and divided into 10 equal folds without 
considering spatial or temporal constraints. The Google Streetcar data, 
which spanned multiple regions, was randomized and divided into 10 
folds separately for each region. These region-specific folds were then 
merged with the corresponding folds from the other regions, as well as 
with the 10 randomized folds from the regulatory and saturation 
monitoring datasets. This approach ensured that each of the 10 folds 
contained a balanced mix of data from all monitoring types and regions. 
One subsample was then retained as validation data, while the 
remaining 9 subsamples served as training data during the modeling 
process. This cross-validation process was repeated 10 times, with each 
subsample used once as validation data.

In developing the daily LUR models for NO2, PM2.5, and O3, we 
constructed respective models using only available observable dates for 
both predictors and air quality measures. No algorithms of temporal 
extensions to the predictors were applied during the modeling process. 
The modeling results, however, were applied to all the predictors across 
all the years to predict daily NO2, PM2.5 and O3 concentrations for the 
1989–2021 period.

3. Results

3.1. D/S/A integrated LUR models covering the available observational 
periods

Table S1-S3 present the daily LUR models, capturing the available 
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observational time periods for NO2, PM2.5, and O3. In the case of NO2 
(Table S1), the consistent year-after-year decline in concentrations 
observed during the study period was reflected in the variable “year” 
and this could be attributed to the regulatory efforts to reduce traffic 
NO2 emissions. The recurrent pattern of lower concentrations during 
weekends compared to weekdays suggests potential reductions in 
human activities on roadways. Additionally, the positive correlation 
between higher OMI-NO2 values and increased NO2 concentrations 
underscores the significance of remote sensing observations in capturing 
spatial variability. Traffic density emerged as a significant factor, as 
areas with greater vehicular activity exhibited greater NO2 emissions 
and higher concentrations. Moreover, weather conditions played a 
crucial role, with higher relative humidity, wind speed, and temperature 
contributing to lower NO2 concentrations. Conversely, increased pre-
cipitation was linked to higher NO2 levels, highlighting the interplay 
between meteorological conditions and NO2 dynamics. Residential areas 
were found to have lower NO2 concentrations, as well as in the devel-
oped open spaces. Low and high-intensity developments, on the other 
hand, were associated with greater NO2 concentrations, indicating the 
positive association of urban development with NO2 levels. The avail-
ability of green spaces, indicated by higher vegetation index, shrub 
cover, and wetlands—recognized as pollution sinks—was associated 
with lower NO2 concentrations. Conversely, a higher proportion of 
impervious surfaces was correlated with increased NO2 levels. Addi-
tionally, locations farther from ports displayed lower NO2 concentra-
tions, indicating elevated NO2 levels near ports. The NO2 model had an 
adjusted R2 of 0.84 in variance explained.

For PM2.5 (Table S2), throughout the study period, its concentrations 
consistently decreased, mirroring the trend observed for NO2. The study 
identified a positive correlation between higher aerosol optical depth 
(AOD) values and elevated PM2.5 concentrations, suggesting that 
increased aerosol presence in the atmosphere is associated with higher 
particulate matter levels. Increased traffic density emerged as a 
contributing factor to higher PM2.5 concentrations, emphasizing the 
impact of vehicular emissions on air quality. Weather factors such as 
higher relative humidity, wind speed, and temperature were associated 
with lower PM2.5 concentrations. Developed open spaces were linked to 
reduced PM2.5 concentrations, and so were areas characterized by a 
higher vegetation index, shrub cover, barren land, and water bodies, 
emphasizing the role of natural features in mitigating air pollution. 
Barren land refers to areas that have little to no vegetation cover and is 
often characterized by exposed soil or rock (Homer et al. 2015). In-
dustrial land use, however, was associated with higher PM2.5 concen-
trations, pointing to the impact of industrial activities on particulate 
matter emissions. In contrast to NO2, greater residential areas were 
linked to higher PM2.5 concentrations, potentially attributed to back-
ground concentrations. In densely populated regions, the increased 
density of housing, traffic, and other activities can lead to elevated PM2.5 
background concentrations. Additionally, the urban heat island effect 
and limited air circulation in residential areas can hinder the dispersion 
of pollutants, allowing background PM2.5 levels to rise. Additionally, 
locations farther from the coast were associated with higher PM2.5 
concentrations, indicating a spatial relationship between proximity to 
the coast and particulate matter levels. The final PM2.5 model had a 
predictive performance of 0.65.

In contrast to the patterns observed for NO2 and PM2.5, O3 concen-
trations exhibited predominantly opposing relationships (Table S3). The 
variable “year” did not show a significant association with O3 concen-
trations, indicating the absence of an annual trend in O3 levels. Week-
ends were characterized by higher O3 concentrations than weekdays, 
revealing a distinct opposite temporal pattern. Higher OMI-O3 values 
were linked to greater O3 concentrations, emphasizing the positive as-
sociation of remote sensing observations with measured ozone levels. 
Surprisingly, greater traffic was associated with lower O3 concentra-
tions, suggesting a nuanced photochemical process (i.e., scavenger ef-
fect, see details in discussion of Fig. 4) between vehicular emissions and 

ozone dynamics. Weather factors such as higher relative humidity, wind 
speed, and atmospheric pressure correlated with elevated O3 concen-
trations, underscoring the influence of meteorological conditions on 
ozone levels. Land use patterns also played a role, with government & 
institutional, commercial, and waterbody areas associated with higher 
O3 concentrations, while barren land, crops, and wetlands were linked 
to lower O3 concentrations. Developed low, medium, and high-intensity 
developments were associated with lower ozone concentrations, sug-
gesting potential lower concentrations in urban areas. Low-intensity 
development includes areas with sparse residential or commercial 
buildings, such as small towns or suburban neighborhoods. Medium- 
intensity development encompasses areas with more concentrated 
buildings and infrastructure, typically found in denser suburban or 
urban areas with moderate residential and commercial activities. High- 
intensity development represents the most densely built areas, including 
central business districts and urban centers with significant residential, 
commercial, and industrial structures (Homer et al. 2015). Moreover, 
greater distances from highways were associated with higher O3 con-
centrations, highlighting a similar scavenger effect between proximity to 
highways and ozone levels. The final O3 model had a predictive per-
formance of 0.92.

3.2. Modeling and extending model predictors to 1989

To extend the prediction of daily NO2, PM2.5, and O3 beyond the 
observable time periods to 1989, models were developed for predictors 
such as daily road traffic, daily NDVI, daily OMI-NO2, monthly AOD, and 
daily OMI-O3. These models facilitated the extension of predictions back 
to 1989. Regarding daily road traffic (Table S5), the overall predictive 
performance (Conditional R2) ranged from 0.33 to 077, with the fixed 
effect predictor “year” demonstrating relatively lower model perfor-
mance compared to random effects variables like season, month, 
weekend, and county. Except for District 9, its fixed effect variable 
explained a 33.9 % variance. Daily NDVI predictions were based on 16- 
day NDVI and corresponding weather conditions during measurement 
days. As depicted in Figure S3a and Table S6, utilizing NDVI’s long-term 
monthly means and daily weather conditions yielded an effective pre-
diction (adjusted R2 = 0.98) for any time period with known daily 
weather conditions.

For daily OMI-NO2 (Figure S3b and Table S7), the inclusion of OMI- 
NO2′s long-term conditions (daily, monthly, and yearly) along with 
NASA NO2 re-analysis annual data resulted in a model performance 
(adjusted R2) of 0.81, enabling estimation back to 1989. Monthly AOD 
predictions (Figure S3c and Table S8) utilized long-term monthly AOD 
and Van Donkelaar et al. (2019) annual PM2.5, effectively predicting 
monthly AOD values (adjusted R2 = 0.94) and allowing estimation back 
to 1989. As for daily OMI-O3 (Figure S3d and Table S9), the incorpo-
ration of OMI-O3′s long-term conditions (daily, monthly, and yearly) and 
daily OMI-NO2 data yielded a model performance (adjusted R2) of 0.99, 
making it practical for estimating daily OMI-O3 back to 1989.

3.3. Daily air pollution surfaces covering 1989–2021

Once all the predictors with temporal components were extended to 
the year 1989, the NO2, PM2.5, and O3 models, presented respectively in 
Tables 2, 3, and 4, were run for those days missing predictions, and the 
final surfaces included daily NO2, PM2.5 and O3 concentrations for 
California at a spatial resolution of 100 m for the years of 1989–2021.

Fig. 2 shows the aggregated annual concentration surfaces of NO2 for 
four decennial years, including 1990, 2000, 2010, and 2020. The spatial 
patterns clearly show the decrease in NO2 concentrations throughout the 
years, especially in the urban areas. To identify degrees of reduction 
throughout California, we used regulatory monitors for NO2, PM2.5, and 
O3 (Fig. 1) to identify average decennial concentrations for the State. 
This approach is reasonable given the state regulatory monitors are 
designed to ensure comprehensive spatial coverage, capturing the 
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diverse environmental conditions across the state, including coastal, 
inland, and mountainous regions. By incorporating monitoring points 
from both urban and rural areas, it enables the examination of the 
urban–rural gradient in air pollution. These holistic statewide air quality 
monitors also allow for the identification of spatial patterns, hotspots, 
and potential disparities in pollution concentrations. Though some 
points are duplicated due to multiple pollutants being measured at the 
same time, they reflect the importance of those points in geographic 
placement strategies. Moreover, utilizing data from 1410 monitoring 
sites enhances the statistical robustness of the analysis, providing a more 
accurate assessment of statewide air pollution levels. Using those 1410 
locations, we found that the average NO2 concentrations decreased from 
18.1 ppb in 1990 to 14.1 ppb in 2000, and decreased to 9.7 ppb in 2010 
and 8.0 ppb in 2020. For PM2.5, similar trends were identified for the 
four decennial years but with a much smaller decrease (Fig. 3). A 

striking change in 2020 was that the PM2.5 levels increased significantly 
in Central Valley while other places decreased, especially in Los Angeles, 
which experienced the greatest decline. We suspect the significant in-
crease in PM2.5 levels in Central Valley in 2020 was due to the significant 
impact of wildfires.(Keeley and Syphard 2021) Using the locations of the 
1410 regulatory monitors, we found that the average PM2.5 concentra-
tions decreased from 14.2 µg m− 3 in 1990 to 12.0 µg m− 3 in 2000, and 
further decreased to 9.9 µg m− 3 in 2010 but increased to 12.2 µg m− 3 in 
2020. The increase in wildfire frequency and intensity in California 
(Brown et al. 2023; Keeley and Syphard 2021; Li and Banerjee 2021) will 
further increase PM2.5 levels, though regulatory actions have signifi-
cantly reduced traffic and industry-related PM2.5.

For O3 (Fig. 4), we did not see any apparent trend, but we did identify 
that those urban metropolitan areas, such as the San Francisco Bay and 
Los Angeles Metro, had relatively lower O3 concentrations compared to 

Fig. 2. Decennial years of NO2 surfaces among the over 30- years study period.

Fig. 3. Decennial years of PM2.5 surfaces among the over 30- years study period.
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rural areas. This is very likely due to the O3 scavenger effect (Larsen and 
Sacramento 2003). The scavenger effect involves the removal or 
reduction of ozone from the atmosphere due to the presence of specific 
pollutants or conditions. These pollutants can act as scavengers by 
reacting with ozone molecules, leading to a decrease in overall ozone 
concentrations. Common scavengers of ozone include nitrogen oxides 
(NOx), carbon monoxide (CO), volatile organic compounds (VOCs), and 
particulate matter. In urban environments, where these pollutants are 
often abundant due to human activities such as combustion processes 
and industrial emissions, the scavenger effect can be more pronounced. 
Nitrogen oxides, particularly NO2, can react with ozone in the presence 
of sunlight to form nitric oxide (NO) and oxygen (O2). This process re-
duces the overall ozone levels in the atmosphere. VOCs and carbon 
monoxide can also participate in ozone-depleting reactions. These 
compounds can undergo photochemical reactions that consume ozone 
while generating other pollutants. Using a total of 1410 spatial points 
from regulatory monitors, we found that the overall O3 level did not 
change significantly through those four decennial years: the average O3 
concentrations decreased from 38.2 ppb in 1990 to 37.8 ppb in 2000, 
and slightly increased to 38.1 ppb in 2010 and 39.3 ppb in 2020.

Further, we provided daily air pollution surfaces for NO2, PM2.5, and 
O3 for January 1st, 2019 (Figure S4) and compared them with the cor-
responding nearest centennial annual surfaces (Figs. 2-4). We found that 
for NO2, the daily surface closely matched the spatial patterns of the 
annual surface. For PM2.5, the patterns were also similar, though there 
was a significant increase in the Sierra region (eastern part of the map), 
suggesting a potential impact from wildfires. For O3, while the general 
patterns were consistent in Northern California, the LA metropolitan 
area in Southern California showed higher O3 concentrations on the 
daily map, which were less prominent in the annual data. These com-
parisons indicate that while spatial patterns were largely consistent from 
daily to annual concentrations, there were notable differences in daily 
spatial patterns, particularly for PM2.5 and O3, likely due to the impact of 
temporal factors like wildfires and weather.

4. 8. Historical trend analysis covering 1989–2021

To assess the historical trends of the three pollutants, we extracted 
daily concentration values from 1,410 monitoring sites used in the 
study. Annual mean values were then calculated for each pollutant at 

these locations to capture long-term trends over the entire study period 
(Fig. 5). The analysis of NO2 levels over the 30-year period reveals a 
significant decline. The trend equation, y = − 0.34x + 690.89, with an 
R2 = 0.99, indicates a strong negative correlation, suggesting a steady 
decrease in NO2 concentrations over time. The trend for PM2.5 also 
shows a decline, though less steep compared to NO2. The trend equation, 
y = − 0.13x + 279.77, and R2 = 0.72, suggest a moderate reduction in 
PM2.5 levels. Despite this decrease, recent years have seen spikes in 
PM2.5 concentrations due to increased wildfire activity, which has 
influenced the overall trend. The 2018 Camp Fire was the deadliest and 
most destructive wildfire in California’s history, burning over 153,000 
acres and resulting in 85 deaths (Blackford 2024; Rooney et al. 2020). It 
completely devastated the town of Paradise. The 2020 Complex Fire was 
California’s largest wildfire by acreage, burning over 1 million acres 
across multiple counties. It was composed of several fires that merged 
into one (Keeley and Syphard 2021; Safford et al. 2022). The 2021 Dixie 
Fire was the second-largest fire in California’s history, which burned 
over 960,000 acres across five counties, destroying hundreds of struc-
tures and threatening many more. Unlike NO2 and PM2.5, O3 concen-
trations show a slight upward trend over the study period, with the trend 
equation y = 0.04x − 49.4 and an R2 = 0.47. Despite reductions in NO2, 
the ozone levels have been influenced by factors such as increasing 
temperatures and changing atmospheric chemistry, which complicate 
ozone management.

5. Discussions and Conclusion

With advancements in technology, various ML algorithms have 
increasingly been applied to air pollution modeling, including neural 
network (Cabaneros et al. 2019), random forest (Kumar 2018), gradient 
boosting (Peng et al. 2023), support vector machines (Leong et al. 2020) 
and other techniques (Masood and Ahmad 2021), as well as models that 
combine multiple ML algorithms. Generally, ML algorithms demonstrate 
better predictive performance compared to traditional LUR models (Ren 
et al. 2020), although there are instances where LUR models perform 
better (Kerckhoffs et al. 2019). Additionally, models that integrate 
multiple ML algorithms tend to outperform those using individual al-
gorithms. For example, Gocheva-Ilieva et al. (2020) reported a model 
performance of an adjusted R2 of 0.749 for NO2 and 0.836 for O3 using 
random forest modeling, which increased to 0.945 and 0.978, 

Fig. 4. Decennial years of O3 surfaces among the over 30- years study period.
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respectively, when AutoRegressive Integrated Moving Average (ARIMA) 
methodology was applied to the residuals of the random forest results. 
Similarly, Di et al. (2019a) applied an ensemble model combining neural 
networks, random forests, and gradient boosting to assess NO2 levels 
across the U.S., achieving a cross-validated R2 of 0.788 for daily pre-
dictions on 1-km grid cells from 2000 to 2016. In a related study, Di et al. 
(2019b) used a similar ensemble model for predicting PM2.5 levels in the 
U.S. and obtained a 10-fold cross-validated R2 of 0.86, outperforming 
individual models. Requia et al. (2020) further validated the improved 
performance of ensemble algorithms for O3 modeling in the U.S., with 
an overall accuracy of 0.90. These ensemble modeling results in the U.S. 
are comparable to our model performance, with notably higher accuracy 
for PM2.5. Our daily models, when applied at a 30 m grid resolution, 
explained 84 %, 65 %, and 92 % of the variations in measured con-
centrations for NO2, PM2.5, and O3, respectively, in the 10-fold cross- 
validation process. Although we could have integrated additional pre-
dictors, such as regional factors, to enhance model accuracy, our pri-
mary objective was to capture small-area variations in pollutant 
concentrations. Despite the advantages of ensemble modeling, we opted 
to use the D/S/A integrated LUR model for our study, primarily due to its 
interpretability. While the D/S/A model had the potential to incorporate 
interactions between predictors and employ higher power functions for 
increased predictive accuracy, we deliberately focused on maintaining 
linear associations between predictors and measured concentrations and 
avoid complex interactions. This approach ensured that the expected 
direction of associations remained clear throughout the model devel-
opment process. By clearly identifying the factors that significantly 
contribute to higher concentrations, our models provide valuable in-
sights for policymakers, aiding in the development of effective mitiga-
tion strategies. Moreover, the implementation of ensemble models 
would have required considerably more computational power, particu-
larly given our goal of generating a 100 m resolution daily surface across 
33 years for each pollutant, totaling 12,052 days for a single pollutant. 
Considering the already sufficient predictive performance of our current 
models, we opted to use interpretable predictors that not only facilitate 

actionable insights for policymakers but also reduce computational re-
quirements. This approach allowed us to achieve a balance between 
interpretability and efficiency, ensuring that our models are both prac-
tical and effective for informing air quality management decisions.

A primary consideration in this research is the need for a consistent 
set of predictors across the entire study period. Utilizing a stable 
framework allows us to assess the influence of these predictors on 
pollutant concentrations without the confounding effects that might 
arise from varying model specifications. Moreover, certain variables, 
such as land use characteristics and geographical features, do not change 
significantly over time, making it more appropriate to maintain a unified 
modeling approach. Additionally, while it is possible that model per-
formance could vary across different years, focusing on a long-term 
model enables us to capture broader trends and patterns that are 
crucial for understanding air quality dynamics over time. This holistic 
perspective is essential, particularly in the context of evolving envi-
ronmental policies and changes in monitoring practices.

While it shares some similarities with traditional stepwise regression 
in terms of iteratively modifying the model, D/S/A is not a stepwise 
regression model in the conventional sense. The D/S/A algorithm offers 
several advantages over traditional stepwise regression, particularly in 
its flexibility to handle non-linear relationships, interactions between 
variables, and high-dimensional data. Unlike stepwise regression, which 
often relies on p-values for variable selection, D/S/A uses a broader set 
of criteria that are better suited to the complex, high-dimensional nature 
of our data. Our model evaluation selection process includes cross- 
validation techniques, which help mitigate the risks associated with 
overfitting and ensure that the model’s predictive performance is robust 
and generalizable. This approach provides a more reliable assessment of 
the model’s validity compared to relying solely on p-values. It is also 
important to note that the p-values associated with individual predictors 
in Tables S2, S3, and S4 and the overall model performance in the D/S/A 
model were derived after the model was finalized. This process is the 
same as with linear mixed models, where coefficients and their signifi-
cance are determined post-model selection. Thus, the p-values reported 

Fig. 5. The modeled historical trends of NO2 (top), PM2.5 (middle) and O3 (bottom) in California over 30 years. A total of 1,410 points across California, including 
locations of regulatory stations, saturation monitors, and Google Streetcar mobile monitoring, were used to extract and aggregate modeled air pollution concen-
trations for the period spanning 1989 to 2021.
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in Tables S2, S3, and S4 are valid and reflect the significance of the 
predictors within the context of the finalized model. The D/S/A algo-
rithm’s advanced approach, coupled with our V-folder cross-validation, 
ensures that the model remains robust and valid despite the complexities 
inherent in the data and the modeling process.

Previous studies have identified a decline in NO2 and PM2.5 con-
centrations in California (Lurmann et al. 2015; Su et al. 2020; Su et al. 
2016) and found that stringent air quality regulations, such as the Clean 
Air Act (Lurmann et al. 2015; Van Vorst 1997) and California’s mobile 
source regulations (Su et al. 2020), have played a significant role in 
reducing these pollutants. This study, using all the historical observa-
tions, has further confirmed the decrease in those pollutants.

In addition to the impact of policy regulations on the overall re-
ductions in air pollutant concentrations, we found that environmental 
factors also contribute to pollutant levels. Vegetation was found to be 
negatively associated with pollutant concentrations, likely due to its 
ability to absorb pollutants and improve air quality through processes 
such as phytoremediation and the deposition of particulate matter on 
plant surfaces (Weyens et al. 2015). Areas with a higher percentage of 
impervious surfaces, such as roads and buildings, were positively asso-
ciated with pollutant concentrations (Hatt et al. 2004). This is because 
impervious surfaces contribute to reduced natural filtration and 
increased runoff, which can carry pollutants into the air and water 
(Chithra et al. 2015). Additionally, impervious surfaces represent high 
levels of human activities such as those from vehicular emissions and 
industrial activities (Simpson et al. 2022). Traffic density was found to 
be positively associated with higher pollutant concentrations, especially 
NO2 and PM2.5 (Li et al. 2015). This is due to the direct emissions from 
vehicles, which are a major source of these pollutants. Higher temper-
atures were found to be associated with lower NO2 concentrations but 
higher O3 levels. Higher temperatures facilitate the photochemical re-
actions that use NO2 to produce ground-level O3, leading to decreased 
NO2 and increased O3 levels (Jhun et al. 2015). Wind speed was found to 
be negatively associated with pollutant concentrations. Stronger winds 
can disperse pollutants more effectively, diluting their concentrations in 
the atmosphere (Bhaskar and Mehta 2010). Higher elevations were 
found to be generally associated with lower concentrations of pollutants 
such as NO2 and PM2.5 (Su et al. 2020). This could be due to the lower 
density of emission sources at higher altitudes and more effective at-
mospheric dispersion. Additionally, pollutants tend to accumulate more 
in low-lying areas due to atmospheric settling and limited dispersion in 
valleys (Anderson et al. 2001).

While land use and land cover may appear similar, they represent 
distinct aspects of the environment, each providing unique insights for 
modeling. Land use refers to how humans utilize the land, such as res-
idential, commercial, agricultural, or industrial purposes. These vari-
ables are critical for understanding sources of pollution linked to human 
activities. Land cover, on the other hand, describes the physical surface 
of the land, such as vegetation, water bodies, developed lands and 
impervious surfaces. It is particularly useful for identifying natural 
features that influence pollutant dispersion and deposition, such as 
forested areas that can absorb pollutants or urban heat islands that 
exacerbate pollution levels. The specific variables from land use and 
land cover are chosen based on their unique associations with measured 
pollutant concentrations. For instance, traffic density from land use data 
may directly correlate with NO2 levels, while vegetation cover from land 
cover data may be more relevant for understanding variations in PM2.5. 
These variables are treated as all other predictors, undergoing a holistic 
selection process where their inclusion is determined by their ability to 
improve the model’s predictive accuracy. By integrating both land use 
and land cover variables, the model can achieve a more comprehensive 
and accurate assessment of pollutant sources and their impacts over 
time. This approach ensures that we capture the full range of factors 
influencing air quality, enhancing the robustness of our exposure 
assessments.

While Nighttime Lights (NTL) data is recognized as a valuable 

predictor in many exposure assessment studies, we did not include it in 
our analysis due to several specific considerations. Firstly, the spatial 
and temporal resolution of available NTL data may not align with the 
high-resolution modeling we employed, potentially leading to discrep-
ancies or reduced accuracy in capturing fine-scale variations in pollutant 
concentrations. Additionally, NTL data primarily serves as a proxy for 
human activity, particularly in urban areas, which can be sufficiently 
captured through other land use variables, such as traffic density and 
building density, directly integrated into our model. These variables of 
30 m spatial resolution offer more precise and context-specific infor-
mation about pollutant sources related to human activities. Further-
more, land cover data, including % impervious surface and degree of 
development, inherently represents aspects of NTL data, capturing the 
extent of urbanization and built environments that are closely associated 
with light emissions at night. By incorporating these land cover vari-
ables of 30 m spatial resolution, we effectively accounted for the spatial 
patterns that NTL data might indicate. We also applied a rigorous var-
iable selection process, focusing on predictors that demonstrated the 
strongest association with measured pollutant concentrations in our 
study area. In this process, other variables were identified as more 
critical for improving model performance and enhancing the accuracy of 
our exposure assessments. While NTL data has its merits, we determined 
that its inclusion would not significantly enhance our model’s predictive 
performance given the spatiotemporal resolution we have from land use 
and land cover data. Therefore, we prioritized predictors that were most 
relevant to our study’s goals, ensuring a robust and reliable assessment 
of pollutant exposure.The OMI NO2 and O3 datasets are characterized by 
a coarse resolution of 25 km, which significantly minimizes the occur-
rence of data gaps. In our analysis, we found that relatively few gaps 
were detected. To address any gaps that did arise, we implemented a 
two-round gap-filling algorithm, which involved linear interpolation 
techniques. The specifics of this process are as follows: If data at a pixel 
location was available for the day before and the day after a missing 
value, we calculated the mean of those two values to fill the gap. If only 
one adjacent day contained effective measurements, we utilized that 
value to fill the gap. We further use two days before and two days after 
for any remaining gaps and the data gaps were fully filled after that.

The decision to average AOD data rather than impute missing pixels 
was driven by practical considerations related to the inherent charac-
teristics of AOD data in California. AOD values exhibit significant day- 
to-day variability, with large stretches of missing data across the state 
due to constant cloud impacts. This frequent absence of data diminishes 
the utility of many days’ worth of AOD information across vast regions. 
Attempting to interpolate these missing values often results in large 
contiguous areas being assigned the same interpolated values, which 
may not accurately reflect the true AOD levels. Such interpolation could 
introduce substantial inaccuracies, undermining the reliability of the 
exposure assessments. Even after averaging the AOD data on a monthly 
basis, we still encountered some gaps that required additional process-
ing. To address these remaining gaps, we employed multiple rounds of a 
1pixel-by-1pixel smoothing algorithm, which helped fill the holes 
without compromising the integrity of the data. Moreover, California’s 
climate is characterized by distinct fire and non-fire seasons. During the 
fire season, significant concentrations of wood smoke contribute to 
elevated PM2.5 levels each month. Even when averaged, these concen-
trations remain notably higher than during the non-fire season. While 
daily wildfire concentrations can sometimes reach 300–400 µg/m3, the 
modeling process would likely treat these extreme values as outliers. 
Averaging AOD data allows us to maintain a balanced representation of 
these seasonal variations without the distortion that might arise from 
the direct inclusion of such extreme values. By using monthly averages, 
we capture the general patterns of AOD while mitigating the risk of 
skewed results due to significant missing gaps due to cloud and outliers 
during extreme events.

We incorporated Google Streetcar mobile monitoring data in our 
research. The Google data complements existing monitoring efforts by 
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filling critical gaps, particularly near highways and densely populated 
areas, where traditional monitoring stations are often underrepresented. 
This innovative approach provides a more comprehensive view of air 
quality dynamics, especially in urban environments where traffic and 
land use patterns are complex. By leveraging this data, we can better 
assess exposure patterns and their potential health impacts. The 
approach of integrating multiple air pollution monitoring types into air 
quality modeling not only strengthens our findings but also sets a 
example for future studies to incorporate similar mobile monitoring 
techniques in air quality research.

The decline in NO2 concentrations observed in this study reflects the 
impact of long-term regulatory measures aimed at reducing traffic 
emissions. The incorporation of remote sensing data, such as OMI-NO2, 
proved crucial in capturing spatial variability and enhancing model 
accuracy. The significant influence of traffic density and weather con-
ditions on NO2 levels underscores the importance of these factors in air 
pollution modeling. Moreover, the spatial patterns indicated that urban 
development and proximity to pollution sources, such as ports, play a 
critical role in NO2 distribution.

The study’s PM2.5 models highlighted the effectiveness of regulatory 
actions in reducing particulate matter concentrations over time. The 
integration of AOD data provided valuable insights into the relationship 
between aerosol presence in the atmosphere and PM2.5 levels. The 
models also demonstrated the mitigating effects of natural features, such 
as vegetation and water bodies, on PM2.5 pollution. However, the 
increasing frequency and intensity of wildfires pose a significant chal-
lenge to sustaining these improvements, as they can lead to spikes in 
PM2.5 levels, especially in vulnerable regions like the Central Valley.

Unlike NO2 and PM2.5, O3 concentrations did not exhibit a clear long- 
term trend, reflecting the complex nature of ozone formation and 
depletion processes. The study’s findings suggest that factors such as 
traffic density and land use patterns significantly influence O3 levels, 
with the scavenger effect playing a notable role. The varying influence of 
meteorological conditions further complicates the prediction and man-
agement of O3 concentrations.

The ability to extend the prediction of daily NO2, PM2.5, and O3 levels 
back to 1989 enhances our understanding of long-term air pollution 
trends. By developing models for predictors such as daily road traffic, 
NDVI, OMI-NO2, monthly AOD, and OMI-O3, the study successfully 
estimated historical air pollution levels, providing a comprehensive 
temporal perspective.

The study, focused on California, leverages data and conditions 
unique to the state, which, while providing valuable insights, may limit 
the models’ applicability to other regions without significant adjust-
ments. The development of high-resolution (100 m) daily air pollution 
models over 33 years required substantial computational resources, 
leading to the use of the D/S/A integrated LUR modeling approach over 
more resource-intensive methods like ensemble learning. This choice, 
aimed at ensuring model interpretability and feasibility over an 
extended temporal scale, may have constrained the exploration of 
potentially more accurate techniques. The emphasis on linear relation-
ships in the D/S/A integrated LUR models, while enhancing their utility 
for policymakers, limits the ability to capture complex, non-linear in-
teractions that could improve predictive accuracy. Additionally, 
extending predictions back to 1989 involved the use of historical pre-
dictors and assumptions, introducing uncertainties, particularly for pe-
riods with sparse direct measurements, which may affect the accuracy of 
the backcasted data.Overall, the insights gained from this study are 
crucial for informing environmental policies and intervention strategies. 
The identification of pollution hotspots and temporal trends supports 
efforts to address environmental injustices and protect vulnerable 
communities. The integration of diverse datasets ensures the robustness 
of the models, capturing the complex interplay of factors affecting air 
quality. These findings can guide targeted regulatory actions and public 
health initiatives, emphasizing the need for continued monitoring and 
adaptive management in response to emerging challenges such as 

wildfires.
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