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Abstract

The Quantification of Co-occurring Meteorological Extremes and the

Anthropogenic Contribution to Hydrometeorological Variation

by

John Patrick O’Brien

It is a well-established fact that the present climate is changing as a result of hu-

man activities, the implications of which we are just now beginning realize. From

record breaking heatwaves, wildfires, and extreme droughts, to sea level rise, ocean

acidification, and severe flooding, there is little doubt that the consequences of an-

thropogenically driven climate change are wide and far reaching. One of the most

confounding problems to date in understanding the effects of a changing climate

is the absence of a world with a climate free from human interference to which

to compare. The chaotic nature of atmospheric motions, naturally occurring low-

frequency oscillations, and extreme events are all an inherent part of the climate

system, and within that naturally occurring variability exists the signature of human

interference with the global climate system. Thus the overarching aim of this disser-

tation is to describe, understand, and quantify the nature of extreme meteorological

events in a climate subject to both natural and human induced forcings. In Chap-

ter one, we employ a novel nonparametric probability density estimation method

that allows for the characterization of nonlinear multivariant relationships among

climatological variables. We develop and use this framework to quantify the multi-

variant relationships that exist between California wintertime temperature and pre-
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cipitation as a function of naturally occurring low-frequency modes of variability to

understand how they alter the probabilities for experiencing co-occurring extremes.

Of the several modes studied, we find that a circumpolar Rossby wave of wave

number 5 is uniquely capable of simultaneously driving both high temperatures and

low precipitation thereby inducing or exacerbating antecedent drought conditions.

Chapters two and three both employ two large ensembles of global climate model

simulations. One ensemble is configured to represent the climate as it is today and

the other configured to represent the best estimate of what the climate would have

looked like in the absence of human interference. In chapter two we leverage the

statistical power provided by the large ensembles to study the anthropogenic influ-

ence on the spatio-temporal characteristics of extreme hydrometeorological events

across the continental U.S. from 1960-2018. We identify an anthropogenic signal at

nearly every time scale considered and find that hydrometeorological events charac-

teristic of the mean scale at approximately Clausius-Clapeyron (7%K−1), while ex-

treme events representing the 99th percentile are found to scale at nearly double that

rate. In Chapter three, we use the same dataset to isolate and quantify the human

contribution to the observed hydroclimate variability. We find that anthropogenic

forcing has resulted in a large increase in western U.S. hydroclimate variability and

volatility, a decrease predictability for any given ocean state, and to simultaneously

permit an increased probability for both droughts and floods in California. Our re-

sults suggest that the outcomes of both the strong El Niño of 2015/16 failing to drive

the expected hydroclimate response in California and the following extremely wet

winter of 2016/17 were both made more likely as a result of anthropogenic forcing.
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Introduction

Since the industrial revolution, human activities have significantly altered the

composition of the global atmosphere, primarily from the combustion of fossil fuels,

and have further modified the environment through the physical alteration of the

landscape itself. These changes have in turn affected the behavior and character of

the global climate system, seen in the observed rise in global mean temperatures

and the increased occurrence of extreme events such as drought, heat waves, and

extreme precipitation among others. Recent research indicates that changes to the

nature and probability of occurrence of such extreme events are being caused by

human activities. However, extreme events are also a fundamental part of nature,

and have always occurred regardless of any human influences. Thus, as a critical

and parallel component to understanding the anthropogenic contribution to changes

in extremes, it is also necessary to understand their spatio-temporal characteristics

as a function of natural climate variability.

Human societies, ecological systems, and the natural environment have long

been subject to extreme weather and dramatic climate fluctuations. The Intergov-

ernmental panel on Climate Change (IPCC) defines extremes as weather phenomena

that are either very infrequent or unusually intense under historical climatological
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conditions (IPCC, 2012). Extremes, although by definition rare, have strong and

disproportionate effects on human and natural systems. It is exactly because of

the rarity of meteorological and climatological extremes that human societies, eco-

logical, and environmental systems are not well adapted to cope with them and

as such, often sustain tremendous damage when extreme events occur. Examples

include heat waves, cold snaps, droughts, wildfires, extreme rainfall, floods, ex-

treme snow and ice storms, and tropical cyclones, to name but a few. While tem-

porally infrequent and spatially limited, the impacts stemming from these types of

events can be substantial. For example, during the European heatwave of 2003,

extreme maximum temperatures of 35-40◦C were repeatedly recorded in July and

August (Cassardo et al., 2007), which resulted in excess of 70,000 fatalities across

Europe (Robine et al., 2008). The 2011-2015 California drought caused multi-

billion dollar losses due to extensive regions of farmland laid fallow from the lack

of available irrigation water (Medellı́n-Azuara et al., 2016). Further, across Cali-

fornia’s widespread forest regions, an estimated 3.3 million trees were killed and

wide swaths of drought-weakened forest have experienced higher mortality rates

due to infestations of bark beetles and other wood borers (Moore and Ellis, 2015).

This in turn has increased the risk of wildfire conflagrations, which in 2015, wild-

fires burned over 750,000 acres destroying over 3,200 structures in California (CAL

FIRE., 2015). In 2005, Hurricane Katrina battered the U.S. Gulf Coast resulting in

at least 500,000 people evacuating and never returning (Reardon, 2015), over 1800

fatalities, 800,000 housing units destroyed or damaged, and total estimated costs of

over $250 billion (Glantz, 2008).
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Given the profound and disproportionate impacts of extreme events, an accurate

and comprehensive characterization and prediction of extremes would be impor-

tant even in the absence of a changing climate. However, climate change is pro-

jected to appreciably alter the background state of the climate system, and in fact

is already doing so, thereby altering the meteorological conditions under which ex-

tremes form. In the latter half of the 20th century, a period dominated by global

mean temperature rise primarily attributable to anthropogenic influences, temper-

ature records indicate an increasing number of warm nights, decreasing number

of frost days, and decreases in the intra-annual extreme temperature range (Frich

et al., 2002). Currently, at an observed warming of 0.85◦C, the probability of 1-

in-1,000-day hot extreme over land is about five times higher than in pre-industrial

conditions – that is, roughly 75% of those moderate hot extremes are attributable

to global mean temperature rise (Fischer and Knutti, 2015). Similarly, trends in

precipitation have also emerged, showing increasing numbers of wet days, max-

imum five day accumulations, and decreasing a number of consecutive dry days

(Frich et al., 2002). Additionally, in the present-day climate, the probability of

experiencing a daily precipitation extreme in the 99.9 percentile has increased 1.2

times above pre-industrial controls, and 18% of that increase is attributable to hu-

man influence (Fischer and Knutti, 2015). Changes to temporal trends and spatial

patterns in precipitation and the occurrence of extremes in a warming climate are

complex, but not unexpected. First, the amount of precipitable water in the Earth’s

atmosphere is growing at the rate of approximately 5-6%/◦C as a consequence of

the global mean temperature rise (Flato et al., 2014). Second, Arctic amplifica-
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tion reduces the surface meridional temperature gradient while upper tropospheric

warming/cooling near the tropics/poles due to GHG forcing results in equatorward

and poleward shifts respectively of the extratropical storm tracks (Shaw et al., 2016,

Barnes and Screen, 2015). Third, the physics of radiative convective equilibrium

and global mean temperature rise dictate that global mean rainfall increases at ap-

proximately 2%/◦C, and the difference between this rate of growth and that for water

vapor implies that the probability distribution function (PDF) of precipitation has to

“broaden,” leading to both more downpours and more frequent and severe droughts

(Flato et al., 2014, Allen and Ingram, 2002, Held and Soden, 2006, O’Gorman and

Schneider, 2009). Taken as a whole, projections into the 21st century suggest that

wet regions will become wetter and dry regions will become drier, by increasing

hourly and daily precipitation extremes, while heat waves and droughts will simul-

taneously increase in intensity, duration, and frequency (Held and Soden, 2006,

O’Gorman and Schneider, 2009, Trenberth, 2011, Prein et al., 2017, Meehl, 2004,

Sheffield and Wood, 2008).

Societal changes, such as higher concentrations of people living in coastal and

urban settings and aging infrastructure, have made us more susceptible to environ-

mental fluctuations than we ever have been. Thus, there is little doubt that soci-

ety as a whole has become more exposed to meteorological and climatological ex-

tremes (Kunkel et al., 1999). The threats posed to infrastructure by climate-change-

intensified meteorological extremes reach far beyond the loss of the infrastructure

itself. The impacts and disruptions resulting from extreme events involve not only

the costs associated with the cleanup, repair, and/or replacement of affected in-
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frastructures but also the economic, social, and environmental effects as supply

chains are disrupted, economic activities are suspended, and/or social well-being

is threatened (Wilbanks and Fernandez, 2014). Further, extreme meteorological

event-induced failures and disruptions often cascade across infrastructures because

of extensive interdependencies – threatening health and local economies, especially

in areas where human populations and economic activities are concentrated in ur-

ban areas (Wilbanks and Fernandez, 2014). There also exist separate but parallel

threats to human health and well-being resulting from both direct and indirect im-

pacts. For example, heat waves and the effects of thermal stress on human physi-

ology have shown a direct and positive correlation with mortality in elderly people

(Basu, 2002), and especially elderly women (Dı́az et al., 2002). Since 1900, floods

resulting from extreme precipitation have killed nearly 7 million people worldwide

(EM-DAT, 2016). The health impacts from floods can be immediate, such as fa-

talities due to drowning; however, they can also be indirect and delayed, such as

allowing human and animal wastes to seep into drinking water supplies, facilitating

the transmission of waterborne infectious diseases. In the United States, 51% of

waterborne disease outbreaks between 1948 and 1994 were preceded by precipita-

tion events exceeding the 90th percentile (Curriero et al., 2001). However, of all

meteorological extremes, droughts tend to take the highest human toll due to their

large areal extent, the impact on crop yields and food supplies, the reduction of

potable water, the increases in stagnant water that facilitates mosquito breeding and

the propagation of infectious diseases, and the societal and political disruptions that

can occur as a result of drought stresses. For example, the Syrian drought stretching
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from 2006-2011, made 2 to 3 times more likely by anthropogenic forcing, resulted

in massive agricultural failures and livestock mortality, an exodus of over 1.5 mil-

lion people, and ultimately the onset of the Syrian civil war (Kelley et al., 2015).

As we move into a future that will almost certainly be characterized by unabated

carbon emissions, and as a consequence, a changing climate, the combination of in-

creasing extremes, an exponentially increasing population, and aging infrastructures

present a potentially disastrous intersection for present and future generations. Re-

gions such as California, USA, will face changing pressures on many fronts. An

increasing demand for water resources from competing interests such as municipal

districts, agricultural sectors, and environmental advocacy groups will place unique

pressures on an already stressed system. Projected increasing water-cycle extremes

and inter-annual variability will complicate the planning, distribution, and politics

of water resource allocation. At the same time, the combination of aging infras-

tructures and inadequate design to handle more extreme extremes will introduce a

greater degree of uncertainty regarding how best to plan for both years of longer

and deeper droughts and years of more intense precipitation and flooding. Under-

standing and planning for these opposing extremes presents a unique challenge both

scientifically and politically. While much is known about heat extremes, drought

extremes, and precipitation extremes individually (e.g., see the lit. review in this

section), very little is known about what controls their co-occurrence regionally and

globally.

Chapter one of this dissertation focuses on understanding and quantifying the

nature and drivers of co-occurring extreme events. We develop a novel approach to
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do this by employing a state-of-the-science probability density estimation method

capable of evaluating complex multivariate nonlinear relationships among variables.

We develop this framework using California wintertime temperature and precipita-

tion as a test bed. This choice is motivated by the extreme drought of 2011-2015,

which was characterized by not only by an extreme dearth of rainfall, but also record

high temperatures. The spatio-temporally co-located occurrence of these two ex-

tremes led to the most extreme drought California has experienced on observational

record (Seager et al., 2015). We evaluate the bivariate relationship between tem-

perature and precipitation in a probabilistic framework using indices which capture

large-scale modes of change as covariates. Naturally occurring low-frequency os-

cillations (modes of variability) are well known to alter the probabilities for single

extreme events. However, it is not clear how these modes of variability modulate the

probabilities for extremes jointly. Moreover, we also consider global mean tempera-

ture rise as a covariate as well since it is one of the defining modes of change occur-

ring today. Therefore, following from the unique stresses caused by extremes and

the lack of knowledge about how they co-vary in a natural and anthropogenically

forced climate, Chapter one focuses on addressing the following three questions:

• What are the contributions of natural variability and large-scale climate forc-

ings to relationships in single and co-occurring extremes and what are the

relevant physical processes that drive such changes?

• How does accounting for large-scale drivers such as SST and CO2 forcings

affect the probability and frequency of experiencing co-occurring extremes in

California wintertime temperature and precipitation?

7



• Does the treatment of extremes in this experimental nonparametric framework

reproduce known results and does the explicit accounting for nonstationarity

lead to new conclusions?

Chapter two is aimed at detecting and attributing the anthropogenically forced

component of changes to extreme hydrometeorological events in the observed record.

We focus our analysis across a range of temporal and spatial scales to identify po-

tentially nonuniform and disproportionate expressions of anthropogenic influence.

To do this we employ two large ensembles of global climate model simulations run

under two different protocols. The first ensemble is configured with all observed

radiative and oceanic forcings and is meant to simulate the climate as it is today.

The second ensemble is configured using the same radiative and oceanic forcings,

however, the best estimate of the human induced radiative component to the model

boundary conditions has been removed, and therefore the simulations represent our

best estimate of what the world today might have been had humans not been around.

Both ensembles share the same ocean variability and total 50 members each span-

ning the period from 1960-2018 resulting in 2950 simulated years each. We focus

our analysis over the continental Unites States (CONUS) and consider time-scales

ranging from 1-day to seasonal accumulations across the November-March time pe-

riod. Using the output from the two large ensembles of simulations we address the

following questions:

• When controlling for the observed natural variability in the climate system,

what conclusions do we reach about the anthropogenic contributions to hy-

drometerlogical extreme events?

8



• Are the effects of anthropogenic forcing on hydrometerlogical extremes ex-

pressed and distributed equally across all temporal and spatial scales?

• Does using large ensembles of simulations lead to more robust statistical con-

clusions about the impact of anthropogenic forcing on mean and extreme hy-

drometerlogical events?

Chapter three builds on the work of Chapter two by addressing the anthro-

pogenic contribution to hydrometeorological variability. As previously described,

extreme events are disproportionately impactful to human and environmental sys-

tems. However, additionally, their temporal variation year-to-year greatly compli-

cates adapting to, and planning for, their disproportionate impacts. We employ

the same large ensembles leveraged for the analysis in Chapter two, but instead we

quantify the temporal variability of December-February (DJF) average precipitation

rate from year-to-year. We begin with a global analysis isolating the contribution

to temporal variability forced by the common boundary condition to all ensemble

members, that is, the component of variability forced by ocean variability. From

this we can then isolate and identify the residual variability that results from anthro-

pogenic forcing. We identify regions in the northern hemisphere (a focus on the

boreal winter) where anthropogenic contributions to increased variability are most

strongly expressed. We then focus in on the continental U.S., and in particular the

western U.S. where the anthropogenic contribution to increased temporal variabil-

ity stands out the most, for a detailed analysis. We decompose how, when, and

where excess variability is expressed and quantify its implications on hydroclimate

predictability and volatility. Chapter three addresses the following main questions:

9



• When controlling for naturally occurring variability, how has anthropogenic

forcing altered the temporal distribution of hydrometeorological extremes?

• Is year-to-year anthropogenically induced excess variability expressed equally

in all years or have some years become disproportionately more variable and

less predictable than others?

• Within each year, is the anthropogenically induced excess variability expressed

equally in all percentiles of the precipitation distribution?

With an overarching focus on the western U.S. and California climate, the origi-

nal research contained in this dissertation is directly aimed at addressing these criti-

cally important questions. Ultimately, it is the author’s goal to provide scientifically

accurate results to advance the understanding of the changing climate system, and

to help inform decision-makers and stakeholders alike on how to move forward in

the face of the unique and pressing challenges posed by meteorological and clima-

tological extreme events.
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Abstract
Two or more spatio-temporally co-located meteorological/climatological extremes (co-occurring extremes) place far greater 
stress on human and ecological systems than any single extreme could. This was observed during the California drought 
of 2011–2015 where multiple years of negative precipitation anomalies occurred simultaneously with positive temperature 
anomalies resulting in California’s worst drought on observational record. The large-scale drivers which modulate the occur-
rence of extremes in two or more variables remains largely unexplored. Using California wintertime (November–April) 
temperature and precipitation as a case study, we apply a novel, nonparametric conditional probability distribution method 
that allows for evaluation of complex, multivariate, and nonlinear relationships that exist among temperature, precipitation, 
and various indicators of large-scale climate variability and change. We find that multivariate variability and statistics of 
temperature and precipitation exhibit strong spatial variation across scales that are often treated as being homogeneous. 
Further, we demonstrate that the multivariate statistics of temperature and precipitation are highly non-stationary and there-
fore require more robust and sophisticated statistical techniques for accurate characterization. Of all the indicators of the 
large-scale climate conditions we studied, the dipole index explains the greatest fraction of multivariate variability in the 
co-occurrence of California wintertime extremes in temperature and precipitation.

Keywords ENSO · El Niño · La Niña · PDO · AMO · Global change · Climate variability · Teleconnections · California · 
Joint extremes · Precipitation extremes · Non-stationarity

1 Introduction

Single meteorological or climatological extremes have a 
strong and disproportionate impact on societies, ecological 
systems, and natural environments. However, the joint occur-
rence of two or more co-occurring extremes has the potential 
to negatively impact human and natural systems in ways far 
greater than any single event could (Leonard et al. 2014). For 
example, drought is commonly thought of as a result of only 
a lack of precipitation, i.e. meteorological drought. However, 
negative precipitation anomalies co-occurring with positive 
temperature anomalies can greatly exacerbate drought condi-
tions due to the increased evapotranspirative demand placed 
on the system, i.e. agricultural drought (AghaKouchak et al. 
2014; Diffenbaugh et al. 2015). Positive temperature anoma-
lies coupled with high humidity can result in extreme heat 
index values, which can be detrimental to human health 
(Steadman 1979; Wehner et al. 2016). Flooding can result 
from both unusually intense precipitation events and unusu-
ally long-lived events; however, when unusually long-lived 
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events are also unusually intense in terms of their precipi-
tation rate, flooding can be abrupt and extreme, leading to 
loss of life, property damage, and severely compromised 
infrastructure. While much is known about heat extremes, 
drought extremes, and precipitation extremes individually, 
little is known about what controls their co-occurrence both 
regionally and globally.

Understanding what controls the co-occurrence of 
extremes, their natural variability, and how they have 
changed in past, present, and future climates is challenging 
in light of anthropogenic forcing and the lack of a histori-
cal analogue that could shed light on the climate response 
to such forcing. In addition to anthropogenic forcing, vari-
ability also arises naturally from the presence of large-scale, 
low-frequency atmosphere–ocean interactions known as 
teleconnections (Polade et al. 2013). These modes of vari-
ability are well-documented to have a detectable signature 
on climatological precipitation and temperature patterns and 
to modulate the occurrence of extremes (Cayan et al. 1999; 
Krichak et al. 2014). To date, few studies have focused on 
the role large-scale climate patterns play in driving and alter-
ing the probabilities for experiencing co-occurring extremes. 
Diffenbaugh et al. (2015) demonstrated that the occurrence 
of drought has been exacerbated by anthropogenic factors, 
specifically in California, USA, by increasing the probability 
that any given dry year(s) will coincide with warm years. 
AghaKouchak et al. (2014) showed that the return period for 
the hot and dry conditions that prevailed during the Califor-
nia winter of 2014 was dramatically increased by consider-
ing the joint probability of temperature and precipitation 
(AghaKouchak et al. 2014). While these and similar studies 
begin to address the role that large-scale climate conditions 
may play in modulating extremes and their joint occurrence, 
there has been no systematic study that addresses the role 
modes of variability play in altering the probabilities for 
experiencing co-occurring extremes. Further, previous stud-
ies (e.g. AghaKouchak et al. 2014) assume that the statistics 
of meteorological and climatological variables are station-
ary, meaning that the descriptive statistics of variables do 
not change over time. However, given the influence these 
modes of variability have on California’s hydroclimate and 
the significant alteration of the background state of the cli-
mate by human activities, it is reasonable to assume that 
climate statistics are not stationary (Serinaldi and Kilsby 
2015). To account for nonstationarity in higher dimensional 
distributions Sarhadi et al. (2018) employ a vine copula 
approach to assess the change in risk of hot and dry condi-
tions in CMIP5 models resulting from human activities, but 
do not consider the roles of natural modes of variability have 
on the bivariate distributions.

To address the highlighted gap in knowledge, we use 
California as a testbed for exploring the influence of natural 
variability and large-scale climate change on the multivariate 

statistics of temperature and precipitation. Specifically, we 
seek to understand the role teleconnections play in modu-
lating the wintertime co-occurrence of extremes, while at 
the same time addressing the potential violation of data 
stationarity assumptions. We achieve this by directly esti-
mating joint conditional probability density functions of 
temperature and precipitation, in two representative Cali-
fornia regions, conditional on several indices of natural 
variability and climate change. Using this methodology, 
we seek to understand: (1) How the joint probability of 
California temperature and precipitation is modulated by 
several well-known teleconnections that potentially affect 
California’s climate, (2) How the strength of each climate 
mode varies regionally within California, and (3) the degree 
to which teleconnections modulate return intervals of co-
occurring extremes in temperature and precipitation. Con-
sidering California’s rapidly increasing population and, 
hence, water demands, we place particular emphasis on 
understanding joint occurrences of wintertime extremes in 
high temperature and low precipitation anomalies, which 
greatly exacerbate drought conditions, as was observed in 
2014. Quantifying the contributions from naturally occur-
ring modes of variability is a key requirement for isolating 
and understanding the role anthropogenic forcing plays in 
modulating the pattern of occurrence of extremes and their 
co-occurrence. However, the goal here moving forward will 
be to document the roles various modes of natural variability 
have in the altering probabilities of co-occurring extremes 
in temperature and precipitation rather than to disentangle 
natural variation from anthropogenic forcing.

2  Methods

2.1  Data

For this study we employ NOAA’s, National Centers for 
Environmental Information, NCEI (formerly NCDC), 
temperature and precipitation datasets for California 
(Center USNCD 2016). The temperature and precipita-
tion data consist of station data, averaged within regions 
known as climate divisions, geographically defined to 
encompass broadly similar regional climates. These data 
are averaged to monthly time periods and extend from 
1895 to present. For each climate division in California 
we then temporally average these data across the win-
tertime, wet-season period, defined here to be the six 
month period extending from November through April 
the following calender year. We use the data extending 
from November, 1895 to April, 2017 resulting in 122 wet-
season periods. To study California’s joint wintertime 
temperature and precipitation dependence on the large-
scale state of the climate, we leverage five datasets. To 
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study the El Niño Southern Oscillation (ENSO) depend-
ence we use the Multivariate ENSO Index (MEI) (Wolter 
and Timlin 1993). Pacific Decadal Oscillation (PDO) 
dependence is modeled using the time series from NCEI 
(Center USNCD 2016), as originally derived by Mantua 
et al. (1997). The Atlantic Multidecadal Oscillation data 
is obtained from ESRL (Enfield et al. 2001). The North 
American winter “dipole index” (DPI) (Wang et al. 2014, 
2015) is calculated from both twentieth century reanaly-
sis (20CR) (Compo et al. 2011) and NCEP reanalysis II 
(Kanamitsu et al. 2002). We use the NCEP data to fill 
in the years 2015, 2016, 2017, which are missing from 
the 20CR data. We do this using a simple linear correla-
tion between the two datasets and then use the linearly 
interpolated values. Integrated Vapor Transport (IVT) and 
250 hPa temperature fields are calculated from the ERA-
20C dataset (Poli et al. 2016). Finally, we consider the 
global mean temperature anomaly (GMTA) as reported 
by NOAA (Center USNCD 2016). These conditioning 
datasets are averaged over the same time period as the 
temperature and precipitation data. No temporal lags are 
considered in this analysis.

The large-scale modes of variability we chose for pri-
mary analysis in this study, specifically, ENSO, PDO, 
AMO, DPI, and GMTA, were based on a several factors. 
First, we wanted to use modes of variability that were 
generally well-established, well-studied, and well-known 
across a wide range of disciplines. Second, we wanted to 
represent independent modes of variability arising from 
different genesis mechanisms: ENSO, PDO, and AMO 
are largely SST forced modes affecting remote locations 
through atmospheric teleconnections, while DPI and 
GMTA are largely connected to atmospheric variations 
only. We do note however, that according to Newman et al. 
(2016), ENSO and PDO are likely not independent of each 
other and that DPI is also likely to have a connection to 
SSTAs in the West Pacific Warm Pool (Wang et al. 2014; 
Teng and Branstator 2017; Swain et al. 2017). Finally, 
considering the wide array of climate indices available 
(National Center for Atmospheric Research Staff 2019; 
National Oceanic and Atmospheric Administration 2019), 
we also used a pairplot (Fig. S11) to help identify inde-
pendent and correlated modes.

To assess regional variation of each climate mode we 
choose to focus on two climate divisions representing the 
coastal latitudinal end-members of the state. CD1 repre-
sents the coastal northern most division and is sparely 
populated, heavily forested, and typified by a temperate 
rain-forest climate. CD6 represents the coastal southern 
most climate division and is densely populated, with 
large areas of urban sprawl, and is typified by a largely 
arid, Mediterranean climate surrounded by a dry desert 
environment.

2.2  Probability density estimation

A central goal of this study is to understand how the joint 
statistics of temperature and precipitation depend on various 
large-scale modes of variability and climate change: condi-
tional probability density functions. To this end, we employ 
the method of O’Brien et al., fastKDE (O’Brien et al. 2014, 
2016), which objectively and directly computes non-para-
metric kernel density estimates based on the self-consistent, 
unbiased, and optimal method of Bernacchia and Pigolotti 
(2011). We estimate conditional probability density func-
tions (cPDFs) directly from trivariate probability density 
estimates and marginal density estimates as follows:

where R and T denotes precipitation and temperature respec-
tively, and X is the conditioning variable: X ∈ (MEI, PDO, 
AMO, DPI, GMTA). Thus Eq. 1 is a trivariate function that 
gives the joint probability of co-occurring values of winter-
time temperature and precipitation given the conditioning 
variable at a specific value. As such we are able to directly 
estimate the probability of co-occurring extreme winter tem-
perature and precipitation as a function of indices of large-
scale climate variability and change. Further, with this meth-
odology we are able to explore the effects non-stationary 
in the data, with respect to the conditioning variables. This 
methodology allows us to uniquely isolate the influences of 
the given covariate on the joint distribution in a probabilis-
tic framework (O’Brien et al. 2014). Error estimates on the 
cPDFs shown on panels d,e,i,j on all Figs. 1, 2, 3, 4 and 5 are 
derived from bootstrap resampling the data 5000 times and 
recalculating the cPDFs for each resampling. From the set of 
5000 cPDFs, we calculate the 5th and 95th percentiles of the 
density estimates at each data value. The cPDFs on which 
we calculate the error estimates represent the PDFs associ-
ated with the P10/90 values of each mode of variability. We 
choose to compute the error on the P10/90 cPDFs such that 
we capture the end member behavior of the conditional dis-
tributions while at the same time retaining enough samples 
to be able to compute robust estimates of the conditional 
densities. The years associated with the respective modes of 
variability having winter averages less than (greater than) the 
P10 (P90) values are documented in Table S1.

3  Results

3.1  The ENSO conditional distributions

The El Niño-Southern Oscillation (ENSO) is a well-doc-
umented, naturally occurring coupled ocean–atmosphere 

(1)P̂(R, T|X) = P̂(R, T , X)
P̂(X) ,
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oscillation, which transitions between its warm/positive 
phase known as El Niño and its cool/negative phase known 
as La Niña. ENSO is known to affect global weather and 
climate on the seasonal to inter-annual timescales (Gers-
hunov and Barnett 1998) and it has the ability to impact 
remote locations, such as California via teleconnections 
(Cayan et al. 1999). Cayan et al. (1999) considered median 

and 90th percentile precipitation, and showed increases in 
both percentiles for the El Niño phase over the southern half 
of California and no change for both percentiles over the 
northern portion of the state. Here, we consider the joint dis-
tribution of California wintertime temperature and precipita-
tion using ENSO as a continuous conditioning variable. This 
methodology allows us to calculate the joint and marginal 

Fig. 1  c The fastKDE estimate of temperature versus precipitation, 
calculated as the wintertime spatiotemporal averages over stations 
within California, USA, climate division 1 (filled dots), and con-
ditioned on (as a continuous function of) the ENSO strength phase 
(MEI index). Dots show data points that went into the fastKDE 
estimate. The starred and hexagon points represent 2014 and 2017 
respectively, each colored by the MEI value corresponding to that 
year. The colored, closed contours (the colored wireframe) depict the 
levels of constant probability corresponding to the 95th percentile 
from the conditional trivariate PDF. The thick colored line centered 
in c depicts the expected value of the trivariate distribution. For the 
points, the closed contours, and the mean line, colors correspond to 
the phase of ENSO, cool colors (low values of MEI) representing La 
Niña conditions and warm colors (high values of MEI) representing 

El Niño conditions. a The conditional marginal distribution of pre-
cipitation colored by the corresponding to the MEI value or ENSO 
phase. The black PDF shows the stationary distribution for twentieth 
century precipitation. b As in a, but for conditional PDFs and percen-
tiles for temperature. d, e The precipitation (temperature) cPDFs cor-
responding to the 10th and 90th percentile values of the MEI index. 
Shading denotes the 5th and 95th percentiles of the bootstrapped 
cPDFs. Lines/regions drawn as dashes represent statistical insignifi-
cance at the 0.05 level. Lines/regions drawn as solid represent sta-
tistical significance at the 0.05 level. The vertical lines represent the 
expected value (mean) of the respective distributions where the shad-
ing indicates the 5th/95th percentiles of the expected values of the 
bootstrapped cPDFs. f–j As in a–e, but for temperature and precipita-
tion data corresponding California climate division 6

16



3809Metrics for understanding large-scale controls of multivariate temperature and precipitation…

1 3

conditional distributions as a function of ENSO phase and 
strength thus controlling for the non-stationarity in the data 
introduced by ENSO forcing. Further, we break the tempera-
ture and precipitation data down by climate division to illus-
trate the regional differences ENSO has on joint temperature 
and precipitation relationships. Figure 1c, h show the cPDFs 
of wintertime temperature and precipitation for Climate 
Division 1 (CD1) and Climate division 6 (CD6) as a func-
tion of ENSO phase and strength as monitored by the MEI. 
Central to those panels are color coded hoops representing 
the 95th percentile of the trivariate conditional distributions. 
Each of the hoops correspond to the contour of constant 
probability containing 95% of the cPDF. Near the center of 
each panel is a single continuous curve, which tracks the 
expected value of each joint cPDF. Underlying the closed 
contours of constant probability, are the precipitation and 

temperature data as a scatter plot along the horizontal axis 
and vertical axis respectively and are the data that went into 
the cPDF estimation. In Fig. 1a, the conditional marginal 
precipitation density estimates are shown (i.e. estimates of 
the precipitation PDF as a function of ENSO), likewise, 
panel b shows the conditional marginal temperature density 
estimates. In both panels a and b, the cPDFs drawn in black 
represent the twentieth century distributions for each vari-
able. In all panels the color of each density estimate and all 
data indicate the value of the MEI index on which the PDF 
was conditioned. The colors of the cPDFs track the phase 
of ENSO ranging from negative values (cool colors) repre-
senting La Nina conditions to positive values (warm colors) 
representing El Niño conditions.

Figure 1 shows the striking difference of how ENSO 
affects these two geographically distinct climate divisions. 

Fig. 2  As in Fig. 1, however all distributions are conditional on the phase of the PDO. The coloring in all panels here represents the phase of the 
PDO where cool colors represent the negative (cool) phase and warm color represent the positive (warm) PDO phase
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In both CD1 and CD6, the multivariate relationship between 
ENSO and winter temperature and precipitation is non-linear 
as seen in Fig. 1c, h by the multivariate conditional mean 
line drawn at the center of each panel. Despite many studies 
using linear techniques to describe ENSO and its telecon-
nections, the non-linearity observed here is expected due 
ENSO’s linkages to tropical deep convection, which has 
been documented in previous studies (Hoerling et al. 1997; 
Livezey et al. 1997; Gershunov 1998; Williams and Patri-
cola 2018). Both CD1 and CD6 show an increase in tem-
perature during the El Niño phase, statistically significant 
at the 0.05 confidence level. However, interestingly, CD1 
experiences a slightly larger temperature increase than CD6 
while also developing a strong left (cool/low-temp) skew 
during El Niño as seen in Fig. 1b, e. This means that while 
the majority of strong El Niño events result in very warm 

winters in northern California, there is also a substantial 
probability of experiencing very cold winters in northern 
California during strong El Niño events. This El Niño cold 
tail temperature skew is also observed at the daily timescale 
for the DJF period whereby the mean tends to warmer rela-
tive to La Niña, but with cold tail probabilities that rival 
those associated with La Niña (Guirguis et al. 2015). In 
addition to interpreting the mean of the bivariate distribu-
tions and the marginal distributions, additional information 
can be gleaned from the contours of the conditional bivariate 
distributions in panels c and h. The orientations of the condi-
tional contours indicate the primary axes of variability asso-
ciated with the respective phases of ENSO. For example, 
the major axis of the La Niña conditional closed contours 
(purple contours) for CD6 (panel h) shows a primarily nega-
tive orientation indicating that during La Niña, temperature 

Fig. 3  As in Fig. 1, however all distributions are conditional on the phase of the AMO. The coloring in all panels here represents the phase of 
the AMO where cool colors represent the negative (cool) phase and warm color represent the positive (warm) AMO phase
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and precipitation tend to be negatively correlated. However, 
the orientation of the major axis of the El Niño conditional 
closed contours (yellow contours) has shifted and is nearly 
horizontal, indicating that in general winter temperature and 
precipitation are not highly correlated during El Niño events. 
However, the outermost El Niño contour shows an inflated 
lobe in the upper left corner (panel h) indicating the occur-
rence of a winter characterized by a strong El Niño with high 
temperatures but anomalously low precipitation. That win-
ter, indicated by the bright yellow dot in the upper left hand 
region of panel h is the winter of 2015–2016, in which the 
canonically strong El Ni no event failed to deliver even aver-
age precipitation to Southern California (L’Heureux et al. 
2017). With the exception of 2015–2016 winter, the con-
ditional El Niño contours show a positively sloping major 

axis indicating that overall, during El Niño events, winter 
temperature and precipitation are positively correlated.

With respect to wintertime precipitation, CD6 shows a 
large and statistically significant increase during the warm 
El Niño phase while CD1 shows only a modest, not statis-
tically significant, increase, and only for the very strongest 
El Niño events. Moreover, the increases in mean precipita-
tion for both CD1 and CD6 are occurring for very different 
reasons: CD1 experiences an increase in the mean due to 
a mode shift in the distribution while CD6 experiences an 
increase in the mean due to a disproportionate increase in 
the tail probabilities for experiencing extremely wet win-
ters. The respective shape changes to the distributions are 
important observations as the societal and environmental 
risks and impacts from a disproportionate increase in the 

Fig. 4  As in Fig.  1, however all distributions are conditional on the 
strength of the dipole index. In all panels, the coloring corresponds 
to the strength of the dipole index where cool colors represent a weak 

dipole and warm colors represent a strong dipole, i.e. strong ridging 
in the western U.S. with a deep trough present over the eastern U.S.
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probability for extremes is not the same as an increase in 
the mean due to a uniform shifting of all probabilities. 
In other words, from a societal or environmental impacts 
perspective, not all shifts in the mean are created equal. 
Further, the respective changes to the precipitation dis-
tributions may happen for different physical reasons. In 
CD6, it has been shown that increases in the mean dur-
ing the warm ENSO phase result from an increase in the 
daily rainfall rate (Feldl and Roe 2011; Gershunov 1998); 
however, this may not account for total shift in the mean 
due to the disproportionate increase in the tail probabili-
ties at seasonal timescales. Similarly, what is the physical 
mechanism for the mode shift in precipitation as observed 
in CD1? The physical drivers of these changes will be 
explored in a future manuscript.

Comparing the precipitation marginals of CD1 and CD6 
(Fig. 1a, f), qualitatively, the tails of the CD1 cPDFs are 

smooth and uniform while those of CD6 have an undulat-
ing character to them. This is something that can be noticed 
associated with the CD6 precipitation marginals throughout 
and is primarily due to two factors. (1) The precipitation 
variability in CD6 is inherently larger than in CD1, thus 
the estimates of the tails are less well-constrained/resolved 
for the equivalent number of samples. And (2), the under-
lying mechanics of the kernel density estimation method, 
fastKDE, rely on a Fourier transform of the data whereby 
the tails of kernels associated with data that are sparse (i.e. 
extreme values) can constructively interfere leading to undu-
lations in those regions. The bootstrap error analysis we use, 
described in the methods section, is designed to quantify the 
uncertainty in the PDF associated with this phenomenon. By 
definition, every sample is included in the estimate of the 
cPDFs, however, the amount each sample contributes to the 
cPDF estimate is determined by the width of the optimally 

Fig. 5  As in Fig. 1, however all distributions are conditional on the global mean temperature anomaly
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calculated kernel associated with the conditioning variable, 
here the ENSO index MEI. Specifically, the kernel used here 
has a width of approximately 3.5 MEI units, which spans a 
large portion of the data having a range of 4.5 MEI units. 
This means for the max MEI value of 2.7, the kernels asso-
ciated with data less than MEI ≈ 1.0 (2.7 − 3.5∕2) do not 
contribute much to the density at the max MEI value. This 
implies that at the max MEI value of 2.7, approximately only 
20 data points are actively contributing to the density there. 
This example illustrates why we chose to use P10/90 values 
for our end-member analyses rather than min/max values, 
as we increase the number of kernels contributing to our 
estimates to approximately 90, which greatly increases the 
number of samples that inform our estimates. See O’Brien 
et al. (2016) for further details.

The starred and hexagon points mark 2014 and 2017 
respectively. The coloring of both points indicate that both 
the very dry winter of 2014 and the very wet winter of 2017 
occurred during ENSO neutral conditions, highlighting the 
substantial variability in winter precipitation in California 
not explained by ENSO. In fact, our results show that state-
wide, El Niño increases the expected (mean) precipitation 
from 486 to 520 mm, making the El Niño phase of ENSO 
only responsible for a modest 7% increase the expected 
statewide winter precipitation. This result is consistent with 
the satellite-based findings of Savtchenko et al. (2015). In 
addition, California obtains roughly 60% of its freshwater 
resources from snow melt runoff (Lauer 2011) and CD1 is 
home to the Salmon–Klamath–Trinity mountains, the pri-
mary snow melt source for Shasta and Trinity lakes, the 
second and third largest reservoirs, respectively, in northern 
California. As seen in Fig. 1a, CD1 experiences roughly the 
same wintertime precipitation regardless of ENSO phase; 
however, winter temperatures are much cooler during the La 
Niña phase, likely resulting in deeper snow packs, a lower 
snow line, and a delayed spring melt, thereby contributing 
to a more reliable water source for the dry summer months 
to follow. Thus for northern California, contrary to popular 
belief, from a water security and reliability perspective, La 
Niña winters may in fact actually be preferable.

3.2  The PDO conditional distributions

The Pacific Decadal Oscillation is a low frequency north 
Pacific ocean sea surface temperature pattern first described 
by Mantua et al. (1997). ENSO and PDO are not independ-
ent and recently it has become apparent that PDO may be 
directly forced by ENSO forcing (Newman et al. 2016). 
However, in terms of their respective effects on the climate 
system, specifically precipitation and temperature patterns, 
they each have unique and distinct effects (DeFlorio et al. 
2013), despite their broadly similar SST patterns (see Figs. 
S1, S3). While ENSO has a direct physical causal pathway 

for affecting the climate system, the causal physical mecha-
nisms by which the PDO affects temperature and precipi-
tation patterns is less clear (Pierce 2002). However, more 
recently Meehl and Hu (2006) found that wind anomalies 
forced ocean Rossby waves, which sets the PDO decadal 
timescale, and are themselves linked to anomalous mid-lat-
itude atmospheric circulations which in turn drive precipita-
tion anomalies. Figure 2 shows the conditional distributions 
of temperature and precipitation as a continuous function of 
the PDO phase and strength. As with the ENSO distribution 
shown in Fig. 1, non-stationarity introduced into the data 
by PDO forcing is evident. With respect to the precipitation 
marginal distribution the overall effect of PDO (Fig. 2a) is 
larger than that of ENSO in northern California; however, 
the shift in the mean is still statistically insignificant at the 
0.05 confidence level (Fig. 2a). In CD6 the contrast between 
the effects of PDO and ENSO are more stark. While ENSO 
results in a strong and statistically significant increase in 
mean precipitation resulting from an increased probability 
for experiencing extreme wet winters, the effects of PDO 
in CD6 shows a nonlinear, but ultimately zero correlation 
to changes in wintertime precipitation. This is not true for 
temperature. Both CD1 and CD6 show large, uniform, and 
statistically significant increases in wintertime tempera-
ture. For CD1 during the cool PDO phase, the probabil-
ity of exceeding the 90th percentile of twentieth century 
temperature is near zero (P ≈ 0.01) while during the warm 
phase that probability is over 20 times greater (P ≈ 0.2). 
Correspondingly, the return period for experiencing very 
warm wintertime temperatures exceeding the 90th percen-
tile decreases from a 1-in-100 year event during the cool 
phase to a 1-in-5 year event during the warm PDO phase. It 
should be noted however, that the PDO is not the only physi-
cal mechanism by which the return periods of temperature 
and precipitation are affected. The effect shown in Fig. 2 is 
the role PDO plays in affecting those statistics. The case is 
similar for CD6 though slightly less pronounced. The many 
implications for these changes in wintertime temperatures 
as a function of the PDO phase. During the positive phase 
of the PDO, elevated wintertime temperatures increase the 
snow line elevation, can produce more rain-on-snow events, 
decrease snow pack, and alter the peak runoff timing, all 
of which have a large impact on California’s water supply 
(McCabe and Dettinger 2002). Given the slow evolution of 
the PDO, the results here could provide a measure of pre-
dictability for inter-decadal precipitation and temperature 
forecasts for state water managers to better manage water 
supplies. However, interdecadal and seasonal variability may 
be the dominate control for extreme years as for both the 
very dry and warm winter of 2014 and the very wet winter 
of 2017, PDO was in near neutral conditions and conse-
quently, likely did not play a major role in driving those 
extreme conditions. We note however, that the PDO may not 
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be an independent mode of SST variability, but more a result 
of an integration of several modes of variability occurring 
across a range of temporal and spatial scales (Newman et al. 
2016). Newman et al. (2016) show the PDO to likely be a 
result of ocean memory i.e. re-emergence, tropical forcing 
from ENSO, and the Aleutian Low, which were shown using 
lagged correlations to lead the PDO. Given that ENSO con-
ditions were in near neutral conditions during the 2014/2017 
extreme years, perhaps the Aleutian low, taken as a primary 
driver of PDO variability, could have played a larger role in 
driving those extreme years. To consider this possibility, we 
used the North Pacific Index (NPI) (Trenberth and Hurrell 
1994), an often employed index to characterize the strength 
of the Aleutian low, as a conditioning variable for the tem-
perature and precipitation distributions. The results indicate 
(figure not shown) that, as with ENSO, the Aleutian low was 
in near neutral conditions and as such, is not a likely driver 
for the extreme years of 2014/2017.

3.3  The AMO conditional distributions

The Atlantic Multidecadal Oscillation is a long-term warm-
ing and cooling of North Atlantic sea surface temperatures 
with a period of 60–70 years (Schlesinger and Ramankutty 
1994; Kerr 2000). The warm phase of the AMO has been 
previously connected to increased drought conditions over 
the central U.S., increased rainfall in Florida, and a low-
frequency modulation of ENSO (Enfield et al. 2001). Of 
interest here is what effect the AMO has on the multivari-
ate statistics of wintertime temperature and precipitation in 
California. Mestas-Nuñez and Enfield (1999) showed that 
the AMO was inextricably linked to a warming of the North 
Pacific through an atmospheric bridge involving the Arctic 
Oscillation. Thus one plausible physical mechanism for the 
AMO to affect west coast weather statistics would be the 
warming of north Pacific acting as an enhanced moisture 
source for west coast storms thereby affecting the precipi-
tation distribution and in turn the multivariate statistics. 
Also of interest, the composite SST pattern which captures 
AMO values at or exceeding the 90th percentile also shows 
a strong ENSO signal in the eastern Pacific. This appears 
to be driven primarily by the years 1998 and 2016 when 
both ENSO and AMO exceeded their respective 90th per-
centile thresholds (Fig. S5). Figure 3 shows the multivariate 
distributions of California CD1 and CD6 temperature and 
precipitation as a function of the AMO phase and strength. 
Northern California’s relationship with AMO is positive in 
both temperature and precipitation and close to linear in both 
variables. However, in southern California while tempera-
ture increases monotonically with AMO phase, precipitation 
increases linearly from cool to neutral conditions but then 
the relationship reverses and decreases linearly from neutral 
to warm AMO conditions. The behavior of the multivariate 

relationships may indeed be real (Fig. 3c, h); however, it is 
difficult to assert conclusively as the mean changes between 
the cool and warm phases of the AMO are not statistically at 
the 0.05 confidence level (Fig. 3d, e, i, j). California, taken 
as a whole (Fig. S6), shows a multivariate relationship with 
AMO more similar in character to how CD1 behaves. While 
there is slightly more non-linearity in the relationship, both 
temperature and precipitation increase monotonically as 
AMO transitions from its cool phase to its warm phase. 
However, again like both CD1 and CD6, the relationships 
between California temperature and precipitation are not 
significant at the 0.05 confidence level, suggesting that the 
AMO does not have an appreciable direct effect on Califor-
nia’s temperature and precipitation statistics. However, as 
described in previous literature (e.g. Levine et al. 2017a; 
Kang et al. 2014), the AMO may exert an indirect effect 
on California temperature and precipitation via the low-
frequency modulation of ENSO variability and strength. In 
both the aforementioned studies, the AMO tended to sup-
press both ENSO variability and strength.

3.4  The DPI conditional distributions

The Dipole Index (DPI) described by Wang et al. (2014), 
characterizes a state of the atmosphere whereby, when in 
the positive phase, a persistent, quasi-stationary pattern pro-
duces deep troughing in the eastern U.S. and strong ridging 
over the western U.S. and eastern Pacific, which reverses 
in the negative phase (Wang et al. 2017, Fig. S7). During 
the winter of 2013–2014, the positive phase of this index 
reached an all-time high and resulted in record setting cold 
snaps in the Eastern U.S., while the U.S. west coast was 
simultaneously gripped by record setting drought conditions 
(Swain et al. 2014; Wolter et al. 2015). As in the previous 
plots, Fig. 4 shows the multivariate relationships of CD1 
and CD6 temperature and precipitation. Most evident here 
is how highly non-stationary the data are as a function of 
the DPI. Panels a and c show a strong precipitation response 
to the DPI, whereby the expected value of precipitation for 
CD1 decreases from 1342 mm during the negative phase 
of the DPI to 801 mm during the positive phase of the DPI 
representing a drop of ∼40%. The change in mean expected 
precipitation between the two phases of the DPI is achieved 
through a uniform shifting of all probabilities as shown in 
Fig. 4a. Collectively the DPI explains ∼50% of the winter-
time precipitation variance for CD1 and statewide and ∼36% 
for CD6, far greater than any other large-scale index we con-
sidered. The high explanatory power of the DPI makes it an 
obvious candidate to explore as a predictor variable. How-
ever, we refrain from assessing the potential predictability 
of the DPI and reserve that analysis for a future manuscript. 
Interestingly, for CD1 wintertime temperature, the strong 
ridging does not produce a statistically significant increase 
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in temperature as one might expect (Fig. 4e). For the very 
wet winter of 2017 Fig. 6 shows CD1 received 1458 mm of 
precipitation, which is a ∼P90 event with respect to the 20th 
century distribution. However, when taking the 2017 DPI 
value of 360 into account, with respect to the conditional 
distribution at that DPI level, the winter of 2017 was only a 
∼P75 event. In other words, the anomalous winter of 2017 
was much more likely when considering the probability of 
occurrence with respect to the DPI conditional distributions. 
This suggests that there is a level of probabilistic predictabil-
ity to the outcome of any given winter in California when 
monitoring/forecasting the state of the dipole circulation. 
Similarly, during the drought winter of 2014 CD1 received 
only 594 mm of precipitation, which is 56% of normal or 
equivalently a 8th percentile event. However, if one was to 
consider this event from the perspective of the correspond-
ing conditional DPI distribution then the anomalous dry 
winter of 2014 is a 20th percentile event. So when consid-
ering the winter of 2014 with respect to a cPDF which takes 
into account the atmospheric circulation features present, 
what was an extreme event becomes more likely and thus 
more predictable. Taken together, Fig. 6 shows the how 

dramatically the probabilities change for experiencing either 
drought or deluge depending on the strength of the DPI.

Southern California, CD6, shows a similar strong and 
statistically significant ( p ≤ 0.1 ) precipitation response to 
changing of phases of the DPI. During the negative phase 
of the DPI, the mean expected wintertime precipitation is 
475 mm, while during the positive phase its only 290 mm. 
For CD6 the winter of 2017 resulted in 551 mm of precipi-
tation. Shown in Fig. 4g, i, the probability of experiencing 
a winter of this magnitude or larger during the positive 
phase of the DPI is 0.014. However, during the negative 
phase of the DPI that probability increases to 0.36, repre-
senting an increase by a factor of 26. Correspondingly, the 
return period for experiencing the winter of 2017 during 
the positive phase of the DPI is a 1-in-70 year event while 
during the negative phase its a 1-in-3 year event. Unlike 
CD1, CD6 experiences a statistically significant ( p ≤ 0.1 , 
significance test described in the “Methods” section) 
increase in temperature transitioning from the negative to 
the positive phase of the DPI.

Statewide, DPI causes California to experience statisti-
cally significant shifts in both mean wintertime temperature 

Fig. 6  The conditional probability distribution functions (cPDF) for 
CD1 DPI corresponding to 2014 in yellow, 2017 in purple, and the 
full distribution of 20th century winter precipitation in black. The 
vertical lines in the corresponding colors represent the expected 
values of those distributions respectively. The region shaded in yel-
low represents the probability of getting a year as dry or dryer than 

2014 according to the 2014 DPI cPDF. The purple shaded region rep-
resents the probability of getting a year as wet or wetter than 2017 
according to the 2017 DPI cPDF. The hashed regions represent what 
those same probabilities would be if estimating them from the full 
PDF of twentieth century precipitation
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and precipitation (Fig. S8). While the twentieth century 
mean precipitation is 486 mm, during the positive phase of 
the DPI that decreases to 362 mm while during the nega-
tive phase it increases to 589 mm. The drought winter of 
2014, statewide California received 262 mm of precipita-
tion, which ranks as the sixth driest winter on record. With 
respect to the twentieth century distribution, this level of 
winter precipitation or lower only has a ∼ 0.06 probability of 
occurrence. However, when taking in to account the corre-
sponding DPI level, the probability of experiencing a winter 
that dry increases by over a factor of 2 ( P ≈ 0.13 ). Similarly 
for the wet winter of 2017, statewide California received 
744 mm of rain, making it the 7th wettest winter statewide. 
The probability of experiencing a winter this wet or wetter 
with respect to the twentieth century distribution is ∼ 0.07 . 
However, taking into account the corresponding DPI index, 
that probability also increases by over a factor of 2.

3.5  The GMTA conditional distributions

One of the most prominent changes to the global climate 
from the early twentieth century to present is that of anthro-
pogenically forced temperature rise (Intergovernmental 
Panel on Climate Change 2014). From the late 1800’s to 
present the earth has experienced nearly a 1 ◦C rise in aver-
age temperature (Team 2018), (Fig. S9). Figure 5 shows the 
conditional multivariate distributions of wintertime tempera-
ture and precipitation as a function of the global mean tem-
perature anomaly (GMTA) for CD1 and CD6. Cool colors 
represent periods with low GMTA occurring primarily in 
the late 19th century and early twentieth century. While 
warm colors represent periods with high GMTA occurring 
almost exclusively in the early twenty-first century. Not sur-
prisingly, the relationship between global mean tempera-
ture and regional temperature in both climate divisions is 
positive and both exhibit statistically significant shifts. How-
ever, its notable that CD6 has experienced roughly twice the 
increase in wintertime regional temperatures as CD1 has for 
the same amount of global mean temperature rise as seen 
in Fig. 5e, j. This is also true of the JJA period (figure not 
shown) and therefore carries with it a significant increased 
risk for heat-related health issues in CD6 that is not present 
in CD1, which contains a large portion of California’s popu-
lation. This highlights a critical aspect of climate change: 
the risks and negative impacts from a changing climate are 
not distributed evenly, globally, as well as regions as geo-
graphically limited as California. We hypothesize that the 
differential warming rates in CD6 versus CD1, as a function 
of global mean temperature rise, is driven by the urban heat 
island effect, as CD1 is primarily densely forested temper-
ate rain forest, while CD6 is primarily an urbanized semi-
arid Mediterranean environment. Exploring this hypothesis 
however is beyond the scope of this manuscript. Similarly, 

statewide, California has experienced a statistically signifi-
cant increase in wintertime temperatures as a function of 
global mean temperature rise (Fig. S10). This increase in 
wintertime temperatures over the last century has significant 
consequences for California ranging from an earlier spring, 
shorter warmer winters, decreased snow pack to the disrup-
tion of ecological niches to sensitive native and endemic 
plants and animals (Stewart et al. 2005; Mote et al. 2005; 
Parmesan 2006). Another notable feature of Fig. 5e, j as 
well is an apparent reduction of wintertime temperature vari-
ance indicated by the contraction of the cPDFs transitioning 
from an early century cool climate to our present relatively 
warm climate. We tested whether the variance reduction was 
statistically significant and in this framework, it was not. 
However, that said, the effect may be real as several studies 
have documented and predict a decrease in wintertime mid-
latitude temperature variance with warming (Rhines et al. 
2017; Holmes et al. 2016).

The dominant mode of historical natural variability is 
within the precipitation dimension. However, the conditional 
climate change signal in all cases is approximately orthogo-
nal to the axis of natural variability (Fig 5c, h). Mahony and 
Cannon (2018) identified this behavior, departure intensi-
fication, in projections of future climate in CMIP5 mod-
els analyzing the climate change behavior of summertime 
temperature and precipitation. The univariate relationship 
between global mean temperature and precipitation is much 
more complicated than temperature and highly non-linear. 
Both CD1 and CD6 wintertime precipitation show a posi-
tive relationship with the GMTA early in the century. That 
is, early in the record both climate divisions trend toward 
warmer wetter winters. However, mid-century at a GMTA of 
∼ 0.15 ◦ C, the relationship reverses such that warmer winters 
become increasingly associated with drier winters. This is 
also true of California precipitation state wide. The combi-
nation of decreasing wintertime precipitation and warmer 
winter temperatures represents two trends which exacerbate 
each other whereby California receives less precipitation that 
falls as snow and snow that melts more quickly, ultimately 
having a large effect on California’s summertime water sup-
ply (Knowles et al. 2006; Cayan et al. 2001). Moreover, 
monotonically increasing wintertime temperatures increase 
summertime wildfire risks in a commensurate fashion (Yoon 
et al. 2015). This, combined with negative precipitation 
anomalies greatly exacerbates wildfire risk. To this point, 
in January 2018 the Thomas fire became the largest fire in 
California history burning nearly 300,000 acres causing 
nearly two billion dollars in damages (Cal Fire 2018b; Ding 
2018). In the October–December period of 2017 preceding 
the Thomas fire, CD6 experienced its second lowest pre-
cipitation anomaly and highest temperature anomaly for that 
period, the co-occurrence of which, was likely at the root 
of the intensity of that fire. As a side-note, at the time of 
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this writing, the Ranch fire (Mendocino complex) has now 
become the largest fire in state history charing over 450,000 
acres of land (Cal Fire 2018a).

4  Discussion

We have applied the novel kernel density estimation method 
of O’Brien et al. (2014) to characterize the multivariate 
behavior of wintertime temperature and precipitation in 
California as a function of selected large-scale modes of 
climate variability. This methodology allows us to inves-
tigate the impacts and contributions of various large-scale 
climate conditions to altering the probabilities of co-occur-
ring extremes as continuous variables as opposed to sim-
ple “on/off switches”. This is an important advancement in 
the understanding of how large-scale climate modes affect 
variability in temperature and precipitation and their joint 
behavior, as it is demonstrated that relationships observed 
are often non-linear and therefore cannot be well-described 
by linear correlation analysis typically employed in this area 
of climate research. Further, this methodology allows us to 
account for non-stationarity in the data regardless of what 
time scale that non-stationarity occurs on. For example, the 
PDO introduces non-stationarity into the data on the decadal 
timescale while ENSO introduces non-stationarity on the 
inter-annual timescale. Being able to account for this non-
stationarity allows for a more robust and nuanced estimate 
of how the univariate and multivariate statistics vary as a 
function of each index.

Overall the relationships between ENSO and winter 
temperature and precipitation are non-linear, stronger in 
the southern California than in northern California, and 
statewide, only explain about 7% of the precipitation vari-
ance. Both CD1 and CD6 experience statistically signifi-
cant increases in winter temperature during El Niño. How-
ever, the utility of this method demonstrates that, while the 
increases in mean temperature are roughly equal in CD1 and 
CD6, the full distributions themselves look very different. 
CD1 has a strong left (cool) skew that is not present in CD6 
indicating that in CD1, some strong El Niño winters can be 
quite cold relative to the mean during that phase. The worst 
drought conditions in California occur when negative precip-
itation anomalies co-occur with positive temperature anoma-
lies as happened in 2014. California winter temperature and 
precipitation, regionally and statewide, show an overall posi-
tive relationship with ENSO indicating that co-occurring 
extremes for drought conditions are not favored by this tel-
econnection. In general with ENSO, California winters are 
either wet and warm (El Niño) or cool and dry (La Niña). 
To verify that the MEI was accurately capturing ENSO’s 
teleconnection with California, we repeated the analysis 
with the commonly used Niño3.4 index (Rayner 2003). Not 

surprisingly, the relationships were nearly identical save for 
small variations in the shape of the multivariate distribu-
tions (figure not shown). Finally it is known that there are 
different flavors of ENSO, the most commonly known of 
which is the Modoki (Capotondi et al. 2015). To consider 
how this variation of El Niño differs in its teleconnection 
to California winter temperature and precipitation relative 
to its standard counterpart described by the MEI, we used 
the monthly Modoki index from JAMSTEC and repeated 
the analysis (Ashok et al. 2007; JAMSTEC 2018). Despite 
having a distinct spatial SST pattern, we find that overall, 
in CD1, CD6, and statewide, the Modoki teleconnection to 
temperature and precipitation exhibits very similar behavior 
to the standard El Niño.

Of the decadal-scale teleconnections, PDO has the great-
est effect on California temperature and precipitation statis-
tics. Although statewide, PDO is correlated with increased 
precipitation, which is primarily driven by regional corre-
lations in northern California, no relationships statewide 
or regional are statistically significant at the 0.05 level. 
However, PDO may exert other effects on precipitation not 
reflected in Fig. 2 through its connection with ENSO. As 
shown by Newman et al. (2016) and by Fig. S11, PDO and 
ENSO are not independent. When PDO is in its warm phase, 
ENSO tends to sit at a higher background state, enhancing El 
Niños and suppressing La Niñas. The converse is also true, 
when PDO is in its cool phase, El Niños are suppressed and 
La Niñas enhanced. In addition, ENSO–PDO interactions 
are further documented by Gershunov and Barnett (1998) 
who showed that ENSO teleconnections to North Ameri-
can Climate via heavy daily precipitation frequency are also 
sensitive to the PDO phase. Statewide, and in both CD1 
and CD6, PDO does exert a statistically significant effect 
on temperature raising expected mean statewide, CD1, and 
CD6 temperature by approximately 0.7 ◦ C, 1 ◦ C, and 0.5 
◦ C respectively during its positive warm phase. However, 
despite these increases in temperature, evidence seems to 
suggest that it is suppressed precipitation during the PDO 
cool phase that drives drought in the west (Meehl and Hu 
2006; Cook et al. 2016). Less important for California cli-
mate is the AMO, which showed no statistically significant 
relationships to either temperature or precipitation. However, 
again like PDO, AMO may effect precipitation in California 
by modulation of ENSO teleconnections as there is some 
evidence to suggest that AMO tends to suppress ENSO vari-
ability and strength (Levine et al. 2017b; Kang et al. 2014).

Of all of the indices we studied, the DPI has the largest 
control over precipitation in California explaining ∼ 50% 
of the variance statewide and in CD1 and ∼ 36% in CD6. In 
addition, the DPI is the only index to show a positive cor-
relation with temperature and a negative correlation with 
precipitation, thus making it the only large-scale index to 
increase the risk of experiencing co-occurring extremes in 
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both suppressed precipitation and elevated temperatures, 
which together exacerbate drought conditions. Given that 
the DPI explains such a large fraction of the variance in 
California precipitation, it presents an opportunity to use 
the index and the associated conditional probability dis-
tributions shown in Fig. 6, as a tool for water supply fore-
casting and reservoir management. For example, reservoirs 
in California operate based on rule curves, which specify 
storage targets that provide a flood management pool in 
the winter months to accommodate increased inflow while 
increasing storage during the summer months to provide 
additional water supply during the summer months when 
the risk of high impact storms is virtually non-existent. 
These rule curves are derived from historical observations 
and risk analysis (Brekke et al. 2009). Recently, the idea of 
forecast informed reservoir operations (FIRO) has gained 
increased attention as a potential alternative to rule curves 
to provide additional water storage without diminishing 
the flood control capability the reservoirs provide (Jas-
perse et al. 2017). Leveraging the the cDPI distribution 
to provide longer range probability estimates of precipita-
tion along with shorter range numerical weather predic-
tion could further enhance reservoir operations for more 
efficient use of California’s water supply.

Figures 4 and 6 demonstrate the strong control the dipole 
circulation pattern has on California temperature and pre-
cipitation through statistical characterization. However, the 
physical processes which underlie and drive such changes 
to the respective conditional probability distributions are 
not uncovered by such analyses. To that end, Fig. 7 demon-
strates the connection between the large-scale dipole circula-
tion pattern and integrated vapor transport (IVT), which is 
strongly correlated with precipitation (Neiman et al. 2009; 
Rutz et al. 2014), and temperature anomalies at the sea-
sonal timescale. Figure 7a shows the negative phase of the 
dipole pattern as indicated by the P10 DPI index relative to 
NDJFMA climatology. Panel a shows an enlarged and deep-
ened Northeast Pacific trough with strengthened cyclonic 
flow that enhances and directs moisture transport to the 
Western U.S. via an Eastward extension of the storm track 
centered around 40◦N . Comparatively, panel c shows the 
positive phase of the dipole circulation (P90 years) the pat-
tern is reversed, and the associated ridging and anticyclonic 
flow weakens the Pacific storm track and results in its termi-
nation over the Eastern Pacific before it reaches the U.S West 
coast resulting in reduced winter precipitation. The tempera-
ture signal for the negative and positive phases of the dipole 
circulation shown in panels b and d respectively are quite 

(a) (b)

(c) (d)

Fig. 7  Wintertime (NDJFMA) integrated vapor transport (IVT) and 
250 hPa temperature anomalies relative to twentieth century climatol-
ogy for DPI P10 years (a, b) and DPI P90 years (c, d). All four panels 

have the corresponding 250 hPa geopotential height anomalies over-
laid as contours drawn in black with dashed/solid contours indicating 
negative/positive anomalies with contour interval of 15 m
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distinct. The negative/positive phase show confined narrow 
bands of circumglobal midlatitude cooling/warming. These 
features are suggestive signatures of jet acting as waveguides 
for the propagation of Rossby waves as described in Bran-
stator et al. (2017). Taken together, Fig. 7c, d show how the 
positive phase of the dipole circulation results in the simul-
taneous occurrence of both reduced rainfall and increased 
temperatures during the boreal winter, the combination of 
which, can result in greatly exacerbated drought risk. While 
Fig. 4e indicates that the warming experienced in CD1 is not 
statistically significant, Fig. 7d shows that during the posi-
tive (ridging) phase of the dipole circulation, the midlatitude 
warming signal is both robust and circumglobal. The lack of 
statistical significance in the warming signal for CD1 could 
result from a signal-to-noise issue. We also note that win-
tertime Northeast Pacific anticyclonic circulation has been 
shown to induce an anomalous cold northerly flow along the 
west coast of North America (Favre and Gershunov 2006), 
which would serve to dampen the warming response typi-
cally associated with anticyclones during the boreal summer.

The dipole index depicts the amplification and attenua-
tion of the wintertime stationary waves, the dominate wither 
circulation feature over North America. As such it contains 
no intrinsic information about the generation of the circula-
tion regime. The dipole pattern the DPI measures can arise 
from various mechanisms and was the focus of many differ-
ent studies, particularly with respect to the North American 
winter of 2013/14. That winter was characterized by drought 
across the west and record snow and cold over much of the 
east (Palmer 2014). It was at this time the DPI hit its highest 
level. The mechanisms of the dipole circulation are rooted 
in mid-latitude atmospheric internal dynamics however, it 
can be enhanced by tropical diabatic heating of the atmos-
phere and the resulting Rossby wave that forms. Teng and 
Branstator (2017), who refer to the dipole pattern as a cir-
cumglobal Rossby wave of wavenumber 5, found that while 
tropical heating anomalies are not necessary for formation 
of the dipole pattern, they do double the chance of them 
forming. Seager et al. (2015) and Wang and Schubert (2014) 
came to similar conclusions finding that while SST anoma-
lies can cause ridging over the west coast, the magnitude 
of the observed ridging in 2011–2014 is not explained by 
SST anomalies alone suggesting the role of internal atmos-
pheric variability or other forcings constructively interfering 
in contributing to the extreme ridging. We find using the 
twentieth century reanalysis and NCEP/NCAR reanalysis 
that the wintertime DPI has been increasing by 0.6 m/year 
(p < 0.001) and 0.7 m/year (p < 0.1) respectively, while 
Wang et al. (2014) showed that the variance in DJF DPI 
has been increasing as well. Using different metrics, Singh 
et al. (2016) also observed an amplification of the dipole 
pattern. This suggests that this type of circulation pattern 
is become stronger with time and is switching polarities 

more intensely and frequently. Practically, inferring from 
the DPI cPDFs in Fig. 6, this means an increasing frequency 
of dramatic shifts between very dry winters and very wet 
winters. This increase in precipitation volatility was found 
in an analysis of CMIP5 models to result from an increased 
frequency in the number of dry days per year in conjunc-
tion with an increase in rainfall intensity on days it does 
rain, thereby increasing the seasonal-scale precipitation 
variability (Polade et al. 2014, 2017). More recently, in an 
analysis of the LENS RCP8.5 ensemble, Swain et al. (2018) 
found a twenty-first century increase in both wet and dry 
extremes which results in a 25–100% increase in dry-to-wet 
precipitation events with little change in the mean. Further, 
in that study it was shown that relative to the preindustrial 
control runs, the pressure anomalies driving both wet and 
dry years at the end of the twenty-first century were more 
extreme suggesting the DPI characterizing these anomalous 
features would be correspondingly more extreme as well. 
Similarly, Wang and Schubert (2014) found in an analysis 
of 12 AMIP model runs, the distribution of geopotential 
heights in the latter half of the century relative to the first 
increased suggesting an increase in blocking events. How-
ever, in this same study, the corresponding precipitation PDF 
remained unchanged suggesting the decrease in precipitation 
from storm occurrences due to blocking was offset by an 
increase in precipitable water following Clausius–Clapey-
ron. Despite model-based evidence suggesting an increase 
in the frequency and strength of geopotential height anoma-
lies and blocking, robust observational evidence is lacking 
and/or mixed (Barnes 2013; Barnes et al. 2014; Francis 
and Vavrus 2015; Screen and Simmonds 2013). However, 
the extent to which anthropogenic forcing plays a role in 
generating extreme geopotential height (GPH) anomalies 
is less clear. Swain et al. (2014) show that the occurrence 
of extreme geopotential heights exceeding the 99th percen-
tile of preindustrial control runs increases by up to 670% in 
twentieth century CMIP5 simulations including both natural 
and anthropogenic forcing, no increases in extreme heights 
were found in simulations including only natural forcing. 
Similarly Wang et al. (2014) found an increase in sliding 
variance of the DPI present both in the 20CR reanalysis 
and CESM1-GHG simulations, however this signal was 
not present in the CESM1-NAT simulations suggesting a 
anthropogenic component to the increase in frequency of 
dipole pattern occurrences. Additionally, Williams et al. 
(2015) found that while precipitation is the primary driver 
of drought variability, anthropogenic warming accounted for 
8–27% of the observed drought in 2012–2014 and 5–18% in 
2014. While the physical mechanisms of how climate change 
may alter the strength and/or frequency of the dipole pat-
tern, both in its cyclonic and anticyclonic configurations, 
several potential pathways exist. Arctic warming (Francis 
and Vavrus 2015; Cohen et al. 2014), Pacific SST anomalies 
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(Seager and Henderson 2016; Watson et al. 2016; Swain 
et al. 2017), and sea-ice concentration and extent (Alexander 
et al. 2004; Sewall 2005), are all projected to change due to 
human activities over the twenty-first century and have roles 
in influencing mid-latitude weather patterns and large-scale 
circulations.

The Dipole circulation pattern is highly related to the 
Tropical/Northern Hemisphere (TNH) pattern (Mo and 
Livezey 1986). DJF correlations between the TNH and the 
DPI are extremely high with an r value of   0.87. The TNH 
is defined as the forth rotated EOF of 700 mb winter height 
anomalies and when correlated with rain gauge stations 
around the globe, finds its larges correlations with those sta-
tions in the maritime continent. This suggests that the TNH/
DPI is likely related to convection generated gravity/Rossby 
waves originating in the warm-pool region. This would be 
consistent with the findings of Wang et al. (2014). Moreover, 
Mo and Livezey (1986) found that the TNH was associated 
with variability on timescales longer than a season, thus 
potentially partially explaining the extreme persistence of 
the ridge that formed over California during the winter of 
2013/14.

Finally, we considered the effect the Arctic oscillation 
may have on the occurrence of joint extremes in California 
temperature and precipitation. Despite the attention the Arc-
tic gets on modulating mid-latitude weather, when it comes 
to temperature and precipitation change in California, we 
obtained a null result (figure not shown). For CD1, CD6, 
and state wide averaged data, both temperature and precipi-
tation showed little sensitivity to the phase of the Arctic 
oscillation.

5  Summary

We have implemented a novel, nonparametric conditional 
probability distribution method that allows evaluation of 
complex, multivariate, and nonlinear relationships that exist 
among temperature, precipitation, and various indicators of 
large-scale climate variability and change. We have shown 
that the multivariate statistics of temperature and precipita-
tion are demonstrably non-stationary and therefore benefit 
from more sophisticated statistical techniques for accurate 
characterization. In addition, the multivariate variability and 
statistics of temperature and precipitation exhibit strong spa-
tial variation across a region that is often treated as having 
homogeneous and stationary statistics (AghaKouchak et al. 
2014). We find that inter annual-to-multi decadal modes 
of atmosphere-ocean variability in the Pacific and Atlan-
tic explain modest amounts of variability in co-occurring 
extremes in California, at best. Despite the historic focus 
on ENSO as the main driver of precipitation variability in 
California, we find that ENSO only explains about 7% of the 

variability statewide. However, the dipole index, a measure 
of the strength and polarization of the mean-state circula-
tion present over North America, accounts for a much larger 
fraction of precipitation variance, nearly 40% statewide. This 
suggests that a better understanding of the drivers and pre-
dictability of large-scale atmospheric variability is key to 
interannual—to decadal prediction of co-occurring hydro-
climate extremes in the western U.S.
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Chapter 2

The Anthropogenic Contribution to

the Observed Hydrometeorology over

the Continental U.S. from 1960-2018

2.1 Introduction

Since the industrial revolution, human activities have been steadily altering the com-

position and thermal properties of the global atmosphere (Arrhenius, 1897, Myhre

et al., 2013). Since that time, the global mean temperature has risen by about 1◦C

(Lenssen et al., 2019), primarily due to carbon dioxide emissions from the com-

bustion of fossil fuels and industrial processes (Olivier et al., 2005, Myhre et al.,

2013). While the temperature response of the global climate system to increased

radiative forcing from greenhouse gasses is fairly well-constrained(Andrews et al.,

2012), the response of the hydrologic cycle is less well understood. As a func-
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tion of temperature, atmospheric water vapor increases at a predictable 7%/◦C rate

following Clausius-Clapeyron (Allen and Ingram, 2002, Held and Soden, 2006).

However, globally, the mean precipitation rate scales more modestly ( 1-3%/◦C)

(Allen and Ingram, 2002, Lambert et al., 2004), and is capped by an energy con-

straint, namely the ability of the earth’s atmosphere to radiatively cool and balance

the latent heating generated by precipitation (Mitchell et al., 2007, Held and Soden,

2006, Pendergrass and Hartmann, 2014). In addition, it is expected that with climate

change, wet regions will tend to get wetter and dry regions to get drier, accompa-

nied by an increase in extreme events such as episodes of intense precipitation and

extended periods of drought (Trenberth, 1999, Allen and Ingram, 2002, Held and

Soden, 2006). The disparity between the rate of increase of atmospheric water va-

por and the global mean precipitation rate suggests that for precipitation rates to

balance globally, there must be a decrease in light/moderate rain events and an in-

crease in heavy events (Trenberth, 1999, Trenberth et al., 2003, Hennessy et al.,

1997, Allan and Soden, 2008). Indeed, both observations and model simulations

show increasing trends in both mean and extreme precipitation with trends in the

extremes generally outpacing trends in the mean (Karl and Knight, 1998, Kunkel

et al., 2013).

Given that it is generally well-established that extreme events are increasing

with climate change, it is natural to ask to what extent, and how, anthropogenic

forcing altered an extreme event once it has happened (Stone and Allen, 2005, Otto

et al., 2018). However, this question is often intractable due many factors includ-

ing but not limited to natural forcing, subgrid-scale processes, and random chance
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(Zwiers et al., 2013). Broadly, detection refers to the identification of some change

in the climate system, or, with respect to individual weather events, the observation

of an extreme event with a low probability of occurrence (Mirle et al., 2013). Attri-

bution on the other hand, seeks to assign some proportion of the simulated response

(the extreme event) to one or more of the variables implicated in the process under-

lying the generation of the event. Thus, the class of studies referred to as ‘Detection

and Attribution’ (D&A) seeks to identify and document a change in the physical

system, then describe how the probability of occurrence (or intensity) of that event

has changed resulting from a change to one or more of the physical drivers of the

event in question (Barnett et al., 2005b).

While the detection and attribution of extremes is still a relatively new and de-

veloping field (Otto, 2017), there exist several different methods to understand the

relative contributions of individual drivers of extreme events, the one typically of

greatest interest being human caused climate change. Among the most employed

method, is “fingerprinting” whereby detection is commonly accomplished by corre-

lating a predicted anthropogenic signal with observations to detect/identify the an-

thropogenic fingerprint (Madden and Ramanathan, 1980, Santer et al., 1993, 1995,

Hegerl and North, 1997, Allen and Stott, 2003, Barnett et al., 2005b, Santer et al.,

2009, Hegerl and Zwiers, 2011). Fingerprinting methods have been successfully

used to detect anthropogenically forced changes in many different climate variables,

most notably temperature (Hegerl et al., 1997, Tett et al., 1999, Barnett et al., 2005b,

Stott et al., 2007), and CO2 (Hegerl et al., 1996, 1997). Additionally, anthropogeni-

cally forced changes have been detected in sea level pressure (Gillett et al., 2003),
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tropopause height (Santer et al., 2003), and ocean heat uptake (Barnett et al., 2005a).

More recently, interest has grown in attributing human induced change to indi-

vidual weather events such as heatwaves, cold snaps, droughts, and severe storms

such as regionally confined mesoscale convective events such as monsoonal pre-

cipitation to synoptic scale tropical cyclones (Otto et al., 2018). Broadly, studies

aimed at preforming D&A on individual weather events follow a concept involv-

ing modeling “factual” and “counterfactual” cases (Stone and Allen, 2005, Otto,

2017). The modeled factual case represents the event in question as it occurred,

driven by an all-forcing scenario, whereas the counterfactual case models the event

with forcings that would be expected had human-induced climate change never hap-

pened. Attribution studies designed under this framework have seen promising suc-

cess demonstrated by recent work on the U.K. floods of 2000 (Pall et al., 2011),

the European heatwave of 2003 (Stott et al., 2004), the Boulder, Colorado floods

of 2013 (Pall et al., 2017), and several land-falling Atlantic hurricanes including

Katrina, Maria, and Irma (Patricola and Wehner, 2018). In addition, D&A stud-

ies employing covariate-based Generalized Extreme Value (GEV) theory have been

developed to isolate natural versus anthropogenic effects on extreme events such as

hurricane Harvey (Risser and Wehner, 2017).

2.2 Changes in Precipitation over the Continental U.S.

There is little doubt that society and our infrastructure have become increasingly

vulnerable to weather and climate extremes (Kunkel et al., 1999). At present, there
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is a large and ever-growing body of research that has documented increased mean

and extreme precipitation across a range of spatial and temporal scales (Karl and

Knight, 1998, Kunkel et al., 2013, Higgins and Kousky, 2013, Easterling et al.,

2017). On average, across the Continental U.S. (CONUS), annual precipitation has

increased by approximately 4% since 1901, marked by decreases in the West, South-

west, and Southeast, while increases across the greater Plains region, the Northeast,

and Midwest (Easterling et al., 2017). Additionally, since 1958, extreme precip-

itation corresponding to daily events that exceed the 99th percentile has increased

uniformly across all regions of CONUS, showing an average increase of nearly 27%

(Easterling et al., 2017). Moreover, it is not just that the magnitude of extreme pre-

cipitation that is changing, but also the areas that are affected by increasing extreme

precipitation are expanding as well (Dittus et al., 2016).

These changes manifest in a number of different ways, perhaps most notably,

in the increase in the number of billion dollar disasters associated with flooding

and thunderstorms, of which flooding is among the costliest (Kunkel et al., 1999,

Changnon, 2003, Bell et al., 2018, NOAA National Centers for Environmental In-

formation (NCEI), 2019). Extreme precipitation and major flooding events are con-

tinuing to increase in both magnitude and frequency (Kunkel et al., 1999, 2013),

and people are increasingly asking if anthropogenic climate change is implicated

(Otto et al., 2018). In many instances, this is appearing more and more to be the

case. For example, in the southern U.S. from August 12-14, 2016, central Louisiana

sustained three days of extreme rain that resulted in unprecedented flooding for the

area and caused damage to over 60,000 homes and displaced over 10,000 people
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(Van der Wiel et al., 2017). In a rapid attribution study published soon after the

event occurred, the authors found that anthropogenic forcing increased the proba-

bility of 3-day precipitation of that magnitude by at least 1.4 times (Van der Wiel

et al., 2017). In the inter-mountain west, on September 9th - 15th 2013, Boulder,

Colorado, experienced severe flooding resulting in over two billion dollars worth

of damage and nine fatalities (Gochis et al., 2015). The extreme rainfall Boulder

experienced was unprecedented in the historical record and researchers have esti-

mated that anthropogenic forcing increased the magnitude of such an event by at

least 30% (Pall et al., 2017). Increasingly, researchers are finding more and more

evidence that human activities are having an effect on the global hydrologic cycle

and extreme events (Min et al., 2011, Marvel et al., 2019). This motivates asking

how and to what extent anthropogenic forcing has altered the precipitation patterns

we experienced.

2.3 Detection and Attribution using Counterfactual

Climates and Large Ensembles

Extreme events are by definition rare events, therefore quantifying their probability

of occurrence from the observational record is difficult due to the low sample size

(Easterling, 2000). Moreover, understanding how and if human activities have al-

tered those probabilities is even more difficult due to the confounding fact that we

do not have observations of a world without human influence. Thus given our one

“realization” of observations of the climate system, we have nothing with which to
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compare as a baseline case of what the global climate would be like had humans

never interfered. As such, we cannot say from observations alone how the climate

and weather patterns, and in particular the extreme events, we have experienced

were or were not changed due to anthropogenic forcing.

In light of these difficulties, we can employ climate models to allow us to probe

alternate climate scenarios. These so-called “counterfactual” climate simulations

are constructed such that the human-induced radiative forcing due to greenhouse

gasses (GHG) and aerosols are removed from the historical climate observed over

the last 60 years (see Section 2.4.2 below for full details) (Folland et al., 2014,

Stone and Pall, 2017, Stone et al., 2018, 2019). We compare the counterfactual

climate to the “factual” climate modeled using the observed radiative forcings and

boundary conditions. Both these scenarios are simulated 50 times with perturbed

initial conditions for each year between 1959 and 2018. This results in 2950 simu-

lated years for both the factual (All-hist) case and the counterfactual (Nat-hist) case.

With a sampling of years this large, we are able to increase the signal-to-noise and

directly calculate the probabilities of precipitation extremes and mean responses.

That is, for example, in this ensemble a 1-in-100 year event will roughly 30 times.

We calculate the anthropogenic effect on changes in the probability of hydrome-

teorological extremes as the residual between the modeled factual climate and the

counterfactual climate. By doing this, model biases for simulated precipitation are

removed, leaving self-consistent estimates of the anthropogenic effect on the ob-

served hydrometeorology. Further, this approach removes the confounding factor

of natural variability (Kunkel et al., 2003, Hoerling et al., 2016, Stegall and Kunkel,
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2019), arising from internal climate forcings (Deser et al., 2004, 2014), such as the

El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO)

since the observed ocean variability is preserved in both the All- and Nat-hist sim-

ulations (Stone et al., 2019).

Thus the primary goal of this study is to understand the role anthropogenic forc-

ing has played in altering modeled boreal wintertime precipitation patterns over

CONUS from 1960-2018. We employ a “counterfactual” methodology as a means

of separating out the bulk anthropogenic signal on precipitation from naturally

ocean-forced variability experienced over this time period. We diagnose anthro-

pogenically forced changes to both expected (mean) and extreme precipitation at

multiple timescales ranging from seasonal to daily. We seek to quantify these

changes and to place them in the broader context of an altered hydrologic cycle,

which includes as well, extremely dry winter seasons, changes to the number of dry

wintertime days, and their consecutive occurrence. We focus on the boreal win-

ter season as the drivers of ascent during this time are controlled by synoptic scale

disturbances associated with large-scale, resolved precipitation.

2.4 Data and Methods

2.4.1 Indices of Environmental Change

For this analysis we focus on metrics of the hydrologic cycle that are most relevant

to human and environmental systems on timescales ranging from daily to seasonal.

To that end, we choose a subset of indices guided by the Expert Team of Climate
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Change Detection and Indices that are designed to enable the ongoing monitoring of

changes to both the frequency and magnitude of extreme events in light of a chang-

ing climate (Zhang et al., 2011). The recommended indices are chosen such that

they are physically-based and have broad geographical relevance. The subset of in-

dices used in this study are adapted from an annual timescale as described in Zhang

et al. (2011), to the seasonal timescale used in this study, specifically the boreal win-

ter defined here to be November - March the following calendar year. The subset of

indices we consider here are as follows: Rx1d- the maximum amount of precipita-

tion received in one day; Rx5d- the maximum amount of 5-day total precipitation;

Rx10d- the maximum amount of 10-day total precipitation; Rx40d- the maximum

amount of 40-day total precipitation; the mean precipitation rate when raining (la-

beled SDII in (Zhang et al., 2011)); the max continuous wet period (CWD); the

number of consecutive dry days (NDD); and the max continuous dry period (CDD).

Taken together, these metrics give a comprehensive view the behaviour of the hy-

drologic cycle across a range of temporal scales.

2.4.2 Data

For this study we employ data from the database of the Climate of the 20th Century

Plus Detection and Attribution project (C20C + D&A, henceforth C20C+) (Folland

et al., 2014). Broadly, the C20C+ experiment consists of a multi-model large ensem-

ble of AMIP-style simulations (Gates, 1992), forced by observed land, ocean, and

atmospheric boundary conditions (Stone et al., 2019). Specifically this study uses

daily output from two large ensembles from the Community Atmosphere Model
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(CAM5.1), the atmospheric component of the Community Earth System Model

(CESM) (Neale et al., 2012), run at a 1-degree horizontal grid resolution. The

first large ensemble set of simulations are run under an all-forcings scenario (the

“factual” scenario), referred to here as the All-hist simulations. Model output from

these simulations are subject to radiative forcings from changing carbon dioxide lev-

els and solar luminosity as well as from prescribed sulphate, organic, black carbon,

dust, sea salt, and volcanic aerosol burdens (see Stone et al. (2018) for additional

details). Further, observed ocean sea surface temperatures (SSTs) are used as well

as observed sea ice concentrations (SIC). The ocean in this configuration does not

interact with the atmospheric model, thus observed SST variability is preserved.

Observed land surface cover/use are incorporated into the simulations using the

community land model 4.0 (CLM4.0), which dynamically interacts with CAM5.1.

The second large ensemble we use is from the subset simulations that make up

the detection and attribution part of the C20C+ experiment (Gillett et al., 2016).

These simulations are run under a natural-forcings scenario (the “counterfactual”

scenario), referred to here as the Nat-hist simulations. The configuration of these

simulations are identical to the All-hist simulations with the key difference being the

removal of the estimated effects of human activities on the global climate system.

This entails removing the excess radiative forcing from atmospheric tropospheric

and ocean warming due to anthropogenic forcing. The excess radiative forcing due

to human activities in the atmosphere is removed by fixing the carbon dioxide and

aerosol levels in each Nat-hist simulation to the estimated preindustrial levels of

the year 1855 (for carbon dioxide this equates to approximately 285ppm). Anthro-
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pogenically forced ocean warming is calculated as the residual warming between

the historical and the historicalNat simulations that make up the coupled model in-

tercomparison project phase 5 (CMIP5) (Taylor et al., 2012). The models that make

up the CMIP5 archive are fully coupled and have dynamically interacting mod-

ules, which can take into account feedbacks among the different climate systems,

nonlinear or otherwise. The historical simulations include radiative forcings from

both anthropogenic and natural sources while the historicalNat simulations include

only natural forcings. This method of removing the anthropogenic contribution to

ocean warming is a key and distinguishing feature of C20C+ experimental design in

that it achieves cooling the oceans to the estimated preindustrial temperatures while

also preserving the observed ocean variability (e.g. ENSO, PDO, AMO, etc.). As

such, for example, years where strong El Niño occurred in the observed record (e.g.

1983,1998) also occur in the corresponding years in both the All- and Nat-hist sim-

ulations, however, at a lower mean SST in the Nat-hist simulations. Additionally,

in the Nat-hist simulations, sea ice concentrations are adjusted to be consistent with

the cooler adjusted radiative environment according the observed temperature - sea

ice relationship detailed in (Stone and Pall, 2017). Thus the Nat-hist simulations

are designed to be a representation of the global climate system as have might have

existed without human interference.

The simulations that make up each large ensemble have random uniform initial

condition perturbations applied to the three-dimensional temperature field such that

the trajectory of each simulation spans the climate and weather states possible un-

der the applied boundary conditions. Each large ensemble (All-hist and Nat-hist)
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include 400 ensemble members each; however, for this study we choose to use only

the subset of the 50 “long-duration” simulations spanning years 1959-2018 (Stone

et al., 2018). We make this choice in order to have enough years to calculate mean-

ingful changes in the chosen indices across time and so that each year is represented

(weighted) equally in the ensemble means. The data from the two large ensem-

bles used in this study are under the experiment headings “All Hist/est1/v2-0” and

“Nat Hist/CMIP5 est1/v2-0” respectively and are free and available to download at

http://portal.nersc.gov/c20c/.

2.4.3 Methods

To study the effects of anthropogenic forcing on the indices described in Section

2.4.1 we consider two primary quantities: changes in the mean and changes in the

100 year return levels. Assessing changes in the mean of any of the given indices in

this framework is relatively straightforward: we take the mean across all 50 mem-

bers (ensemble mean) and across all 59 Nov-March years (time mean) and calculate

the anthropogenic effect as the residual between the All-hist and the Nat-hist simu-

lations. This quantity is then the difference in the means of two distributions with

2950 total simulated years and represents the average anthropogenic effect on the

index being considered over the Nov-March period spanning 1960 - 2018. As such,

to assess the statistical significance in the difference in the two means, we can ap-

ply the two-tailed students t-test. We report the significance in the difference of the

means at two levels, p ≤ 0.1 signified by a single horizontal dash (−), and at p ≤

0.01 signified by a plus (+) sign. These hatchings represent medium and high confi-
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dence in the result respectively. Finally, it is well-known that no model is perfect and

that all have biases to one degree or another for any given field (e.g. Sheffield et al.

(2013), Davy and Esau (2014), Kay et al. (2012), Liu et al. (2014)). However, in this

framework, using a single model large ensemble and calculating the anthropogenic

effects as the residual between model experiments, we avoid the use of observations.

This then follows a “perfect model” approach akin to that described by Kirchmeier-

Young et al. (2019) where events are framed internally (within model experiments)

thus avoiding concerns whether the model is able to reproduce observed values.

This then allows the difference between the All- and Nat-hist simulations to be in-

terpreted as the anthropogenic effect on the extreme event in question. That said,

a number of different studies have documented the ability of global models forced

by observed SSTs to reproduce observed regional precipitation trends with fidelity

(e.g. Hoerling et al. (2016), Seager and Hoerling (2014).

To assess changes in the 100 year return levels we approach using two meth-

ods, one frequency based and the other magnitude based. For the frequency based

method we first calculate the 100 year Nat-hist return level for the index being con-

sidered. Note that since we are using daily output from a large ensemble of 50 sim-

ulations spanning 59 years, we are able to directly (empirically) calculate 100 year

return levels without relying on the theoretical parametric distributions employed by

extreme value theory typically used to estimate high percentiles beyond that which

the data sampling support. We then count the number of times this threshold is ex-

ceeded in the All-hist simulations, which can also be less than the number of times

it was exceeded in the Nat-hist simulations. Using the cumulative number of counts
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over the threshold in both the All- and Nat-hist simulations we calculate the risk

(probability) ratio (RR) in terms of PF , the probability of an event under the factual

(All-hist) scenario and PC , the same probability under the counterfactual (Nat-hist)

scenario as the ratio. The RR is defined as,

RR =
PF

PC

, 3 PF =

∑
I(XF > c)

NF

and PC =

∑
I(XC > c)

NC

, (2.1)

where XF is the variable of interest, c the threshold under consideration, I(·) an

indicator function which returns 1 when X > c and 0 when X ≤ c, and NF , NC ,

the number of samples in the factual and counterfactual scenarios respectively (see

Paciorek et al. (2018) for full details). Since the counts-over-threshold method is a

binary process, that is, for a given sample at a given time/lat/lon, either the threshold

was exceeded (1), or it wasn’t (0), the distribution of outcomes can be modeled as

a binomial process. As such, confidence intervals (CI) on the RR can be estimated

at different significance levels (Koopman, 1984, Paciorek et al., 2018). To do this

we use the open source statistical software package Climextremes (Paciorek et al.,

2018), implemented in Python and available for download at https://bitbucket.org/

lbl-cascade/climextremes-dev/src/master/.

We use the RR in this framework for its ease of computation and its straight-

forward interpretability. For example in this implementation, RR = 2 means that

the given event under consideration was twice as likely to occur with anthropogenic

forcing than was not, and likewise RR = 0.5 means that the event probability de-

creased by half due to anthropogenic climate change. Additionally, we calculate
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confidence intervals on the RR at two significance levels, p ≤ 0.1 signified by a

horizontal dash (−) (medium confidence), and p ≤ 0.01 signified by a plus (+)

(high confidence). We stipple grid cells as having a significant positive change in

the RR if the lower bound of the CI for the given significance level does not include

1. Similarly, we stipple grid cells where negative changes are observed if the upper

bound of the CI for the given significance level does not include 1.

For the magnitude-based method of diagnosing anthropogenically forced changes

to the indices under consideration, we directly evaluate changes to the 100 year re-

turn level threshold itself. We report values of this metric by the percent change

in the magnitude of the 100 year return level between the All-hist and the Nat-hist

scenarios. We use all ensemble members and all years to calculate 100 year re-

turn level in both the All- and Nat-hist simulations and compare the difference to

the magnitude of the 100 year return level in the Nat-hist simulations. For testing

statistical significance in this metric of evaluation, we directly calculate the two-

tailed p-values from the null distribution. The null distribution, by definition, is a

distribution such that the null hypothesis is true, in this case meaning, that there is

no difference in the magnitudes of the 100 year return levels between the All- and

Nat-hist simulations. To construct the null distribution we pool the data from the

All- and Nat-hist simulations, randomly shuffle the pooled data, and then separate

the pooled data into two randomly mixed distributions. From these we calculate

the 100 year return levels and compute the difference, which on average is zero.

We repeat this calculation 500 times to obtain the null distribution. By compute

the P-value by assessing the proportion of values in the null distribution that are as
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extreme or more than the observed statistic. As with the frequency-based method,

significance is reported at two levels: p ≤ 0.1 signified by a horizontal dash (−)

(medium confidence), and p ≤ 0.01 signified by a plus (+) (high confidence).

For both the frequency- and magnitude-based methods, we apply a hypothesis

test at every grid cell location simultaneously. This by definition falls into the class

of testing known as multiple hypothesis testing. In testing multiple hypotheses,

there will inevitably be some proportion of false discoveries, that is, falsely reject-

ing the null hypothesis that there is no change. These “false-positive” discoveries

are known as type 1 errors and indicate a statistically significant result when in fact

the result is not. To control for false-positive discoveries (type 1 errors) in both the

frequency- and magnitude-based methods, we apply the false discovery rate (FDR)

control method of Benjamini and Hochberg (1995). This procedure is equivalent the

the family-wise error rate when all hypothesises are true, but smaller otherwise, thus

increasing the degree of statistical power in hypothesis testing when the outcome is

not known a priori. A caveat here is that this FDR method is designed for statis-

tically independent tests; however, we apply the method to testing results at grid

cells that within some domain have non negligible spatial correlations and thus, are

not independent. The implication of this is the loss of added statistical power of

results through spatial correlations, practically meaning, that some locations with a

statistically significant result, will be treated as a false positive discovery, and hence

not stippled. So in effect, the fact that the data are often not independent is not

a detriment, and in this case, actually serves to make the results more robust and

stippled locations more meaningful. For reference, we show versions of each figure
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in the supplementary material that in terms of absolute changes rather than relative

changes.

The approach used here of assessing the anthropogenic effects on the 100 year

return levels using both frequency- and magnitude-based methods has a distinct ad-

vantage. While the two methods are measuring changes to the same quantity, i.e.

the 100 year return level, the way in which it is being done is inherently different,

thus making the methods related, yet independent. Because the two methods are

distinctly different from each other, we can apply two independent methods of sig-

nificance testing, that is, the binomial testing and the direct calculation of P-values

from the null distribution. Thus, grid locations which show statistically significant

changes (hatched locations) to the 100 year return level from both the frequency-

and magnitude-based methods reinforce their respective results and the significance

of the alternative hypothesis: that human activities have altered the occurrence and

magnitude of extreme events.

2.5 Results and Discussion

We present our results in order of increasing time-scale, that is, from 1-day max-

imums to season totals. Figure 2.1 panels (a),(c),(e) show the results for the esti-

mated anthropogenic effect on 1-day maximum precipitation for the NDJFM period

spanning 1960-2018. Figure 2.1(a) shows a largely coherent signal of an increased

risk ratio across most of CONUS. Along the Pacific west coast, statistically sig-

nificant locations have a spatial structure which is predominantly oriented along the
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Figure 2.1: Panels (a) and (c) display the 100 year return level risk ratio, and the
percent change in the magnitude of the 100 year return level, respectively, for max-
imum NDJFM 1-day precipitation. Panels (b) and (d) as in panels (a),(c) but for
maximum 5-day total precipitation. Panels (e) and (f) show the ensemble mean
difference in maximum 1-day precipitation and maximum 5-day total precipitation
respectively. In all panels, statistical significance is denoted with a (−) for medium
confidence (p ≤ 0.1), and a (+) for high confidence (p ≤ 0.01). For clarity of
viewing, in panels (a) and (b), stippling is colored either black or white for posi-
tive/negative changes in the risk ratio.

southwest-northeast axis suggesting that wintertime daily extreme rainfall has likely

been most closely associated with atmospheric rivers (ARs) (Rutz et al., 2014). As

the risk ratio is a frequency-based metric, it shows that probability of occurrence of

extreme daily rainfall along the U.S. west coast, and in particular, California was

made roughly twice as likely due to anthropogenic forcing. This is also true of the

inter-mountain west as well as the Appalachia region in the Eastern U.S. Figure
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2.1(c), shows the change in the magnitude of 100 year return level for maximum

1-day precipitation. Overall many of the same coherent structures are observed,

with the overall direction of change toward larger 1-day rainfall rates. Areas which

show statistically significant changes in both Figure 2.1(a) and (c) together imply

that these areas experienced extreme daily rainfall rates more frequently and of a

larger magnitude than would have occurred without anthropogenic forcing. In the

case of California, where the spatial structure of the changes are suggestive of AR

activity, then this would imply a greater number of AR days occurred, which were

associated with heavier precipitation than would have occurred in a climate without

human interference.

Figure 2.1 panels (b) and (d) show the results for maximum 5-day precipitation.

In many ways, some of the same spatial structure is present as in panels (a) and (c),

but with some loss of signal across the central plains and southwest desert regions.

However, at this time-scale, along the west coast, the spatial structure of the changes

are arguably more coherent and filamentary-like, again suggestive that the primary

driver of the signal in this region is AR activity. A broad feature of risk ratio maps

versus the percent change maps, at both the 1- and 5-day time scales, is a higher

occurrence of statistically significant results (i.e. stippled grid cells). This could

potentially be due to several reasons. First, it could be that anthropogenic forcing

has a larger effect on the frequency of occurrence of extreme rainfall rather than

the its magnitude. Second, it may be rooted in the nature of the statistical testing

itself, that is, using a parametric distribution in testing for the risk ratio versus the

calculated nonparametric distribution in testing the change in the magnitude. Al-

51



ternatively, this could be due to the changes in magnitude of the 100 year return

level being below the threshold for detection given the signal-to-noise in the large

ensembles.

Figure 2.1 panels (e) and (f) show the ensemble mean change for 1- and 5-day

max precipitation rates respectively. At both time scales there is a broad coherent

spatial pattern exhibiting a north-south dipole. Over the greater portion of CONUS,

there is a statistically robust signal positive changes in both 1- and 5-day maximum

rainfall. This practically implies that, on average, the heaviest daily rainfall rates ex-

perienced over the NDJFM period spanning 1960-2018 were approximately 7-10%

heavier than they would have been had they occurred in a natural climate setting.

However, the southwest shows a different mean pattern, namely that anthropogenic

forcing has had the effect of, on average, reducing the heaviest rainfall rates, and in

particular for the 5-day time scale. The broad, large-scale structure of the pattern is

suggestive of an environment of increased stability and descending air motion. This

would be consistent with, and thus perhaps caused by, the finding that the response

of the Hadley circulation to anthropogenic forcing is to expand northward from the

sub-tropics (Held and Soden, 2006, Medeiros et al., 2015).

The difference in wintertime global mean temperature between the All- and Nat-

hist simulations is 0.75/◦K. Thus for the 100-year max 1-day precipitation (Figure

2.1 panel c), which shows a change of 8% at statistically significant locations,

the scaling with temperature is 11%/◦K. This then suggests that 1-day extreme

precipitation scales at a super Clausius-Clapeyron (CC) rate. The ensemble mean

scaling of 1-day max precipitation (Figure 2.1 panel (e)) at statistically significant

52



25°N

30°N

35°N

40°N

45°N

(c)

Max 10-day Precipitation Rate, 100 Year Return Level, Percent Change

(d)

Max 40-day Precipitation Rate, 100 Year Return Level, Percent Change

140°W 130°W 120°W 110°W 100°W 90°W 80°W 70°W
25°N

30°N

35°N

40°N

45°N

(e)

Max 10-day Precipitation Rate, Ensemble Mean Percent Change

140°W 130°W 120°W 110°W 100°W 90°W 80°W 70°W

(f)

Max 40-day Precipitation Rate, Ensemble Mean Percent Change

140°W 130°W 120°W 110°W 100°W 90°W 80°W 70°W
25°N

30°N

35°N

40°N

45°N

(a)

Max 10-day Precipitation Rate, 100 Year Return Level, Risk Ratio

140°W 130°W 120°W 110°W 100°W 90°W 80°W 70°W

(b)

Max 40-day Precipitation Rate, 100 Year Return Level, Risk Ratio

1/5 1/4 1/3 1/2 1 2 3 4 5
Risk Ratio

20 15 10 5 0 5 10 15 20
Percent Change [%]

Figure 2.2: As in Figure 2.1, but for maximum 10-day total precipitation (panels
(a),(c),(e)), and maximum 40-day total precipitation (panels (b),(d),(f)).

locations is 6%/◦K meaning that, on average, max 1-day precipitation scales at a

rate commensurate with CC scaling.

At the 10 and 40-day time scales shown in Figure 2.2, many of the same distin-

guishing spatial structures can be seen as in the 1- and 5-day time scales. Perhaps

most striking is the more pronounced pattern of what appears to be signatures of

AR activity off the west coast. Seen in risk ratios of Figure 2.2 panels (a) and (c),

the AR signature shows a strong development from the 10- to the 40-day time scale.

Because the risk ratio is a frequency-based metric, panels 2.2(a) and 2.2(b) reflect

changes in the number of occurrences of events exceeding the Nat-hist 100 year re-
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turn level for cumulative precipitation within the respective time frames. This then

suggests an increase in the cumulative occurrence of AR days in those time spans,

practically meaning that anthropogenic forcing has increased the frequency of se-

quential (back-to-back) AR events. ARs can be highly beneficial “drought busters”

bringing precipitation to the west coast and filling reservoirs for human and agricul-

tural use (Dettinger, 2013). However, occurrences of consecutive ARs can quickly

waterlog the ground, causing copious runoff, which in turn can overwhelm and dam-

age roads, infrastructure, and water management systems. A recent example of an

instance like this was the 2016/17 water year, where California received near record

annual precipitation, 90% of which was received in only nine storms, four of which

occurred sequentially within a time frame of approximately 40 days (OBrien et al.,

2019, Vano et al., 2019). One of the most notable consequences of this was the rapid

filling of Oroville reservoir and the subsequent over-topping, which severely dam-

aged the dam spillway causing over $200 million in damages and the evacuation of

over 200,000 down stream residents (Vahedifard et al., 2017, OBrien et al., 2019,

Vano et al., 2019). Figure 2.2 panels (a) and (b) show over a twofold increase in

the probability of 10/40-day cumulative precipitation exceeding the 100 year return

level as a result of anthropogenic forcing. OBrien et al. (2019) used observational

data spanning 1900-2017 and found an increasing trend in maximum 40-day total

precipitation within the Oroville reservoir watershed. Similarly, Swain et al. (2018)

used a coupled model large ensemble forced by RCP8.5 and found approximately a

400% increase at end of century in the relative change of 40-day wet extremes at the

200 year return level. So the result here suggests that anthropogenic forcing may
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likely be responsible for driving the trend in 40-day cumulative precipitation found

by OBrien et al. (2019), and that this trend may continue, and perhaps amplify, into

the future (Swain et al., 2018).

Seen in Figure 2.2 panels (c) and (d), not only has the probability for the oc-

currence of days exceeding the 100 year return level increased as a result of an-

thropogenic forcing, but the magnitude of such events has increased as well. For

10-day, but more so 40-day total precipitation, this increase is mostly limited to the

west coast. Taken together with the risk ratio results, this suggests that the extreme

periods of extreme rainfall experienced across the west coast were made both more

probable and of a greater magnitude than would have occurred in an unforced cli-

mate. Figure 2.2 panels (e) and (f) show the ensemble means of the 10- and 40-day

metrics. As in Figure 2.1 panels (e) and (f), the spatial signal is organized as an

approximate north-south dipole and is remarkably coherent and more pronounced

at these longer time scales. For the southwest, this implies a persistent inhibition

of daily rainfall causing the 10- and 40-day accumulations to fall 3-6% below what

they would have in an climate without human forcing. While for the northern half

of the country, average maximum accumulations and the 10- and 40-day time scales

have been made 3-7% larger due to human activities.

Figure 2.3 shows in the left column the mean precipitation rate on days when it

is raining, taken to be when model precipitation is greater than or equal to 1 mm/day.

This measure is equivalent to the simple daily intensity index (SDII) discussed in

Zhang et al. (2011) and henceforth will be abbreviated as such for coherence in the

literature. In the right column of Figure 2.3 is the max continuous wet period, de-
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fined to be the longest continuous stretch of days during the NDJFM period where

model precipitation is equal to or exceeds 1 mm/day, denoted CWD (consecutive

wet days) as in Zhang et al. (2011). Figure 2.3 panels (a) and (c) show a pro-

nounced anthropogenic effect on SDII with largely ubiquitous positive changes for

both the risk ratio and the change in the magnitude of the 100 year return level. Fig-

ure 2.3 (a) shows that when it rains, the probability of experiencing a rain rate equal

to or exceeding the 100 year Nat-hist return level has been approximately doubled

across nearly all of CONUS. Similarly, Figure 2.3 (c) shows that when it does rain,

the most extreme rainfall rates at the 100 year return level are greater by about 3-

9% at statistically significant locations. The ensemble mean change in SDII, Figure

2.3 panel (e), shows a coherent and uniform pattern of increase across nearly all

of CONUS averaging 3.5% at stippled locations. This then implies that the aver-

age rain rate across CONUS scales at approximately 5%/◦K, slightly less than CC

scaling. Contrasting that with Figure 2.3 panel (c), which shows the change in the

100 year return level, or equivalently, the 99th percentile of SDII, shows an increase

of 6-7% averaged across all statistically significant locations, suggesting then that

extreme precipitation, on average, scales at super CC rate of 8%/◦K.

The right column of Figure 2.3 shows the maximum continuous wet period

(CWD). Panel (b) shows spatially coherent marked decreases across the southwest

and along the eastern seaboard, albeit mostly lacking statistical significance in the

latter. Locations across the southwest region show decreases in the probability of

exceeding the 100 year return level of maximum CWD of 0.3 and 0.4 averaged at lo-

cations statistically significant at p ≤ 0.01 (+), and p ≤ 0.1 (−), respectively. Note
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Figure 2.3: As in Figure 2.1, but for the mean precipitation rate on rainy days
(precipitation ≥ 1 mm/day ) (panels (a),(c),(e)), and the maximum continuous wet
period (panels (b),(d),(f)).

that for decreases in the risk ratio, a change of 0.3 is larger than a change of 0.4,

since on this scale, 1.0 represents the point of no change. Thus, for the statistically

significant locations across CONUS, which are predominantly found in the south-

west, the probability of exceeding the simulated maximum CWD length at the 100

year return level has decreased by approximately 70% as a result of anthropogenic

forcing. The ensemble mean change in maximum CWD shown in Figure 2.3 panel

(f) shows no statistically significant locations over CONUS. Given the changes ob-

served at the 100 year return level shown in panels (b) and (d), this implies that for

CWD, the mean of the distribution is left relatively unchanged, and that the effects
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Figure 2.4: As in Figure 2.1, but for total number of dry days (panels (a),(c),(e)), and
the maximum continuous dry day period (panels (b),(d),(f)). Note that the colorbar
has been flipped here to indicate that increases in the index are associated with
drying.

of anthropogenic forcing are concentrated in the tail of the distribution, manifest

only in the extremes of maximum CWD.

Figure 2.4 shows results for the total number of dry days over the NDJFM pe-

riod (NDD) and the maximum continuous dry day (CDD) period over the same time

frame in the left and right columns respectively. Note that the colorbar has been re-

versed here to indicate increases in the metrics corresponding to drier conditions.

Panel (a) shows an overall increased risk, with statistically significant locations cen-

tered over southern California and Texas. In particular, over Texas, the risk of an
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increased occurrence of dry day frequency over the winter period is elevated by a

factor of 4 due to anthropogenic forcing. Panel (b) shows that the risk of exceeding

the 100 year return level for the maximum continuous dry period is elevated as well.

Contrasting panels (c) and (d) shows a different picture however, such that there is

only a modest increase in the change in the number of dry days at the 100 year

return level but a relatively strong signal in the length of the maximum CDD pe-

riod. This suggests that for the most part, dry days have been made to become more

likely to group together, with longer periods of time between being punctuated by

a rainy day. Indeed, taking this result, and that of Figure 2.3 panels (c) and (e) sug-

gest that, in particular for the southwest, an overall increased risk that dry periods

last longer and when they end, they end on average with a more extreme rain event

than would have occurred in an unforced climate. This reflects an overall amplifica-

tion of the hydrologic cycle, that is, longer deeper dry spells, punctuated by shorter

more intense rainfall. Supplementary Figure B.4 panel (d) shows the difference in

the length of the CDD period, and over Texas, there is an increase upwards of 10

days in the length of extreme CDD spells relative to an natural climate.

The ensemble mean change in the number of dry days, Figure 2.4 panel (e),

shows a large spatially coherent swath of statistically significant signal from the

eastern seaboard, stretching across the south and southwest and up through Cali-

fornia and along the Pacific Coast. This uniform signal represents an increase in

NDD of approximately 2%. The ensemble mean for CDD, Figure 2.4 panel (f), on

the other hand show a substantial increase across the stippled locations averaging

12-13%. The difference in the strength of these two metric could be reflective of
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Figure 2.5: Panels (a),(b) show the risk ratio and the percent change in the 100 year
return level for wet season precipitation totals. Panels (c),(d) as in panels (a),(b)
but for dry seasons precipitation totals. Panel (e) shows the percent change in the
ensemble mean season total precipitation. Statistical significance stippling is as in
Figure 2.1

.

the persistence of large-scale patterns having been amplified, that is, large-scale pat-

terns which inhibit rainfall in the southwest tend to last longer in an anthropogeni-

cally forced climate. This type of behavior in large-scale wave patterns is an area

of very active research has been documented by a number of studies (Barnes et al.,

2014, Mann et al., 2018, Francis and Skific, 2015). However, it should be noted that

this type of large-scale behavior also has the ability to drive persistent precipitation

extremes as well (Hoskins and Woollings, 2015, Du et al., 2019).
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Figure 2.5 shows the anthropogenically forced changes to season total precip-

itation across CONUS. Panel (a) shows the risk ratio for exceeding the 100 year

Nat-hist wet season return level. Several notable features stand out, in particular

over the southwest and the Pacific northwest, which both show a marked decrease

in the risk ratio. This implies that the probability for experiencing extremely wet

winter seasons has decreased in these regions due to climate change. Panel (b)

shows the change in the magnitude of the 100 year wet season return level and

shows an overall similar spatial pattern of change, with drier extremely wet seasons

corresponding with the decreases frequency. This implies that wettest winter sea-

sons in the Pacific northwest and the southwest, would likely have been wetter in a

climate without human interference. On the other hand, a large portion of the north-

ern great plains and eastern regions of CONUS sees the opposite effect, an increase

in the probability and magnitude of extremely wet winters.

Panels (c) and (d) of Figure 2.5 shows the anthropogenic effect on the 100 year

return level for dry season totals. To a large extent, the spatial patterns and di-

rections of change mimic those shown in panels (a) and (b). This is because they

are reflecting changes to the same distribution but on opposite tails, however the

changes are not always symmetric. For example, in the Pacific northwest, panel (a)

shows a decrease in risk for extremely wet winters and in panel (c), a commensu-

rate increase in the risk for very dry winters, suggesting a uniform shifting of the

precipitation distribution to overall dryer conditions. In southern California there is

an increased risk for both extreme wet and dry winters, indicating a widening of the

distribution. However, the increase in the risk of dry winters is greater, suggesting
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the extension of the dry tail of the distribution is greater than the wet tails extension

into wetter conditions. Panel (d) shows the anthropogenic effect on the magnitude

of very dry winters, and the most coherent signal is again across the southwest ex-

tending into southern and central California 1. This shows that in Texas for example,

extreme dry winters, like that experienced in 2011, would have likely been exacer-

bated by anthropogenic forcing. Numerous studies have sought to assess the role

human activities played in driving that particular event, and while there is a strong

anthropogenically forced fingerprint on temperature, the degree to which human

activities altered precipitation that year is largely uncertain due to the high degree

of internal variability and apparent ocean forcing (Deser et al., 2014, Seager and

Hoerling, 2014, Hoerling et al., 2013). Recall that in this study variability arising

from the ocean has largely been removed in the differencing process as both the All-

and Nat-hist experiments share much of the same ocean variability. Therefore it is

possible that the anthropogenic signal observed in this study may still be below the

detectable limits in observations given natural variability.

Panel (e) shows the ensemble mean change for the anthropogenic effects on

season total precipitation. The two spatially coherent signals are that of a predomi-

nately north-south dipole with an extension of the drying signal extending up along

the west coast. This shows that for the southwest and for the west coast, that the

net anthropogenic effect is to favor drier winters overall despite increased rainfall

at shorter timescales, especially for California. Figure 2.3 shows that for both Cali-

1Note that the area of missing data centered over Baja California in Figure 2.5 panels (c) and
(d) is due to the 100 year dry season Nat-hist return level in this region equaling zero, that is, no
precipitation falls during the winter season, thus the relative change is undefined.
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fornia and Texas, that anthropogenic forcing drives more intense rain rates on days

it does rain. However, the increase in precipitation intensities are not enough to

offset the increased occurrence of dry days (Figure 2.4). For the northern half of the

CONUS and the northeast/Appalachia regions, anthropogenic forcing favors wet-

ter winters overall. Across the range of timescales, the anthropogenic effect is to

largely favor increased rain rates in these regions (Figures 2.1, 2.2, 2.3). However,

unlike the southwest and the west coast, the increase in dry day occurrence does not

offset the increase in precipitation intensities across timescales. Thus the cumula-

tive effect of anthropogenic forcing in the north/northeast regions of CONUS is to

favor overall wetter winters, with higher rain rates, across all timescales.

2.6 Conclusions

The goal of this study is not to do event attribution on any single event, but to at-

tempt to assess, understand, and quantify the cumulative effects of anthropogenic

forcing on the observed winter hydrometeorology, using a number of different soci-

etally relevant metrics, across the U.S. from 1960-2018. Whether the anthropogenic

effects observed in this study are detectable in the observations is not the focus here,

however, as documented in Section 2.2, changes in both observed mean and extreme

precipitation, across a range of time scales, have been documented in many studies

and thus it is plausible that the aggregated anthropogenic effects documented here

could be playing a role in driving changes in the observations. Another way to think

about the results here is that the relative changes found do not have to necessarily
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agree with observed trends, rather these results would indicate in which direction

anthropogenic forcing is “nudging” the observed trends. For example, for the south

climate region, which encompasses Texas and the southern plains, the data show

NDJFM total precipitation increasing at a rate of 3 mm per decade (NOAA Na-

tional Centers for Environmental information, 2019). Thus given the findings here,

its possible that due to anthropogenic forcing that that trend may be suppressed

relative to what it may have been in a climate without human interference. Also,

clearly evident the time series for the south region is significant decadal-scale vari-

ability, which could potentially be masking anthropogenic nudging to the observed

precipitation trend (NOAA National Centers for Environmental information, 2019).

The main findings of this study are as follows:

• Extreme daily rainfall counts above the 100 year return level were twice as

likely in the the All-hist simulations than in the Nat-hist simulations across a

large portion of CONUS (Figure 2.1(a)). Additionally, the simulated magni-

tudes of those events were 7-10% larger than in naturally forced simulations

(Figure 2.1(b)).

• Along the west coast, increases in the frequency and magnitude of extreme

rainfall at timescales ranging from 1- to 40-day appear to be related to an

increase in AR activity and strength. At the 10- and 40-day timescales, the

spatial structure of change and the risk ratio suggest that the change in mag-

nitude of the 100 year return levels appears to likely be the result of a greater

number of AR days, thus implying an increase in the probability in the occur-

rence of sequential AR events (2.2).
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• The ensemble mean change in SSDI (average rain rate on days it rains), shows

a broad and coherent signal across nearly all of CONUS implying that due to

anthropogenic forcing, when it rains it rains harder. The simulated increase in

the mean precipitation rate is 3.5% implying that mean precipitation scales

at a rate commensurate with Clausius-Clapeyron.

• Given that there is approximately a 0.75◦K difference in warming between

the All- and Nat-hist simulations, the rate of increase of SDII per degree of

warming is then roughly 6%, in line with the increase of atmospheric water

vapor holding capacity of 7%/◦K described by Clausius-Clapeyron.

• The changes at the 100 year return level (99th percentile) of extreme precipita-

tion across all timescales is observed to increase at a rate of 6-9%, suggesting

that extreme precipitation scales at a super Clausius-Clapeyron rate.

• For the statistically significant locations across CONUS, which are predomi-

nantly found in the southwest, the probability of exceeding the length of the

Nat-hist simulated maximum continuous wet period at the 100 year return

level has decreased by approximately 70% as a result of anthropogenic forc-

ing.

• The moderate increase in the number of dry days relative to the larger in-

crease in the maximum continuous dry day length suggests that anthropogenic

forcing increases the probability of dry day grouping. This suggests that an-

thropogenic forcing produces an aggregated effect such that on average, dry

periods are longer and ended with more intense rainfall event.
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• The ensemble mean change in NDJFM total precipitation is that of a north-

south dipole over CONUS. In the southwest, as well as the Pacific north-

west, the simulated aggregated effects of anthropogenic forcing has been

to suppress winter precipitation resulting in, on average, drier winters than

might have otherwise occurred in an unforced climate. In the northern half of

CONUS, stretching from the inner-mountain west to the east coast, simulated

total winter precipitation was on average 4-5% larger than in the naturally

forced simulations.

Our results suggest there has been an appreciable anthropogenic effect on the

observed hydrometeorology across CONUS from 1960-2018. These results are de-

rived from two large ensembles of simulations each totaling 2950 simulated years

and each sharing the same ocean variability. The combination of effectively control-

ling for ocean variability as a driver of precipitation change and the large number

of simulated years giving a good sampling of non ocean-forced internal variability,

together the two ensembles allow for a controlled estimation of the anthropogenic

signal. That we only have one realization of the observed climate, imbued with high

internal variability, detecting the anthropogenic signals found here in the observa-

tions may be not be possible, however, in the future with improved signal-to-noise,

these changes should become detectable. Our results show that anthropogenic forc-

ing had about a twice as large effect on the extremes, at all timescales, than on the

mean of any of the fields considered here. This suggests that if an anthropogenic

signal were to be detected in precipitation observations, it would likely first be ob-

served in the extremes. This implies that the documented trends in observed precip-
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itation extremes, which have been attributed to human activities, are unlikely to be

an artefact or a result of ocean forcing or internal variability.

Our findings on the anthropogenic effects for the various different metrics stud-

ied here are broadly consistent with the observed changes to date and with the ex-

pected anthropogenic effects found in future climate projections. The figures in

Alexander et al. (2006) provide a comprehensive view of the observed changes to

date of the ETCCDMI indices used in this study. Likewise, Sillmann et al. (2013)

provide the same comprehenseve analysis for the same indices, but for model output

making up the CMIP experiments. For example, SSDI daily intensity shown in Fig-

ure 2.3 shows a remarkably consistent spatial signature compared with the Figure

6 in Alexander et al. (2006). Additionally, considering the max 5-day precipitation

rate and the CCD, both Alexander et al. (2006) and Sillmann et al. (2013) good

correspondence meaning that the changes found here are indeed being documented

in observational record and that they are consistent with anthropogenic forcing.

We have found that for most of the precipitation-based indices, that the extremes

at the 100-year return level appear to be scaling at a super CC rate of approximately

10-12%. While the ensemble mean fields of the of these variables tend to scale

at or below CC scaling 3-6%. This result is in line with the idea that the heaviest

rainfall events occur when nearly all of the moisture in a volume of air is precip-

itated out. Therefore, the intensity of these events would scale at minimum with

the availability of moisture and hence events occupying the uppermost quantiles

to be constrained to increase with Clausius-Clapeyron. Change of this type would

represent a lower-bound on extreme precipitation as enhanced convergence driven
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by latent heating would serve only drive higher precipitation rates leading to super

Clausius-Clapeyron scaling (Pall et al., 2007). Overall our results show that many of

the changes documented to various types of meteorological extremes are consistent

with and most likely due to anthropogenic forcing.
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Chapter 3

The Anthropogenic Contribution to

Observed Hydrometeorological

Variation and Predictability

3.1 Introduction

The U.S. west coast, and in particular California, is a region well-known to exhibit

high wintertime precipitation variability (Dettinger, 2011). In California, this was

recently exemplified by the rapid reversal of a deep and extended drought lasting

from 2011-2015 (Wang et al., 2014, Seager et al., 2015). The following winter of

2015/16 featured one of the strongest El Niño events in the observed record where

the tropical east Pacific sea surface temperature anomaly (SSTA) in the Niño 3.4 re-

gion reached its reached the highest value ever recorded (NOAA National Centers

for Environmental information, L’Heureux et al., 2017). Historically, California has
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had a strong perceived relationship with strong El Niño events and extremely wet

winters, this notion is primarily validated by the extremely wet El Niño winters of

1983 and 1998, despite over the observed record El Niño only accounting for about

7% of the precipitation variability in California (Savtchenko et al., 2015, O’Brien

et al., 2019). However, the extreme El Niño of 2015/16 failed to deliver much more

than California’s historical average precipitation that year (Paek et al., 2017, Lee

et al., 2018). The following winter of 2016/17, tropical east Pacific SSTAs returned

to neutral conditions thus giving little expectation of receiving the much needed pre-

cipitation that would relieve the extreme drought conditions that persisted through-

out the previous winter. In spite of any obvious strong oceanic or atmospheric

forcing, the California winter of 2016/17 ended to be one of the wettest winters on

observational record, and in many locations, far surpassing rainfall accumulations

recorded during the strong El Niño years of 1983 and 1998 (Wang et al., 2017,

OBrien et al., 2019, Vano et al., 2019). The occurrence of back-to-back years where

the wintertime precipitation outcome was counter to what was expected challenged

the long-held view of the El Niño - California precipitation relationship and what

large-scale circulation patterns were capable of producing extremely wet winters in

California.

The winter rains of 2016/17 ended California’s long standing drought condi-

tions and filled nearly every reservoir to capacity for the summer months to come.

However, along with that came severe flooding, mudslides, and critical infrastruc-

ture damage, most notably, the Oroville dam spillway which resulted in over $200

million in damage and the evacuation of over 200,000 down stream residents (Vano
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et al., 2019, OBrien et al., 2019). Water management officials rely on accurate and

informative seasonal forecasts to properly manage reservoir levels and prepare for

the possibility of extreme rainfall in order to mitigate flood risks and downstream

property damage. Winters such as those of 2015/16 and 2016/17 not only present

a major challenge to water resource managers, but also agricultural, municipal, and

humanitarian sectors as well (Kunkel et al., 1999). Extreme rainfall, or lack thereof,

stresses human and environmental systems and can either be a boon or a detriment

depending on how and when rainfall is received (California Department of Water

Resources, 2017). For example, extreme rain following multiple years of drought

falls on parched earth, where the ground has developed hydrophobic tendencies, can

cause rapid runoff leading to flash flooding (Burch et al., 1989). Similarly, persistent

rains, or sequentially occurring events, can lead to soil that exhausts its infiltration

capacity, generating more runoff than would be expected for the equivalent event

occurring isolated from antecedent conditions (Burch et al., 1989). On the oppo-

site extreme, multiple seasons of below average rainfall can deplete groundwater

storage, causing a non-recoverable loss of primary porosity, thereby exacerbating

amplifying agricultural and hydrological drought in future meteorological droughts

(California Department of Water Resources, 2017). Thus, it is not so much trends

in mean precipitation that are particularly stressful, it is more the variability about

those trends, present or not, that cause the greatest impacts to human and environ-

mental systems.

Despite the vast body of literature on trends in mean precipitation and extremes

across a range of time-scales (e.g. Trenberth (2011) and references therein), precip-

72



itation variability has been less thoroughly studied. Seager et al. (2012) undertake

a comprehensive study using precipitation minus evaporation (P-E) variability as a

proxy for hydroclimate variability. They use the CMIP3 archive to quantify warm-

ing induced changes to P-E variability and find that globally and on the annual time

scale, P-E variability does increase nearly everywhere, in some regions by as much

as 40%. In addition, they isolate the δP-E signal due to the El Niño Southern Os-

cillation (ENSO), the largest source of global circulation variability, and find that

ENSO driven P-E variability generally increases over the tropics with mixed sign

changes elsewhere. However, notably, their results indicate a decrease in ENSO

driven P-E variability over most of the continental Unites States (CONUS). How-

ever, because the authors consider ENSO driven P-E changes by assessing the differ-

ence between the cold and warm ENSO phases, La Niña and El Niño respectively,

their respective contributions to P-E variance are conflated, and thus it is unclear

which phase has the greater contribution to future changes in ENSO driven P-E

variance. Considering ENSO phase differences is useful for comparing their rel-

ative impacts and remote circulation responses; however, because La Niña and El

Niño are not symmetric phenomena and are controlled by very different ocean and

atmospheric dynamics, assessing their differences for quantifying future changes in

P-E variability assumes that a warming climate will affect their respective dynamics

equally. While fundamentally they are both part of the same large-scale circulation,

their associated individual dynamics and remote responses are highly asymmetric

(Philander, 1985, Hoerling et al., 1997, Burgers and Stephenson, 1999), and because

of this, future changes to ENSO will likely be highly asymmetric as well.
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Another interesting aspect to this study is the individual treatments of the dy-

namic and thermodynamic components to changes in P-E variability. While a large

fraction of the Earth experiences an increase in P-E variability in response to warm-

ing, there are also regions that do not. Precipitation variability scales with changes

in specific humidity since equivalent circulation anomalies in a warmed climate

will create larger moisture convergence owing to the increase atmospheric water

vapor content. However, despite a uniform global increase in specific humidity

in a warmed climate, there are regions that show decreases in P-E variability. To

first order, precipitation is the product of specific humidity and vertical velocity

(Emori and Brown, 2005, O’Gorman and Schneider, 2009, Rauscher et al., 2016,

O’Brien et al., 2016), hence a change in vertical velocity variance will manifest as

a change in precipitation variance. Concomitant with a largely uniform increase in

global specific humidity in a warmed climate is also a largely uniform decrease in

700-hPa vertical velocity variance. Areas which show decreasing P-E variability

yet increasing specific humidity are regions where the decrease in vertical velocity

variance outweighs the increase in specific humidity. A notable region that exhibits

this behavior is the U.S. southwest. Perhaps most interestingly though is the op-

posite case, where both specific humidity and vertical velocity variance increase.

In a future warmed climate, these regions would be characterized by a climatology

which exhibits large interannual fluctuations in both storm intensity and frequency,

in other words, a climatology displaying high interannual precipitation volatility.

Outside the polar regions, only two regions display concomitant increases in both

specific humidity and interannual vertical velocity variance: the tropical east Pacific
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and the U.S. west coast. This suggests then that it is possible that human induced

climate change thus far may be playing a role in fueling the high interannual precip-

itation variability and volatility experienced in the western U.S. (Swain et al., 2018,

Gershunov et al., 2019).

Pendergrass et al. (2017) undertake a similarly ambitious study of future changes

in global precipitation variability and find robust increases on the order of 4-5%K−1.

Here they use the CMIP5 archive as well as two initial condition large ensembles

which show that the largest changes in precipitation variance occur over extratrop-

ical land during the boreal winter. They show that the increase in precipitation

variability for all regions and all seasons is at least as greater or greater than the

increase of the mean precipitation rate. In other words, it appears as if the change in

the mean precipitation rate sets a lower bound on the rate of change of variability.

Similar to Seager et al. (2012), they attribute this to the combined effect of increas-

ing atmospheric moisture and weakened circulation. Additionally, they find that the

increase in precipitation variability with warming is robust and remarkably consis-

tent across timescales ranging from the daily to the 3-year timescale. This shows

that the underlying processes responsible for the increase in variability operate at all

time scales and thus cannot be attributed solely to longer timescale processes such

as ENSO. Finally, they use station observations to show that from 1960-2000, the

increase in daily precipitation variability per degree of warming is consistent with

the model projected results.

In another study of global station observations, Tsonis (1996) used monthly pre-

cipitation records over a 90 year period, modeled with parametric gamma distribu-
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tion, and 40-year binning to reveal low-frequency trends in precipitation variability.

She found using maximum likelihood estimates of the scale and shape parame-

ters, large positive trends in low frequency (40-year) global precipitation variabil-

ity. This suggests that precipitation variability is sensitive to variations in global

mean temperature. In a similar study, Svoma and Balling (2010) used monthly pre-

cipitation data from stations across CONUS which contained at least 40 years of

quality controlled data pre- and post- 1950. They parsed out the data by winter and

summer seasons and assessed the change in interannual precipitation variability be-

tween the two time periods. Overall, the winter season (taken there to be Oct-Mar)

showed the greatest change in interannual precipitation variability. Interestingly, the

largest changes were observed along the U.S. west coast and in Florida, both regions

which show a strong sensitivity to ENSO variability. Because of the different time

scales used in the studies of Pendergrass et al. (2017), Tsonis (1996), and Svoma

and Balling (2010), together they show that precipitation variability is sensitive to

temperature variability across a range of temporal scales with strong expression of

modulation by ENSO at the interannual time scale.

Given the findings thus far of changes in precipitation variability documented

in the present climate, and those projected for the future climate under continued

greenhouse gas forcing, there is strong reason to suspect that anthropogenic forcing

is playing a role in driving changes in precipitation variability. However, to the

best of the author’s knowledge, no study has yet been under taken to assess the

anthropogenic contribution to the observed precipitation variability in the present

day climate. As such, we address three main questions:
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1. How has the observed modification of the global climate system by human

activities affected, and to what extent, the observed hydroclimate variability

on intra- and inter-annual time-scales?

2. On the global scale, has anthropogenic forcing altered the fraction of total

precipitation variance resulting from ocean forced variance?

3. How and where are changes in precipitation variability due to anthropogenic

forcing expressed?

3.2 Data and Methods

3.2.1 Data

The data used in this study consist primarily of two large ensembles of climate

model simulations. These simulations are a subset of the Climate of the 20th Cen-

tury and Detection and Attribution project (C20C+) (Folland et al., 2014). Each

ensemble member is generated using the CAM5.1 atmospheric model (Neale et al.,

2012), initialized with initial condition perturbations and forced with identical bound-

ary conditions. The first ensemble is forced with the observed sea surface tempera-

tures (SSTs) and all historical radiative forcings (the All-hist ensemble), while the

second is forced with the observed SSTs with the estimated component of ocean

warming and radiative forcing removed (the Nat-hist ensemble). Thus each en-

semble shares the same ocean variability, however the Nat-hist ensemble is a best

estimate of what the observed climate would have looked like in the absence of hu-
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man interference. Each ensemble spans from 1960-2018 and contains 50 members

each totaling 2950 simulated years for each ensemble. For a complete description

of the C20C+ dataset used here, refer to Chapter 2.4.2. We consider the December

through February the following calendar year period (DJF), where northern hemi-

sphere circulations that drive precipitation anomalies largely result from resolved

large-scale motions. In places where appropriate, we include the use of ERA5 re-

analysis for comparisons of our model-based results to observations (Copernicus

Climate Change Service Climate Data Store (CDS), 2017).

3.2.2 Methods

Anthropogenic contributions to the observed precipitation variability are calculated

as the residual between the All-hist ensemble, representing the climate as it cur-

rently is, and the Nat-hist ensemble, representing the best estimate of the climate

as it would have been without human interference. Because both sets of ensembles

share the same large-scale ocean variability, that is, El Niños, La Niñas, and ENSO

neutral years all occur in the years in which they occurred in reality, changes in pre-

cipitation variability cannot be ascribed to differences in ocean variability between

the sets of simulations. That said, it is still possible to study the effects of, say,

El Niño on precipitation variability within the simulations by isolating the years

in which El Niño events occur, which again, are the same between the All- and

Nat-hist ensembles.

Statistical significance is ascribed for all fields at the 90% confidence level. For

differences in variability between ensemble mean fields, the two-tailed students t-
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test is used. For differences in the variability of fields where the ensemble mean

has not been taken, the Bartlett test for equal variances is used. The Bartlett test is

sensitive to distributions whose shape deviate significantly from that of the normal

distribution. In order to test the robustness of the results using the Bartlett test, we

also employed the Levine test for equal variances, which is robust to distributions

that deviate from normality. The significance results between the two test were qual-

itatively similar suggesting that overall, the data are close to normally distributed.

This was further verified with a Wilks-Shapiro test for normality. All significance

test are subjected to the false discovery control rate (FDR) described in Benjamini

and Hochberg (1995). This procedure controls for false discoveries, i.e. type 1

statistical errors, in multiple hypothesis testing. For all figures, locations that are

statistically significant at the 90% confidence level and have passed FDR control

are stippled.

In a large ensemble variability can be defined in one of two dimensions: across

time and/or across ensemble members. Variability across time, referred to here as

climatological variability, reflects interannual variability, that is, year-to-year varia-

tion in the average DJF rain rates calculated locally at each grid cell. On the other

hand, ensemble variability refers to the variability across ensemble members within

a given year specified by a prescribed ocean state. As such, with respect to the data

used in this study, we have 50 ensemble members, which simulate individually 59

years from 1960-2018 at every grid cell of the 1-degree model domain. This then

results in an array of shape (50,59,192,288) the sizes of which represent the dimen-

sions of (ensemble member, year, latitude, longitude). From this discrete array we
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can now define the various computations used in this analysis, where P (k, t) is the

average DJF precipitation for ensemble member k and year t, where T and K are

the total number of years and ensemble members respectively. Subscripts indicate

operators with respect the indicated variable where overlines and tildes indicate time

and ensemble means respectively. Let the ensemble mean of DJF precipitation be

then defined as,

P̃ (t) = Ek[P (k, t)] =
1

K

K∑
k=1

P (k, t), (3.1)

and the temporal mean as,

P (k) = Et[P (k, t)] =
1

T

T∑
t=1

P (k, t). (3.2)

Thus the total ocean forced variance, that is, the variance of the ensemble mean is

calculated as,

σ2
t [P̃ (t)], (3.3)

and the fraction of ocean forced variance as,

σ2
t [P̃ (t)]

Ek[P (k)]
. (3.4)

The climatological variability is then defined as,

σ2(k) =
1

T

T∑
t=1

(P (k, t)− P (k)])2 (3.5)
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and ensemble variability as,

σ̃2(t) =
1

K

K∑
k=1

(P (k, t)− P̃ (t))2 (3.6)

Thus the average of each ensemble members climatological variability (ensemble

mean climatological variability) is defined as,

Ek[σ
2(k)] (3.7)

and the temporal mean of ensemble variability as,

Et[σ̃
2(t)]. (3.8)

3.3 Results

3.3.1 Global Changes to Observed Precipitation Variability

On the global scale, precipitation variability arises from two primary sources: ocean

variability and internal atmospheric variability. Ocean variability evolves on long

timescales, from months to years, and is thus regarded as potentially predictable

variability (Koster et al., 2000, Westra and Sharma, 2010). Internal atmospheric

variability arises from the inherently nonlinear chaotic dynamics of large-scale fluid

motions and thus are not predictable beyond about 10 days (Lorenz, 1969, Deser

et al., 2012). However, despite the inherently chaotic nature of atmospheric flows,
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there do exist recurrent aspects within the chaotic flows, which are to a greater or

lesser extent controlled by the stationary components of the global climate system,

such as the relative locations of warm tropical ocean waters to cold polar waters,

or the locations of the continents and ocean basins, and mountain ranges like the

Himalayas in Tibet and the Rockies in Colorado. Recurrent low-frequency atmo-

spheric variability such as the Pacific/North American Pattern (PNA) and the North

Atlantic Pattern (NAO) are expressions of this type of atmospheric behavior. These

aspects of the climate system alter the probabilities for the potential downstream

outcomes of the atmospheric flow, such that some outcomes are more likely than

others. The range of potential outcomes describes the internal variability of the

system. To understand the internal variability, or the potential range of outcomes,

one must use a large ensemble of simulations that sufficiently characterize the dis-

tribution of probabilities associated with each outcome. Thus the mean of a large

ensemble represents the response with the highest probability of occurring, known

as the forced response, while the trajectory of any individual ensemble member only

represents one possible outcome from an infinite number of outcomes. The forced

response in any ensemble of simulations is the outcome associated with the forcings

and boundary conditions common to all ensemble members. In this study the com-

mon boundary condition to all ensemble members (All- and Nat-hist) is the ocean

variability, so the variability of the ensemble mean represents ocean forced variabil-

ity. Thus it is the ocean which is primarily responsible determining the mean of the

distribution of outcomes. The width of that distribution, that is, the variability about

the mean, is largely controlled by the random component of climate, i.e. the range
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of outcomes simulated by any single ensemble member. Thus the greater range of

outcomes about the mean implies a lower probability of any one outcome occurring,

practically meaning, a decrease in predictability.

Figure 3.1 shows the total variance in average DJF precipitation rate resulting

from ocean forcing given by the variance of the ensemble mean calculated as Eq.

3.3. Not surprisingly, the equatorial tropics show the greatest response to ocean

forcing. The band of tropical precipitation variance represents the inter-tropical con-

vergence zone (ITCZ), and is shifted north of the equator during the boreal winter.

Along the U.S. west coast, in both the All- and Nat-hist simulations, panels (a) and

(b), there exists a moderate amount of common variability indicating precipitation

variance sensitivity to oceanic conditions. This variance connects to the tropics and

highlights a region that is often the source of atmospheric rivers (ARs), specifically

of the Pineapple Express variety, which tend to be sourced from regions near Hawaii

(Zhou and Kim, 2018). To a lesser extent, in the north Atlantic basin, coastal regions

of Portugal, France, and Great Britain show common precipitation variance, most

likely stemming from trans-Atlantic ARs, which are responsible a disproportionate

number of days with extreme rainfall in those regions (Ramos et al., 2015). Inte-

rior continental regions in the northern hemisphere, such as the central U.S., eastern

Europe, and eastern Russia show little if any common variance. This indicates that

the ocean state plays only a minor role, if any, in explaining precipitation variance

in these regions. Interior regions which show common variance are predominately

located in the tropics and in southern hemisphere, which is likely highlighting con-

vective activity fueled by oceanic moisture convergence, as the DJF period is the
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Figure 3.1: Absolute (total) DJF precipitation rate variance of the ensemble mean
for the All-hist ensemble (a), the Nat-hist ensemble (b), and the difference All-hist
minus Nat-hist (c). Locations statistically significant at the 90% confidence level
are stippled. See methods Section 3.2.2 for details on the significance testing.
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austral summer where deep convection is most active. Also highlighted in Figure

3.1, although of little importance to this study, are the world’s arid regions, char-

acterized by large-scale descending motion, which stabilize the atmosphere and in-

hibit precipitation, leading to effectively zero precipitation variability. Figure 3.1(c)

shows the difference between the All- and Nat-hist simulations. Regions shaded red

indicate areas where the common variance to the ocean have increased relative to the

Nat-hist simulations. The regions which stand out the most are the polar regions,

isolated regions in the extra-tropics, and the tropical rain belt. While the All-hist

simulations show reasonably large increases in ocean forced precipitation variance,

very few locations outside the polar regions are statistically significant. Given that

the magnitude of the changes in the tropics and extra-tropics are relatively large,

the only way they would fail to be significant in this framework is that if the total

variability increase in those locations was greater than the increase in ocean forced

variability. The statistically significant results in the polar regions may likely stem

from the loss of sea ice in the All-hist simulations, thereby providing the polar at-

mosphere with direct source of moisture not present in the Nat-hist simulations.

To understand the contribution of ocean forced precipitation variability relative

to total variability we calculate at the fraction of ocean forced variability shown in

Figure 3.2. The fraction of ocean forced variability is calculated at each grid cell

as the total ocean forced variability shown in Figure 3.1 divided by the variability

representing the average variance of each ensemble member, shown symbolically

by Eq. 3.4. This is the same methodology used by Dittus et al. (2018) who consid-

ered the role of observed ocean variability over land in the in driving temperature
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Figure 3.2: The fraction of common variance (ocean forced variance) relative to
the average variance exhibited by each individual ensemble member for the All-hist
simulations (a), the Nat-hist simulations (b), and their difference, All-hist minus
Nat-hist (c).
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and precipitation extremes. However, in their study, they used the median variance

as opposed to the average variance. As they note, and verified here, the choice

makes little difference to the results. The most notable feature of Figure 3.2 is the

distinct El Niño pattern that emerges. This suggests that precipitation variability in

this region is dominated by El Niño variability as the fraction is near one indicat-

ing that the proportion of ocean forced variability accounts for nearly 100% of the

total variability. On the interannual time scale, El Niño events are associated with

strong deep convection in the cold tongue region where anomalous warm ocean wa-

ter makes its way into the tropical east Pacific, increasing the local SSTs above the

threshold for deep convection in a region with climatologically cool SSTs. This

in turn creates sharp zonal and meridional temperature gradients, which can then

sustain intense and long-lived convective activity through strong moisture conver-

gence fueled by the steep SST gradients that do not get easily exhausted due to

the close proximity of an essentially infinite source of cold waters, which are ca-

pable of maintaining the sharp gradients. Figure 3.2 panel (c) shows the difference

in the fraction of ocean forced variance between the All- and Nat-hist simulations.

The regions that showed large changes in total ocean forced variance in Figure 3.1

have been largely suppressed here, indicating that the average relative contribution

to precipitation variability by ocean forcing has not been appreciably altered by

anthropogenic forcing.

Figure 3.2 represents the average relative contribution to precipitation variabil-

ity resulting from ocean forcing. However, changes in the average are not always

representative of changes that may be happening in other parts of the distribution.
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For example, the mean can be left unchanged if the distribution spreads equally in

both directions, which represents an important change that is not reflected by look-

ing at average values. Therefore, to consider the possibility that changes may be

occurring to the relative fraction of ocean forced precipitation variability that are

not captured by changes in the mean, we construct a distribution of the possible

contributions of relative ocean forcings and assess whether the distribution is sen-

sitive to anthropogenic forcing by considering changes to the standard deviation of

that distribution.

This distribution can be constructed by dividing the total ocean forced variance

(the variance of the ensemble mean), not by the average of the ensemble variance as

in Figure 3.2, but by the variance of each individual ensemble member. This results

in 50 estimations of the fraction of ocean forced precipitation variance and we char-

acterize that distribution not by the mean, which is what is shown in Figure 3.2, but

by its standard deviation. Figure 3.3 shows the standard deviation of the distribution

of the fractions of ocean forced precipitation variance. This is calculated as in Fig-

ure 3.2, but the denominator represents the variability associated with all 50 ensem-

ble members rather than just the mean variability as in Eq. 3.4. A practical way to

interpret Figure 3.3 is to imagine the bright colors representing a wide spread about

the mean value of fraction of ocean forced variance shown in Figure 3.2 and cool

colors representing a narrow distribution about that mean. Supplementary Figure

C.1 is provided in order to aid in the interpretation of Figure 3.3. Overwhelmingly,

the tropical band stretching from approximately 20◦N to 20◦S shows the greatest

variability in the relative ocean forced precipitation variance. What this indicates is
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Figure 3.3: The standard deviation of the distribution of fractional ocean forced
precipitation variance for the All-hist simulations (a), the Nat-hist simulations (b),
and their difference, All-hist minus Nat-hist (c).
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that within this band, there is high variability in the role ocean variability plays in

forcing precipitation variability. As precipitation in the tropical band is primarily

received through deep convection, this could be indicative of the complex relation-

ship between SSTs and deep convection, whereby the ensemble members simulate

a greater range of precipitation variability during the DJF season. Similarly, this

result could also be reflective of known model short-comings in representing deep

convective processes (O’Brien et al., 2016). Outside the tropical band, Figure 3.3

shows that there is little variation in the role ocean forcing plays in driving precipi-

tation variability. Together, Figures 3.2 and 3.3 show that overall, the extra-tropics

exhibit little sensitively to ocean forcing in that the average contribution is small

and that there is little deviation about that contribution. Moreover, Figure 3.3 panel

(c) shows that overwhelmingly, anthropogenic forcing has not appreciably altered

the possible relative contributions ocean forcing can play in driving precipitation

variability.

The results thus far have shown that total ocean forced precipitation variability

showed relatively large increases in the All-hist simulations over the Nat-hist simu-

lations, but were not statistically significant (Figure 3.1). However, the fraction of

ocean forced variability remained constant between the All- and Nat-hist simula-

tions, as well as the variability about that fraction (Figures 3.2 and 3.3). This then

implies that there must be increase in variability between the All-hist and Nat-hist

simulations occurring else where in the system. This would then be reflected as an

increase in internal atmospheric variability between the All-hist and Nat-hist sim-

ulations, indicating that anthropogenic forcing has the effect of increasing internal
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atmospheric variability and thus consequently, decreasing predictability.

In a SST forced large ensemble, an increase in internal atmospheric variability

can show up in two ways, 1) an increase in interannual variability, or 2) an in-

crease in ensemble variability for a given years ocean forcing. Figure 3.4 shows

the average ensemble variance across all years. That is, it is the average spread of

the ensemble predictions for average DJF rain rate for all years. Regions which

show low values, such as the world’s arid regions, indicate that there is in general

good model agreement for the predictions of average DJF rain rate. Areas which

show larger values indicate that the models on average simulate a greater range of

outcomes for the equivalent ocean forcing in any given year. Practically speak-

ing, these would be areas which exhibit on average lower year-to-year predictability

due to a lower signal to noise ratio. Regions which display this high variability in

model predictions reside primarily in the tropics and midlatitudes. The areas that

display this relatively high uncertainty in outcomes are the deep convective regions

such as the ITCZ and the midlatitude storm tracks. In particular, in both panels (a)

and (b), the Pacific storm track appears split into two source regions, one, slightly

weaker, stems the far west Pacific warm pool region and the other, from the Hawai-

ian Islands region. They merge off the western U.S. coast, which displays some

of the highest values in model spread. Figure 3.4 panel (c) shows the difference in

ensemble member spread between the All-hist and the Nat-hist simulations. Spa-

tially coherent differences emerge between the All- and Nat-hist simulations, most

prominent being the polar regions and across eastern Russia and Siberia. Two other

notable spatially coherent regions stand out, the first being that off the western U.S.
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Figure 3.4: The average of the variance exhibited in each year by the individual
ensemble members across all simulated years for the All-hist simulations. This is
calculated as Eq. 3.7 for (a), the Nat-hist simulations (b), and their difference, All-
hist minus Nat-hist (c).
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coast stretching across the northern U.S. up into northeast Canada. The second be-

ing a swath stretching across the north Atlantic, intersecting France, and continuing

across Europe. An interesting feature there appears in how the stippled region be-

ginning in the northwest Atlantic near Newfoundland diverges, with one spatially

coherent path extending north up to Iceland and the greater polar region, and the

other extend east to Europe. This could potentially indicate a greater fraction of

Atlantic storms making their way to the polar regions via this path thereby advect-

ing warmer are to these regions than would have occurred in an unforced climate.

Off the western U.S. coast a spatially coherent regions overlies the typically path

traversed by ARs originating from the Hawaiian Islands. This is suggestive then

that increased variability simulated by the models in the anthropogenically scenario

may be tied variability in AR occurrence. This would be consistent with the results

of Gershunov et al. (2019), who found in an analysis of CMIP5 simulations, that

west coast hydroclimate variability increases in a future warmed climate and that

the increase was primarily driven by an increase in AR strength and occurrence at

the expense of lesser precipitation events. Overall, for the U.S. west coast, Fig-

ure 3.4(c) indicates that for any given year, the models simulate a greater range of

possible outcomes for average DJF rainfall in an anthropogenically forced climate

than they do in an unforced climate. This means that for any given ocean state the

models simulate a greater range of possible outcomes thereby implying a loss of

predictability as a result of anthropogenic forcing.

In addition to the possibility that the ensemble members together simulate a

greater range of possible outcomes to the equivalent ocean forcing in the same year,
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internal atmospheric variability can also manifest itself in each ensemble member

individually, that is, within its own transient run, as in increase in year-to-year vari-

ability. This variability across time, i.e. climatological variability encapsulates what

is perceived as year-to-year volatility, dubbed “whiplash” in the recent literature

(Swain et al., 2018), and is exemplified by dramatic changes in precipitation from

one year to another. The two expressions of internal variability, that is ensemble

variability and climatological variability, are related but not necessarily the same.

For example, each individual ensemble member could simulate greater climatolog-

ical variability, while at the same time, together, all predicting the same outcome

for each individual year. This would be an example of high climatological variabil-

ity and low ensemble variability. On the other hand, each ensemble member could

simulate low year-to-year variability, i.e. the ensemble mean being similar from

one year to the next, but have high uncertainty about the outcome of any individual

year (large ensemble spread in each year). So while separate in nature, as well as

being computationally different calculations, they can be related in that an increase

in ensemble variability can amplify, or be the main driving cause of increased cli-

matological variability.

Figure 3.5 panels (a) and (b) show the average variance of each ensemble mem-

ber across time in their respective transient runs calculated following Eq. 3.8. Com-

pared to Figure 3.4 panels (a) and (b) the amplitudes of the year-to-year variance

are much larger. This is a result of the ensemble variance positively contributing

to the climatological variance and indicates that there is an increase year-to-year

variability that is independent of the increase in ensemble variability. For a rela-
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Figure 3.5: The average climatological (year-to-year) interannual precipitation vari-
ability associated with each ensemble member calculated as Eq. 3.8 for the All-hist
simulations (a), the Nat-hist simulations (b), and their difference, All-hist minus
Nat-hist (c).
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tive comparison of the magnitudes of the climatological variance and the ensemble

variance, supplemental Figure C.2 shows the ratio of the two. 3.5 panel (c) shows

that the difference between the All-hist and Nat-hist climates has been amplified.

The majority of the polar regions as well as midlatitude regions, especially over

land, show a substantial increase in DJF hydroclimate variability. Notable areas that

show decreases in variability relative to the Nat-hist simulations are the subtropical

zones in the descending branch of the Hadley cell, India and southeast China, and

Australia. The decrease in variability in the subtropical zones possibly reflects the

theorized expansion of the Hadley cell under warming. However, concomitant with

the expansion of the Hadley cell under warming is also weakening of its overturning

strength (Lu et al., 2007, Levine and Schneider, 2011). Recent studies of reanalysis

generally indicate there has been a strengthening of the Hadley cell over the last

50 years, although there is some disagreement in the results depending on which

dataset is used (Mitas, 2005, Mitas and Clement, 2006). The decreases in precipi-

tation variability over China and India may potentially stem from the difference in

aerosol forcing between the All- and Nat-hist simulations. Over Australia, there is a

fairly spatially coherent statistically significant decrease in interannual precipitation

variability. However, DJF is the austral summer and precipitation in this region is

dominated by convection that time of year, which is not directly resolved by a 1-

degree model, and therefore may not be accurate. Along the U.S. west coast shows

a well-defined increase in interannual DJF precipitation variability as does the west

coast of Europe. Relative to the Nat-hist simulations, these regions would be char-

acterized by winters showing large and variable year-to-year excursions in rainfall.
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Therefore, in comparing Figures 3.4(c) and 3.5(c), for regions which show statis-

tically significant increases, the results indicate that not only is the climate more

variable on a year-to-year basis that it would have been in the absence of anthro-

pogenic forcing, but the potential range of outcomes for any given year, regardless

of the ocean state, are greater as well. Taken as a whole, the apparent anthropogenic

effect is to make wintertime precipitation both more volatile from year-to-year and

less predictable in any given year.

3.3.2 A Focus on Western U.S. DJF Precipitation Variability

We now turn our attention to the western U.S. for a focused analysis, where one

of the largest and most spatially coherent changes in winter precipitation variabil-

ity is observed (Figure 3.5). The western U.S. is aptly characterized by a large

diversity of hydroclimates. The southern California climate is largely dominated

by large-scale subsidence, which results in predominantly stable conditions and a

Mediterranean-like climate. However, from roughly the San Francisco Bay Area

northward, the climate is characterized by more temperate conditions, with typi-

cally wet winters as a result of consistent interaction with the southern edge of the

Pacific storm track. Among all the regions along the west coast, California in partic-

ular is highly vulnerable to a changing climate. Because of its unique geographical

location spanning the divide of regions dominated by wintertime subsidence and

convergence, California is highly sensitive to potential changes in the storm track.

Most models indicate that with continued warming, the Pacific storm track will shift

northward and weaken; however, there is large model disagreement on that result
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(e.g. Salathé (2006), Langenbrunner et al. (2015), Shaw et al. (2016) and references

therein). A northward shift of the storm track will leave regions further north such

as Oregon and Washington largely unaffected, as they will still be solidly in the

storm track, although changes to the strength, either weakening or strengthening

would be felt there. Baja California south of California will similarly be left unaf-

fected by a shifting storm track as that region will still be dominated by large-scale

subsidence. Thus because of its unique geographical location, California, even in a

climate unaffected by human activities, is subject to high wintertime hydroclimate

variability.

Figure 3.6: The All-hist climatological/ensemble variability (a)/(b), the Nat-hist
climatological/ensemble variability (c)/(d), calculated as Eqs. 3.8/3.7, and their
respective differences, All-hist minus Nat-hist climatological/ensemble variability
(e)/(f).

Recent studies, most notably Swain et al. (2018) and Gershunov et al. (2019),

have found that under continued global warming, California will be subject to even
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greater hydroclimate variability than is already is currently experiencing. Here we

ask instead, what role has the warming planet played thus far in contribution to the

hydroclimate variability we experience today? Figure 3.6 shows the climatological

variability in the left column and the ensemble variability in the right column. Pan-

els (a-d) highlight that whether in an anthropogeniclly forced climate, panels (a,b),

or in a climate unaffected by human activities, panels (c,d), the Pacific northwest is

a region characterized by large winter hydroclimate variability. Also well-captured

by the model is the precipitation variability associated with the Rocky mountains

and the Sierra Madre of Mexico. Panels (e) and (f) highlight the large changes

in winter hydroclimate variability induced by anthropogenic forcing. While the

largest changes are centered off the California coast, the results here also indicate

that a vast majority of the U.S. has also been subject to increased hydroclimate vari-

ability as a result of anthropogenic forcing. A notable exception to that is the U.S.

southwest, which our results would suggest has experience an overall decrease in

DJF precipitation variability. This is consistent with the findings of Seager et al.

(2012) who noted that the U.S. southwest was one of the few regions not subject

to an increase in P-E variability with warming. Off the the California coast, the

changes in variability decrease moving both to the north and the south. This is

likely the result of dominant and unchanged large-scale features that characterize

those environments respectively, persistent convergence to the north and persistent

subsidence to the south. Together Figure 3.6 panels (e) and (f) indicate that anthro-

pogenic forcing has very likely played a role in the extremely unpredictable and

volatile winters California has recently experienced. The results indicate that in-
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ternal atmospheric variability plays a disproportionate larger role in driving winter

hydroclimate variability in an anthropogenically forced climate by inducing larger

year-to-year swings in accumulated precipitation and permitting a greater range of

outcomes in any given year, regardless of the that years particular ocean state. These

qualities are poignantly demonstrated by the recent 2015/16 strong El Niño event,

which failed to deliver litte more than average precipitation. The following year, in

the absence of any ocean forcing, California received one of its wettest winters on

observational record. These events exemplify the kind of outcomes that Figure 3.6

indicates anthropogenic forcing has made more likely.

Given that the results thus far indicate that there has been a significant increase

in hydroclimate variability due to anthropogenic forcing from 1960-2018, we as-

sess whether the excess variability is evenly distributed across time. That is, does

the excess anthropogenic component of internal atmospheric variability expressed

equally in all years or are there some years where it is expressed more than oth-

ers? Figure 3.7 the differences between the All- and Nat-hist simulations grouped

by years of ENSO phase. ENSO phases are defined according to the ENSO lon-

gitude index (Williams and Patricola, 2018) in the left column, and the Nino 3.4

index in the right column. The El Niño phase is displayed along the top row, ENSO

neutral across the middle row, and La Niña along the bottom row. For each in-

dex respectively, only the strongest years according to each phase are used, and the

phase which has the fewest samples limits the number of years used for the other

phases so each phase has an equal number of years in each composite. The years

are selected from the classification provided in Table 1 of Patricola et al. (2019).
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Figure 3.7: The differences between the All-hist simulations and the Nat-hist sim-
ulations grouped by the respective ENSO indices, the ENSO longitude index (ELI)
in the left column, and Niño 3.4 in the right column. The rows show the results
for years of strong El Niños, top row; ENSO neutral conditions, middle row; and
Strong La Niña conditions, bottom row. Each are defined according to the respec-
tive indices and the ENSO phase with the fewest number of samples in each column
limits the number of samples for all other phases. The events most characteristic of
each ENSO are used, i.e. the strongest El Niño/La Niña events for top/bottom rows,
and the most neutral ENSO years for the middle row. The years for each ENSO
phase are selected from the categorization in Table 1 of Patricola et al. (2019).

Specifically, for ELI, strong El Niño has the fewest samples, 1983 and 1998. There-

fore, for ENSO neutral conditions only 1991 and 1968 are used, and for strong La

Niña only 1974 and 2009 are used. For the Nino 3.4 index, La Niña has the fewest

samples totalling 5, therefore for the El Niño composite 2016, 1998, 1983, 1973,

and 1992 are used, for the ENSO neutral composite 1970, 1980, 1991, 2004, and

1994, and for the La Niña composite 2008, 2000, 1976, 1989, and 1974 are used.

Figure 3.7 shows that indeed, the anthropogenically forced component of variabil-

ity is not expressed equally in all years. Overwhelmingly the increased variability
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due to anthropogenic forcing is most strongly expressed during ENSO neutral and

El Niño years. The lack of statistical significance in the ELI column most likely

stems from the small sample size of two years representing each ENSO phase. The

difference in amplitude for changes to El Niño forced variability between ELI (Fig-

ure 3.7(a)) and Nino 3.4 (Figure 3.7(b)) are likey due to the different sample sizes

as well. However, it could also be because ELI is a physically-based metric and

thus perhaps selects a more pure El Niño signal, as three of the years categorized

as strong El Niño were not ranked as such by ELI. Thus the additional three years

in the Nino 3.4 strong El Niño composite could be drawing bringing in variability,

which may perhaps more appropriately belong in another category. That said, even

in response to strong ocean forcing like El Niño, the increase in ensemble variability

still suggests a more variable response than would be expected in an unforced cli-

mate. Therefore, as the climate continues to warm it may be that the hydroclimate

response to strong El Niño becomes less constrained and therefore a less reliable

source of hydroclimate predictability. Additionally, the extremely wet California

winter of 2016/17 occurred at a time when the SSTAs would be best characterized

as weak La Niña to ENSO neutral conditions. Thus, 3.7 panels (c) and (d) provide

even stronger evidence that anthropogenic forcing played a role in the extremely

wet and unexpected winter of 2016/17, not by directly causing it, but by allowing

for a greater probability that it could happen. Furthermore, in the present warmed

climate relative to the preindustrial, every storm that does occur has larger amount

of atmospheric water vapor to draw on, about 7% more following Clausius Clapey-

ron (Allen and Ingram, 2002, Trenberth et al., 2003). Thus, to first order, each
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storm that does occur has the thermodynamic potential to be at least 7% stronger,

and potentially more depending on the dynamic contributions.

To further assess the role anthropogenic forcing may have played in altering the

outcome of the 2015/16 strong El Niño, we compare the observed 2015/16 SST

anomalies to those of 1983 and 1998 El Niños, which drove the “canonical” hy-

droclimate response in California. Figure 3.8 shows the respective SST anomalies

for each of the three strong El Niño years beginning with 1983 on the left to 2016

on the right. The top two rows correspond to the observed DJF average SSTAs for

the All-hist simulations in the top row and the Nat-hist SSTAs in the top-middle

row. As described in Section 3.2.1, the Nat-hist SSTs have been cooled to the best

estimate of what temperature they might have been in the absence of human in-

terference with the global climate system. All SST anomalies are calculated with

respect to the full 1960-2018 climatology. The bottom-middle row shows the dif-

ference between the All-hist and the Nat-hist SSTAs for each respective El Niño

year. Along the bottom row are probability density functions for average DJF rain

rate, spatially averaged over the state of California. The opaque red curves rep-

resent the All-hist distribution of outcomes from each ensemble member, for each

El Niño year. Similarly, the opaque blue curves correspond to the distribution of

outcomes from the Nat-hist simulations. The transparent PDFs in the background

of each plot correspond to the respective climatologies, All-hist in red, Nat-hist in

blue, both spanning 1960-2018, and the climatology from ERA5, spatio-temporally

averaged in the identical manner and spanning 1979-2019, all the years for which

data is available. The vertical dashed represent distribution means for All-hist (red
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Figure 3.8: The comparisons of the differences between the strong El Niño years of
1983 in the left column, 1998 in the middle column, and 2016 in the right column.
Across the top row the observed DJF average SSTAs corresponding the the All-hist
simulations are shown. In the top-middle row, the DJF average SSTAs correspond-
ing to the Nat-hist simulations, which have been cooled to the best estimate of what
they might have been in the absence of human interference (see Section 3.2.1 for
further details). All the SST anomalies are calculated with respect to their full 1960-
2018 climatologies. Along the bottom-middle row is the difference between the All-
and Nat-hist SST anomalies for the respective year in each column. Along the bot-
tom row the PDFs of California statewide average DJF precipitation rate are shown
for All-hist in red, Nat-hist in blue, and the observations according to ERA5 in gold.
The transparent PDFS plotted in the background correspond the DFJ climatology.
In the top two rows, the ELI values for each year are plotted in each panel for ease
of comparison. The cyan star corresponds to the ELI value for 1998, the gold star
for the ELI of 1983, and the green star for the ELI value of 2016. The horizontal
black bar plotted along the equator in each panel in the top two rows corresponds to
the range of the ELI seasonal cycle derived from data spanning 1900-2019.
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dashed line), Nat-hist (blue-dashed line) and ERA5 observed value corresponding

to the year in each column. In each panel of the top two rows, the ELI value cor-

responding to the individual El Niño years are plotted for ease of comparison. The

cyan star corresponds to the ELI value for 1998, the gold star for the ELI of 1983,

and the green star for the ELI value of 2016. The horizontal black bar plotted along

the equator in each panel in the top two rows corresponds to the range of the ELI

seasonal cycle derived from data spanning 1900-2019. Along the top row, the 1983

and 1998 share many of the same features, most prominently of which is the strong

east Pacific SST anomaly. Relative to 1983, 1998 shows more coastal warming

and a less spatially coherent north Pacific cool anomaly. However, arguably both

feature a well developed tri-pole pattern from the southern hemisphere to the north-

ern hemisphere, with the 1983 pattern showing the most coherent organization. In

stark difference, is the pattern exhibited by 2016 anomaly. There exist significant

and uniform ocean warming relative to both 1983 and 1998. The main east Pacific

anomaly most commonly associated with driving a hydroclimate response is signif-

icantly less well-developed along the coast of Peru relative to 1983 and 1998. The

anomaly is more closely situated toward the central Pacific where Modoki events

are most commonly located (Capotondi et al., 2015).

Panels (g-i) show the estimated anthropogenically forced ocean warming for

1983, 1998, and 2016 El Niño SST anomalies. Panel (i) indicates that there was a

significant component of the 2016 SST anomaly that was a result of human induced

warming. The magnitude of the differenced anomaly in 2016 (panel (i)) is signifi-

cantly larger than that of 1998 (panel (h)) or 1983 (panel (g)), suggesting the 2016
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anomaly from a SSTA perspective, appeared much larger than it actually was.

The ELI values for each year are also extremely revealing as well, as both 1983

and 1998 lie far out into the east Pacific while the ELI of 2016 lies nearly 2000

km west of those of 1983 and 1998. Since ELI represents the average location of

tropical deep convection, that is, it is generally taken to mark the center of deep

convective activity. Note that the ELI values are the same for each year between the

All- and Nat-hist simulations as part of the process of calculating an ELI value is a

removal of the tropical mean state (see Williams and Patricola (2018) and Patricola

et al. (2019) for further details). The proximal cause of the El Niño teleconnection

to California is the atmospheric response to the anomalous deep convection associ-

ated with the unseasonably warm central Pacific waters that have migrated eastward

in response to a weakened Walker circulation. The anomalous east Pacific convec-

tion generates a quasi-stationary Rossby wave that stretches north across the Pacific

basin, deepening the Aleutian low, strengthening the Pacific storm track, and shift-

ing it to the south of its climatological mean position thereby allowing more storms

to make landfall in California (Philander, 1985, Alexander et al., 2002). Thus, since

the 2016 ELI location is so far west of the ELI values for 1983,1998, they should not

be expected to generate the same atmospheric response. As previously described,

it is the proximity to the climatologically cool east Pacific waters that generates

sharp zonal and meridional SST gradients, which are able to sustain strong mois-

ture convergence fueling intense and long-lived deep convection. The further west,

away from the cool east Pacific waters convection occurs, the less energy it has to

draw upon thus the weaker it will be. The ELI location for 2016 places in much
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climatologically warmer waters, thus the convective strength would be weakened

relative to 1983 and 1998. Even more telling is that the ELI value for 2016 doesn’t

even place it outside the range of ELI seasonal cycle indicated by the horizontal

black bar. This then would suggest that the atmospheric response would fall with

in the range of natural variability. That said, the ELI location for 2016 is somewhat

anomalous even though it lies within the range of the seasonal cycle. The 2016

average DJF ELI location is ≈175◦, however, the climatological DJF value for that

period is closer to ≈161◦. The ELI seasonal cycle places it at its most eastward ex-

tent of ≈170◦ in July and August and its most westward extent of ≈157◦ in April.

So relative to the ELI climatology for that time of year, the actual eastward anomaly

is closer to ≈18◦ for 2016, versus ≈33◦ and ≈38◦ for 1983 and 1998 respectively.

Supplementary Figure C.5 shows the map view of the change in variability

across CONUS specifically for the 2016 El Niño. It shows that the largest change

in variability that winter occurred over southern California, which was the part of

California that was left particularly dry that year (Paek et al., 2017, Singh et al.,

2018).

Panels (j)-(l) show the probability density functions for estimated average DJF

precipitation rate spatially averaged over California. The 50 simulations of 1983

and 1998 for both the All- and Nat-hist simulations show a remarkably consistent

response to the ocean forcing in each of those years. The distributions themselves

powerfully illustrate why an ensemble of simulations is required for estimating the

most likely outcome for a given ocean forcing. In 1983 and 1998, both the All- and

Nat-hist ensembles contained members which greatly exceeded and fell far below
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the observed response shown by the vertical gold dashed line. Despite that, in both

1983 and 1998, the ensemble means of both the All- and Nat-hist simulations accu-

rately predict the observed response. Moreover, the All- and Nat-hist climatological

PDFs, plotted in the background in transparent red and blue respectively, accurately

describe the observed California climatology given by the ERA5 reanalysis plotted

in transparent gold. For a temporal portrayal of the changes in both climatological

and ensemble variability noted thus far, supplementary Figures C.3 and C.4 show

two representative time series for Bodega Bay, California and Houston, Texas re-

spectively. These locations are specifically chosen to highlight the differences in

the types of change these two climatologically distinct regions experience. Both

supplementary figures are an alternate view/representation of the data in the main

text figures.

Both the All- and Nat-hist climatological PDFs display much more well-defined

tails than the ERA climatological PDF owing to the larger sampling of internal vari-

ability. The ERA PDF is informed by 40 years of observations spanning 1979-2019,

while both the All- and Nat-hist ensembles contain 60 years of data from 1960-2018

with each year being simulated 50 times resulting in 2950 simulated years informing

the PDF, thus giving a much richer sampling of the internal variability of the sys-

tem. The PDFs for 2016 show that the observed response fall directly in the middle

of the ERA5 distribution indicating the 2016 El Niño delivered just average precip-

itation that year. Most interestingly, the All-hist PDF for 2016 displays a signifi-

cant widening relative to the Nat-hist simulations, and the widening predominately

is driven by an increased probability for higher rain rates that year. The Nat-hist
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distribution shows that the Nat-hist simulations accurately predicted the California

hydroclimate response to the 2016 SST forcing. Moreover, the Nat-hist PDF dis-

plays much more certainty about the outcome of the 2016 hydroclimate response

through the relatively small range of potential outcomes, showing little probability

for a wet California winter as well. The 2016 All-hist distribution is wider than both

the 1983 and 1998 distributions indicating internal atmospheric variability playing

a relatively larger role in 2016. This then suggests that anthropogenic forcing ar-

tificially amplified the magnitude of the 2016 SST anomaly thereby allowing for a

greater range of possible outcomes to the ocean forcing manifesting as an increase

in internal variability evidenced by the widening of the 2016 All-hist PDF relative

to the Nat-hist PDF.

Aside from the increased variability seen in the All-hist PDF of 2016, the clima-

tological PDFs display an interesting change as well. The All- and Nat-hist PDFs

shown respectively in transparent red and blue in panels (j)-(l) are shifted relative

to each other. The mode of the All-hist PDF is shifted down and to the left of the

Nat-hist PDF. This shift results in an increased probability for drier than average

winters in California, seen as the All-hist distribution being above the Nat-hist dis-

tribution for low average DJF rain rates. This comes at the expense rain rates near

the mean as the All-hist PDF is below the Nat-hist PDF for average DJF rain rates.

Additionally, it can be observed that at the very highest climatological rain rates,

the All-hist PDF again crosses over the Nat-hist PDF resulting in larger probabili-

ties for extreme DJF rain rates. In the Nat-hist simulations, the probability for a DJF

rain rate of 8 mm/d was effectively zero, however, in the All-hist simulations a DJF
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rain rate of 8 mm/d is definitively non-zero. This rain rate is over 2 mm/d larger

than the average rain rate that occurred during the extreme El Niño year of 1998,

which resulted in extensive damages and loss all across California (Corringham and

Cayan, 2019). An increased rain rate of 2 mm/d over the course of the 90 day DJF

period translates to on average over 7 more inches of rain across all of California

than fell during the 1998 extreme El Niño. If this were to happen, and the All-hist

simulations suggest that in an anthropogeniclly forced climate it is possible, then

the damages sustained in California would likely be devastating and more severe

than anything that has occurred within the observational record. However, that said,

the total change in probability from the Nat-hist simulations to the All-hist simula-

tions is in total larger for smaller DJF rain rates, suggesting that overall, the change

in variability due to anthropogenic forcing has, on average, favored drier winters

on average rather than wetter ones. This then suggests that in California, climate

change has had the effect to increase the probability for both droughts and floods

and further highlights the particularly changeling nature of adapting to changes in

variability. Because the All-hist climatological PDF is widened, reflecting the in-

crease in variability in an anthopogenically forced climate, it allows simultaneously

for both lower and higher rain rates, in any given year, across all of California.

As shown in Figure 3.7, the increased variability in the All-hist simulations are

not expressed equally in all years. Similarly, the All-hist climatological PDF shown

in Figure 3.8 indicate that the change in variability not be being expressed equally

in all percentiles of the precipitation distribution. This then motivates decomposing

average DJF rain rate by percentile and assessing changes in the variability of each
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percentile individually. We do this for every year by selecting the daily DJF rain rate

corresponding to the percentile under consideration. We then compute the standard

deviation of those data for all years. We do that for every ensemble member then

compute the ensemble mean. We choose the 10th, 25th, 50th, 75th, 90th, and 99th

percentiles of DJF rain rate for consideration.

Figure 3.9: Panels (a-f) show the All-hist minus Nat-hist difference in standard
deviation for the 10th, 25th, 50th, 75th, 90th, and 99th percentiles of DJF rain rate
respectively. For both the All- and Nat-hist simulations, the percentiles for daily
rain rate are calculated for each DJF period, and the standard deviation is taken
across all years. This is done for every ensemble member and then the ensemble
means are taken. The differences in the ensemble mean variances between the All-
and Nat-hist simulations for each percentile are shown above.

Figure 3.9 shows the stark differences in how the excess anthropogenic vari-

ability is expressed across the percentiles of the average DJF rain rate distribution.

The lowest rain rate percentiles, the 10th and and 25th shown in panels (a) and (b)

respectively, show little to no change in variability across California between the
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All- and the Nat-hist ensembles. The P50 percentile shown in panel (c) shows a

slight decrease across northern most California, suggesting that the “average” DJF

rain rate has become less likely. This can also be inferred, and is in line with, the

changes to the climatological distributions of the spatially aggregated data for Cali-

fornia shown in the bottom row of Figure 3.8. Both the 50th and the 75th percentiles

shown in panels (d) and (e) and show progressive strengthening and a progressively

larger footprint over California. At the 99th percentile shown in panel (f), there is a

highly nonlinear shift in the expression of anthropogeniclly forced variability from

the 90th to the 99th percentiles. This indicates that the variability in the most extreme

winter rainfall has been increased as a result of human activities. In other words,

that due to human forcing, from year-to-year there can be large differences in the

most extreme rain rates experienced. As panel (f) indicates, this is particularly true

for California, but it is also a noticeable, and statistically significant change across

most of CONUS. This even true for the U.S. southwest which showed, averaged

across all percentiles, a decrease in the variability of average DJF rain rate (Figure

3.6). This implies that, that on the whole, DJF precipitation is less variable across

the southwest, that is, pushed toward more consistent lower rain rates. However, the

exception to this is seems to be, while not statistically significant, there is an ele-

vated potential for experiencing daily rain rain rates that are more extreme than what

they would have been in an unforced climate. But more so than anywhere across

CONUS, this is particularly true for California and the Deep South. For California,

the spatially coherent change in variability at the 99th percentile has a southwest-

northeast orientation suggesting that change in variability is likely related to either
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difference in AR frequency, AR strength, or both between the All- and Nat-hist

simulations. Gershunov et al. (2019) found a similar result for future California hy-

droclimate which was characterized by increased interannual variability that could

largely be attributed to variability in AR occurrence. Similarly, they also found

that while AR related precipitation increased in a future warmed climate, mean

precipitation did not change due to a decrease in non-AR related precipitation. This

then strongly suggests that the changes in California winter hydroclimate variability

stem from an increase in both AR-frequency, related to the increase in interannual

variability shown in Figure 3.6, and AR-strength, shown by the disproportionate

increase in variability at the 99th percentile in Figure 3.9.

3.4 Conclusions

Trends in mean in precipitation are not necessarily indicative of how precipitation

variability behaves, that is, a null trend in the mean does not imply that other as-

pects of the distribution are not changing. For example, at the annual and decadal

time scales large excursions in annual accumulated precipitation can be effectively

negated by multiple years of below average precipitation. Thus despite extremely

wet winters that may be suggestive of increasing winter precipitation, long term

trends may remain negligible. The absence of precipitation observations not subject

to the effects of the climate change that has occurred to date make it exceedingly dif-

ficult to distinguish natural variability from anthropogenically forced change. That,

combined with a relatively short record of observations that limits the total sample
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size, makes it even harder to draw statistically robust conclusions.

Observational studies have documented an increase in precipitation variability

across a range of temporal and spatial scales (e.g. Karl et al. (1995), Tsonis (1996),

Svoma and Balling (2010), and Pendergrass et al. (2017)). Yet, to what extent those

trends may be the result of anthropogenic forcing has not been shown. Using two

large ensembles of simulations that represent the observed climate over the last 60

years and what that climate might have looked like in the absence of human inter-

ference, we have shown that much of the observed precipitation variability is not a

result of natural variability. In the anthropogenically forced simulations, we find a

large increase in both interannual variability and the variability associated with ex-

treme precipitation in any given year. While the fraction of variability attributable to

the ocean has not changed in a meaningful way, the large increase in internal atmo-

spheric variability in the anthropogenically forced simulations allows for a greater

range of outcomes to the equivalent ocean variability than in the naturally forced

simulations. Taken as a whole, our results indicate that the human interference with

the global climate system has the net effect to make wintertime precipitation both

more volatile from year-to-year and less predictable in any given year. Regions

with naturally high hydroclimate variability appear to be affected the most, that is,

to compound variability on top of already high hydroclimate variability. This is true

for the western U.S., and in particular California, but is also true of other regions

around the world including western Europe. A summary of our main findings are

provided below.

1. In many regions around the world, we find a significant increase in the amount
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of DJF (the boreal winter) precipitation variability attributable to anthropogenic

forcing. Much of the increase in variability is the result of an increase in in-

ternal atmospheric variability, which allows for a greater number of seasonal

hydroclimate outcomes in response to the equivalent ocean variability (Fig-

ures 3.4 and 3.5).

2. In the United States, the western U.S. and in particular California, has ex-

perienced the largest increase in average DJF precipitation variability and

concomitant decrease in predictability as a result of anthropogenic forcing.

However, the human forced increase in winter hydroclimate variability also

appears across much of the northern half of the country stretching from the

inner-mountain west to the Great Lakes region, as well as to a lesser extent

the northeast and the eastern seaboard (Figure 3.6).

3. The increase in hydroclimate variability due to human forcing appears to not

be evenly expressed in all years. Predominately, the increased variability is

most strongly expressed during ENSO neutral years and to a slightly lesser

degree El Niño years (Figure 3.7).

4. The increased variability due to human forcing appears to have played a role

in altering the expected western U.S. hydroclimate response of the strong El

Niño of 2015/16. Not only were the anthropogenic effects apparent in the

variability of the precipitation response in California, but the magnitude of

the tropical east Pacific SST anomaly appears to have been artificially en-

hanced due to a large increase in the temperature of the background ocean
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state (Figure 3.8).

5. The probability density functions representing California average DJF pre-

cipitation climatology are shifted in the anthropogenically forced simulations

relative to the naturally forced ones. The difference indicates a greater prob-

ability for years with below average precipitation, however, this also comes

with a lesser, but increased probability for extreme flood years with poten-

tially up to 33% more rainfall statewide than occurred during the extreme El

Niño of 1998. Thus taken together, we find that anthropogenic forcing has

made both drought and extreme flooding in California more likely (Figure

3.8).

6. The change in DJF precipitation variability is not reflected equally across all

percentiles of the precipitation distribution. Overwhelmingly, the increase in

variability is disproportionately expressed in the 99th percentile of DJF pre-

cipitation. Geographically, the largest change in the variability of the 99th

percentile is in California. However, at that extreme precipitation rate, nearly

everywhere across CONUS appears to have experienced an increase in vari-

ability due to human forcing. This is even true for the southwest U.S., which

our results show on average, has seen a less variable DJF hydroclimate than

would have occurred in a climate without human interference (Figure 3.9).

To summarize, in response to the same ocean variability the All-hist simulations

produced on average more interannual variability than the Nat-hist simulations. In

addition, the All-hist simulations also produced on average a wider range of out-
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comes than the Nat-hist simulations for the same ocean forcing in any given year.

The latter relates to a loss in predictability given a fixed ocean state, while the for-

mer relates to a climate characterized by greater year-to-year excursions in accu-

mulated winter precipitation, i.e. higher highs and lower lows from year-to-year.

In California, it is observed that to a large extent the increase in interannual vari-

ability is driven more by higher highs rather than lower lows. However, the lower

lows have a greater probability of occurring in any given year than the higher highs.

Both the ensemble variance for any given year and the interannual variance for any

given ensemble member increased over that of the Nat-hist simulations. However,

the average All-hist interannual variance increased more than the average All-hist

ensemble variance. Together the anthropogenically forced simulations produce a

climate that is both more variable year-to-year and with less predictable outcomes

in any given year.
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Closing Remarks

The impacts of meteorological and climatological extreme events are profound

and far-reaching, causing disproportionate losses to human and environmental sys-

tems. The overarching focus of this dissertation is to understand, describe, and

quantify a subset of extreme meteorological events occurring in a climate subject to

a rapidly changing background state. Much of the work in this dissertation is specif-

ically aimed at disentangling the naturally occurring variability of extreme events

from the interwoven signal of anthropogeniclly driven change.

Chapter one introduced a novel approach to quantifying co-occurring meteoro-

logical extremes. Using a state-of-the-science multivariate nonparametric probabil-

ity density estimation method, we used California wintertime temperature and pre-

cipitation and quantified their bivariate relationship as a function of third condition-

ing covariate describing various modes of natural variability and change. Using this

methodology we were able to succinctly quantify nonlinear relationships that exist

among the variables and explicitly account for statistical nonstationarity. Among

the many revealing discoveries made, we found that, (1) the joint relationship of

temperature and precipitation as a function of ENSO phase vary in such a way that

in northern California, El Niño and La Niña winters tend to receive the same amount
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of precipitation, however, La Niña winter tend to be much colder providing more

favorable conditions for increased winter mountain snowpack and in turn a more sta-

ble water supply for the following dry summer months. (2) As a function of global

mean temperature rise, the bivariate relationship of winter temperature and precipi-

tation in California exhibit a highly complex and nonlinear relationship. Their joint

dependence reveals that early in the 20th century, when global mean temperatures

were≈1◦C cooler than they are today, warm winters were positively correlated with

wet winters. However, around mid-century that relationship underwent a reversal

such that presently, warm winters are now positively correlated with dry winters

thereby elevating the risk for drought in California in the present climate. (3) Of all

the modes of variability we considered, the dipole index, which describes the phase

and magnitude of a circumpolar Rossby wavenumber 5, has the largest control of

California wintertime temperature and precipitation. Of all the natural modes of

variability studied, the dipole index was the only mode to favor simultaneous dry

and warm winters. Because of the reversal in the temperature/precipitation relation-

ship observed in the global temperature analysis, it remains an outstanding question

whether global mean temperature rise has positively amplified the magnitude of

control the dipole index has on California winter climatology or perhaps increased

the frequency of expression of that particular wavenumber.

Chapter two focused on the detection and attribution of aggregated anthropogenic

effect on wintertime hydrometeorology across the continental U.S. from 1960-2018.

We considered a range of temporal scales to assess the potential nonuniform ex-

pression of an anthropogenic signal in time and in space. We use two sets of large
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ensemble simulations, one which simulates the climate as it is today, and the other

which simulates the our best estimate of what the climate might have been without

human interference. Both ensembles share the same ocean variability therefore we

calculate the anthropogenic effect as the residual between the two sets of simula-

tions. We express changes to the types of events studied in forms: a magnitude-

based form reflecting changes to the 100-year return level, and a frequency-based

form, known as the risk ratio, which reflects changes in the number of occurrences

of a particular type of event. By quantifying anthropogeniclly forced changes us-

ing these two methodologies, we are able to employ two independent methods for

assessing the statistical significance of the results. This then in turn allows for in-

dependent statistical verification of the results to reinforce statistically significant

findings where they exist. In addition, the large sample size the ensembles provide

allow for the more nuanced detection of subtle signals. Using this framework we

find that, (1) extreme daily rainfall above the 100-year return level are about twice as

likely in an anthropogeniclly forced climate and about 7-10% larger in magnitude.

(2) Along the U.S. west coast, anthropogenic changes on time-scales ranging from

1- to 40-days appear to be intimately related to atmospheric river activity. (3) Across

nearly all of the continental U.S., the mean daily rain rate on days when it rained

was about 3.5% larger in the anthropogenically forced simulation. This implies that

the mean rate appears to scale at a rate commensurate with Clausius-Clapeyron. (4)

At all time-scales considered, changes to the 100-year return level (extreme rainfall)

was approximately 7% larger in the anthropogenically forced simulations implying

that extremes appear to scale at a rate double that of Clausius-Clapeyron. (5) On
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average, total winter precipitation increased over the northern half of the U.S. and

in the northeast, but decreased over the U.S. southwest, California, and along the

Pacific northwest coast.

Chapter three focused on detecting and identifying the anthropogenically forced

contributions to changes in the observed temporal hydrometerlogical variability.

Leveraging the same large ensembles employed in Chapter two, we quantified changes

to the year-to-year variability in average December-February rain rate. We found

that, (1) the anthropogenically forced simulations showed an increase in internal

atmospheric variability, and correspondingly a decrease in seasonal predictability

in any given year regardless of the ocean state. (2) The increase in hydroclimate

variability associated with human forcing is not expressed evenly in all years. Years

of ENSO neutral and El Niño tend to show the largest increase in anthropogeniclly

induced precipitation variability. (3) The increase in precipitation variability due to

human forcing appears to have played a role in the outcomes of both the failure of

the strong El Niño of 2015/16 to drive the expected hydroclimate response in Cali-

fornia and the 2016/17 extreme wet year occurring in the absence of any large-scale

forcing. (4) The climatological probability density functions representing California

DJF precipitation indicate that anthropogenic forcing has simultaneously increased

the probability for both droughts and extreme flooding. The increase in the prob-

ability for below average rainfall is greater than the increase in the probability for

extreme rainfall, but the changes are highly asymmetric. The increase in probability

for flooding in the anthropogenically forced simulations indicates a nonzero proba-

bility of a DJF period with up to 33% more rainfall statewide than occurred during
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the extreme El Niño of 1998. (5) The anthropogenically forced changes to inter-

annual precipitation variability are not expressed equally across all percentiles of

the precipitation distribution. Overwhelmingly, the excess variability is expressed

in 90/99th percentiles of daily DJF precipitation rate, resulting in more extreme pre-

cipitation volatility from year-to-year. This change is observed across most of the

continental U.S., but California in particular experiences the largest change in hy-

droclimate variability and volatility as a result of anthropogenic forcing.

In plain language, taken together the work contained in this dissertation shows

that the climate change effects due to human activities, which has been predicted

for many future scenarios, is already here, happening now, and affecting human and

environmental systems. The observed changes to the global climate system are not

consistent with natural variability alone and therefore the associated extreme events

will become evermore disconnected from natural causal mechanisms in the future.

As such, the effects documented here will only become more pronounced and severe

if actions are not taken to limit global greenhouse gas emissions.
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Figure S1. Composited sea surface temperature anomalies based on, (a) 
the highest 10 percent (P90) winter values of MEI and, (b) the lowest 10 
percent (P10) of winter MEI values. These SSTA patterns represent, (a) 
El Nino and, (b) La Nina and correspond to the cPDFs in Figure 1 panels 
(d),(e) and (i),(j).

(a)

(b)
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Figure S2. Figure as in the main manuscript, however, all temperature 
and precipitation data are statewide wintertime averages conditional 
on MEI.
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Figure S3. Composited sea surface temperature anomalies based on, (a) 
the highest 10 percent (P90) winter values of PDO and, (b) the lowest 
10 percent (P10) of winter PDO values. These SSTA patterns represent, 
(a) the PDO warm phase, (b) the PDO cool phase and correspond to the 
cPDFs in Figure 2 panels (d),(e) and (i),(j).

(a)

(b)
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Figure S4. Figure as in the main manuscript, however, all temperature 
and precipitation data are statewide wintertime averages conditional 
on PDO.
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Figure S5. Composited sea surface temperature anomalies based on, (a) 
the highest 10 percent (P90) winter values of AMO and, (b) the lowest 
10 percent (P10) of winter AMO values. These SSTA patterns represent, 
(a) the AMO warm phase, (b) the AMO cool phase and correspond to 
the cPDFs in Figure 3 panels (d),(e) and (i),(j).

(a)

(b)
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Figure S6. Figure as in the main manuscript, however, all temperature 
and precipitation data are statewide wintertime averages conditional 
on AMO.
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Figure S7. Composited geopotential height anomalies based on, (a) the 
highest 10 percent (P90) winter values of DPI and, (b) the lowest 10 
percent (P10) of winter DPI values. These atmospheric patterns 
represent, (a) the DPI positive phase, (b) the DPI negative phase and 
correspond to the cPDFs in Figure 4 panels (d),(e) and (i),(j).
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Figure S8. Figure as in the main manuscript, however, all temperature 
and precipitation data are statewide wintertime averages conditional 
on DPI.
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Figure S9. Composited global mean temperature anomalies based on, 
(a) the highest 10 percent (P90) winter values of GMTA and, (b) the 
lowest 10 percent (P10) of winter GMTA values. These temperature 
patterns represent, (a) the late 20th/early 21st century , (b) the late 
19th/early 20th century and correspond to the cPDFs in Figure 5 panels 
(d),(e) and (i),(j).
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Figure S10. Figure as in the main manuscript, however, all temperature 
and precipitation data are statewide wintertime averages conditional 
on GMTA.
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Figure S11. Pairplot showing the inter-relationships between all 
variables considered for this study. Subplots boxed in red represent 
statistically significant correlations (p<=0.1).
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Table S1. Table documenting the years which correspond to winter 
averages that are less than (greater than) the  P10 (P90) values for each 
mode of variability (conditioning variable) used in this study.
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Appendix B

Supporting Material for Chapter 2:

The Anthropogenic Contribution to

the Observed Hydrometeorology over

the Continental U.S. from 1960-2018
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Figure B.1: As in Figure 2.1, but expressed in absolute differences.
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Figure B.2: As in Figure 2.2, but expressed in absolute differences.
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Figure B.3: As in Figure 2.3, but expressed in absolute differences.
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Figure B.4: As in Figure 2.4, but expressed in absolute differences.
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Figure B.5: As in Figure 2.5, but expressed in absolute differences.
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Figure C.1: The distributions of relative fraction of ocean forced variance, refer-
ring to the main text Figures 3.1 and 3.3. The distributions reflect the respective
fraction of ocean forced variance for the All-hist simulations (Red) and the Nat-hist
simulations (Blue). The data come from midlatitude grid points and show four rep-
resentative cases of change. Panel (a) shows a location showing both a statistically
significant change in mean and in the standard deviation (i.e. a stippled location in
both Figures 3.1 and 3.3). Panel (b) shows a statistically significant change in the
mean but not the standard deviation (i.e. a stippled location in Figure 3.1 but not
3.3). Panel (c) shows a statistically significant change in the standard deviation but
not the mean (i.e. a stippled location in Figure 3.3 but not 3.1). Panel (d) shows a
location where neither the change in the mean or the standard deviation is signifi-
cant (i.e. a location which is not stippled in both Figures 3.3 and 3.1). To describe a
specific case, panel (a) shows that at that particular location, the average value of the
fraction of ocean forced variability in the Nat-hist simulations is approximately 5%
(this is what is shown in Figure 3.1), but could range as low as 3% or as high as 8%
(this range, as indicated by the standard deviation of the distribution, is what would
be reflected in Figure 3.3). At the same location, the All-hist simulations indicate
that the average value of the fraction of ocean forced variance is approximately
14%, but could range as low as 7% or as high as 23%.
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Figure C.2: The ratio of the mean variability across ensemble members to the mean
of the climatological variability for each ensemble member, for the All-hist sim-
ulations (a), Nat-hist simulations (b), and their difference, All-hist minus Nat-hist
(c).
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Figure C.3: The data shown here geographically correspond to Bodega Bay, Cali-
fornia. Panel (a) shows the realizations for all 50 ensemble members in time from
1960-2018 (red). The Black curve represents the ensemble mean. The ERA5 re-
analysis is shown in for when the data exist (olive). The linear regressions on each
ensemble realization are plotted in green. The linear regression on the ensemble
mean is plotted as the black dash-dot line. The lowest brown horizontal dashed
line marks the absolute ensemble minimum. The second lowest cyan line marks the
average ensemble minimum. The solid magenta line in the middle marks the time
average of the ensemble mean. The dashed black line marks the 99th percentile of
the ensemble realizations. The second to the highest dashed blue line marks the av-
erage ensemble maximum. And the highest hot pink dashed line marks the absolute
ensemble maximum. Panel (b), as in panel (a) but for the Nat-hist simulations. Panel
(c) shows the individual ensemble predictions for the strong El Niño year of 1998.
The All-hist members drawn in red, the Nat-hist members in blue. The lowest dot-
ted red/blue line marks the 1st percentile of the All/Nat-hist ensemble estimations.
The central horizontal red/blue lines mark the All/Nat-hist ensemble mean predic-
tion. The horizontal olive line represents the ERA5 observation. The two uppermost
red/blue dash-dot lines mark the 99th percentile of the ensemble estimations. Panel
(d) as in panel (c) but for the ENSO neutral year of 1991. In panel (a) the correla-
tion of the All/Nat ensemble mean with ERA5 is r = 0.58 (r2 = 0.34)/r = 0.55
(r2 = 0.30). The maximum correlation with any single All/Nat ensemble member is
r = 0.52/r = 0.54, while the minimum All/Nat correlation is r = −0.02/r = −0.2
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Figure C.4: As in supplementary Figure C.3, but for data representing the geograph-
ical location of Houston, Texas. In panel (a) the correlation of the All/Nat ensemble
mean with ERA5 is r = 0.35 (r2 = 0.12)/r = 0.33 (r2 = 0.11). The maximum
correlation with any single All/Nat ensemble member is r = 0.52/r = 0.51, while
the minimum All/Nat correlation is r = −0.12/r = −0.23
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Figure C.5: The simulated outcome for the strong El Niño year of 2015/16 for
the All-hist simulations in the top row and the Nat-hist simulations in the bottom
row, and their difference along the bottom row. The left column corresponds to the
modeled precipitation anomaly and the right column corresponds to the ensemble
standard deviation of the simulated average DJF precipitation rate.
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