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Abstract

Aspects of S-Duality

by

Chao Ju

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Ori Ganor, Chair

Classically, the ground states of N = 4 Super Yang-Mills Theory (SYM) on R× S3/Γ
where Γ is one of the ADE subgroup of SU(2) are flat Wilson lines winding around the
ADE singularity. S-duality acts on this finite-dimensional ground state Hilbert space
and its action is the same as the S operator in a certain dual Chern-Simons theory on
T 2. The dual Chern-Simons theory arises out of the only long-range interaction in a
string/M theory construction by considering a stack of D3(M5) branes on ADE singu-
larity. This SYM/Chern-Simons duality is verified by matching the ground state Hilbert
spaces of both theories and by comparing the S-duality operators of both theories.

To one-loop order, the SYM ground state degeneracy is exact. A detailed computation
using the superconformal index shows that each classical SYM ground state acquires the
same supersymmetric Casimir energy. S-duality maps the SYM ground state Wilson
lines to ground state t’ Hooft lines taking values in the Langlands dual group. The
number of t’ Hooft lines are shown to agree with that of the Wilson lines. In addition,
the t’ Hooft lines have the same supersymmetric Casimir energy as the corresponding
Wilson lines. These two facts provide a ground state test of S-duality.

The SYM/Chern-Simons duality has an important extension to the class S theory
obtained from compactifying M5 branes on a Riemann surface R. The ground states of
class S theory on R× S3/Γ are dual to the states of the dual Chern-Simons theory on
R. In particular, we uncover a surprising result that there is only one unique ground
state for the conformal N = 2 SU(2) four-flavor theory on R×S3/Γ. Finally, we apply
the SYM/Chern-Simons duality to a non-Lagrangian class S theory and find that its
ground states obey the fusion rule of the current algebra of the dual Chern-Simons
theory.
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Chapter 1

Friendly Introduction

In my junior year of college, I got interested in physics and decided to pursue a grad-
uate education in physics. The decision to study physics was not made overnight. In
hindsight, it was a confluence of influences built up over the years, random tidbits that
do not make sense individually somehow converging to a coherent vision. The most
prominent influences were the works by Stanislaw Lem, Cixin Liu, and Christopher
Nolan. In particular, I wanted to answer questions such as “where do we come from”,
“where are we going”, “what happens at the singularity of a black hole”, and “do we
live in dimensions more than four”. Four and a half years later, I am still unable to
answer any of these questions. Let us therefore consider a simpler concept: duality.
A particular subclass of this concept called S-duality will be the main theme of this
dissertation.

The concept of duality has appeared in many areas of science and humanities. For
an example from the latter category, the concept of yin-yang features prominently in
ancient Chinese cosmology, medicine, and philosophy. In one interpretation, there is
a one-to-one map from what is weak (yin) to what is strong (yang). For an example
from mathematics, we know that any probability value p ∈ R lies in the range [0, 1].
However [1], the axiomatic derivation of the range of p in fact permits two distinct but
equivalent solutions: p ∈ [0, 1] and p ∈ [1,∞). In the latter solution, “impossibility”
corresponds to the value ∞ and “certainty” corresponds to the value 1. The map
between these two ranges is simply an inversion p→ 1/p. We choose to work with the
first range [0, 1] because it is finite and therefore easier to work with.

The duality we will be interested in will come from physics, where there is an
unambiguous definition. Let us look at an example of duality from string theory which
is similar to the inversion duality in probability theory. Unlike point particles, strings
perceive geometry very differently. To see this, consider a (possibly impossible) universe
whose spatial geometry is a circle S1 of radius R. Suppose that only closed strings exist
in this universe. A closed string can tightly wind around the circle m ∈ N times, which
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results in an energy proportional to mR coming from the tension of the string. There
is also kinetic energy coming from the motion of the string: it can rotate around the
circle with some momentum. However, a circle has a closed topology, so the allowed
momenta of the string are quantized in units of 1/R. Overall, the energy of the closed
string winding around the circle m times is

mR +
n

R
(1.1)

where n is some integer characterizing how fast the string is moving. The above ex-
pression is not changed if we send R to 1/R and exchange m and n. This operation, in
words, means that the energy does not change if we change the circle from a very small
one (say R is small) to a very large one and exchange the winding number with the
momentum number. This is more or less the essence behind T-duality in string theory.
Closed strings cannot distinguish a small circle with radius R from a large circle with
radius 1/R! Particles, however, do see the difference between a small circle and a large
circle. Unlike closed strings, particles cannot wind around the circle to create a mR
term in the energy. Particles do not have any tension and they only carry momentum,
so n/R is the only term in the expression for the particle energy. Therefore, there is no
similar operation that sets equal the energy of a particle on a circle with radius R to
that on a circle with radius 1/R.

More precisely, for something to be called a duality in physics, it is not enough to
match just one particular property such as energy. The “Hilbert space” should also
match. The Hilbert space of a theory basically characterizes the particle spectrum of a
theory. For example, a particle of spin 1/2 can be either spin up or spin down, creating
a 2-dimensional Hilbert space. For two finite-dimensional Hilbert spaces to match, the
only requirement is that they share the same dimension. If theory A is dual to theory
B, there must be a one-to-one map between the Hilbert spaces of each theory. In the
T-duality example, a more detailed analysis using string theory shows that there is
indeed a match in Hilbert space between the theory on the circle with radius R and
the theory on the circle with radius 1/R [2].

The particular kind of duality that will concern us in this dissertation is called S-
duality which has roots inN = 4 super Yang-Mills theory. Yang-Mills theory is a theory
that describes the dynamics of quarks and gluons. It is a generalization of quantum
electrodynamics that describes the dynamics of electrons and photons. Super Yang-
Mills theory is a Yang-Mills theory with supersymmetry: each fermion (i.e. matter
particle) in the theory has a bosonic partner (i.e. force carrier). N = 4 super Yang-
Mills theory is a supersymmetric Yang-Mills theory with 4 supercharges, those that
turn fermions into bosons and vice versa. There is a coupling constant g in the theory
which controls the strength of the interactions of gluons and quarks. For small g, quarks
barely interacts with gluons, and they propagate more or less freely. If one is able to
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look at a quark when g is small, one would see more or less a localized, point-like blob.
As we increase the value of g, the interaction gets stronger, so the blob becomes less
point-like and more cloud-like. The blob will look dilated because of the interactions
between the quark and the gluons. Virtual quarks and gluons fluctuate in and out of
the vacuum to give the blob a cloud-like appearance. Excitations that look like this are
called monopoles. In fact, the large g theory is more naturally described by monopoles,
and there is a duality between the small g theory and the large g theory by exchanging
the particles (quarks and gluons) with the monopoles. This is the basic idea behind
S-duality: it is a strong-weak duality in the sense that a weakly-coupled theory is dual
to a strongly-coupled theory. The map between the coupling constants turns out to be
an inversion map g → 1/g.

There is one thing that needs to be made more precise. In physics, it is well-known
that coupling constants generically change value if we look at a theory from different
scales. This is the idea behind renormalization group flow [3]. In computer science,
people care about compressing data so that an image is readable but the memory used
to store the image is reduced. This can be done, for example, by doing a singular
value decomposition on the pixel data and discard those singular values that are small
compared to the rest. In physics, if we want to understand the long-distance behavior of
a system, we coarse-grain the system so that we forget about the short-distance degrees
of freedom. However, this is different from data compression because in the process of
coarse-graining, we do not just throw away the short-distance degrees of freedom like
we do for the small singular values. Instead, we throw away the short-distance degrees
of freedom while incorporating their effect on the system into the theory by demanding
that the “partition function” of the theory remains unchanged in the process of coarse-
graining. The partition function characterizes the Hilbert space of the theory and so
it completely characterizes the theory. To illustrate this idea, the following contrived
example involves a random theory with coupling constant g viewed from a short distance
scale l. Suppose that the partition function Z has the form

Z ≡ exp

(
ig(l)

∫ ∞

l

Q(l)

)
(1.2)

where Q(l) is some differential form depending on l and where the integration is done
from the short distance scale l, signaling our ignorance of what is happening below the
distance scale l. Now, suppose we want to look at the system at a larger length scale
l′ > l. We can break up the integral into two parts, one from l to l′ and the other from
l′ to ∞:

Z = exp

(
ig(l)

∫ l′

l

Q(l)

)
exp

(
ig(l)

∫ ∞

l′
Q(l)

)
(1.3)
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The first term represents the effect of coarse-graining: we integrate over the details
below the scale of interests l′. For someone interested in data compression, he would
simply throw away the first term and keep the second term. However, in our setting,
doing so would change Z and therefore change the whole story. This is the crucial
difference between data compression and renormalization group flow. The former simply
forgets the short-distance degrees of freedom while the latter is a consistent way of
forgetting short-distance degrees of freedom (by keeping Z unchanged). We can rewrite
the above expression into

Z = exp

(
ig(l′)

∫ ∞

l′
Q(l′) + other terms generated from coarse graining

)
(1.4)

where the other terms come from 1) the coarse-graining term (the first term in equa-
tion (1.3)), and 2) some potentially complicated terms by changing Q(l) to Q(l′) in
the integrand and g(l) to g(l′). This suggests the following: coarse-graining generically
changes the value of the coupling constants (in this case g(l) to g(l′)), and introduces
other terms in the theory (they are called interaction terms in physics). This is the
idea behind renormalization group flow: the coupling constants of a theory generically
change as we look at the theory from different length scales. In addition, other interac-
tion terms generically pop up in this process. As this example illustrates, both of these
points are simply natural consequences of keeping the partition function Z unchanged
as we coarse-grain.

We made a detour into renormalization group flow because we want to ask the
following question. As seen earlier, S-duality maps the N = 4 super Yang-Mills theory
with coupling constant g to a different N = 4 super Yang-Mills theory with coupling
constant 1/g. How do we know that such two theories are indeed different, that this
change in the coupling constant is not something that results from renormalization
group flow (coarse-graining) of the same theory? The answer is that the N = 4 super
Yang-Mills theory is conformal. A special feature of a conformal theory is that the
theory is scale-invariant: it is the same no matter what distance scale we look at. We
are free to zoom in and to zoom out. The coupling constants do not change under
renormalization group flow. In nature, we can find similar scale-invariant systems in
fractals. Therefore, N = 4 super Yang-Mills theory with coupling constant g is truly
different from the one with coupling constant 1/g. There is no way the theory can flow
from g to 1/g under coarse-graining because it is conformal.

The N = 4 super Yang-Mills theory therefore has both supersymmetry and con-
formal symmetry. These two symmetry groups combine to create a larger symmetry
group called superconformal symmetry. The more symmetry a system has, the more
constrained the system is, and the solutions to the dynamics of a much constrained
system are easier to spot than an unconstrained system. An example of how symmetry
constrains the solutions comes from probability theory. Suppose that we want to write



CHAPTER 1. FRIENDLY INTRODUCTION 6

down a two-dimensional probability distribution that is invariant under rotation, then
there can be many candidates as long as the distribution is a function of

√
x2 + y2

only. However, if we demand further that the error along the x-direction is uncorre-
lated with the error along the y-direction (astronomers knew about this un-correlation,
for example, a few hundred years ago when they tried to draw the celestial maps to
locate planets), then there is only one unique solution: the two-dimensional Gaussian
distribution. In our case, the superconformal group constrains the dynamics of the
super Yang-Mills theory such that many quantities can be exactly computable, ones
that do not depend on how small or large the coupling constant g is. In physics, for
small coupling constant g, the usual way to compute things is by perturbation theory:
the quantities that we want to compute are expanded in an asymptotic series as in
a0 + a1g + a2g

2 + .... We compute each of the aj and truncate the series at some point
to get a perturbative answer. However, this method does not work when g is large, in
which case we have no reason to expect that the first few terms in the asymptotic series
are a good approximation to the quantity we want to compute. In fact, many of the
quantities we compute will therefore depend on the value of the coupling constant g.
Does there exist some computable quantities that are do not vary as g changes? These
quantities are called “protected” and they indeed exist in theories with superconformal
symmetry.

A particular protected quantity we will compute in this paper is called the super-
conformal index, a quantity that does not change as one varies the value of the coupling
constant g. Here, we explain a simpler variant of this concept. We mentioned earlier
that the action of supercharges (here we denote them as Q) on bosonic states (resp.
fermionic states) turns them into fermion states (resp. bosonic states). This is the
definition of supersymmetry. One can think of Q as a matrix and the states as vectors.
It turns out that acting Q on a state does not change its energy. So when a bosonic
state χ has a positive energy, ψ = Qχ will yield a fermionic state ψ having the same
energy. Therefore, states having positive energy can be arranged in boson-fermion
pairs. However, some states are annihilated by Q: that is, they lie in the nullspace
of Q. Those states turn out to have zero energy. Because they are annihilated by Q,
zero-energy states are not guaranteed to form perfect one-to-one boson-fermion pairing:
we do not have a similar expression ψ = Qχ for a zero energy state χ because Qχ = 0.
In general, changing the coupling constant of the theory will cause the states in the
theory to change energy. Zero energy states can be excited to gain energy, and positive
energy states can lose energy to become zero energy states. Is there a quantity that is
protected in this theory? Indeed, consider the quantity

number of bosonic zero energy states− number of fermionic zero energy states (1.5)

The claim is that this quantity does not change as we vary the coupling constant.
To see this, note that when a zero energy state gains an energy, it must be paired with a



CHAPTER 1. FRIENDLY INTRODUCTION 7

supersymmetric partner as argued earlier. However, all other states that have positive
energy are already paired. Therefore, it must be that the zero energy states gain energy
in pairs of fermions and bosons! Denote the number of zero energy states as (x, y) where
x is the number of bosonic states and y is the number of fermionic states. An evolution
of this quantity as we vary the coupling constant could be: (3, 5) → (2, 4) → (1, 3) →
(0, 2). Each time, a pair of boson and fermion gains energy and leaves the zero energy
subspace. However, the difference x − y = −2 stays constant. This is the basic idea
behind the superconformal index. The key behind it is the perfect pairing between
positive energy bosonic states and positive energy fermionic states. S-duality maps a
weakly-coupled theory to a strongly-coupled theory. To compare both theories, we need
some quantity that does not vary as the coupling constant changes. As we will see later
in this dissertation, superconformal index comes in handy for this purpose because it
is a protected quantity.

As mentioned earlier, when S-duality acts on the super Yang-Mills theory, it inverts
the coupling constant and turns particles into monopoles. However, the Hilbert space
of the super Yang-Mills theory is infinite-dimensional, and it is hard to find a repre-
sentation of S-duality on this Hilbert space. It will be a blessing if we could isolate a
particular part of the Hilbert space that is only finite-dimensional and that does not
mix with the rest of the Hilbert space under the action of S-duality. The representation
of the action of S-duality on this finite-dimensional subspace will therefore be finite-
dimensional and should be easier to analyze. The way we achieve this is to put the
super Yang-Mills theory on a singular geometry, of the form S3/Γ. Here, S3 is the three
sphere, and Γ is some discrete group. This expression means that we identify two points
on S3 if they are related by some group element in Γ. An example of a singular space
is R2/Z2, which results in a cone as we identify (x, y) with (−x,−y). Once we put the
super Yang-Mills theory on a singular geometry S3/Γ, we can isolate the ground state
Hilbert space which is finite dimensional: ground states are what is called the Wilson
lines winding around the singularity. We would like to understand how S-duality acts
on those ground state Wilson lines.

The action of S-duality turns out to be quite hard to compute aside from a few
simple cases. To give a general expression for S (where S now represents the matrix of
S-duality action), we use another duality called the holographic duality. A hologram
is a 3D projection of 2D information. Holographic duality has its roots in gravitation,
where people find that the entropy of a black hole scales not as its volume but as its
area. This suggests that the black hole can be reconstructed from only its boundary
information, and puts a universal constraint on the amount of information or data one
is allowed to store in a region. Imagine we have a physical memory disk of a certain
size, can we throw in as much data as we want? The current constraint on this is
purely technological and has to do with material sciences, but the ultimate theoretical
constraint comes from gravity: one can in principle throw in as much data as one
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wants before the disk turns into a black hole! This is analogous to the fact that the
theoretical constraint on the computational speed of a computer comes from the Planck
time t ≈ 5.39 × 10−44s, the time a quantum state needs to jump to another quantum
state, and yet we are nowhere near this limit due to limitations in technology. In a
nutshell, the holographic duality gives a dual description of N = 4 super Yang-Mills
theory in terms of a gravitational theory (which turns out to be the IIB superstring
theory). This duality deserves the name holography because the super Yang-Mills
theory lives on a 4-dimensional spacetime whereas the gravity theory lives in the 5-
dimensional bulk, mimicking the hologram. If we could somehow use the holographic
duality to map the Wilson line ground states of the super Yang-Mills theory to some
gravitational states that are easier to understand and are known how to transform
under S-duality, we will have solved the problem of understanding how S acts on the
Wilson line ground states. It turns out that the holographic dual of Wilson lines are
states in a certain Chern-Simons theory, a topological theory that has no notion of
length. The transformation of states in the Chern-Simons theory under the action of
S is known, and this helps give a general formula of S for the super Yang-Mills theory.
In the following sections, we will see precisely what kind of Chern-Simons theory arises
under the holographic duality.

This concludes the non-expert introduction section of this dissertation. Besides S-
duality, there are two other unfinished projects I did with Ori Ganor and Orion Ning.
I decided against including these two projects in this dissertation because they do not
fit into the broader scope of this dissertation.

We will now delve into the main body of the dissertation for technical details.
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Chapter 2

The Action of S-Duality on Ground
States of N = 4 Super Yang-Mills
Theory on S3/Γ

2.1 Introduction

Supersymmetric Yang-Mills theory in four dimension has a varying degree of applica-
tions depending on the number of supercharges the theory has. N = 1 SYM with flavor
degrees of freedom (SQCD) is not only useful for phenomenological purposes [4, 5, 6,
7]; it also provides a fertile ground for concrete examples of dualities [8]. N = 2 SYM
provided the first realization of quark confinement via monopole condensation [9]. A
whole class of N = 2 theories can be engineered by putting M5 branes on Riemann
surfaces, and the duality bewteen the theories can be analyzed using the geometry of
the Riemann surface [10]. For a review, see [11]. N = 4 SYM is a UV finite the-
ory [4], and provides an explicit realization of holographic duality via the AdS/CFT
correspondence [12]. It is this UV finite theory that will concern us in this paper.
N = 4 Super Yang-Mills theory exhibits a strong-weak S-duality first proposed by

Montonen and Olive [13]. There has been a number of deep tests and applications of
S-duality (for example [14, 15, 16, 17, 18, 19]), and an “S-duality kernel” has been
constructed in [20]. Nevertheless, for theories with non-abelian gauge groups how and
why S-duality exactly works remains to be found.

The action of S-duality can be analyzed in a more controlled setting by studying the
N = 4 SYM theory with gauge group U(q), SU(q), or SU(q)/Zq, on R4/Γ, where Γ is
one of the discrete subgroups of SU(2) classified by simply laced ADE Coxeter-Dynkin
diagrams [21]. The partition function of the theory, which depends on the boundary
conditions at infinity, was calculated (among other things) three decades ago by Vafa
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and Witten [15], and they discovered that it matches a character of an affine Lie algebra
at level q. This allowed Vafa and Witten to compute the action of S-duality on the
system.

We denote any particular ADE diagram by D, the corresponding finite subgroup
by Γ(D), and the associated Weyl group of the diagram by W (D) (or just Γ and W ,
when D is understood from context). We also denote by G(D) the simply connected
Lie group associated with the Dynkin diagram D (SU(r) for Ar−1, Spin(2r) for Dr, and
E6, E7, E8 for the E-diagrams).

By taking Γ to be a subgroup of the first factor of SU(2) × SU(2) ∼= Spin(4), we
let it act as a finite group of rotations of R4 whose nontrivial elements have no fixed
points but the origin, and when extended to act on 4d spinors, they preserve two linearly
independent spinors. Γ thus defines an orbifold R4/Γ on which a supersymmetric theory
can be formulated, while preserving half the supersymmetry generators.

This type of orbifold played an important role in the original construction of the
6d (2, 0)-theory [22]. The Lie group G(D) was originally realized as a physical gauge
group in this context in [22] as well.

To put a supersymmetric theory on R4/Γ one needs to specify the behavior of the
fields at the origin, and possibly additional degrees of freedom there. If the theory is
also conformal, we can use the state-operator correspondence to map the theory on
R4/Γ to a theory on R×(S3/Γ), where the first factor can be interpreted as (Euclidean)
time. Translations in R correspond to dilatations of the original R4/Γ. The question
of what happens at the origin of R4/Γ then corresponds to the question of the initial
state |i⟩ of the S3/Γ theory at time −∞. In the R4/Γ formulation, |i⟩ corresponds to
an operator that is localized at the origin. In particular, ground states of the theory on
S3/Γ correspond to operators of conformal dimension ∆ = 0 at the origin. They also
commute with the supersymmetry generators (those that are invariant under Γ).

We specialize to the three choices of gauge group:

G = U(q), SU(q), SU(q)/Zq.

We wish to study the finite dimensional Hilbert space Hgs of ground states on S3/Γ
(for each gauge group) and how S-duality acts on it.

Let

τ =
4πi

g2
+

θ

2π
(2.1)

be the complex coupling constant of N = 4 SYM, taking values in the upper half
plane. S-duality acts on it as τ → − 1

τ
. At weak coupling, g → 0, the Hilbert space

is easy to describe. In this classical limit, a zero-energy configuration corresponds to
setting the scalar fields and the gauge field strength to zero. The gauge field is then
a flat connection, and gauge inequivalent flat connections are uniquely described by
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homomorphisms from π1(S
3/Γ) ∼= Γ to G, up to conjugation. For G = U(q), the

various inequivalent homomorphisms Γ correspond to the inequivalent q-dimensional
(not necessarily irreducible) unitary representations of Γ. The Hilbert space Hgs is
constructed by assigning to each such representation a basis state.

S-duality maps the Hilbert space at τ to the Hilbert space at − 1
τ
. At τ = i the

two Hilbert spaces are the same, and S-duality becomes an isometry. But away from
τ = i, in order to ask “how does S-duality act?” we must first find a way to relate
the Hilbert space at τ with the Hilbert space at − 1

τ
. The Hilbert space forms a vector

bundle of rank dimHgs over the τ -space, which is the upper half plane. If the Berry
connection of this vector bundle is trivial, we can identify the Hilbert space at any two
τ ’s by adiabatically changing τ (the path in τ -space does not matter). We can then
look for an operator on the weakly coupled Hilbert space at τ = i∞ that represents
S-duality. For D one of the D or E series of the ADE classification, Γ(D) is nonabelian,
and such an S-duality operator, therefore, will give us a clue on how S-duality acts on
nonabelian gauge fields.

We will argue that the Berry connection is, at worst, a U(1) connection. That
means that starting with any state of Hgs(τ) and taking τ adiabatically in a closed
loop in τ -space, we end up with the same state, multiplied by a (Berry) phase eiϕ that
only depends on the path in τ -space, but not on the state itself. The argument will
be based on the AdS/CFT inspired solution to the S-duality operator that we propose
below. The S-duality operator is then described up to an overall phase. In fact, we can
describe the whole SL2(Z) action, generated by S, T . Because of the possibility of a
U(1) Berry connection, we are only proposing a projective representation of SL2(Z) on
the Hilbert space.

The results of [15] can be interpreted as an equivalence between the Hilbert space of
the ground states of the gauge theory on S3/Γ and the Hilbert space of Chern-Simons
theory on T 2 as in the diagram below.

Hilbert space of
Ground states of N = 4 SYM

with gauge group U(q) on S3/Γ(D)

 ←→


Hilbert space of

Chern-Simons Theory on T 2

at level q and gauge group G(D)


Gauge coupling ←→ Complex structure of T 2

SL2(Z) duality ←→ Mapping class group

(2.2)
This equivalence can be motivated by the appearance of a holomorphic WZW model
in the low-energy description of the 6d (2, 0)-theory of type Aq−1 (associated with the
low-energy behavior of q M5-branes) formulated on (R4/Γ) × R2, as noted in [23, 24]1

1We are grateful to Sergey Cherkis for pointing out one of these references.
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Modifications to gauge groups SU(q) and SU(q)/Zq will be discussed later in our paper.
It is interesting that the Chern-Simons theory emerges in this duality. The 3-

dimensional Chern-Simons theory is a remarkably rich tool that has applications in
both mathematics and physics. For example, Witten showed that Chern-Simons theory
is connected to the Jones polynomial and knot invariants [25]. It is also applied in the
study of S-duality [26, 20], a subject related to the geometric Langlands program [19].
In terms of the more tangible physics applications, Chern-Simons theory has been used
extensively to study physics on 2-dimensional surfaces. For example, it is used to endow
particles in 2+1 dimensions with fractional statistics [27, 28], so that upon exchanging
two identical particles the wave function of the two particles can end up with a phase
different from ±1. In addition, Laughlin explained fractional quantum hall effect by
applying Chern-Simons theory2 [30].

The fact that Chern-Simons theory is important for 2+1 dimensional physics is no
accident. The Chern-Simons action

S =
q

4π

∫
tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
(2.3)

is the unique relativistically invariant action of the gauge field A that has only one
derivative acting on A. In this paper, we take the convention that A is g valued 1-form
and the trace is taken in the representation such that q is a quantized positive integer.
We take g to be simply laced, namely su(N), so(2N), e6, e7, and e8. The global property
of the gauge group will not concern us in this paper.

The solution to the problem of finding the S-duality operator that we explore for
G = U(q) identifies Hgs with the space of states of Chern-Simons theory on T 2 with the
gauge group associated to the Lie algebra D at level q. The SL2(Z) action is the action
of the mapping class group. We argue that that this identification can be understood
as a mini-AdS/CFT correspondence. Indeed, the Chern-Simons Hilbert space can be
constructed [31] as a W -invariant subspace of a representation of a certain Heisenberg
algebra constructed from the weight lattice Λw and the root lattice Λr of D. Upon
quantizing the Chern-Simons theory on T 2, one gets a discrete set of states that can be
identified with points in the set [31] (for Chern-Simons theory with simply laced gauge
algebra)

Λw

W ⋉ qΛr

(2.4)

This same Heisenberg algebra arises, as we will argue, in our setup, through the
AdS/CFT correspondence [12], along the lines of Witten’s work on the appearance of
electric and magnetic fluxes via holography [32]. We describe this in detail in section 2.4.

2For a review of Chern-Simons theory and fractional quantum hall effect, see [29] and the references
therein.
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Assuming the identification (2.2), the Berry connection can be identified with that
of Chern-Simons theory. The latter is nontrivial once properly regularized, but is a U(1)
connection.3 Moreover, the holographic derivation of (2.2) implies an identification of
the Hilbert space of ground states of N = 4 SYM on S3/Γ with the Hilbert space of the
correpsonding Chern-Simons theory on T 2 tensored with a 1-dimensional Hilbert space
associated with massive bosonic and fermionic modes. The latter carries its own Berry
phase under a loop in τ -space. The perturbative argument at the end of section 2.2
suggests that the Berry phase of the 1-dimensional Hilbert space of those massive modes
actually cancels the Berry phase of Chern-Simons theory.

More generally, by lifting the construction to 6d, we are motivated to conjecture
that the space of ground states of a 4d N = 2 class-S theory [10] on S3/Γ corresponds
to the Hilbert space of Chern-Simons theory on a Riemann surface and the action of the
group of dualities corresponds to the action of the mapping class group of the Riemann
surface on the Hilbert space of Chern-Simons theory. Here, the 4d theory is constructed
from the 6d (2, 0)-theory of q M5-branes on a Riemann surface [10]. This will be the
topic of chapter 5.

This dissertation is organized as follows. In section 2.2 of this chapter, we write out
the bosonic part of the Lagrangian ofN = 4 SYM and formulate the problem mentioned
at the beginning of this section in a more detailed way. We briefly review the well-
known McKay correspondence in section 2.3. In section 2.4, we present the proposed
solution of our problem and motivate it with holography. We will see that, in the
low energy limit, a dual Chern-Simons theory emerges naturally, and its quantization
leads to the Heisenberg algebra. Section 2.2 contains most of the formalism and the
main conjecture of this paper, and the claims made in (2.2) will also be generalized to
SU(q) and SU(q)/Z(q) there. In section 2.5 and section 2.6 we present evidence for
the proposed duality. In section 2.5, we compute the action of S and T on the SYM
side for U(1) gauge group, and see that in a suitable basis it agrees with the action on
the dual Chern-Simons side. In section 2.6, we count the number of ground states in
both theories (with U(q) gauge group for the SYM theory) and show that they agree
not only in the large q limit but to all orders in q. In section 2.7, we sketch a counting
argument for when the SYM side of the duality has SU(q) gauge group instead of U(q).
In section 2.8, we give two numerical examples of S-duality matrix for non-abelian gauge
theory. This chapter is based on the works done with Ori Ganor.

In chapter 3, we expand on section 2.7 of chapter 2 and give a detailed proof that
the duality works for when the SYM has gauge group SU(q). It turns out that the
generating functions for counting SU(q) ground state have interesting mathematical

3See, for example, section 7 of [33] for U(1) gauge group. For U(n) Chern-Simons theory, the Berry
phase can be calculated by identifying the Hilbert space of U(n) Chern-Simons theory on T 2, with
a suitably chosen coupling for the diagonal U(1), with the symmetric tensor product of the Hilbert
space of U(1) Chern-Simons theory on T 2 at the same coupling.
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properties. The generating functions turn out to be Ehrhart polynomials [34], which
are quasi-periodic polynomials that count rational points in polytopes. Because Ehrhart
polynomials are closely connected to other branches of mathematics such as number
theory and topology, we will formulate our proof in two different ways, one using Ehrhart
polynomials and one using representation theory hinted at in section 2.7 of chapter 2.

The checks of the SYM-Chern Simons duality in chapter 2 and 3 are based on
matching the dimension of the Hilbert space of both theories: Detailed calculations
in these chapter will show that the dimension of the ground state Hilbert space of
the SYM theory (i.e. the number of classically flat Wilson lines) matches that of the
corresponding Chern-Simons theory. Can we go beyond this tree level result and check
the duality at higher loops? In particular, we would like to understand if the ground
state degeneracy for the flat Wilson lines is exact, and that quantum correction does
not lift this degeneracy. In chapter 4, we will do a one-loop check of our duality using
the superconformal index. We will see that, by computing the supersymmetric Casimir
energy, the SYM ground state degeneracy is indeed exact up to one-loop. Since the
superconformal index is a protected quantity, we will also use it to check that the
ground state t’ Hooft lines have the same ground state degeneracy as well as the same
supersymmetric Casimir energy as the ground state Wilson lines. In addition, S-duality
predicts that the number of ground state t’ Hooft lines must equal that of the ground
state Wilson lines. We will compute explicitly the number of ground state t’ Hooft lines
using the SU(2) gauge group and check that the number agrees that of the Wilson lines.
This combined with the supersymmetric Casimir energy will provide yet another test
of S-duality.

As mentioned previously, the duality proposed here can be generalized so that the
Chern-Simons theory is quantized on higher genus Riemann surfaces. The natural
SYM dual is the class-S theory [10]. This important generalization will be explored in
chapter 5.

2.2 The Problem

R4 is conformally equivalent to S3 × R, with the metric

ds2(R4) = dr2 + r2dΩ2
3 → ds2(S3 × R) = dτ 2 + dΩ2

3 =
1

r2
ds2(R4), τ = log r.

This fact is used in the state-operator correspondence to match dimensions of operators
of a CFT on R4 to energies of states of the CFT on S3. We will be interested in studying
N = 4 SYM. The conformally coupled Lagrangian is given by [4]

L =
1

4g2
tr

{
FµνF

µν +DµΦ
IDµΦI + [ΦI ,ΦJ ][ΦJ ,ΦI ] +

1

6
RΦIΦI + fermions

}
(2.5)
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where g is the dimensionless coupling constant. The gauge group G will be U(q), SU(q),
SU(q)/Zq or other groups to be specified later.

Thanks to the coupling to the curvature R of S3, the spectrum on S3 is discrete. The
ground state is unique, and corresponds to the identity operator. By supersymmetry,
we can explore the ground states as g → 0, where they correspond to solutions of F = 0
up to gauge equivalence (i.e., flat connections). On S3 all solutions to F = 0 are gauge
equivalent to A = 0, and the solution is unique, corresponding to a unique ground state.

Now consider the case that the CFT is formulated on the cone (S3/Γ) × R, where
Γ is a finite subgroup of SU(2)× SU(2), the double-cover of the isometry group of S3

(double-cover is needed since Γ acts on spinors). We will assume a trivial R-symmetry
bundle, which means that acting on an R-charged (under the SU(4) R-symmetry) field,
say ΦI , the action of Γ is defined by setting ΦI(x) = ΦI(γx) for all γ ∈ Γ, as opposed
to a more complicated ΦI(x) = Λ(γ)IJΦ

J(γx) for some nontrivial four dimensional
unitary representation Λ(γ) of Γ.

To preserve half of the supersymmetry, we need to ensure that Γ is embedded in
one of the SU(2) factors. In that case, under the state-operator correspondence, the
problem is equivalent to studying N = 4 SYM on an ALE space R4/Γ. By McKay
correspondence, the possible finite Γ’s, and hence the ALE spaces, are classified by
simply-laced (ADE) Dynkin diagrams. As in the flat space, we can study the ground
states as g → 0, where they correspond to flat connections on S3/Γ, i.e., solutions to
F = 0.

For gauge group G, a flat connection corresponds to a homomorphism ρ : π1(S3/Γ),
up to conjugation. Since S3 is simply connected, the homomorphism reduces to ρ : Γ.
That is, ρ has to satisfy ρ(γ1γ2) = ρ(γ1)ρ(γ2), and we identify ρ and ρ′ if ρ′(γ) =
α−1ρ(γ)α, for some fixed α. The connection is established by fixing a point p ∈ S3 and
identifying ρ(γ) with the holonomy along a path in S3 that connects p with γ(p).

Denoting a basis for the ground states by a, b, c, . . . , we wish to understand the
action of S-duality. In general, the Hilbert space forms a vector bundle over the space
of coupling constants

τ =
θ

2π
+

4πi

g2
(2.6)

Assuming that this is a flat vector bundle, there is a unique way to map a state |a⟩τ
defined over a coupling constant τ to a state |a⟩(−1/τ) defined over coupling constant
−1/τ . We can then ask what is the matrix element of the S-duality operator ⟨b|S|a⟩.

We can calculate the Berry phase by allowing τ = τ1 + iτ2 to vary with time t,
and performing a path integral of the gauge theory on S3/Γ, with initial condition
at t = −∞ corresponding to the flat connection associated with the state |a⟩, and
final condition at t = ∞ corresponding to |b⟩. We are looking for a term in the low-
energy effective action that corresponds to

∫
(· · · )τ ′1(t)dt. For example, a U(1) Berry
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Figure 2.1: A Feynman diagram that calculates the evaluation of the Berry connection.
All the lines are gluon propagators (or their SUSY partners) on S3×R in the presence

of a background field Aa. The two ⊗ vertices correspond to insertions of δ̂τ 1(ω) times

(the Fourier transform of) F ∧ F and δ̂τ 2(ω) times (the Fourier transform of) F ∧ ⋆F ,
both with momentum p = (ω, 0⃗).

connection with the (2,R)-invariant Berry curvature dτ1∧dτ2/τ 22 would be read-off from
an effective action of the form

∫
dτ1/τ

2
2 . Perturbatively, We can calculate the path

integral diagrammatically. (See [35, 36] for a general recent discussion of Berry phases
in QFTs.) One flat connection cannot transition into another perturbatively, so we can
only get a potentially nonzero result if a = b. The diagrams are then standard Feynman
diagrams in the background gauge field Aa. We introduce a 4-momentum pµ = (ω, 0⃗)
and look for diagrams that contribute a term proportional to ωτ̂1(ω)τ̂2(−ω), where τ̂ is
the Fourier transform of τ . Such terms require insertions of ϵαβγδFαβFγδ (at momentum
p) and FαβFαβ at momentum −p. This is depicted in Figure 2.1.

Perturbatively in the gauge field Aa, it is easy to see by gauge invariance that
the Berry curvature must vanish. This is because the Levi-Civita tensor ϵαβγδ from
the F ∧ F insertion cannot contract with anything but the Chern-Simons form of the
flat connection Aa on S3/Γ. Any gauge invariant expression that contains the field
strength Fa = dAa+Aa∧Aa vanishes, because the connection is flat. The gravitational
Chern-Simons form of S3/Γ vanishes as well. What is left is the exterior product of
the Chern-Simons three form CS(Aa) and a 1-form. But the latter must be closed, for
gauge invariance, and so must locally be of the form df(τ1, τ2). This then reduces to a
flat Berry connection df .
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We conjecture that the vector bundle of ground states |a⟩ over the fundamental
domain of τ -space is flat also nonperturbatively, but we are willing to accept a phase
ambiguity in ⟨b|S|a⟩, with an unknown phase that is independent of the states |a⟩ and
|b⟩, as argued in section 2.1 based on the proposed solution.

We propose in section 2.4 that the ground state Hilbert space here is dual to the
Hilbert space of a certain Chern-Simons theory. The duality also maps the S-duality
operator from the SYM side to the action of S on the Chern-Simons theory which
inverts the complex structure of the torus. In a suitable basis, the S-duality kernel is
simply the S matrix that appears in Verlinde’s formula [37].

We are particularly interested in the gauge groups SU(q) and SU(q)/Zq which are
Langlands dual to each other. The S-duality on the SYM side should map these gauge
groups into each other, and so the number of SU(q) representations of Γ must be the
same as the number of SU(q)/Zq representations of Γ. On the dual Chern-Simons
theory side, we will see in section 2.4 that the S-duality acts on the algebra in a natural
way, exchanging the SU(q) states with the SU(q)/Zq states.

For the U(q) SYM theory, the ground states are simply q dimensional unitary rep-
resentations of Γ. Since Γ is a finite group, any finite dimensional representation is
equivalent to some unitary representation [38]. The fundamental building blocks of fi-
nite dimensional representations are irreducible representations. Therefore, in the next
section, we study the irreducible representations. It turns out that the type and the
dimension of irreducible representations can be conveniently read off from the affine
Dynkin diagram corresponding to Γ. This is the celebrated Mckay correspondence [21].

2.3 Review of the McKay Correspondence and the

Representation of ADE Finite Groups

McKay classified all discrete subgroups Γ of SU(2) and their irreducible representations
using Dynkin diagrams [21]. The possible discrete subgroups Γ are Zk (cyclic group of
order k), Dicn (binary dihedral group of order n), 2T (binary tetrahedral group), 2O
(binary octahedral group), and 2I (binary icosahedral group). The last three groups are
famously the double cover of the symmetry groups of the Platonic solids. Given a group
Γ, let the number of irreducible representations of Γ be p, and let {Vi}, i ∈ {1, 2, ..., p}
be the set of finite dimensional irreducible representations. According to McKay, the
irreducible representations {Vi} have a quiver diagram representation. The diagram
is composed of p nodes and links connecting the nodes. The ith node represents the
irreducible representation Vi. The nodes are connected by links as follows. Let V be
the 2-dimensional defining (not necessarily irreducible) representation of Γ. There is
a link connecting node Vi to node Vj if and only if Vj appears in the tensor product
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Figure 2.2: The affine Dynkin diagram for An−1. There are n nodes in total, correspond-
ing to n irreps. The number in each node suggests that each irrep is a 1-dimensional
representation.

decomposition of Vi ⊗ V . The above relationship implies that 2[Vi] =
∑

j[Vj] if Vj is
connected to Vi, where [Vi] denotes the dimension of the corresponding representation.

It turns out that the quiver diagram obtained in this fashion coincides with the
affine Dynkin diagram of the corresponding ADE Lie algebra. The correspondence is

Zk → Ak−1, Dicn → Dn+2, T→ E6, O→ E7, I→ E8.

As an example, let Γ = Zk. The corresponding Lie algebra is Ak−1. Because Γ is abelian,
all irreps are 1-dimensional. The ith irrep has the generator ωi, where ω = exp(2πi/k) is
the kth root of unity. The affine Dynkin diagram for Ak−1, k > 2 reads where there are k
nodes in total. The number in each node represents the dimension of the corresponding
representation. Note that the sum of the neighboring nodes equals twice of each node,
agreeing with the relation obtained earlier.

As a slightly more nontrivial example, the affine Dynkin diagram for E6 reads
where now there are three 1-dimensional irreps, three 2-dimensional irreps, and one
3-dimensional irrep.

2.4 Proposed Solution

Computing the action of S and T on the ground state Hilbert space of a non-abelian
N = 4 SYM theory is hard. Our strategy is to use an AdS/CFT argument to find a dual
system whose behavior under the corresponding S and T operations is understood. It
turns out that this dual system is a certain Chern-Simons theory on T 2. In section 2.4,
we give a brief review of the subject of string theory and D-branes on orbifold so as to
put our holographic construction into a broader scope. or In section 2.4, we explain why
the dual system is Chern-Simons on T 2 using holography. In section 2.4, we formulate
the duality in another way using the language of Heisenberg-Weyl algebras.
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Figure 2.3: The affine Dynkin diagram for E6. There are 7 nodes in total, corresponding
to 7 irreps. In addition to the three 1-dimensional irreps, there are three 2-dimensional
irreps and one 3-dimensional irrep.

String Theory and D-branes on Orbifold

There is a long history of the study of string theory and D-branes on orbifold singularity.
Since the particular orbifold singularity that will concern us in this paper is the ADE
orbifold singularity, we will in this section do a quick review of some past research on
ADE singularity and string theory. We will discuss how this work is different from past
research and motivate the Chern-Simons/SYM duality mentioned in the introductory
section 3.1.

There are roughly speaking three uses of putting string theory or D-branes on ADE
singularity. The first is to obtain a more realistic compactification of string theory
down to lower dimensions. The second is to use string theory to probe the topology
and geometry of the ADE singularity. The third is to use string theory construction to
obtain new classes of quantum field theory.

One way to obtain ADE singulairty is the “blow-down” of K3 surface [39], the
only nontrivial Calabi-Yau manifold in four (real) dimensions [40]. String theory on
K3 surface leads to more realistic models of string compactification because the SU(2)
holonomy of K3 surface helps break half of the supersymmetry. It also leads to more
examples of string dualities [40]. In fact, as we will see in section 2.4, the duality
considered in this paper is derived using the duality between heterotic string on T 4 and
IIA string on K3.

The second use partially overlaps with the first use because the low energy spectra of
string theory on K3 sheds light on the topological invariants of the K3 surface [39, 40].
To probe the geometry and not just the topology of K3 surface, D-brane technologies
must be used [41]. In [41], the metric of some ALE (asymptotically locally Euclidean)
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space was computed by probing the space using D1 branes transverse to the space. The
fact that the moduli space of vacua for the low energy theory coincides with the ALE
space suggests that the metric of the underlying space coincides with the metric that
enters the kinetic term of the low energy theory.

The third use dates back to [22], where it was mentioned that M-theory on ADE
singulairty Γ leads to a seven dimensional super Yang Mills theory transverse to the
4-dimensional ADE singularity with the gauge algebra g(Γ) McKay-dual to the ADE
singularity. In [42, 43], quiver gauge theories are constructed by putting D3 branes
transverse to the orbifold singularity. In the language of AdS-CFT correspondence, in
this construction, the singularity mods out the S5 part of the bulk geometry and keeps
the AdS5 part untouched.

The difference between this work and the previous constructions is that here, the
ADE singularity is longitudinal to the D3 brane world volume. In other words, the bulk
geometry is AdS5/Γ× S5. As will be derived in the next subsection, the long distance
limit of this holographic system will involve a Chern-Simons theory in the AdS bulk
direction. Constructions similar to this work can be found in [23, 15]. Differences
between our construction and those in [23, 15] will be explained in the section.

Analysis via AdS/CFT

The holographic dual [12] of N = 4 SYM on R4/Γ is type-IIB string theory on
(AdS5/Γ)× S5, with Γ acting as the obvious subgroup of the Lorentz group, leaving a
codimension 4 singularity at the fixed points of Γ. The singularity meets the boundary
at the origin (and at infinity), wraps the S5, and carries a (2, 0)-theory associated with
type-IIB string theory on R4/Γ [22]. We claim that for G = SU(q), after reducing on
S5, the singularity carries local low-energy degrees of freedom that are equivalent to
a level q Chern-Simons theory with gauge algebra G(D), compactified on T 2, and the
S-duality group SL2(Z) of N = 4 SYM acts geometrically as the mapping class group
of T 2.

To show this, consider in IIB string theory a stack of N D3 branes that in the
Euclidean signature span the 0123 directions. The ADE singularity Γ acts on the world
volume4 of the D3 branes C2 to make it C2/Γ. Since M-theory on T 2 is dual to IIB
string theory, we lift the D3 branes to M5 branes by first taking the T-duality in the 4
direction to turn them into D4 branes and then blowing up the M-theory circle in the
# direction. The situation can be summarized in Table 2.1.

A stack of N M5 branes whose worldvolume is placed on an ADE singularity C2/Γ
has a near horizon geometry AdS7/Γ × S4. Let the Lie algebra corresponding to the

4Note that this setup is different from the D-brane on orbifold setup considered in [42], where the
orbifold action is along the transverse direction of the D-brane worldvolume rather than the longitudinal
direction.



CHAPTER 2. THE ACTION OF S-DUALITY ON GROUND STATES OF N = 4
SUPER YANG-MILLS THEORY ON S3/Γ 21

0 1 2 3 4 5 6 7 8 9 #
D3 N N N N D D D D D D x
M5 N N N N N D D D D D N

Table 2.1: The string/M theory setup. Here, D denotes “Dirichlet” and N “Neumann”.
To avoid confusion, we use # to deonte the 10th direction. Since the D3 brane exists
only in the 9+1 dimensional universe, an “x” is put under the 10th direction to indicate
that the D3 brane does not exist in that direction.

ADE singularity be g(Γ). The boundary theory lives on directions 012345. Let the
bulk direction be 6. We claim that there exists a coupling

− 1

4π

∫
C3

2π
∧ tr(F ∧ F ) (2.7)

where C3 is the 3-form in M-theory and F is the 2-form field strength taking values in
g. The integral is taken in the 456789# directions. The 5-plane transverse to the M5
branes can be decomposed into R+ × S4, where R+ is the direction into the bulk, and
S4 is the 4-sphere that surrounds the M5 branes. Integrating by parts, we obtain

1

4π

∫
T 2×R+×S4

dC3

2π
∧tr(A∧dA+

2

3
A∧A∧A) = N

4π

∫
T 2×R+

tr(A∧dA+
2

3
A∧A∧A) (2.8)

reproducing the Chern-Simons theory on T 2 at level N .
Before we derive this, we mention two similar constructions in the literature. Ref [23]

reproduces a part of this duality by considering intersecting D4-D6 branes in type IIA
string theory, so only the A-singularity is probed since D6 branes cannot create the D-
or the E-singularity. Indeed, the leval-rank dual of this coupling is easy to see for Γ = Zk

where M-theory on R4/Γ can be replaced with M-theory on a Kaluza-Klein monopole
with k units of charge and further reduced to type-IIA with k D6-branes. Ref [15],
on the other hand, considers Nakajima’s instanton construction [44] on R4/Γ using
a certain twisted super Yang-Mills theory without explicitly mentioning the Chern-
Simons theory. In [15], it is shown that a certain combination of the middle-dimensional
cohomology of U(q) n-instanton moduli space on R4/Γ has the same structure as the
highest weight representation of a level q state of algebra g(Γ) (see equation 4.42 in [15]).
The link to the Chern-Simons theory is implicit in their work because of the equivalence
between WZW conformal blocks and Chern-Simons theory as shown in [25]. We derive
the duality using a perspective different from these two constructions. Compared to [23],
our construction has the virtue of incorporating the D- and the E-singularity. Compared
to [15], our construction does not require twisting the super Yang-Mills theory and is
easier to understand from a physicist’s perspective.
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The strategy we use to derive equation (2.7) is through the string-string duality.
In the first step, we compactify the 4 direction and take the T-dual to end up in the
Type IIA string theory. We now have N D4 branes along the 01234 directions. The
ADE singularity acting on the 0123 directions can be locally thought of as a certain
degeneration limit of a K3 surface. Although the latter is compact and the former
is noncompact, the distinction will not be important in the following derivation. It
is known that heterotic string on T 4 is dual to IIA string on K3, with the coupling
constants being related by the equation

eϕ = e−ϕ′
(2.9)

where unprimed quantities are for the heterotic theory and the primed quantities are
for the IIA theory [45]. In addition, the NS-NS 2-forms are related in 6D as

dB = e−2ϕ′
⋆ dB′ (2.10)

Now, both the T 4 and the K3 are along the Euclideanized 0123 directions. Recall
that the NS-NS 2-form in IIA theory descends from the 3-form in M-theory as dB′ ∧
dx# = dC3. So if one blows up the M-theory circle and lift the above relation to 7D
(i.e. adding the # direction), one gets

dB = e−2ϕ′
⋆ dC3 (2.11)

We now have N M5 branes along the 01234# directions, where the 4 and the #
directions are circles.

The heterotic theory has a modified action for its 3-form field strength (setting the
curvature contribution to zero5):

1

2

∫
R6

e−2ϕ(dB − CS, dB − CS) (2.12)

where CS denotes the Chern-Simons three form and where we considered the T 4 com-
pactified action so the integration is along the directions 456789 in the IIA theory.
Notice that e−2ϕ = e2ϕ

′
is the heterotic dilaton coupling. If we consider blowing up

the M-theory circle to lift the above action to 7D, and plug in the duality relation, the
above term becomes

1

2

∫
R7=T 2×R5

e2ϕ
′
(e−2ϕ′

⋆ dC3 − CS, e−2ϕ′
⋆ dC3 − CS) (2.13)

5It is amusing to note that if one were to include curvature, i.e. the gravitational Chern-Simons
term, one would be able to give a string-theory derivation of the curvature counter term in the one-loop
correction to the Chern-Simons action. In [25], this counter term arises out of the consideration for
canceling the framing anomaly.
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where the integral is taken along the directions 456789# and we split the directions
along the torus (4#) and the R5 (56789) transverse to the N M5 branes (see Table 2).
The R5 can be further decomposed into a radial direction times an S4 that surrounds
the N M5 branes. From this expression, we get a cross term

−
∫

(CS, ⋆dC3) =

∫
CS ∧ ⋆ ⋆ dC3 =

∫
CS ∧ dC3 = N

∫
CS (2.14)

where in the last step we integrated the 4-form fluxes along the S4 to pick up the overall
prefactor N , reproducing (2.7) and the Chern-Simons action we sought for.

In the IR limit, the Chern-Simons action is the unique action that has the lowest
number of derivatives, and will characterize the ground state structure of the theory.
Therefore, the ground state Hilbert space of N = 4 U(q) SYM on S3/Γ is equivalent to
that of the holographic dual which is the Hilbert space of level q Chern-Simons theory
with gauge group g(Γ). This Chern-Simons Hilbert space is given by the set (2.4).
Let us now understand the corresponding duality for N = 4 SU(q) SYM on S3/Γ.
Changing the gauge group from U(q) to SU(q) reduces the number of ground states
in the SYM ground state Hilbert space. What is the corresponding reduction on the
Chern-Simons side? To see this, we use the example Γ = Zk. The SU(q) SYM ground
states Hilbert space admits a level-rank duality: the dimension of SU(q) ground state
Hilbert on S3/Zk is the same as that of the SU(k) ground state Hilbert space on S3/Zq

6.
The only nontrivial subspace of the Chern-Simons Hilbert space that is invariant under
the level-rank duality is the one given by the set (3.2) [46].

Having established this mini AdS/CFT duality, we review the Hilbert space of
Chern-Simons theory on T 2 in detail in the next section from the perspective of the
Heisenberg-Weyl algebra. We will also make precise the dictionary that maps between
the different theories.

Heisenberg-Weyl Algebra

It is well known that in the gauge A0 = 0, the quantization of Chern-Simons theory
on T 2 reduces to the representation theory of the Heisenberg-Weyl algebra [31] (briefly
reviewed in section 2.6 below). The Hilbert space of our proposed solution is equivalent
to a representation of this Heisenberg-Weyl algebra constructed from the weight lattice
Λw(D) associated with the Dynkin diagram. The weight lattice has an inner product
⟨α, β⟩ (for α, β ∈ Λw). The Heisenberg-Weyl algebra is specified by two pieces of data:
the diagram D and a positive integer q. It is generated by the set of operators

{U(α),V(α)}α∈Λw

6A quick way to show this is to use the SU(N) Ehrhart polynomials computed in (3.52) of chapter 3
and show that the qth term of Ehrsu(k) is the same as the kth term of Ehrsu(q).
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with relations

U(α)U(β) = U(β)U(α), V(α)V(β) = V(β)V(α),

and

U(α)V(β) = V(β)U(α) exp

(
2πi

q
⟨α, β⟩

)
.

Here q is the level of the Chern-Simons theory, which according to the holography
argument is the q taken from U(q), SU(q) or SU(q)/Zq on the SYM side. We will
distinguish between these three cases later on. Note that if α ∈ qΛr (where Λr is the
root lattice) then U(α) is a central element, which we can identify with the identity
operator.

Let Hilbq(D) be the unique (up to isomorphism) irreducible representation of the
Heisenberg-Weyl algebra at level q. The Weyl group W (D) acts as an outer automor-
phism of the Heisenberg-Weyl algebra and can be extended to act on Hilbq(D). (From
here on we will omit the D from Hilbq and W .) Let HilbW

q by the Weyl-invariant
subspace of Hilbq. We then propose:(

Ground states of U(q) SYM
on S3/Γ

)
←→ HilbW

q (2.15)

Now let X be the subalgebra of the Heisenberg algebra that is generated by

{U(qα)}α∈Λw

Let HilbX,W
q ⊂ Hilbq be the subspace that is invariant under both X and W . We

propose (
Ground states of SU(q) SYM

on S3/Γ

)
←→ HilbX,W

q (2.16)

Let Y be the subalgebra of the Heisenberg algebra that is generated by

{V(qα)}α∈Λw .

Let HilbY,W
q ⊂ Hilbq be the subspace that is invariant under both Y and W . We

propose (
Ground states of SU(q)/Zq SYM

on S3/Γ

)
←→ HilbY,W

q (2.17)

As mentioned earlier, S-duality on the SYM side acts by exchanging the gauge
groups SU(q) and SU(q)/Zq. This is manifested in the dual Chern-Simons side by
exchanging the operators U and V in the Heisenberg algebra. Since U and V do not
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commute, S-duality acts nontrivially on the ground states if the ground states were
originally labeled by the U quantum numbers. By our proposal, this action should
also appear naturally on the SYM side. In the next section, we will compute the
S-duality action on the SYM side for a U(1) gauge theory. In section 2.6, we will
perform a detailed check of the first statement (2.15). Note that states in the second
statement (2.16) are precisely those that also lie on the root lattice Λr. The motivation
for the second statement (2.16) was discussed at the end of section 2.4.

2.5 The Action of S-Duality on U(1) SYM

As a simple example, in this section, we compute the matrix elements of S for G = U(1).
The group is self-dual and we begin with Γ = Zk, corresponding to the Ak−1 Dynkin
diagram. Let γ be a generator of Γ, satisfying γk = 1. Set

ω = e2πi/k .

Then, a ground state corresponds to ρ(γ) = ωp for p = 0, . . . , k− 1. We will denote
the corresponding state by |p⟩ ∈ Hilb.

The metric on S3/Γ can be described by a Hopf fibration

ds2 = dθ2 + sin2 θdϕ2 + (dχ− 1
2
k cos θdϕ)2 , 0 ≤ χ, ϕ < 2π, 0 < θ < π.

The good coordinates near θ = 0 are

sin θ sinϕ, sin θ cosϕ,

{
χ− 1

2
kϕ near θ = 0

χ+ 1
2
kϕ near θ = π

A gauge field corresponding to |p⟩ can be taken as Ap = pA1, where

A1 =

{
1
k
dχ− 1

2
dϕ for 0 ≤ θ ≤ 1

2
π

1
k
dχ+ 1

2
dϕ for 1

2
π ≤ θ ≤ π

This clearly satisfies F = 0.
Let us start by computing the action of T , which is related to the Chern-Simons

action by

T = exp

(
i

4π

∫
A ∧ dA

)
(2.18)

If A were globally defined, to compute the Chern-Simons action we would simply
evaluate

1

4π

∫
A ∧ dA.
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Since A is not globally defined, the correct procedure is to find a four-manifold W
such that its boundary ∂W = S3/Γ, extend A to the bulk of X4, with F = dA in the
bulk, and evaluate

1

4π

∫
W

F ∧ F.

To define W , we can simply add a coordinate

0 ≤ r ≤ 1

and set
ds2 = dθ2 + sin2 θdϕ2 + dr2 + r2(dχ− 1

2
k cos θdϕ)2 ,

thus converting the circle fibers of the Hopf fibration to disks.
The boundary of W is at r = 1. For fixed 0 < θ < π and 0 ≤ ϕ < 2π, let

D(θ, ϕ) ⊂ W be the disk corresponding to all values of 0 ≤ r ≤ 1 and 0 ≤ χ < 2π.
Instead of looking for A, we will look for F = dA (locally). We would like to find F

on W such that ∫
D(θ,ϕ)

F =
p

k
(2.19)

Note that pdr ∧ A1 is not continuous. But we can take

F =
p

k
dr ∧ (dχ− 1

2
k cos θdϕ) +

p

2
r sin θdθ ∧ dϕ, (2.20)

which is well-defined, because (dχ− 1
2
k cos θdϕ) is globally defined. Note that dF = 0.

In fact, (dχ− 1
2
k cos θdϕ) is the global angular form of the Hopf fibration, and F above

can be identified as a Thom class [47]. Now we can evaluate

1

4π

∫
W

F ∧ F =
πp2

k
(2.21)

and therefore
T |p⟩ = eiπp

2/k|p⟩ (2.22)

For odd k there is an anomaly, because the sign of the action ot T is ambiguous, and
only T 2 is well defined.

We can compute the S action on the ground states |p⟩ using the explicit S-duality
kernel quoted in [26]. We parameterize the general S action on the coupling constant
τ as

S =

(
a b
c d

)
τ ′ = Sτ =

aτ + b

cτ + d
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The S-duality kernel S(Ã, A) helps map the wavefunction as Ψ{A} a functional of
the gauge field A from one duality framed (unprimed) to another (primed). This is
represented by a path integral

Ψ{Ã} =
∫
[DA]S(Ã, A)Ψ{A} (2.23)

The kernel S(Ã, A) for U(1) gauge group is [26]

S(Ã, A) = exp

{
i

4πc

∫
dÃ ∧ dÃ− 2AdÃ+ aA ∧ dA

}
(2.24)

In our problem, the gauge field A and the corresponding curvature F are divided into
k topological sectors. The above equation shows that the kernel is topological, so the
path integral reduces to a sum over the k topological sectors. Therefore, equation (2.24)
reduces to the following form

Ψ{Ãp̃} =
k−1∑
p=0

S(Ãp̃, Ap)Ψ{Ap} (2.25)

where Ap labels the connection in the pth topological sector. Restricting to the S action

S =

(
0 1
−1 0

)
we evaluate the kernel (2.24) by extending Ap and Ãp̃ into the bulk W :

S(Ãp̃, Ap) = exp

{
i
1

2π

∫
W

Fp ∧ F̃p̃

}
(2.26)

We can use equation (2.20) for the explicit form of F̃p̃ and Fp. Note that because of
topological invariance, the only difference between these two quantities are the constants
p and p̃. Using this, the S-duality kernel can be computed:

S(Ãp̃, Ap) =
1√
k
exp

(
2πipp̃

k

)
(2.27)

This is simply the Fourier matrix of rank k. Equations (2.22) and (2.27) define a
(projective) k-dimensional representation of SL2(Z).

Does this representation agree with our duality proposal? According to our proposal,
the ground states of this U(1) SYM theory on S3/Zk are dual to the states of level 1
Chern-Simons theory with gauge group SU(k). Our proposal implies that (2.22) and
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(2.27) should be obtained from the T transformation (τ → τ +1) and S transformation
(τ → −1/τ) of SU(k) Chern-Simons (on T 2) at level 1. In a basis of states of Chern-
Simons theory on T 2 labeled by highest weights, the action of T is given by [46]

TΛ,Λ′ = δΛ,Λ′e2πimΛ (2.28)

where mΛ is the modular anomaly (at level q) defined as

mΛ =
|λ+ ρ|2

2(q + h)
− |ρ|

2

2h
(2.29)

The action of S is given by the Verlinde matrix, which for simply laced Lie groups
is [46]

SΛ,Λ′ =
i|∆+|√

(detC)(q + h)r

∑
w∈W

ϵ(w) exp

[
−2πi(w(Λ + ρ),Λ′ + ρ)

q + h

]
. (2.30)

In this expression, |∆+| is the number of positive roots, q is the level, h is the
dual Coxeter number, r is the rank of the Lie algebra, W is the Weyl group, ϵ(w)
is the determinant of the Weyl group element w, and ρ is the half-sum of positive
roots. In addition, Λ and Λ′ are highest weights of the integrable representation of the
corresponding affine Lie algebra at level k. The Weyl group has order k! for SU(k), so
the sum contains k! terms. For level q = 1 there are k choices for the weights Λ,Λ′ and
the Verlinde matrix (2.30) is a k × k matrix.

It is important to note that in comparing (2.28) to (2.22), and (2.30) to (2.27), we
should in principle also include an integral of a Berry connection. Starting with a given
τ , and a path in τ -space from τ to −1/τ , we must multiply the Verlinde matrix by the
path-ordered integral P exp

(∫
ABerry

)
of the Berry connection ABerry before comparing

to (2.27). However, we can work at τ = i which is invariant under τ → −1/τ , and for
which the Berry connection factor is trivial. Another way of obtaining this is to note
that (2.30) and (2.27) describe the action of S on characters of an affine Lie algebra.
The characters are functions of the modular parameter τ and additional data that can
be interpreted as parameterizing holonomies of the Chern-Simons gauge fields along
one of the cycles of T 2. The characters can thus be understood as wavefunctions of
the states of Chern-Simons theory on T 2, and (2.30) and (2.27) correspond to different
bases of the Hilbert space of states on T 2. However, the base-change matrix depends
on τ and is not generally invariant under S. The difference between (2.30) and (2.27)
therefore also includes the nontrivial transformation of the base change matrix elements
under S.

For τ = i = −1/τ the Berry phase is trivial, and our conjecture requires the Verlinde
matrix (2.30) to be equivalent to the Fourier matrix (2.27), but it is not obvious from
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the expression that, after summing k! terms by restricting to level q = 1, one ends
up with a rank-k Fourier matrix. In fact, for k = 1, 2, 3, 4, one can numerically check
that (2.30) reduces to the Fourier matrix, but this is no longer the case when k > 4.
However, the eigenvalues of the Verlinde S-matrix computed using (2.30) agree with
the eigenvalues of the Fourier matrix of the corresponding rank, which suggests that a
change of basis has happened: the basis states in the SYM side are in general different
from the basis states used to compute the Verlinde S-matrix on the Chern-Simons side.
Indeed, it was shown in [48] that, in a suitable basis of affine characters, the Verlinde
S matrix for SU(k) at level q = 1 is equivalent to the rank-k Fourier matrix, which is
a manifestation of level-rank duality, and is consistent with our proposal.

We will now show this explicitly in a way that will also demonstrate the equivalence
of the SL2(Z) representations.

To see this, Denote by Hilb[U(1)k] the Hilbert space of U(1) Chern-Simons theory
on T 2 at level k (for a fixed τ). Denote by Hilb[SU(n)k] the Hilbert space of SU(n)
Chern-Simons theory on the same T 2, at level k, and denote by Hilb[U(n)k,nk] the
Hilbert space of U(n) Chern-Simons theory at level (k, nk) (where the first factor refers
to the SU(n) level, and the second to the level of the U(1) center). Then, we have an
equivalence [31]

Hilb[U(n)k,nk] ≃ (Hilb[U(1)k])
⊗n /Sn

where the RHS is the symmetric part of the tensor product of n factors of Hilb[U(1)k].
Now set k = 1. Then, Hilb[U(1)k] is one-dimensional and the RHS is therefore also

one-dimensional. It follows that Hilb[U(n)1,n] is one dimensional. But since U(n) =
[SU(n)× U(1)]/Zn we can construct any state of Hilb[U(n)1,n] as a state in the tensor
product Hilb[SU(n)1] ⊗ Hilb[U(1)n]. We can find a basis in which the state of this
one-dimensional space takes the form

n−1∑
p=0

|p⟩SU(n) ⊗ |p⟩U(1)

where |p⟩U(1) are the states of the Fourier basis that appear in, say, (2.22). Also, as a
projective representation of SL2(Z) the state of Hilb[U(n)k,nk] transforms trivially. It
follows that the states |p⟩SU(n) transform in a dual way to the states |p⟩U(1).

2.6 Matching of the Dimension of the Hilbert

Space for U(q) Gauge Group

We now show that the SYM theory and the dual Chern-Simons theory have the same
dimension of the ground state Hilbert space. In the first subsection, we compute the
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ground state Hilbert space dimension of the SYM theory with gauge group U(q) on
S3/Γ. According to our proposal, the dual theory is the Chern-Simons theory with
gauge group G(Γ) at level n. The dimension of the Chern-Simons Hilbert space will be
reviewed in section 2.6.

Dimension of the Ground State Hilbert Space for U(q) SYM
Theory

Let us calculate the number of ground states for U(q), for general n. We need to find the
number of inequivalent homomorphisms Γ → U(q), i.e., the number of inequivalent q-
dimensional unitary representations of Γ. Since all irreducible representations of a finite
group are equivalent to unitary representations [38], we can get unitary representations
if we combine the unitary irreducible representations.

Let Cq be the number of ground states for gauge group U(q), and let
∑∞

q=0Cqt
q be

the generating function (with C0 = 1 by definition), where t is an auxiliary variable that
we introduced to keep track of q. A finite group Γ has a finite number of irreducible
representations. According to the McKay correspondence reviewed earlier, the num-
ber of irreducible representations is the number of nodes in the corresponding Dynkin
diagram D(Γ). If the rank of the corresponding simple Lie algebra is r, then this num-
ber is simply r + 1. (This is also the number of conjugacy classes in the group [38].)
Let m0, . . . ,mr be the dimensions of the irreducible representations, with m0 = 1 cor-
responding to the trivial representation. Since finite dimensional representations are
built out of copies of irreducible representations, we can write the generating function
as:

Φ(t) =
∞∑
n=0

Cnt
n =

r∏
i=0

1

1− tmi
(2.31)

This formula expresses the number of ways Cn in which n can be partitioned into
dimensions of irreducible representations.

Using the McKay correspondence, we can read off mi from the numbers in the
corresponding affine Dynkin diagram. We have the following list for m1, . . . ,mr:

An : 1, 1, 1, . . . , 1︸ ︷︷ ︸
n

;

Dn : 1, 1, 1, 2, 2, 2, . . . , 2︸ ︷︷ ︸
n−3

;

E6 : 1, 1, 2, 2, 2, 3 ;

E7 : 1, 2, 2, 2, 3, 3, 4 ;

E8 : 2, 2, 3, 3, 4, 4, 5, 6 .
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So, for example, for n = 2 and E6 we have Cn = 9 since there are three 1-dimensional
representations and therefore 6 ways to decompose 2 = 1+1, and there are in addition
three 2-dimensional irreducible representations. In chapter 3 we produce the generating
functions for SU(q) representations; they can be built from the generating functions
for the U(q) representation.

Dimension of the Hilbert Space for Chern-Simons Theory
with Gauge Group G at Level q

Canonical quantization of Chern-Simons theory on T 2 was discussed in [31], and we
briefly review the result. In temporal (A0 = 0) gauge, the constraint Fij = 0 (i, j = 1, 2
along T 2) restricts the gauge field to be flat already at the level of the path integral, not
just the equations of motion, thus recasting the problem as quantization of the moduli
space of flat connections [25]. For T 2, the holonomies of the gauge field along the 1-cycles
of T 2 commute, and with a gauge transformation if necessary, the components Ai of the
gauge field can be conjugated to take values in the Cartan subalgebra corresponding to
D(Γ). We denote those time-dependent elements of the Cartan subalgebra by θi(t). We
choose a basis of the Cartan subalgebra and denote the components of θi in that basis
by θIi [I = 1, . . . , rankD(Γ)]. Let CIJ be the Cartan matrix corresponding to D(Γ), in
the chosen basis. The action in terms of θ(t) becomes

S =
q

2π

∫
dtCIJθ

I
1 θ̇

J
2 ,

and its quantization leads to a basis of quantum states that can be put in one-to-one
correspondence with the elements of a quotient

Λw

W ⋉ qΛr

(2.32)

where Λw and Λr are the weight lattice and the root lattice for D(Γ), respectively,
and W is the Weyl group. This is the same Hilbert space as the one that appeared
in section 2.4 as a representation of a Heisenberg-Weyl algebra. Recall that there, we
identified states that differ by the action of the Weyl group, and set states that are q
times the root to be trivial.

We also recall the connection with Affine Lie algebras [25]. The affine Weyl group
at level q is given by [46]

W ⋉ qΛcr (2.33)

where Λcr is the coroot lattice. For ADE gauge groups which are simply laced, the coroot
lattice coincides with the root lattice Λcr = Λr. Therefore, (2.32) means that the number
of independent states is the same as the number of highest weight representations of the
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affine Lie algebra ofG at level q. At first sight, it is not obvious that the number of states
in (2.32) is the same as the one obtained in section 2.6 by counting flat connections of
U(q) on S3/Γ. We will show in section 2.6 that they are in fact the same.

Matching at Large q

Before we show that the dimensions of Hilbert spaces of the two theories (Chern-Simons
and ground states of SYM on S3/Γ) match for all q, it is illuminating to look at the
large q case in which there exists a semiclassical formula for the number of states in
the Chern-Simons theory. On the SYM side, we will see that the large q counting
reproduces a remarkable formula in the theory of Lie algebra.

For large q, the number of states described by the theory

S =
q

2π

∫
dtCijθ

iθ̇j (2.34)

can be computed by going to the phase space and demanding that each 2π cell (we set
ℏ = 1) in the phase space contains one degree of freedom. In this fashion, one obtains
the number of states for the Chern-Simons theory

NCS =
qr detC

|W |
(2.35)

where r is the rank of the Lie algebra and |W | the size of the Weyl group. For related
work see [49]. Let us now look at the SYM theory.

For the SYM theory, recall that the number of states is encoded in the Cn coefficients
in the generating function which we reproduce here for the convenience of the reader
(mi represents the numbers in the affine Dynkin diagram):

Φ(t) =
∞∑
q=0

Cqt
q =

r∏
i=0

1

1− tmi
(2.36)

To compute the coefficient Cq when q is large, we want to isolate the term with the
highest power (in the denominator) in t in the polynomial.

Using
(1− tmi) = (1− t)(1 + t+ t2 + ...+ tmi−1) (2.37)

we can put the generating function in the form

Φ(t) =
1

(1− t)r+1

r∏
i=0

1

1 + t+ t2 + ...+ tmi−1
(2.38)
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The generating function can be broken into a sum with a leading term and some
subleading terms

Φ(t) =
a1

(1− t)r+1
+O

(
1

(1− t)r

)
(2.39)

where a1 can be found by multiplying Φ(t) by (1− t)r+1 and setting t = 1. From (2.38)
we see that

a1 =
r∏

i=0

1

mi

=
∏ 1

numbers on the affine Dynkin diagram
(2.40)

Next, extracting the coefficient multiplying tq in the leading term using simple
combinatoric formula, we obtain

Cq =
(n+ r)!

r!n!

∏ 1

mi

≈ nr

r!

∏ 1

numbers on the affine Dynkin diagram
(2.41)

In the theory of Lie algebra, there exists a remarkable formula that computes the
dimension of the Weyl group of any Lie algebra. It is given by [50]

|W | = r!×
∏

(numbers on the affine Dynkin diagram)× detC (2.42)

where C is the Cartan matrix. Using this in our formula, we obtain

Cq =
nr detC

|W |
(2.43)

which matches the large q Chern-Simons counting obtained in (2.35).

Matching for all q

Having discussed the case for large q, we now give a proof of the match between the
number of ground states for all q. The argument is simple. On the Chern-Simons side,
we saw in the previous section that the number of states is the number of highest weight
representation of G at level q. On the SYM side, we note that the highest root θ can be
constructed from a linear combination of simple roots αi with the coefficient mi read
off from the ith node in the Dynkin diagram [46]:

θ =
r∑

i=1

miαi (2.44)

Since the q dimensional representations are built out of the irreducible representa-
tions, one of which is the 1-dimensional trivial representation m0 = 1, the number Cq
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of q dimensional representations are given by the possible ways of choosing a set of
nonnegative integers λi such that ∑

i

λimi ≤ q (2.45)

The number λi means the number of times the ith irreducible representation ap-
pears in constructing the q dimensional representation. The above formula makes sense
because the way we construct the q dimensional representation here is to first ignore the
trivial irreducible representation m0 = 1, fill up the q dimensional representation using
the remaining nontrivial r irreducible representations (hence the ≤ sign), and then fill
up the rest (if any) by inserting some number(s) of trivial representation.

However, this formula can be “lifted” to an affine Lie algebra interpretation by
introducing another integer λ0 to complete the “weight” vector λ = (λ0, λ1, ..., λr). The
level q and λ0 is related [46]:

λ0 = q − (λ, θ)

Highest weight representation at level q means that λ0 ≤ 0, which reproduces the
previous inequality. Therefore, the possible choices of λi that satisfies the inequality
gives the number of highest weight representations of the affine Lie algebra, which is
the same as the number of states in the Chern-Simons theory. The argument here
shows that this number is also the number of ground states in the SYM theory. This
completes the matching for all q.

2.7 Matching of the Dimension of the Hilbert

Space for SU(q) Gauge Group

In the previous section, we showed that the Hilbert space of U(q) SYM on S3/Γ matches
that of the level q Chern-Simons theory with gauge group G on T 2. In this section, we
investigate the matching when the SYM theory has gauge group SU(q). In particular,
we will prove formula (2.16), copied here for convenience:(

Ground states of SU(q) SYM
on S3/Γ

)
←→ HilbX,W

q

where we recall that HilbX,W
q refers to states in the Heisenberg algebra Hilbq that are

invariant under both the Weyl transformation and the transformation generated by

X = {U(qα)}α∈Λw

We also recall that the identity element in the Heisenberg algebra is

{U(qα)}α∈Λr
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and that the states in the Heisenberg algebra can be given a geometric interpretation
[31] (see (2.32)):

Λw

W ⋉ qΛr

The approach we take in proving the formula is to show that the states on both
sides satisfy the same constraints. We first focus on the constraints for the Heisenberg
algebra system.

Because of the identification by the Weyl group action, the states are weights re-
stricted to lie inside the fundamental Weyl chamber of the Lie algebra. Because of the
identification of q times the root lattice, weights that are also on qΛr are identified as
the identity element. Therefore, the states invariant under X are precisely states that
lie on

Λw

W ⋉ qΛr

∩ Λr

The generating function for counting such states is computed in chapter 3, and is
shown to agree with the generating function for counting the corresponding states in
the SU(q) SYM theory. We here give a sketch of the proof. Let x be a state such that

x ∈ Λw

W ⋉ qΛr

and x ∈ Λr

Let the Dynkin label of a state x be x = [x1, x2, ..., xr], where each entry is a
nonnegative integer. The first condition implies that

r∑
i=1

aixi ≤ q (2.46)

where ai is expansion coefficient of the longest root in terms of the simple roots.
The second condition means that x can be written as a linear combination of simple

roots with nonnegative coefficients. To find the expansion coefficients in terms of the
simple roots, we simply need to multiply the Dynkin label as a vector by the inverse of
the Cartan matrix. Therefore, we need to impose the constraint

r∑
j=1

C−1
ij xj ∈ Z (2.47)

The key claim in chapter 3 is that the constraints satisfied by the states on the SYM
side are exactly (2.46) and (2.47), thereby establishing the proof.

It is easy to see that (2.46) is one of the constraints on the SYM side. Let xi
i = 0, 1, ..., r be the number of times the irreducible representation i of Γ appears in the
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homomorphism Γ → SU(q). Note that x0 is the trivial 1-dimensional representation.
By the McKay correspondence, the dimension of the ith irreducible representations
is ai, where we define a0 = 1. Therefore, the constraint that the dimension of the
representation is q gives

r∑
i=0

aixi = q (2.48)

Treating x0 as a slack variable, the above constraint is the same as equation (2.46).
This was the same constraint we obtained for the U(q) case encountered in §2.6.

Now, the new ingredient here is to impose a further constraint such that the repre-
sentation has unit determinant. The general case is proved in 3, so here we will look at
a specific case where Γ = Zk. The jth irreducible representation has determinant

ωj (2.49)

where ω = exp(2πi/k) and j = 0, 1, ..., k − 1. The unit determinant constraint is∏
i

ωixi = 1 (2.50)

or, equivalently
k−1∑
i=1

ixi
k
∈ Z (2.51)

At first sight, claiming this constraint to be equal to the constraint derived in
(2.47) seems impossible, since (2.47) actually contains r = k− 1 constraints for the Lie
algebra suk. In fact, we shall see that only one of the r = k − 1 constraints in (2.47)
is independent. To show this, we give the formula for the inverse of the suk Cartan
matrix:

C−1
ij =

1

k
[min(i, j)× k − ij] (2.52)

In particular, modulo 1, constraint (2.47) reads

k−1∑
j=1

ijxj
k
∈ Z

for each i = 1, 2, ..., k − 1. We see that if the constraint is satisfied for i = 1, the rest of
the cases i = 2, 3, ..., k − 1 are automatically satisfied. Therefore, the only independent
constraint is

k−1∑
j=1

jxj
k
∈ Z (2.53)
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We see that the constraints for counting states are the same for both systems when
Γ = Zk. The idea used in this proof can be generalized to prove the case for the rest of
the ADE Γ. In chapter 3, we derive the generating function for counting SU(q) states
for the SYM theory on S3/Γ for Γ = Zk,Dick, E6, E7, E8

7.

2.8 More Examples of S Matrices

In section 2.5, we computed the S matrix for U(1) SYM on S3/Zk, and found that in
a certain basis it matches with the level 1 Verlinde S matrix for gauge group SU(k).
In this section, we give some examples of S matrices for non-abelian gauge theory on
S3/Γ computed from the Chern-Simons theory side.

Example 1: S Matrix for U(k) SYM on S3/Z2

The first non-abelian example we focus on is U(k) SYM on S3/Z2. There are k + 1
ground states in total. According to our proposal, the S matrix of this theory is the
same as the level k Verlinde S matrix for gauge group SU(2). This is given by [46]

Sij =

√
2

k + 2
sin

(i+ 1)(j + 1)π

k + 2
(2.54)

where i, j = 0, 1, ..., k.

Example 2: S Matrix for U(2) SYM on S3/Dic2

For this example, we consider the ground states of nonabelian U(2) SYM theory on
S3/Dic2, where Dic2 is the dicyclic (binary dihedral) group of order 2. According to
our proposal, the ground states of this theory are dual to the ground states of the level 2
Chern-Simons theory with gauge group SO(8) on T 2. There are 11 such ground states,
labeled by the Dynkin label [x1, x2, x3, x4] that satisfies the level 2 constraint

x1 + 2x2 + x3 + x4 ≤ 2

where the coefficients multiplying xi are the expansion coefficients of the highest root
in terms of the simple roots. We use the explicit formula for the Verlinde S-matrix to
compute the S-matrix. Note that the Weyl group for so(8) is (Z2)

3⋉S4, so to compute
each matrix element using the formula one needs to sum over 4!× 23 = 192 terms. We
wrote a Mathematica code to compute the 11 by 11 S-matrix. The result is

7The case for E8 is trivial. All irreducible representations have unit determinant, so the U(q)
representation coincides with the SU(q) representation.
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1

4
√
2



1 2 2 2 1 1 1 2 2 2 2

2 2
√
2 0 0 2 −2 −2 0 0 −2

√
2 0

2 0 2
√
2 0 −2 2 −2 0 −2

√
2 0 0

2 0 0 2
√
2 −2 −2 2 −2

√
2 0 0 0

1 2 −2 −2 1 1 1 −2 −2 2 2
1 −2 2 −2 1 1 1 −2 2 −2 2
1 −2 −2 2 1 1 1 2 −2 −2 2

2 0 0 −2
√
2 −2 −2 2 2

√
2 0 0 0

2 0 −2
√
2 0 −2 2 −2 0 2

√
2 0 0

2 −2
√
2 0 0 2 −2 −2 0 0 2

√
2 0

2 0 0 0 2 2 2 0 0 0 −4


The eigenvalues of the S-matrix are −1 and +1, with multiplicities 4 and 7, respec-

tively.

2.9 Discussion

By putting the N = 4 SYM on a singular space S3/Γ, we are able to isolate the
degenerate subspace of ground states and study how S-duality acts on this subspace.
Remarkably, this ground state Hilbert space has a dual formulation in terms of the dual
Chern-Simons theory. On this dual theory, the action of S and T operators are well-
known, and it is natural to expect that the SYM theory has the same matrix elements
for S in a suitable basis given that the Berry phase vanishes at τ = i as discussed in
section 2.1.

In the next two chapters, we will perform more tests on this duality.
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Chapter 3

Chern-Simons Theory, Ehrhart
Polynomials, and Representation
Theory

3.1 Introduction

As discussed in chapter 2, the states of Chern-Simons theory with simply-laced gauge
algebra g quantized on T 2 can be identified with points in the set (2.4), reproduced
here for convenience

Λw

W ⋉ qΛr

(3.1)

where Λw, Λr are the weight and the root lattice of g, and W is the Weyl group. In
this paper, we study in detail the counting of a special class of states that lie in the set

Λw

W ⋉ qΛr

∩ Λr (3.2)

where the intersection with Λr picks out the states in the set (2.4) that are also roots.
The motivation for studying this special class of states is because they correspond to
the states mentioned in the statement (2.16).

We will show that the counting of such states leads to a curious connection to
Ehrhart polynomials, McKay correspondence, and representation theory. Ehrhart poly-
nomials were first constructed to count lattice points in rational polytopes [34], a prob-
lem that is in general NP-hard [51] to solve by computer. Ehrhart polynomials have
been found to connect different areas of mathematics such as number theory, geometry,
and topology1. Since closed-form Ehrhart polynomials are rare and are only for very

1For an extensive introduction, see the book [52]
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special geometries, our computation in this paper will add more examples to the known
collection of Ehrhart polynomials.

We will also show that the Ehrhart polynomials we obtain from the geometric point
of view can also be obtained from a representation theory point of view. In fact,
the latter comes from a dual formulation of the problem. The two approaches are
connected by the McKay correspondence [21], which gives a ADE Dynkin diagram
classification of discrete subgroups of SU(2) and their irreducible representations. The
physics behind this dual formulation of the problem comes from a holographic system
of D-branes on ADE singularity as disucssed in section 2.4 in chapter 2. To repeat
the statement, there is a duality between the ground state Hilbert space SU(q) N = 4
Supersymmetric Yang-Mills theory on S3/Γ and a certain subspace (3.2) of the Hilbert
space of level q Chern-Simons theory on T 2 with gauge algebra g(Γ) given by the McKay
correspondence.

This chapter is organized as follows. In section 3.2, we review the quantization of
Chern-Simons theory on T 2 and formulate the Hilbert space geometrically in terms
of certain points on the Lie algebra lattice. This partially overlaps but expands on
the discussion in introductory section in chapter 2. To illustrate the rather abstract
notation, we give an example of states of g = su(3). In section 3.3, we pose the problem
of counting the number of the special class of states in the set defined in (3.2). We shall
find that the problem is the same as counting lattice points in rational polytopes, and
that the generating function for counting the states is exactly the corresponding Ehrhart
polynomial. In section 3.4, we compute the explicit form of the Ehrhart polynomial
for a specific case by using the Ω operator introduced by MacMahon [53]. The general
case is solved by reverse-engineering some representation theory formulas in section 3.5.
We will see that the Ehrhart polynomial that counts the special states at level q with
gauge algebra g is the same as the generating function for the SU(q) representation of
the ADE subgroup given by the McKay correspondence. In section 3.6, we extend our
result to the D-series where the gauge algebra of Chern-Simons theory is so(2(N +2)),
N ≥ 1. In section 3.7, we discuss some curious representation theory properties implied
by the inverse of Cartan matrices modulo 1 for ADE Lie algebras by focusing on the
exceptional series e6, e7, and e8. In section 3.8, we compute the Ehrhart polynomials
for the exceptional Lie algebras. This chapter is based on the work [54].

3.2 Quantization of Chern-Simons Theory on T 2

and the States

The Chern-Simons theory with gauge algebra g on T 2 can be quantized using the stan-
dard quantization procedure by choosing a gauge A0 = 0 and imposing the constraint
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δS/δA0 = 0, where S is defined in equation (2.3). The constraint gives the condition
that the connections are flat F = dA+ A ∧ A = 0. Imposing the constraint, using the
remaining freedom to gauge transform the connection A into the maximal torus of g,
and imposing the canonical commutation relation, one obtains that the states are in
one-to-one correspondence with points in the set [31] described in equation (2.4).

In words, states are points on the weight lattice of g with two states being identified
if they differ by some combinations of the Weyl transformation and q times the root
lattice translation. We shall henceforth call this set the state set. Notice that because
of the identification by qΛr, the number of states is finite, a fact that can also be seen
from the compactness of the Chern-Simons phase space on T 2. In the large q limit, the
number of states is given by

qr detC

W
(3.3)

where r is the rank of g, C is the Cartan matrix, and W is the size of the Weyl group.
This formula can either be derived from equation (2.4) by noting that detC = Λw/Λr

or going back to canonical quantization and demanding that the phase space contains
one state per 2π cell (we set ℏ = 1).

To give an example of the state set of su(3) Chern-Simons theory at level q = 1 and
q = 2, we present the figure (see Fig. 3.1) from [55]2.

Fig. 3.1 shows the unique states in the Hilbert space for the level 1 and the level
2 theory, respectively. Notice that the pattern continues to all levels: all states lie in
the fundamental Weyl chamber, and that as the level increases, the number of state
increases quadratically (roughly as the area of the shaded region). In fact, the number
of states for the su(3) theory at level q is

q(q + 1)

2
(3.4)

This formula can be derived as follows. For simply laced algebra (which is our
only focus in this paper), the root lattice Λr is the same as the coroot lattice Λcr. A
theory in affine Lie algebra shows that the state set (2.4) is simply the highest weight
representation of the corresponding affine Lie algebra g̃ at level q [46]. Let a state be
labeled by the Dynkin label (a1, a2, ..., ar), where each ai is some nonnegative integer.
The highest weight states satisfy the inequality

r∑
i=1

ciai ≤ q (3.5)

2In [55], a more pedestrian way of quantizing the Chern-Simons theory on T 2 is used.
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Figure 3.1: In both pictures, e1 and e2 are the simple roots, and d1 and d2 are the
fundamental weights. In the top picture, three black dots represent the three unique
states of the level q = 1 theory. In the bottom picture, the six black dots are the unique
states of the level q = 2 theory. It is easy to convince oneself that one can reach the
white dots or other weight lattice points through a combination of Weyl reflections and
q times the root lattice translation on the black dots. Figure retrieved from [55].
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where ci ∈ Z>0 is the coefficient multiplying the ith simple root αi in the expression for
the highest root θ:

θ ≡
r∑

i=1

ciαi (3.6)

For the case of su(3), the numbers are c1 = c2 = 1, so the number of Chern-Simons
states at level q is the same as the number of solutions to the inequality

a1 + a2 ≤ q

and solving for this gives exactly the quadratic formula (3.4).
Although the example is given for su(3), the reader should keep in mind the gener-

alization of the picture to other ADE gauge algebras. In the next section, we look at a
special class of states on the state lattice.

3.3 A Special Class of States

The Geometry and the Counting Problem

The special states we want to focus on are those that belong to the set

Qq =
Λw

W ⋉ qΛr

∩ Λr (3.7)

namely states that also roots. As discussed earlier, the physical motivation for consid-
ering such states is mentioned in (2.16). Following the su(3) example in Fig. 3.1, at
level 1 there is one state that belongs to Qq, the state at the origin. At level 2 there
are two states, the additional one being at the position d1 + d2.

The question we pose is: given g and level q, how many states are in Qq? There are
two equivalent formulations of this counting problem. The first formulation uses the
Cartan matrix and it naturally leads to the concept of Ehrhart polynomials. The second
(dual) formulation uses the inverse of the Cartan matrix, and it leads to representation
theory and connections to string theory. The rest of the section focuses on the first
formulation of the problem.

Let the Cartan matrix of g be C. In the basis of Dynkin labels, the rows of C give
the Dynkin coefficients of the simple roots. Since we are dealing with simply laced Lie
algebras, CT = C, so that the columns of C also give the representation of the simple
roots. If y ∈ Qq, y being the Dynkin label (as a column vector) of some state in the
theory, then y ∈ Λr by definition, so that it can be represented as a linear combination
of the simple roots:

y = Cx
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where x ∈ Zr
≥0 is a column of nonnegative integers. The nonnegativity of x is because

states in Qq are all dominant weights. What constraints does y have to satisfy? The
first constraint on y is that the entries are nonnegative (note that x ≥ 0 does not imply
y ≥ 0). The second constraint is the level q constraint in equation (3.5). In terms of x,
the constraints read

r∑
j=1

Cijxj ≥ 0 (3.8)

r∑
i,j=1

ciCijxj ≤ q (3.9)

Geometrically, the above constraints define a rational polytope, a polygon whose
vertices have rational coordinates. The solutions to the above constraints are simply
integer points contained inside the rational polytope. By adding slack variables, any
rational polytope can be represented as a system of linear equations [52]

Ax′ = b (3.10)

for some matrix A, vector b, and unknowns x′.
For our problem, we need r + 1 slack variables k1, k2, ..., kr+1 ∈ Z≥0, so that the

system of inequalities reduces to the system of equalities:
r∑

j=1

Cijxj − ki = 0 (3.11)

r∑
i,j=1

ciCijxj + kr+1 = q (3.12)

Stacking the vector x and k into x′ = (x, k), we have the system of linear equation
Ax′ = b where A is r + 1 by 2r + 1 and b is r + 1 by 1:

A =


C11 C12 . . . C1r −1 0 0 . . . 0
C21 C22 . . . C2r 0 −1 0 . . . 0
...

...
...

...
...

...
...

...
...

Cr1 Cr2 . . . Crr 0 0 0 −1 0∑
i ciCi1

∑
i ciCi2 . . .

∑
i ciCir 0 . . . 0 . . . 1

 (3.13)

b =


0
0
...
0
q

 (3.14)
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The problem of counting states in Qq is then transformed into counting the solutions
to this system of linear equations.

Ehrhart Polynomials

What we did in the previous section is under the guise of Ehrhart polynomials [34].
They are generating functions for counting lattice points contained in polytopes. Let
us formulate the theory following the notation of [52]. Let a rational polytope P be
specified by a system of linear equations with slack variables added:

P = {x ∈ Rd
≥0 : Ax = b} (3.15)

for some integer valued matrix A and integer valued vector b. One considers the tth
dilate of P , defined as

tP = {x ∈ Rd
≥0 : Ax = tb} (3.16)

where t ∈ Z>0. Let LP(t) denote the number of lattice points contained in the tP :

LP(t) = #{x ∈ Zd
≥0 : Ax = tb} (3.17)

The Ehrhart polynomial associated to the polytope P is defined as

EhrP(z) = 1 +
∑
t≥1

LP(t)z
t (3.18)

In our problem, the polytope is given as the qth dilate of

Ax′ =


0
0
...
0
1


with A and x′ defined in the previous section (see equation (3.13) and equation (3.14)).
We call this base polytope Qg, where the dependence on the Lie algebra g is made
explicit as each simply laced Lie algebra has its unique polytope. Since we are interested
in computing the number of special states for each level q > 0, we want to find the
number of lattice points contained in the qth dilate of Qg for each positive q. Therefore,
the question posed in the previous section can be now phrased as finding the Ehrhart
polynomial of Qg:

EhrQg(z) =?

This concludes the first formulation of our problem. The dual formulation of the
problem in terms of the inverse of Cartan matrices will be introduced in section 3.5. In
the next section, we develop a formal method to compute EhrQg(z) in the most general
way possible.
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3.4 Computation of EhrQg(z)

In this section and the next, we compute EhrQg(z) for all simply laced g. We give
two approaches to this computation. The first approach uses MacMahon’s Ω operator
method [53] but quickly becomes tedious when the level q becomes large. However, the
merit of this approach is that it is general: it can be applied to solving for all Ehrhart
polynomials given the constraints, and it will be amiss if we do not discuss the general
solution. Due to the computational difficulty, we shall only use this approach to give
the explicit formula for Qg for the case g = su(2). MacMahon’s method is reviewed in
section 3.4 and the computation for su(2) is done in section 3.4.

The second formulation of the problem uses a hint from representation theory, and
leads to the expression of EhrQg(z) in one full sweep. The second approach is inspired
from the duality relation constructed from string theory (see section 2.4 in chapter 2),
without which it is not obvious how one can make a connection of EhrQg(z) to being
solved by representation theory.

The Ω Operator

In computing the number of ways of partitioning some integer u into a sum of n non-
negative integers a1 + a2 + ... + an = u, the order of the integers in the sum does not
matter. Therefore, the problem of counting n-partitions of u is quite different from the
problem of counting solutions to the the equation a1 + a2 + ... + an = u, where the
number of solutions is the coefficient of the xu term in the generating function

1

(1− x)n
(3.19)

To introduce the Ω operator, we focus on the number partition problem, and there-
fore we can assume an ordering of ai to be a1 ≥ a2 ≥ ... ≥ an without loss of generality.
One way to impose this ordering constraint is to consider the expression [53]

Ω
≥

1

(1− λ1x)(1− λ2

λ1
x)(1− λ3

λ2
x)...(1− λn

λn−1
x)

(3.20)

where the notation Ω
≥

means restricting terms that have only nonnegative powers of

each λ and setting each λ to be one in the end. This is easily verified by expanding
each fraction in power series.

The Ω
≥
leads to many identities. For example, one can again expand in power series

and verify that

Ω
≥

1

(1− λxp1)(1− xp2

λ
)
=

1

(1− xp1)(1− xp1+p2)
(3.21)
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Repeated use of this identity shows that equation (3.20) is equal to

1

(1− x)(1− x2)(1− x3)...(1− xn)
(3.22)

which is exactly the generating function to count the n-partition of some integer.
One can also compose the Ω

≥
operation. We modify the notation accordingly if there

is any ambiguity with extra variables:

Ω
λ≥

Ω
µ≥

1

(1− λµx)(1− y
λ2µ

)
= Ω

λ≥

1

(1− λx)(1− xy
λ
)

=
1

(1− x)(1− x2y)

This expression counts the number of partition into two nonnegative integers a1 and a2
such that the constraint a1 ≥ 2a2 is satisfied3.

In fact, one can also have two other operators Ω
≤
and Ω

=
, defined in a self-explanatory

way. As we shall see, we will be interested in identities involving Ω
=
. The three operators

satisfy some useful algebraic relations listed in [53], and can be used to compute Ω
=
. For

example, let F (λ) be some polynomial depending on λ as the variable used in the Ω
operators, the following expression

Ω
=
F (λ) = Ω

≥
F (λ) + Ω

≥
F (λ−1)− F (1) (3.23)

can be used to derive identities involving Ω
=
in terms of the identities involving Ω

≥
. In

the next subsection we will use an identity Ω
=
to compute EhrQg(z) for g = su(2). We

will also sketch the idea of computing EhrQg(z) for a general simply laced g.

Applying the Ω Operator

To illustrate the use of the Ω operator, we use it to write down a formal expression for
the Ehrhart polynomial EhrQg(z). Recall that the base polytope is given by

Ax′ =


0
0
...
0
1

 (3.24)

3Reason: Ω
µ≥

implements the condition that ordering does not matter, and Ω
λ≥

implements the

constraint a1 ≥ 2a2.
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where A (r + 1 by 2r + 1) was given in equation (3.13). Let z ≡ (z1, z2, ..., zr, z). The
Ehrhart polynomial is computed by the formal expression

EhrQg(z) = Ω
z1=

Ω
z2=
... Ω

zr=

(
2r+1∏
i=1

1

1− zA1i
1 zA2i

2 ...zAri
r zAr+1,i

)
(3.25)

where a composition of r Ω
=
is applied, each time restricting the polynomial to the 0th

order term of some zi. This formula looks intimidating, but can be easily derived as
follows. The term involving the product is simply the generating function for counting
the combinations of Ax′. Imposing the constraint that the right hand side of the
equation has r vanishing entries means that one must restrict to the 0th order term
of z1, ...zr. Since the last entry of the column on the right hand side is 1, the number
of solutions to the qth dilate of the polytope is then the the coefficient of the zq term.
This completes the argument that the formal expression in (3.25) computes the Ehrhart
polynomial.

It is nice to have a formal expression like eqn. (3.25) for the Ehrhart polynomial. If
one wants to compute the first few terms, a computer can easily do the job. However,
we want to take a step further and obtain a closed form solution, which as we shall see
exists for all simply laced g.

To illustrate how one might obtain a closed form solution using the current formal-
ism, we first focus on the case of su(2). The Cartan matrix for su(2) is simply 2, the
coefficient for the highest root is c1 = 1. Therefore the A matrix is

A =

(
2 −1 0
2 0 1

)
(3.26)

Using expression (3.25), the Ehrhart polynomial is given by

EhrQsu(2)(z) = Ω
z1=

(
1

1− z21z2
1

1− z−1
1

1

1− z

)
(3.27)

Using the Ω operator identity [53]

= Ω
λ=

1

(1− λ2x)(1− yλ−1)
=

1

1− xy2
(3.28)

we find that the Ehrhart polynomial for g = su(2) is

EhrQsu(2)(z) =
1

(1− z)(1− z2)
(3.29)

Now let us generalize to arbitrary g. The first thing to note is that one needs
more general Ω identities in addition to equation (3.28), since a variable Zi can appear
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more than two times in the product in equation (3.25). However, the Ω identities
for a general polynomial are not documented and do not have clean solutions. This
problem has been solved by [56], where the authors developed the Omega Package in
Mathematica to compute Ω identities for a general polynomial

P (x1, ..., xn;λ1, ...λr)∏n
i=1(1− xiλ

v1(i)
1 ...λ

vr(i)
r )

(3.30)

For our problem, we can apply the program r times to eliminate z1, ...zr to find
EhrQg(z) of rank r. In the next section, we will use a trick from representation the-
ory to compute all EhrQg(z) by hand, bypassing the need for the computer program
computation.

3.5 EhrQg(z) From Representation Theory

To connect EhrQg(z) to representation theory, we briefly summarize the discussion of
the McKay correspondence [21] in section 2.3. The McKay correspondence associates
any simply laced g to some discrete subgroup Γ(g) of SU(2). More specifically,

Γ(su(N)) = ZN (3.31)

Γ(so(2(N + 2))) = DicN (3.32)

Γ(ei) = Ei i=6,7,8 (3.33)

where ZN is the cyclic group of order N , DicN is the dicyclic (binary dihedral) group
of order 4N , and E6, E7, E8 are the binary tetrahedral group, binary octahedral group,
and the binary icosahedral group, respectively (also called 2T , 2O, and 2I).

For some simply laced g, consider the homomorphism Γ(g) → SU(q), or, in other
words, SU(q) representations of the group Γ(g). Let the number of Weyl-inequivalent4

representations Γ(g) → SU(q) (inequivalent also under SU(q) conjugation) be bq, so
that one forms the generating function to count the number of SU(q) representations

Φg(z) ≡ 1 +
∑
i=1

biz
i (3.34)

We claim that this generating function is exactly the same as the Ehrhart polynomial
corresponding to the same Lie algebra:

EhrQg(z) = Φg(z) (3.35)

4This means that two diagonal SU(q) matrices are identified if the diagonal elements differ by
some permutation.
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This beautiful equation connects geometry (left hand side) with representation the-
ory (right hand side) via the McKay correspondence and string theory (the equality
sign). A string-theory proof of this equation was given in section 2.4 using the mini
AdS/CFT argument. The rest of this section is devoted to proving this equality math-
ematically and using this equality to compute the closed form EhrQg(z) for g = su(N)
and g = so(2(N + 2)). The Ehrhart polynomials for the exceptional Lie algebras are
computed in section 3.8.

The strategy we use here is to look at the dual formulation by starting with weights,
expressing them in terms of the simple roots, and imposing the constraints. This
reverse process is carried out using the inverse the Cartan matrix. Since the inverse
of Cartan matrices in general has fractional entries, this dual formulation is less suited
for geometric arguments we had in the previous sections. Instead, we will use purely
algebraic arguments to prove equation (3.35).

Let g = su(r + 1) and the corresponding Cartan matrix be C. Start with some
weight x in the state set (2.4) which we reproduce here for convenience

Λw

W ⋉ qΛr

(3.36)

We can represent x as a vector in Zr
≥0 by using its Dynkin label (x1, ..., xr). It

satisfies the constraint
r∑

i=1

xi ≤ q (3.37)

as argued in section 3.2.
Since the simple roots span Rr, the weight x has a unique expansion in terms of the

simple roots α1, ..., αr:

x =
r∑

i=1

liαi (3.38)

The expansion coefficients lj are simply given by multiplying x (as a vector) by the
inverse of the Cartan matrix[46]

li =
r∑

j=1

C−1
ij xj (3.39)

Since we want x to lie on the root lattice Λr as well, the only other constraint we
need to impose is that each lj is an integer

li =
r∑

j=1

C−1
ij xj ∈ Z (3.40)
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The inverse of the Cartan matrix for su(N) algebra has an interesting modular
structure. Here, we display C−1 for su(4) and su(7):

C−1
su(4) =

1

4

3 2 1
2 4 2
1 2 3

 (3.41)

C−1
su(7) =

1

7


6 5 4 3 2 1
5 10 8 6 4 2
4 8 12 9 6 3
3 6 9 12 8 4
2 4 6 8 10 5
1 2 3 4 5 6

 (3.42)

In general, the formula for C−1
su(N) is [57]

C−1
su(N),ij =

1

N
[min(i, j)×N − ij] (3.43)

Even though we have r number of constraints from equation (3.40), we shall see
that because of the peculiar property of C−1

su(N), there is effectively only one constraint,
the one imposed by the last row of the matrix:

1

N

N−1∑
i=1

ixi ∈ Z (3.44)

A quick proof that constraint (3.44) implies the rest of the constraints is as follows.
The matrix elements C−1

su(N),ki of the kth row are

C−1
su(N),ki =

{
(N−k)i

N
k > i

(N−i)k
N

k ≤ i

Using this, we obtain the constraint imposed by the kth row:

lk =
N−1∑
j=1

C−1
su(N),kjxj

=
k−1∑
i=1

(N − k)i
N

xi +
N−1∑
i=k

(N − i)k
N

xi

= − k

N

N−1∑
i=1

ixi mod 1
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Up to integers, the constraint imposed by the kth row is simply k times that of the
constraint imposed by the last row. Therefore, the only unique constraint in (3.40) is
the one given by the last row. In summary, there are two constraints on x:

N−1∑
i=1

xi ≤ q (3.45)

1

N

N−1∑
i=1

ixi ∈ Z (3.46)

We would now like to argue that this is exactly the same constraints satisfied by SU(q)
representations of Γ(su(N)) = ZN .

SU(q) representations of Γ(su(N)) = ZN

Since finite dimensional representations are built up from irreducible representations,
we first look at the irreducible representations of ZN . There are in totalN 1-dimensional
irreducible representations. The kth irreducible representation is given by the kth power
of the Nth root of unity

ωk = exp

(
2πik

N

)
(3.47)

Here, k runs from 0 to N − 1, with k = 0 being the trivial representation. The
SU(q) representations are constructed by inserting xk copies of the kth irreducible
representation. By definition, the determinant of any SU(q) matrix must be 1, so we
have

N−1∏
k=0

ωxk
k = exp

(
2πi

N

N−1∑
k=0

kxk

)
= 1 (3.48)

But this is equivalent to the constraint 3.46:

1

N

N−1∑
i=1

ixi ∈ Z

The constraint that the dimensions of the irreducible representations add up to q is

N−1∑
i=0

xi = q (3.49)

However, treating x0 as a slack variable, this constraint is equivalent to (3.45)

N−1∑
i=1

xi ≤ q
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Therefore, we have shown that the two counting problems satisfy the same con-
straints and are secretly one and the same. This concludes the proof of equation (3.35)
for the case g = su(N):

EhrQg(z) = Φg(z)

In the next subsection, we give explicit formulae for EhrQg(z) by computing Φg(z).

Computation of Φg(z)

We want to find the generating function (3.34)

Φg(z) = 1 +
∑
i

biz
i

in which bq counts the number of inequivalent SU(q) representations of ZN . We saw
in the previous subsection that the N irreducible representations are given by the Nth
roots of unity. Consider the function5

1

(1− z)(1− wz)(1− w2z)...(1− wN−1z)
(3.50)

The coefficient of zq is in general a sum of n terms (n is some integer), represent-
ing n ways of building a q-dimensional representation. Each of the n terms has some
coefficient wm for some integer m ∈ Z, which represents the determinant of that rep-
resentation. We want to retain terms of determinant 1 only. To project out terms of
non-unit determinant, we simply have to sum over w in wm and divide by N , since we
know from Fourier analysis that∑

w

wm =

{
N m = 0 mod N

0 m ̸= 0 mod N

where the sum is taken over the Nth root of unity. Therefore, the generating function
is

Φsu(N)(z) = 1 +
∑
i

biz
i =

1

N

N−1∑
i=0

1

(1− z)(1− wiz)(1− w2iz)...(1− w(N−1)iz)
(3.51)

One can check that bi is a quasi-polynomial in i, a property shared by Ehrhart
polynomial. Finally, we use the theorem proved in the last subsection to give the
explicit expression for the Ehrhart polynomial

EhrQsu(N)(z) =
1

N

N−1∑
i=0

1

(1− z)(1− wiz)(1− w2iz)...(1− w(N−1)iz)
(3.52)

5We thank O. Ganor for pointing out this trick.
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For example, let g = su(2). Then

EhrQsu(2)(z) =
1

2

(
1

(1− z)(1− z)
+

1

(1− z)(1 + z)

)
=

1

(1− z)(1− z2)

which agrees with what we obtained in equation (3.29) using the Ω operator calculus.

3.6 Ehrhart Polynomial for so(2(N + 2))

In the previous subsections, we obtained the Ehrhart polynomial for su(N) by counting
the SU(q) representations of ZN . We now use the same method to compute the Ehrhart
polynomial for so(2(N + 2)), N ≥ 1. Here, N is shifted by 2 because of convenience.
The Dynkin diagram associated to so(2(N + 2)) is DN+2. According to the McKay
correspondence, we should be looking for the representation of the discrete group DicN ,
the dicyclic (or binary dihedral) group of order N . Since DicN is less well-known than
ZN , we analyze the group structure in detail and derive the irreducible representations in
the next subsection. After that, we will use the irreducible representations to construct
the SU(q) representation of DicN and obtain the generating function Φ(z). We prove
that, in a spirit similar to what we did for the su(N) case, the generating function Φ(z)
coincides with the Ehrhart polynomial for so(2(N + 2)).

SU(q) representation of DicN

The group DicN is defined by the following multiplication rules:

r2N = e

s2 = rN

s−1rs = r−1

where e is the identity element. The reader may have noticed a similarity to the dihedral
group of order 2N , identifying r with the fundamental rotation and s with the rotation.
The difference here is that the reflection s does not square to the identity. Instead, it
squares to a central element of the group.

To analyze the irreducible representations of this group, we need to understand the
conjugacy classes. For DicN , there are N + 3 conjugacy classes:

{e}, {r, r−1}, {r2, r−2}, ..., {rN−1, r−N+1}, {rN}, {sr2k}, {sr2k+1} (3.53)
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where for the last two conjugacy classes, k is an integer running from 0 to 2N − 1.
Therefore, there are N + 3 irreducible representations. The affine Dynkin diagram of
DN+2 is shown in Fig. 3.2 [46].

(1, 1) (2, 2) (3, 2)

. . .

(N, 2)
(N + 1, 1)

(0, 1) (N + 2, 1)

Figure 3.2: The affine Dynkin diagram for DN+2. The tuple (x, y) indicates the xth
simple root with (co)mark y. The mark is the same as the comark here because the
algebra is simply-laced. By the McKay correspondence, the mark also indicates the
dimension of the corresponding irreducible representation. Therefore, there are four
1-dimensional irreducible representations and N − 1 2-dimensional irreducible repre-
sentations.

By the McKay correspondence [21] or by abelianizing the group, one sees that there
are four 1-dimensional irreducible representations and N − 1 2-dimensional irreducible
representations. The 1-dimensional irreducible representations for DicN behave differ-
ently for N even and N odd. In the following, we restrict N to be an even integer,
since the case for N odd can be treated analogously. We present the character table:

{e} {r, r−1} ... {rN−1, r−N+1} {rN} {sr2k} {sr2k+1}
1 1 ... 1 1 1 1
1 1 ... 1 1 -1 -1
1 -1 ... -1 1 1 -1
1 -1 ... -1 1 -1 1
2 w + w−1 ... wN−1 + w−(N−1) -2 0 0
2 w2 + w−2 ... w2(N−1) + w−2(N−1) 2 0 0
...

...
...

...
...

...
...

2 wN−1 + w−N+1 ... w(N−1)2 + w−(N−1)2 -2 0 0

Table 3.1: Character table for the DicN group. The first four lines are the characters
for the four 1-dimensional irreducible representations. Note that the first line is the
trivial 1-dimensional representation. The rest of the irreducible representations are 2-
dimensional. w represents the 2Nth root of unity exp(πi/N). One can check that the
character orthogonality relation holds.
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For the N − 1 2-dimensional irreducible representations, we note that r and s take
on the following form:

r =

(
exp(mπi/N) 0

0 exp(−mπi/N)

)
m = 1, ..., N − 1

s =



(
0 1

−1 0

)
,m odd(

0 1

+1 0

)
,m even

In particular, for the 2-dimensional irreducible representations, det r = 1, and a non-
unit determinant can only come from s. The formula for s shows that the determinant
of the 2-dimensional representations6 alternates between 1 and -1. For example, Dic2
has one 2-dimensional irreducible representation with determinant 1, whereas Dic4 has
three 2-dimensional irreducible representations, with determinant 1, -1, 1, respectively.

We now use the above information to compute the generating function for the SU(q)
representation of DicN . The SU(q) representation is constructed out of the N + 3
irreducible representations so that the dimensions add up to q. Let the number of the
four 1-dimensional representations be x0, x1, xN+1, xN+2, respectively

7. Let the number
of 2-dimensional representations be labeled by x2, x3, ..., xN . The constraint on the size
of the representation is

x0 + x1 + 2x2 + 2x3 + ...+ 2xN + xN+1 + xN+2 = q (3.54)

In addition to the size constraint, we also have the unit-determinant constraint.
From the character table, we see that a −1 determinant can only come from three
columns8: {r, r−1}, {sr2k}, and {sr2k+1}. The unit-determinant constraints coming

6In our case, we define the determinant of a representation as follows. If all conjugacy classes in the
representation have determinant 1, we say that the representation has determinant 1. If some conjugacy
classes have non-unit determinant, we pick the determinant D that, in the polar decomposition, has
the smallest angle θ ∈ [0, 2π) and call D the determinant of the representation. For example, if ω is the
3rd root of unity, ω = exp(2πi/3). Suppose there are two conjugacy classes with non-unit determinant,
one with determinant ω and the other ω2. Because ω has a smaller polar angle than ω2, we say that
the representation has determinant ω.

7The numbering here is to make connection with the numbering of the nodes in the affine Dynkin
diagram.

8Note that the entries in the character table contain the trace of the conjugacy classes. The deter-
minant coincides with the trace for 1-dimensional representations. For 2-dimensional representations
the determinant in this case was computed earlier by looking at the explicit matrix representations.
There are other columns that have −1 determinant, but one can show that there are only these three
independent columns to consider.
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from the three columns are

xN+1 + xN+2

2
∈ Z (3.55)

x1 + x3 + x5 + ...+ xN−1 + xN+2

2
∈ Z (3.56)

x1 + x3 + x5 + ...+ xN−1 + xN+1

2
∈ Z (3.57)

Note that the constraints are not independent, since (3.56) and (3.57) imply (3.55).
Therefore, we effectively only have two determinant constraints.

To write down the generating function Φso(2(N+2)), we can use the independent con-
straints (3.56) and (3.57). The idea is similar to the su(N) case. Consider the function

1

(1− z)(1− w1z)(1− w2z)(1− w1w2z)(1− z2)N/2(1− w1w2z2)N/2−1
(3.58)

Here, w1, w2 ∈ {1,−1}. The first four terms represent the contributions of inserting
the four 1-dimensional representations, and the last two terms represent the contribu-
tions of inserting the N − 1 copies of the 2-dimensional representations. If we expand
the fractions into a power series, a generic term would look like

cwk1
1 w

k2
2 z

n (3.59)

where c, k1, k2 ∈ Z. The wk2
2 term represents the determinant contribution from the

two 1-dimensional representations labeled by N + 1 and N + 2. We want to retain the
term that satisfies wk2

2 = 1. This can be done by a projection similar to what we did
for the su(N) case, except now we need to sum over ω2 ∈ {1,−1} and divide by 2. We
also need to do a similar projection on w1. In fact, the two projections help us retain
the terms that satisfy the constraints (3.56) and (3.57). Therefore, we need to compute

Φso(2(N+2))(z) =
1

4

∑
w1,w2

1

(1− z)(1− w1z)(1− w2z)(1− w1w2z)(1− z2)N/2(1− w1w2z2)N/2−1

e which gives us the answer for Φso(2(N+2))(z):

1

4

(
1

(1− z)4(1− z2)N−1
+

2

(1− z2)2(1− z2)N/2(1 + z2)N/2−1
+

1

(1− z2)2(1− z2)N−1

)
(3.60)

As an example, we set N = 2, so that we are looking at the generating function for
SU(q) representations of Dic2. The first few terms of (3.60) are

Φso(8)(z) = 1 + z + 5z2 + ...
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which suggests that there are one SU(1) representation and five SU(2) representations.
The one SU(1) representation is just the trivial representation. Even though there are
four unitary 1-dimensional representations for Dic2, only the trivial representation has
unit determinant as can be seen from the character table. The reader can easily work
out the five SU(2) representations, one of which comes from the unique irreducible
2-dimensional representation of Dic2. The rest come from the reducible 2-dimensional
representations by combining the 1-dimensional irreducible representations such that
the determinant constraint is satisfied.

We will show in the next subsection that this is exactly the Ehrhart polynomial
EhrQso(2(N+2))(z) for the DN+2 polytope defined in a similar fashion as in section 3.3.

Equivalence to the Ehrhart polynomial

We are looking at the level q highest weight representations of so(2(N+2)) which also lie
on the root lattice. To show that the Ehrhart polynomial coincides with the generating
function obtained in the previous subsection, we simply show that the two systems have
the same constraints. Let the Dynkin label of some highest weight representation be
λ = (x1, x2, ..., xN+2), each term some nonnegative integer. The level q constraint yields

(λ, θ) = x1 + 2x2 + 2x3 + ...+ 2xN + xN+1 + xN+2 ≤ q (3.61)

where θ is the highest root whose expansion coefficients in terms of the simple roots
can be read off from the affine Dynkin diagram. By adding a slack variable to turn the
inequality into an equality, we reproduce the first constraint (3.55). Next, we need to
demand that the weights are expressed as integer combinations of simple roots:

N+2∑
j=1

C−1
ij xj ∈ Z (3.62)

The inverse of the Cartan matrix for the D-series has an interesting form [58]. Since
the matrix is symmetric, we only give the values for the upper half of the matrix. Let
C−1 be the inverse of the Cartan matrix for DN+2. We have

C−1
ij =


i, 1 ≤ i ≤ j ≤ N

i/2, i ≤ N, j = N + 1 or N
N
4
, i = N + 1, j = N + 2

N+2
4
, i = j = N + 1 or N + 2
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We give an example of C−1
ij for D6 where N = 4:

C−1
so(12) =


1 1 1 1 1/2 1/2
1 2 2 2 1 1
1 2 3 3 3/2 3/2
1 2 3 4 2 2
1/2 1 3/2 2 3/2 1
1/2 1 3/2 2 1 3/2


Note that the N by N block is integer-valued, so it does not enter into the constraint

(3.62). We only have to worry about the last two columns and the last two rows (which
are the same as the last two columns by symmetry). For our case, N is an even number,
so the only fraction that enter into the constraints modulo 1 is 1/2. Restricting our
attention to the last two columns, we see that as the row number increases from 1 to
N , the values of the last two columns alternate between being half-integer valued and
integer valued. Therefore, from the first N rows of C−1, we effectively get only one
constraint:

xN+1 + xN+2

2
∈ Z (3.63)

The constraints coming from the last two rows can be deduced similarly. Restricting
ourselves to the last two rows, as the column number j increases from 1 to N , the values
of C−1

N+1,j and C−1
N+2,j alternate between being half-integer valued and integer valued.

Taking into account of the last two columns, the constraints are

x1 + x3 + x5 + ...+ xN−1 + xN+2

2
∈ Z (3.64)

x1 + x3 + x5 + ...+ xN−1 + xN+1

2
∈ Z (3.65)

We see that (3.61), (3.64), and (3.64) are exactly the same constraints we obtained
in the last subsection. This establishes the equivalence of the generating function for
SU(q) representation of DicN group and the Ehrhart polynomial for the so(2(N + 2))
polytope. In fact, one can repeat the same argument to show that the equivalence holds
for the exceptional Lie algebras as well. This concludes the proof of remarkable formula
(3.35).

3.7 A New Perspective on the McKay

Correspondence

Let C be some Cartan matrix of an ADE type Lie algebra of rank r. Let GC be the
discrete SU(2) subgroup corresponding to C according to the McKay correspondence.
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Define [C−1] as C−1 modulo 1, where modulo 1 is done element-wise. Our computa-
tion in the previous two sections shows that a great deal of information is hidden in
this object. In particular, [C−1] can tell us about the determinant9 of the irreducible
representations of the group GC . To make it more precise, we define the following ∨
operator acting on the rational numbers in the congruence class of 1 as

a ∨ b =


a+ b, if a = 0 or b = 0

a, b is a nonzero integer multiple of a

b, a is a nonzero integer multiple of b

Note that this definition comes with a priority structure: there could be cases where
condition 2 and 3 are both satisfied. In that case, we stick with condition 2 and demand
that a∨b = a. For example, bearing in mind that we are working within the congruence
class of 1, the above rules imply

2/3 ∨ 1/3 = 2/3 because 1/3 is 2 times 2/3

5/7 ∨ 6/7 = 5/7 because 6/7 is 4 times 5/7

1/4 ∨ 0 = 1/4

1/2 ∨ 1/2 = 1/2

As we shall see, we never have to worry about the case when a and b do not satisfy
the three cases. To use the ∨ operator, let us define Xi to be the ith row of [C−1]. Let
the operator ∨ act element-wise on Xi. Define the row vector X as

X ≡ X1 ∨X2 ∨ ... ∨Xr (3.66)

The dual group GC has r+1 irreducible representations, among which 1 of them is the
trivial representation. We claim that the determinant of the rest of the r non-trivial
representations, encoded in the row vector D = (d1, ...dr), can be found by

D = exp 2πiX (3.67)

where the exponential is taken element-wise on X, producing another row vector.
This claim can be proved by checking for all ADE Lie algebras. The information

presented in the previous sections is enough for the readers to check the claim for the
A and the D series. Here we will focus on the exceptional series e6, e7, and e8. The
determinants for the irreducible representations of the exceptional groups are worked
out in section 3.8. We give a brief summary.

9The determinant of a representation is defined in footnote 6.
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• e6. The dual group has six nontrivial irreducible representations, of which two
have determinant exp(2πi/3) and two have determinant exp(4πi/3). The other
two have determinant 1.

• e7. The dual group has seven nontrivial irreducible representations, of which three
have determinant −1 while the rest has determinant 1.

• e8. All representations of the dual group have unit determinant.

Let us now compare the prediction made by equation (3.67) to the facts cited above.
The most trivial case to check is e8, whose inverse Cartan matrix modulo 1 vanishes.

In this case, X1 = X2 = ... = X8 = 0, so according to the formula above, all irreducible
representations of the binary icosahedral group have unit determinant.

For e7, [C
−1] is

[C−1
e7

] =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1/2 0 1/2 1/2
0 0 0 0 0 0 0
0 0 0 1/2 0 1/2 1/2
0 0 0 1/2 0 1/2 1/2


The ∨ sum of all the rows gives (0, 0, 0, 1/2, 0, 1/2, 1/2). Equation (3.67) shows that

the determinants are (1, 1, 1,−1, 1,−1,−1), agreeing with the facts above.
For e6, [C

−1] is

[C−1
e6

] =


1/3 2/3 0 1/3 2/3 0
2/3 1/3 0 2/3 1/3 0
0 0 0 0 0 0
1/3 2/3 0 1/3 2/3 0
2/3 1/3 0 2/3 1/3 0
0 0 0 0 0 0


The ∨ sum of all the rows gives (1/3, 2/3, 0, 1/3, 2/3, 0). Equation (3.67) shows that

the determinants are (w,w2, 1, w, w2, 1), where w is the third root of unity. This also
agrees with the facts cited above, and completes the proof of equation (3.67).

3.8 Generating Functions for SU(q)

Representations for Exceptional Groups

In this section, we derive the Ehrhart polynomials for the exceptional groups, i.e. gen-
erating function that computes the number of SU(q) representation of 2T (binary tetra-
hedral group) and 2O (binary octahedral group), the exceptional groups corresponding
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to E6 and E7 singularity, respectively. Because all finite dimensional representations of
2I (binary icosahedral group) have determinant 1 and can therefore be treated using
the technique introduced earlier in this paper, we will not be discussing the E8 group
here.

SU(q)→ E6

The group E6 = 2T is defined by the following presentation:

r2 = s3 = t3 = rst

where each term is the central element of order 2.
The affine Dynkin diagram of E6 is given in Fig. 2.3, from which we can read off the

number of irreducible representations and their dimensions for the 2T group. There are
three 1-dimensional irreducible representations, three 2-dimensional irreducible repre-
sentations, and one 3-dimensional irreducible representation.

Let R1 be one of the two nontrivial 1-dimensional irreducible representations of 2T ,
where γ ∈ 2T is represented by a phase eiϕ(γ) ∈ U(1). Since R1 is nontrivial, some of
the phases are nontrivial, and R1⊗R1 is a different representation. Since there are two
nontrivial 1-dimensional irreducible representations, one of R1 ⊗ R1 or R1 ⊗ R1 ⊗ R1

must be trivial. We claim that it is R⊗3
1 . Suppose to the contrary that R⊗2

1 is trivial,
which means that all the phases eiϕ(γ) are (±1). But then the other 1-dimensional
nontrivial representation R2 also has phases that are all ±1 (otherwise R2 is a different
nontrivial representation that is neither R1 nor R2), and then R1, R2, R1⊗R2 are three
nontrivial inequivalent 1-dimensional representations, contradicting the statement that
there are only two nontrivial inequivalent 1-dimensional representations.

Thus, R⊗3
1 is the trivial representations and all the phases of R1 are e±

2πi
3 or 1.

The second nontrivial 1-dimensional representation is R2 = R1 where all the phases are
conjugated.

Since 2T has only one 3-dimensional representation, R6, all its matrices must have
determinant 1, otherwise the determinants would be phases e±

2πi
3 (since the determinant

must be one of the representations R1 or R2) and the complex conjugate representation
R6 of this 3-dimensional representation would have different determinants, and so can’t
be equivalent to R6. Note that we must have

R6 = R6 = R6 ⊗R1 = R6 ⊗R2,

since there is only one inequivalent 3-dimensional irreducible representation.
Note that tensoring a 3-dimensional representation with R1 or R2 doesn’t change

the determinant, since the phases of R1 and R2 are all e±
2πi
3 or 1.



CHAPTER 3. CHERN-SIMONS THEORY, EHRHART POLYNOMIALS, AND
REPRESENTATION THEORY 63

Let R3, R4, R5 be the 2-dimensional irreducible representations. Then R1 ⊗R3 and
R2⊗R3 have different determinants for at least some matrices, and so must be different
representations. They must therefore be R4 and R5. One of the determinants detR3,
detR4, or detR5, must be the trivial representation, so without loss of generality we
can assume that it is detR3 and then that detR4 = R1 and detR5 = R2.

Now we can write the generating function counting SU(n) representations of 2T .
First, the generating function for U(n) representations, is

Φ1(z) ≡
1

(1− z)3(1− z2)3(1− z3)
.

Now, set

ω = e
2πi
3

and let us look at the expression

Φ2(z) ≡
1

(1− z)(1− ωz)(1− ω2z)(1− z2)(1− ωz2)(1− ω2z2)(1− z3)
.

when expanding Φ2 we will get sums of terms of the form ωktn that correspond to
particular ways to decompose n into a sum of dimensions of irreducible representations,
and ωk represents the determinant of the corresponding n-dimensional representation
in the sense that if ωk = 1 we have determinant 1, and if ωk ̸= 1 we have determinant
that is not 1 for some group elements.

Noting that 1+ωk +ω−k = 0 if ωk ̸= 1 and 1+ωk +ω−k = 3 of ωk = 1, we see that
if we add to Φ2 two similar expressions, one in which ω is replaced by 1, and another
in which ω is replaced by ω−1, we should get the generating function that we need, up
to a factor of 3. Thus,

∞∑
n=0

Cnz
n =

1

3
[Φ1(z) + 2Φ2(z)] (3.68)

=
1

3

[
1

(1− z)3(1− z2)3(1− z3)
+

2

(1− z6)(1− z3)2

]
(3.69)

= 1 + z + 3z2 + 8z3 + 14z4 + 26z5 + 49z6 + · · · (3.70)

SU(q)→ E7

The affine Dynkin diagram associated with the group E7 = 2O is the affine Dynkin
diagram of E7 (see Fig. 3.3), from which we see that there is only one nontrivial 1-
dimensional representation R1.

The phases of R1 must be ±1, since R⊗2
1 must be the trivial representation. The

two 3-dimensional representations, R5, R6, must be related by R6 = R5 ⊗ R1, and we



CHAPTER 3. CHERN-SIMONS THEORY, EHRHART POLYNOMIALS, AND
REPRESENTATION THEORY 64

Figure 3.3: The affine Dynkin diagram for E7.

Class 1 z sz t2 r s t tz
Size 1 1 8 6 12 8 6 6

Order 1 2 3 4 4 6 8 8
χ1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 −1 1 −1 −1
χ3 2 2 −1 2 0 −1 0 0

χ4 2 −2 −1 0 0 1
√
2 −

√
2

χ5 2 −2 −1 0 0 1 −
√
2

√
2

χ6 3 3 0 −1 1 0 −1 −1
χ7 3 3 0 −1 −1 0 1 1
χ8 4 −4 1 0 0 −1 0 0

Table 3.2: Character table for the binary octahedral group 2O.

can assume detR5 = 1 and detR6 = R1. That leaves the question of what are the
determinants of the even dimensional representations R2, R3, R4 and R7. Tensoring
any of these with R1 doesn’t change their determinants.

The group is defined in terms of generators r, s, t as

r2 = s3 = t4 = rst

where each term is the central element of order two.
The character table is
For 2× 2 matrices

detM =
1

2

[
tr(M)2 − tr(M2)

]
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and for 4× 4 matrices

detM =
1

24
(trM)4 +

1

3
(trM) tr(M3)− 1

4
(trM)2 tr(M2) +

1

8
[tr(M2)]2 − 1

4
tr(M4)

Using this we can check that the determinant of the matrix representing r in the
3rd representation is −1, while in the 4th, 5th, and 8th it is +1.

Now the generating function for U(n) is

Ψ1(z) =
1

(1− z)2(1− z2)3(1− z3)2(1− z4)

and also define

Ψ2(z) =
1

(1− z)(1 + z)(1 + z2)(1− z2)2(1− z3)(1 + z3)(1− z4)

where we inserted (−1) for every representation with determinant R2. Then, the gen-
erating function for SU(n) is

∞∑
n=0

Cnz
n =

1

2
(Ψ1 +Ψ2) (3.71)

=
1

2(1− z)2(1− z2)3(1− z3)2(1− z4)
+

1

2(1− z2)2(1− z4)2(1− z6)
(3.72)

= 1 + z + 4z2 + 6z3 + 15z4 + 22z5 + 44z6 + · · · (3.73)

SU(q)→ E8

From the affine Dynkin diagram of E8 in Fig. 3.4, we see that there is only one 1-
dimensional irreducible representation which corresponds to the trivial representation.
Therefore, all other irreducible representations must have unit determinant. The gen-
erating function for SU(q) representation of E8 = 2I is therefore the same as that for
the U(q) representation. It is given by

∞∑
n=0

Cnz
n =

1

(1− z)(1− z2)2(1− z3)2(1− z4)2(1− z5)(1− z6)
(3.74)

= 1 + z + 3z2 + 5z3 + 10z4 + 15z5 + 27z6 + · · · (3.75)

3.9 Discussion

We have shown that the counting of root lattice states of level q Chern-Simons theory
Hilbert space on T 2 can be solved by computing the exact generating function using
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Figure 3.4: The affine Dynkin diagram for E8.

either the Ω operator calculus or using the duality proposed in this dissertation. The
reader might wonder why we framed the problem in terms of the Ehrhart polynomi-
als. First, the number of root lattice states grows as some quasi-periodic polynomial, a
property shared by Ehrhart polynomials. As we saw in section 3.3, the geometric formu-
lation of the counting problem leads very naturally to the idea of Ehrhart polynomials.
Second, and most importantly, recent development of mathematics and physics shows
that it is always fruitful to find connections between different subfields of mathematics
and physics. Since Ehrhart polynomials connect various branches of mathematics such
as number theory and topology, formulating the problem using Ehrhart polynomials is
an attempt at achieving more unification.

Despite being a decades-old subject, Chern-Simons theory is at the heart of the
inter-connectedness explored in this paper. In fact, as shown in section 2.4, the Chern-
Simons theory arise naturally at the long distance limit of some holographic system
in string theory. Another key ingredient is the McKay correspondence [21]. In fact,
we saw in section 3.7 that the simple Lie algebras know a lot more than the content
of the McKay correspondence through the inverse of the Cartan matrices. The simple
Lie algebras secretly know the determinant of the irreducible representations of the
corresponding ADE subgroup.
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Chapter 4

One Loop Correction and S-Duality

4.1 Introduction

The previous two chapters give a detailed proof of the duality by using a string/M
theory construction and by matching the dimension of the Hilbert space of the two
theories. In this chapter, we show that the classically flat Wilson lines of N = 4 SYM
on S3/Γ with gauge group SU(2) is also flat quantum mechanically. We expect that
quantum correction does not lift the ground state degeneracy, because the dual of the
SYM flat Wilson lines are states of some Chern-Simons theory which is one-loop exact.
The way we compute the one-loop quantum correction to the ground state energy is by
using the supersymmetric index [59].

Recent years saw a proliferation of index technology in understanding the strongly-
coupled regime of supersymmetric Yang-Mills theories and dualities [60, 61, 62], al-
though the use of index dates back to [59]. For a review, see [63] and [64] and the
references therein. Using supersymmetric index, one can obtain more information on
the theory if the underlying geometry has nontrivial first fundamental group and pre-
serves some number of supersymmetry, since nontrivial flat Wilson lines from the vector
multiplet (or from background flavor gauge fields) can wind around such geometry and
divides the theory into different holonomy sectors. A salient example is the lens space
supersymmetric index [65, 66, 67]. The particular lens space considered in these works
is L(r, 1), or S3/Zr, defined by identifying the point (z1, z2) on S3 with the point
(wz1, w

−1z2) where w is the rth root of unity. There are two notable properties of this
identification. First, the identification acts only on the holomorphic part of the coor-
dinates, suggesting that one can choose some supersymmetry to be preserved. Second,
the identification forms an abelian discrete subgroup of SU(2) and acts separately on
z1 and z2. There exist other discrete subgroups of SU(2) that satisfy the first prop-
erty but break the second (i.e. they are non-abelian). In fact, as mentioned in the
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previous chapters, all discrete subgroups of SU(2) have been classified and are found
to correspond to simply-laced Dynkin diagrams [21]. The A-series corresponds to the
abelian Zk subgroups, and produces the lens space L(k, 1). The D-series corresponds
to the non-abelian Dick (binary dihedral) subgroups. The E-series corresponds to the
double-cover of symmetry groups for the tetrahedron, the octahedron, and the icosahe-
dron (respectively for E6, E7, and E8). Although modding out S3 by the D and the E
subgroups leads to fundamental groups that are non-abelian, it is nevertheless sensible
to consider the supersymmetric index on these more complicated geometries because
they can preserve the same number of supercharge as the lens space. In this paper, we
will compute the supersymmetric index on these nontrivial geometries.

Supersymmetry is critical in maintaining the degeneracy of the ground state Wilson
lines. When supersymmetry is not present, the ground state degeneracy is in general
lifted. Although in this dissertation we deal with flat Wilson lines taking discrete values
according to the ADE group Γ, we give some examples using Wilson lines taking contin-
uous values to support this claim. Without supersymmetry, toroidal compactification
in general will dynamically generate a potential for the dilaton field and localizes it [2],
the dilaton being analogous to the classically flat Wilson line. Another example where
quantum corrections lift the classical degeneracy in flat Wilson lines is 2D Yang-Mills
on a circle. The quantum mechanical partition function of this theory is [68]

Z =
∑
R

e−TLc2(R) (4.1)

where T and L are the lengths of the time and the spatial circle, the sum is over the
irreducible representations, and c2(R) is the quadratic Casimir of irreducible represen-
tation R. From the expression, one sees that classically flat Wilson lines now gain
different amount of energy depending on the representation R.

Even with the help of supersymmetry, Wilson lines (dilatons) exhibit different be-
haviors depending on the amount of supersymmetry. Let us start with the example
of n coincident D4 branes in type IIA string theory with world volume in the 01234
directions. This system breaks half of the 32 supersymmetries and leads to the 5D U(n)
supersymmetry Yang-Mills theory on the worldvolume. Now, we compactify the 4th
directions of the D4 branes. We can adjust the value of the Wilson line by tuning the
fourth component of the gauge field A4. Doing so does not cost any energy classically,
and we can conjugate A4 to take value in the Cartan subalgebra of u(n). That this does
not cost any energy quantum mechanically can be seen by going to the T-dual picture,
where the system now contains n D3 branes separated along the 4th direction given by
the value of A4. The distance X

4 is given by the T-dual relation X4 = 2πα′A4 where α
′

is the string length [2]. This system also breaks half of the 32 supersymmetries, and no
potential is generated for the classically flat Wilson line [2]. In contrast, consider the
system of a D4 brane with world volume in the 01234 directions and a D2 brane in the
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034 directions in type IIA string theory. We further suppose that there is no separation
between the D-branes in the 56789 directions. This system breaks one quarter of the
32 supersymmetries as opposed to one half, and it leads to N = 2 supersymmetry as
measured in 4D. In one picture, the D2 brane dissolves in the D4 brane, leaving behind
some RR flux. In another picture, we compactify the 4th direction, and tune the Wilson
line as before such that it is classically flat. In the T-dual picture, this separates the
D3 brane and the D1 brane in the 4 direction, and it is further U-dual to the F1-D1
system. It is known that the F1-D1 system is unstable and forms a bound state [69].
There is therefore an attractive force between the D3 brane and the D1 brane, causing
the dilaton to gain a potential.

The lesson in the previous paragraph is that the number of supersymmetry can affect
whether or not classically flat Wilson lines can gain a potential. In this work, we deal
with discrete flat Wilson lines, and a priori there is no reason to expect such statement
to hold for discrete flat Wilson lines. Nevertheless, as we will see in section 4.2, the
discrete flat Wilson lines can become nonflat when the number of supersymmetry is
reduced from 4 to 2.

We define the one-loop correction to the jth ground state energy as the supersym-
metric Casimir energy Ej mentioned in [66]. It is the nonsingular part of

Ej = −
1

2
lim
β→0

∂

∂β
Îj (4.2)

where Îj is the single letter supersymmetric index of the theory for the jth ground state
Wilson line and β is some fugacity parameter coupled to some suitable Hamiltonian
(to be discussed later) that commutes with the supersymmetry subalgebra used in
computing the index. In this work, we will show that

E1 = E2 = ... = Eq (4.3)

where q is the dimension of the ground state Hilbert space and 1 corresponds to the
trivial Wilson line (i.e. the identity). We show this for N = 4 SYM with SU(2) gauge
group on different ADE singularities Γ, and conjecture that this relation holds for all
SU(N) or U(N) gauge groups. The reason we focus on the SU(2) gauge group in
this work is twofold. First, it is the simplest non-abelian gauge group and it makes the
index computation tractable. Second, we want to compare our result with the conformal
N = 2 four-flavor theory which also has gauge group SU(2). A novelty of this work
is that the single-letter supersymmetric index on the D-singularity is computed for the
first time, complementing the A-singularity (lens space) result.

One reason we choose to measure the Casimir energy using a Hamiltonian that com-
mutes with the supersymmetry subalgebra is that we want to have an energy measure
we can trust at strong coupling. At strong coupling, we can use S-duality to go to a
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weakly coupled theory and compute the supersymmetric Casimir energy of the flat t’
Hooft lines. There will be two nontrivial tests of S-duality. First, the number of flat t’
Hooft lines must match the number of the number of flat Wilson lines. Second, let us
denote the supersymmetric Casimir energy of the ith flat t’ Hooft lines by Ẽi. S-duality
predicts

Ẽ1 = Ẽ2 = ... = Ẽq = E1 = E2 = ... = Eq (4.4)

namely the flat t’ Hooft lines must also be degenerate in supersymmetric Casimir energy
as the flat Wilson lines. These two facts will be checked in section 4.7.

The chapter is organized as follows. In section 4.2, we analyze the N = 4 super-
conformal algebra and set the convention we use in defining the supersymmetric index.
In section 4.3 and section 4.4, we compute the single letter supersymmetric index for
N = 4 SU(2) SYM on A- and D-singularities, respectively. We set up the calculation
for the E-singularity in section 4.5. In section 4.6, we compare our result to theories
with less supersymmetry, namely N = 2 supersymmetry. We find that generically,
only N = 4 theory has an exact degeneracy of supersymmetric Casimir energy. This
makes sense from the holographic duality perspective, since the duality considered in
this dissertation has a D3(M5) brane realization where the number of supercharges is
16 (see section 2.4). No such duality exists for supersymmetry less than N = 4 except
for some particular N = 2 theories (class S theories). In particular, we will find a
surprising result that there is no ground state degeneracy for the conformal N = 2
four-flavor theory on S3/Γ: not all classically flat Wilson lines are created equal for
this theory. Finally, in section 4.7, we compute the supersymmetry Casimir energy for
the t’ Hooft lines to give yet another test of S-duality. This chapter is based on the
work [70].

4.2 Analysis of Supersymmetry

As discussed earlier, the approach we take to compute the supersymmetric Casimir
energy is through the supersymmetric index calculation. Since the index calculation
hinges on understanding the N = 4 superconformal algebra, we take a moment to
review the algebra in this section. We shall mostly follow the convention of [61].

Since we are dealing with N = 4 supersymmetry, the superalgebra of interest has
an SU(4) R-symmetry. Without the conformal part of the algebra, the superalgebra
is closed under the fermionic symmetry generators Qαi, Q̄α̇

i , the Lorentz symmetry
generator Jα

2β, J
α̇
2β, the SU(4) R-symmetry generator Ri

j, and the translation generator

Pαβ̇. Here, α, α̇ are SU(2)L and SU(2)R indices coming from the Lorentz group, and
i = {1, 2, 3, 4} is the SU(4) R-symmetry index. Because the theory is conformal even
at the quantum level, one can enlarge the superalgebra by adding in the conformal
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algebra. The enhancement produces the fermionic counterpart of Q and Q̄: Sαi, S̄
i
α̇,

the bosonic counterpart of P : Kαβ̇, and the dilitation operator D. These form the
superalgebra SU(2, 2|4).

In radial quantization, the S generators and the Q generators are Hermitian conju-
gate of each other, so that we have the positive definite anticommutator [61]

{Q†
αi, Q

βj} = δji J
β
1α + δβδR

j
i + δji δ

β
α

D

2
(4.5)

A similar relation holds if we replace Q by Q̄, the undotted indices by dotted indices,
and J1 by J2. A comprehensive list of other (anti)commutators can be found in the
appendix of [61]. The above anticommutator will be enough for our purposes.

To define the index, we need to pick out a particular Q,Q† pair and look for states
annihilated by {Q†, Q}. Let us pick Q = Q−1/2,1, which according to equation (4.5)
gives the anticommutator

2{Q†, Q} = D − 2J1 −
(
3

2
R1 +R2 +

1

2
R3

)
(4.6)

where R1, R2, R3 are the maximally commuting SU(4) charges and J1 is the SU(2)L
charge. States that are annihilated by the above anticommutator form short BPS
multiplets whose contribution to the index

Z = tr(−1)F (4.7)

does not change as the coupling constant is varied, providing a reliable probe of the
strongly-coupled regime of the theory [59, 61]. Nevertheless, equation (4.7) is not the
most general quantity that is protected when one restricts the partition function in the
Hilbert space annihilated by the anticommutator (4.53). One can also add in other
quantum numbers that commute with the superalgebra generated by Q and Q†. The
commuting subalgebra is SU(2, 1|3), whose bosonic Cartan elements are

D + J1, J2, R2, R3 (4.8)

Therefore, if one wants to obtain maximal information on the protected spectrum
of the theory, one can compute

Z = tr((−1)F e−β(D+J1+Ω2J2+tR2+uR3)) (4.9)

where β, βΩ2, βt, βJ are the bookkeeping parameters (fugacities) that help us distin-
guish states with different quantum numbers. They also help regulate1 the infinite sum

1Since the N = 4 theory is a UV finite theory, we will see that there will be no UV divergence in
the index calculation.
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in (4.7). Since we are ultimately interested in the supersymmetric Casimir energy, we
set Ω2, t, u to be zero and focus only on the D + J1 part. Another reason for setting
Ω2 to zero is that nonabelian singularities such as the D- and the E-singularity do not
commute with J2, so J2 is a bad quantum number2.

For this work, it is sensible to define the “supersymmetric energy” as D + J1 for
four reasons. First, D generates time translation in the radially quantized picture, so
to define a Hamiltonian we need a quantity that contains D. Second, D+J1 commutes
with {Q†, Q}, so an index calculation involving this quantity gives a well-defined answer,
independent of the value of the coupling constant. This property is crucial for our S-
duality calculation in section 4.7, since we need a quantity that can be meaningfully
compared in two different strong-weak duality frames. Had we chosen a Hamiltonian
that does not commute with {Q†, Q}, we would not have been able to have a good test
of S-duality. Third, as we will check later, D+ J1 is positive definite on the BPS states
annihilated by {Q†, Q}. Finally, D + J1 is what matters when we take the so-called
MacDonald limit [71] of the index, setting t = 0. In this limit, we are counting states
that are annihilated by one more pair of supersymmetry charges. If the theory contains
states that are annihilated by at least two pairs of supersymmetry charges, the index
must have a well-defined MacDonald limit t = 0.

Having discussed why we chose to define the supersymmetric energy as D + J1, we
now analyze how to compute the Casimir part of it. Because the index is independent
of the coupling constant, the computation of

Z = tr(−1)F e−β(D+J1) (4.10)

can be carried out by doing a twisted path integral on the free theory, the result being
some determinant factors [66]. The result is trivially one-loop exact (since the coupling
constant can be safely set to 0 without affecting the result), and the supersymmetric
Casimir energy corresponding to D + J1 is given by [66] as in equation (4.2). A quick
way to see why (4.2) yields the supersymmetric Casimir energy without going through
the path integral derivation is to recall that this is how the −1/24 normal ordering
constant arises in bosonic string theory [2]. There, the single letter “index” is simply
a sum over e−βL0 on the vacuum and its Virasoro descendent where L0 is the Cartan
element of the Virasoro generators.

There is one more ingredient we need to discuss before computing the index. In our
setting, the ground states are labeled by different flat Wilson lines gj taking values in

2As an example, the defining two-dimensional representation of the reflection element in the Dick
group is (

0 1
−1 0

)
whose action turns ∂n1

++∂
n2
+− into (−1)n2∂n2

++∂
n1
+−, thus changing the J2 value of this operator from

n1 − n2 to n2 − n1. This situation does not occur for the A-singularity (lens space) which is abelian.
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SU(2) and furnishing a representation of π1(S
3/Γ) = Γ. To count the contribution to

the single letter index, we gauge away the flat Wilson lines at the cost of introducing
a twist to other fields when transported around a nontrivial loop. To see this, let the
nontrivial loop starting from a and ending at b be l and let the gauge field A in the jth
flat Wilson line sector be denoted by A(j). Note that point a and point b are identified
under some group element γ ∈ Γ: b = γa. The Wilson line wrapping l is

gj(γ) = P exp i

∮
l

A(j) ∈ SU(2) (4.11)

The notation gj(γ) is suggestive, as the Wilson lines are representations of the group
Γ. Here, gj is the jth representation of the specific group element γ ∈ Γ. This Wilson
line can be gauged away by using a non-periodic gauge transformation U ∈ SU(2) such
that

U(a) = 1

U(γa) = gj(γ)

The effect of this nonperiodic gauge transformation on a field ϕ that transforms
in the fundamental of SU(2) is such that, when ϕ is transported from a to γa, it is
multiplied by U(γa) = gj(γ). For a field Φ that transforms in the adjoint of SU(2),
the field becomes gj(γ)

–1Φgj as it is transported around the loop. In the N = 4 SUSY
theory, we only have adjoint fields, so we write down the transformation rule for a
general adjoint field Φ around a loop l with flat Wilson line gj(γ):

Φ(γa) = gj(γ)
−1Φ(a)gj(γ) (4.12)

The group Γ acts geometrically on the underlying space. This geometric action
induces an action on the fields Φ such that the field values at a and γa are related.
Define this induced action as

Φ(γa) = γΦ(a) (4.13)

Using this, we see from the previous equation that the adjoint field Φ must satisfy
the constraint

γΦ = g−1
j (γ)Φgj(γ) (4.14)

In the Wilson line sector j, for a field Φ to enter into the single letter index counting,
it must satisfy the above constraint for all γ ∈ Γ. If the above equation holds for all
the k generators γ1, ...γk of Γ, it holds for all γ ∈ Γ. Therefore, we effectively have only
k constraints for each j. As we will see, the k value for the A, D, E groups are 1, 2,
and 2, respectively.

The strategy for computing the single letter index is now clear. By the state-operator
correspondence, We start with a field Φ that is annihilated by {Q†, Q} and act on it
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using the derivatives ∂+± which are also annihilated by {Q†, Q}, keeping the BPS
condition. We project out all the operators that do not satisfy the constraint (4.14).
For those that do, we add to the single letter index their Boltzmann weight

(−1)F e−β(D+J1) = (−1)F t2(D+J1) (4.15)

in which, following the convention of [66], we define

t = e−β/2 (4.16)

It is useful to have a list of fields that satisfy the BPS condition so that we could
view their quantum numbers D, j1, j2. Such a list of fields and their quantum numbers
is provided by [61]. Although the j2 quantum number does not explicitly appear in the
constraint (4.14), it enters implicitly on the left hand side (the geometric part of the
action). The reason is that we chose to embed Γ in SU(2)R which breaks half of the
supersymmetry. Therefore, Γ can act nontrivially on fields with a nonzero j2 value. We
will write down the action explicitly for each of the ADE groups we encounter later.

Letter (−1)F [E, j1, j2]
X, Y, Z [1, 0, 0]

ψ+,0;−++, ψ+,0;+−+, ψ+,0;++− −[3/2, 1/2, 0]
F++ [2, 1, 0]

∂++ψ0,−;+++ + ∂+−ψ0,+;+++ = 0 [5/2, 1/2, 0]
ψ0,±;+++ −[3/2, 0,±1/2]
∂+± [1, 1/2,±1/2]

Table 4.1: A list of operators that satisfy the BPS condition and their E, j1, j2 quantum
numbers. The R1, R2, R3 quantum numbers are omitted and can be found in [61].

The operators listed in this table are all BPS. In the fourth operator, the minus
sign for fermion is canceled out by the Dirac equation since we want to subtract its
contribution from the index to avoid overcounting. With the exception of the last two
operators, everything else has zero j2 quantum number. We are now ready to compute
the single letter index and the supersymmetric Casimir energy on each ADE geometry.

4.3 A-Singularity

The index calculation for the A-series (lens space) has been done before [67, 66, 65] for
N = 2 theories. We here redo the calculation for the N = 4 theory in a way that can
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be generalized to the D- and the E-singularity. In this section, we will discuss the logic
of our computation and relegate the details in the later sections.

The A-series are the groups Γ = Zk whose group presentation is

rk = e (4.17)

We first discuss the geometric action and then the Wilson line action. The geomet-
ric action, as discussed in the previous section, has to do with the generators of the
group. For Zk there is a single generator which we call r. According to the McKay
correspondence [21], the defining geometric action of r on SU(2) doublet is [40]

r =

(
w 0
0 w−1

)
(4.18)

where w = exp(2πi/k). We would now like to understand how r acts geometrically on
various BPS operators. From Table 4.1, we see that ∂+± transforms as a doublet under
SU(2), since their j2 quantum numbers are ±1/2. Thus, under r, they transform as(

∂++

∂+−

)
→
(
w 0
0 w−1

)(
∂++

∂+−

)
(4.19)

This suggests that, if we start with a field Φ that has j2 = 0 and acts on it by
∂n1
++∂

n2
+−, it will transform geometrically as

r(∂n1
++∂

n2
+−Φ) = wn1−n2∂n1

++∂
n2
+−Φ (4.20)

The only fields in the theory that has j2 ̸= 0 are ψ0,±;+++, which have j2 = ±1/2.
This suggests that, just as ∂+±, ψ0,±;+++ also transform as a doublet under r. Denote
such a doublet field by Φµ, where µ = ±1. We have

r(∂n1
++∂

n2
+−Φµ) = wn1−n2+µ∂n1

++∂
n2
+−Φ (4.21)

This concludes the discussion of the geometric action of r on various operators. We
now discuss the action of the Wilson lines which take value in SU(2) representations
of Zk. There are k irreducible representations for the group Zk. From the k irreducible
representations we can build up ⌊k/2⌋ SU(2) representations of the form

gn(r) =

(
wn 0
0 w−n

)
j = 0, 1, ..., ⌊k/2⌋ (4.22)

A truncation at n = ⌊k/2⌋ happens because of the Weyl group symmetry, which
exchanges the diagonal elements of the SU(2) matrix. The nth Wilson line gn acts
on the SU(2) adjoint fields by conjugation. Denote a general adjoint field by Φl,
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l = −1, 0, 1, so that Φ0 ∈ R and Φ1 = Φ∗
−1 ∈ C. Since the Wilson line does not

act on the geometric part of the field, we suppress the j2 doublet index µ if there is
any. Assembling the three components of the adjoint fields into a matrix:

Φ =

(
Φ0 Φ1

Φ−1 −Φ0

)
(4.23)

We see that under Φ→ gn(r)Φg
−1
n (r) the components transform as

gn(r)(Φ0,Φ1,Φ−1)g
−1
n (r) = (Φ0, w

2nΦ1, w
−2nΦ−1)

as is familiar from the theory of angular momentum.
Consider the nth ground state Wilson line. We would like to compute the super-

symmetric Casimir energy from the single letter index, which, by the state operator
correspondence, has contribution from BPS derivatives ∂n1

++∂
n2
+− on BPS fields. With-

out the Zk action, all nonnegative n1 and n2 lead to valid single letter operator that
can contribute to the index. The Zk Wilson line will, however, project out many states.
The goal is to figure out the constraint on n1 and n2. We first discuss the case where
the BPS field Φl has j2 = 0. Here, l = −1, 0, 1 is the SU(2) adjoint index. The most
general linear combination of single letter operators is

Ψ =
∑
n1n2l

Cn1n2l∂
n1
++∂

n2
+−Φl (4.24)

where n1, n2 ≥ 0. We would like to understand for what values of n1, n2, l is Cn1n2l

nonvanishing, because that would indicate a contribution to the single letter index.
Applying the constraint equation (4.14), we need to have

rΨ = gn(r)Ψgn(r)
−1 (4.25)

where the left hand side is the geometric action as in equation (4.21). Substituting in
the expression for Ψ, we can turn the above equation into∑

n1n2l

wn1−n2Cn1n2l∂
n1
++∂

n2
+−Φl =

∑
n1n2l

w2nlCn1n2l∂
n1
++∂

n2
+−Φl (4.26)

Assuming the states corresponding to the operators are orthogonal as in 2D CFT,
we obtain

exp

(
2πi(n1 − n2)

k

)
Cn1n2l = exp

(
2πinl

k

)
Cn1n2l (4.27)

which suggests that Cmnl is nonvanishing only when

n1 − n2 − 2nl = 0 mod k (4.28)
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There are three cases to consider l = 0, l = 1, and l = −1, although the last two
should lead to the same contribution to the index by symmetry. When l = 0, we need
to sum over all n1, n2 ≥ 0 such that

n1 − n2 = 0 mod k (4.29)

The contribution of ∂n1
++∂

n2
+− to the Boltzmann weight (4.15) is t3n1+3n2 , so we need to

compute the sum

F n
Zk,j2=0 ≡

∑
n1n2

t3n1+3n2 (4.30)

in which n1 and n2 obey the constraint (4.29). Assume that k is an even number, it is
easy to see that the constrained sum is

F n
Zk,j2=0 =

3(1 + t3k)

(1− t6)(1− t3k)
, n = 0, k/2 (4.31)

F n
Zk,j2=0 =

1 + t3k + 2(t6n + t3k−6n)

(1− t6)(1− t3k)
, n ̸= 0, k/2 (4.32)

In section 4.9, the constrained sum F ′n
Zk,j2=±1/2 for j2 = ±1/2 fields are computed as

in equation (4.126) and (4.127). The final step is to add in the contribution of the BPS
fields. According to Table 4.1, the single letter index for the nth ground state Wilson
line is thus

ÎnZk
= F n

Zk,j2=0(3t
2 − 3t4 + 2t6)− F n

Zk,j2=±1/2t
3, n = 0, k/2 (4.33)

ÎnZk
= F ′n

Zk,j2=0(3t
2 − 3t4 + 2t6)− F ′n

Zk,j2=±1/2t
3, n ̸= 0, k/2 (4.34)

A similar result can be obtained for the case k is odd, as is done in section ??.
To obtain the supersymmetric Casimir energy, we can expand equations (4.33)

and (4.34) to first order in β:

ÎnZk
= 3− 4β

3k
+O(β2), n = 0, k/2 (4.35)

ÎnZk
= 1− 4β

3k
+O(β2), n ̸= 0, k/2 (4.36)

There are two notable features. First, there are no terms divergent in β as we take
β → 0. This is expected as N = 4 is a UV finite theory. This feature does not occur
when the number of supersymmetry is less than four, as we will see later. Second,
applying the supersymmetric Casimir energy formula (4.2), we find that the ground
states are all degenerate:

En
Zk

=
2

3k
n = 0, 1, ..., k/2 (4.37)
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The exact value of the Casimir energy does not concern us, because in the path
integral derivation [66] there is an overall constant one is free to shift. The important
point is that the Casimir energy is the same for all ground states. Just as there are no
terms divergent as β → 0, the ground state degeneracy is also a special feature forN = 4
supersymmetry and does not generically hold for less supersymmetric theories. Before
we compare with theories with less supersymmetry, in the next section we shall compute
the Casimir energy for the Dick group where we have to confront with nonabelian
geometric actions and nonabelian Wilson lines. We will see that the same degeneracy
holds for Dick group as well. This lends strong support to the duality we proposed.

4.4 D-Singularity

The presentation for the Dick (binary dihedral) group is

r2k = e, s2 = rk, s−1rs = r−1 (4.38)

which is reminiscent of the dihedral group of the symmetry of a 2k-gon. The difference
here is that the reflection s does not square to the identity. Instead, it squares to a
central element of order two. The group Dick contains 4k elements generated by r and
s. The geometric action of r and s on SU(2) doublets is [40]

r =

(
w 0
0 w−1

)
s =

(
0 1
−1 0

)
where ω = exp(πi/k). The novelty here compared with the lens space case is that there
is a generator which acts geometrically in a nonabelian way.

The ground state Wilson lines are SU(2) representations of Dick. We would like
to know how many ground state Wilson lines there are and their explicit forms. The
group representation of Dick behaves differently depending on whether k is even or odd.
Here we focus on the case when k ∈ 2N, since the odd case can be worked out similarly.
In general, let the number of SU(q) ground state Wilson lines for Dick be aq. The
generating function Φ(z) for computing aq is worked out in section 3.6 in chapter 3 and
is given by equation (3.60):

ΦDick ≡ 1 + a1z
1 + a2z

2 + a3z
3 + ... (4.39)

=
1

4

(
1

(1− z)4(1− z2)k−1
+

2

(1− z2)2(1− z2)k/2(1 + z2)k/2−1
+

1

(1− z2)2(1− z2)k−1

)
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Since we are interested in the SU(2) representation, we expand the generating func-
tion to second order in z and find

a2 = 4 +
k

2
, k ∈ 2N (4.40)

We can confirm this formula by working out explicitly the SU(2) representations.
Since we only care about the representation of the two generators r and s, we write out
the SU(2) representations for r and s only. See section 3.6. First, we have four abelian
SU(2) representations:

g1(r) =

(
1 0
0 1

)
g1(s) =

(
1 0
0 1

)
(4.41)

g2(r) =

(
1 0
0 1

)
g2(s) = −

(
1 0
0 1

)
(4.42)

g3(r) = −
(
1 0
0 1

)
g3(s) =

(
1 0
0 1

)
(4.43)

g4(r) = −
(
1 0
0 1

)
g4(s) = −

(
1 0
0 1

)
(4.44)

In addition to the four abelian Wilson lines, we also have k/2 nonabelian Wilson
lines (labeled by a prime on g in the following) given by

g′n(r) =

(
exp(nπi/k) 0

0 exp(−nπi/k)

)
n = 1, 3, 5, ..., k − 1 (4.45)

g′n(s) =

(
0 1
−1 0

)
n = 1, 3, 5, ..., k − 1

This shows that the number of SU(2) representation of Dick is indeed 4+ k/2 for k
even.

We can work out the single letter index in the same way we did in the previous
section for the lens space, except for each Wilson line we have two constraints given by
the two generators instead of one. The single letter indices for the four abelian Wilson
lines must be the same, because being ±1 they all act in the same way in the adjoint.
The details are worked out in section 4.10, and we quote the result here:

ÎabelianDick
= 3

(
t6k

(1− t6)(1− t6k)
+

1

1− t12

)
(3t2 − 3t4 + 2t6)− 3

t3 + t6k−3

(1− t6)(1− t6k)
t3

= 3− β

3k
+O(β2)



CHAPTER 4. ONE LOOP CORRECTION AND S-DUALITY 80

from which we can use (4.2) to read off the supersymmetric Casimir energy:

Eabelian
Dick

=
1

6k
(4.46)

The k/2 nonabelian ground states have different single letter index labeled by n.
From section 5.2, they are given by

ÎnDick
=

(
t6k + t6n + t6k−6n

(1− t6)(1− t6k)
+

t6

1− t12

)
(3t2 − 3t4 + 2t6)

− t6n+3 + t6n−3 + t6k−3−6n + t6k+3−6n + t3 + t6k−3

(1− t6)(1− t6k)
t3

= − β

3k
+O(β2)

From the above expression, we see that the single letter index is different for each
nonabelian Wilson line labeled by n, but the expansion in β shows that they all agree
to first order. This suggests that the k/2 nonabelian ground states all have the same
Casimir energy

En
Dick

=
1

6k
, n = 1, 3, 5, ..., k − 1 (4.47)

Comparing this with the supersymmetric Casimir energy of the abelian Wilson
lines in equation (4.46), we come to the conclusion that all 4 + k/2 ground states are
degenerate, just like the case for lens space.

4.5 E-Singularity

In this section we comment on the supersymmetric Casimir energy for ground states
on S3/Ek (k = 6, 7, 8) where Ek is any of the three symmetry groups for the platonic
solids, also known as 2T (binary tetrahedral group), 2O (binary octahedral group),
and 2I (binary icosahedral group). We will not be able to prove, like we did for the
A- and the D-singularity, the exact degeneracy of supersymmetric Casimir energy for
the E-singularity. Instead, we will start with a general discussion and use the specific
example of E6 to conjecture that degeneracy indeed happens for the E-singularity.

Like Dick, all three Ek groups have two generators. However, it is convenient to
write down the group presentation for Ek using three dependent generators r, s, t:

r2 = s3 = tk−3 = rst = −1, k = 6, 7, 8 (4.48)

where −1 denotes the central element of the group of order 2. It is easy to see that one
of the generators can be expressed using the other two independent ones.
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In the following, we focus on the simplest of the three groups, E6, the binary tetrahe-
dral group of order 24. By the McKay correspondence [21], there are three 1-dimension
irreducible representations, three 2-dimensional irreducible representations, and one 3-
dimensional irreducible representation. By a trick proposed in..., we can quickly com-
pute the determinant of the irreps using the inverse of the Cartan matrix. The result
is as follows. The three 1-dimensional irreps ρ1, ρ

′
1, ρ

′′
1 have determinant, 1, ω, ω2, where

ω is the third root of unity. The three 2-dimensional irreps ρ2, ρ
′
2, ρ

′′
2 have determinant

1, ω, ω2. The 3-dimensional irrep ρ3 has determinant 1. There are seven conjugacy
classes labled by I,−I, β, γ, γ2, γ4, γ5, and the character table for E6 is as follows [72].
The number in the parenthesis in the first line represents the order of any element in
the conjugacy class.

I(1) −I(1) β(4) γ(6) γ2(3) γ4(3) γ5(6)
ρ1 1 1 1 1 1 1 1
ρ2 2 -2 0 1 -1 -1 1
ρ3 3 3 -1 0 0 0 0
ρ′2 2 -2 0 ω −ω −ω2 ω2

ρ′′2 2 -2 0 ω2 −ω2 −ω ω
ρ′1 1 1 1 ω ω ω2 ω2

ρ′′1 1 1 1 ω2 ω2 ω ω

Table 4.2: Character table for the group E6, retrieved from [72]. Here, ω is the third
root of unity. The number in the parenthesis represents the order of the conjugacy
class.

We pick the two generators to sit in the β and the γ conjugacy classes and without
any confusion we use the same letters to denote the generators. The defining two-
dimensional geometric actions by these two generators are

β =

(
0 i
i 0

)
γ =

1√
2

(
ϵ ϵ3

ϵ ϵ7

)
(4.49)

where ϵ is the eighth root of unity. To see that these two generators indeed generate
the whole group, we can look at the quarternionic representation of E6. The 24 group
elements can be represented by the following unit quarternions.

• 1 element of order 1: 1.

• 1 element of order 2: −1.

• 6 elements of order 4: ±i,±j,±k.
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• 8 elements of order 6: (1± i± j ± k)/2.

• 8 elements of order 6: (−1± i± j ± k)/2.

To make contact with Table 4.2, we note that the first three lines each forms a conjugacy
class, and each of the last two lines (elements of order 6) splits into two conjugacy
classes. We rewrite the above using the language of conjugacy classes:

• I: 1 element of order 1: 1.

• −I: 1 element of order 2: −1.

• β: 6 elements of order 4: ±i,±j,±k.

• γ: 4 elements of order 6: (1 + i + j + k)/2, with even numbers of sign flips for
i, j, k.

• γ5: 4 elements of order 6: (1 − i + j + k)/2, with odd numbers of sign flips for
i, j, k.

• γ2: 4 elements of order 3: (−1 + i+ j + k)/2, with even numbers of sign flips for
i, j, k.

• γ4: 4 elements of order 3: (−1− i+ j + k)/2, with odd numbers of sign flips for
i, j, k.

One can check that, for example, i and (1 + i + j + k)/2 can generate all elements
in the group. In the following, we shall therefore take β, γ in equation (4.49) as the
generators, and we would like to find the SU(2) Wilson lines representing these two
elements.

How many ground state Wilson lines are on S3/E6? The generating function for
computing the number of SU(2) representations of E6 is computed in equation (3.68):

ΦE6 =
1

3

(
1

(1− z)3(1− z2)3(1− z3)
+

2

(1− z6)(1− z3)2

)
= 1 + z + 3z2 + ...

which suggests that there are 3 SU(2) ground state Wilson lines. From the character
table and from our previous discussion on the determinant of the representations, it is
easy to see that the ground state Wilson lines are

ρ1 ⊕ ρ1, ρ2, ρ′1 ⊕ ρ′′1 (4.50)

where ρ1⊕ρ1 is the trivial Wilson line. In the following, we discuss the trivial Wilson line
only. The only relevant action for the trivial Wilson line is the geometric action. Start
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with a j2 = 0 field Φ. The descendant ∂n1
++∂

n2
+−Φ transforms under the two generator β

as (see equation (4.49))

β(∂n1
++∂

n2
+−Φ) = in1+n2∂n2

++∂
n1
+−Φ (4.51)

What makes the index on S3/E6 so hard to compute compared with the A- and the
D-singularity case is the action of γ:

γ(∂n1
++∂

n2
+−Φ) =

1

2(n1+n2)/2
(ϵ∂++ + ϵ3∂+−)

n1(ϵ∂++ − ϵ3∂+−)
n2Φ

=
1

2(n1+n2)/2

n1∑
l=0

n2∑
m=0

(
n1

l

)(
n2

m

)
(−1)n2−mϵ3n1+3n2−2m−2l∂m+l

++ ∂n1+n2−l−m
+− Φ

The equation above says that, if we start with an operator ∂n++Φ, then the action
of γ would generate a sum of terms

∂l++∂
m
+−Φ

such that l +m = n. Therefore, a good ansats for an operator so that it is potentially
invariant under γ is ∑

l+m=n

Cn
lm∂

l
++∂

m
+−Φ (4.52)

for a given n. Using this ansatz, one can impose the constraints from β and γ to
determine what kind of Cn

lm is nonzero. We leave this for a future work and encourage
the reader to work on this as well.

4.6 Comparison with N = 2 Supersymmetry

We mentioned earlier that the exact degeneracy in the ground state supersymmetric
Casimir energy is a special feature for the N = 4 theory and does not hold for less
supersymmetric theories. In this section, we compute the supersymmetric Casimir
energy for the N = 2 SU(2) super Yang-Mills theory on S3/Dick to give support to this
claim. The R-symmetry for N = 2 supersymmetry is U(2), which can be decomposed
into an SU(2) part with quantum number R and a U(1) part with quantum number r.
We pick the same Q as in the N = 4 theory to define the index. The anticommutator
in the N = 2 theory is

2{Q†, Q} = D − 2J1 −R−
r

2
(4.53)

The BPS operators annihilated by the above anticommutator are listed in Table 4.3.
In the N = 2 SU(2) SYM theory, one can have hypermultiplets, vector multi-

plets, or a combination of both so that the “quarks” are charged under some flavor
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Letter (−1)F [E, j1, j2]
X [1, 0, 0]
ψ1+ −[3/2, 1/2, 0]
F++ [2, 1, 0]

∂++ψ
2
− + ∂+−ψ

2
+ = 0 [5/2, 1/2, 0]

ψ̄1± −[3/2, 0,±1/2]
q̄ [1, 0, 0]
ψ+ −[3/2, 1/2, 0]
∂+± [1, 1/2,±1/2]

Table 4.3: A list of operators in N = 2 supersymmetric theories that satisfy the BPS
condition and their E, j1, j2 quantum numbers. The first operators along with the
derivative operators are relevant for the vector multiplet, whereas q̄ and ψ+ along with
the derivative operators are relavant for the hypermultiplet. The R, r quantum numbers
are omitted and can be found in the appendix of [66].

symmetry. One can also consider the class-S theory [10] in which the topology of the
Riemann surface determines the matter and gauge content of the theory. In the fol-
lowing subsections, we compute the supersymmetric Casimir energy for 1) the SU(2)
vector multiplet, 2) the SU(2) hypermultiplet which transforms in the fundamental,
and 3) the conformal Nf = 4 theory. We also comment on the general class-S theory.

One thing to note is that theN = 2 vector multiplet (or the hypermultiplet) by itself
does not lead to a conformal field theory, and so we cannot interpret the calculation as
computing the conformal dimension of the ground state Wilson line operators. Also,
the state-operator correspondence will be lost and we cannot interpret each term in
the Boltzmann sum as corresponding to a particular state of the theory. However, it
is nevertheless okay to compute the index away from the conformal point by using the
BPS spectrum at a conformal point.

N = 2 Vector Multiplet

The N = 2 vector multiplet transforms in the adjoint of SU(2), so in computing the
contribution of the constrained sum t3n13+n2 to the single letter index, we can simply
re-use the constrained sum we obtained for the N = 4 theory. The only difference is
the BPS field content3.

3For example, in the N = 4 theory there are six real scalar field which leads to three holomorphic
combinations, explaining the letters X,Y, Z in Table 4.1. In the N = 2 theory there are two real
scalar fields in the vector multiplet, which leads to only one holomorphic combination. This is why in
Table 4.3 there is only one BPS scalar field as indicated by the letter “X”.
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To compute the single letter index for the four trivial abelian Wilson lines, we can
use the Boltzmann sum F abelian

Dick,j2=0 for j2 = 0 BPS fields from equation (4.133) and
F abelian
Dick,j2=±1/2 from equation (4.139) for j2 = ±1/2 BPS fields as before:

Îvec,abelianDick
= F abelian

Dick,j2=0(t
2 − t4 + 2t6)− F abelian

Dick,j2=±1/2t
3 (4.54)

where t2 − t4 + 2t6 is the Boltzmann weight for the j2 = 0 BPS base fields and −t3 is
the Boltzmann weight for the j2 = ±1/2 base fields as in Table 4.3. Expanding to first
order in β, on obtains

Îvec,abelianDick
= − 2

3kβ
+ 3 +

−2− 27k − 9k2

18k
β +O(β) (4.55)

For the nonabelian Wilson line ground states labeled by n = 1, 3, ..., k − 1, we can
use F n

Dick,j2=0 from (4.151) and F n
Dick,j2=±1/2 from (4.157) to compute the single letter

index
Îvec,nDick

= F n
Dick,j2=0(t

2 − t4 + 2t6)− F n
Dick,j2=±1/2t

3 (4.56)

Expanding to first order in β, we have

Îvec,nDick
= − 2

3kβ
+
−2 + 9k − 9k2 + 36nk − 36n2

18k
β +O(β2) (4.57)

As anticipated at the end of section 4.3 and as can be seen from equation (4.55)
and equation (4.57), the single letter index here (for both the abelian ground states and
the nonabelian ground states) has a divergent term proportional to 1/β, which is not
present in the N = 4 SUSY case. We can read off the supersymmetric Casimir energy
of the abelian ground states and for the nonabelian ground states labled by n:

Evec,abelian
Dick

=
2 + 27k + 9k2

36k
(4.58)

Evec,n
Dick

=
2− 9k + 9k2 − 36nk + 36n2

36k
(4.59)

which shows that the degeneracy is partly lifted as the supersymmetric Casimir energy
depends on n for the nonabelian ground states.

N = 2 Hypermultiplet

TheN = 2 hypermultiplet transforms in the fundamental of SU(2). The hypermultiplet
fields transform differently under the SU(2) Wilson line from the vector multiplet fields,
so we need to recompute the Boltzmann sum

∑
t3n1+3n2 for the derivative operators.

One simplification here is that neither of the hypermultiplet base fields, q̄ and ψ+, has
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j2 = ±1/2, so we only need to consider one Boltzmann sum for the j2 = 0 fields.For
the k/2 nonabelian Wilson line ground states, a generic BPS operator is given by the
linear combination

Ψ =
∑

Cn1n2µ∂
n1
++∂

n2
+−Φµ (4.60)

where µ = ±1 is the SU(2) fundamental index. We again demand two constraints for
each Wilson line labeled by n = 1, 3, 5..., k − 1 (see equation (4.45)):∑

Cn1n2µ exp(πi(n1 − n2)/k)∂
n1
++∂

n2
+−Φµ =

∑
Cn1n2µ exp(πinµ/k)∂

n1
++∂

n2
+−Φµ (4.61)∑

Cn1n2µ exp(πin2)∂
n2
++∂

n1
+−Φµ =

∑
Cn1n2µ(−1)(µ+1)/2∂n1

++∂
n2
+−Φ−µ (4.62)

They imply

n1 − n2 − nµ = 0 mod 2k (4.63)

Cn2n1,−µ exp(πin1) = (−1)(µ+1)/2Cn1n2µ (4.64)

The second equation tells us that we can just set µ = 1 and sum over all (n1, n2)
pairs such that the first equation is satisfied. We do not have to worry about the µ = −1
case. The constrained Boltzmann sum therefore gives∑

t3n1+3n2 =
t3n + t6k−3n

(1− t6)(1− t6k)
(4.65)

From Table 4.3, the Boltzamnn weight for the scalar BPS field q̄ is t2 and that
for the fermion BPS field ψ+ is −t4. So overall the single letter index for the SU(2)
hypermultiplet on S3/Dick for the nth nonabelian ground state is

Îhyper,nDick
=

t3n + t6k−3n

(1− t6)(1− t6k)
(t2 − t4) (4.66)

Expanding to first order in β, we obtain

Îhyper,nDick
=

2

9kβ
+
−8 + 18k2 − 54nk + 27n2

108k
β +O(β2) (4.67)

which implies a supersymmetric Casimir energy of

Ehyper,n
Dick

=
8− 18k2 + 54nk − 27n2

216k
(4.68)
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Similarly, one can compute the single letter index and the supersymmetric Casimir
energy for the four abelian ground states. The results are

Ehyper, abelian,1
Dick

=
4− 27k − 9k2

36k
(4.69)

Ehyper, abelian,2
Dick

=
4 + 27k − 9k2

36k
(4.70)

Ehyper, abelian,3
Dick

=
8 + 9k2

216k
(4.71)

Ehyper, abelian,4
Dick

=
8 + 9k2

216k
(4.72)

From the above equations, we see that just as the vector multiplet case (4.59), for the
hypermultiplet the degeneracy is also partially lifted and a discrete quadratic potential
generated for the nonabelian ground states.

N = 2 Nf = 4 Theory

In this section we consider the N = 2 Nf = 4 SU(2) theory where Nf indicates the
number of flavors. This means that the theory contains one SU(2) vector multiplets and
four SU(2) hypermultiplets. This theory is special because it is conformal. One way to
see this is to compute the β function explicitly. Another way to see this is to use the
D-brane construction [73] where we put two NS5 branes separeted in the 6 direction and
two D4 branes in between the NS5 branes. The worldvolume of the NS5 brane is along
the 012345 direction, while that of the D4 brane is along the 01236 direction. The D4
branes create dimples at where they intersect the NS5 branes, bending the NS5 branes
toward the D4 branes. This bending is interpreted as the running coupling constant.
To make the NS5 branes straight (no running coupling constant), one can attach two
semi-infinite D4 branes to the left of the first NS5 brane and to the right of the second
NS5 brane. These four semi-infinite D4 branes create the four hypermultiplets in the
Nf = 4 theory.

To find the supersymmetric Casimir energy of this theory, we simply have to add four
times the hypermultiplet Casimir energy as in (4.68) to the vector multiplet Casimir
energy as in (4.59). Therefore, the supersymmetric Casimir energy for the nonabelian
Wilson line ground states for this Nf = 4 theory is

E
Nf=4,n
Dick

=
11

54k
− 1

4
− 1

12
k +

n2

2k
, n = 1, 3, 5..., k − 1 (4.73)

For the four abelian Wilson line ground states, we have (the trivial Wilson line
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ground state is labeled by 1)

E
Nf=4,abelian,1
Dick

=
11

54k
− 1

4
− 1

12
k (4.74)

E
Nf=4,abelian,2
Dick

=
11

54k
+

7

4
− 1

12
k (4.75)

E
Nf=4,abelian,3
Dick

=
11

54k
+

3

4
+

7

24
k (4.76)

E
Nf=4,abelian,4
Dick

=
11

54k
+

3

4
+

7

24
k (4.77)

From the five equations above, we see that degeneracy of the Nf = 4 theory ground
states is also partly lifted. The most important and surprising feature of the above
equations is that the superconformal Casimir energy is minimized for the unique ground
state: the trivial Wilson line ground state as in equation (4.74). This is important for
the following reason. In 2D CFT, the conformal dimension for operators is defined
on C. The Casimir energy for 2D operators is computed on a cylinder. The Casimir
energy and the conformal dimension are related through the anomalous transformation
property of the energy momentum tensor T (which is not primary)

z2Tzz = Tww +
c

24
(4.78)

where c is the central charge of the 2D CFT, z is the coordinate of C and w is the
coordinate on the cylinder. This equation implies that there is a universal shift con-
stant c/24 that must be added to the Casimir energy in order to obtain the conformal
dimension of an operator.

The computation of the supersymmetric Casimir energy that we are doing in this
paper is analogous to the Casimir energy on the 2D cylinder. To obtain the conformal
dimensions of the ground state Wilson lines, one should add a constant to each Casimir
energy value. This constant is characterized by the 4D conformal anomaly. Since the
conformal anomaly depends on the geometry only, each ground state Casimir energy
must be shifted by the same constant to obtain the conformal dimension. Here, for the
Nf = 4 theory, we assume that the trivial Wilson line corresponds to the unit operator,
which has a conformal dimension of 0. According to equation (4.74), this shift constant
is simply

11

54k
− 1

4
− 1

12
k (4.79)

Applying the shift to all ground state Wilson lines, one finds their confomral dimen-
sions D to be:
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D
Nf=4,abelian,1
Dick

= 0 (4.80)

D
Nf=4,abelian,2
Dick

= 2 (4.81)

D
Nf=4,abelian,3
Dick

= 1 +
3

8
k (4.82)

D
Nf=4,abelian,4
Dick

= 1 +
3

8
k (4.83)

D
Nf=4,n
Dick

=
n2

2k
, n = 1, 3, 5, ..., k − 1 (4.84)

In particular, the trivial Wilson line ground state, having conformal dimension 0,
is the true ground state of this theory. All other classical ground states have positive
conformal dimension. This result is significant because the Nf = 4 conformal theory,
being superconformal, has a unitarity bound, so all operators should have nonnegative
conformal dimensions. It is impossible for nontrivial ground state Wilson lines to obtain
a supersymmetric Casimir energy smaller than that of the trivial ground state Wilson
line. On the other hand, this result is also surprising. The uninitiated might be tempted
to conclude that the ground states for the conformal SU(2) Nf = 4 theory on S3/Γ
(Γ = Dick) are simply Weyl-inequivalent homomorphisms from Γ to SU(2) as he would
do for the case of N = 4 SUSY. Our detailed calculation in this section shows that for
the Nf = 4 theory there is only one unique ground state corresponding to the trivial
Wilson line, unlike the case of N = 4 SUSY where all classically flat Wilson lines have
the same conformal dimension 0 (after shifting by some anomaly constant).

How should we make of this surprising result? We postpone this discussion to the
end of the next subsection on class-S theory.

Class-S Theory

The way the duality was derived in section 2.4 was to consider a stack of q M5 branes
compactified on a torus T 2. The ADE singularity Γ acts on R4, the rest of the world
volume of the M5 branes. It was found there that the dual Chern-Simons theory with
level q and gauge group given by G(Γ) (recall that G(Γ) is the gauge group McKay
dual to Γ) lives on the torus T 2. The number of ground states on the Chern-Simons
theory side is simply the number of level q WZW conformal blocks [25].

A variant of this construction is to replace T 2 by a genus g Riemann surface. It is
natural to expect that the ground state duality still holds, except that the theories on
both sides of the duality are modified.

• The SYM side: The supersymmetry is reduced from N = 4 to N = 2. The
theory becomes the N = 2 class-S theory [10]. Let the number of M5 branes



CHAPTER 4. ONE LOOP CORRECTION AND S-DUALITY 90

be two. The fundamental building block of the class-S theory in this case is the
trinion theory. One way to visualize it is to imagine a vertex with three legs (or,
in the blow-up limit, a pair of pants). The legs (either form the same vertex
or different vertices) can be contracted to obtain a graph which corresponds to
some degeneration limit of some Riemann surface. Each contracted leg yields a
N = 2 vector multiplet, and hence a gauge field to create a Wilson line that
wraps around the ADE singularity.

• The Chern-Simons side: The Chern-Simons theory is still the same as before with
the same level q and the same gauge group G(Γ), except that it is quantized on
the genus g Riemann surface instead of on T 2. The fundamental building blocks
of the ground states of this theory are the fusion rule coefficients Nijk. Any
genus-two Riemann surfaces can be constructed by splicing together pair-of-pants
topologies. The three holes of the pants correspond to the indices i, j, k. The
pants are contracted to form the Riemann surface, and the number of Chern-
Simons ground states is simply a contraction of a series of fusion rule coefficients
Nijk.

Naively, if some degeneration limit of the Riemann surface of the SU(2) class-S
theory has p internal lines, and if each vector field can create h flat Wilson lines by
wrapping around the ADE singularity, one would expect (without knowing the duality
argument) the number of ground states to be ph. This would have been true had
we still been dealing with N = 4 theories; we showed earlier that exact degeneracy
of supersymmetric Casimir energy does not occur for N = 2 theories. There has to
be a truncation of ground states, and in the language of the duality this truncation
comes about because not all Nijk are nonzero. A zero Nijk would imply an impossible
combination of Wilson lines at a particular trinion vertex. Such a combination of Wilson
lines will lead to a supersymmetric Casimir energy different from the one for the state
involving only the trivial Wilson lines (N111 = 1 where the subscript 1 corresponds
to the identity element). The detail of this computation using the example of Dic2
singularity is fleshed out in chapter 5.

4.7 Implications For S-Duality

S-duality maps the weak coupling regime of the N = 4 SYM theory with gauge group G
to the strong coupling regime of the same theory with the Langlands dual gauge group
G̃ [74]. It exchanges the electric degrees of freedom with the magnetic degrees of freedom
and elementary particles with solitons. In particular, the Wilson lines are exchanged
with the t’ Hooft lines [75, 76]. In our setting, S-duality turns the ground state Wilson
lines wrapping the Γ singularity into the ground state t’ Hooft lines. Because the
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Wilson lines take values in SU(2), the ground state t’ Hooft lines will take values in
the Langlands dual group SU(2)/Z2 ≈ SO(3). S-duality makes two predictions here.
First, the number of ground state t’ Hooft lines must be equal to the number of ground
state Wilson lines. In other words, the number of SU(2)/Z2 representations of Γ (up to
identification by conjugation and Weyl group) must be equal to the number of SU(2)
representations of Γ. Second, for a given Γ, the ground state t’ Hooft lines must be
exactly degenerate in the supersymmetric Casimir energy, just like their Wilson line
counterparts. In addition to this degeneracy, the supersymmetric Casimir energy of
the t’ Hooft lines must be the same as their Wilson line counterparts. This is because
S-duality maps the weakly-coupled electric ground state Hilbert space to the strongly-
coupled magnetic ground state Hilbert space.

In the following subsections, we check these two predictions explicitly for the A-
and the D-singularity using the gauge group SU(2). Since the supersymmetry Casimir
energy D + J1 is protected by supersymmetry, we can imagine doing an index cal-
culation using the dual theory t’ Hooft lines and dual theory fields to compute the
supersymmetry Casimir energy of the dual theory.

S-Duality on S3/Zk

As mentioned earlier, the dual t’ Hooft line will take values in SU(2)/Z2, furnishing
some representation of SU(2)/Z2 → Zk. In other words, let a t’ Hooft line be g̃(r) ∈
SU(2)/Z2. It must satisfy the relation

g̃(r)k = ±1 (4.85)

and we identify two t’ Hooft lines g̃(r) and g̃′(r) if they differ by −1 (and by conju-
gation and Weyl group transformation). We would like to show that the number of
SU(2)/Z2 → Zk representations is the same as that of SU(2) → Zk representations.
Before we prove this, we give a specific example for k = 2. In this case, there are two
Wilson lines

g0(r) =

(
1 0
0 1

)
g1(r) = −

(
1 0
0 1

)
However, in the t’ Hooft line picture, these two solutions correspond to the same

t’ Hooft line because they differ by −1. A moment’s thought reveals that there are
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indeed two t’ Hooft lines:

g̃0(r) =

(
1 0
0 1

)
g̃1(r) =

(
i 0
0 −i

)
Although g̃1(r) does not square to 1, it squares to −1 which is allowed by (4.85).

We now prove the general case. First, consider the case where k is odd. In this case,
the claim is that the t’Hooft lines take the same values as the Wilson lines

g̃j(r) =

(
e2πij/k 0

0 e−2πij/k

)
, j = 0, 1, ..., ⌊k/2⌋ (4.86)

It is easy to see that no two solutions are identified under conjugation or under the
Weyl group. To see that no two solutions are identified by multiplication by −1, we
assume the contrary and suppose that for some p, q ∈ Z

g̃p(r) = −g̃q(r) (4.87)

or
e2πi(p−q)/k = −1 (4.88)

But this is impossible since, k being an odd integer by assumption, (p − q)/k can
never be an odd mulitple of 1/2. In addition to the solutions (4.91), one can also have
solutions of the form

g̃′j(r) =

(
eπij/k 0
0 e−πij/k

)
, j = 1, 3, ..., k (4.89)

since their kth power is −1, satisfying equation (4.85). However, these solutions are
redundant: each of these solutions is identified with an old solution in equation (4.91).
To see this, consider −1 times g̃′j(r), which gives

−g̃′j(r) =
(
eπi(j+k)/k 0

0 e−πi(j+k)/k

)
, j = 1, 3, ..., k (4.90)

By assumption, k is odd, and so j + k must be even. Solutions of this form are just
the old solutions (4.91). This concludes the proof that for odd k, the number of flat
Wilson lines is the same as that of the t’ Hooft lines. When k is even, the solutions to
the t’ Hooft lines are of the form

g̃j(r) =

(
eπij/k 0
0 e−πij/k

)
, j = 0, 1, ..., k/2 (4.91)
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There are k/2 + 1 solutions, which agree with the number of Wilson line solutions.
The proof is similar to the above, so we omit it.

The next step is to compute the supersymmetric Casimir energy of the t’ Hooft lines,
which is expected to be the same as that of the Wilson lines. To do this, we imagine
starting with the electric theory and dialing up the coupling constant gYM to a very
large value. The D + J1 value does not change in this process, since it is a protected
quantity. Next, we use S-duality to go to the weakly coupled magnetic theory in which
the elementary fields create/annihialte monopoles (as perceived in the electric frame).
We assume that the spectrum of the BPS operators does not change, i.e. in the dual
magnetic theory we have a similar BPS operator spectrum the same as Table 4.1. We
also assume that the elementary fields transform in the adjoint of the magnetic gauge
group SU(2)/Z2. The last two assumptions imply that we can carry out the same index
computation we did before for the Zk case, except now using the t’ Hooft line solutions.

The case where k is odd is easy because we proved earlier that the t’ Hooft line
solutions for k odd are the same as the Wilson line solutions. Therefore, for odd k the
supersymmetric Casimir energy of the t’ Hooft line ground states is the same as that of
the Wilson line ground states given by equation (4.37). The novelty here is the k even
case. The ingredients that go into the single letter index for k even are worked out in
section 4.11. The single letter index Ĩn for the nth t’ Hooft line is

Ĩ0k = T 0
Zk,j2=0(3t

2 − 3t3 + 2t6)− T 0
Zk,j2=±1/2t

3 (4.92)

Ĩnk = T n
Zk,j2=0(3t

2 − 3t3 + 2t6)− T n
Zk,j2=±1/2t

3, n ̸= 0 (4.93)

where the T functions are defined in equations (4.161) (4.162) (4.163) (4.164). Expand-
ing to first order in β, we have

Ĩ0k = 3− 4

3k
β +O(β2) (4.94)

Ĩnk = 1− 4

3k
β +O(β2), n ̸= 0 (4.95)

which suggests that all k/2+1 t’ Hooft line ground states have supersymmetric Casimir
energy of 2/3k, in agreement with the Wilson line ground state energy (4.37). This is a
nontrivial statement of S-duality on the ground states for the exactly marginal N = 4
SYM theory. It does not in general hold for less supersymmetric theory.

S-Duality on S3/Dick

Although the group Dick is nonabelian, we expect that ground state S-duality holds
on S3/Dick just as well since Dick can be embedded in the same SU(2)L as Zk. To
compare with the Wilson line results, we take k to be even throughout this subsection.
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To find the t’ Hooft lines, we need to solve for r, s ∈ SU(2)/Z2 so that the following
equations are satisfied

r2k = ±e, s2 = ±rk, s−1rs = ±r−1 (4.96)

for any of the eight choices of the ± sign combination. Because there are two generators
and because the group is nonabelian, the t’ Hooft line solutions for the Dick case are
not as easy to find as the abelian Zk case. For example, we found in section 4.4 that
there are 4 + k/2 Wilson line ground states. Under the −1 identification, the four
abelian solutions (4.41) (4.42) (4.43) (4.44) are actually one and the same t’ Hooft line
solution. In addition, some of the nonabelian solutions are also identified under −1.
As shown in section 4.12, there are indeed 4+ k/2 t’ Hooft line solutions, in agreement
with the Wilson line result. However, the structure of the t’ Hooft line solutions is very
different from that of the Wilson line solutions. For the Wilson line case, there are
four universal solutions as in equations (4.41) (4.42) (4.43) (4.44) and k/2 solutions
having k dependence as in equation (4.45). For the t’ Hooft line solutions, there are
five universal solutions and k/2 − 1 solutions that have a k dependence4. The former
will be labeled by g̃j, j = 1, ..., 5, and the latter by g̃′n, n = 2, 4, ..., k − 2:

g̃1(r) =

(
1 0
0 1

)
g̃1(s) =

(
1 0
0 1

)
(4.97)

g̃2(r) =

(
1 0
0 1

)
g̃2(s) =

(
i 0
0 −i

)
(4.98)

g̃3(r) =

(
i 0
0 −i

)
g̃3(s) =

(
1 0
0 1

)
(4.99)

g̃4(r) =

(
i 0
0 −i

)
g̃4(s) =

(
i 0
0 −i

)
(4.100)

g̃5(r) =

(
i 0
0 −i

)
g̃4(s) =

(
0 1
−1 0

)
(4.101)

g̃′n(r) =

(
exp(nπi/2k) 0

0 exp(−nπi/2k)

)
n = 2, 4, 6, ..., k − 2 (4.102)

g̃′n(s) =

(
0 1
−1 0

)
n = 2, 4, 6, ..., k − 2

Having shown that the number of ground state t’ Hooft lines is the same as that of
the ground state Wilson lines, we now show that they also have the same supersym-
metric Casimir energy as predicted by S-duality. Just as the Zk case, the Dick indices

4For the base case Dic2, the only solutions are the five universal solutions.
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all have the same structure:

ĨnDick
= T n

Dick,j2=0(3t
2 − 3t3 + 2t6)− T n

Dick,j2=±1/2t
3 (4.103)

The T functions can be calculated using the approach from section 4.10 and are
tabulated in section 4.12. Using the result from section 4.12 , we can compute the
single letter indices and expand to first order in β. The result is

Ĩ1Dick
= 3− β

3k
(4.104)

Ĩ2Dick
= 1− β

3k
(4.105)

Ĩ3Dick
= 1− β

3k
(4.106)

Ĩ4Dick
= 1− β

3k
(4.107)

Ĩ5Dick
= − β

3k
(4.108)

Ĩ ′nDick
= − β

3k
(4.109)

where the first five lines ĨjDick
are the single letter indices for the five universal solutions

and the last line Ĩ ′nDick
is for the k/2−1 solutions, with the superscript n = 2, 4, ..., k−2.

Since the above indices all have the same first order term, all t’ Hooft line ground states
have the same supersymmetric Casimir energy 1/6k for a given k. Comparing this result
with the Wilson line result (4.46), we find that both the Wilson line ground states and
the t’ Hooft line ground states have the same supersymmetric Casimir energy 1/6k,
agreeing with the prediction of S-duality.

4.8 Discussion

In this chapter, We find that, for the N = 4 SU(2) SYM theory, the Wilson line ground
states on S3/Γ where Γ = Zk (lens space) or Γ = Dick have the same supersymmetric
Casimir energy. This result can be viewed as a one-loop test of the duality that relates
the ground states of N = 4 U(q) (or SU(q)) SYM on S3/Γ to the ground states (or
a subspace of the ground states) of the level q Chern-Simons theory with the McKay
dual gauge group G(Γ). Such degeneracy in the ground state supersymmetric Casimir
energy is not found in theories with fewer than four supercharges. We showed this using
the example of N = 2 supersymmetry and briefly mentioned the role of supersymmetry
Casimir energy in class-S theory. In fact, for the conformal Nf = 4 SU(2) theory, our
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result shows that there is only one true ground state: the one involving the trivial
Wilson line. This is surprising at first, but can be potentially explained by looking
at the Hilbert space dimension of the corresponding Chern-Simons theory on a four-
punctured sphere with all the in and the out states in the identity representation.

We also find that the number of t’ Hooft line ground states equals that of the
Wilson line ground states, and that the supersymmetry Casimir energy of the t’ Hooft
line ground states is the same as that of the Wilson line ground states. This provides
yet another check of the prediction of S-duality.

Although the numerics done in this paper assumes that the SYM theory has SU(2)
gauge group, we have good faith (based on our earlier derivation in section 2.4) to
conjecture that the degeneracy in supersymmetry Casimir energy in both the Wilson
line sector and the t’ Hooft line sector holds for all SU(q) and U(q) gauge group on
S3/Γ where Γ can be any of the ADE singularities.

In the next few sections, we work out some computational details cited in the pre-
vious sections of this chapter. We also compute the number of ground state t’ Hooft
lines for the exceptional singularities E6, E7, E8, and check that the number of ground
state t’ Hooft lines equals that of the ground state Wilson lines.

4.9 Zk Index Calculation

In this section we work out the contribution of the j2 = ±1/2 fields to the index for Zk

to complement the j2 = 0 result in section 4.3. Let l = −1, 0, 1 be the SU(2) adjoint
index, and µ = −1, 1 the doublet index. The latter responds under the geometric action
r as

rΦµl = exp(2πiµ/k)Φµl (4.110)

The nth Wilson line is exp(2πni/k), where n ranges from 0 to ∗k/2 in integer steps.
Under the adjoint action of the nth holonomy gn(r), the field transform as

gn(r)(Φµ0,Φµ1,Φµ,−1)g
−1
n (r) = (Φµ0, exp(4πin/k)Φµ1, exp(−4πin/k)Φµ,−1) (4.111)

as explained in section 4.3.
A general single letter operator can be written as

Ψ′ =
∑

Cn1n2µl∂
n1
++∂

n2
+−Φµl (4.112)

Because there is only one generator r for the group Zk, there is only one constraint
the operator Ψ′ needs to satisfy. It is given by equation (4.14) and reads∑

exp(2πi(n1 − n2 + µ)/k)Cn1n2µl∂
n1
++∂

n2
+−Φµl =

∑
exp(4πinl/k)Cn1n2µl∂

n1
++∂

n2
+−Φµl

(4.113)
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For Cn1n2µl to be nonvanishing, one must have

n1 − n2 + µ− 2nl = 0 mod k (4.114)

Since µ can take values in {−1, 1} and l in {−1, 0, 1}, there are six cases we need
to consider. However, by the symmetry of equation (4.114), we only need to consider
the case {l = 0, µ = −1}, {l = 1, µ = −1}, and {l = 1, µ = 1}, since the rest of cases,
{l = 0, µ = 1}, {l = −1, µ = 1}, and {l = −1, µ = −1} give the same contribution to
the single letter index as the previous three cases, respectively. Let us first assume that
k is even.

Case {l = 0, µ = −1}. In this case we need to sum over all (n1, n2) pairs in∑
t3n1+3n2 (4.115)

such that equation (4.114) is satisfied for l = 0, µ = 1, or

n1 − n2 − 1 = 0 mod k (4.116)

The constrained sum gives ∑
t3n1+3n2 =

t3 + t3k−3

(1− t6)(1− t3k)
(4.117)

Case {l = 1, µ = −1}. In this case we need to sum over all (n1, n2) pairs in∑
t3n1+3n2 (4.118)

such that they satisfy the equation

n1 − n2 − 1− 2n = 0 mod k (4.119)

If n = 0 or n = k/2 (since we assumed k even), the constrained sum is∑
t3n1+3n2 =

t3 + t3k−3

(1− t6)(1− t3k)
(4.120)

Otherwise, we have ∑
t3n1+3n2 =

t6n+3 + t3k−6n−3

(1− t6)(1− t3k)
(4.121)

Case {l = −1, µ = −1}. In this case we need to sum over all (n1, n2) pairs in∑
t3n1+3n2 (4.122)
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such that they satisfy the equation

n1 − n2 − 1 + 2n = 0 mod k (4.123)

If n = 0 or n = k/2 (since we assumed k even), the constrained sum is∑
t3n1+3n2 =

t3 + t3k−3

(1− t6)(1− t3k)
(4.124)

Otherwise, we have ∑
t3n1+3n2 =

t6n−3 + t3k−6n+3

(1− t6)(1− t3k)
(4.125)

In summary, the constrained sum of t3n1+3n2 for fields having j2 = ±1/2 is

F ′n
Zk,j2=±1/2 =

6(t3 + t3k−3)

(1− t6)(1− t3k)
n = 0, k/2 (4.126)

F ′n
Zk,j2=±1/2 =

2(t3 + t3k−3 + t6n+3 + t3k−6n−3 + t6n−3 + t3k−6n+3)

(1− t6)(1− t3k)
n ̸= 0, k/2 (4.127)

4.10 Dick Index Calculation

In this section we work out the Dick single letter index in detail. First, we deal with the
abelian holonomies. As discussed in section 4.4, there are four SU(2) abelian holonomies
where gj(r) and gj(s) (j = 1, 2, 3, 4) take values in ±1. Since all of the fields transform
in the ajdoint of SU(2), the four abelian holonomies act as identity on the fields. We
first compute the contribution to the index by the j2 = 0 fields. A general single letter
operator can be written as

Ψ =
∑
n1n2l

Cn1n2l∂
n1
++∂

n2
+−Φl (4.128)

where n1, n2 ≥ 0 and l = −1, 0, 1 is the SU(2) adjoint index. The operator has to
satisfy two constraints (4.14) given by the generators r and s. The two constraints are∑

n1n2l

exp((n1 − n2)πi/k)Cn1n2l∂
n1
++∂

n2
+−Φl =

∑
n1n2l

Cn1n2l∂
n1
++∂

n2
+−Φl (4.129)∑

n1n2l

exp(n2πi)Cn1n2l∂
n2
++∂

n1
+−Φl =

∑
n1n2l

Cn1n2l∂
n1
++∂

n2
+−Φl (4.130)

The first equation implies that for Cn1n2l to be nonvanishing, we need

n1 − n2 = 0 mod 2k (4.131)
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Exchanging the label n1 with n2, we see that the second equation implies

exp(n1πi)Cn2n1l exp(n1πi) = Cn1n2l (4.132)

Equation (4.132) shows that we only need to sum over n1 ≥ n2 subject to the
condition (4.131), since Cn1n2l is a function of Cn2n1l. For n1 = n2, equation (4.132)
shows that we need to sum over n1 = n2 = 2N only, since an odd value of n1 would
lead to a vanishing Cn1n2l. Therefore, the constrained sum on t3n1+3n2 becomes

F abelian
Dick,j2=0 ≡ 3

∑
t3n1+3n2 =

3t6k

(1− t6)(1− t6k)
+

3

1− t12
(4.133)

where the prefactor comes from the fact that l can take three values.
Now we discuss the case for j2 = ±1/2 fields. The most general operator for such

fields Φµl is

Ψ′ =
∑

Cn1n2µl∂
n1
++∂

n2
+−Φµl (4.134)

where µ = ±1 is the SU(2) doublet index since the fields, having j2 = ±1/2, now form
a doublet. The difference between this case and the previous j2 = 0 case is that now,
the geometric action of r and s will be affected by the µ index. The r and s constraints
on Ψ′ are∑

exp((n1 − n2 + µ)πi/k)Cn1n2µl∂
n1
++∂

n2
+−Φµl =

∑
Cn1n2µl∂

n1
++∂

n2
+−Φµl (4.135)∑

exp(n2πi)(−1)(µ−1)/2Cn1n2µl∂
n2
++∂

n1
+−Φ−µl =

∑
Cn1n2µl∂

n1
++∂

n2
+−Φµl (4.136)

They imply

n1 − n2 + µ = 0 mod 2k (4.137)

exp(n1πi)(−1)−(µ+1)/2Cn2n1,−µ,l = Cn1n2µl (4.138)

Equation (4.138) suggests that we need to sum over all n1, n2 pairs such that equa-
tion (4.137) holds for µ = 1, since the coefficient for µ = −1 is related to that for µ = 1
via equation (4.138). Therefore, the constrained sum on t3n1+3n2 becomes

F abelian
Dick,j2=±1/2 ≡ 3

∑
t3n1+3n2 =

3t3 + 3t6k−3

(1− t6)(1− t6k)
(4.139)

At this point, we have computed the contribution of ∂+± to the index. We also
need to add the contribution to the index by the base fields (i.e. those acted on by the
derivative operators). Looking up Table 4.1, we can read off the t2(D+j1) value for each
field, and the total single letter index is

ÎabelianDick
= F abelian

Dick,j2=0(3t
2 − 3t4 + 2t6)− F abelian

Dick,j2=±1/2t
3 (4.140)
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and its small β expansion up to first order is

ÎabelianDick
= 3− β

3k
+O(β2) (4.141)

Next, we work out the single letter index for the nonabelian holonomies g′n, n =
1, 3, 5, ..., k − 1, as discussed in section 4.4. In this case, the holonomies will act non-
trivially on the fields. Recall from section 4.4 that

g′n(r) =

(
exp(nπi/k) 0

0 exp(−nπi/k)

)
n = 1, 3, 5, ..., k − 1

g′n(s) =

(
0 1
−1 0

)
n = 1, 3, 5, ..., k − 1

The adjoint action of the nth holonomy on the fields is

g′n(r)(Φ0,Φ1,Φ−1)g
′−1
n (r) = (Φ0, e

2nπi/kΦ1, e
−2nπi/kΦ−1) (4.142)

g′n(s)(Φ0,Φ1,Φ−1)g
′−1
n (s) = −(Φ0,Φ−1,Φ1) (4.143)

In particular, g′n(s) exchanges the 1 and the −1 components of the field.
As we did before, we first discuss the contribution to the index by fields having

j2 = 0. The most general single letter operator one can form is as before

Ψ =
∑
n1n2l

Cn1n2l∂
n1
++∂

n2
+−Φl (4.144)

Using equations (4.142) and (4.143) in equation (4.14), we find the constraints∑
n1n2l

exp((n1 − n2)πi/k)Cn1n2l∂
n1
++∂

n2
+−Φl =

∑
n1n2l

exp(2πnli/k)Cn1n2l∂
n1
++∂

n2
+−Φl (4.145)∑

n1n2l

exp(n2πi)Cn1n2l∂
n2
++∂

n1
+−Φl = −

∑
n1n2l

Cn1n2l∂
n1
++∂

n2
+−Φ−l (4.146)

They imply

n1 − n2 − 2nl = 0 mod 2k (4.147)

−en1πiCn2n1,−l = Cn1n2l (4.148)

For the case l = 0, equation (4.148) tells us to sum over all n1 > n2 pairs satisfying
equation (4.147), and for n1 = n2 we need to sum over odd n1. The constrained t

3n1t3n2

sum is thus ∑
t3n1t3n2 =

t6k

(1− t6)(1− t6k)
+

t6

1− t12
(4.149)
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For the case l = 1, we need to sum over all (n1, n2) pairs that satisfy equation (4.147),
and according to equation (4.148) this will take care of the l = −1 case automatically.
The constrained t3n1t3n2 sum in this case is∑

t3n1t3n2 =
t6n + t6k−6n

(1− t6)(1− t6k)
(4.150)

Overall, the constrained sum is

F n
Dick,j2=0 =

t6k + t6n + t6k−6n

(1− t6)(1− t6k)
+

t6

1− t12
(4.151)

Now consider the fields that have j2 = ±1/2. The most general operator built out
of such fields is

Ψ′ =
∑

Cn1n2µl∂
n1
++∂

n2
+−Φµl (4.152)

where now we have a doublet index µ = ±1. The constraints are∑
exp((n1 − n2 + µ)πi/k)Cn1n2µl∂

n1
++∂

n2
+−Φµl =

∑
Cn1n2µl exp(2πnli/k)∂

n1
++∂

n2
+−Φµl

(4.153)∑
exp(n2πi)(−1)(µ−1)/2Cn1n2µl∂

n2
++∂

n1
+−Φ−µl = −

∑
Cn1n2µl∂

n1
++∂

n2
+−Φµ,−l (4.154)

They imply

n1 − n2 + µ− 2nl = 0 mod 2k (4.155)

−en1πi(−1)−(µ+1)/2Cn2n1,−µ,−l = Cn1n2µl (4.156)

Equation (4.156) suggests that we only need to sum over all (n1, n2) pairs satisfying
equation (4.155) for each of the three independent cases: (µ = −1, l = 0), (µ = −1, l =
1), (µ = −1, l = −1). Adding up the contributions to t3n1+3n2 from all three cases, one
obtains

F n
Dick,j2=±1/2 =

t3 + t6k−3 + t6n+3 + t6k−6n−3 + t6n−3 + t6k−6n+3

(1− t6)(1− t6k)
(4.157)

Therefore, the total single letter index for the nth ground state Wilson line is

ÎnDick
= F n

Dick,j2=0(3t
2 − 3t4 + 2t6)− F n

Dick,j2=±1/2t
3 (4.158)

Expanding in β up to first order, we get

ÎnDick
= − β

3k
+O(β2) (4.159)
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4.11 Ground State t’ Hooft Lines on S3/Zk

As mentioned in section 4.7, for k odd the t’ Hooft line solutions are the same as the
Wilson line solutions. For k even, the t’ Hooft line solutions are

g̃n(r) =

(
eπin/k 0
0 e−πin/k

)
, n = 0, 1, ..., k/2 (4.160)

Using the method from the previous appendices, we compute the T functions that
go into the computation of single letter indices as in equation (4.92). It turns out that
the n = 0 case is different from the rest, so we list the T functions separately for both
cases.

T 0
Zk,j2=0 = 3

1 + t3k

(1− t6)(1− t3k)
(4.161)

T n
Zk,j2=0 =

1 + t3k + 2(t3n + t3k−3n)

(1− t6)(1− t3k)
, n ̸= 0 (4.162)

T 0
Zk,j2=±1/2 = 6

t3 + t3k−3

(1− t6)(1− t3k)
(4.163)

T n
Zk,j2=±1/2 = 2

t3 + t3k−3 + t3n−3 + t3k+3−3n + t3n+3 + t3k−3−3n

(1− t6)(1− t3k)
, n ̸= 0 (4.164)

4.12 Ground State t’ Hooft Lines on S3/Dick

In this section, we first show that the number of SU(2)/Z2 t’ Hooft line ground states is
the same as that of the SU(2) Wilson line ground states on S3/Dick, and then tabulate

the T functions used in the computation of single letter index. Let g̃(r) and (̃g)(s)
denote a t’ Hooft line representation for the generators r and s. As mentioned in
section 4.7 they must satisfy

g̃(r)2k = ±1, g̃(r)k = ±g̃(s)2, g̃−1(s)g̃(r)g̃(s) = ±g̃−1(r) (4.165)

We choose to diagonalize g̃(r). It is easy to see that

g̃n(r) =

(
eπin/2k 0

0 e−πin/2k

)
, n = 0, ..., k (4.166)

satisfies the first equation in (4.165). We do not need n > k, since, in the same spirit
as the Zk case, these solutions are identified with the n ≤ k ones under multiplication
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by −1 and the Weyl group exchanging the diagonal elements in the matrix. Let us
parameterize g̃(s) by g̃(s) = exp(iθn̂ · σ⃗) where σ⃗ is a vector of the three Pauli matrices.
The second and the third equation in (4.165) implies

cos(πn/2)1+ i sin(πn/2)σ3 = ±(cos(2θ)1+ i sin(2θ)n̂ · σ⃗) (4.167)

cos(πn/2k)1+ i sin(πn/2k)g̃(s)−1σ3g̃(s) = ± cos(πn/2k)1− i sin(πn/2k)σ3 (4.168)

There are three cases to consider.

• Case n = 0. In this case there are two solutions to g̃(s):

g̃(s) =

(
1 0
0 1

)
,

(
i 0
0 −i

)
(4.169)

It might seem that there can be another solution for g̃(s), namely

g̃(s) =

(
0 1
−1 0

)
(4.170)

But this g̃(r), g̃(s) pair can be obtained from the previous one by an SU(2) con-
jugation.

• Case n = k. Recall that k is assumed even, so in this case there are three solutions
to g̃(s):

g̃(s) =

(
1 0
0 1

)
,

(
i 0
0 −i

)(
0 1
−1 0

)
(4.171)

Although the last of the above solutions by itself can be obtained from conjugating
the previous solution, the conjugation would change g̃(r) in this case, making the
last solution unique.

• Case 0 < n < k. In this case it is easy to see that there is no solution for odd n.
The only solutions are

g̃n(r) =

(
eπin/2k 0

0 e−πin/2k

)
, n = 2, 4, ..., k − 2 (4.172)

g̃s(r) =

(
0 1
−1 0

)
, n = 2, 4, ..., k − 2 (4.173)

In total, there are 4 + k/2 solutions, in agreement with the number of Wilson line
ground states. Note that the five solutions from the first two cases are universal. They
are valid for all k.
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Next, we tabulate the T functions used in equation (4.103), first for the five universal
solutions and then for the k/2−1 solutions dependent on k. We denote the T functions
as T j, j = 1, ..., 5 for the five universal solutions and as T ′n, n = 2, 4, ..., k − 2 for the
k/2− 1 solutions.

T 1
Dick,j2=0 =

3t6k

(1− t6)(1− t6k)
+

3

1− t12
(4.174)

T 1
Dick,j2=±1/2 =

3t3 + 3t6k−3

(1− t6)(1− t6k)
(4.175)

T 2
Dick,j2=0 =

3t6k

(1− t6)(1− t6k)
+

1 + 2t6

1− t12
(4.176)

T 2
Dick,j2=±1/2 =

3t3 + 3t6k−3

(1− t6)(1− t6k)
(4.177)

T 3
Dick,j2=0 =

t6k + 2t3k

(1− t6)(1− t6k)
+

1

1− t12
(4.178)

T 3
Dick,j2=±1/2 =

t3 + t6k−3 + 2(t3k−3 + t3k+3)

(1− t6)(1− t6k)
(4.179)

T 4
Dick,j2=0 =

t6k + 2t3k

(1− t6)(1− t6k)
+

1

1− t12
(4.180)

T 4
Dick,j2=±1/2 =

t3 + t6k−3 + 2(t3k−3 + t3k+3)

(1− t6)(1− t6k)
(4.181)

T 5
Dick,j2=0 =

t6k + 2t3k

(1− t6)(1− t6k)
+

t6

1− t12
(4.182)

T 5
Dick,j2=±1/2 =

t3 + t6k−3 + 2(t3k−3 + t3k+3)

(1− t6)(1− t6k)
(4.183)

T ′n
Dick,j2=0 =

t6k + t3n + t6k−3n

(1− t6)(1− t6k)
+

t6

1− t12
, n = 2, 4, ..., k − 2 (4.184)

T ′n
Dick,j2=±1/2 =

t3 + t6k−3 + t3n−3 + t6k+3−3n + t3n+3 + t6k−3−3n

(1− t6)(1− t6k)
, n = 2, 4, ..., k − 2

(4.185)

4.13 Ground State t’ Hooft lines on S3/E6

In this section, we show that the number of ground state t’ Hooft lines on S3/E6 equals
that of the ground state SU(2) Wilson lines on S3/E6.
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As discussed in section 4.5, the binary tetrahedral group E6 has two generators
satisfying the relations

(st)2 = (ts)2 = s3 = t3

Without loss of generality we can make t diagonal:

t = exp(iθσ3)

Let s be
s = exp(iϕn̂ · σ⃗)

The condition s3 = t3 leads to

cos 3ϕI + i sin 3ϕn̂ · σ⃗ = cos 3θI + i sin 3θσ3

But now, for t’ Hooft lines, s3 = ±t3 gives

cos 3ϕI + i sin 3ϕn̂ · σ⃗ = ±(cos 3θI + i sin 3θσ3)

We first discuss when sin 3θ = 0, or t3 = ±I.

Case t3 = ±I
In this case 3θ = nπ and 3ϕ = n′π, n, n ∈ Z. Or

θ =
nπ

3

ϕ =
n′π

3

As before, the sts = ±t2 equation is equivalent to four conditions.

cos θ cos 2ϕ− n3 sin 2ϕ sin θ = ± cos 2θ

n1(sin 2ϕ cos θ − 2n3 sin
2 ϕ sin θ) = 0

n2(sin 2ϕ cos θ − 2n3 sin
2 ϕ sin θ) = 0

sin 2ϕ cos θn3 + cos2 ϕ sin θ + sin2 ϕ sin θ(n2
1 + n2

2 − n2
3) = ± sin 2θ

We can enumerate the values of θ and ϕ to see if it leads to any solutions for n̂. Note
that ϕ is no longer constrained to take on only three values based on the value of θ.
Now, ϕ can take on any of the six values.

• θ = 0, ϕ = 0. One solution t = s = I.
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• θ = 0, ϕ = π. One solution t = I, s = −I.

• θ = 0, ϕ = ±π/3. No solution.

• θ = 0, ϕ = ±2π/3. No solution.

• θ = π, ϕ = 0. One solution t = −I, s = I.

• θ = π, ϕ = π. One solution t = s = −I.

• θ = π, ϕ = ±π/3. No solution.

• θ = π, ϕ = ±2π/3. No solution.

• θ = π/3, ϕ = 0. No solution.

• θ = π/3, ϕ = π. No solution.

• θ = π/3, ϕ = ±π/3. One solution with t = exp iσ3π/3, s = exp in̂·σ⃗π/3, n3 = 1/3,
n2
1 + n2

2 = 8/9. Another solution with t = exp iσ3π/3, s = exp(−iσ3π/3).

• θ = π/3, ϕ = ±2π/3. One solution with t = exp iσ3π/3, s = exp in̂ · σ⃗2π/3, n3 =
−1/3, n2

1 + n2
2 = 8/9. Another solution with t = exp iσ3π/3, s = exp(iσ32π/3).

• θ = −π/3, ϕ = 0. No solution.

• θ = −π/3, ϕ = π. No solution.

• θ = −π/3, ϕ = ±π/3. One solution with t = exp−iσ3π/3, s = exp in̂ · σ⃗π/3, n3 =
−1/3, n2

1 + n2
2 = 8/9. Another solution with t = exp−iσ3π/3, s = exp(iσ3π/3).

• θ = −π/3, ϕ = ±2π/3. One solution with t = exp−iσ3π/3, s = exp in̂ ·
σ⃗2π/3, n3 = 1/3, n2

1 + n2
2 = 8/9. Another solution with t = exp−iσ3π/3,

s = exp(−iσ32π/3).

• θ = 2π/3, ϕ = 0. No solution.

• θ = 2π/3, ϕ = π. No solution.

• θ = 2π/3, ϕ = ±π/3. One solution with t = exp iσ32π/3, s = exp in̂ · σ⃗π/3,
n3 = −1/3, n2

1+n
2
2 = 8/9. Another solution with t = exp iσ32π/3, s = exp iσ3π/3.

• θ = 2π/3, ϕ = ±2π/3. One solution with t = exp iσ32π/3, s = exp in̂·σ⃗2π/3, n3 =
1/3, n2

1 + n2
2 = 8/9. Another solution with t = exp iσ32π/3, s = exp−iσ32π/3

• θ = −2π/3, ϕ = 0. No solution.
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• θ = −2π/3, ϕ = π. No solution.

• θ = −2π/3, ϕ = ±π/3. One solution with t = exp−iσ32π/3, s = exp in̂ · σ⃗π/3,
n3 = 1/3, n2

1 + n2
2 = 8/9. Another solution with t = exp−iσ32π/3, s =

exp−iσ3π/3.

• θ = −2π/3, ϕ = ±2π/3. One solution with t = exp−iσ32π/3, s = exp in̂ · σ⃗2π/3,
n3 = −1/3, n2

1 + n2
2 = 8/9. Another solution with t = exp−iσ32π/3, s =

exp iσ32π/3.

In summary, for the case t4 = ±I, we have found 3 inequivalent solutions. They are
(listing only one member of each equivalent class)

t = s = I

t = exp iσ3π/3, s = exp in̂ · σ⃗π/3, n3 = 1/3, n2
1 + n2

2 = 8/9.

t = exp iσ32π/3, s = exp−iσ32π/3

Case t3 ̸= ±I
In this case, consider the first constraint s3 = ±t3 again

cos 3ϕI + i sin 3ϕn̂ · σ⃗ = ±(cos 3θI + i sin 3θσ3)

We must have n̂ = (0, 0, 1), so that s commutes with t. There are two cases.

• “+” sign. Then 3ϕ = 3θ + 2πk, k ∈ Z. Imposing s2 = ±t, we have

cos 2ϕ+ i sin 2ϕσ3 = ±(cos θ + i sin θσ3)

Taking the “+” sign of this equation gives 2ϕ = θ+ 2πk′, k′ ∈ Z. Combined with
the previous equation this gives us ϕ = 2/3πk, k ∈ Z, which leads to the following
solutions

θ = ϕ = 0→ t = s = I

θ = 4π/3, ϕ = 2π/3→ t = exp(σ3i4π/3), s = exp(σ3i2π/3)

θ = 2π/3, ϕ = 4π/3→ t = exp(σ3i2π/3), s = exp(σ3i4π/3)

but the last two solutions are conjugate.

Taking the “-” sign gives 2ϕ = θ + π + 2k′π, which leads to solutions

θ = π, ϕ = kπ → t = −I, s = ±I
θ = 5π/3, ϕ = 4π/3 + kπ → t = exp(σ3i5π/3), s = ± exp(σ3i4π/3)

θ = 1π/3, ϕ = 5π/3 + kπ → t = exp(σ3iπ/3), s = ± exp(σ3i5π/3)

where the last two solutions are conjugate.
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• “−” sign. Then 3ϕ = 3θ + π + 2πk. Imposing s2 = ±t, we have

cos 2ϕ+ i sin 2ϕσ3 = ±(cos θ + i sin θσ3)

Taking the “+” sign of this equation gives 2ϕ = θ+ 2πk′, k′ ∈ Z. Combined with
the previous equation this gives us ϕ = π/3 + 2/3πk, k ∈ Z, which leads to the
following solutions

θ = 2π/3, ϕ = π/3→ t = exp(σ3i2π/3), s = exp(σ3iπ/3)

θ = 0, ϕ = π → t = I, s = −I)
θ = 4π/3, ϕ = 5π/3→ t = exp(σ3i4π/3), s = exp(σ3i5π/3)

where the first and the third solutions are conjugate.

Taking the “−” sign gives 2ϕ = θ + π + k′π, k′ ∈ Z, which leads to

θ = 5π/3, ϕ = 4π/3 + kπ → t = exp(σ3i5π/3), s = ± exp(σ3i4π/3)

θ = π, ϕ = kπ → t = −I, s = ±I)
θ = π/3, ϕ = 5π/3 + kπ → t = exp(σ3iπ/3), s = ± exp(σ3i5π/3)

where the first and the last solutions are conjugate.

Compared with the previous analysis, we see that none of the solutions here are new.
Summary: For the E6 → SU(2)/Z2 case, we see that there are in fact two solutions:

t = s = I

t = exp iσ3π/3, s = exp in̂ · σ⃗π/3, n3 = 1/3, n2
1 + n2

2 = 8/9.

t = exp iσ32π/3, s = exp−iσ32π/3

so the number of ground state t’ Hooft lines is 3, agreeing with the number of Wilson
lines as computed in section 4.5.

4.14 Ground State t’ Hooft Lines on S3/E7

In this section, we show that the number of ground state t’ Hooft lines on S3/E7 is the
same as that of the SU(2) ground state Wilson lines on S3/E7. The generating function
for computing the number of ground state SU(q) Wilson lines on S3/E7 is computed
in (3.71), from which we see that there are 4 Wilson line ground states.

The generator relations for the octahedral group are

(st)2 = s3 = t4
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We again parametrize s and t as in the E6 case. But now for the t’ Hooft lines
s3 = ±t4 gives

cos 3ϕI + i sin 3ϕn̂ · σ⃗ = ±(cos 4θI + i sin 4θσ3)

As before, we first discuss when sin 4θ = 0, or t3 = ±I.

Case t4 = ±I
In this case 4θ = nπ and 3ϕ = n′π, n, n′ ∈ Z. Or

θ =
nπ

4

ϕ =
n′π

3

Imposing sts = ±t3 we have LHS= ±RHS:

LHS = (cos2 ϕ cos θ − sin2 ϕ cos θ) + 2i sinϕ cosϕ cos θn̂ · σ⃗ − sinϕ cosϕ sin θ{n̂ · σ⃗, σ3}
+ i cos2 ϕ sin θσ3 − i sin2 ϕ sin θn̂ · σ⃗σ3n̂ · σ⃗

RHS = cos(3θ) + i sin(3θ)σ3

LHS = ±RHS

As before the LHS can be cleaned up:

LHS = (cos θ cos 2ϕ− n3 sin 2ϕ sin θ)

+ in1(sin 2ϕ cos θ − 2n3 sin
2 ϕ sin θ)σ1

+ in2(sin 2ϕ cos θ − 2n3 sin
2 ϕ sin θ)σ2

+ i(sin 2ϕ cos θn3 + cos2 ϕ sin θ + sin2 ϕ sin θ(n2
1 + n2

2 − n3
3))σ3

Setting LHS equal to RHS we obtain four equations

cos θ cos 2ϕ− n3 sin 2ϕ sin θ = ± cos 3θ

n1(sin 2ϕ cos θ − 2n3 sin
2 ϕ sin θ) = 0

n2(sin 2ϕ cos θ − 2n3 sin
2 ϕ sin θ) = 0

sin 2ϕ cos θn3 + cos2 ϕ sin θ + sin2 ϕ sin θ(n2
1 + n2

2 − n3
3) = ± sin 3θ

We can enumerate the values of θ and ϕ to see if it leads to any solutions for n̂. Note
that, if we choose one θ, then by our previous relations there are only 3 options for ϕ:
ϕ = 4θ/3 + 2mπ/3.
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• θ = 0, ϕ = 0. one solution t = s = I.

• θ = 0, ϕ = π. one solution t = I, s = −I.

• θ = 0, ϕ = ±π/3. No solution.

• θ = 0, ϕ = ±2π/3. No solution.

• θ = π/4, ϕ = 0. No solution.

• θ = π/4, ϕ = π. No solution.

• θ = π/4, ϕ = ±π/3. One solution t = exp iσ3π/4, s = exp in̂ · σ⃗π/3, n3 = 1/
√
3,

n2
1 + n2

2 = 2/3.

• θ = π/4, ϕ = ±2π/3. One solution t = exp iσ3π/4, s = exp in̂ · σ⃗2π/3, n3 =
−1/
√
3, n2

1 + n2
2 = 2/3.

• θ = π/2, ϕ = 0. One solution t = exp iσ3π/2, s = I.

• θ = π/2, ϕ = π. One solution t = exp iσ3π/2, s = −I.

• θ = π/2, ϕ = ±π/3. One solution t = exp iσ3π/2, s = exp(±in̂ · σ⃗π/3), n̂ =
(n1, n2, 0).

• θ = π/2, ϕ = ±2π/3. One solution t = exp iσ3π/2, s = exp(±in̂ · σ⃗2π/3),
n̂ = (n1, n2, 0).

• θ = 3π/4, ϕ = 0. No solution.

• θ = 3π/4, ϕ = π. No solution.

• θ = 3π/4, ϕ = ±π/3. One solution t = exp iσ33π/4, s = exp in̂ · σ⃗π/3, n3 =
−1/
√
3, n2

1 + n2
2 = 2/3.

• θ = 3π/4, ϕ = ±2π/3. One solution t = exp iσ33π/4, s = exp in̂ · σ⃗2π/3, n3 =
1/
√
3, n2

1 + n2
2 = 2/3.

• θ = π, ϕ = 0. One solution t = −I, s = I.

• θ = π, ϕ = π. One solution t = −I, s = −I.

• θ = π, ϕ = ±π/3. No solution.

• θ = π, ϕ = ±2π/3. No solution.

• θ = −3π/4, ϕ = 0. No solution.



CHAPTER 4. ONE LOOP CORRECTION AND S-DUALITY 111

• θ = −3π/4, ϕ = π. No solution.

• θ = −3π/4, ϕ = ±π/3. One solution t = exp−iσ33π/4, s = exp in̂ · σ⃗π/3,
n3 = 1/

√
3, n2

1 + n2
2 = 2/3.

• θ = −3π/4, ϕ = ±π/3. One solution t = exp−iσ33π/4, s = exp in̂ · σ⃗π/3,
n3 = −1/

√
3, n2

1 + n2
2 = 2/3.

• θ = −π/2, ϕ = 0. One solution t = exp−iσ3π/2, s = I.

• θ = −π/2, ϕ = π. One solution t = exp−iσ3π/2, s = −I.

• θ = −π/2, ϕ = ±π/3. One solution t = exp−iσ3π/2, s = exp(±in̂ · σ⃗π/3),
n̂ = (n1, n2, 0).

• θ = −π/2, ϕ = ±2π/3. One solution t = exp−iσ3π/2, s = exp(±in̂ · σ⃗2π/3),
n̂ = (n1, n2, 0).

• θ = −π/4, ϕ = 0. No solution.

• θ = −π/4, ϕ = π. No solution.

• θ = −π/4, ϕ = ±π/3. One solution t = exp−iσ3π/4, s = exp in̂ · σ⃗π/3, n3 =
−1/
√
3, n2

1 + n2
2 = 2/3.

• θ = −π/4, ϕ = ±2π/3. One solution t = exp−iσ3π/4, s = exp in̂ · σ⃗π/3, n3 =
1/
√
3, n2

1 + n2
2 = 2/3.

In summary, for the case t4 = ±I, we have found 4 inequivalent solutions. They are
(writing only one of the solutions in each equivalence class)

t = s = I

t = exp iσ3π/4, s = exp in̂ · σ⃗π/4, n3 = 1/
√
3, n2

1 + n2
2 = 2/3.

t = exp iσ3π/2, s = I

t = exp iσ3π/2, s = exp in̂ · σ⃗π/3, n̂ = (n1, n2, 0).

Case t4 ̸= ±I
In this case the solution to

cos 3ϕ+ i sin 3ϕn̂ · σ⃗ = ±(cos 4θ + i sin 4θσ3)

must have n̂ = (0, 0, 1). The “+” sign implies 3ϕ = 4θ + 2πk, and the “−” sign
3ϕ = 4θ + π + 2πk.
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Since s now commutes with t, the condition sts = ±t3 is the same as s2 = ±t2, or

cos 2ϕ+ i sin 2ϕn̂ · σ⃗ = ±(cos 2θ + i sin 2θσ3)

The “+” sign implies ϕ = θ + k′π, and the “−” sign ϕ = θ + π/2 + k′π. In total there
are 4 cases to consider.

• “++”. This leads to

θ = 3πk′ − 2πk

ϕ = 4πk′ − 2πk

or θ = π, ϕ = 0, θ = 0, π = 0, corresponding to the single solution t = s = I.

• “+−”. This leads to

θ = 3π/2 + 3πk′ − 2πk

ϕ = 2π + 4πk′ − 2πk

or θ = ±π/2, ϕ = 0, corresponding to the single solution t = exp(iπ/2σ3), s = I.

• “−+”. This leads to

θ = 3πk′ − π − 2πk

ϕ = 4πk′ − π − 2πk

or θ = 0, ϕ = π, θ = ϕ = π, corresponding to the single solution t = s = I.

• “−−”. This leads to

θ = 3πk′ + π/2− 2πk

ϕ = 4πk′ + π − 2πk

or θ = ±π/2, ϕ = π, θ = ϕ = π, corresponding to the single solution t =
exp(iπ/2σ3), s = I.

We see that no new solution is generated. Therefore, the number of ground state t’
Hooft lines is 4, agreeing with that of the ground state Wilson lines.
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4.15 Ground State t’ Hooft Lines on S3/E8

In this section, we show that the number of ground state t’ Hooft Lines on S3/E8 is the
same as that of the ground state SU(2) Wilson lines on S3/E8 (which is 3 according to
the generating function (3.74)).

The binary icosahedral group E8 has two generators satisfying the relations

(st)2 = (ts)2 = s3 = t5

We again parametrize s and t as in the E6 case. But now for the t’ Hooft lines
s3 = ±t5 gives

cos 3ϕI + i sin 3ϕn̂ · σ⃗ = ±(cos 5θI + i sin 5θσ3)

As before, we first discuss when sin 5θ = 0, or t5 = ±I.

Case t3 = ±I
In this case 5θ = nπ and 3ϕ = n′π, n, n ∈ Z. Or

θ =
nπ

5

ϕ =
n′π

3

Let us now impose the final constraint

sts = ±t4 → exp(iϕn̂ · σ⃗) exp(iθσ3) exp(iϕn̂ · σ⃗) = ± exp(4iθσ3)

As before this implies four equations.

cos θ cos 2ϕ− n3 sin 2ϕ sin θ = ± cos 4θ

n1(sin 2ϕ cos θ − 2n3 sin
2 ϕ sin θ) = 0

n2(sin 2ϕ cos θ − 2n3 sin
2 ϕ sin θ) = 0

sin 2ϕ cos θn3 + cos2 ϕ sin θ + sin2 ϕ sin θ(n2
1 + n2

2 − n3
3) = ± sin 4θ

and we can now enumerate the solutions:

• θ = 0, ϕ = 0. One solution with t = s = I.

• θ = 0, ϕ = π. One solution with t = I, s = −I.

• θ = 0, ϕ = π/3. No solution.

• θ = 0, ϕ = 2π/3. No solution.
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• θ = π/5, ϕ = 0. No solution.

• θ = π/5, ϕ = π. No solution.

• θ = π/5, ϕ = π/3. One solution with t = exp(iσ3π/5), s = exp(in̂ · σ⃗π/3),
n3 = p1/(

√
3q1).

• θ = π/5, ϕ = 2π/3. One solution with t = exp(iσ3π/5), s = exp(in̂ · σ⃗2π/3),
n3 = −p1/(

√
3q1).

• θ = 2π/5, ϕ = 0. No solution.

• θ = 2π/5, ϕ = π. No solution.

• θ = 2π/5, ϕ = π/3. One solution with t = exp(iσ32π/5), s = exp(in̂ · σ⃗π/3),
n3 = p2/(

√
3q2).

• θ = 2π/5, ϕ = 2π/3. One solution with t = exp(iσ32π/5), s = exp(in̂ · σ⃗2π/3),
n3 = −p2/(

√
3q2).

• θ = 3π/5, ϕ = 0. No solution.

• θ = 3π/5, ϕ = π. No solution.

• θ = 3π/5, ϕ = π/3. One solution with t = exp(iσ33π/5), s = exp(in̂ · σ⃗π/3),
n3 = −p2/(

√
3q2).

• θ = 3π/5, ϕ = 2π/3. One solution with t = exp(iσ33π/5), s = exp(in̂ · σ⃗2π/3),
n3 = p2/(

√
3q2).

• θ = 4π/5, ϕ = 0. No solution.

• θ = 4π/5, ϕ = π. No solution.

• θ = 4π/5, ϕ = π/3. One solution with t = exp(iσ34π/5), s = exp(in̂ · σ⃗π/3),
n3 = −p1/(

√
3q1).

• θ = 4π/5, ϕ = 2π/3. One solution with t = exp(iσ34π/5), s = exp(in̂ · σ⃗2π/3),
n3 = p1/(

√
3q1).

• θ = π, ϕ = 0. One solution with t = −I, s = I.

• θ = π, ϕ = π. One solution with t = s = −I.

• θ = π, ϕ = π/3. No solution.
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• θ = π, ϕ = 2π/3. No solution.

In summary, we have 3 solutions (we pick a representative from each conjugacy
class):

t = s = I

t = exp(iσ3π/5), s = exp(in̂ · σ⃗π/3), n3 = p1/(
√
3q1).

t = exp(iσ33π/5), s = exp(in̂ · σ⃗π/3), n3 = −p2/(
√
3q2)

Case t3 ̸= ±I
In this case, consider the first constraint s3 = ±t5 again

cos 3ϕI + i sin 3ϕn̂ · σ⃗ = ±(cos 5θI + i sin 5θσ3)

The “+” sign implies 3ϕ = 5θ+2πn, and the “−” sign 3ϕ = 5θ+π+2πn. The next
constraint s2 = ±t3 similarly has two cases. The “+” sign corresponds to 2ϕ = 3θ+2πk,
and the “−” sign 2ϕ = 3θ + π + 2πk. There are in total four cases to consider:

• “++”. This case was solved before, leading to the trivial result t = s = I.

• “+−”. In this case we can solve the two equations to obtain

θ = 3π + 6πk − 4πn

ϕ = 5π + 10πk − 6πn

or θ = ϕ = π, which corresponds to s = t = −I.

• “−+”. In this case we can solve the two equations to obtain

θ = 6πk − 2π − 4πn

ϕ = 10πk − 3π − 6πn

or θ = 0, ϕ = π, which corresponds to t = I, s = −I.

• “−−”. In this case we can solve the two equations to obtain

θ = 3π + 6πk − 2π − 4πn

ϕ = 5π + 10πk − 3π − 6πn

or θ = ϕ = π, which corresponds to t = s = −I.

All of these cases correspond to the same solution t = s = ±I, so in total the number
of ground state t’ Hooft lines is 3, agreeing with the number of ground state Wilson
lines.
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Part II

Singular M5 Branes on Higher
Genus Riemann Surfaces
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Chapter 5

Class S Theory on ADE Singularity

5.1 Introduction

In this chapter, we explore a natural generalization of the brane construction proposed
in section 2.4. Instead of on T 2, we shall put the M5 branes on higher genus Riemann
surfaces. This is the class S construction proposed and explored in [10, 77]. The T 2

in the brane construction is where the dual Chern-Simons theory lives. Therefore, we
expect to see that the dual Chern-Simons theory lives on the same Riemann surface
the M5 branes are compactified on. Moreover, the gauge group and the level of the
dual Chern-Simons theory should not change as we change T 2 into some higher genus
Riemann surface. We expect to see a one-to-one match between the SYM ground states
and the Chern-Simons states on the higher genus Riemann surface. The latter are built
out of the fusion rule Nijk [37] defined on the pair-of-pants topology. The simplest
higher-genus Riemann surface built out of the pair-of-pants topology is the genus two
Riemann surface. Therefore, for the class S theory side we shall focus on the theory
which comes from compactifying two coincident M5 branes on a genus two Riemann
surface where the classical ground states are now Wilson line triplets corresponding to
the three handles on the genus two Riemann surface.

The outline of this chapter is as follows. In section 5.2 we review the duality argu-
ment proposed earlier and use an example of a genus two Riemann surface to understand
the constraints on the ground state Wilson line triplets coming from the dual Chern-
Simons theory. In section 5.2, we outline the computation of the superconformal index
(and hence supersymmetric Casimir energy) for the SU(2) trinion theory on S3/Dic2
and use the computation in section 5.3 to explicitly show that the duality works for the
Dic2 singularity. The way we show this explicitly is by computing the supersymmetric
Casimir energy of the classically flat Wilson line triplets and comparing the number of
true ground states to the number of dual Chern-Simons states. In section 5.4 we apply
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the duality to a non-Lagrangian class S theory to find its ground states. This chapter
is based on the work done with Emil Albrychiewicz, Andres Franco Valiente, and Ori
Ganor.

5.2 The Duality and the Statement of the Problem

In section 2.4, we used a brane construction to derive the duality between SYM ground
states on S3/Γ and states of some Chern-Simons theory. After lifting the D3 branes
which lie along the 0123 directions to M-theory, the corresponding M5 branes are com-
pactified along the 4# directions as in Table 2.1.

A natural question to ask is, if one replaces the 4# directions by any higher genus
Riemann surfaces while keeping the ADE singularity along the 0123 directions, what
are the ground states of the 4D theory? Since the compactification of q M5 branes on
Riemann surfaces is the class S construction [10], the question is equivalently phrased
as finding the ground states of class S theory on ADE singularities.

We illustrate the problem using the example of a genus 2 Riemann surface R. We
take q = 2 and let the gauge group to be SU(2) and the ADE singularity is Z2. This
means that we have two coincident M5 branes whose world volume is R4/Z2 × R.
We can think about the resulting 4D theory by first compactifying the 6D theory to
5D SYM along the handle direction and then reducing it further to 4D analogous to
the construction in [66]. Figure 5.1 illustrates this idea. The left figure is the genus-
2 Riemann surface R, and the right figure is obtained after reducing the Riemann
surface along the handle direction. This can be viewed as a quiver diagram of the
trifundamental theory.

Figure 5.1: 6D to 5D to 4D. In the right figure, the intersections of the lines represent
the 4D SYM theory. There are three SU(2) gauge fields labeled by a, b, c, respectively.
These gauge fields are expected to satisfy certain constraints to be discussed later.
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In figure 5.1, each internal line represents an SU(2) gauge field, labeled by a, b,
and c. The classical ground states of this theory can therefore be written as a tensor
product

ga ⊗ gb ⊗ gc (5.1)

where gi represents the SU(2) flat Wilson line of gauge field i. It is easy to see that
there are only two solutions: gi can be either diag(1, 1) or diag(−1,−1). Therefore,
naively the number of ground states is 23 = 8. However, the fact that the internal lines
end on the same points suggests that there should be some nontrivial constraints on
the gauge fields.

The constraint can be most easily derived from the duality, according to which the
flat connection gi is dual to a state i on the Chern-Simons theory. To determine whether
a specific ground state ga ⊗ gb ⊗ gc is allowed, one needs to check if the SU(2)2 fusion
coefficient Nabc is nonzero

1. This idea was alluded to earlier in section 4.6 of chapter 4.
For our case, the number of Chern-Simons states is given by∑

a,b,c

NabcN
abc, (5.2)

where the sum is only over the restricted states that lie in the set (3.2).
For us, the dual Chern-Simons theory has gauge group SU(2) and level 2, so i, j, k

can take the value of either 0 or 2. Note that a value of 1 corresponds to a weight
rather than a root. The nonzero Nijk are

N000 = 1

N022 = 1

N220 = 1

N202 = 1

Therefore, we can see that the counting from the Chern-Simons side tells us that
there are 4 ground states in total, different from the naive answer 23 = 8. It is natural
to identify the flat Wilson lines of the SU(2) class S theory on R with the two Chern-
Simons states as follows: (

1 0
0 1

)
⇐⇒ 0,

(
−1 0
0 −1

)
⇐⇒ 2 (5.3)

The corresponding four ground states on the SYM side can be represented as(
1 0
0 1

)
⊗
(
1 0
0 1

)
⊗
(
1 0
0 1

)
1For SU(2), the fusion coefficients can only be either 1 or 0 [46].
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(
1 0
0 1

)
⊗
(
−1 0
0 −1

)
⊗
(
−1 0
0 −1

)
(
−1 0
0 −1

)
⊗
(
1 0
0 1

)
⊗
(
−1 0
0 −1

)
(
−1 0
0 −1

)
⊗
(
−1 0
0 −1

)
⊗
(
1 0
0 1

)
In this section, we used the Chern-Simons ground states to conjecture the ground

states of the dual trinion theory. To establish this duality more closely for the pair-of-
pants topology, in the next section we will explicitly compute the ground state degeneray
for the trinion theory on S3/Dic2. Similar works with a focus on the A-singularity have
been done in the past. See [65, 66, 67]. The novelty here is that we will, for the first
time, compute the superconformal index for the SU(2) trinion theory on a nonabelian
singularity S3/Dic2.

Ground States of Class-S Theory on S3/Dic2

The group Dick was discussed earlier in section 3.6 and in section 4.4. We recall that
the group is generated by two elements (r, s) satisfying the following properties:

r2k = e, s2 = rk, s−1rs = r−1. (5.4)

In the rest of this section, we compute the single letter index for Dic2 for the trinion
theory. Therefore, we still take the gauge group to be SU(2), so the flat Wilson lines
are SU(2) representations of Dic2 up to identifications by SU(2) conjugation and by
the Weyl group. The inequivalent SU(2) representations of Dick for the case k = 2N
was worked out in section 3.6. For the specific case k = 2, the representations for the
two generators r and s are listed in the Table 5.1.

The Wilson line triplet abc is built out of the combination of the individual Wilson
lines listed in the table. Below, we outline the idea of the computation of the index
in a spirit similar to what we did in section 4.3, 4.4, and 4.5. The essential difference
is that there, we were dealing with a single Wilson line at a time, whereas here the
ground state has a triplet of Wilson lines. This will complicate the computation and is
the reason why we chose to focus on the simplest nonabelian singularity Dic2.

The contribution to the index can be broken down to two parts, one from the vector
multiplet and one from the hypermultiplet. We first focus on the index contribution
from one vector multiplet, which transforms under the corresponding Wilson line in
the triplet abc. For example, the second vector multiplet only responds to the second
Wilson line b in the Wilson line triplet abc, and to compute the total single letter
index from the vector multiplet we simply have to add up the individual contributions.
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j gj(r) gj(s)

1

(
1 0
0 1

) (
1 0
0 1

)
2

(
1 0
0 1

) (
−1 0
0 −1

)
3

(
−1 0
0 −1

) (
1 0
0 1

)
4

(
−1 0
0 −1

) (
−1 0
0 −1

)
5

(
eπi/2 0
0 e−πi/2

) (
0 1
−1 0

)

Table 5.1: Ground state Wilson lines on S3/Dic2.

Such individual single letter indices from the vector multiplet were already computed
in section 4.6. Here, we change the notation a little bit. We denote the single letter
index of the abelian Wilson line (labeled 1 through 4 in Table 5.1) as Ivec1 (recall each
abelian Wilson line leads to the same single letter index since the abelian Wilson lines
here, being either 1 or −1, act in the same way in the adjoint).

Having discussed the vector multiplet, we now turn to the hypermultiplet, which
transforms under all Wilson lines in the Wilson line triplet m = (abc), where a, b, c ∈
{1, 2, 3, 4, 5}. This is because of the covariant derivative on a hypermultiplet field Φ
takes the form

DΦ = (d+ A1 + A2 + A3)Φ

in the Lagrangian, where Aj is the jth gauge field.
All hypermultiplet BPS fields have j2 = 0, so a generic single letter operator con-

structed out of a BPS field Φijk (where i, j, k ∈ {−1, 1} denote the indices for the SU(2)
fundamental representation) is

Ψ ≡
∑

n1,n2,i,j,k

Cn1n2ijk∂
n1
++∂

n2
+−Φijk. (5.5)

It satisfies two constraints, one from the r generator and one from the s generator.
The Wilson lines will now act in the fundamental representation. For the Wilson line
triplet abc, the constraints are

rΨ = ga(r)gb(r)gc(r)Ψ, (5.6)

sΨ = ga(s)gb(s)gc(s)Ψ. (5.7)
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We need to define the right hand side. The Wilson lines act only on the base field
Φijk in Ψ and do not act on the derivatives ∂±+. The base field Φijk transforms under
the Wilson line triplet abc as

ga(r)gb(r)gc(r)Φijk =
∑
i′,j′,k′

(ga(r))ii′(gb(r))jj′(gc(r))kk′Φi′j′k′ (5.8)

and similarly for s.
This concludes the setup of the problem of computing the single letter index on

S3/Dic2. In the following section (section 5.3), we will compute the single letter index
and thus the Casimir energy for each classical ground state (or Wilson line triplet, as
we use the language interchangeably). The result is as follows.

The Wilson line triplets break into four groups, each having a particular super-
symmetric Casimir energy. First, there are 28 states (including the triplet 111) that
have the same supersymmetric Casimir energy as the trivial Wilson line triplet 111
(the triplet that contains only the trivial Wilson lines). Those are: 122, 133, 144, 234,
155, 255, 355, 455. In total there are 28 of them, since we need to include the permu-
tations. These states have the lowest positive supersymmetric Casimir energy, of the
value E0 = 35/108.

The Wilson line triplets of the form ab5, a, b ∈ {1, 2, 3, 4} and permutations have the
same supersymmetric Casimir energy E1 = 143/108. Note that E1 is one unit above
E0.

The Wilson line triplets of the form 112, 113, 114, 233, 244, 222, 134, 224, 334,
223, 344, 333, 444, 123, 124 and permutations have the same supersymmetric Casimir
energy E2 = 251/108 that is two units above E0.

Finally, the Wilson line triplet 555 has a negative supersymmetric Casimir energy,
E5 = −19/108, that is 1/2 units below E0. If we shift Casimir energy of all states by
a number representing the conformal anomaly (as discussed in section 4.6) so that the
ground state corresponding to the trivial Wilson line triplet 111 has zero conformal di-
mension, the state 555 will lead to a negative conformal dimension of −1/2. This seems
to violate the unitarity bound of this superconformal theory, so 555 is an impossible
state.

The significance of the this calculation is as follows. From the duality, we expect that
the ground states of the SU(2) trinion theory on S3/Dic2 are in one-to-one correspon-
dence with the SO(8) level-2 Chern-Simons theory states on the genus two Riemann
surface the M5 branes are compactified on. The number of such Chern-Simons states
is given by ∑

i,j,k∈Λr

NijkN
ijk = 28

where, by the duality, i, j, k correspond to the level-2 SO(8) Chern-Simons states that
also lie on the SO(8) root lattice (3.2). On the other hand, as our supersymmetric
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Casimir energy shows, there are precisely 28 ground states in the super Yang-Mills
theory, agreeing with the prediction of the duality. This calculation gives strong support
to the generalization of the duality to higher genus Riemann surfaces, and we conjecture
that this result generalizes to other D- and E-singularities and for all SU(N) gauge
groups. Namely, if we were to consider a potentially non-Lagrangian, non-conformal
trifundamental theory with gauge group SU(N) on S3/Γ, the ground state Wilson line
triplets are in one-to-one correspondence with the level-N G(Γ) Chern-Simons theory
fusion rule Nijk where the indices (i, j, k) are restricted to correspond to states on the
G(Γ) root lattice.

5.3 Details of S3/Dic2 Index Calculation

In this section, we give a detailed computation of the superconformal single letter
index on S3/Dic2. The idea behind the computation is discussed in section 5.2. A
quick summary is that, for a BPS operator to contribute to the single letter index, it
must satisfy two constraints given by the two generators r and s. The contribution of
an operator to the index is given by the Boltzamnn weight t2(E+j2). The goal of this
section is to solve for the constraints and sum over the Boltzmann weights to find the
index. In total, there are 125 Wilson line tripets, given by the following decomposition:

• 111: 1 triplet involving only the trivial Wilson line.

• 115: 3 triplets involving two trivial Wilson lines and one nonabelian Wilson line.
There are 3 of Wilson line triplets of this type due to permutation.

• 11a: 9 triplets involving two trivial Wilson lines and one nontrivial abelian Wilson
line. Here, a ∈ {2, 3, 4} represents any of the three nontrivial abelian Wilson lines
Wilson lines.

• 1ab: 18 triplets involving one trivial Wilson line and two distinct nontrivial abelian
Wilson lines.

• 1aa: 9 triplets involving one trivial Wilson line and two identical nontrivial abelian
Wilson lines.

• j55: 12 triplets involving one abelian Wilson line (j ∈ {1, 2, 3, 4}) and two iden-
tical nontrivial nonabelian Wilson lines.

• 1a5: 18 triplets involving one trivial Wilson line, one nontrivial abelian Wilson
line, and one nonabelian Wilson line.

• abc: 6 triplets involving three distinct nontrivial abelian Wilson lines.
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• aab: 18 triplets involving two nontrivial abelian Wilson lines that are identical
and one that is distinct from the two.

• aaa: 3 triplets involving three nontrivial abelian Wilson lines that are identical.

• ab5: 18 triplets involving two nontrivial abelian Wilson lines that are distinct and
one nonabelian Wilson line.

• aa5: 9 triplets involving two nontrivial abelian Wilson lines that are identical and
one nonabelian Wilson line.

• 555: 1 triplet involving three nonabelian Wilson lines.

Although the number of Wilson line triplets is huge, as we will see in the rest of
this section, many of these triplets lead to the same single letter index.

We denote a generic BPS field with j2 = 0 as Φ, and a generic BPS field with
j2 = ±1/2 as λ±. The geometric action of r and s on BPS descendants of fields with
j2 = 0 is discussed in section 4.10:

r∂n1
++∂

n2
+−Φ = ei(n1−n2)/2∂n1

++∂
n2
+−Φ

s∂n1
++∂

n2
+−Φ = eπin2∂n2

++∂
n1
+−Φ

For the latter case, the trick is to note that λ± themselves carry angular momentum
and transform into each other as an SU(2) doublet under s:

r∂n1
++∂

n2
+−λµ = ei(n1−n2+µ)/2∂n1

++∂
n2
+−λµ

s∂n1
++∂

n2
+−λµ = (−1)(µ−1)/2eπin2∂n2

++∂
n1
+−λ−µ

The action of the Wilson lines on the fields have already been discussed in section 5.2.
Therefore, we now have all the ingredients we need to compute the single letter indices.
Since the three vector multiplets do not couple to each other, we can compute the vector
multiplet contributions to the index for each Wilson line in the Wilson line triplet. As
a preliminary, we compute the vector multiplet contribution to Wilson line 1-5.

Ivec

First, we note that the vector multiplet contribution for Wilson line 1-4 is the same.

Ivec1 = Ivec2 = Ivec3 = Ivec4
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This is because these Wilson lines lead to the same adjoint actions. We first comm-
pute the contribution from BPS base fields Φ that have spin j2 = 0. As discussed in
section 5.2, we need a linear combination of the descendants to satisfy the constraints:∑

cn1n2∂n1
++∂

n2
+−Φ

The r and s constraints leads to the equations∑
eiπ/2(n1−n2)cn1n2∂n1

++∂
n2
+−Φ =

∑
cn1n2∂n1

++∂
n2
+−Φ∑

eiπn2cn1n2∂n2
++∂

n1
+−Φ =

∑
cn1n2∂n1

++∂
n2
+−Φ

The first equation suggests that, for cn1n2 to be nonvanishing, we need

n1 − n2 = 0 mod 4

and the second constraint shows that we only need to sum over n1 ≥ n2. However,
for n1 = n2, we need to sum over n1 = 0 mod 2 only, since the coefficient vanishes
otherwise. Therefore, the constrained sum (where the prefactor 3 below comes from
the 3 SU(2) adjoint degrees of freedom)

F = 3
∑

t3n1t3n2

becomes

F =
3t12

(1− t6)(1− t12)
+

3

1− t12
= 3

1− t6 + t12

(1− t6)(1− t12)
Therefore, the contribution of the spin 0 fields and EoM in the vector multiplet to

the single letter index for Wilson line 1-4 is

F (t2 − t4 + 2t6) (5.9)

Now let us deal with the spin ±1 fields λµ. Coupled to the spin, a generic operator
has the form ∑

cµn1n2∂n1
++∂

n2
+−λµ

Imposing the constraints we obtain∑
eπi/2(n1−n2+µ)cµn1n2∂n1

++∂
n2
+−λµ =

∑
cµn1n2∂n1

++∂
n2
+−λµ∑

(−1)(µ−1)/2eπin2cµn1n2∂n2
++∂

n1
+−λ−µ =

∑
cµn1n2∂n1

++∂
n2
+−λµ
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The first constraint shows that when µ = 1, we have

n1 − n2 = 3 mod 4

and the second constraint shows that we need to sum over all n1 and n2 subject to the
above equation. We don’t have to do this again for the µ = −1 case, since c−1,n1n2

is completely determined from c1,n1n2 from the second constraint. Therefore, the sum
becomes

F ′ = 3
∑

t3n1t3n2 = 3
t3 + t9

(1− t6)(1− t12)
and the contribution of the λ± fields to the index is

−F ′t3 (5.10)

Adding (5.9) and (5.10), we find that the vector multiplet contribution to the single
letter index for Wilson line 1-4 is

Ivec1 = F (t2 − t4 + 2t6)− F ′t3

=
3(1− t6 + t12)(t2 − t4 + 2t6)− 3(t3 + t9)t3

(1− t6)(1− t12)

Next, we compute Ivec5 , the vector multiplet single letter index for the 5th Wilson
line. This case is a bit harder because the 5th Wilson line is non-abelian. As discussed
in section 5.2, under g5(r) and g5(s), the adjoint fields Φp, p = 0,−1, 1 transform as

g5(r)(Φ
0,Φ1,Φ−1)g−1

5 (r) = (Φ0,−Φ1,−Φ−1)

g5(s)(Φ
0,Φ1,Φ−1)g−1

5 (s) = (−Φ0,−Φ−1,−Φ1)

As before, we do the commputation for spin 0 and spin ±1 fields separately. For
spin 0 fields Φ, a generic operator that descends from it is∑

cpn1n2∂n1
++∂

n2
+−Φ

p

where the adjoint SU(2) index p takes values in 0,±1. The r and s constraints are∑
eiπ/2(n1−n2)cpn1n2∂n1

++∂
n2
+−Φ

p =
∑

(−1)pcpn1n2∂n1
++∂

n2
+−Φ

p∑
eiπn2)cpn1n2∂n2

++∂
n1
+−Φ

p = −
∑

cpn1n2∂n1
++∂

n2
+−Φ

−p

They imply

eiπ/2(n1−n2)cpn1n2 = (−1)pcpn1n2

eiπn1c−p,n2n1 = −cpn1n2
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There are two cases to consider.
Case 1: p = 0. For this case, the first constraint shows that

n1 − n2 = 0 mod 4

and the second constraint instructs us to sum over only n1 ≥ n2, but for n1 = n2 we
need only sum over n1 = 1 mod 2. Therefore, the sum becomes

F 0 =
t12

(1− t6)(1− t12)
+

t6

1− t12
=

t6

(1− t6)(1− t12)
(5.11)

Case 2: p = 1. For this case, the first constraint shows that

n1 − n2 = 2 mod 4

and the second constraint tells us to sum over all such n1 and n2 obeying the above
equation and that we do not have to consider the p = −1 case. The sum is therefore

F+ =
2t6

(1− t6)(1− t12)
= 2F 0 (5.12)

So overall the contribution to the single letter vector multiplet index for Wilson line
5 from fields that have j2 = 0 is

(F 0 + F+)(t2 − t4 + 2t6) = 3F 0(t2 − t4 + 2t6) (5.13)

Now let us consider the j2 = ±1/2 contribution. A generic operator that descends
from the field is ∑

cpµn1n2∂n1
++∂

n2
+−λ

p
µ

The constraints are∑
eπi/2(n1−n2+µ)cpµn1n2∂n1

++∂
n2
+−λ

p
µ =

∑
(−1)pcpµn1n2∂n1

++∂
n2
+−λ

p
µ∑

(−1)(µ−1)/2eπin2cpµn1n2∂n2
++∂

n1
+−λ

p
−µ = −

∑
cpµn1n2∂n1

++∂
n2
+−λ

−p
µ

They imply

eπi/2(n1−n2+µ)cpµn1n2 = (−1)pcpµn1n2

(−1)(−µ−1)/2eπin1c−p,−µ,n2n1 = −cpµn1n2

There are three cases to consider.
Case 1: p = 0, µ = 1. For this case, the first constraint implies

n1 − n2 = 3 mod 4
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and the second constraint shows that the case p = 0, µ = −1 is taken care of if we sum
over all such n1 n2 pairs. The sum is

F 01 =
t3 + t9

(1− t6)(1− t12)
(5.14)

Case 2: p = 1, µ = 1. For this case, the first constraint implies

n1 − n2 = 1 mod 4

and the second constraint shows that the case p = −1, µ = −1 is taken care of if we
sum over all such n1 n2 pairs. The sum is

F 11 =
t3 + t9

(1− t6)(1− t12)
= F 01 (5.15)

Case 3: p = 1, µ = −1. For this case, the first constraint implies

n1 − n2 = 3 mod 4

and the second constraint shows that the case p = −1, µ = 1 is taken care of if we sum
over all such n1 n2 pairs. The sum is

F 1,−1 =
t3 + t9

(1− t6)(1− t12)
= F 01 (5.16)

Adding this up, we find that the j2 = ±1/2 contribution to the single letter vector
multiplet index is

−(F 01 + F 11 + F 1,−1)t3 = −3F 01t3 (5.17)

Adding the j2 = 0 contribution from (5.13) and the j2 = ±1/2 contribution from
(5.17), we get the vector multiplet contribution to the index for Wilson line 5:

Ivec5 = 3F 0(t2 − t4 + 2t6)− 3F 01t3

= 3
−t6 + t8 − t10 + t12

(1− t6)(1− t12)
We are now done with the vector multiplet computation for the single letter index.

Here’s a summary:

Ivec1 =
3(1− t6 + t12)(t2 − t4 + 2t6)− 3(t3 + t9)t3

(1− t6)(1− t12)
(5.18)

Ivec5 = 3
−t6 + t8 − t10 + t12

(1− t6)(1− t12)
(5.19)

Let us now move on to compute the trifundamental contribution to the single letter
index.
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I trifund

First, let us deal with the abelian Wilson lines. We are interested in computing I trifundabc

where a, b, c ∈ {1, 2, 3, 4}. According to equation (5.8), there are only 4 independent
combinations that give unique constraints: 111, 112, 113, 114 (for example, 122 would
be equivalent to 111 in terms of constraints on the trifundamental fields), so we only
have four such indices to compute. We do them one by one.

Note that all base fields in the hypermultiplet has j2 = 0, so we need not worry
about the j2 = ±1/2 contribution.

Case I trifund111 . A generic operator that descends from the field has the form∑
cn1n2∂n1

++∂
n2
+−Φ

where Φ denotes three fields in the triplet. For clarity, we do not show the SU(2)
trifundamental indices on the field Φ as in equation (5.8). The r and the s constraints
give

eiπ/2(n1−n2)cn1n2 = cn1n2

eiπn1cn2n1 = cn1n2

The first constraint suggests that

n1 − n2 = 0 mod 4

and the second constraint instructs us to sum over n1 ≥ n2 only, but for n1 = n2 we
need n1 = 0 mod 2. Overall, summing over the Boltzamnn weights, we have

F111 = 8
t12

(1− t6)(1− t12)
+ 8

1

1− t12
= 8

1− t6 + t12

(1− t6)(1− t12)

where the prefactor 8 comes from 23 choices of the SU(2) trifundmanetal indices.
Therefore,

I trifund111 = F111(t
2 − t4) = 8

(1− t6 + t12)(t2 − t4)
(1− t6)(1− t12)

(5.20)

Case I trifund112 . The constraints are

eiπ/2(n1−n2)cn1n2 = cn1n2

eiπn1cn2n1 = −cn1n2

which suggests

F112 = 8
t12

(1− t6)(1− t12)
+ 8

t6

1− t12
= 8

t6

(1− t6)(1− t12)
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and so

I trifund112 = F112(t
2 − t4) = 8

t6(t2 − t4)
(1− t6)(1− t12)

(5.21)

Case I trifund113 . The constraints are

eiπ/2(n1−n2)cn1n2 = −cn1n2

eiπn1cn2n1 = cn1n2

The first constraint implies

n1 − n2 = 2 mod 4

and the second one tells us to sum over all n1, n2 pairs. This gives

F113 = 8
t6

(1− t6)(1− t12)
= F112

and

I trifund113 = 8F113(t
2 − t4) = 8

t6(t2 − t4)
(1− t6)(1− t12)

(5.22)

Case I trifund114 . The constraints are

eiπ/2(n1−n2)cn1n2 = −cn1n2

eiπn1)cn2n1 = −cn1n2

Comparing the 114 constraints with the 113 constraints, we see that they have the
same solutions, so

I trifund114 = I trifund113 = 8
t6(t2 − t4)

(1− t6)(1− t12)
(5.23)

This completes the computation for when all three Wilson lines are abelian. Now,
we consider the case when one/two/three of the Wilson lines in the triplet are the
5th Wilson line. First, consider the case where there is only one non-abelian Wilson
line. Similar to the argument we had previously, there are only 4 independent cases to
consider: 115, 125, 135, 145.

Case I trifund115 . Now, the SU(2) index of the third component of the trifundamental
field matters, because the nonabelian Wilson line does not act diagonally anymore.
This consideration leads to the most general operator as in∑

cµn1n2∂n1
++∂

n2
+−Φµ
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where µ = ±1 is the third component of the trifundamental index. We do not show
the first two components for clarity. The constraints are∑

eiπ/2(n1−n2)cµn1n2∂n1
++∂

n2
+−Φµ =

∑
eµπi/2cµn1n2∂n1

++∂
n2
+−Φµ∑

eiπn2cµn1n2∂n2
++∂

n1
+−Φµ =

∑
(−1)(µ−1)/2cµn1n2∂n1

++∂
n2
+−Φ−µ

which leads to the equations

eiπ/2(n1−n2)cµn1n2 = eµπi/2cµn1n2

eiπn1c−µ,n2n1 = (−1)(µ−1)/2cµn1n2

For µ = 1, The first constraint implies

n1 − n2 = 1 mod 4

and the second constraint tells us to sum over all n1, n2 pairs, which would take care of
the case µ = −1. Therefore, summing over the Boltzmann weights, we get

F115 = 4
t3 + t9

(1− t6)(1− t12)

and

I trifund115 = F115(t
2 − t4) = 4

(t3 + t9)(t2 − t4)
(1− t6)(1− t12)

(5.24)

where the 4 comes from 22 choices of the first two SU(2) trifundamental indices. The
factor t2 − t4 comes from the contribution of the BPS base fields.

Case I trifund125 . The constraints are∑
eiπ/2(n1−n2)cµn1n2∂n1

++∂
n2
+−Φµ =

∑
eµπi/2cµn1n2∂n1

++∂
n2
+−Φµ∑

eiπn2cµn1n2∂n2
++∂

n1
+−Φµ = −

∑
(−1)(µ−1)/2cµn1n2∂n1

++∂
n2
+−Φ−µ

The only difference from the previous 115 case is the minus sign for the s condition,
so

I trifund125 = I trifund115 = 4
(t3 + t9)(t2 − t4)
(1− t6)(1− t12)

(5.25)

Case I trifund135 . The constraints are∑
eiπ/2(n1−n2)cµn1n2∂n1

++∂
n2
+−Φµ = −

∑
eµπi/2cµn1n2∂n1

++∂
n2
+−Φµ∑

eiπn2cµn1n2∂n2
++∂

n1
+−Φµ =

∑
(−1)(µ−1)/2cµn1n2∂n1

++∂
n2
+−Φ−µ
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Now, the µ = 1 case leads to

n1 − n2 = 3 mod 4

and it is easy to see that

I trifund135 = I trifund115 = 4
(t3 + t9)(t2 − t4)
(1− t6)(1− t12)

(5.26)

By the same logic, we have

I trifund145 = I trifund115 = 4
(t3 + t9)(t2 − t4)
(1− t6)(1− t12)

(5.27)

This completes the computation for when only one of the three Wilson lines is non-
abelian. We now consider the four cases where two of the Wilson lines are nonabelian.
The four cases are: 155, 255, 355, and 455.

Case I trifund155 . Now, the second and the third SU(2) trifundamental indices matter,
since the Wilson lines will act nondiagonally on them separately. So the general operator
combination is ∑

cµνn1n2∂n1
++∂

n2
+−Φµν

where we do not show the first SU(2) trifundamental index.
The constraints are∑

eπi/2(n1−n2)cµνn1n2∂n1
++∂

n2
+−Φµν =

∑
eπ(µ+ν)i/2cµνn1n2∂n1

++∂
n2
+−Φµν∑

eπin2cµνn1n2∂n2
++∂

n1
+−Φµν =

∑
(−1)(µ+ν)/2−1cµνn1n2∂n1

++∂
n2
+−Φ−µ,−ν

from which we have

eπi/2(n1−n2)cµνn1n2 = eπ(µ+ν)i/2cµνn1n2

eπin1c−µ,−ν,n2n1 = (−1)(µ+ν)/2−1cµνn1n2

Case 1: µ = ν = 1. The first constraint implies

n1 − n2 = 2 mod 4

and the second constraint says that summing over all such pairs will help us take care
of the case µ = ν = −1 case. The Boltzmann weight sum is

F11 = 2
2t6

(1− t6)(1− t12)
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where the prefactor 2 comes from 2 choices of the first SU(2) trifundamental index.
Case 2: µ = 1, ν = −1. The first constraint implies

n1 − n2 = 0 mod 4

and the second constraint says that summing over all such pairs will help us take care
of the case µ = −1, ν = 1 case. The Boltzmann weight sum is

F1,−1 = 2
1 + t12

(1− t6)(1− t12)

Adding these up, we have

I trifund155 = (F11 + F1,−1)(t
2 − t4) = 2(1 + 2t6 + t12)(t2 − t4)

(1− t6)(1− t12)
(5.28)

Case I trifund255 . The constraints are∑
eπi/2(n1−n2)cµνn1n2∂n1

++∂
n2
+−Φµν =

∑
eπ(µ+ν)i/2cµνn1n2∂n1

++∂
n2
+−Φµν∑

eπin2cµνn1n2∂n2
++∂

n1
+−Φµν = −

∑
(−1)(µ+ν)/2−1cµνn1n2∂n1

++∂
n2
+−Φ−µ,−ν

The only difference from the previous 155 case is the minus sign in the second equation,
but this does not affect the number of independent solutions. This suggests that

I trifund255 = I trifund155 =
2(1 + 2t6 + t12)(t2 − t4)

(1− t6)(1− t12)
(5.29)

Case I trifund355 . The constraints are∑
eπi/2(n1−n2)cµνn1n2∂n1

++∂
n2
+−Φµν = −

∑
eπ(µ+ν)i/2cµνn1n2∂n1

++∂
n2
+−Φµν∑

eπin2cµνn1n2∂n2
++∂

n1
+−Φµν =

∑
(−1)(µ+ν)/2−1cµνn1n2∂n1

++∂
n2
+−Φ−µ,−ν

from which we have

eπi/2(n1−n2)cµνn1n2 = −eπ(µ+ν)i/2cµνn1n2

eπin1c−µ,−ν,n2n1 = (−1)(µ+ν)/2−1cµνn1n2

Case 1: µ = ν = 1. The first constraint implies

n1 − n2 = 0 mod 4
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Case 2: µ = 1, ν = −1. The first constraint implies

n1 − n2 = 2 mod 4

But these are the same constraints as the 155 case, except the order is different.
Therefore,

I trifund355 = I trifund155 =
2(1 + 2t6 + t12)(t2 − t4)

(1− t6)(1− t12)
(5.30)

By the same logic,

I trifund455 = I trifund155 =
2(1 + 2t6 + t12)(t2 − t4)

(1− t6)(1− t12)
(5.31)

In summary, we have the result that, for nonabelian Wilson lines that appear twice
in the triplet,

I trifund155 = I trifund255 = I trifund355 = I trifund455 =
2(1 + 2t6 + t12)(t2 − t4)

(1− t6)(1− t12)
(5.32)

Finally, we need to attack the last case, Wilson line 555. A general operator is∑
cµνρn1n2∂n1

++∂
n2
+−Φµνρ

where now all three trifundamental SU(2) indices (µ, ν, ρ = ±1) matter. The con-
straints are∑

eπi/2(n1−n2)cµνρn1n2∂n1
++∂

n2
+−Φµνρ =

∑
eπi/2(µ+ν+ρ)cµνρn1n2∂n1

++∂
n2
+−Φµνρ∑

eπin2cµνρn1n2∂n2
++∂

n1
+−Φµνρ =

∑
(−1)(µ+ν+ρ−3)/2cµνρn1n2∂n1

++∂
n2
+−Φ−µ,−ν,−ρ

from which we have

eπi/2(n1−n2)cµνρn1n2 = eπi/2(µ+ν+ρ)cµνρn1n2

eπin1c−µ,−ν,−ρn2n1 = (−1)(µ+ν+ρ−3)/2cµνρn1n2

Case 1: µ = 1, ν = 1, ρ = 1. In this case we have

n1 − n2 = 3 mod 4

and the sum yields the Boltzamnn weight sum

F+++ =
t3 + t9

(1− t6)(1− t12)
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Case 2: µ = 1, ν = 1, ρ = −1. In this case we have

n1 − n2 = 1 mod 4

and the sum yields

F++− =
t3 + t9

(1− t6)(1− t12)
= F+++

Case 3: µ = 1, ν = −1, ρ = 1. In this case we have

n1 − n2 = 1 mod 4

and the sum yields

F+−+ =
t3 + t9

(1− t6)(1− t12)
= F+++

Case 4: µ = 1, ν = −1, ρ = −1. In this case we have

n1 − n2 = 3 mod 4

and the sum yields

F+−− =
t3 + t9

(1− t6)(1− t12)
= F+++

Adding these up, and including the t2 − t4 contribution from the BPS base fields,
we have

I trifund555 = 4
(t3 + t9)(t2 − t4)
(1− t6)(1− t12)

(5.33)

We now have all the ingredients we need to compute the supersymmetric Casimir
energy.

Supersymmetric Casimir Energy Computation

When we sum over the index to compute the Casimir energy, we need to multiply the
vector multiplet contribution by 1/2, since each vector multiplet is shared between two
trinions. For example, for the triplet 111, we have

I111 = I trifund111 +
3

2
Ivec1

= 8
(1− t6 + t12)(t2 − t4)

(1− t6)(1− t12)
+

3

2

3(1− t6 + t12)(t2 − t4 + 2t6)− 3(t3 + t9)t3

(1− t6)(1− t12)

= − 1

18β
+

9

2
− 35β

54
+O(β2)
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which suggests that the supersymmetric Casimir energy is

E111 =
35

108
(5.34)

It is easy to see that

E111 = E122 = E133 = E144 = E234 =
35

108
(5.35)

since these Wilson lines have the same index contributions as we computed in the
previous subsection.

For other Wilson lines that do not involve Wilson line 5:

I112 = I trifund112 +
3

2
Ivec1

= 8
t6(t2 − t4)

(1− t6)(1− t12)
+

3

2

3(1− t6 + t12)(t2 − t4 + 2t6)− 3(t3 + t9)t3

(1− t6)(1− t12)

= − 1

18β
+

9

2
− 251β

54
+O(β2) (5.36)

I114 = I113 = I trifund113 +
3

2
Ivec1

= 8
t6(t2 − t4)

(1− t6)(1− t12)
+

3

2

3(1− t6 + t12)(t2 − t4 + 2t6)− 3(t3 + t9)t3

(1− t6)(1− t12)

= − 1

18β
+

9

2
− 251β

54
+O(β2) (5.37)

These show that

E112 = E113 = E114 = E222 = E332 = E442 = E134 =
251

108
(5.38)

E224 = E334 = E444 = E223 = E333 = E443 = E123 = E124 =
251

108
(5.39)

For Wilson lines that involve a single nonabelian Wilson line, we have

I115 = I trifund115 + Ivec1 +
1

2
Ivec5

= 4
(t3 + t9)(t2 − t4)
(1− t6)(1− t12)

+
3(1− t6 + t12)(t2 − t4 + 2t6)− 3(t3 + t9)t3

(1− t6)(1− t12)
+

1

2
3
−t6 + t8 − t10 + t12

(1− t6)(1− t12)

= − 1

18β
+ 3− 143β

54
+O(β2) (5.40)
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which shows that

E115 = E225 = E335 = E445 =
143

108
(5.41)

Similarly, one can show that I125 = I135 = I145 = I115, so

Eab5 = E115 =
143

108
(5.42)

where a, b ∈ {1, 2, 3, 4}. Wilson line triplets that involve only one nonabelian Wilson
line have the same Casimir energy.

Now, consider Wilson line triplets that contain two nonabelian Wilson lines.

I155 = I trifund155 +
1

2
Ivec1 + Ivec5

=
2(1 + 2t6 + t12)(t2 − t4)

(1− t6)(1− t12)
+

1

2

3(1− t6 + t12)(t2 − t4 + 2t6)− 3(t3 + t9)t3

(1− t6)(1− t12)
+

+ 3
−t6 + t8 − t10 + t12

(1− t6)(1− t12)

= − 1

18β
+

3

2
− 35β

54
+O(β2) (5.43)

What is surprising (and also in a sense expected) is that

E155 =
35

108
= E111 (5.44)

From the previous section, we see that

E255 = E355 = E455 = E155 =
35

108
(5.45)

The result we have so far, ranked from lowest energy to highest, is

• E0 = 35/108: 111, 122, 133, 144, 234, 155, 255, 355, 455. These lead to 28 states,
and they correspond to the states in the dual SO(8) Chern-Simons theory at level
2.

• E1 = 143/108 = E0 + 1: ab5, a, b ∈ {1, 2, 3, 4}. These lead to 48 states.

• E2 = 251/108 = E0+2: 112, 113, 114, 332, 442, 222, 134,224,334,223,443,333,444,123,
124 These lead to 48 states.
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There is a single state, 555, that is left to consider.

I555 = I trifund555 +
3

2
Ivec5

= 4
(t3 + t9)(t2 − t4)
(1− t6)(1− t12)

+
9

2

−t6 + t8 − t10 + t12

(1− t6)(1− t12)

= − 1

18β
+

19

54
β +O(β2) (5.46)

The supersymmetric Casimir energy is negative compared to the 111 trivial ground
state:

E555 = −
19

108
= E0 −

1

2
(5.47)

The treatment for this statement is discussed in the previous section.

5.4 A Non-Lagrangian Example

At the end of section 5.2, we gave the example of counting the ground states of the
SU(2) theory coming from compactifying the two M5 branes on a genus-2 Riemann
surface. The resulting four-dimensional theory was put on S3Z2. This theory has an
explicit Lagrangian description. In the previous two sections, we also focused on com-
puting the ground states of the Lagrangian SU(2) theory, albeit on a different geometry
S3/Dic2. In this section, we explicitly list the ground states of a non-Lagrangian SU(N)
theory on the same genus-2 Riemann surface (see figure 5.1)) and with the same ADE
geometry S3/Z2. The classically flat Wilson lines are simply N by N matrices with
1 and −1 on the diagonal. The number of −1s must be even in order to satisfy the
determinant constraint. Therefore, up to Weyl group, there are in total ⌊N/2⌋ + 1
classically flat Wilson lines. Let a, b, c ∈ SU(N) be the classically flat Wilson lines in
the trifundamental theory as in figure 5.1. We claim that the true ground states of this
theory are of the form

a⊗ b⊗ c (5.48)

where a, b, c satisfies the equation
abc = 1 (5.49)

up to Weyl permutation. The right hand side is the N by N identity matrix and the
left hand side is matrix multiplication. Why is this true? According to the duality and
the conjecture, the ground states of this theory must satisfy the SU(N)2 fusion rule,
which, by the level-rank duality, is the SU(2)N fusion rule.

We claim that equation (5.49) encodes exactly this information. Here’s a quick
proof. We denote a classically flat Wilson line by jk where k is the number of −1s
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along the diagonal. By assumption, 0 ≤ k ≤ N and k is even. We ask the question:
if we multiply two such matrices together, say jl and jm, what can the solution be?
Remember that we are free to permute the diagonal because of the Weyl symmetry.
To answer this question, we first notice that the least number of −1s we can get in the
resulting product is by overlapping as many −1s from jl as possible with −1s from jm.
Without loss of generality, let us assume l > m. It is not hard to see that the least
number of −1s is

l −m
which means that jl−m is a solution of the product jl · jm. For example, setting N = 5,
l = 4, and m = 2, we have, for the least number of −1s:

j4 · j2 =


−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1



−1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =


1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1

 = j2

What is the maximum number of −1s we can get from multiplying jl and jm?
Starting from the configurations that yield the least number of −1s in the product, we
can move one −1 from jm to a position so that the corresponding position in jn is a
+1. This changes the number of −1 in the result by 2, yielding jl−m+2. In our example,
this action is illustrated by shifting the second −1 in j2 to the last slot on the diagonal:

j4·j2 =


−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1



−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

 =


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 = j4

We can keep doing this, until we reach the result that has the most number of −1s
in it. What is this number? There are two cases to consider. In the first matrix, there
are N − l slots that contain +1. If we can manage to shift all −1s in the second matrix
to those N − l slots, the resulting product will contain l +m −1s. Therefore, if

N − l ≥ m, or m+ l ≤ N

the last state in the sequence will be jm+l. The second case is where this condition
doesn’t hold, namely

m+ l > N

In this case, there will be some overlaps of −1s for the two matrices. The number of
overlaps is l+m−n, which suggests that the resulting product has N − (l+m−N) =
2N − (l +m) −1s, giving

j2N−(l+m)
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as the final states. The two cases can be summarized in one line: the last state contains

min(m+ l, 2N −m− l)

−1s. Therefore, the multiplication rule that we have is

jl ⊗ jm = jl−m ⊕ jl−m+2 ⊕ ...⊕ jmin(m+l,2N−m−l)

which is exactly the SU(2)N fusion rule [78]. This shows that the ground states of the
non-Lagrangian SU(N) theory on Σ and Z2 singularity can be listed exactly following
the rule in equation 5.49.

Aside from the reason from the fusion rule, we can give another reason for why the
rule 5.49 gives the true ground states. First, we know that the trivial Wilson line triplet
111 must be a true ground state. The question is what other states share the same
supersymmetry Casimir energy as the trivial ground state 111. This can happen when
the single letter superconformal index of a state matches that of the trivial ground state.
The superconformal index comes from two parts, the vector multiplet and the vector
multiplet. However, due to the special form of the classical ground states in this problem
(all diagonal elements of the Wilson lines are±1), the vector multiplet contributes to the
same index for each Wilson line triplet. To compute the hypermultiplet contribution to
the index, we again use the familiar method of imposing the constraint as in section 4.9.
In the constraint equation, the only thing that might be different for different Wilson
line triplets is the action from the Wilson lines. For the trivial ground state 111, the
action of the Wilson lines is trivial, so if a Wilson line triplet abc leads to the trivial
Wilson line action, it must have the same superconformal index as the trivial ground
state 111, and hence the same supersymmetric Casimir energy2. For single letters, the
Wilson line action is simply given by multiplying abc up to Weyl permutation, so if
abc = 1 up to Weyl permutation, then abc must share the same index as the trivial
ground state and hence the same supersymmetric Casimir energy. Therefore, these abc
are the true ground states of the theory.

5.5 Conclusion

In this dissertation, we proposed a way to find the action of S-duality on ground states
of N = 4 super Yang-Mills theory on S3/Γ where Γ is a discrete subgroup of SU(2).

2There are two loopholes of this statement. One is that, it could happen that two Wilson line
triplets, having different Wilson line actions, lead to the same supersymmetric index. Another is
that, two different supersymmetric indices may lead to the same supersymmetric Casimir energy, since
the only requirement that they lead to the same Casimir energy is a match in the O(β) term in the
expansion.
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The solution is, through a mini AdS/CFT argument, to identify the SYM ground
states with the states of a certain Chern-Simons theory on T 2. We gave support to
this duality by using a top-down brane construction, explicit state counting, and a
one-loop computation using the superconformal index. We also generalized our duality
argument to N = 2 theories and uncovered some surprising result regarding the ground
state structure of N = 2 theories. In particular, the ground state of the conformal
N = 2 four-flavor SU(2) theory on S3/Γ is nondegenerate, contrary to conventional
wisdom that the ground states can be any classically flat Wilson lines furnishing a
representation of Γ. We also looked at other N = 2 theories by compactifying the M5
branes on a genus two Riemann surface. We found, by explicit calculations, that the
allowed Wilson line triplets are in one-to-one correspondence with nonvanishing fusion
rule coefficient Nijk.

Finally, we say a few words on where this work might go in the future. First,
it is interesting to generalize the SYM gauge group from SU(q) and U(q) to other
classical gauge groups such as SO(q) and Sp(2q). This will presumably involve putting
an orientifold along the D3 branes in the brane construction in section 2.4. Second,
we might be able to give a physics derivation of the current algebra fusion rules. For
example, we could compute the superconformal index for the Lagrangian SU(2) trinion
theory on S3/Dick for all k. By counting what Wilson line triplets shares the same
supersymmetric Casimir energy as the trivial ground state, we could presumably obtain
the level 2 fusion rule of SO(2(k + 2)) for states that also lie on the SO(2(k + 2)) root
lattice. Last but not least, it will be interesting to compute explicitly the S-duality
matrices for nonabelian SYM gauge theories using the SYM theory only as we did
in 2.5 for the U(1) theory and compare with the Chern-Simons result.
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