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Workflow Characteristics

Lavanya Ramakrishnan
Lawrence Berkeley National Lab
Berkeley, CA
Iramakrishnan@Ibl.gov

ABSTRACT

Workflows have been used to model repeatable tasks or oper-
ations in manufacturing, business process, and software. In
recent years, workflows are increasingly used for orchestra-
tion of science discovery tasks that use distributed resources
and web services environments through resource models such
as grid and cloud computing. Workflows have disparate re-
quirements and constraints that affects how they might be
managed in distributed environments. In this paper, we
present a multi-dimensional classification model illustrated
by workflow examples obtained through a survey of scientists
from different domains including bioinformatics and biomed-
ical, weather and ocean modeling, astronomy detailing their
data and computational requirements. The survey results
and classification model contribute to the high level under-
standing of scientific workflows.

Categories and Subject Descriptors
A.1 [Introductory]: Survey

General Terms
Design

Keywords
Cloud, Grid, Scientific Workflows

1. INTRODUCTION

Workflows and workflow concepts have been used to model
a repeatable sequence of tasks or operations in different do-
mains including the scheduling of manufacturing operations,
business process management [Taylor et al. 2006], inventory
management, etc. The advent of internet and web services
has seen the adoption of workflows as an integral component
of cyberinfrastructure for scientific experiments [Deelman
and Gil 2006, Atkins 2002]. The availability of distributed
resources through grid and cloud computing models has en-
abled users to share data and resources using workflow tools
and other user interfaces such as portals.

Workflow tools are in use today in various cyberinfras-
tructure projects to satisfy the needs of a specific science
problem [Deelman et al. 2003, Altintas et al. 2004, Con-
dor DAGMan , Taylor et al. 2004, Oinn et al. 2006]. This
has resulted in innovative solutions for workflow planning,
resource management, provenance generation, etc.

Each scientific workflow has different resource require-
ments and constraints associated with them. Workflows
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can vary in their size, resource requirements, constraints,
amount of user intervention, etc. For example, applica-
tion workflows with stringent timeliness constraints such as
for weather prediction or economic forecasting are now in-
creasingly run in distributed resource environments. These
workflows require a clear understanding of their workflow
requirements to manage user’s deadline constraint with the
variability of underlying resources. Additionally the par-
allelism of the workflow and its storage needs often affect
design choices. However, there is a limited description and
understanding of usage, performance and characteristics of
scientific workflows. This is a major road block to reuse of
existing technologies and techniques and innovation of new
workflow approaches.

In this paper, we present a qualitative classification model
of workflow characteristics. These characteristics help clas-
sify or “bin” workflow types enabling broader engagement
and applicability of solutions. We discuss workflow exam-
ples from different domains: bioinformatics and biomedicine,
weather and ocean modeling, astronomy, etc and cast them
in the context of our model. The workflow examples have
been obtained through surveying domain scientists and com-
puter scientists who composed and/or run these workflows.
Each of these workflows has been modeled using one of sev-
eral workflow tools and/or through scripts. For each work-
flow we specify the running time of applications and input
and output data sizes associated with each task node. Run-
ning time of applications and data sizes for a workflow de-
pend on a number of factors including user inputs, specific
resource characteristics and run-time resource availability
variations [Kramer and Ryan 2003]. Thus our numbers are
approximate estimates for typical input data sets that are
representative of the general characteristics of the workflow.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents the classi-
fication model that is drawn from the survey of workflows
presented in Section 4. In section 5 we tie the model and
survey together with a taxonomy. The paper concludes in
Section 6.

2. RELATED WORK

New workflow tools have been developed to represent and
run scientific processes in a distributed grid environment.
Workflow tools such as Kepler [Altintas et al. 2004, Lud-
scher et al. 2005], Taverna [Oinn et al. 2006], Pegasus [Deel-
man et al. 2003, Deelman et al. 2003], Triana [Churches et al.
2006] allow users to compose tasks (i.e., analysis, modeling,
synthesis, mapreduce, and data-driven) and services into a



logical sequence. These tools often are developed in the con-
text of one or more specific application domains and have
various features to allow users to compose and interact with
workflows through a graphical interface, provides seamless
access to distributed data, resources and web services. Yu
and Buyya provide a taxonomy for scientific workflow sys-
tems that classify systems based on four elements of a grid
workflow systems - a) workflow design, b) workflow schedul-
ing, c) fault tolerance and d) data movement [Yu and Buyya
2005]. Thain et al. characterize a collection of scientific
batch-pipelined workloads on processing, memory, and I/0O
demands, and the sharing characteristics of the workloads.
However there has been no detailed study of characteristics
of complex scientific workflows and representing a qualita-
tive classification model to capture the features of a work-
flow.

3. CLASSIFICATION MODEL

Workflows vary significantly in their characteristics and
their computational and data requirements. Workflows vary
in their size, structure and usage. A number of the bioinfor-
matics workflows often have tasks that are based on querying
large databases in order of minutes for the task execution. In
other cases we see each of the tasks of the workflow require
computation time on the order of hours or days on mul-
tiple processors. In some cases sub-parts of the workflow
might also present different characteristics. It is critical to
understand these characteristics to effectively manage these
workflows. We present a multi-dimensional workflow char-
acterization model that considers the following a) Size b)
Resource Usage c) Structural Pattern d) Data Pattern and
e) Usage Scenarios.

3.1 Size

The size of the workflow is an important characteristic
since a workflow might have from a small number of tasks
to thousands of tasks. The size of the workflows that are de-
ployed today in most production environments are relatively
small. The largest workflows in our survey contain about a
couple of hundred independent tasks. The Avian Flu (Fig-
ure 11) and PanSTARRS(Figures 13 and 14) workflows has
over a thousand nodes but the computation at each node is
expected to take only a few minutes to an hour. Scientists
express a need to run larger sized workflows but are often
limited by available resources or workflow tool features that
might be needed to support such large-scale workflows.

In addition to the total number of tasks in a workflow it is
also important to consider the width and length of the work-
flows. The width of the workflow (i.e. maximum number
of parallel branches) determines the concurrency possible
and the length of the workflow characterizes the makespan
(or turnaround time) of the workflow. We observe that in
our workflow examples, the larger sized workflows such as
the Motif workflow (Figure 8) and the astronomy workflows
(Figures 13 and 14) the width of the workflow is significantly
larger than the length of the workflow.

Thus we define three properties in the size dimension -

e Total Number of Tasks. defines the total number
of tasks in the workflow.

e Number of Parallel Tasks. defines the maximum
number of parallel tasks in any part of the workflow.

e Longest Chain. defines the number of tasks in the
longest chain of the workflow.

3.2 Resource Usage

In addition to the structure and pattern of a workflow it
is important to understand the computational requirements.
In the presented workflow examples we observe that compu-
tational time required by the workflows can vary from a
few seconds to several days. A number of the bioinformat-
ics workflows depend on querying large databases and have
small compute times. Some examples include the Glimmer
workflow (Figure 6), Gene2Life (Figure 7), caDSR (Fig-
ure 12). Similarly the initial parts of the LEAD forecast
workflow(Figures 1 and 2) and the LEAD data mining work-
flows (Figure 3) have small computational load. A number
of the workflows including the forecasting parts of the LEAD

workflow, Pan-STARRS workflows (Figures 13 and 14), SCOOP

(Figure 4), SNS (Figure 15), Motif (Figure 8), NCFS (Fig-
ure 5) have medium to large sized compute requirements.

e Max task processor width. is the maximum con-
current number of processors required by the workflow.

e Computation time. is the total computational time
required by the workflow.

e Data Sizes. is the data size of the workflow inputs,
outputs and intermediate data products.

3.3 Structural Pattern

Each workflow might include one or more patterns. Our
goal is to capture the dominant pattern seen in the work-
flow. The workflows that we surveyed depict the basic con-
trol flow patterns such as sequence, parallel split, synchro-
nization [van der Aalst et al. 2003]. The parallel split-
synchronization pattern has similarities to the map-reduce
programming paradigm. A number of workflows divide the
work units into distinct work units and the results are then
combined - Motif workflow (Figure 8), Pan-STARRS work-
flows (Figures 13 and 14). Thus we classify our workflows
into the following patterns:

e Sequential. consists of tasks that follow one after the
other.

e Parallel. consists of multiple tasks that can be run at
the same time.

e Parallel-split. one task’s output feeds to multiple
tasks.

e Parallel-merge. multiple tasks merge into one task.

e Parallel-merge-split. both parallel-merge and parallel-

split.
e Mesh. task dependencies are interleaved.

3.4 Data Pattern

The workflows are associated with different types of data
including input data, backend databases, intermediate data
products, output data products. A large number of the
bioinformatics applications often have small input and small
data products but often rely on huge backend databases that
are queried as part of task execution. These workflows re-
quire that the databases be pre-installed on various sites and



resource selection is often based on selecting the resources
where the data might be available. Workflows such as LEAD
(Figures 1 and 2), SCOOP (Figure 4), NCFS (Figure 5)
and Pan-STARRS workflows (Figures 13 and 14) have fairly
large sized input, intermediate and output data products.
The Glimmer workflow (Figure 6) has similar sized input
and output data products but its intermediate data prod-
ucts are smaller. In today’s production environments work-
flows often compress data products to reduce transfer times
through intermediate scripts etc. When scheduling work-
flows on resources, a number of data issues need to be con-
sidered including the availability of the required data as well
as the data transfer time of both input and output products.
We classify the workflows as

e Data reduction. where the output data is smaller
than the input data of the workflows.

e Data production. where the ouput data is larger
than the input data of the workflow.

e Data processing. where input data is processed but
data sizes do not change dramatically.

3.5 Usage scenarios

It is often important to understand the use case scenar-
ios for the workflows. Workflows are used in a number of
different scenarios - a new workflow might be initiated in
response to dynamic data or a number of workflows might
be launched as part of an educational workshop. In addi-
tion, the user might want to specify constraints to adjust
the number of worklows to run based on resource availabil-
ity [Ramakrishnan et al. 2007].

Interactive Workflows Scientific explorations often re-
quire a “human-in-the-loop” as part of the workflow. The
typical mode of usage of science cyberinfrastructure is where
a user logs into the portal and launches a workflow for some
analysis. The user selects a pre-composed workflow and sup-
plies the necessary data for the run. The user might also
want the ability to pause the workflow at the occurrence
of a predefined event, inspect intermediate data and make
changes during workflow execution.

Event-driven Workflows A number of scientific work-
flows get triggered by newly arriving data. Multiple dynamic
events and their scale might need priorities between users for
appropriate allocation of limited available resources. Re-
sources must be allocated to meet deadlines. Additionally,
to ensure successful completion of tasks, we might need to
replicate some of the workflow tasks for increased fault tol-
erance. It is possible that with advance notice of upcoming
weather events, we might want to anticipate the need for
resources and try to procure them in advance. The weather
forecasting, storm surge modeling (Figure 4), flood-plain
mapping (Figure 5) and the astronomy workflows(Figures 13
and 14) are launched with the arrival of data.

User Constrained Workflows An advanced user might
want to provide a set of constraints (e.g. time deadline or
budget) on a workflow. Scientific processes such as weather
prediction, financial forecasting have a number of parame-
ters and computing an exact result is often impossible. To
improve confidence in the result, it is often necessary to run
a minimal number of the workflows. There is a need to
run multiple workflows (i.e. workflow sets) that need to be
scheduled together. Thus for workflow sets, users specify

338secs

that they minimally require M out of N workflows to com-
plete by the deadline.

4. WORKFLOW SURVEY EXAMPLES

Table 1 presents an overview of the workflow survey. The
survey includes workflows from diverse scientific domains
and cyberinfrastruture projects. In the following sections,
we identify the project from which the workflow is drawn,
the workflow and usage model as available at the time of the
survey. For each of the workflows, we also provide a DAG
representation of the workflow annotated with computation
and data sizes. Sections 4.1 describes the weather and ocean
modeling workflows and Sections 4.2 describes the bioinfor-
matics and biomedicine workflows. Sections 4.3 describe the
astronomy and neutron science.

4.1 Weather and Ocean Modeling

In the last few years the world has witnessed a number
of severe natural disasters such as hurricanes, tornadoes,
floods, etc. The models used to study weather and ocean
phenomenon use considerable and diverse real-time obser-
vational data, static data, and parameters that are varied
to study the possible scenarios for prediction. In addition
the models must be run in a timely manner and information
disseminated to groups such as disaster response agencies.
This creates the need for large scale modeling in the areas
of meteorology and ocean sciences, coupled with an inte-
grated environment for analysis, prediction and information
dissemination.

Terrain

. PreProcessor
Wirf Static

147MB l

Lateral
Boundary

146secs

ARPS2WRF 78secs

2422MB

Figure 1: LEAD North American Mesoscale (NAM) ini-
tialized forecast workflow. The workflow processes ter-
rain and observation data to produce weather forecasts.

4.1.1 Mesoscale Meteorology

The Linked Environments for Atmospheric Discovery (LEAD)

[Droegemeier et al. 2005] is a cyberinfrastructure project in
support of dynamic and adaptive response to severe weather.
A LEAD workflow is constrained by execution time and ac-
curacy due to weather prediction deadlines. The typical
inputs to a workflow of this type are real time observational

4570secs/16 processors



Domain Project Website Tool

Weather and | Linked Environments for Atmo- | http://portal.lead. xbaya,

Ocean spheric Discovery (LEAD) TeraGrid | project.org GPEL,

Modeling Science Gateway Apache

ODE
Southeastern Coastal Ocean Ob- | http://www.renci.org/ [Scripts]
serving and Prediction Program | focusareas/disaster/
(SCOOP) scoop.php
North Carolina Floodplain Mapping [Scripts]
Program
. . . | North Carolina Bioportal, TeraGrid | http://www.renci.org/ Taverna

Bioinformatics| 1. . . .

and Bioportal Science Gateway focusareas/biosciences/

Biomedical motif.php

MotifNetwork http://wuw. Taverna
motifnetwork.org/

National Biomedical Computation | http://nbcr.sdsc.edu/ Kepler,

Resource (NBCR), Avian Flu Grid, | http://gemstone. Gem-

Pacific Rim Application and Grid | mozdev.org http: | stone,

Middleware Assembly //www.pragma-grid.net/ [Scripts]
http://avianflugrid. and
pragma-grid.net/ http: | Vision
//mgltools.scripps.edu/

cancer Biomedical Informatics Grid | http://www.cagrid.org/ Taverna

(caBIG)

Astronomy Pan-STARRS http://pan-starrs.ifa.
hawaii.edu/public/,
http://wuw.pslsc.org/

Neutron Sci- | Spallation Neutron Source (SNS), | http://neutrons.ornl.

ence Neutron Science TeraGrid Gateway | gov/

(NSTG)

Table 1: Workflow Survey Overview. Survey is of workflows used in domains from meteorology and ocean
modeling, bioinformatics and biomedical workflows, astronomy and neutron science

data and static data such as terrain information [Droege-
meier et al. 2005, Plale et al. 2006] both of which are pre-
processed and then used as input to one or more ensemble
of weather models. The model outputs are post-processed
by a data mining component that determines whether some
ensemble set members must be repeated to realize statisti-
cal bounds on prediction uncertainty. Figures 1, 2 and 3
show the workflows available through the LEAD portal and
include weather forecasting and data mining workflows [Li
et al. 2008]. Each workflow task is annotated with computa-
tion time and the edges of the directed acyclic graph (DAG)
are annotated with file sizes. The weather forecasting work-
flows are largely similar and vary only in their preprocessing
or initialization step. While the data mining workflow can
be run separately today, it can trigger forecast workflows
and/or steer remote radars for additional localized data in
regions of interest [Plale et al. 2006].

4.1.2 Storm surge modeling

Southeastern Universities Research Association’s (SURA)

Southeastern Coastal Ocean Observing and Prediction (SCOOP)

program is creating an open-access grid environment for the
southeastern coastal zone to help integrate regional coastal
observing and modeling systems [SCOOP Website , Ra-
makrishnan et al. 2006].

Storm surge modeling requires assembling input meteoro-
logical and other data sets, running models, processing the

output and distributing the resulting information. In terms
of modes of operation, most meteorological and ocean mod-
els can be run in hindcast mode, as an after fact of a major
storm or hurricane, for post-analysis or risk assessment, or
in forecast mode for prediction to guide evacuation or oper-
ational decisions [Ramakrishnan et al. 2006]. The forecast
mode is driven by real-time data streams while the hindcast
mode is initiated by a user. Often it is necessary to run the
model with different forcing conditions to analyze forecast
accuracy. This results in a large number of parallel model
runs, creating an ensemble of forecasts. Figure 4 shows a
five member ensemble run of the tidal and storm-surge AD-
CIRC [Luettich et al. 1992] model. For increased accuracy
of forecast the number of concurrent model runs might be
increased. ADCIRC is a finite element model that is par-
allelized and using the MPI message passing model. The
workflow has a predominately parallel structure and the re-
sults are merged in the final step.

The SCOOP ADCIRC workflows are launched according to
the typical six hour synoptic forecast cycle used by the Na-
tional Weather Service and the National Centers for Envi-
ronmental Prediction (NCEP). NCEP computes an atmo-
spheric analysis and forecast four times per day at six hour
intervals. Each of the member runs i.e. each branch of
the workflow gets triggered when wind files arrive through
Local Data Manager (LDM) [Unidata Local Data Manager
(LDM) ], an event-driven data distribution system that se-
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Figure 2: LEAD ARPS Data Analysis System (ADAS)
initialized forecast workflow. The workflow processes
terrain and observation data to produce complex 4D
assimilated volume that initializes a weather forecast
model.
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Figure 3: LEAD Data Mining workflow. The work-
flow processes Doppler radar or model generated fore-
cast data to identify regions where weather phenomenon
might exist in the future.

240secs

4570secs/16 processors

lects, captures, manages and distributes meteorological data
products. The outputs from the individual runs are syn-
thesized to generate the workflow output that is then dis-
tributed through LDM.

In the system today each arriving ensemble member is han-
dled separately through a set of scripts and Java code [Ra-
makrishnan et al. 2006]. The resource selection approach [Lan-
der et al. 2008] makes a real-time decision for each model run
and uses knowledge of scheduled runs to load-balance across
available systems. However this approach does not have any
means of guaranteeing desired QoS in terms of completion
time.

275 MB

900 secs/
16 processors

162MB

162MB
Post
Processing

Figure 4: SCOOP workflow. The arriving wind data
triggers the ADCIRC model that is used for storm-surge
prediction during hurricane season.

4.1.3 Floodplain Mapping

The North Carolina Floodplain Mapping Program [North
Carolina Floodplain Mapping Program , Blanton et al. 2008]
is focused on developing accurate simulation of storm surges
in the coastal areas of North Carolina. The deployed system
today consists of a four-model system that consists of the
Hurricane Boundary Layer (HBL) model for winds, Wave-
Watch IIT and SWAN for ocean and near-shore wind waves,
and ADCIRC for storm surge. The models require good cov-
erage of the parameter space describing tropical storm char-
acteristics in a given region for accurate flood plain mapping
and analysis. Figure 5 shows the dynamic portion of the
workflow. Forcing winds for the model runs are calculated
by the Hurricane Boundary Layer(HBL) model that serve
as inputs to the workflow. The HBL model is run on a lo-
cal commodity Linux cluster. Computational and storage
requirements for these workflows are fairly large requiring
careful resource planning. An instance of this workflow is
expected to run for over a day. The remainder of the work-
flow runs on a supercomputer.

4.2 Bioinformatics and Biomedical workflows

The last few years have seen large scale investments in cy-
berinfrastructure for bioinformatics and biomedical research.
The infrastructure allows users to access databases and web
services through workflow tools and/or portal environments.
We surveyed three major projects in the United States -
North Carolina Bioportal, cancer Biomedical Informatics
Grid (caBIG), and National Biomedical Computational Re-
source (NBCR) to gain a better understanding of the work-
flows. Significant number of these workflows involve small
computation but involve access to large-scale databases that
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11 hr /256 CPUs
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Figure 5: NCFS workflow. A multi-model workflow
used to model the storm surges in the coastal areas of
North Carolina.

must be preinstalled on available resources. While the typ-
ical use cases today have input data sizes in the order of
megabytes, it is anticipated that in the future data sizes
might be in the gigabytes.

4.2.1 Glimmer

The North Carolina Bioportal and The TeraGrid Biopor-
tal Science Gateway [Ramakrishnan et al. 2006] provides
access to about 140 bioinformatics applications and a num-
ber of databases. Researches and educators use the applica-
tions interactively for correlation, exploratory genetic anal-
ysis, etc. The Glimmer workflow shown in Figure 6 is one
such example workflow that is used to find genes in micro-
bial DNA. The Glimmer workflow is sequential and light on
both compute and data consumption.

8.8 MB

2 seconds

1 seconds

5 seconds

Figure 6: Glimmer workflow. A simple workflow used
in educational context to find genes in microbial DNA.

13hr/8CPUs

4hr/160CPUs

4.2.2 Gene2life

Let us consider the Gene2Life workflow used for molec-
ular biology analysis through the North Carolina Biopor-
tal. This workflow takes an input DNA sequence, discovers
genes that match the sequence. It globally aligns the re-
sults and attempts to correlate the results based on organ-
ism and function. Figure 7 depicts the steps of the workflow
and the corresponding output at each stage. In this work-
flow the user provides a sequence that can be a nucleotide
or an amino acid. The input sequence performs two paral-
lel BLAST [Altschul et al. 1990] searches, against the nu-
cleotide and protein databases respectively. The results of
the searches are parsed to determine the number of identi-
fied sequences that satisfy the selection criteria. The outputs
trigger the launch of ClustalW, a bioinformatics application
that is used for the global alignment process to identify re-
lationships. These outputs are then passed through parsi-
mony programs for analysis. The two applications that may
be available for such analysis are dnapars and protpars. In
the last step of the workflow plots are generated to visual-
ize the relationships, using an application called drawgram.
This workflow has two parallel sequences.

300 seconds

30 seconds dnapars protpars

30 seconds

4KB 4KB
30 seconds 30 seconds

35 KB \ Tree Files A KB

(ps and .pdf files)

Figure 7: Gene2Life workflow. The workflow is used
for molecular biology analysis of input sequences. The
dotted arrows show the intermediate products from this
workflow that are required by the user and/or might be
used to drive other scientific processes.

4.2.3 Motif Network

The MotifNetwork project [Tilson et al. 2007, Tilson et al.
2007], a collaboration between RENCI and NCSA, is a soft-
ware environment to provide access to domain analysis of
genome sized collections of input sequences. The MotifNet-
work workflow is computationally intensive. The first stage
of the workflow assembles input data and processes the data
that is then fed into InterProScan service. The concurrent
executions of InterProScan are handled through Taverna and
scripts. The results of the domain “scanning” step are passed
to a parallelized MPI code for the determination of domain
architectures. The motif workflow has a parallel split and
merge paradigm where preprocessing spawns a set of paral-
lel tasks that operate on subsets of the data. Finally, the
results from the parallel tasks are merged and fed into the



multi-processor application.

Pre 30secs

Interproscan
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Figure 8: Motif workflow. A workflow used for mo-
tif/domain analysis of genome sized collections of input
sequences.

424 MEME-MAST

100 KB
BABEL 60 seconds
120 KB
@tPrep 60 seconds
140 KB

5 minutes

GAMESS 5 minutes

175 KB

10 minutes

Figure 10: Molecular Sciences workflow is used in study
of atomic structures of proteins and ligands.

An important step in the drug-design process is under-
standing the three-dimensional atomic structures of proteins

The goal of National Biomedical Computation Resource(NBCR)and ligands. Gemstone, a client interface to a set of com-

is to facilitate biomedical research by harnessing advanced
computational and information technologies. The MEME-
MAST (Figure 9) workflow deployed using Kepler [Ludscher
et al. 2005, Altintas et al. 2004] allows users to discover sig-
nals or motifs in DNA or protein sequences and then search
the sequence databases for the recognized motifs. This is
a simple workflow often used for demonstration purposes.
The workflow is a sequential workflow similar to Glimmer.

100 KB

MEME 60 seconds

150 KB

MAST 60 seconds

200 KB

Figure 9: MEME-MAST workflow. A simple demon-
stration workflow used to discover signals in DNA se-
quences.

4.2.5 Molecular Sciences

putational chemistry and biochemistry tools, provides the
biomedical community access to a set of tools that allows
users to analyze and visualize atomic structures. Figure 10
shows an example molecular science workflow. The workflow
runs in an interactive mode where each step of the workflow
is manually launched by the user once the previous workflow
task has finished. The first few steps of the workflow involve
downloading the desired protein and ligand from the Protein
Data Bank (PDB) database and converting it to a desired
format. Concurrent preprocessing is done on the ligand us-
ing the Babel and LigPrep services. Finally GAMESS and
APBS are used to analyze the ligand and protein. The re-
sults are finally visualized using the QMView which is done
as an offline process. First few steps have small data and
small compute and finally produce megabytes of data.

42.6 Avian Flu

The Avian Flu Grid project is developing a global infras-
tructure for the study of Avian Flu as an infectious agent
and as a pandemic threat. Figure 11 shows a workflow that
is used in drug design to understand the mechanism of host
selectivity and drug resistance. The workflow has a number
of small preprocessing steps followed by a final step where
upto 1000 parallel tasks are spawned. The data products
from this workflow are small.

4.2.7 caDSR

The cancer Biomedical Informatics Grid(caBIG) is a vir-
tual infrastructure that connects scientists with data and
tools towards a federated cancer research environment. Fig-
ure 12 shows a workflow using the caDSR (Cancer Data
Standards Repository) and EVS (Enterprise Vocabulary Ser-
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Figure 11: Avian Flu workflow. A workflow used in
drug design to study the interaction of drugs with the
environment has a large fan-out at the end.

vices) services [CaGrid Taverna Workflows | to find all the
concepts related to a given context. The caDSR service is
used to define and manage standardized metadata descrip-
tors for cancer research data. EVS in turn facilitates ter-
minology standardization across the biomedical community.
This workflow is predominantly a query type workflow and
the compute time is very small in the order of seconds.

10 MB

findProjects

10 MB
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10MB
findClasses
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InProjects
15MB
5 seconds findSemantic
Metadata
10MB
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Figure 12: Cancer Data Standards Repository work-
flow. A workflow primarily queries concepts related to
an input context.

4.3 Astronomy and Neutron Science

In this subsection we consider scientific workflow examples
from the astronomy and neutron science community.

4.3.1 Astronomy workflow

The goal of the Pan-STARRS’s (Panoramic Survey Tele-
scope And Rapid Response System) project [et al. 2005] is
a continuous survey of the entire sky. The data collected by
the currently deployed prototype telescope 'PS1’ will be used
to detect hazardous objects in the Solar System, and other
astronomical studies including cosmology and Solar System
astronomy. The astronomy data from Pan-STARRS is man-
aged by the teams at John Hopkins University and Microsoft
Research through two workflows. The first PSLoad workflow
(Figure 13) stages incoming data files from the telescope
pipeline and loads them into individual relational databases
each night. Periodically the online production databases
that can be queried by the scientists, are updated with the
databases collected over the week by the PSMerge work-
flow(Figure 14). The infrastructure to support the PS1
telescope data is still under development. Both the Pan-
STARRS workflows are data intensive but require coordi-
nation and orchestration of resources to ensure reliability
and integrity of the data products. The workflows have a
high degree of parallelism through substantial partitioning
of data into small subsets.
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CSV Batch CSV Batch
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LoadDB
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Figure 13: PSLoad workflow. Data arriving from
the PS1 telescope is processed and staged in relational
databases each night.
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Figure 14: PSMerge workflow. Each week, the produc-
tion databases that astronomers query are updated with
the new data staged during the week.

4.3.2 McStas workflow

Neutron science research enables study of structure and
dynamics of molecules that constitute materials. Neutron
Source SNS at Oak Ridge National Laboratory connect large



neutron science facilities that contain instruments with com-
putational resources such as the TeraGrid [Lynch et al. 2008].
The Neutron Science TeraGrid Gateway enables virtual neu-
tron scattering experiments. These experiments simulate
a beam line and enables experiment planning and experi-
mental analysis. Figure 15 shows a virtual neutron scat-
tering workflow using McStas, VASP, and nMoldyn. VASP
and nMoldyn are used for molecular dynamics calculations
and McStas is used for neutron ray-trace simulations. The
workflow is computationally intensive and currently runs on
ORNL supercomputing resources and TeraGrid resources.
The workflow’s initial steps run for a number of days and are
followed by additional compute intensive steps. The work-
flow is sequential and data set sizes remarkably small.

VASP 1200 111‘5:1()
processors
0.56MB
36 hre/l
@D ‘ : \. -
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0.56MB
MeSte 3 ln's.‘_l 28
processor

Figure 15: McStats Workflow. This workflow is used
for Neutron ray-trace simulations. The data set sizes
are remarkably small relative to compute time.

5. DISCUSSION

This paper presents workflows gathered through surveying
of six scientific domains. The survey demonstrates similari-
ties and differences of workflows along axes of structural pat-
tern, data pattern, usage, compute time and data sizes. We
summarize the results of the survey in Tables 2 and 3. The
total number of tasks, length of longest chain and widest de-
gree of parallelization describe the structure of the workflow.
The workflows in our survey vary from a handful of tasks to
thousands of components. The maximum processor width
of a task gives an indication of computational needs and can
be useful in resource planning. A number of the workflows
are simple, requiring a single processor per task. However
others, including motif, flood-plain mapping and McStats
often require multiple processors for parallel data process-
ing either in a message passing (MPI) style application or
tightly coupled parallel application. The computation and
data sizes convey a median time and size magnitude. The
majority of workflows work with megabytes to gigabytes of
data. However a few workflows such as PanSTARRS Merge
can yield gigabyte to terabyte databases as outputs.

The classification we propose can be used to study work-
flow types in greater detail. For example, Table 4 is an
attempt understand the relationship between computational
and data sizes. Our workflow survey consists of a large num-
ber of workflows that have small data sizes and these tend
to vary from taking a few seconds to minutes (e.g. LEAD

Data Mining) to hours (e.g., Storm surge) to days (e.g., Mc-
Stats). Workflows with medium to large data sets (i.e., from
megabytes to terabytes) tend to take longer time to process
from hours to days as seen by the second and third rows of
the table.

6. CONCLUSIONS

This paper reports on a survey of workflows from physical
and natural sciences that vary in structure, and computa-
tional and data requirements. The workflows vary signif-
icantly in their structure, user constraints associated with
them and environments in which they might run. Our pro-
posed workflow classification model helps us understand the
characteristics of the workflows and can serve as a founda-
tion for design of next-generation workflow technologies.
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