
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Simultaneous Confidence Bands for Monte Carlo Simulations

Permalink
https://escholarship.org/uc/item/8fj1m2rp

Author
Yang, Jinhui

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8fj1m2rp
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Simultaneous Confidence Bands for Monte Carlo Simulations

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Applied Statistics

by

Jinhui Yang

June 2021

Dissertation Committee:

Dr. James Flegal, Chairperson
Dr. Esra Kurum
Dr. Nanpeng Yu



Copyright by
Jinhui Yang

2021



The Dissertation of Jinhui Yang is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I am thrilled to take this journey from the first day as a PhD student until the

last day with this dissertation. There are so many people I would want to thank.

Great thanks to my advisor Dr. James Flegal for all the support. Dr. Flegal

provided great research opportunities with helpful advice and creative ideas. I am grateful

to Dr. Flegal for all the help throughout these years.

I would want to thank Dr. Nanpeng Yu and Dr. Esra Kurum as my disserta-

tion committee members. Special thanks to Dr. Yu who supervised me for my electric

engineering project with the encourages and guidance.

Thanks to Dr. Weixin Yao for his detailed instructions in my course work as my

graduate advisor.

I am also grateful to Dr. Gloria Gonzalez-Rivera, Dr. Subir Ghosh and Dr.

Gregory Palardy as my oral exam committee members. They supported me through my

PhD period in various ways.

I want to thank UCR Statistics Department and Graduate Division for providing

the Dean’s Distinguished Fellowship, Dissertation Fellowship, and Teaching Assistant op-

portunities together with the coursework and activities which made my PhD life educating

and colorful.

Last but not least, I am grateful to my parents for their support and encourage-

ment.

iv



To my loved ones for all the support.

v



ABSTRACT OF THE DISSERTATION

Simultaneous Confidence Bands for Monte Carlo Simulations

by

Jinhui Yang

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, June 2021

Dr. James Flegal, Chairperson

Markov Chain Monte Carlo (MCMC) methods are widely used and preferred when

the sampling distribution is intractable. In estimation problems with Monte Carlo samples,

it is critical to quantify uncertainty of estimators on some intervals since the true function

could not be obtained in most cases. Traditional pointwise confidence intervals could provide

certain coverage probability in a single point but fail to provide simultaneous coverage for

the whole function without a multiplicity correction. The Bonferroni method corrects for

multiplicity, but these conservative intervals do not achieve the desired nominal level. This

dissertation focuses on providing and quantifying the uncertainty of estimators in the form

of a confidence band (CB) to increase the reliability of the resulting inferences.

We begin with MCMC basics and point estimation methods. Then we provide

estimators for densities and general functions separately. We discuss the covariance matrix

and Central Limit Theorem as preliminary settings. Afterwards, we review pointwise and

Bonferroni methods to construct CBs. We propose three methods in calculating simulta-

neous CBs with theories and algorithms which are followed by examples to compare the
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coverage probabilities and the band widths. To provide more intuitive results, we compared

the bands with three simulation examples: AR(1) model, mixed normal distribution, and

a general function case. Then we used four real data examples: Michigan survey example,

Telescope data example, time varying model, and a Bayesian reliability model to explain

our proposed simultaneous bands.
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Chapter 1

Introduction

In statistics, estimation problems are important. Functional estimation has been

an endless topic for both frequentists and Bayesians where statistical methods for density

and functional estimation are continuously developed. In these problems, it is critical that

some measure of uncertainty is included so an independent reader can judge the quality of

estimation.

It is critical to clarify the definition of ”uncertainty” in estimation problems. We

suppose f is an arbitrary function with domain R and f can be any function of our interest

like a stock price curve varying with time. Estimation of f(x) occurs at m points on a

compact set D = [a, b] with −→w = (w1, . . . , wm)T and a = w1 < w2 < · · · < wm = b. We

want estimators f̂(wi) for f(wi) with i = 1, . . . ,m, which is a typical estimation problem.

My focus is on the critical problem of how confident we are in estimators approx-

imating the real function. A confidence interval is a range of plausible values for the real

function at a point. In our setting, the lower bound L(x) for f(x) is of form f̂(x)−ME(x)
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and the upper bound U(x) for f(x) is of form f̂(x) +ME(x) for arbitrary x where f̂(x) is

the estimator and ME(x) is the margin of error that measures the difference between the

real function and our estimator. The probability of the real function falling into the lower

and upper bounds range is called the confidence level 1− α

P
(
L(x) ≤ f(x) ≤ U(x)

)
= 1− α.

Pointwise confidence intervals create lower and upper bounds (Li, Ui) for i =

1, . . . ,m satisfying

P
(
Li ≤ f(wi) ≤ Ui

)
= 1− α for each i=1,. . . ,m.

Pointwise intervals have the coverage ability in the function value for each point. Such

pointwise intervals fail to provide the bounds that could cover all the points ”simultane-

ously”. One approach is the Bonferroni correction with the application of the Bonferroni

inequality. The Bonferroni confidence intervals satisfy

P
(
Li ≤ f(wi) ≤ Ui

)
= 1− α

m
for each i=1,. . . ,m.

Overall the intervals yield

P
(
Li ≤ f(wi) ≤ Ui for all i=1,. . . ,m

)
≥ 1− α.

While the Bonferroni interval is a way to build the intervals for the function with the

confidence level on a whole scale, it is conservative to use resulting in wide bounds. These

result from the high correlations between adjacent points in the grid. Both pointwise and
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Bonferroni intervals have been applied in cases with independent samples, but there are few

discussions in building the simultaneous confidence intervals in correlated samples (Dunn,

1958).

Our goal is to find the lower and upper bounds that satisfy

P
(
Li ≤ f(wi) ≤ Ui for all i=1,. . . ,m

)
≈ 1− α,

for correlated samples which are generated through correlated sampling from a target dis-

tribution. A popular method when a target distribution is only known up to a normalizing

constant is Markov chain Monte Carlo (MCMC). In short, MCMC simulations perform

estimation by constructing Markov chain with invariant distribution equal to the target

distribution. Then realized draws from the chain are used for univariate and multivari-

ate estimation by averaging conditional expectations or Rao-Blackwellization, importance

sampling, marginal density estimation, and functional estimation (Andrieu et al., 2003).

Marginal density estimation is a starting topic. There are several methods to

estimate a marginal density with Markov Chain strong law of large numbers (SLLN). The

true density could be approximated by a histogram (Flegal and Jones, 2010a). When the full

conditionals are available, we consider the Rao-Blackwellized estimation (Wei and Tanner,

1990).

More generally, we consider kernel density estimation (Parzen, 1962). Kernel den-

sity estimation provides an estimator for the density f(x) with the help of well-defined

kernels. One consideration about the kernel method also benefits from a bias correction

procedure (Cheng and Chen, 2019). When the second derivative f ′′(x) is not negligible in
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the bias term, a proper estimation of f ′′(x) is needed. A naive way is to estimate f ′′(x) just

from the kernel estimators which will still lead to some bias in the recurrent estimation.

Another way to correct the bias is to use some bias-reducing kernels to avoid estimating

f ′′(x) (Calonico et al., 2018).

We propose methods to evaluate the uncertainty of estimation. The usually biased

way to evaluate a density estimator is by building confidence intervals at a grid of points

in the compact set of interest. Such pointwise confidence intervals only give information

about how close the density estimator is to the true density at each single point. In order to

achieve better coverage probability on the whole scale, we propose methodology to construct

simultaneous confidence bands for the functions.

The problem then comes to find an estimator of the variance-covariance matrix

Σ, which measures the variability among grid points. The batch mean estimator could be

obtained from splitting the whole interval into several batches (Chen and Seila, 1987). With

α as the significant level, a 100(1 − α)% confidence region for θ could be given then. A

lugsail batch mean estimator was suggested to provide a new way in estimating Σ (Vats and

Flegal, 2018). Another improvement for the procedure is using Hotelling’s T-squared distri-

bution to replace the standard normal distribution in the central limit theorem (CLT). With

certain simulations, the comparisons among these improvements are given with discussions.

Evaluating uncertainty in MCMC crucially depends on the existence of a Markov chain

CLT. Estimating the asymptotic variance from such a CLT requires specilized techniques

that we also review.
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The primary focus here is on marginal density and functional estimation, where

the aim is to develop simultaneous confidence bands. That is, finding lower and upper

bounds that contain an entire function (on a compact set) with some prespecified level of

confidence. In this document, a procedure is suggested to evaluate the whole scale behavior

of estimators by constructing confidence bands. These confidence bands are built via a

parametric bootstrap procedure in conjunction with the Markov chain CLT. Estimation of

the asymptotic variance covariance matrix is critical, which is accomplished via batching

methods.

The pointwise interval is the commonly used method in estimating the uncertain-

ties for the functions to achieve the desired confidence level at each point. In building the

confidence bands, the classical Bonferroni corrected intervals were developed (Dunn, 1958).

While the Bonferroni methods could achieve the confidence level for all the points for the

independent samples, its drawbacks lie in the wide bands and non-adjustment for corre-

lated data. In MCMC, we also need to consider the correlations among the points to be

estimated.

There are increasing attentions in building confidence bands for functions to achieve

the overall coverage probabilities. A method in building simultaneous confidence bands for

the mean of functional data was stated in Degras (2017). Uniform confidence bands (same

width for each point) were discussed in Cheng and Chen (2019). The different resampling

methods to build the simultaneous regions were reviewed in Montiel Olea and Plagborg-

Møller (2019). Methods of building confidence bands for densities were discussed in Chen

(2017). These provide a well-developed theory for our approach using similar techniques.
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We propose a bias-correction method to the kernel density approach to estimate

the density and a bias-correction local linear regression method to estimate the function

with the batch mean variance-covariance matrix. The traditional bias-correction method

lacks the extension to the variance-covariance matrix estimation. With various applications

led by kernel density estimation and function estimation, there are few discussions around

how the bias-corrected kernels could contribute to evaluate the uncertainty of estimation

where our method fills the gap. With solid theoretical support and simulation studies, we

showed that the bias-corrected estimations improve empirical coverage probabilities.

When it comes to functional estimation and confidence bands building, a sugges-

tion was using a local linear regression in the functional estimation (Hastie et al., 2009). On

one side, it could predict the functional value at the point where there is no data available.

On the other side, the bias still needs to be corrected. Though this is not stated, the bias

still affects the estimation accuracy. From the foundations of local regression, we propose

a method in correcting the second derivative bias. With certain degree of polynomial and

bandwidth choice, a proper estimator for the function is given with the bias corrected.

Along with the methodology in estimating the covariance matrix, our method could build

the simultaneous confidence bands with reasonable coverage probabilities in the simulation

study.

We propose methodology to correct for multiplicity with quantile-based simula-

tions for the upper bound and lower bound in each point. The confidence bands are built

through a parametric bootstrapping procedure with a quantile-related method applied. Our

method achieves good overall coverage probability by comparing with pointwise, Bonferroni

6



and other multiplicity correction methods. The theoretical support for our methodology

is from a tube formula in Wasserman (2006), see also Montiel Olea and Plagborg-Møller

(2019). The quantile-based bootstrap band has a similar performance in building confidence

bands as ours. With a simulation study, we have shown that the approaches are identi-

cal within certain range. Another way to build simultaneous confidence regions is to find

hyperrectangular bands between pointwise intervals and Bonferroni intervals (Robertson

et al., 2020). We also include this method into the comparisons.
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Chapter 2

Point Estimation

2.1 Markov Chain Monte Carlo

To fully understand the methodology of density and functional estimation, we need

to build some knowledge of Markov Chain Monte Carlo (MCMC) and its corresponding

concepts.

In statistics, the contributions of Markovian methods can not be ignored. In time

series, models like autoregressive-moving average model are highly dependent on the prop-

erties of Markov chains. In applied fields like queuing analysis, storage system and social

science, Markovian models could provide deep insights into the business. In specific models

like linear state space model, the Markovian methods are fundamental. In our methodology

in building simultaneous confidence bands for densities and functions, Markovian methods

are critical and never too deep to learn. Whenever a current value depends on the past

value, the Markovian methods could find their opportunities.
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A Markov chain is a dependent sequence of random variables X1, X2, . . . or random

vectors X1, X2, . . . that have the property that any future Xt+1 is independent of the past

X ′s given the present Xt for any t:

P (Xt+1 = xt+1|X1 = x1, X2 = x2, . . . , Xt = xt) = P (Xt+1 = xt+1|Xt = xt),

which means that the conditional distribution of Xt+1 given X1, . . . , Xt depends only on

Xt.

If the conditional distribution of Xt+1 given Xt is same for all t, we say such

Markov chain has stationary transition probabilities. In MCMC, every Markov chain has

this property except for adaptive MCMC (Andrieu et al., 2003). Therefore the joint dis-

tribution of X1, X2, . . . , Xt is only determined by the X1 and the transition probabilities

which are the marginal distribution of X1 and the conditional distribution of Xt+1 given

Xt.

Stability is a vital and basic concept in a Markov chain. In a Markov chain,

a scalar functional is a time series, but may not be a Markov chain. We call a Markov

chain stationary if X1, the initial distribution is stationary. This is different from having

stationary transition probabilities. Strictly speaking, all the chains in MCMC are not

exactly stationary but they have stationary transition probabilities. If a Markov chain needs

to be exactly stationary, the chain must be started with simulation from the equilibrium

(invariant or stationary) distribution.

In a Markovian process, an important property is its transition ability, which

describes the motion of a Markov chain changing from one state to another. If the state

space X is countable instead of topological or general, the transition kernel is critical in
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dealing with recurrence time chains, random walk models and embedded queueing models.

In our whole dissertation, we only consider the continuous state space. Irreducibility is a

measure of how well a Markovian process communicates. This concept is well used in other

properties and important in identifying a Markov chain’s behaviors in some situations. We

assume throughout that our examples have a transition kernel and are on continuous state

spaces.

2.2 Univariate estimation

Consider a probability function π with support X ⊆ R. In most cases, π is a

probability mass function or a probability density function. Suppose g : X → R, we want

to estimate

θ = Eπg =

∫
X
g(x)π(dx).

For the Eπg estimation, a Markov chain X = {X1, X2, . . . } is constructed on X with the

invariant distribution π through Markov chain Monte Carlo (MCMC) (See e.g. Roberts

and Rosenthal (2009)). After simulating X for n steps, we consider the sample average

gn :=
1

n

n∑
i=1

g(xi).

The strong law of large number (SLLN) says, if Eπ|g| < ∞, then gn → Eπg almost surely

when n→∞. So it is natural to consider using gn to estimate Eπg.

The Monte Carlo error, ḡn−Eπg, can be approximated when a Markov chain CLT

holds as follows

√
n(ḡn − Eπg)

d−→ N(0, σ2
g), (2.1)
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as n→∞ where σ2
g ∈ (0,∞). For Markov chains, σ2

g 6= V arπg due to correlation. If there

is an estimator σ̂2
n → σ2

g , the Monte Carlo Standard Error (MCSE) is σ̂n√
n

(Jones, 2004).

Estimators for σg need to account for the inherent correlation in the Markov chain,

since generally σ2
g 6= V arπg. The most popular technique is the non-overlapping batch

means (BM) method (Flegal and Jones, 2010a). For a Markov chain X = {X1, X2, . . . , Xn},

define Yi = g(Xi)− Eπg for i = 1, . . . , n. Also define n = anbn, where an is the number of

batches and bn is the batch size. Define Ȳn = 1
n

∑n
i=1 Yi. For k = 0, . . . , an − 1, define

Ȳk =
1

bn

bn∑
i=1

Ykbn+i.

Then the BM estimator of σ2
g is

σ̂2
BM =

bn
an − 1

an−1∑
k=0

(Ȳk − Ȳn)2.

In addition, an asymptotic confidence interval for Eπg with half-width

t∗
σ̂n√
n
,

could be constructed where t∗ is a proper quantile. The CLT at (2.1) holds under a variety

of conditions, see e.g. Jones (2004).

2.3 Rao-Blackwellization

An alternative estimator could be obtained by averaging conditional expectations.

Consider a function of two variables π(x, y) and our goal is to estimate the expectation of

a function of one variable, g(x). From the Markov chain, we have the following observa-

tions: (X,Y ) = {(X1, Y1), (X2, Y2), (X3, Y3), . . . , }. Let mY (y) be the marginal density and

fX|Y (x|y) be the conditional density. We have
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Eπg =

∫ ∫
g(x)π(x, y)dxdy =

∫ [ ∫
g(x)fX|Y (x|y)dx

]
mY (y)dy.

Define

h(y) =

∫
g(x)fX|Y (x|y)dx.

Then

Eπg =

∫
h(y)mY (y)dy.

By SLLN, note that when n→∞,

hn =
1

n

n∑
i=1

h(yi) =
1

n

n∑
i=1

∫
g(x)fX|Y (x|yi)dx

a.s.−−→ Eπg,

where hn is called Rao-Blackwellized (RB) estimator of Eπg (Casella and Robert, 1996).

Our interest in RB estimators is that they motivate a similar thing for density estimation

as we will see later.

2.4 Multivariate estimation

In the multivariate situation, πd is a probability distribution with support X ⊆ Rd,

d ≥ 1. There is a πd-integrable function g : X → Rp. We are interested in estimating

θ = Eπdg. For a πd-invariant Markov chain {Xt}, an estimate for θ is θn = 1
n

∑n
t=1 Yt, where

{Yt} = {g(Xt)}. θn → θ with probability 1 as n → ∞. From the CLT, an approximate

sampling distribution for the Monte Carlo error θn− θ could be derived (Vats et al., 2019),

if there is a p× p positive definite matrix Σ so that when n→∞,
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√
n (θn − θ)

d−→ Np(0,Σ).

It is not difficult to figure out that a large n results in a small Monte Carlo error. The

appropriate n could be derived from the univariate CLT

√
n (θn,i − θi)

d−→ N(0, σ2
i ) as n→∞,

where θn,i, θi and σ2
i denote the corresponding ith components of θn, θ and ith diagonal

element of Σ.

To choose a proper n, the fixed-width sequential stopping rule is suggested in

Jones et al. (2006). For a given tolerance εi from ith component, the simulation process is

terminated the first time after n∗ ≥ 0 iterations and satisfy

t∗
σn,i√
n

+
1

n
≤ εi,

for all components i, where σ2
n,i is a strongly consistent estimator of σ2

i and t∗ is a proper

t-distribution quantile. The proper choice of n∗ saves the time effort for running the simu-

lation. However, there are some drawbacks in the application of the fixed-width sequential

stopping rule. One drawback is that the essential analysis on the choices of εi for each θn,i

requires a lot of work when the number of components p is large. Other difficulties include

the delayed termination from conservative rules, the slow mixing components and so on.

The relative standard deviation fixed-volume sequential stopping rule is suggested in Vats

et al. (2019).
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The MCMC basics and point estimation helped us to develop the estimation meth-

ods in the following chapters. We will talk more about the MCMC applications later.
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Chapter 3

Density Estimation

If we have a random variable W ∼ πd and a measurable function g : X → R, then

set V = g(W ). We want to estimate the density of V , called fV or f . For convenience, we

assume f is absolutely continuous. In general, it is impossible to calculate f directly. In

Bayesian inference, a common problem is how to estimate the marginal posterior densities.

The simulation error is routinely omitted from MCMC simulation methods currently. Our

study is to assess the simulation error to enhance the reliability of the functional inferences.

One graphical and simple way is using the histogram for density estimation. Under

the condition of Markov Chain SLLN, the histogram approximates the true density and is

easy to obtain via software.

3.1 Rao-Blackwellized estimator

A better density estimation is the nonparametric density estimate or smoothed

histogram. The estimates could derive the corresponding pointwise interval estimates which
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may lead to more computational time. Wei and Tanner (1990) provide a parametric density

estimator inspired by Rao–Blackwell estimators. Suppose X contain two variables U and V

with a target jointed distribution π(u, v). The marginal density distributions are mU and

mV . The Markov chain samples are {(U1, V1), (U2, V2), (U3, V3), . . . , (Un, Vn)}.

The expression for the margin density mU (u)

mU (u) =

∫
π(u, v)dv =

∫
fU |V (u|v)mV (v)dv = EmV [fU |V (u|v)],

indicates that mu could be estimated from Markov chain SLLN. As n→∞ for each point

u,

1

n

n∑
i=1

fU |V (u|Vi)→ mU (u),

where the conditional density fU |V (u|Vi) has to be tractable.

3.2 Kernel density estimation

Kernel density estimation (KDE) is a critical nonparametric density estimation

technique (Izenman, 1991). Consider the vector f̂n(−→w ) =
(
f̂n(w1), . . . , f̂n(wm)

)
containing

kernel density estimators (Parzen, 1962). Define the kernel density estimator

f̂n(w) =
1

nh

n∑
t=1

K

(
w −Xt

h

)
,

where K is the kernel. For a fixed h, the expected value of f̂(w) is
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E(f̂(w)) =
1

nh

n∑
t=1

E

[
K

(
w −Xt

h

)]

=
1

h
E

[
K

(
w −X1

h

)]
=

1

h

∫
K

(
w − u
h

)
f(u)du

=

∫
K(z)f(w − zh)dz.

It is obvious that f̂ is an asymptotic unbiased estimator from the fact that

E(f̂(w))→ f(w)

∫
K(z)dz = f(w) when h→ 0.

Since the bias adds inaccuracy to estimators and therefore lowers the estimation perfor-

mance, we need to correct the bias.

If the second derivative f ′′ of the true density f is absolutely continuous and

squared integrable, then a Taylor series to expand f(w − zh) about w is

f(w − zh) = f(w)− hzf ′(w) +
1

2
h2z2f ′′(w) + o(h2).

It is not difficult to see that the bias of the density estimator is

Bias(f̂(w)) =
h2

2
f ′′(w)u2(K) + o(h2), (3.1)

where u2(K) =
∫
x2K(x)dx > 0. In the meantime, the variance of the f̂(w) could be

calculated as
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V ar(f̂(w)) =
1

nh

∫
K2(z)f(w − hz)dz − 1

n

(
E(f̂(w))

)2

=
1

nh

∫
K2(z){f(w) + o(1)}dz

=
1

nh

(∫
K2(z)dz

)
f(w) + o

(
1

nh

)
=

1

nh
R(K)f(w) + o

(
1

nh

)
,

where R(g) =
∫
g2(z)dz for any integrable function g. The Mean Square Error (MSE) is

then given by

MSE(f̂(w)) = V ar(f̂(w)) +Bias2(f̂(w))

=
1

nh
R(K)f(w) +

h4

4
[f ′′(w)]2µ2

2(K) + o

(
1

nh

)
+ o(h4).

The kernel density estimator given above has the bias which could be corrected, which we

discuss later.

The problem of estimating the r′th derivative of the density f(w) is

f (r)(w) =
dr

dwr
f(w).

It is natural to use the estimator by taking derivatives of the kernel density estimator. The

form is

f̂ (r)(w) =
dr

dwr
f̂(w) =

1

nh1+r

n∑
t=1

K(r)

(
w −Xt

h

)
,

where
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K(r)(w) =
dr

dwr
K(w).

This estimator is valid for use if K(r)(w) exists and is non-zero. A common choice is

Guassian kernel since it has derivatives of all orders.

3.3 Kernels

Epanechnikov (1969) talked about the application of kernels in estimating densi-

ties. The kernel refers to a smooth function K such that

K(x) ≥ 0,

∫
K(x)dx = 1,

∫
xK(x)dx = 0, and

∫
x2K(x)dx > 0.

The main purpose for using kernels is to get the local average from weighting. The weighting

is based on the distance from each xi to the point x where we want to estimate the function.

Some kernels are common for use such as

boxcar kernel: K(x) =
1

2
I(x),

Gaussian kernel: K(x) =
1√
2π
exp

(
−x

2

2

)
,

Epanechnikov kernel: K(x) =
3

4
(1− x2)I(x),

tricube kernel: K(t) =
70

81
(1− |t|3)3I(t),
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where

I(t) =


1 if |t| ≤ 1;

0 if |t| > 1.

We will show later that the estimation depends on the choice of h, the bandwidth that

indicates that which points should be included in the computation for the local average.

3.4 Bias-reducing kernel

Jones et al. (1995) discussed their way in correcting bias in kernel density estima-

tion. While their method is a simple, two-stage multiplicative bias correction, the method

is not efficient in calculating the batch estimators and the covariance matrix.

The bias correction procedure is also discussed in the kernel density estimation

with Markov chain settings. Calonico et al. (2018) discussed the bias corrected kernel in

the density estimation. While there are widely-stated studies about the bias correction in

the kernel density estimation, we fill in the gap for applying the bias correction procedure

together with MCMC and covariance matrix estimation.

Instead of using bias-correction technique on the kernel, another method for bias

correction is applying the bias-reducing kernels. The order of a kernel, v is defined as the

order of the first non-zero moment. For example, a Guassian kernel

k2,φ(u) =
1√
2π

exp

(
−u

2

2

)
, (3.2)

is second-order kernel.
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A kernel is high-order kernel if v > 2. These kernels will have negative parts

and are not probability densities and are referred as bias-reducing kernels. For example,

fourth-order Guassian kernel is

k4,φ(u) =
1

2
(3− u2)k2,φ(u).

For a kernel density estimator

f̂n,old(w) =
1

nh

n∑
t=1

k2,φ

(
w −Xt

h

)
, (3.3)

with a 2nd order normal kernel k2,φ(u), the 2nd order derivative of (3.3) is

f̂
(2)
n,old(w) =

1

nh3

n∑
t=1

k
(2)
2,φ

(
w −Xt

h

)
. (3.4)

And we could derive

k
(2)
2,φ(u) = (u2 − 1)k2,φ(u),

so the estimator with corrected bias from (3.4) is
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f̂n(w) = f̂n,old(w)−Bias(f̂(w))

= f̂n,old(w)−
(
h2

2
f̂

(2)
n,old(w)u2(k2,φ) + o(h2)

)
=

1

nh

n∑
t=1

k2,φ

(
w −Xt

h

)
−

(
h2

2

1

nh3

n∑
t=1

k
(2)
2,φ

(
w −Xt

h

))

=
1

nh

n∑
t=1

k2,φ

(
w −Xt

h

)
−

(
1

2nh

n∑
t=1

(w2 − 1)k2,φ

(
w −Xt

h

))

=
1

nh

n∑
t=1

(1− 1

2
(w2 − 1))k2,φ

(
w −Xt

h

)

=
1

nh

n∑
t=1

1

2
(3− w2))k2,φ

(
w −Xt

h

)
.

The similar bias-corrected kernel was discussed (Jones et al., 1995).

The bias-corrected estimator is

f̂n(w) =
1

nh

n∑
t=1

k4,φ

(
w −Xt

h

)
. (3.5)

For convenience, the density estimator we used is always referred to this debiased estimator

f̂n(w) if not particularly indicated.
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3.4.1 AR(1) model example

Consider the AR(1) process defined by

Xt = φXt−1 + εt for t=1,. . . ,n, (3.6)

where εt ∼ N(0, 1). The true distribution for Xt is N(0, 1
1−φ2 ). For 200 replications and the

confidence level 1 − α = 90%. The MCMC sample length is n = 400, 000. The number of

batches is an = 400 and the batch size is bn = 1000. The densities are estimated from -10

to 10 on m = 51 points equally spaced with φ = 0.95. The bandwidth is default h = 0.3.

We used the pointwise coverage to compare different kernels.

Table 3.1: Pointwise coverage comparisons for AR(1) process using different kernels.

Kernel 4th order normal kernel 2nd order normal kernel

Average pointwise coverage 0.887 0.863

From Table 3.1, the debiased (4th order) kernel works better than the normal

kernel regarding the average pointwise coverage. We will talk more about this example

using the bandwidth selection later in this chapter.

3.5 Bias and variance for the estimator

The bias and variance for our estimator could be derived (Cheng and Chen, 2019).

Lemma 1(Pointwise bias): The bias of f̂n(w) in (3.5) is

E(f̂n(w)− f(w)) = O(h2+δ0).
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The variance is

V ar(f̂n(w)) = O

(
1

nh

)
.

Proof. Recall

f̂n(w) =
1

nh

n∑
t=1

k4,φ

(
w −Xt

h

)

=
1

nh

n∑
t=1

M

(
w −Xt

h

)
.

Then we have

E(f̂n(w)) = f(w) +
h2

2
u2(k2,φ)E(f (2)(w)) +O(h2+δ0)− h2

2
u2(k2,φ)(f (2)(w) +O(hδ0))

= f(w) +O(h2+δ0 + h2 · hδ0)

= f(w) +O(h2+δ0).

For the variance part

V ar(f̂n(w)) =
n∑
t=1

V ar

[
M

(
w −Xt

h

)]
+ 2

∑
i<j

Cov

[
M

(
w −Xi

h

)
,M

(
w −Xj

h

)]

= L1 + L2,

where
∑

i<j =
∑n

j=1

∑j−1
i=1 is the double sum.
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By parts, we have

L1 = nV ar

[
M

(
w −Xt

h

)]
=

1

nh2

{
E

[
M

(
w −Xt

h

)2
]
− E

[
M

(
w −Xt

h

)]2}

=
1

nh2

{
h

∫
f(w − zh)M2(z)dz −

(
h

∫
f(w − zh)M(z)dz

)2}

=
1

nh

(
f(w)

∫
M2(z)dz +O(h2) +O(h)

)

= O

(
1

nh

)
,

L2 = 2
∑
i<j

ri,jV ar

[
M

(
w −Xt

h

)]

=

{
V ar

[
M

(
w −Xt

h

)]}(
2
∑
i<j

ri,j

)

=

{
nV ar

[
M

(
w −Xt

h

)]}(
2

n

∑
i<j

ri,j

)

= (L1)

(
2

n

∑
i<j

ri,j

)

= O

(
1

nh

)
,

where ri,j is the correlation Cov
(
M
(
w−Xi
h

)
,M

(
w−Xj
h

))
.

The last step in the previous equation requires an assumption

2

n

∑
i<j

ri,j = O(1),
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Or equivalently

∑
i<j

ri,j = O(n).

This assumption is guaranteed from the finite covariance matrix Σ.

3.6 Bandwidth choice

When it comes to the bandwidth selection in the kernel density estimation, Kim

et al. (2016) discussed KDE with bandwidth selection with MCMC setting. Sheather and

Jones (1991) stated various ways in selecting the bandwidth in the kernel density estimation.

A kernel-based estimate of mean integrated squared error (MISE) could be ob-

tained by the asymptotic expansion (AMISE) from Sheather and Jones (1991):

AMISE(h) =
1

nh
R(K) +

1

4
h4u2

2(K)R(f ′′),

where R(g) =
∫
g2(x)dx and u2(K) =

∫
z2K(z)dz > 0.

The objective function is

ψ(h) =
1

nh
R(K) +

1

4
h4u2

2(K)Ŝ(β),

where Ŝ(β) is the kernel-based estimate of R(f ′′) using an appropriate bandwidth β. The

estimation of f ′′ is given by

f̂ (2)
n (w) =

1

nβ3

n∑
t=1

k
(2)
4,φ

(
w −Xt

β

)
.
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If β does not depend on h, the minimization of ψ is given by

h̃ =

[
R(K)

u2
2(K)Ŝ(β)

] 1
5

n−
1
5 .

To illustrate the bandwidth selection effect, we use the AR(1) example (3.6). We

compare the pointwise coverage with default h = 0.3 and optimal h = 0.162.

Table 3.2: Pointwise coverage comparisons for AR(1) model using default and selected

bandwidth h.

h 0.3 0.162

Average pointwise coverage 0.887 0.907

The average pointwise coverage from the optimal bandwidth h is larger than the

coverage with default h = 0.3. We concluded that the bandwidth selection did improve the

coverage probabilities.

In the later chapters, we will show that the pointwise bands fail to cover the

functions simultaneously and therefore introduce our simultaneous confidence bands.

27



Chapter 4

General Function Estimation

For a general function f(w), the estimation procedure is quite different while the

confidence band could be obtained similar to the kernel density estimator. We consider a

functional estimator f̂ with a certain domain in R. Again, suppose f is estimated at m

points on a compact set D = [a, b]. −→w = (w1, . . . , wm)T with a = w1 < w2 < · · · < wm = b.

The vector estimator f̂n(−→w ) =
(
f̂n(w1), . . . , f̂n(wm)

)
could be obtained via parametric and

nonparametric approaches (Wei and Tanner, 1990; Wasserman, 2006).

Functional estimation is more general than density estimation. First, the functions

are arbitrary and have fewer assumptions. For example, densities need to be non-negative

and integrated to 1. In this way, functions could have more unexpected properties (saddle

points, for example). Further, there are more model-based methods in functional estimation,

such as local linear regression, longitudinal model, and others. These methods provide a

baseline for functional estimation with different pros and cons. Besides these differences,

there is an increasing demand in evaluating functional estimators with competitive methods.
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A general method for functions is more critical in analysis and research than a density-

limited method.

The similarities density estimation and functional estimation between are still alive

The findings in the density estimation would be transported to functions without too much

effects with little obstacles for the notations and definitions. Theorems and techniques like

CLT, Metropolis-Hastings algorithm and random walk chains are also useful. With all these

challenges and opportunities, we proposed a unique methodology to build simultaneous

confidence bands for functional estimators.

4.1 Local linear regression

Local linear regression is a well-defined and popular method in the functional

estimation (Hastie et al., 2009). For a set of (xi, yi), i = 1, ..., n, we consider the following

way to construct the estimate for the target function y = f(x). For an arbitrary x0, the

point we want to estimate, consider a linear estimate

f̂(x0) = α(x0) + β(x0)x0,

where α(x0) and β(x0) are parameters based on x0. The calculation is based on the mini-

mization

min
α(x0),β(x0)

n∑
i=1

Kλ(x0, xi)(yi − α(x0)− β(x0)xi),

where
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Kλ(x0, x) = D

(
|x0 − x|

λ

)
,

and

D(t) =


3
4(1− t2) if |t| < 1;

0 otherwise.

The choice of λ is between 0 and 1 with default 0.15. The function estimate f(x0) is given

from α(x0) and β(x0) by the minimization process.

The matrix form of the minimization is plausible. Define the vector b(x)T = (1, x).

Suppose B is the n× 2 matrix with ith row b(xi)
T and W (x0) is the n× n diagonal matrix

with ith diagonal element Kλ(x0, xi). So the estimator

f̂(x0) = b(x0)T (BTW (x0)B)−1BTW (x0)−→y

=
n∑
i=1

li(x0)yi,

(4.1)

where the weights li(x0) are the mixture of the weighting kernel Kλ(x0, ·) and the least

squares operations.
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4.2 Bias

In (4.1), the constraints are
∑n

i=1 li(x0) = 1 and
∑n

i=1(xi − x0)li(x0) = 0. With

Taylor expansion, the expected value

Ef̂(x0) =

n∑
i=1

li(x0)f(xi)

= f(x0)

n∑
i=1

li(x0) + f ′(x0)

n∑
i=1

(xi − x0)li(x0) + f ′′(x0)

n∑
i=1

(xi − x0)2li(x0) +R

= f(x0) + f ′′(x0)

n∑
i=1

(xi − x0)2li(x0) +R,

(4.2)

where the remainder term R involves third and higher order derivatives and could be omitted

for convenience. On the computing aspect, with hessian function in R, the f ′′(x0) could

be estimated for each point x0. Hence we could estimate the f(x) with bias correction.

The bias-corrected estimator we use throughout this dissertation is

f̂(x0) =

n∑
i=1

li(x0)yi − f̂ ′′(x0)

n∑
i=1

(xi − x0)2li(x0), (4.3)

where f̂ ′′(x0) is an estimator for f ′′(x0) The details to obtain this estimator are in the

appendix at the end of this chapter.

4.3 Example

Consider the function

f(x) = x+ xsin(x),
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where x′s are simulated from Uniform(−2.5, 2.5) (using random walk to add correlations

to the draws). The function values are generated through yi = f(xi) + εi and the noise

is εi ∼ N(0, 0.52). The number of points to be estimated is m ∈ {40, 80, 120} which are

equally spaced between (−2, 2). The bandwidth for the kernel Kλ(x0, x) is λ = 0.15. In

each simulation, n = 20, 000 draws were generated with the number of batches an = 100

and the batch size bn = 200. The confidence level is 90%. The replicates are 200.

We compared the pointwise coverage probabilities through bias-corrected estimator

(4.3) and estimator without bias-correction (4.1).

Table 4.1: Pointwise coverage for the function x+ xsin(x) example with and without bias

correction.

m 40 80 120

With bias correction 0.943 0.951 0.953

Without bias correction 0.182 0.183 0.178

The example showed that our bias-corrected estimator achieved higher pointwise

coverage probabilities than the one without bias-correction with different m choices. So we

would use the bias-corrected estimator (4.3) afterwards.

Later we will see though the pointwise coverage looks fine even for the bias-

corrected estimator, the simultaneous coverage is beyond the desired coverage. We will

talk about more details and other confidence bands methods for this example.
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4.4 Appendix: functional estimator with bias correction

Recall the estimator (4.1) and the bias in (4.2). There are two steps to directly

estimate the second derivative f ′′(x0). The first step is to derive the first and second

derivatives of Kλ(x0, x) regarding x0 for arbitrary x. The second step is to find the closed

form of f ′′(x0).

First we will get the derivatives of Kλ(x0, xi). Recall

Kλ(x0, x) = D

(
|x0 − x|

λ

)
,

and

D(t) =


(1− |t|3)3 if |t| < 1;

0 otherwise.

So the combined form for the kernel Kλ(x0, x)

Kλ(x0, x) =


(

1− |x−x0|
3

λ3

)3
if |x− x0| < 1;

0 otherwise.

The first derivative is

K ′λ(x0, x) =
dKλ(x0, x)

dx0
=



9[1 + (x0−x)3

λ3
]2 (x0−x)2

λ3
if x− λ < x0 ≤ x;

−9[1− (x0−x)3

λ3
]2 (x0−x)2

λ3
if x < x0 < x+ λ;

0 otherwise.

The second derivative is
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K ′′λ(x0, x) =
dK ′λ(x0, x)

dx0
=



18(x0−x
λ3

)[1 + (x0−x)3

λ3
][1 + 4(x0−x)3

λ3
] if x− λ < x0 ≤ x;

18(x0−x
λ3

)[1− (x0−x)3

λ3
][−1 + 4(x0−x)3

λ3
] if x < x0 < x+ λ;

0 otherwise.

Then we rewrite f(x0) in terms of x0. Recall our estimator

f̂(x0) = b(x0)T (BTW (x0)B)−1BTW (x0)−→y .

In the estimation formula,

b(x0)T =

(
1 x0

)
,

B =



1 x1

1 x2

...
...

1 xn


= (
−→
1 ,−→x ),

where the vector −→x = (x1, x2, . . . , xn)T . For our convenience, the diagonal matrix of the

kernel Kλ(x0, xi)’s is

W (x0) =



K1

K2

. . .

Kn


,
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where Ki is a simplified version for Kλ(x0, xi) which yields

BTW (x0) =

 K1 K2 · · · Kn

x1K1 x2K2 · · · xnKn

 .

Then

BTW (x0)B =


∑
K

∑
xK∑

xK
∑
x2K

 ,

where
∑
K =

∑n
i=1Ki,

∑
xK =

∑n
i=1 xiKi and

∑
x2K =

∑n
i=1 x

2
iKi.

So the matrix multiplication inverse is

(BTW (x0)B)−1 =
1

(
∑
K)(

∑
x2K)− (

∑
xK)2


∑
x2K −

∑
xK

−
∑
xK

∑
K

 .

The vector −→y = (y1, y2, . . . , yn)T . We now have

BTW (x0)−→y =


∑
yK∑
xyK

 ,

where
∑
yK =

∑n
i=1 yiKi and

∑
xyK =

∑n
i=1 xiyiKi.

We combine the formula for b(x0)T , (BTW (x0)B)−1 and BTW (x0)−→y to get the

estimator

f̂(x0) = b(x0)T (BTW (x0)B)−1BTW (x0)y

=
1

Z
(J + L),

where
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Z = (
∑

K)(
∑

x2K)− (
∑

xK)2,

J = (
∑

x2K)(
∑

yK)− (
∑

xyK)(
∑

xK),

L = x0[(
∑

K)(
∑

xyK)− (
∑

yK)(
∑

xK)],

We can derive the estimator for the first derivative f ′(x0)

f̂ ′(x0) = −Z
′

Z2
(J + L) +

1

Z
(J ′ + L′),

where

Z ′ = (
∑

K ′)(
∑

x2K) + (
∑

K)(
∑

x2K ′)− 2(
∑

xK)(
∑

xK ′),

J ′ = (
∑

x2K ′)(
∑

yK) + (
∑

x2K)(
∑

yK ′)− (
∑

xyK ′)(
∑

xK)− (
∑

xyK)(
∑

xK ′),

L′ = (
∑

K)(
∑

xyK)− (
∑

yK)(
∑

xK) + x0[(
∑

K ′)(
∑

xyK)

+ (
∑

K)(
∑

xyK ′)− (
∑

yK ′)(
∑

xK)− (
∑

yK)(
∑

xK ′)].

Furthermore, we get the second derivative f ′′(x0) estimator

f̂ ′′(x0) =
2(Z ′)2 − Z2Z ′′

Z4
(J + L)− 2Z ′

Z2
(J ′ + L′) +

1

Z
(J ′′ + L′′),

where
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Z ′′ = (
∑

K ′′)(
∑

x2K) + 2(
∑

K ′)(
∑

x2K ′) + (
∑

K)(
∑

x2K ′′)

− 2(
∑

xK ′)2 + (
∑

xK)(
∑

xK ′′),

J ′′ = (
∑

x2K ′′)(
∑

yK) + 2(
∑

x2K ′)(
∑

yK ′) + (
∑

x2K)(
∑

yK ′′)− (
∑

xyK ′′)(
∑

xK)

− 2(
∑

xyK ′)(
∑

xK ′)− (
∑

xyK)(
∑

xK ′′),

L′′ = 2[(
∑

K ′)(
∑

xyK) + (
∑

K)(
∑

xyK ′)− (
∑

yK ′)(
∑

xK)− (
∑

yK)(
∑

xK ′)]

+ x02[(
∑

K ′′)(
∑

xyK) + 2(
∑

K ′)(
∑

xyK ′) + (
∑

K)(
∑

xyK ′′)− (
∑

yK ′′)(
∑

xK)

− 2(
∑

yK ′)(
∑

xK ′)− (
∑

yK)(
∑

xK ′′)].

After the second derivative, we have the bias-corrected estimator:

f̂(x0)− f̂ ′′(x0)
n∑
i=1

(xi − x0)2li(x0)

=
n∑
i=1

li(x0)yi − f̂ ′′(x0)
n∑
i=1

(xi − x0)2li(x0).
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Chapter 5

Central Limit Theorem and

Covariance Matrix Estimation

This chapter introduces the covariance matrix Σ estimation with the prerequi-

sites. The matrix Σ measures the variances for each point with its diagonal values and the

covariances between two points with its off-diagonal values.

We consider the estimation part first. Recall the estimator f̂ for f with the Monte

Carlo sample X1, . . . , Xn. Again, suppose f is estimated at m points on a compact set

D = [a, b]. The estimated vector is −→w = (w1, . . . , wm)T with a = w1 < y2 < · · · < wm = b.

The estimation methods are separated for the density functions and the general functions.

5.1 Estimators for functions

We will summarize the estimators for densities and general functions. First con-

sider the estimation of a density f . The estimator we use is
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f̂n(w) =
1

nh

n∑
t=1

k4,φ

(
w −Xt

h

)
,

where k4,φ is the 4th order Guassian kernel and bandwidth h is selected from an optimal

procedure.

We now consider general functional estimation. The estimator is

f̂n(w) =

n∑
i=1

li(w)Xi − f̂ ′′(w)

n∑
i=1

(Xi − w)2li(w), (5.1)

where the weights li(w) are the mixture of the weighting kernel and the least squares

operations at each Xi. The f̂ ′′(w) is the estimation for the second-order derivative f ′′(w).

5.2 Central limit theorem

The Central Limit Theorem (CLT) was discussed with Monte Carlo settings before

(Jones, 2004). For kernel density estimation, we have the following theorem.

Theorem 1 Let X = {X1, X2, . . .} be a Harris ergodic Markov chain from a probability

distribution f having support X. Suppose the corresponding cdf F (w) is absolutely contin-

uous and twice-differentiable. The density function f satisfies 0 < f(η) < ∞ and the first

derivative f ′(w) is bounded in some neighborhood of η. For the following kernel estimator

at any point w:

f̂n(w) =
1

nh

n∑
t=1

k4,φ

(
w −Xt

h

)
,

if the bandwidth h is fixed, then the following CLT holds as n→∞
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√
n(f̂n − f)

d−→ G (0,Σ) ,

where G (0,Σ) denotes a Gaussian process with mean zero and covariance Σ.

For the general function estimation, we have the following remark.

Remark 2 Let (X,Y ) = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} be a Harris ergodic Markov

chain with a target distribution y = f(x) having support X. The function f satisfies

f(η) < ∞ and the first derivative f ′(w) is bounded in some neighborhood of η. For the

following function estimator at any point w:

f̂n(w) =
n∑
i=1

li(w)Xi − f̂ ′′(w)
n∑
i=1

(Xi − w)2li(w),

in (5.1), if the bandwidth λ from the weighting kernel Kλ is fixed, the following CLT holds

as n→∞

√
n(f̂n − f)

d−→ G (0,Σ) ,

where G (0,Σ) denotes a Gaussian process with mean zero and covariance Σ.

5.3 Covariance matrix estimation

We apply the batch mean method to estimate the covariance matrix Σ (Cheng

and Chen, 2019; Politis et al., 1999; Vats et al., 2019, 2020).
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Denote n = anbn, where an is the number of batches and bn is the corresponding

batch size. For density estimations, the batch estimator f̃k(w) for batch k is

f̃k(w) =
1

bnh

bn∑
t=1

k4,φ

(
w −Xkbn+t

h

)
, for k = 0, . . . , an − 1.

For general function estimation, the batch estimator f̃k(w) for batch k is

f̃k(w) =

bn∑
t=1

lkbn+t(w)Xkbn+t − f̂ ′′(w)

bn∑
t=1

(Xkbn+t − w)2lkbn+t(w), for k = 0, . . . , an − 1.

These yield the batch estimator f̃k(
−→w ) =

(
f̃k(w1), . . . , f̃k(wm)

)
for the batch k. A batch

mean estimator of Σ is

Σ̂ =
bn

an − 1

an−1∑
k=0

(
f̃k(
−→w )− f̂n(−→w )

)(
f̃k(
−→w )− f̂n(−→w )

)T
. (5.2)

The estimator Σ̂ requires the bias correction not only overall but also within each batch,

which captures the variability from both the estimation of the function and the estimation

of the bias.

For a fixed sample size n, we should choose the number of batches an and the batch

size bn to satisfy n = anbn. This requirement is from the MCMC sample assumptions. Once

we pick the value for an, bn is then fiexed.

If an is too large, the value of bn is small so we do have enough batch data to

generate the accurate batch estimators. If bn is too large, the value for an is small, and

hence the variability of the estimator will be high. We use an =
⌊√

n
2.5

⌋
and bn =

⌊
n
an

⌋
as

the referenced values.
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Chapter 6

Confidence Intervals and Bands

To build confidence bands for densities and functions, we consider pointwise, Bon-

ferroni and simultaneous approaches. Pointwise bands are widely used to build an interval

for a functional estimate at a single point. While these are appropriate in measuring the

uncertainty at a point, pointwise bands lack the ability to capture the function values for

all the points where we are interested. Bonferroni bands are the multiplicity corrected ver-

sion of pointwise bands by considering the number of points to be estimated. However,

Bonferroni bands are conservative when there are a large number of points to be estimated.

Simultaneous bands lie between pointwise and Bonferroni methods. These methods require

simulations to determine the lower and upper bounds to achieve the desired confidence level.

6.1 Pointwise bands

Constructing pointwise confidence bands is straightforward. We are looking to

find the lower and upper bounds (Lp, Up) for the function f and the estimated vector
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−→w = (w1, . . . , wm)T such that

P (Lp(wi) ≤ f(wi) ≤ Up(wi)) = 1− α for each i=1,. . . ,m.

Suppose f̂(w) as an estimator for a function f(w) at any point w. The univariate CLT at

w is

√
n(f̂n(w)− f(w))→ N(0, σ2

f (w)) as n→∞,

where N(0, σ2
f (w)) is a normal distribution with mean 0 and the standard deviation σf (w)

(the standard deviation at w). A 100(1 − α)% pointwise confidence interval for f(w) at

point w is (
f̂n(w)− zα

2

σ̂n(w)√
n
, f̂n(w) + zα

2

σ̂n(w)√
n

)
,

where zα
2

is the upper α
2 quantile of the standard normal distribution z and σ̂n(w) is a

proper estimate for σf (w).

For wi in the estimated vector −→w = (w1, . . . , wm)T

√
n(f̂n(wi)− f(wi)) −→ N(0,Σii) as n→∞,

where f̂n(wi), f(wi) and Σii denote the corresponding ith components of f̂n(w), f(w) and

ith diagonal element of Σ.

Recall the pointwise standard error for f̂n(wi) is

σ̂i =
1√
n

√
Σ̂ii,

where Σ̂ii is the ith diagonal element of Σ̂.

A 100(1− α)% pointwise confidence interval for ith component, f(wi) of f(−→w ) is

(Lp(wi), Up(wi)) =
(
f̂n(wi)− zα

2
σ̂i, f̂n(wi) + zα

2
σ̂i

)
.
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So the pointwise band is the Cartesian product of these pointwise confidence intervals. Note

the overall coverage is

P (Lp(wi) ≤ f(wi) ≤ Up(wi)) for all i=1,. . . ,m) ≤ 1− α.

The equality holds when all the events Lp(wi) ≤ f(wi) ≤ Up(wi)’s are identical or m = 1.

The overall coverage decreases as m increases.

6.2 Bonferroni bands

The Bonferroni band is obtained from a Bonferroni multiple comparisons adjust-

ment to the pointwise band. Dunn (1958) applied the Bonferroni inequalities in building

confidence intervals to develop the Bonferroni band. We are looking to find the lower and

upper bounds (Lb, Ub) for the function f and the estimated vector −→w = (w1, . . . , wm)T such

that

P (Lb(wi) ≤ f(wi) ≤ Ub(wi)) = 1− α

m
for each i=1,. . . ,m.

For m points, a 100(1 − α)% Bonferroni confidence interval for ith component,

f(wi) of f(−→w ) is

(Lb(wi), Ub(wi)) =
(
f̂n(wi)− z α

2m
σ̂i, f̂n(wi) + z α

2m
σ̂i

)
,

where z α
2m

is the upper α
2m quantile of the standard normal distribution z. The overall

coverage is

P (Lb(wi) ≤ f(wi) ≤ Ub(wi) for all i=1,. . . ,m) ≥ 1− α.
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The equality holds when the sample are independent or m = 1. The overall coverage

increases as m increases.

6.3 Pointwise confidence bands versus simultaneous confi-

dence bands

From any methodology, we find the (1−α) confidence intervals for f(yi) is (Li, Ui).

From the pointwise method, suppose we could achieve (1−α) confidence for each point wi.

However, the coverage is called ”pointwise”, which means that the confidence we achieve is

only for a certain point.

In some cases, we want to build simultaneous confidence band for a function f(w)

on m points with bands (Ls(wi), Us(wi)) that there are approximately (1− α)r times that

f(wi) ∈ (Ls(wi), Us(wi)) for every i,

if we repeat building the confidence bands for r times. For these bands, we call them

simultaneous confidence bands.

Simultaneous confidence bands are gaining more importance recently, see e.g.

Montiel Olea and Plagborg-Møller (2019). Pointwise confidence bands are inferior in achiev-

ing the whole evaluation in a certain estimator. An estimator that could contribute to a

good coverage behaviour may be proper in some situations when we focus on certain points.

For observational functions changing over time, for example, a stock price, the

situation is quite different. For stockholders, they want to know not only the price after

3 months but also the price in 1 month, 2 months up to 36 months. If the expected price
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increases dramatically in a certain month but they fail to recognize, they will lose the oppor-

tunity to sell them and gain profits. Another example is temperature where meteorologists

need to monitor temperature in order to help predict harm that a severe temperature con-

dition could provide. For example, a dramatic increase or drop in temperature would harm

the human activities and cause economic losses. However, if meteorologists could not get

an idea about how the temperature could change in the following 3 months, they may lose

the opportunity to send warnings about the sudden change in a certain day.

6.4 Local polynomial regression and the tube formula

Wasserman suggested a method in building confidence bands for functions using

local linear regression. The idea using a tube formula inspired the methods building simul-

taneous bands (Wasserman, 2006).

Suppose we have sample values (xi, yi), i = 1, . . . , n. The linear regression model

is

yi = f(xi) + εi, i = 1, . . . , n,

where E(εi) = 0 and V ar(εi) = σ2. We want to estimate the function value f at x. Let p

be the degree of polynomial which is used later (Fan, 1992). The weight function at xi is

wi(x) = K

(
xi − x
h

)
,

where h is the bandwidth and the kernel K is the tricube kernel

K(t) =
70

81
(1− |t|3)3I(t),
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where

I(t) =


1 if |t| ≤ 1;

0 if |t| > 1.

Define the polynomial matrix

Xx =



1 x1 − x · · · (x1−x)p

p!

1 x1 − x · · · (x2−x)p

p!

...
...

. . .
...

1 xn − x · · · (xn−x)p

p!


,

and Wx be the n× n diagonal matrix with ith diagonal component wi(x). The estimate is

given by the following linear combination

f̂n(x) =

n∑
i=1

li(x)yi,

where l(x)T = (l1(x), . . . , ln(x)) and

l(x)T = et1(XT
xWxXx)−1XT

xWx,

for e1 = (1, 0, . . . , 0)T .

The choice of the bandwidth h could be obtained from cross-validation on the

minimization of loss function. On one side, it is a proper way to get an optimal h. On

another side, the cross-validation process takes more computing time. The leave-one-out

cross-validation score is
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cv(h) = R̂(h) =
n∑
i=1

(yi − f̂−i(xi))2,

where f̂−i(xi) is the estimator obtained by omitting the ith pair (xi, yi).

The next step is to estimate the variance σ2. We noticed that σ2 increases with x

which means that the data are heteroscedastic. So the nonconstant variance is considered.

We assume

yi = f(xi) + σ(xi)εi.

At first, we estimate f(x) with f̂n(x) provided before. Then define Zi = log(yi − f̂n(xi))
2.

We regress zi’s on xi’s with the same nonparametric method to get an estimate q̂(x) of

log σ2(x). So we have an estimate

σ̂2(x) = eq̂(x).

Then we consider building the confidence bands. An approximate confidence band

for f(x) is

B(x) = f̂n(x)± cσ̂(x)||l(x)||,

for c ≥ 0 and a ≤ x ≤ b where || · || is a L2 norm. We suppose that σ is known and have

the following formula
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P
(
E(f̂n(x)) /∈ B(x) for some x ∈ [a, b]

)
= P

(
maxx∈[a,b]

|f̂n(x)− E(f̂n(x))|
σ||l(x)||

> c
)

= P
(
maxx∈[a,b]

|
∑

i εili(x)|
σ||l(x)||

> c
)

= P
(
maxx∈[a,b]|W (x)| > c

)
,

where W (x) =
∑n

i=1 ZiTi(x), Zi = ε
σ ∼ N(0, 1) and Ti(x) = li(x)

||l(x)|| . The W (x) is a Guassian

process.

The probability is shown by a tube formula (Sun and Loader, 1994)

P
(
maxx|

n∑
i=1

ZiTi(x)| > c
)
≈ 2(1− Φ(c)) +

κ0

π
e−

c2

2 ,

where c is given by the following formula

2(1− Φ(c)) +
κ0

π
e−

c2

2 = α, (6.1)

and Φ(·) is a cdf of a standard normal distribution and

κ0 =

∫ b

a
||T ′(u)||du,

where T (u) = (T1(u), ..., Tn(u)) with Ti(u) = li(u)
||l(u)|| and T ′(u) = (T ′1(u), ..., T ′n(u)) with

T ′i (u) = ∂Ti(u)
∂u .

The value of κ0 could be approximated by

κ0 =
s∑
i=1

∫ vi

vi−1

||T ′(u)||du ≈
s∑
i=1

||T (vi)− T (vi−1)||.

If [a, b] could be partitioned into a = v0 < . . . < vs = b, then the L2 norm could be obtained

by the ”Composite Simpson’s 3/8 rule” (Matthews, 2008).
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6.5 Methods for simultaneous bands

From our literature review chapter, we summarized the existing ways to build

simultaneous bands. The tube method is the key in the development of these methods

(Wasserman, 2006). In general, there are two ways to estimate c from (6.1): Monte Carlo

Quantile methods and Quasi Monte Carlo methods.

The Monte Carlo Quantile methods are resampling methods that obtain Monte

Carlo draws from a multivariate (MVT) normal distribution with mean estiamtor and the

variance-covariance matrix. Proper quantiles are calculated from the draws to obtain the

lower and upper bounds. A typical method is Supt method as in Montiel Olea and Plagborg-

Møller (2019).

Quasi Monte Carlo methods are under the assumption that the simulated draws

are from the MVT normal distribution and the confidence bands can then be generated to

approximate the desired probability. A typical method is the optimization method which

we will discuss later in Robertson et al. (2020).

6.6 Component-wise simultaneous confidence bands

Now we introduce a new way to build simultaneous confidence bands instead of

confidence intervals to achieve a better coverage for the whole density. To construct point-

wise interval estimates for the kernel estimators via the batch means procedure is quite

straightforward. But the proportion of confidence bands which could cover the density

curve of f approaches 0 as m increases. It is also not appropriate to use the multiplicity

corrections. For example, Bonferonni bands become wider as m increases.
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Our goal is to develop functional confidence bands with the entire true density f

within the bands given a level of confidence. From our previous discussion, we introduce

the true multivariate nature of estimation. We assume a Markov CLT by the Monte Carlo

error, f̂n(−→w )− f(−→w ). There is a m×m positive definite matrix Σ satisfying

√
n
(
f̂n(−→w )− f(−→w )

)
d−→ Nm(0,Σ), (6.2)

when n→∞. The estimation of Σ is necessary in the application of CLT in (5.2). Although

the computing procedure is fixed with even moderate m or n. Since the calculations of the

batch type estimators in our work are more than 200 times faster in the similar dimension

problems, our estimators are more appropriate (Liu and Flegal, 2018).

Denote n = anbn, where an is the number of batches and bn is the corresponding

batch size. Define estimator f̃k(w) for the batch k at a random point w. A batch mean

estimator of Σ is

Σ̂ =
bn

an − 1

an−1∑
k=0

(
f̃k(
−→w )− f̂n(−→w )

)(
f̃k(
−→w )− f̂n(−→w )

)T
. (6.3)

We want to build simultaneous 1− α confidence bands for f which means that we want to

find a bunch of lower bounds Li and upper bounds Ui for i = 1, . . . ,m such that

P
(
f(wi) ∈ [Li, Ui] for every i=1,. . . ,m

)
≈ 1− α.

We proposed a quantile-based method in building simultaneous confidence bands. The

bands were proved equal to the supt method (which will be discussed in the next section)

asymptotically. The details are in the appendix section.
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Algorithm 1. Component-wise simultaneous method

1: Compute the variance-covariance estimate Σ̂.

2: Draw an i.i.d normal vectors V̂ (l) ∼ Nm(0m, Σ̂), l = 1, . . . , an.

3: Samples T (l) = (f̂n(w1) + c(l)σ̂1, . . . , f̂n(wm) + c(l)σ̂m) where c = V̂
(l)
k σ̂k

−1 and k =

argmax|V̂ (l)
j σ̂j

−1| for each l.

4: Ĉ = Xmj=1[Tj,α/2, Tj,1−α/2] where Tj,τ is the empirical τ quantile of Tj , j = 1, . . . ,m.

6.7 Supt simultaneous confidence bands

For any given c > 0, the confidence band is

B̂(c) = [f̂n(w1)−σ̂1c, f̂n(w1)+σ̂1c]×[f̂n(w2)−σ̂2c, f̂n(w2)+σ̂2c]×· · ·×[f̂n(wm)−σ̂mc, f̂n(wm)+σ̂mc].

For the true function vector f(−→w ) =
(
f(w1), . . . , f(wm)

)
,

P
(
f(−→w ) ∈ B̂(c)

)
→ P

(
max

j=1,...,m
|Σ−1/2
jj Vj | ≤ c

)
,

where V ∼ (V1, . . . , Vm)′ ∼ Nm(0m,Σ) and Σjj is the jth diagonal element of Σ. Define the

ζ-quantile of the previous random variable as a function of the variance-covariance matrix

Σ:

qζ(Σ) = Qζ
(

max
j=1,...,m

|Σ−1/2
jj Vj |

)
. (6.4)

We obtain the sup-t band by choosing c = q1−α(Σ) (the sup-t critical value), yielding a

simultaneous coverage probability of precisely 1 − α. The algorithm for Supt band is as

follows.
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Algorithm 2. Supt simultaneous band

1: Compute the variance-covariance estimate Σ̂.

2: Draw W i.i.d normal vectors V̂ (l) ∼ Nm(0m, Σ̂), l = 1, . . . ,W .

3: Define q̂1−α as the empirical 1− α quantile of maxj |Σ̂−1/2
jj V̂

(l)
j | across l = 1, . . . ,W .

4: Ĉ = B̂(q̂1−α) = Xmj=1[f̂n(wj)− σ̂j q̂1−α, f̂n(wj) + σ̂j q̂1−α].

The algorithms above provide a nice setup to validate our methodology since it

has solid theories and well-defined metrics. So the next step is to use some simulations to

check whether our component-wise confidence bands and the Supt bands are identical or

not.

6.8 Optimization method

A Quasi Monte Carlo method to build simultaneous confidence bands is to find

hyperrectangular regions between pointwise bands and Bonferroni bands (Robertson et al.,

2020). Since this is a method that optimizes the confidence region, we call it an ”optimiza-

tion” method.

The approach is to consider hyperrectangular regions CLB ⊆ CUB where CLB has

coverage no greater than 1 − α while CUB has coverage at least 1 − α. There exists some

hyperrectangular region, Cα, between these, CLB ⊆ Cα ⊆ CUB, which will have coverage

1− α.
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Figure 6.1: Simultaneous confidence interval visualization for the optimization method.
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For z > 0, consider the hyperrectangular confidence regions of the form

CSI(z) = Xmi=1

[
f̂n(wi)− zσ̂i, f̂n(wi) + zσ̂i

]
,

Setting z = zα
2

gives pointwise (uncorrected) intervals that simultaneously have coverage

no greater than 1−α as CLB := CSI(zα
2
). With z = z α

2m
, we have the Bonferroni-corrected

hyperrectangular region that has coverage at least 1− α and set CUB := CSI(z α
2m

).

The idea is to find z∗ such that zα
2
≤ z∗ ≤ z α

2m
and CSI(z

∗) has coverage 1 − α.

We start simulating U ∼ Nm(f̂n(−→w ), Σ̂). It is easy to see P (U ∈ CLB) ≤ 1 − α and

P (U ∈ CUB) ≥ 1− α. As Pr(U ∈ CSI(z)) is strictly increasing as z increases, we then use

the bisection method between zα
2

and z α
2m

to find z∗ such that Pr(U ∈ CSI(z∗)) ≈ 1− α.

Algorithm 3. Optimization method

1: Compute the variance-covariance estimate Σ̂.

2: Draw W i.i.d normal vectors V̂ (l) ∼ Nm(f̂n(−→w ), Σ̂), l = 1, . . . ,W .

3: Find z∗ in the interval [zα
2
, z α

2m
] such that Pr(U ∈ CSI(z∗)) ≈ 1− α.

4: Ĉ = Xmi=1[f̂n(wi)− z∗σ̂i, f̂n(wi) + z∗σ̂i].

This method combined the properties of pointwise and Bonferroni approaches

to find confidence regions with a confidence level 1 − α. With certain assumptions, the

confidence level is specified and guaranteed. The drawback about the running time for

applying this method is huge if there are many points to be estimated. More examples will

be given in the following chapters.
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6.9 Confidence band comparison metrics

We compare various confidence bands using a number of metrics in a variety of

simulation examples and real data analysis. We consider confidence bands (Li, Ui) for

i = 1, . . . ,m. If the simulation is repeated r times and the bands cover the true function a

out of r times simultaneously, we call the coverage probability is Cprob = a
r .

Monte Carlo standard error (MCSE) is an estimate of the inaccuracy of Monte

Carlo samples. If the confidence level is 1 − α, the Monte Carlo standard error for a

confidence band with coverage probability Cprob is

√
(1− Cprob)Cprob

r
.

If the desired coverage probability 1 − α is within 1.96 ×MCSE (with 90% confidence)

from the coverage probability Cprob, the average coverage is regarded as reasonable.

For example, if confidence level is 1 − α = 0.9 and the simulation time r = 200,

the Monte Carlo standard error for a coverage probability Cprob = 0.92 is 0.019. Since the

desired coverage 90% is in the confidence interval

[0.92− 1.96× 0.019, 0.92 + 1.96× 0.019] = [0.882, 0.958].

So this confidence band has reached the desired coverage 90% with certainty accuracy.

The average width for confidence bands (Li, Ui) is the averaged width along all

the points
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1

m

m∑
i=1

(Ui − Li).

If we set the pointwise method width (Up(wi)−Lp(wi)) as reference. Bonferroni confidence

bands are (Lb(wi), Ub(wi)). The average of ratios from Bonferroni bands’ widths to pointwise

bands’ widths at each point is called the relative width for Bonferroni methods

1

m

m∑
i=1

Ub(wi)− Lb(wi)
Up(wi)− Lp(wi)

.

6.10 Correlated points simulation procedure

In the real world, data can possibly be correlated. Our methodology also targets

at building confidence bands for dependent dataset. With high demands and needs for

motivating the real data experiments, we need to simulate correlated x′s. In the future

simulation study, we want our functional observations to be correlated. However, from

the level of function values, it is difficult to achieve this. So with the help of Metropolis-

Hastings algorithm listed below, we could simulated the correlated x′s and then generate

the function values with these x′s. Then the function values are correlated. Since we want

to simulated x′s, the x′s should be correlated from nature of MCMC methods. We will

apply the random walk chains method to simulate the distribution Uniform(a, b). In the

statistical fields where the equilibrium (invariant, stationary) distribution is a posterior

distribution such as Bayesian inference, there is a great need for MCMC methods.

Suppose we want to simulate draws from denstiy function f(·). We need to con-

struct a suitable Markov chain with f as its stationary distribution. A critical problem is
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that we could only observe serially dependent t observations from {Xt}. The algorithm is

given below.

Algorithm 4 Metropolis-Hastings algorithm

1: Setting X0 = x0.

2: For t = 1, . . . , n, sample a candidate value X∗ ∼ g(·|xt−1) where g is the proposal

distribution.

3: Compute the MH ratio R(xt−1, X
∗)

R(xt−1, X
∗) =

f(x∗)g(xt−1|x∗)
f(xt−1)g(x∗|xt−1)

.

4: Set

Xt =


x∗ w.p min{R(xt−1, X

∗)};

xt−1 otherwise.

In our case, the function f(·) is Uniform(a, b). We generate X∗ such that ε ∼ h(·)

and set X∗ = Xt−1 + ε, then g(x∗|xt−1) = h(x∗ − xt−1). The common choices of h(·) are

symmetric mean 0 with a scale parameter σ, for example Uniform(−σ, σ) and N(0, σ). We

use h(·) = N(0, σ) with a reasonable σ.

With such h(·), the MH ratio is

R(xt−1, X
∗) =

f(x∗)

f(xt−1)
= I(a ≤ x∗ ≤ b)I(a ≤ xt−1 ≤ b).

So the algorithm is specified as follows.
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Algorithm 5 Random walk chain specified

1: Let x0 = a+b
2 .

2: For t = 1, . . . , n, a candidate x∗ = xt−1 + ε, where ε ∼ N(0, σ).

3: Simulate u ∼ Uniform(0, 1). If u < R(xt−1, X
∗), xt = x∗. Else xt = xt−1.

This procedure of generating x′s is well-defined and could provide correlated draws.

With the correlated x′s, we could generate the corresponding functional values.

6.11 Simulation example

In order to get a sense of how our method could be applied in building confidence

bands for functions, we will look at the simulations for some smooth functions. Consider

the target function

f(x) = 0.3 exp(x) + 2 sin(x)− 2x,

where x′s are simulated from Uniform(−1, 1) (using random walk to expand correlations

to the draws). We generate the sample function values yi’s by yi = f(xi) + εi with the noise

εi ∼ N(0, 0.52). The number of points to be estimated is m ∈ {10, 20, 40, 80} and the points

are equally spaced between (−0.8, 0.8). The bandwidth parameter for the kernel Kλ(x0, x)

is λ = 0.15 and confidence level is 1−α = 90%. The simulation is replicated for 200 times.

Tables 6.1-6.3 and Figure 6.4 show the simulation results.
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Figure 6.2: Example for comparing different confidence bands.
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Table 6.1: General function example: coverage probability comparisons among different

methods.

m 10 20 40 80

Pointwise 0.335 0.255 0.16 0.13

Bonferroni 0.92 0.93 0.955 0.97

Component-wise 0.885 0.9 0.94 0.94

Optimization 0.92 0.92 0.945 0.95

Supt 0.89 0.915 0.94 0.925

Table 6.2: General function example: average widths of bands comparisons among different

methods.

m 10 20 40 80

Pointwise 0.044 0.044 0.044 0.044

Bonferroni 0.069 0.075 0.081 0.086

Component-wise 0.067 0.073 0.077 0.079

Optimization 0.068 0.074 0.078 0.08

Supt 0.068 0.073 0.077 0.079

Table 6.3: General function example: relative widths of bands comparisons among different

methods.

m 10 20 40 80

Pointwise 1 1 1 1

Bonferroni 1.566 1.707 1.838 1.962

Component-wise 1.532 1.666 1.759 1.804

Optimization 1.557 1.682 1.775 1.823

Supt 1.546 1.674 1.765 1.807

From Table 6.1, when number of grid points m is small as 10 or 20, the Bonferroni

method coverage is reasonable as the simultaneous methods. The confidence interval for

Bonferroni method coverage probability 0.93 when m = 20 is [0.895, 0.965] where the desired

coverage is near the interval boundary. As m increases to 40, Bonferroni and simultaneous
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methods depart from the desired coverage probability of 90%. The coverage probabilities

for simultaneous are also conservative probably due to an improper bandwidth choice λ.

When m = 80, the Bonferroni method becomes too conservative to provide the

right coverage with coverage probability confidence interval [0.946, 0.994], which is extremely

far from the desired probability 90%. The simultaneous method like supt method (coverage

probability: 0.925) can still capture the right coverage with MCSE 0.019 and confidence

interval [0.888, 0.962]. Overall, as m increases, the pointwise method coverage becomes

smaller from the lack of multiplicity correction and fails to provide the desired coverage.

From Tables 6.2 and 6.3, the Bonferroni bands become wider relatively as m

increase. For example, when m = 10, Bonferroni band is 1.2% wider than Supt band.

When m = 80, Bonferroni band is 8.6% wider than Supt band.

Overall we inferred that the simultaneous bands become relatively narrower com-

pared to Bonferroni bands as the number of points m increase. When the number of grid

points m is large, the Bonferroni bands are too conservative to use. As expected, pointwise

bands continue to lose the integrity in covering the whole function as m increases. We will

deliver more examples to compare the confidence bands later.

6.12 Pros and cons for Wasserman’s method

In Section 6.4, Wasserman provided a way in building confidence intervals for func-

tional estimates. This methods provide a well-defined procedure for estimating functions

and giving confidence bands. The techniques in the procedure are fully developed with solid

theories. If we aim to build confidence bands for functions that do not require predictions
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on the unknown points, Wasserman’s method is ready to go. The most important contri-

bution of Wasserman’s method is about the tube formula which is the fundamental of the

simultaneous bands.

Here are some drawbacks for this approach. At first, the approach could only

estimate the function value f(x0) when there are some observations at x0. When it comes

to predictions for some arbitrary point x∗ where there is no such y observed at x∗, the

approach will be out of use. Our proposed method could provide estimates and build

confidence bands for any point x∗ even we do not have observations at x∗.

Furthermore, the computing load for Wasserman’s method is high. Through the

whole methodology, the cross-validation for choosing h, estimating κ and finding the root of

equation (6.1) are the time consumed. Since these steps could not be avoided, the running

time for the procedure is long. With some simulations, our proposed method could obtain a

shorted runtime and hence achieved a computing efficiency. Another drawback for Wasser-

man’s method is about the estimation for the L2 norm of a function. Its approximation

accuracy varies. The performance of estimation and coverage will be affected by the way

of approximation. Overall our methodology outperformed the Wasserman’s method in the

three aspects above.

6.12.1 Example

To illustrate the differences among different methods, we use the data from 5.59 Ex-

ample (LIDAR) (Wasserman, 2006). The data is heteroscedastic with 221 paired (xi, yi)’s.

We use the suggested h = 37 and p = 1 for their method.
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We denote the true function f(x) by the Nadaraya–Watson kernel estimator

f(x) =
n∑
i=1

Li(x)yi,

where

li(x) =
K(x−xih )∑n
i=1K(x−xih )

.

The kernel K is defined before and h = 20. We simulate from this function using

yi = f(xi) + e(xi),

where the noise is

e(u) ∼



Uniform(−0.03, 0.03) if u < 450;

Uniform(−0.08, 0.08) if 450 ≤ u < 600;

Uniform(−0.2, 0.2) others.

The x′s are simulated from Uniform(380, 730) (using random walk from Algo-

rithm 5 to get correlated samples). The number of points to be estimated is m = 10 and

the points are equally spaced between (480, 630). The bandwidth parameter for the kernel

Kλ(x0, x) is λ = 0.2. The replicates are 100 and the confidence level is 80%. The parameters

we used are n = 20, 000, the number of batches an = 200 and the batch size bn = 100.

From Table 6.4, the local polynomial regression procedure proposed by Wasserman

has the coverage 0 for different m choices so this procedure could not reach the desired
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Figure 6.3: Wasserman’s example: simulated data and the real data.

Table 6.4: Total coverage probability comparisons for Wasserman’s method with 80% con-

fidence level

m 10 40

Wasserman 0 0

Pointwise 0.44 0.29

Bonferroni 1 1

Component-wise 1 0.97
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probability 80%. While the Bonferroni and Component-wise methods are conservative

to use, we will investigate more with examples. Though the estimation procedure from

Wasserman provided theoretical support for the simultaneous bands, we would keep using

our functional estimators described in the general function estimation chapter.

We could tell that our simultaneous methods have higher coverage probabilities

over Wasserman’s method with accurate function estimators and wider band widths.

6.13 Appendix: asymptotic equivalence between component-

wise and Supt methods

To show the asymptotic equivalence of component-wise (algorithm 1) and Supt

(algorithm 2) methods, we will have several settings. In algorithm 2, we denote

d = max
j
|Σ̂−1/2
jj V̂

(l)
j |,

across l = 1, . . . , N in step 3. In step 4, the upper and lower bound is

(f̂n(wj)− σ̂jd(l)
1−α, f̂n(wj) + σ̂jd

(l)
1−α),

for each j. In algorithm 1, we have

(Tj,α/2, Tj,1−α/2) = (f̂n(wj) + c
(l)
α/2σ̂j , f̂n(wj) + c

(l)
1−α/2σ̂j),

for arbitrary j. It is obvious that c(l) has a normal distribution with mean zero.
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Suppose z is a random variable having a normal distribution N(0, σ) and z∗ = |z|

as another variable with the absolute value. For a certain 100(1− α/2)th percentile for z,

z1−α/2 ,it is easy to prove

z1−α/2 = |z|1−α.

Similarly,

zα/2 = −|z|1−α.

If N is large enough, for the absolute values d(l) = |c(l)| should have the following properties

c
(l)
α/2 = −d(l)

1−α,

and

c
(l)
1−α/2 = d

(l)
1−α.

Thus the asymptotic bounds are equal for these two algorithms.

For visualization using the following two-component mixed normal distribution

function

0.5N(−1, (2/3)2) + 0.5N(1, (2/3)2), (6.5)

The number of points to be estimated is m = 20 grid point equally spaced along (−2, 2)

from different methods with confidence level 90%. In each simulation, n = 400, 000 draws

were generated. With the number of batches an = 400 and the batch size bn = 1000. The
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methods.

number of draws for d(l) and |c(l)| is 400. The Quantile-Quantile (QQ) probability plot for

d(l) and |c(l)| is shown in Plot 6.4.
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Chapter 7

Simulation Examples

To explore the differences in the pointwise, Bonferroni and simultaneous confidence

bands, several simulation experiments were conducted. With proper parameters and solid

assumptions, our method achieved a good overall coverage behavior with more accurate

results compared to pointwise and Bonferroni approaches.

For simulation studies, to create the dependent functional values f(x), a prac-

tical way is to create a correlated vector of x′s. With the Metropolis-Hastings algorithm

(Metropolis et al., 1953), we use the random walk chain method to achieve this aim. That is,

the simulated draws from the procedure, x′s, are correlated and hence so are the correspond-

ing function values. Simulation studies include AR(1) model, mixed normal distribution for

densities, and a general function example.
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Figure 7.1: AR(1) Process kernel density estimate with 90% confidence bands.

7.1 Density estimation example: AR(1) model

Consider an autoregressive process of order 1 or AR(1), i.e.

Xi+1 = φXi + εi, for i = 1, 2, . . .,

where εi are i.i.d N(0, 1). This Markov chain is geometrically ergodic for |φ| < 1. The

estimated marginal density f of X is N(0, 1
1−φ2 ). We aim to compare the performance of

our procedure among different methods and the one with bias correction. Now we estimate

f , φ = 0.95 and m = 51 equally spaced skeleton points on [−10, 10]. The selected bandwidth

is h = 0.162. Since we have already known the true marginal density f , we could calulate
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the overall coverages for confidence bands. We aim to compare the behaviors of pointwise

band, Bonferroni band and various simultaneous bands.

The result for a single simulation is given in Figure 7.1a. The solid black line is the

kernel density estimate of f from n = 400, 000 Markov chain draws and the thin grey lines

are kernel density estimates of f from the first 100 batches (an = 400) of size bn = 1000.

The simulation error could be estimated through Σ in (5.2) from the variability in the batch

estimates. Then the pointwise confidence intervals and component-wise confidence bands

could be constructed with (1 − α) = 0.9. These are shown in Figure 7.1b. The pointwise

band had the desire coverage around 90% at each point while the component-wise band

had higher coverage at each point which led to the simultaneous coverage over the whole

density.

The simulation process is repeated 200 times for performance evaluation. Figure

7.1b plots y versus with observed pointwise coverage probability on the right axis with small

open circles.

Table 7.1: AR(1) example: coverage probabilities and relative widths.

Method Pointwise Bonferroni Component-wise Optimization Supt

Coverage 0.095 0.93 0.895 0.89 0.885

Relative Width 1 1.882 1.787 1.791 1.79

In Table 7.1, the confidence bands from pointwise bands result in 37 of 200 (9.5%)

that contain the entire true known density. It is expected since there is no multiplicity

correction for the pointwise bands. In the mean time, the component-wise bands contain

the density function in 179 out of 200 simulations (89.5%) withMCSE = 0.022 and coverage

confidence interval [0.853, 0.937] which contained the desired 90% coverage. The Bonferroni
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bands contain the density function in 186 out of 200 simulations (93%) with MCSE =

0.022 and coverage confidence interval [0.895, 0.965] where 90% is included though. From

the widths comparisons, the Bonferroni bands are conservative whose widths are 5.3%

wider than Component-wise bands and 88.2% wider than the pointwise bands. All three

simultaneous methods have similar relative widths.

7.2 Density estimation example: three-component mixed nor-

mal distribution

Consider the following three-component mixed normal distribution function

0.2N(0, (1)2) + 0.2N(0.5, (2/3)2) + 0.6N(13/12, (5/9)2), (7.1)

where N(µ, σ2) is a normal distribution function with mean µ and standard deviation σ. In

order to get correlated draws, the data were sampled from Metropolis–Hastings algorithm.

The goal is to build the confidence bands for m ∈ {20, 40, 80, 120} grid point equally spaced

along (−1, 1.5) from different methods with confidence level 90%.

In each simulation, n = 400, 000 draws were generated. With the number of

batches an = 400 and the batch size bn = 1000, the density estimator f̂n(−→w ) and the batch

estimators {f̃k(−→w ), k = 1, . . . , an} were calculated. The optimal bandwidth is h = 0.042.

The simulation was repeated for 200 replications.
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Table 7.2: Three-component mixed normal density example: overall coverage probability

comparisons among different methods.

m 20 40 80 120

Pointwise 0.08 0.03 0.01 0.01

Bonferroni 0.895 0.885 0.935 0.96

Component-wise 0.885 0.885 0.865 0.89

Optimization 0.88 0.875 0.89 0.91

Supt 0.88 0.875 0.88 0.91

Table 7.3: Three-component mixed normal density example: average widths of bands com-

parisons.

m 20 40 80 120

Pointwise 0.009 0.009 0.009 0.009

Bonferroni 0.015 0.016 0.017 0.018

Component-wise 0.015 0.016 0.016 0.017

Optimization 0.015 0.016 0.016 0.017

Supt 0.015 0.016 0.016 0.017

Table 7.4: Three-component mixed normal density example: relative widths of bands com-

parisons.

m 20 40 80 120

Pointwise 1 1 1 1

Bonferroni 1.707 1.838 1.962 2.031

Component-wise 1.692 1.81 1.868 1.887

Optimization 1.697 1.814 1.874 1.894

Supt 1.697 1.814 1.875 1.893

From Table 7.2, when the number of grid points m is not large (20 or 40), the

Bonferroni method achieves the desired coverage 90% as do simultaneous bands. As m

increases to 80, Bonferroni band starts showing conservation with coverage probability
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0.935. This coverage probability has MCSE 0.017 and a confidence interval [0.901, 0.969]

which indicates that Bonferroni band is too conservative to achieve the 90% simultaneous

coverage. The Component-wise band has the coverage probability 0.865 with MCSE 0.024

with confidence interval [0.818, 0.912] which contains the desired probability. When m =

120, the Bonferroni band has a coverage 0.96 with MCSE 0.014 and a confidence interval

[0.933, 0.987] which is far away from the desired coverage 90%. For the pointwise band, the

coverage probability decreases from 0.08 to 0.01 as m increases from 20 to 120 as expected.

From Tables 7.3 and 7.4, the Bonferroni band is 70.7% wider than pointwise band

and only 0.6% wider than optimization band as a small m = 20. However, as m increases

to 120, the Bonferroni band is 103.1% wider than pointwise band and nearly 7.2% wider

than optimization band.

Overall, for different m choices, our simultaneous confidence bands have a consis-

tent coverage probabilities near 90%. The Bonferroni band starts being conservative as m

increases from 80.

7.3 General function example

For the function

f(x) = x+ xsin(x),

where x′s are simulated from Uniform(−2.5, 2.5) (using random walk to add correlations

to the draws) and sample function values y′is are simulated through yi = f(xi) + εi with

the noise εi ∼ N(0, 0.52). The number of points to be estimated is m ∈ {40, 80, 120} and

the points are equally spaced between (−2, 2). The bandwidth for the kernel Kλ(x0, x) is
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λ = 0.15. In each simulation, n = 20, 000 draws were generated. The number of batches

an = 100 and the batch size bn = 200. The confidence level is 1−α = 90%. The simulation

was repeated for 200 replicates.

Table 7.5: General function x+ xsin(x) example: coverage probabilities of different confi-

dence bands.

m 40 80 120

Pointwise 0.17 0.155 0.155

Bonferroni 0.89 0.935 0.95

Component-wise 0.84 0.87 0.9

Optimization 0.875 0.89 0.905

Supt 0.86 0.9 0.88

Table 7.6: General function x + xsin(x) example: average widths of different confidence

bands.

m 40 80 120

Pointwise 0.081 0.08 0.08

Bonferroni 0.149 0.158 0.163

Component-wise 0.143 0.146 0.146

Optimization 0.145 0.148 0.148

Supt 0.144 0.147 0.147

Table 7.7: General function x + xsin(x) example: relative widths of different confidence

different bands.

m 40 80 120

Pointwise 1 1 1

Bonferroni 1.838 1.962 2.031

Component-wise 1.781 1.814 1.826

Optimization 1.781 1.838 1.854

Supt 1.769 1.825 1.837
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From Table 7.5, when m = 40, the confidence interval for component-wise coverage

is [0.789, 0.891] with MCSE 0.026. The confidence interval for optimization and Supt cover-

age are [0.829, 0.921] and [0.812, 0.908] which are more reasonable than the component-wise

one. One thing to notice is that Bonferroni band achieved 0.89 which is the band nearest

to 90% among all the methods. When m = 80, the Bonferroni band has the coverage

0.935 with a confidence interval [0.901, 0.969] which starts showing the drawbacks of the

over-correction for the multiplicity. When m = 120, the Bonferroni band continues gain-

ing higher coverage as 0.95 where the confidence interval is [0.920, 0.980] which is far away

from the desired coverage 90%. For different m choices, optimization band has the most

consistent coverage among three simultaneous bands.

In Tables 7.6 and 7.7, when m = 20, the Bonferroni band is only 3.2% wider than

the optimization band. When m = 120, the Bonferroni band is almost 9.5% wider than the

optimization band.

Overall, all three simultaneous bands meet the coverage requirements while the

optimization band has the most consistent performance among them.
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Chapter 8

Real Data Examples

Besides the simulation study, the real data examples need more restrictions. The

real data should not be in comparative large scale without too much assumptions. Dominitz

and Manski (2011) discussed a long-term survey on how residents thought economic status,

which was called ”Michigan’s survey”. Some variables in the dataset are worth exploring

with our proposed methodology. Wasserman (2006) used the data LIDAR to illustrate the

method in building confidence bands for the function. One drawback is that the unprediction

of the points where no existing functional values are available. With multivariate setting,

Wu (1998) stated the confidence intervals building in a time-varying model.

For the first real data case, responses for the survey in the percent that one thou-

sand dollar investment will increase in value in the year ahead by each respondent are worth

exploring from the Michigan survey data (Dominitz and Manski, 2011). We applied our

methodology to build the simultaneous confidence bands of the percentages for 5 months

and the results are within the scope.
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In the second real data case, we built confidence bands for a variable in the MAGIC

Gamma Telescope Data Set. We compared our simultaneous confidence bands with the

uniform bands which have the same width for all the grid points (Dua and Graff, 2017;

Cheng and Chen, 2019).

The third data case is for the time-varying model by measuring the uncertainties

for different model coefficients (Wu et al., 1998). We compared our methodology with the

pointwise intervals and the Bonferroni method.

The last data case is the LCD projector data to illustrate our simultaneous confi-

dence bands in a Bayesian reliability model setting (Hamada et al., 2008).

8.1 Real data example: Michigan’s survey

We could build confidence bands from a survey dataset (Dominitz and Manski,

2011). From June 2002 to August 2004 (27 months), surveys were given out in Michigan

for each month to consumers approximately 500 adult men and women from coterminous

area. Those surveys were completed by telephone and has a rotating panel basis design. In

this design, the majority of individuals (approximately 300) responds at the first time and

the remaining people (approximately 200) are those who were interviewed half year earlier

(Curtin, 1982).

From the variables provided in the data, it is of great interest to analyze how the

people think about their investments. The variable is defined by the the percent that one

thousand dollar investment will increase in value in the year ahead by each respondent. The

continuous value is from 0 to 100.
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Figure 8.1: Michigan survey example: function estimates and confidence bands.
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We want to estimate the variable value at the month number 5 to 23 for every 2

months with number of grid points m = 10. The reference value at these values are the

average value from the dataset. The parameters we use are n = 6879 (the number of values

from months left), an = 117 (number of batches), bn = 58 (batch size). The bandwidth

parameter λ = 0.15. We want to build simultaneous confidence band (component-wise

method) for the targeted months at 80% level. The simulation was processed for just one

time since there is no true function for the real data to evaluate against. We want to provide

confidence bands for the months we are interested in.

The reference function value at a certain month is the average of all the responses

at that month. As the reference function value is the average of responses of different people,

the real data had a large variance. Our function estimate is close to the reference function

value along the months. The simultaneous band is clearly separately from pointwise and

Bonferroni bands. The confidence band widths are relatively wider for month 13, 17 and

21. The simultaneous band is averagely 36.5% wider than pointwise band. The Bonferroni

band is averagely 14.8% wider than simultaneous band.

In this way, our methodology provides reasonable estimates and proper confidence

regions for the percent that one thousand dollar investment will increase in value in the

year ahead among the respondents. The bands we provided could be used for inferences.

8.2 Application: MAGIC Gamma Telescope Data Set

UCI machine learning repository has collected a variety of dataset with different

types and lengths of data for research uses. One popular dataset is MAGIC Gamma Tele-
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Figure 8.2: Telescope data example with uniform and simultaneous bands for m = 80.

scope Data Set (Dua and Graff, 2017). The data are Monte Carlo (MC) generated to simu-

late registration of high energy gamma particles in a ground-based atmospheric Cherenkov

gamma telescope using the imaging technique. The variable we explored is ’fSize’, a con-

tinuous variable represents 10-log of sum of content of all pixels with length of n = 19020.

The number of batches is an =
⌊√

n
2.5

⌋
= 87 and the batch size is bn =

⌊
n
an

⌋
= 218. We

estimated the density of ’fsize’ on 80 points equally spaced from 2 to 5.5 with bandwidth

h = 0.075. The simulation is done only once since we do not know the true density.
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Table 8.1: Telescope Example relative width comparisons.

Method Pointwise Bonferroni Component-wise Optimization Supt Uniform

Width 1 1.962 1.724 1.8 1.755 5.655

Plot 8.2 shows the confidence bands generated from different methods with con-

fidence level 90%. The uniform method provided the bands uniformly along all the points

with the same width (Cheng and Chen, 2019). The component-wise method provides var-

ious bands at different points which is more reasonable as the measurement usually varies

from point to point. The uniform and component-wise methods have similar bands except

for the peak point (around x = 2.7) and the right boundary points (x > 4). The possible

reason is that the variability at such points is relatively large or small than other points so

the component-wise method is able to capture the variety change while the uniform method

can not. From Table 8.1, the widths of uniform band are wider than other confidence bands.

One huge advantage from our methodology is the time efficiency. Our methodology is 10

times faster than the uniform method which builds the uniform confidence band, and is

described in the following section.

8.2.1 Uniform confidence band

Cheng and Chen described their way in building the uniform confidence bands of

density function (Cheng and Chen, 2019). The algorithm is shown below. In step 4, the

approximation is not quite computing efficient.
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Algorithm 6 Uniform confidence band.

1: Select the bandwidth h from a cross-validation procedure.

2: Get the Kernel Density Estimator (KDE) f̂ .

3: Bootstrap the original sample for B times and compute the bootstrap KDE.

f̂∗(1), f̂∗(2), . . . , f̂∗(B).

4: Compute the quantile

t̂1−α = F̂−1(1− α),

where

F̂ (t) =
1

B

B∑
j=1

I(||f̂∗(j) − f̂ ||∞ < t).

5: Obtain the uniform confidence band

Ĉ1−α(x) = [f̂(x)− t̂1−α, f̂(x) + t̂1−α].

8.3 Time varying model example

Here is the general form for a linear time-varying coefficient model (Wu et al.,

1998):

Yij = XT
i (tij)β(tij) + εi(tij), (8.1)

where εi(t) are stochastic processes with mean 0. Xi(t) = (1, Xi1(t), . . . , Xik(t))
T and εi(t)

are independent for tij ∈ R. Set β(t) = (1, β0(t), . . . , βk(t))
T , βl(t) ∈ R for all l = 0, . . . , k.
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In the example, X = (1, X1, X2, X3) is a time-independent covariate. X1 and X2

are two Bernoulli random variables and X3 is a N(0, .252) random variable. The coefficient

curves are given by

β0(t) = 15 + 20 sin

(
tπ

60

)
,

β1(t) = 4−
(
t− 20

10

)2

,

β2(t) = 2− 3 cos

[
(t− 25)π

15

]2

, and

β3(t) = −5 +
(30− t)3

5000
.

There are 200 subjects selected randomly. The Xi, i = 1, . . . , 200 represents a subject. Each

subject was generated for X1, X2, X3 from the following joint density

f(x1, x2, x3) =
0.5

(2π)0.5
exp (−2x2

3)1[0,1](x1)1[0,1](x2)1[−∞,∞](x3).

There were 30 equally spaced artificial ”scheduled“ time points and n = 200 random dis-

placement points si1 from the U(0, 1) distribution so that sil = si1 + (l − 1), l = 1, . . . , 30.

For the purpose of randomness, each ”scheduled” time point sil was randomly missed with

a probability of 60%. Then the remaining observed time points were denoted by tij .

In this way, each subject has unequal numbers of repated measurements ni and

different observed time points tij . The random errors εi(tij) were simulated by a Guassian

process with mean 0 and a covariance matrix
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cov[εi1(ti1j1), εi2(ti2j2)] =


4 exp (−|ti1j1 − ti2j2 |) if i1 = i2;

0 if i1 6= i2.

Then the outcomes Yij were obtained by combining the observed (tij , Xi, εi(tij)) and the

coefficient functions into (8.1).

8.3.1 Wu’s procedure

We want to estimate β(t) = (β0(t), β1(t), β2(t), β3(t)). For i = 1, . . . , n,

Xi =


1 Xi1(ti1) Xi2(ti1) Xi3(ti1)

...
...

...
...

1 Xi1(tini) Xi2(tini) Xi3(tini)

 ,

Yi =


Yi1

...

Yini

 ,

and Ki(·; ·) is a diagonal kernel matrix which is defined by

Ki(t;h) = diag

(
K

(
t− ti1
h

)
, . . . ,K

(
t− tini
h

))
.

A least square estimator for β(t) is

β̂(t;h) =

(
n∑
i=1

XT
i Ki(t;h)Xi

)−1( n∑
i=1

XT
i Ki(t;h)Yi

)
. (8.2)

By minimizing the average prediction squared error(APSE), the bandwidth h is given by

cross-validation. From the asymptotic properties of β̂(t;h), the true function β(t0) could be
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approximated by the local estimator β̂(t0;h). With proper normalization, β̂(t0;h)−β(t0) has

a multivariate Gaussian distribution suggested (Moyeed and Diggle, 1994). The asymptotic

confidence regions could be built then. The pointwise confidence intervals could be given

with or without bias correction. The confidence bands are Bonferroni-Type.

8.3.2 Building simultaneous bands

From (8.2), our method in estimating the variance-covariance matrix Σ was modi-

fied. We could regard the way in simulating (tij , Xi, εi(tij)) as Markov Chains with Markov

CLT by the Monte Carlo error, β̂j(t;h) − βj(t;h) for jth β element. Suppose we want to

estimate βj for a = t1 < t2 < · · · < tm = b. There is a m ×m positive definite matrix Σj

satisfying

√
n
(
β̂j(t;h)− βj(t;h)

)
d−→ Nm(0,Σj), (8.3)

when n→∞.

Similar as before, we denote n = anbn, where an is the number of batches and bn is

the corresponding batch size. Unlike the partitioning procedure in the Markov Chains, we

use the resampling procedure: a subset from n with size bn was selected without replacement.

Then the estimates of β̂j(t;h) was calculated from this subset from (8.2), called β̃j(k)(t;h)

with k = 1, . . . , an. It means that the procedure was repeated with an times.

A batch mean estimator of Σj is given by

Σj =
bn

an − 1

an−1∑
k=0

(
β̂j(t;h)− β̃j(k)(t;h)

)(
β̂j(t;h)− β̃j(k)(t;h)

)T
. (8.4)
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Table 8.2: Time varying model example: Running time comparisons for actions on bias

correction.

Method No bias correction Mean function only Bias correction

Running time 1 minute 2.5 hours 47 hours

Then the upper bound and lower bound could be achieved using our simultaneous band

method described before.

8.3.3 Effectiveness of bias correction

The bias correction procedure is an important action in the method. So we will

compare how the bias correction will affect the running time and the region width. There

are three ways in applying the bias correction procedure: no bias correction, bias correction

for the mean function β̂j(t;h) only, bias correction for both the mean function and the

batch mean estimators. From Table 8.2, the confidence bands among these methods are

quite similar (within 0.001% differences). So the bias correction is not necessary in this

situation. The estimators we will use are without the bias correction procedure.

8.3.4 Results

With number of points n = 4, 000, the number of batched is an = 40 and the batch

size bn = 100, the simulation is repeated with 200 replications for 95% confidence level. The

number of time points is m = 28 equally spaced from 1.5 to 28.5. We compare the pointwise

method (Wu’s default approach) and the simultaneous method (optimization). We do not

plot the Bonferroni band which has a similar band width with the simultaneous band.
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Table 8.3: Time-varying model: overall coverage comparisons among different confidence

bands.

Function β0 β1 β2 β3

Pointwise 0.135 0.335 0.2 0.290

Bonferroni 0.725 0.920 0.850 0.89

Optimization 0.7 0.91 0.84 0.885

Table 8.4: Time-varying model: relative widths comparisons among different confidence

bands.

Function β0 β1 β2 β3

Pointwise 1 1 1 1

Bonferroni 1.594 1.594 1.594 1.594

Optimization 1.515 1.525 1.528 1.533

From Table 8.3, the Bonferroni and optimization methods achieved the desired

coverage 95% on β1 while still needed more improvements in other β′is. For β1, the Opti-

mization band has a MCSE 0.02 and a coverage confidence interval [0.87, 0.95] which covers

the desired probability. For β3, the Optimization band has a MCSE 0.023 and a coverage

confidence interval [0.841, 0.929] which is a little far from 90%. The reason behind the

relatively low coverage probability for β0 and β2 may result from inaccurate estimators or

failing to capture the variability in the estimators.

From Table 8.4, the optimization bands are not quite narrow compared to the

Bonferroni bands. For example, for β1, the Bonferroni band is only 4.5% wider than the

optimization band. This is maybe because the number of grid points is m = 28, not enough

large to show the simultaneous property for the optimization method. Since we need to

make sure the time is a whole number, we could not increase the number of grid points m
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Figure 8.3: Time varying model confidence bands for β1.

any more. From plots 8.3 and 8.4, we could tell that the coverage at each point is even

smaller than 95% for pointwise band. We need to improve the estimator accuracy or provide

a better covariance matrix in the future.

8.3.5 Discussion

Overall our simultaneous bands have reached the 95% desired coverage for β1 as

expected. Our simultaneous methodology still need some improvement for other β′is. Prob-
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Figure 8.4: Time varying model confidence bands for β3.
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ably the reason is that there are still some covariances in the model which our simultaneous

methods have not caught.

8.4 Application to a Bayesian reliability model

A Bayesian reliability model is discussed in Vats et al. (2020). For the purpose of

testing the manufacturer’s claim of expected lamp life in an Liquid crystal display (LCD)

projector being 1,500 hr, identical lamps were placed in 31 projectors for various models

and their time to failure was recorded. The table shows the data. For i = 1, . . . , 31, let ti

denote the observed failure time for each lamp. We assumed that the ti’s are a realization

from,

Table 8.5: Liquid crystal display time to failure in projection hours for 31 projectors.

387 182 244 600 627 332 418 300

798 584 660 39 274 174 50 34

1895 158 974 345 1755 1752 473 81

954 1407 230 464 380 131 1205

Ti ∼Weibull(λ, β),

where λ > 0 is the scale parameter and β > 0 is the shape parameter for the Weibull dis-

tribution. Our interest is to estimate the reliability function. Under the Weibull likelihood,

the reliability function is

R(t) = exp (−λtβ).

91



It is assumed that priors λ ∼ Gamma(2.5, 2350) and β ∼ Gamma(1, 1), where each is

represented by a shape and rate parameter. The density of the posterior is

f(λ, β) ∝ λ32.5β31

(
31∏
i=1

ti

)β−1

exp

{
λ

31∑
i=1

tβi

}
exp{−β} exp{−2350λ},

where the normalizing constatnt is unknown and we apply component-wise MCMC methods

(Johnson et al., 2013) to sample from this distribution. The component λ can be updated by

a Gibbs step and β will be updated through a Metropolis-Hasting step. The full conditional

distribution of λ is

λ|β, T ∼ Gamma(33.5, 2350 +

31∑
i=1

tβi ).

Since the full condition distribution for β is not available in closed form, We

implement a Metropolis-Hastings step from a Metropolis-within-Gibbs sampler (Robert

and Casella, 2013). The proposal distribution is a N(·, 0.12), which yields an approximately

optimal acceptance probability as suggested (Roberts et al., 1997). We update λ first, then

β so only a starting value for β is needed. The starting value for β is the MLE, 1.12.

Assume we want to estimate and build confidence bands for the marginal posterior

densities of λ and β on m = 80 points. For λ, the points are equally spaced between

(5 × 10−4, 3 × 10−3) with selected bandwidth 3.04 × 10−5. For β, the points are equally

spaced between (0.9, 1.3) with selected bandwidth 0.012. We generate two Markov chains

for λ and β with 400, 000 draws each. For each point ti, the batch size is bn = 400

and the number of batches is an = 1000. The density estimator f̂n(y) and the batch

estimators {f̃k(y), k = 1, . . . , an} were calculated using Rao-Blackwellized estimator and
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kernel density estimator separately for the marginal posterior density of λ. Since the full

condition distribution for β is not available, we only estimate the marginal posterior density

of β using kernel density estimators. The confidence bands include pointwise, Bonferroni

and simultaneous (Supt).

8.4.1 Results

Plot 8.5 showed different density estimators for the marginal posterior density of

λ. As a parametric estimator, Rao-Blackwellized estimator has a little smoother estimation

for the density compared to kernel density estimators. For kernel density estimators, the

estimated curve are quite similar with or without bias correction.

From Plot 8.6, the confidence bands for the marginal posterior density of λ using

Rao-Blackwellized estimators are given. The simultaneous band has a clear boundary from

the pointwise band and Bonferroni band with both estimators. The confidence band is

wider near the peak point (around λ = 0.0008). From Plot 8.7, the confidence bands for

the marginal posterior density of λ using kernel density estimators (with bias correction)

are given. Bonferroni band and simultaneous band are similar in band widths.

From Table 8.6, the confidence bands from Rao-Blackwellized estimators are nar-

rower than these from kernel density estimators of same types. It is because the non-

parametric estimator like kernel density estimators created more varieties in the covariance

matrix to generate a wider band than the parametric estimator as the Rap-Blackwellized

estimators did.

From Table 8.7, we could find the relative widths for different confidence bands

for the marginal posterior density of λ. The relative width for the simultaneous band
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Figure 8.5: Bayesian reliability model: different density estimators for the marginal poste-

rior density of λ.

is 1.909 using the kernel density estimator, which is larger than 1.489 which is obtained

using the Rao-Blackwell estimator estimator. Bonferroni band is 2.8% wider than the

simultaneous band using the kernel density estimator and 31.8% wider using the Rao-

Blackwellized estimator.
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Figure 8.6: Bayesian reliability model: different confidence bands for the marginal posterior

density of λ using Rao-Blackwellized estimators.

Table 8.6: Bayesian reliability model: band width comparisons among different methods

for the marginal posterior density of λ.

Width Pointwise Bonferroni Simultaneous

Rao-Blackwellized Estimator 13.0 25.4 19.3

Kernel Density Estimator 16.8 32.9 32.0

Table 8.7: Bayesian reliability model: relative band width comparisons among different

methods for the marginal posterior density of λ.

Relative Width Pointwise Bonferroni Simultaneous

Rao-Blackwellized Estimator 1 1.962 1.489

Kernel Density Estimator 1 1.962 1.909
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Figure 8.7: Bayesian reliability model: different confidence bands for the marginal posterior

density of λ using kernel density estimators.
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Table 8.8: Bayesian reliability model: band width comparisons among different methods

for the marginal posterior density of β.

Method Pointwise Bonferroni Simultaneous

Width 0.155 0.304 0.26

Relative Width 1 1.962 1.68

Plot 8.8 showed kernel density estimators for the marginal posterior density of

β. The difference between the estimator with bias correction and estimator without bias

correction lies near β = 1.1 where the second derivative is remarkable. From Plot 8.9, the

confidence bands for the marginal posterior density of β using kernel density estimators

(with bias correction) are given. The confidence bands are wider near β = 1.1.

From Table 8.8, the widths and relative widths for different confidence bands for

the marginal posterior density of β are given. Bonferroni band is 16.8% wider than the

simultaneous band.

Overall, we could provide various simultaneous confidence bands for the marginal

posterior densities λ and β with different estimators for further inferences.
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density of β using kernel density estimators.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

There are mainly three contributions of this dissertation. The first contribution is

to quantify the uncertainty for functions from the MCMC settings. Though there have been

various discussions in building confidence bands for functions, these work which usually

have the independence assumptions lack the applications in the MCMC samples. Our

methodology broadens the scope of confidence bands to the MCMC field.

Another contribution is to provide the bias correction procedures not only for the

function estimators but also for the batch estimators. Usually the correction for bias is

only conducted for the function estimator to improve the estimation accuracy. The bias

correction approach for the batch estimators in our methodology captured the variability in

the estimators and therefore provided more accurate variance-covariance estimators. The

confidence bands would be more appropriate.
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One great contribution is to summarize and evaluate different confidence bands

in MCMC settings with simulations and real data examples. Pointwise, Bonferroni and

various simultaneous confidence methods are performed and compared in different examples.

These discussions provided some basics in evaluating different confidence band methods and

inferred more investigations for quantifying the uncertainty with various approaches.

9.2 Future Work

9.2.1 Boundary points

Since our focus was on the simultaneous coverage for the functions, the effects of

boundary points were not negligible. For example, in our simulation example

f(x) = 0.3ex + 2 sin(x)− 2x,

where x′s are simulated from Uniform(−1, 1) . The y′s were generated by yi = f(xi) + εi

with the noise εi ∼ N(0, 0.52). The number of points to be estimated is m = 20 and the

points are equally spaced between (−0.8, 0.8). The bandwidth for the kernel Kλ(x0, x) is

λ = 0.15. The confidence level is 90%. The simulation time is 200. For the pointwise band,

the coverage for each point is shown below.

From Plot 9.1, the pointwise coverages for two boundary points x = −0.8 and

x = 0.8 are 0.78 and 0.795. These coverages on the boundary points are much lower than

other points whose average coverage is 0.943. Such effects also occurred in Bonferroni and

simultaneous methods.
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Figure 9.1: The effectiveness of boundary points on the pointwise coverage.
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Table 9.1: Boundary points effects: total coverage probability.

Method Pointwise Bonferroni Component-wise Optimization Supt

With boundary points 0.255 0.93 0.9 0.92 0.915

Without boundary points 0.4 0.98 0.96 0.98 0.97

From Table 9.1, the pointwise band coverage probability increased from 0.255 to

0.4 if the boundary points were removed. The Component-wise band coverage probability

increased from 0.9 to 0.96 if the boundary points were removed. If we could improve

the coverage on these boundary points, the overall coverage would increase and therefore

provides better confidence bands.

9.2.2 Various estimation methods

In our methodology, we used the kernel density estimation and local linear regres-

sion method. Our estimation have shown some accuracy in estimating the true function

and correcting the bias. There are still potential improvement in the estimation methods.

For density estimations, the estimation for the densities at the boundary points

remained a problem (Zambom and Ronaldo, 2013). Local likelihood density estimation

used a boundary kernel to solve this problem (Sheather, 2004).

For general function estimations, the locally weighted regression (loess) is a popular

approach providing smooth fits for functions (Cleveland, 1979). The local linear regression

we applied in our methodology is among the loess methods. There are also loess methods

such as Local Polynomial Regression.
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9.2.3 Lugsail batch mean estimator

Another potential improvement for building the confidence bands is about the

batch estimator (Vats et al., 2019). The batch mean (BM) estimator in (5.2) does not use

a lag window. For r ≥ 1 and 0 ≤ c ≤ 1, the lugsail lag window is

wn(l) =
1

1− c

(
1− |l|

bn

)
I
(

0 ≤ |l| ≤ bn
)
− c

1− c

(
1− |l|

bn/r

)
I
(

0 ≤ |l| ≤ bn
r

)
.

Liu and Flegal (2018) proposed a family of weighted BM estimators that generalizes the

BM estimator. For l = 1, · · · , bn, let al = b(n/l)c, then the weighted BM estimator is

Σ̂w =

bn∑
l=1

1

al − 1

ak−1∑
k=0

l2∆2wn(l)
(
f̃k(
−→w )− f̂n(−→w )

)(
f̃k(
−→w )− f̂n(−→w )

)T
, (9.1)

where ∆2wn(l) = wn(l − 1) − 2wn(l) + wn(l + 1). By using c = 0 and r = 1, we get the

BM estimator Σ̂bn in (5.2) from (9.1). We get a lugsail BM estimator, Σ̂L using the lugsail

window. By calculation, the relationship between Σ̂L and Σ̂bn is

Σ̂L =
1

1− c
Σ̂bn −

c

1− c
Σ̂bn/r.

The suggested r and c values in lugsail method are r = 2 and c = 0.5.

For the following two-component mixed normal distribution function

0.5N(−1, (2/3)2) + 0.5N(1, (2/3)2), (9.2)

where N(µ, σ) is a normal distribution function with mean µ and standard deviation σ. In

order to get correlated draws, the data were sampled from Metropolis–Hastings algorithm.
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The goal is to build the confidence bands for m = 20 grid point equally spaced along (−2, 2)

from different methods with confidence level 90%. In each simulation, n = 400, 000 draws

were generated. With the number of batches an = 400 and the batch size bn = 1000, the

density estimator f̂n(−→w ) and the batch estimators {f̃k(−→w ), k = 1, . . . , an} were calculated.

Here is the result table for 200 simulations.

Table 9.2: Lugsail batch mean estimator: coverage probability comparisons for two-

component mixed normal using different batch estimators

m 20 20 40 40

Method BM Lugsail BM Lugsail

Pointwise 0.105 0.105 0.015 0.015

Bonferroni 0.885 0.885 0.895 0.89

Component-wise 0.87 0.865 0.875 0.875

Optimization 0.88 0.87 0.88 0.88

Supt 0.87 0.88 0.88 0.88

The lugsail performs similarly to the original BM estimator. We still need more

evidence to explore how the lugsail could behave when it comes to other functions.

9.2.4 Building simultaneous confidence bands for estimators of the mean

functions

When it comes to building simultaneous confidence bands for the estimators for the

mean of functions, there are some existing methodology from past researchers. Degras(2017)

suggested a way in evaluating the uncertainty for estimators in functional analysis.

For a random process X defined on a continuous domain D, the mean function

function µ is well-defined. In functional analysis, it is important to assess the behavior of
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the function over the entire domain D. So the functional parameter θ is of great interest to

explore by building simultaneous confidence bands with level 1− α.

The goal is to find such bands {[Ls(t), Us(t)] : t ∈ D} that covers the mean function

µ with probability 1− α

P (µ(t) ∈ [Ls(t), Us(t)],∀t ∈ D) = 1− α.

Such bands are known as simultaneous confidence bands.

With a given stochastic process X, the decomposition contains the mean function

µ = E(x) and a zero mean process Z = X − µ

X(t) = µ(t) + Z(t), t ∈ D,

From the data collection procedure, the noisy observations X1, . . . , Xn of X could be ob-

tained. Regardless of the data generating process or other factors, a general model could

be considered.

Yij = Xi(tij) + εij , i = 1, . . . , n, j = 1, . . . , pi,

where Yij represents the observation of the ith subject or statistical unit at location tij

and εij is a measurement error. The Xi are assumed to be mutually independent and have

independence from εij . The εij are typically independent across units(i) while the inner

correlation among εij is not necessary.
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It is certain to use the sample mean estimator X̄n = 1
n

∑n
i=1Xi in an ideal situation

where there are infinite size of observations and no measurement error. Unfortunately, it is

impossible to achieve such perfect estimator in the real world.

The technique to deal with finite size of observations and the unavoidable measure

error is nonparametric smoothing. The data are locally averaged with certain weights. The

mean function µ could be estimated by the nonparametric smoothing

µ̂(t) =

p∑
j=1

wj(t)Ȳj ,

where wj is the weight function and Ȳj = 1
n

∑n
i=1 Yij at grid point tj . A classic nonparamet-

ric estimator is the Nadaraya–Watson kernel estimator defined before. The non-parametric

smoothing techniques when D ⊂ R include smoothing spline, basis functions, p-spline and

local polynomial. The choice could depend on the special situation of the problem in the

study.

It is critical to estiamte the covariance Γ of the process X. With all s, t ∈ D and

nonparametric estimators µ̂, the following approximation holds

Cov(µ̂(s), µ̂(t)) ≈ Γ(s, t)

n
,

when n, p→∞. The presmoothed data data are

X̂i(t) =

p∑
j=1

wj(t)Yij ,

where wj(t) is the weight function defined above. With the sample covariance of X̂i(t), the

estimation of Γ is
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Γ̂(s, t) =
1

n− 1

n∑
i=1

(X̂i(s)− µ̂(s))(X̂i(t)− µ̂(t)).

A functional central limit theorem states that

√
n(µ̂− µ)

d−→ G(0,Γ),

as n, p → ∞. The G(0,Γ) denotes a Guassian process with mean zero and covariance Γ.

With all these settings, it is not difficult to build simultaneous confidence bands for µ. The

σ(t) = Γ(t, t)
1
2 and ρ(s, t) = Γ(s,t)

σ(s)σ(t) are the standard deviation and correlation functions at

t.

For a certain confidence level 1 − α, the quantile zα,p could be determined by

P (supt∈D|Z(t)| ≤ zα,p) = 1− α. The 1− α level simultaneous confidence band for µ is

{[µ̂(t)− zα,p
σ(t)√
n
, µ̂(t) + zα,p

σ(t)√
n

] : t ∈ D}.

With large n and p, the following equation holds:

P
(
µ(t) ∈ [µ̂(t)± zα,p

σ(t)√
n

],∀t ∈ D
)
≈ 1− α.

The way to determine the quantile zα,p is regarded as a parametric bootstrap of

the standardized estimator
√
n

σ̂(t)(µ̂(t)− µ(t)).
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Algorithm 7. Calculate ẑα,p for building simultaneous confidence bands for the mean of

functional data

1: Generate Zm as the random vector from discretizing the process Z ∼ G(0,Γ) over a fine

grid τ = {τ1, . . . , τm} ⊂ D.

2: Simulate Zm ∼ N(0,Mρ̂) where Mρ̂ = (ρ̂(τj , τk))1≤j,k≤m.

3: Get the l∞ norm, ||Zm||∞ which is the maximum of the absolute values of its entries

for N simulations.

4: ẑα,p is the quantile of level 1− α of the N simulated ||Zm||∞.

The whole methodology above provided the simultaneous confidence bands for the

mean function. While our main focus is on the functions from MCMC simulations which is

quite different, we are looking forward to applying our described approaches in quantifying

the uncertainty of confidence bands of the mean function in the future.
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