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ABSTRACT OF THE DISSERTATION

Does t-SNE See Curves? Theory and Practice

By

Kathryn Dover

Doctor of Philosophy in Mathematics

University of California, Irvine, 2023

Professor Roman Vershynin, Co-Chair
Assistant Professor Anna Ma, Co-Chair

Data visualization is the process of taking very high dimensional data and representing it in

two or three dimensions. The main goal of data visualization is to create a representation

of the data in such a way that a human observer can gain insight into the data’s structure

or patterns. There are many methods that produce visually appealing representations on a

variety of datasets, but there is limited theory on why some of these methods work. The

purpose of this dissertation is to identify quality metrics of good visualizations and use them

to create new methods.

Chapter 1 is an introduction to t-stochastic neighbor embedding (t-SNE), one of the standard

algorithms for data visualization. It is a non-convex method that represents the differences

between data points as weighted probabilities in high and low dimensions and then minimizes

the ‘distance’ between these two distributions using the Kullback-Leibler divergence. Despite

its wide success, there is still very little mathematical understanding of the algorithm.

One of t-SNE’s more interesting properties is its tendency to preserve local linear structure

of data. For example, if t-SNE is given a dataset of multiple rings in high dimensions, its low

dimensional representation will include multiple rings rather than multiple clusters. This

preservation of fine local structure sets it apart from other methods. Chapter 1 also defines
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and explores discrete curves, a new mathematical definition meant to represent these fine

local structures both in high-dimensions and low-dimensions. Chapter 2 then rigorously

proves that given a 1D structure in high dimensions, t-SNE will visualize that structure in

its output.

This dissertation not only proves that t-SNE preserves this discrete curves in theory, but

also demonstrates that knowledge can be applied successfully in practice, specifically for

data integration of single-cell measurements. Chapter 3 introduces single-cell analysis, the

study of human cells in the same population (liver cells, skin cells, etc.) that are genetically

identical but behave differently. The differences between these cells can have important

impacts on the health and function of the whole cell population. Single-cell analysis is

the process of studying cell-to-cell variation within a certain cell population by looking at

different properties of their genome, like gene expression and chromatin accessibility, which

are referred to as single-cell measurements. Single-cell analysis has been applied in studying

diseases, drug development, and in-depth analysis of stem cell differentiation.

One of the big challenges in single-cell analysis is processing the single-cell measurements.

Due to technical limitations, it can be hard to obtain multiple types of measurements of the

same cell. For example, for a small population of liver cells, a user may only have access to

a dataset representing the gene expression of each cell and another dataset representing the

chromatin accessibility. These datasets will not only be very high-dimensional and have local

discrete structures, but they will not live in the same dimension since they represent different

properties. Thus there is no direct way to identify corresponding features in both datasets

since they represent different domains. Chapter 4 discusses AVIDA, an algorithm to process

these datasets that produces a single dataset representing both single-cell measurement.

AVIDA achieves this by using t-SNE and Optimal Transport methods to not only integrate

these two datasets into the same domain, but to also generate a visualization that highlights

the local underlying structures in the single-cell measurements.
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Chapter 1

Introduction

The ability to visualize high-dimensional data has become an important part of data anal-

ysis for many different fields. Since visualizations are primarily used to interpret data via

the shapes that they make, it is important that the geometry of the visualization truthfully

conveys a particular quality of the data. Spectral methods such as Principal Component

Analysis (PCA) [36], Locally Linear Embedding (LLE) [38], Isometric Feature Mapping

(Isomap) [43] and Multidimensional Scaling (MDS) [44] are very popular methods that han-

dle manifolds particularly well. In particular Isomap is guaranteed asymptotically to recover

the true geometric structure of certain manifolds [6]. However, these methods do not neces-

sarily handle non-manifold datasets very well and in practice real-life datasets rarely have a

nice manifold structure.

Student-t Stochastic Neighbor Embedding (t-SNE) [45] was introduced in 2008 by van der

Matten and Hinton to address this particular issue. t-SNE is a non-stochastic method de-

signed to promote local distances in a dataset rather than global ones. An example of the

power of t-SNE is shown in Figure 1.1. t-SNE is able to clearly and correctly cluster the

data in the embedding while PCA is unable to get clear separation. This chapter gives a
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Figure 1.1: The MNIST dataset contains images of handwritten digits. These are the em-
beddings of MNIST made by PCA and t-SNE.

brief description of t-SNE and explains why we have decided to focus on it for this research.

1.1 What is t-SNE?

t-SNE takes a high-dimensional dataset X = (xi)
n
i=1 in Rd and works to find a 2D embedding

Y = (yi)
n
i=1 in R2. t-SNE is able to find any lower dimensional embedding but here we focus

on 2D embeddings for our study of visualization. The general idea behind t-SNE is to use

joint probabilities to describe how “close” two points are in X and find an embedding Y

where those probabilities are preserved, rather than preserving the Euclidean distance. First

conditional probabilities are generated between any two points xi, xj to be

pj|i =
exp(−∥xi − xj∥2/2σ2

i )∑
k ̸=i exp(−∥xi − xk∥2/2σ2

i )
, (1.1)
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where σi is found using binary search such that for a given perplexity ρ, then σi satisfies the

equation

ρ = 2−
∑

k ̸=i pk|i log2(pk|i). (1.2)

This perplexity value is chosen by the user and is often interpreted as the number of expected

neighbors for a particular point and the induced σi is the bandwidth of the Gaussian kernel

such that most of the distribution’s weight falls on the number of these expected neigh-

bors. To create a joint probability between two points, the two conditional probabilities are

averaged,

pij =
pj|i + pi|j

2n
. (1.3)

The probabilities between the points in the embedding are generated in a similar way but

with the kernel from student t distribution:

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=ℓ(1 + ∥yk − yℓ∥2)−1

. (1.4)

Let P be the joint distribution of the points in X and let Q be the joint distribution of the

points in Y . t-SNE minimizes the Kullback-Leibler (KL) divergence,

C(Y ) = KL(P∥Q) =
∑
i

∑
j

pij log

(
pij
qij

)
, (1.5)

between P and Q to find an embedding Y . The Kullback-Leibler divergence is way of

measuring how “far” the distribution P is from Q. By minimizing the divergence, t-SNE is

finding an embedding Y such that the induced probabilities Q are most similar to P . t-SNE

3



uses gradient descent to minimize this cost function and the resulting gradient is given as

δC

δyi
= 4

∑
j ̸=i

(pij − qij)(1 + ∥yi − yj∥2)−1(yi − yj). (1.6)

This gradient is not the final version in the algorithm. t-SNE utilizes a phase known as early

exaggeration. In the first 200 iterations of gradient descent, an exaggeration factor α > 1

and step-size h > 0 are included in the gradient so that we are left with

δC

δyi
= 4h

∑
j ̸=i

(αpij − qij)(1 + ∥yi − yj∥2)−1(yi − yj). (1.7)

While this gradient looks complicated, the mechanics are fairly simple. Assume that two

points xi and xj are close to each other in X. This would imply that pij is very close to 1.

However, if their corresponding representations yi and yj are far apart, then qij is very close

to zero. That means this gradient will move the points yi and yj closer together in the next

iteration. The reverse would occur if the points were far apart in X but the representations

were too close together.

Additionally, since the choice of ρ sets the bandwidth for the pij values, t-SNE essentially

Algorithm 1 t-SNE

Input: dataset X = {xi}ni=1

Parameters: perplexity ρ, number of iterations T
Output: low-dimensional embedding Y (T ) = {yi}ni=1

begin
compute conditional probabilities pj|i with perplexity ρ (Equation 1.1)

set pij =
pi|j+pj|i

2n

initialize Y (0) = {yi}ni=1 by sampling N (0, 10−4I)
for t = 1 to T do

compute low-dimensional probabilities qij (Equation 1.4)
compute gradient ∂C

∂Y
(Equation 1.6)

set Y (t) = Y (t−1) + ∂C
∂Y

end for
end

4



just focuses on the local structures of a dataset. If two points are not in the same neigh-

borhood, then their pij values will be close to zero. As long as their representations are

sufficiently far apart, their qij values will be also very small and thus the gradient will have

little movement.

The early exaggeration phase is a way to improve the optimization. In practice, α = 4, so

almost all of the qij’s are too small to model their corresponding pij’s. Thus, the optimiza-

tion is encouraged to focus on modeling the large pij values by fairly large qij values. The

effect is that points that are meant to be close together are highly attracted to each other

and local structures are formed first before global structures are affected.

Since we will be discussing t-SNE’s embeddings of high-dimensional datasets, it will be

helpful to have some notation.

Definition 1.1 (Visualization by t-SNE). Let X = (xi)
n
i=1 in Rd be a subset of points in

high dimensions. We denote the output of t-SNE given X as an input as Y = TSNE(X).

TSNEe(X) is the output of t-SNE just after early-exaggeration.

1.2 t-SNE Theory

While t-SNE is widely applied, there is limited theory about it. Linderman and Steinerberger

[26] were able to show that t-SNE’s early exaggeration stage is critical to cluster formation

when the data is clusterable. Essentially by setting the α value to be sufficiently large,

then αpij is much larger than qij and thus points within the same neighborhood are pulled

together and those who are not in the same neighborhood have very little gradient effect

on each other. This allows t-SNE to focus on correctly structuring neighborhoods before

attempting to orient the points in a correct global position.
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Figure 1.2: The COIL20 dataset contains images of objects at different orientations. These
are the embeddings of COIL20 made by PCA and t-SNE.

Arora et al. [4] extended this result by proving that given sufficiently clusterable data, t-

SNE’s visualization is guaranteed to have visibly separate clusters. They were able to show

that if a high-dimensional dataset had distinct clusters, then t-SNE’s early exaggeration

phase will correctly group points together by cluster. After leaving early exaggeration, the

centers of the embedded clusters are pushed away from each other and with enough iterations

become visibly distinct.

From [4], there have been additional insights into t-SNE’s behavior. Zhang and Steinerberger

[52] showed that the t-SNE’s behavior in the limit can be analyzed with a mean-field model,

specifically in the case of a single cluster. Very recently Cai and Ma [8] re-proved the

separable clusters result in the context of Laplacian spectral clustering and illustrated the

importance of early stopping as a form of implicit regularization.

All of these contributions focus on how t-SNE treats clusterable data. However, there have

been many examples of real-life datasets that are not clusterable but t-SNE is still able

to represent them well. The focus of our work is to investigate how t-SNE handles one-

dimensional structures, such as curves. A good example of this is how t-SNE handles the

6



COIL20 dataset. This is a dataset that contains images of objects at different points in a

rotation. Figure 1.2 shows that t-SNE not only clusters the points based on the object in

the image, but orients them in a ring that corresponds to where the image is taken in the

rotation. This is very interesting behavior that is not typically seen with methods like PCA.

This work focuses on explaining why t-SNE preserves these local structures. Since we are

considering the local preservation of these very particular structures, we have to define what

properties the neighborhoods of these one-dimensional structures would have.

1.3 Discrete Curves

In order to discuss how t-SNE handles local 1D structures, it is important to clearly define

them.

Definition 1.2 (ε-Discrete Curve). Consider a finite sequence of points (zj)
k
j=1 in Rd. We

say that this sequence of points is an ε-discrete curve if the following properties hold for j,m

such that j −m, j, j +m ∈ [k]:

zj+m + zj−m

2
= zj + ej,m, (1.8)

where ∥ej,m∥ ≤ ε∥zj+m − zj∥.

This definition says that for any symmetrical triplet {zj−m, zj, zj+m}, the middle point, zj,

must be close to the actual midpoint between zj−m and zj+m. The use of ε gives some room

for error and allows for different structures of lines. A smaller ε will only allow for discrete

curves that are structured more like lines while a larger ε will allow for a more curve-like

structure. An example of this is shown in Figure 1.3. When ε is set to be 0.001, the generated

curve looks much more like a line. However, ε set to be 0.01 allows for a less rigid structure.

7



Figure 1.3: 500 randomly generated points to populate a ε-discrete curve where ε is set to
be 0.01 and 0.001.

This definition also allows us the flexibility to keep the property local. It would be too

restrictive to expect an entire dataset have symmetrical triplets form a line; the only such

dataset that would allow for that would be a straight line. Instead, the definition is meant

to capture a local structure and require it of only points that are in each other’s immediate

neighborhood. Thus, this property can be used to describe parts of entire datasets, as shown

in Figure 1.4. This high-dimensional dataset contains two large clusters connected by a

small, densely populated line. Even though this dataset contains two very different kinds of

structures, t-SNE is able to represent the local structures very well in the embedding.

Since this definition is applied locally, it is important to make some requirements of how

the data is structured globally. We do not wish to consider the situation where a high-

dimensional dataset or visualization has an overlap between neighborhoods.

Definition 1.3 (No a, b-Critical Overlaps). Let X = (xi)
n
i=1 in Rd and let Y = TSNE(X).

We say there are no a, b-critical overlaps in Y if for any pair of indices i, j such that |i−j| >

a, ∥yi − yj∥ ≥ b.

8



Figure 1.4: PCA and t-SNE embedding of two clouds connected by a line.

This definition encompasses the situation where the visualizations of two different neigh-

borhoods are too close in low dimensions. An example of where this might occur is if the

visualization has loops, as seen in Figure 1.5. In order to maintain the structure of the

discrete curve, we require no such critical overlaps exist.

1.4 Main Results

In order to show that t-SNE is able to visualize an ε−discrete curve, we break the proof

into two parts. We can show that t-SNE with early exaggeration induces a very particular

structure on the gradient that encourages discrete curves to be formed.

Theorem 1.1. Let X = (xi)
n
i=1 in Rd be an εx-discrete curve. Then Y = TSNEe(X) will

also be an εy-discrete curve.

For the formal version of this statement see Theorem 3.1. In the statement we make the

distinction that while both X and Y are discrete curves, the ε values that define them are not

required to be the same. We also do not require εx or εy to be dependent on n, just that they

9



Figure 1.5: An example of a critical overlap in a representation of a curve.

are smaller than 1. We are able to show that given the particular properties of the discrete

curves of X, the joint probabilities generated by t-SNE along with early exaggeration will

essentially reduce t-SNE to a spectral method with a known solution. We then pair this

result with the fact that a discrete curve in the visualization is a local minimum for the KL

loss function.

Theorem 1.2. Let X = (xi)
n
i=1 in Rd be an εx-discrete curve and let Ye = TSNEe(X). If

Ye has no a, b-critical overlaps, then Y = TSNE(X) is an εy-discrete curve.

A formal statement and proof is given by Theorem 4.2. We show that given the assumptions

about X, the joint probabilities generated by t-SNE induce local solutions that preserve the

discrete curve structure. However, we have to assume that there are no overlaps between

different neighborhoods as those will impact the iterations of t-SNE’s gradient.

10



Chapter 2

Discrete Curves and t-SNE

Now that we have a definition for a discrete curve given in Def 1.2, we can use that to

evaluate how t-SNE is impacted and treats such structures. We need some limitations on

the density of the curve in order to do this. If a discrete curve is populated by n points, we

would expect the density of the curve to increase as n increases rather than the distance of

the curve increasing. We define density below.

Definition 2.1 (λ-Dense Curve). Consider a finite sequence of points (zj)
k
j=1 in Rd. We

say that this sequence of points is an λ-dense curve if the following properties hold for all

j, j + 1 ∈ [k]:

∥zj − zj+1∥ ≤ λ. (2.1)

In this section we quantify how distances scale in a ε-discrete curve and use that information

to find properties of t-SNE’s selection of σi and gradient. The rest of this section is outlined

as follows. Lemma 2.1 finds an upper bound on σi when the underlying dataset is a λ-dense,

11



ε-discrete curve. Lemmas 2.2 and 2.3 estimate distances between points that satisfy the ε-

discrete curve definition. These estimations are used in Lemma 2.4 to prove that differences

in the gradient for symmetric pairs of points in a neighborhood are symmetric. In Lemma 2.5

we find upper bounds for t-SNE’s gradient when the data is a discrete curve.

2.1 Discrete Curve and t-SNE Bandwidth

We will assume that our input data X is a λx-dense, εx-discrete curve and ρ is the perplexity

chosen by the user and fixed. t-SNE uses binary search to find the appropriate Gaussian

bandwidth with (1.2). Given that we assume λx < 1/n, we can find an upper bound on σi.

Lemma 2.1. Let X = (xi)
n
i=1 in Rd be a λx-dense, εx-discrete curve where λx < 1/n. Let

pj|i be given as (1.1) and let the perplexity ρ be a sufficiently small absolute constant. Then

σi ≤ 1√
log(n)

.

Proof. t-SNE uses binary search to find a σi such that (1.2) holds.

ρ = 2−
∑

j ̸=i pj|i log(pj|i)

12



Rearranging (1.2) and applying Definition (1.1) gives us the following.

log2(ρ) = −
∑
j ̸=i

pj|i log(pj|i)

= −

[∑
j ̸=i

pj|i log

(
exp(−∥xi − xj∥2/2σ2

i )

CPi

)]
(2.2)

= −

[∑
j ̸=i

pj|i log(exp(−∥xi − xj∥2/2σ2
i ))−

∑
j ̸=i

pj|i log(CPi
)

]

=
∑
j ̸=i

pj|i
∥xi − xj∥2

2σ2
i

+ log(CPi
) (2.3)

≥ log(CPi
) (2.4)

(2.2) follows from applying the definition of pj|i, (2.3) follows from the fact that the sum

of all pj|i equals 1, and the last inequality (2.4) comes from the fact the first sum in (2.3)

contains all positive terms. Now we wish to find a bound on the normalization term CPi
.

Because (xi)
n
i=1 is a λx-dense, εx-discrete curve, then the largest pairwise distance between

any two points will be at most nλx. Using this to bound CPi
we have

CPi
=
∑
j ̸=i

exp(−∥xi − xj∥2/2σ2
i ) ≥

∑
j ̸=i

exp(−n2λ2
x/2σ

2
i ) = n exp(−n2λ2

x/2σ
2
i ).

Using the bound in (2.4) we have

n exp(−n2λ2
x/2σ

2
i ) ≤ CPi

≤ ρ,

σi ≤

√
n2λ2

x

2 log(n/ρ)
,

≤ 1√
log(n)

, (2.5)

where (2.5) follows from the assumption that λx < 1/n.

Even though we have an upper bound for σi, for simplicity of calculation we will assume
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that 2σi = ρ2/n2 ≤ 1√
log(n)

. This still satisfies the upper bound we found above and it

is reasonable to assume that the bandwidth will be proportional to the density times the

expected neighborhood size. There is also other instances in the theoretical work done about

t-SNE where σi was assumed to make the calculations simpler, see [4] and [26]. We can now

use these properties about the pij values to make insights about the overall structure of the

matrix, P , of pij values.

2.2 Linearity of Distances in Discrete Curves

Before we can show that t-SNE’s gradient preserves the structures of discrete curves, we need

some important information about the pairwise distances in discrete neighborhoods. First,

we show that the pairwise distances between immediate neighbors in an ε-discrete curve are

proportional to each other.

Lemma 2.2. Assume that (zℓ)
k
ℓ=1 is an ε-discrete curve where k2ε < 1, then for every

m < i < i+ j ∈ [k],

∥zm − zi∥ ≤
[
|i−m|(1 + ε)(1 + |i−m|2ε)

j(1− j2ε)

]
∥zi+j − zi∥.

Proof. For simplicity, we first calculate the distance between two points, zm and z1, and let

∥v∥ = ∥z2 − z1∥. From the definition of a discrete curve, we have that

∥z3 − z2∥ ≤ ∥v∥+ |δ1|,

14



where |δ1| ≤ ε∥v∥. Similarly, we can estimate the norm of z4 − z3 to get

∥z4 − z3∥ ≤ ∥z3 − z2∥+ |δ2|

≤ ∥z3 − z2∥+ ε∥z3 − z2∥

≤ (1 + ε)∥z3 − z2∥

≤ (1 + ε)2∥v∥.

We can continue this process iteratively to get that for any ℓ ≤ k,

∥zℓ − zℓ−1∥ = ∥v∥+ |δℓ−2|

≤ (1 + ε)ℓ−2∥v∥

where |δℓ−2| ≤ ε(1 + ε)ℓ−2∥v∥ = ((1 + ε)j − 1)∥v∥. If we now consider the entire distance

∥zm − z1∥, then accounting for all of the errors, we get the following:

∥zm − z1∥ ≤ (m− 1)∥v∥+
m−1∑
ℓ=1

ℓ∑
j=1

δj

≤ (m− 1)∥v∥+ ∥v∥
m−1∑
ℓ=1

ℓ∑
j=1

jε+ ε2 (2.6)

≤ (m− 1)∥v∥+ ε∥v∥
m−1∑
ℓ=1

ℓ∑
j=1

j + ε

≤ (m− 1)∥v∥+ (m− 1)ε∥v∥
[
(m− 2)(2m− 3)

12
+

(2ε+ 1)(m− 2)

4

]
(2.7)

≤ (m− 1)∥v∥
[
1 +m2ε

]
(2.8)

Line (2.6) comes from substituting our first-order approximation of (1 + ε)j − 1 ≤ jε + ε2.,

Line (2.7) comes from evaluating the sum and factoring common terms, and Line (2.8) results

from the fact (m−2)(2m−3)
12

+ (2ε+1)(m−2)
4

is bounded above by m2. Additionally, since each of
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the δj are added and could be negative, we have that a lower bound to be

∥zm − z1∥ ≥ (m− 1)∥v∥(1−m2ε).

Now we can do this same process for any i,m, i+j in the neighborhood. Assume for simplicity

that m < i < i+ j. Then by following the steps in the above process, we have that

∥zm − zi∥ ≤ |i−m|∥zi − zi−1∥(1 + |i−m|2ε), (2.9)

∥zi+j − zi∥ ≥ j∥zi − zi+1∥(1− j2ε) (2.10)

However, we know from the definition of a discrete curve that ∥zi−zi−1∥ ≤ (1+ε)∥zi+1−zi∥.

Substituting this into Line (2.9) we have

∥zm − zi∥ ≤ |i−m|(1 + ε)∥zi − zi+1∥|(1 + |i−m|2ε),

≤
[
|i−m|(1 + ε)(1 + |i−m|2ε)

j(1− j2ε)

]
∥zi+j − zi∥.

Here the requirement that k2ε < 1 means that as a discrete curve with more curvature (ε

closer to 1), then the property above only holds for less and less k. This makes intuitive

sense since we would not expect pairwise distances to scale linearly for points far away from

each other if the discrete curve had extreme curvature.

Now we can show that our definition of a dense, discrete curve implies that the pairwise

distances between points on the discrete curve break down nearly linearly. This property

will be important later when we estimate the effect of t-SNE’s gradient.

Lemma 2.3. Assume that (zℓ)
k
ℓ=1 is a λ-dense, ε-discrete curve, then for every c > b > a ∈
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[k],

∥zc − za∥ = ∥zc − zb∥+ ∥zb − za∥+ δc,b,a,

such that

δc,b,a ≤ [2(c− a)2 + (b− a)2]λε.

Proof. Let us take zc− za and expand it by adding and subtracting zℓ for a+1 ≤ ℓ ≤ c− 1:

zc − za = (zc − zc−1) + (zc−1 − zc−2) + · · ·+ (za+2 − za+1) + (za+1 − za). (2.11)

From the definition of an ε-discrete curve we have that za+2 − za+1 = za+1 − za + ea+1,1

where ∥ea+1,1∥ ≤ ε∥za+1 − za∥. We essentially ‘flip’ the vectors with a cost of an error

term. We can do this sequentially for each pairwise difference in (2.11). For example, with

za+3 − za+2, we can flip twice to get

za+3 − za+2 = za+2 − za+1 + ea+2,1,

= za+1 − za + ea+1,1 + ea+2,1.

Continuing this for each pairwise distance, we would get zc− zc−1 = za+1− za +
∑c−1

ℓ=a+1 eℓ,1.

Putting this into (2.11) we get

zc − za = (za+1 − za) +
c−1∑

ℓ=a+1

eℓ,1 + · · ·+ (za+1 − za) + ea+1,1 + (za+1 − za),

= (c− a)(za+1 − za) +
c−1∑

h=a+1

h∑
ℓ=a+1

eℓ,1.
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From the same process above, we have that

zb − za = (b− a)(za+1 − za) +
b−1∑

h=a+1

h∑
ℓ=a+1

eℓ,1, (2.12)

and

zc − zb = (c− b)(zb+1 − zb) +
c−1∑

h=b+1

h∑
ℓ=b+1

eℓ,1. (2.13)

To compare zc− za, zb− za, and zc− zb, we want all the distances to be in terms of za+1− za.

So looking at Line (2.13), we expand zb+1 − zb to get

zc − zb = (c− b)(za+1 − za) + (c− b)
b∑

ℓ=a+1

eℓ,1 +
c−1∑

h=b+1

h∑
ℓ=b+1

eℓ,1.

From here, we can get a bound on the distances. By the reverse triangle inequality, we have

∣∣∣∣∥zc − za∥ − ∥(c− a)(za+1 − za)∥
∣∣∣∣ ≤ c−1∑

h=a+1

h∑
ℓ=a+1

∥eℓ,1∥ . (2.14)

Pairing Line (2.14) with the triangle inequality gives us

∥zc − za∥ = (c− a)∥za+1 − za∥+ δc,a, (2.15)

where δc,a ≤
∑c−1

h=a+1

∑h
ℓ=a+1 ∥eℓ,1∥. We can apply the same process to Lines (2.12) and

(2.13) to get

∥zb − za∥ = (b− a)∥za+1 − za∥+ δb,a, (2.16)

∥zc − zb∥ = (c− b)∥za+1 − za∥+ δc,b, (2.17)
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where

|δb,a| ≤
b−1∑

h=a+1

h∑
ℓ=a+1

∥eℓ,1∥,

|δc,b| ≤ |c− b|
b∑

ℓ=a+1

∥eℓ,1∥+
c−1∑

h=b+1

h∑
ℓ=b+1

∥eℓ,1∥.

Combining Lines (2.15), (2.16) and (2.17) gives us

∥zc − za∥ = ∥zc − zb∥+ ∥zb − za∥+ δc,b,a,

where

|δc,b,a| ≤
c−1∑

h=a+1

h∑
ℓ=a+1

∥eℓ,1∥+
b−1∑

h=a+1

h∑
ℓ=a+1

∥eℓ,1∥+ |c− b|
b∑

ℓ=a+1

∥eℓ,1∥+
c−1∑

h=b+1

h∑
ℓ=b+1

∥eℓ,1∥

= 2
c−1∑

h=a+1

h∑
ℓ=a+1

∥eℓ,1∥+
b∑

ℓ=a+1

∥eℓ,1∥.

However, since each this is an ε-discrete, λ-dense curve, then each ∥eℓ,1∥ ≤ λε. Therefore we

have that

∥δc,b,a∥ ≤ [2(c− a)2 + (b− a)2]λε.

The above results shows that distances break down nearly linearly and we should expect the

error to scale not only with the curvature of the discrete curve, but also with its density. We

can see that the error also holds when a discrete curve is a perfect line, since when ε = 0,

then this result says the error is 0, which is what we expect.

Now that we have this property about the distances in a discrete curve, we can move on to

estimating the effect t-SNE’s gradient has on discrete curves.
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2.3 Gradient Upper Bounds of Dense, Discrete Curves

We can show that given a dense, discrete curve and a symmetric triplet in the curve, t-SNE’s

gradient will be nearly symmetric about the center of the triplet. To show this, we will have

to assume that the neighborhood size ρ stays sufficiently smaller than the size of the dataset

n. We will also need to assume that in the visualization, any points that are not within 10ρ

nearest neighbors will be sufficiently far away.

Since t-SNE updates the location of each point simultaneously, the iterations can be naturally

written as a matrix equation. Let Y ∈ Rn×2 be a matrix who rows are the points (yi)
n
i=1.

The joint probabilities pij and qij can be represented in n× n matrices where Pij = pij and

Qij = qij. Using this notation, we can define an iterative matrix M ∈ Rn×n where

M t
ij =


1− h

∑
k ̸=i(pik − qik)(1 + ∥yti,: − ytk,:∥2)−1 i = j

h(pij − qij)(1 + ∥yti,: − ytj,:∥2)−1 i ̸= j

(2.18)

We can use M to rewrite equation 1.7 to be the following

Y t+1 = M tY t. (2.19)

By writing the iteration updates in terms of the matrix M , we can study how t-SNE’s

visualizations change along withM . Below, we show how discrete curves impact the structure

of M and subsequently changes the output t-SNE creates.

Lemma 2.4 (Gradient Symmetry). Let (xi)
n
i=1 ⊂ Rd be a λx-dense, εx-discrete curve and

assume that for some t > 0, there is a visualization (yti)
n
i=1 that is also a λy-dense, εy-discrete

curve. Fixing i, assume j ≤ ρ, then

M t
i+j,k −M t

i,k = M t
i,k −M t

i−j,k +∆t
i,j,k,
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such that |∆t
i,j,k| ≤ (j+ρ2εx)

2λ2
x+(j+ρ2εy)

2λ2
y+2ρ3λ2

yεy for all k ∈ N where k ̸= i−j, i, i+j.

Proof. To simplify the notation in this proof, we adopt the following:

d
(x)
f,g = ∥xf − xg∥ and d

(y)
f,g = ∥y

t
f − ytg∥.

Assume that k < i− j. For v ∈ {x, y}, since the neighborhoods of xi and yti are λ(v)-dense,

ε(v)-discrete curves, we know there exists δ̂
(v)
i,j such that

d
(v)
i−j,i = d

(v)
i+j,i + δ̂

(v)
i,j , (2.20)

where δ̂
(v)
i,j ≤ jλ(v)ε(v). Applying Lemma 2.3 and line (2.20) gives

d
(v)
i−j,k = d

(v)
i,k − d

(v)
i−j,i + δ

(v)
i−j,k,i,

= d
(v)
i,k − d

(v)
i+j,i + δ̃

(v)
i−j,k,i, (2.21)

where δ
(v)
i−j,k,i is the error given in Lemma 2.3. Here δ̃

(v)
i−j,k,i ≤ δ

(v)
i−j,k,i + δ̂

(v)
i,j and thus δ̃

(v)
i−j,k,i ≤

λ(v)ε(v)Ci−j,k,i where

Ci−j,k,i = [j + 2(i− k)2 + (|i− j| − k)2].

However, we know that since i, k, i+j and i−j are in the same neighborhood, then Ci−j,k,i ≤

3ρ2. Thus δ̃
(v)
i−j,k,i ≤ ρ2λ(v)ε(v). Now we can use these distance equations to estimate the

differences in gradient values generated by t-SNE.

Recall the iterative update generated by t-SNE’s gradient in (2.18). Since we will use this

approximation when t-SNE is not in early exaggeration, we fixed the exaggeration factor

α = 1 in (1.7). Our ultimate goal is to estimate how close the differences M t
i+j,k − M t

i,k
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and M t
i,k −M t

i−j,k are, and we will do so by taking a Taylor expansion of the function that

represents the entries in t-SNE’s gradient:

M(d(x), d(y)) = h

(
exp(−(d(x))2/2σ2)

nCPi

− (1 + (d(y))2)−1

CQ

)
(1 + (d(y))2)−1.

Note that when i ̸= j, then M t
ij = M(d

(x)
ij , d

(y)
ij ). Because d

(x)
ij and d

(y)
ij contribute such small

amounts to CPi
and CQ, we will treat them as constants in our expansion. Now we can use

our distance equations from (2.21) and Lemma 2.3 to get that

M t
i+j,k = M(d

(x)
i+j,i + d

(x)
i,k + δ

(x)
i+j,k,i, d

(y)
i+j,i + d

(y)
i,k + δ

(y)
i+j,k,i),

M t
i−j,k = M(d

(x)
i,k − d

(x)
i+j,i + δ̃

(x)
i−j,k,i, d

(y)
i,k − d

(y)
i+j,i + δ̃

(y)
i−j,k,i).

Now taking a first order Taylor expansion ofM about (d
(x)
i,k , d

(y)
i,k ) and evaluating at (d

(x)
i+j,k, d

(y)
i+j,k)

and (d
(x)
i−j,k, d

(y)
i−j,k):

M t
i+j,k = M t

i,k + (d
(x)
i+j,i + δ

(x)
i+j,k,i)Mx(d

(x)
i,k , d

(y)
i,k ) + (d

(y)
i+j,i + δ

(y)
i+j,k,i)My(d

(x)
i,k , d

(y)
i,k ) + ∆+,

(2.22)

M t
i−j,k = M t

i,k + (−d(x)i+j,i + δ̃
(x)
i−j,k,i)Mx(d

(x)
i,k , d

(y)
i,k ) + (−d(y)i+j,i + δ̃

(y)
i−j,k,i)My(d

(x)
i,k , d

(y)
i,k ) + ∆−.

(2.23)

Here Mx and My denote the partial derivatives of M(·, ·) with respect to d
(x)
·,· and d

(y)
·,·

respectively. ∆+ and ∆− denote the errors given by the expansion, which in this case will be

bounded by
(
(d

(x)
i+j,i + δ

(x)
i+j,k,i)

2 + (d
(y)
i+j,i + δ

(y)
i+j,k,i)

2
)
. If we substitute (2.23) into (2.22) and

rearrange terms, we have that

M t
i+j,k −M t

i,k = M t
i,k −M t

i−j,k

+ (δ
(x)
i+j,k + δ̃

(x)
i−j,k)Mx(d

(x)
i,k , d

(y)
i,k ) + (δ

(y)
i+j,k + δ̃

(y)
i−j,k)My(d

(x)
i,k , d

(y)
i,k )

+ ∆+ +∆−. (2.24)
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We will also need to estimate Mx and My. A quick derivation gives us

Mx(d
(x), d(y)) = −2hd(x) exp(−(d(x))2)(1 + (d(y))2)−1,

My(d
(x), d(y)) = −2hd(y)(1 + (d(y))2)−2 exp(−(d(x))2) + 4hd(y)(1 + (d(y))2)−3.

Therefore we have that

Mx(d
(x)
i,k , d

(y)
i,k ) ≤ 0, My(d

(x)
i,k , d

(y)
i,k ) ≤ d

(y)
i,k . (2.25)

Recall that in (2.24), (δ
(v)
i+j,k,i+δ̃

(v)
i−j,k,i) ≤ 2ρ2λ(v)ε(v) for v ∈ {x, y}. Using this and substituting

in (2.25) into (2.24), we have that

(δ
(x)
i+j,k,i + δ̃

(x)
i−j,k,i)Mx(d

(x)
i,k , d

(y)
i,k ) + (δ

(y)
i+j,k,i + δ̃

(y)
i−j,k,i)My(d

(x)
i,k , d

(y)
i,k ) ≤ 2ρ3λ2

yεy. (2.26)

Finally, we can find an upper bound for ∆− + ∆+. From the Taylor expansion we know

∆− + ∆+ ≤ (d
(x)
i+j,i + δ

(x)
i,k )

2 + (d
(y)
i+j,i + δ

(y)
i,k )

2. Since both X and Y are λ(v)-dense curves,

then each pairwise step is at most λ(v), making both d
(·)
i+j,i and d

(·)
i−j,i at most jλ(v). From

Lemma 2.3, we know δ
(·)
i,k ≤ ρ2λ(v)ε(v). Thus we have that ∆++∆− ≤

∑
v∈x,y λ

2
(v)(j+ρ2ε(v))

2.

Putting both of these values into (2.24) implies that

M t
i+j,k −M t

i,k = M t
i,k −M t

i−j,k +∆t
i,j,k, (2.27)

where |∆t
i,j,k| ≤ (j + ρ2εx)

2λ2
x + (j + ρ2εy)

2λ2
y + 2ρ3λ2

yεy. If instead i− j < k < i then using

our dense discrete curve requirement and Lemma 2.3, (2.21) will instead become,

d
(v)
i−j,k = d

(v)
i−j,i − d

(v)
i,k + δ

(v)
i−j,k,i,
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and d
(v)
i+j,k will be

d
(v)
i+j,k = d

(v)
i−j,i + d

(v)
i,k + δ

(v)
i+j,k,i + δ

(v)
i+j,i−j,i.

Then we can instead take the Taylor Expansion about d
(v)
i−j,k and get the same order of

approximation since the pairwise distances in the discrete curve are bounded by λ(v).

This lemma essentially shows that for any symmetric triplet in a neighborhood, any other

point in the neighborhood will have the same impact on the gradient value. This result will

help show the effects the structure of a discrete curve has on t-SNE’s gradient.

In addition to estimating the symmetry between gradient entries, it will be helpful to find

some basic upper bounds on the gradient entries depending on the location of different

datapoints. Below we estimate what the gradient will be depending on if a point is inside or

outside a neighborhood.

Lemma 2.5 (Gradient Upper Bounds). Assume that for (xi)
n
i=1 ⊂ Rd is a λx-dense, εx-

discrete curve and its visualization (yi)
n
i=1 is a λy-dense, εy-discrete curve where λx, λy < 1/n.

If 2σ2
i = ρ2/n2, then the following bounds hold.

• When |i− j| ≤ 10ρ, then |M t
i,j| ≤ 4he

ρn
.

• When |i − j| > 10ρ and ∥xi − xj∥2 ≥ ρ2 log(n)/n, ∥yti − ytj∥2 ≥
√
16h/εy, then

|M t
i,j| ≤

εy
4n2
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Proof. As a reminder, pij and qtij values are the following.

pj|i =
exp(−∥xi − xj∥2/(2σ2

i ))∑
k ̸=i exp(−∥xi − xk∥2/(2σ2

i ))

pij =
pi|j + pj|i

2n

qtij =
(1 + ∥yti − ytj∥2)−1∑
k ̸=ℓ(1 + ∥ytk − ytℓ∥2)−1

We can find an upper bound for pj|i by putting a lower bound on the normalization term.

pj|i =
exp(−∥xi − xj∥2/(2σ2

i ))∑
k ̸=i exp(−∥xi − xj∥2/(2σ2

i ))

≤ exp(−∥xi − xj∥2/(2σ2
i ))

ρ exp(−(ρ2/n2)/(2σ2
i ))

(2.28)

≤ exp(−∥xi − xj∥2/(2σ2
i ))

ρ/e
(2.29)

(2.28) follows from the assumption that the normalization term will contain at least the ρ

nearest neighbors and will be its smallest value when the distance is largest, which in this

case is ρ2λ2
x = ρ2/n2. (2.29) follows from the assumption that 2σ2

i = ρ2/n2. A lower bound

for pi|j can be found by upper bounding the normalization term.

pj|i =
exp(−∥xi − xj∥2/(2σ2

i ))∑
k ̸=i exp(−∥xi − xj∥2/(2σ2

i ))
≥ exp(−∥xi − xj∥2/(2σ2

i ))

n

The upper bound on the normalization term comes from the fact that exp(−∥xi − xj∥2/(2σ2
i )) ≤ 1.

Putting these bounds with the definition of pij we have that

pij ≤
exp(−∥xi − xj∥2/(2σ2

i ))

nρ/e
, (2.30)

pij ≥
exp(−∥xi − xj∥2/(2σ2

i ))

n2
. (2.31)

We can also find upper and lower bounds for qij. Since (yi)
n
i=1 is a λy-dense, εy-discrete

curve where λy < 1/n, then the maximum distance is at most 1 and the minimum pairwise

25



distance is 0. Thus we have

qij ≤
(1 + ∥yti − ytj∥2)−1∑
k ̸=ℓ(1 + ∥ytk − ytℓ∥2)−1

≤
2(1 + ∥yti − ytj∥2)−1

n2
, (2.32)

qij ≥
(1 + ∥yti − ytj∥2)−1∑
k ̸=ℓ(1 + ∥ytk − ytℓ∥2)−1

≥
(1 + ∥yti − ytj∥−1)

n2
. (2.33)

Let |i− j| ≤ 10ρ and assume that pij ≥ qij. Then we have that

|pij − qij| ≤ |pij| ,

≤ exp(−∥xi − xj∥2/(2σ2
i ))

nρ/e
,

≤ e

ρn
. (2.34)

If we instead assume that pij ≤ qij, then we have that

|pij − qij| ≤
∣∣∣∣exp(−∥xi − xj∥2/(2σ2

i ))

n2
−

2(1 + ∥yti − ytj∥2)−1

n2

∣∣∣∣ ,
≤ 1

n2
| exp(−1/ρ2)− 2|, (2.35)

≤ 1

n2
(2.36)

where (2.35) follows from the assumption that ∥xi − xj∥2 ≤ 1 and ∥yti − ytj∥2 ≥ 0. Looking

at both bounds in (2.34) and (2.36) we see that when |i− j| ≤ 10ρ, |p− q| ≤ e
ρn
.

Now consider when |i − j| > 10ρ. From our assumptions that means ∥xi − xj∥2 ≥ ρ2 log(n)
n2 .

If pij ≥ qij, then

|pij − qij| ≤
∣∣∣∣exp(−∥xi − xj∥2/(2σ2

i ))

nρ/e
−

(1 + ∥yti − ytj∥2)−1

n2

∣∣∣∣ ,
≤ 1

n

∣∣∣∣1/nρ/e
− 1

2n

∣∣∣∣ , (2.37)

≤ e

ρn2
, (2.38)
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where (2.37) follows from the assumption that ∥xi − xj∥2 ≥ ρ2 log(n)
n2 and that 2σ2

i = ρ2/n2.

If instead pij ≤ qij, then

|pij − qij| ≤
∣∣∣∣exp(−∥xi − xj∥2/(2σ2

i ))

n2
−

2(1 + ∥yti − ytj∥2)−1

n2

∣∣∣∣ ,
≤ 1

n2
|0− (1 + ∥yti − ytj∥2)−1|, (2.39)

≤
√
εy√

16hn2
, (2.40)

where (2.39) follows as exp(−x2) ≥ 0 and (2.40) follows from the assumption that ∥yti−ytj∥2 ≥√
16h/εy. Thus at worst |pij − qij| is

√
εy√

16hn2 when |i− j| > 10ρ.

We can use these bounds to now upper bound the actual gradient values. For |i− j| ≤ 10ρ,

we can find an upper bound on the gradient value M t
ij given by (2.18).

M t
ij = 4h|pij − qij|(1 + ∥yti − ytj∥2)−1

≤ 4he

ρn
(1 + ∥yti − ytj∥2)−1

≤ 4he

ρn
(2.41)

(2.41) follows as ∥yti − ytj∥2 ≥ 0. If instead |i− j| ≥ 10ρ, we have that

M t
ij = 4h|pij − qij|(1 + ∥yti − ytj∥2)−1,

≤
4h
√
εy√

16hn2
(1 + ∥yti − ytj∥2)−1,

≤ εy
4n2

, (2.42)

where (2.42) follows from the assumption that ∥yti − ytj∥2 ≥
√

16h/εy.

These lower bound requirements on the distances between points not in the same neigh-

borhood correspond to our assumption that our discrete curves shouldn’t have a, b-critical
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overlaps. We are excluding curves that overlap themselves or have super tight coils.
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Chapter 3

Early Exaggeration Promotes

Discrete Curve Formation

Many non-convex optimization algorithms have a specific initialization that better optimize

their solution. Similarly, t-SNE employs a period of early exaggeration that makes t-SNE’s

algorithm more advantageous. During this period t-SNE artificially enlarges the pij values

to promote attraction between similar points. In the previous section this was notated by

αpij in the cost function, where in practice α = 4 and is changed to α = 1 after the first 200

iterations.

There has been some investigation into this part of the algorithm. Linderman and Steiner-

berger were able to show that given clusterable high-dimensional data, then t-SNE’s early

exaggeration phase promotes cluster formation when using appropriate choices for the step

size h and early exaggeration factor α. [26]. This occurs because t-SNE initializes the visu-

alization Y in a very tiny square which forces the qij values to be uniformly small. Pairing

this with the larger αpij values, the gradient matrix M develops a particular structure such

that points in high dimensions move closer in the low dimensional representation.
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Here we employ a similar analysis for early exaggeration. We consider high-dimensional

data X = (xi)
n
i=1 that is a λx-dense, εx-discrete curve and show that this property induces

a certain structure on the pij values. We then pair this with the early exaggeration factor

α and show that the local solution for these neighborhoods are discrete curves and t-SNE

visualizes them as such.

3.1 Induced Toeplitz Matrix

The high-dimensional dataset is a λ-dense, ε-discrete curve and will induce a particular

structure in the pij values. Lemma 3.2 shows that pj|i ≈ exp(−|i−j|2λ2/2σ2
i )

CPi
. From here we can

define a new variable a to be a = exp(−λ2/2σ2
i ) and thus pj|i ≈ a|i−j|2 . Since we expect

the neighborhoods of lines to have the same relative density of points we can assume that

the induced σi to be the same for a single neighborhood. This implies that pj|i ∼ pi|j for

simplicity, we will denote pij ∼ pj|i. Using our new notation we have that the n× n matrix

P consisting of all pij values can be written as

P =



p11 p12 . . . p1n−1 p1n

p21 p22 . . . p2n−1 p2n
...

... . . .
...

...

pn1 pn2 . . . pnn−1 pnn


=



1 a2 a4 . . . a(n−1)2

a2 1 a2 . . . a(n−2)2

...
...

... . . .
...

a(n−1)2 a(n−2)2 a(n−3)2 . . . 1


.

Writing P where the entries are powers of a reveals a familiar structure. This is a Toeplitz

matrix where the entry ak = exp(−k2λ2/2σ2). It is well know that P is generated by the

function f(x):

f(x) =
k=∞∑
k=−∞

exp(−k2/a) exp(ikx).
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Figure 3.1: The eigenvalues of the P matrix created by t-SNE compared with the eigenvalues
expected from a Toeplitz matrix with appropriate a values.

However this is exactly one of the Jacobi theta function so the solution to this equation is

f(x) = 1 + 2
∞∑
ℓ=1

exp(−ℓ2/σ) cos(ℓx) = ϑ3(x/2, exp(−1/a)).

The Jacobi theta functions are well studied and a comprehensive review can be found here [5].

From the Szego Limit Theorem, in the limit the distribution of the eigenvalues look like the

distribution of f(x). For our particular f(x) this implies that our kth eigenvalue λ
(n)
k will

equal f(kπ/n), or

f(kπ/n) = 1 + 2
∞∑
ℓ=1

exp(−ℓ2/σ2) cos(ℓkπ/n).

In practice we can check that this is true. Using a dataset of 200 points on a dense line,

we compared the eigenvalues of the P matrix created by t-SNE and compared them to the

eigenvalues of a Toeplitz matrix with the structure above with the comparable a value. In

Figure 3.1 we can see that there is perfect overlap, confirming our analysis. Now we can

show rigorously that this Toeplitz matrix is very close to a matrix populated by the true pij
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values.

Lemma 3.1. Let X = (xi)
n
i=1 be in Rd be a λx-dense, εx-discrete curve. Assume that for a

fixed i, if |i− j| ≤ 5ρ, then

∣∣∣∣∥xi − xj∥2 − |i− j|2λ2
x

∣∣∣∣ ≤ λx√
n
. Then the following bound holds:

∣∣∣∣ exp(−∥xi − xj∥2/2σ2
i )− exp(−|i− j|2λ2

x/2σ
2
i )

∣∣∣∣ ≤ δ̂ij, (3.1)

where

δ̂ij ≤


625(εx + 1)2ρ4λ4

x |i− j| ≤ 5ρ

λ2
x

n
|i− j| > 5ρ

. (3.2)

Proof. If |i− j| ≤ 5ρ, then Lemma 2.3 tells us that

∥xi − xj∥ = |i− j|∥xi − xi+1∥+ δij, (3.3)

where |δij| ≤ (i− j)2λxεx. Squaring (3.3) implies that

∥xi − xj∥2 = |i− j|2∥xi − xi+1∥2 + δ̄ij, (3.4)

where |δ̄ij| ≤ (i − j)2λ2
xεx + (i − j)4λ2

xε
2
x. However, since |i − j| ≤ 5ρ and λx, εx < 1 and

∥xi − xi+1∥2 ≤ λ2
x, then

∣∣∣∣∥xi − xj∥2 − |i− j|2λ2
x

∣∣∣∣ ≤ ρ2λ2
x + 25ρ2λ2

xεx (3.5)

≤ 25(εx + 1)ρ2λ2
x (3.6)

Now to find the difference in (3.1), we take a second order Taylor series about exp(−x/2σ2
i )
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centered at x = |i− j|2∥xi − xi+1∥2. Evaluating the series at ∥xi − xj∥2/2σ2
i gives us,

exp(−∥xi−xj∥2/2σ2
i ) = exp(−|i−j|2∥xi−xi+1∥2/2σ2

i )+(δ̃ij)
∂

∂x
(exp(−|i−j|2∥xi−xi+1∥2/2σ2

i ))+Eij

(3.7)

where |Eij| ≤ δ̄2ij = 625(εx + 1)2ρ4λ4
x. Given the fact the first derivative in (3.7) is negative,

then we have that

exp(−∥xi − xj∥2/2σ2
i )− exp(−|i− j|2∥xi − xi+1∥2/2σ2

i ) ≤ 625(εx + 1)2ρ4λ4
x. (3.8)

If we instead consider |i−j| > 5ρ, we can use the assumption that

∣∣∣∣∥xi−xj∥2−|i−j|2λ2
x

∣∣∣∣ ≤ λx√
n

to do a similar Taylor expansion to get

exp(−∥xi − xj∥2/2σ2
i )− exp(−|i− j|2∥xi − xi+1∥2/2σ2

i ) ≤ λ2
x/n. (3.9)

We use the estimation in Lemma 3.1 to prove that the matrix P population by pj|i values is

close to the Toeplitz matrix descriped above.

Lemma 3.2. Let X = (xi)
n
i=1 be in Rd be a λx-dense, εx-discrete curve. Assume that for

a fixed i, if |i − j| > 5ρ, then

∣∣∣∣∥xi − xj∥2 − |i − j|2λ2
x

∣∣∣∣ ≤ λx√
n
. If P is the n × n matrix

populated by pj|i values defined by t-SNE in (1.1) and TP is the n × n Toeplitz matrix such

that TPij
= exp(−|i− j|2λ2

x/2σ
2
i ), then

∥P − TP∥2F ≤
1

n
, (3.10)

if λx < 1/n and ρ is constant.
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Proof. Using the difference estimation in Lemma 3.1 we can find the upper bound.

∥P − TP∥2F =
∑
i

∑
j ̸=i

|pj|i − TPij
|2 (3.11)

=
∑
i

 ∑
j,|i−j|≤5ρ

|pj|i − TPij
|2 +

∑
j,|i−j|>5ρ

|pj|i − TPij
|2
 (3.12)

≤
∑
i

(
5ρ(625(εx + 1)2ρ4λ4

x) + (n− 5ρ)
λ2
x

n

)
(3.13)

≤ 3125n(εx + 1)2ρ5ε4x + n(n− 5ρ)
λ2
x

n
(3.14)

≤ ρ5

n3
+

1

n
. (3.15)

3.2 Early Exaggeration Structure

Using the definitions of P and M we can quantify the behavior of t-SNE during the early

exaggeration phase. Assume that X has satisfied the linear conditions from above. Then

the updating iterative matrix M t from (1.7) can be written as M t = P̂ + E tP + E t where

P̂ij =


1−

∑
k ̸=i 4hαpik i = j

4hαpij i ̸= j

(3.16)

E tpij =


∑

k ̸=i 4αhpik(1− (1 + ||yti − ytk||2)−1) i = j

4hαpij((1 + ||yti − ytj||2)−1 − 1) i ̸= j

(3.17)
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E tij =


∑

k ̸=i 4hqik(1 + ||yti − ytk||2)−1 i = j

−4hqij(1 + ||yti − ytj||2)−1 i ̸= j

. (3.18)

We can show that given the assumptions from the early exaggeration phase, Ê t = E tP + E t

adds only a small error each iteration.

Lemma 3.3. Let µ > 0 and let P be an n × n matrix populated by the pij values defined

by t-SNE in Equation 1.3. Assume that for a particular iteration t, (yti)
n
i=1 ⊂ R2 such that

(1 + ||yti − ytj||2)−1 ≥ 1− µ. Then

||E tP ||2F + ||E t||2F ≤
32h2

n(1− µ)2
+ 32α2h2µ2.

Proof. Let us first find a bound for ∥E tP∥2F . For every i ̸= j, we have that

|E tpij |
2 = |4αhpij(1− (1 + ∥yti − ytj∥2)−1)|2

≤ 16α2h2p2ijµ
2 (3.19)

≤ 16α2h2p2ijµ
2. (3.20)

Line 3.19 follows from the assumption (1 + ∥yti − ytj∥2)−1 ≥ 1 − µ, which implies that

1 − (1 + ∥yti − ytj∥2)−1 ≤ µ. Line 3.20 follows from the fact that all pij values are joint

probabilities and are less or equal to than 1. When we have that i = j, the bound comes
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out to be

|E tpii |
2 =

∣∣∣∣∣∑
k ̸=i

4αhpik(1− (1 + ∥yti − ytk∥2)−1)

∣∣∣∣∣
2

≤

(∑
k ̸=i

(4αhpik)
2

)(∑
k ̸=i

(1− (1 + ∥yti − ytk∥2)−1)2

)
(3.21)

= 16α2h2

(∑
k ̸=i

p2ik

)(∑
k ̸=i

(1− (1 + ∥yti − ytk∥2)−1)2

)

≤ 16α2h2nµ2
∑
k ̸=i

p2ik (3.22)

≤ 16α2h2µ2

n
. (3.23)

The inequality in Line 3.21 follows from Cauchy-Schwarz and the inequality in Line 3.22

follows from the assumption that (1 + ∥yti − ytk∥2)−1 ≥ 1 − µ. For the inequality in Line

3.23, notice that since
∑

k ̸=i pik = 1
n
, then

(∑
k ̸=i pik

)2
= 1

4n2 , so
∑

k ̸=i p
2
ik ≤ 1

n2 since every

pik ≥ 0. Using the inequalities in Lines 3.20 and 3.23, we have that

∥E tP∥2F =
∑
i

∑
j ̸=i

|E tpij |
2 +

∑
i

|E tpii|
2

≤ 16α2h2µ2
∑
i

∑
j ̸=i

p2ij +
∑
i

16α2h2µ2

n

= 32α2h2µ2. (3.24)

Line 3.24 follows from the fact that pij values are probabilities so
∑

i

∑
j ̸=i pij = 1, implying

that
∑

i

∑
j ̸=i p

2
ij ≤ 1 since each pij ≥ 0.
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Now let us find a bound for ∥E t∥2F . For i ̸= j we have that

|E tij|2 = |4hqtij(1 + ∥yti − ytj∥2)−1|2

≤ 16h2q2ij (3.25)

≤ 16h2

n4(1− µ)2
(3.26)

Line 3.25 follows from the fact that (1 + ∥yti − ytj∥2)−1 ≤ 1 for all i ̸= j. Line 3.26 comes

from the assumption that (1 + ∥yti − ytj∥2)−1 ≥ 1 − µ. From the definition of qij, we know

that

qij =
(1 + ∥yti − ytj∥2)−1∑
k ̸=ℓ(1 + ∥ytk − ytℓ∥2)−1

≤
(1 + ∥yti − ytj∥2)−1

n2(1− µ)
(3.27)

≤ 1

n2(1− µ)
(3.28)

The inequality in Line 3.27 follows from the assumption that (1 + ∥yti − ytj∥2)−1 ≥ 1− µ

and the inequality in Line 3.28 comes from the fact that (1+∥yti−ytj∥2)−1 ≤ 1. We can plug

the inequality from Line 3.28 into Line 3.25 to get the inequality in Line 3.26.

Now we can consider a bound on |E tii|. Similarly to above, we get that

|E tii|2 =

∣∣∣∣∣∑
k ̸=i

4hqik(1 + ∥yti − ytk∥)−1

∣∣∣∣∣
2

≤

(∑
k ̸=i

16h2q2ik

)(∑
k ̸=i

(1 + ∥yti − ytk∥2)−2

)

≤ 16h2n
∑
k ̸=i

q2ik

≤ 16h2

n2(1− µ)2
.
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Again we use Cauchy-Schwarz and the bound on qik from Line 3.26 to get this upper bound.

Putting this together we have that

∥E t∥2F =
∑
i

∑
j ̸=i

|E tij|2 +
∑
i

|E tii|2

≤
∑
i

∑
j ̸=i

16h2

n4(1− µ)2
+
∑
i

16h2

n2(1− µ)2

≤ 16h2

n2(1− µ)2
+

16h2

n(1− µ)2

≤ 32h2

n(1− µ)2
(3.29)

Adding the bounds from Lines 3.24 and 3.29 gives the final result.

Lemma 3.3 shows that the error induced by the matrices E tP , E t is dependent on the param-

eters h, α and µ. So, given the particular parameters set by early exaggeration, we get the

following theorem.

Theorem 3.1. Let X = (xi)
n
i=1 ⊂ Rd be a λx-dense, εx-discrete curve and let Y t = {yti}ni=1 ⊂

R2 be the the t-th iteration of the visualization of X that t-SNE generates. Assume that t-SNE

uses early exaggeration and h is constant and α = 4, and (1 + ∥yti − ytj∥2)−1 ≥ 1− (1/
√
n).

Then

∥M t∥2F ≤ ∥P̂∥2F + δ

where δ ≤ 1/n.

Proof. From our assumptions about α and h the solution follows directly from Lemma 3.3.
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Since in early exaggeration the gradient matrix M is very close to the matrix P , and P is

very nearly a Toeplitz matrix, then t-SNE is essentially a spectral method and will locally

preserve the discrete curve structure. However, since the pij values are essentially 0 anytime

j ̸= i, then we can only expect locally for the solution to be ordered correctly, it does not

necessarily prevent overlaps from happening. However, in the next section we are able to

show that if there are no such overlaps, t-SNE will continue to preserve this structure even

after early exaggeration.
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Chapter 4

t-SNE Preserves Discrete Curves

After Early Exaggeration

Now that we have shown that the early exaggeration phase of t-SNE generates discrete

curves in the visualizations, it’s important to show that it will preserve these structures

beyond early exaggeration. Lemma 4.1 shows that the pairwise distance between points in a

neighborhood in a given iteration can be bounded above by the same pairwise distance in the

next iteration. Corollary 4.1 shows that density is preserved between iterations. Finally, we

show in Lemma 4.2 that if points are a discrete curve in a given iteration, t-SNE preserves

this property in the next iteration.

4.1 t-SNE Iterates Preserve Discrete Curves

Now that we have estimates for both distances and gradients from dense discrete curves, we

can show that t-SNE will preserve the dense, discrete curve structure in its visualizations.

We begin by finding a relationship between pairwise distances in sequential iterations.

40



Lemma 4.1 (Comparing Distances Between Iterations). Assume we have high-dimensional

dataset (xi)
n
i=1 that is a λx-dense εx-discrete curve and that for some t > 0, the visualization

(yti)
n
i=1 of (xi)

n
i=1 is also a λy-dense εy-discrete curve. If the following hold:

• The perplexity ρ, and the step size of t-SNE’s gradient, h, satisfy 10he
n

+ 10(h+ 1)ρ3(λ2
x + λ2

y) <
εy
2
,

• For k such that |i− k| > 10ρ, we have ∥ytk − yti∥ > 4
√

16h/εy,

then for iteration t+ 1, for a fixed i and j ≤ ρ we have that

∥yti+j − yti∥ ≤
1

1− εy
∥yt+1

i+j − yt+1
i ∥.

Proof. By definition, we have that

yt+1
i+j = yti+j −

∑
k ̸=i+j

M t
i+j,k(y

t
i+j − ytk),

yt+1
i = yti −

∑
k ̸=i

M t
i,k(y

t
i − ytk).

Rearranging and combining these lines gives us

yti+j − yti = (yt+1
i+j − yt+1

i )︸ ︷︷ ︸
A

−

 ∑
|i−k|≤10ρ,k ̸=i+j

M t
i+j,k(y

t
i+j − ytk)−

∑
|i−k|≤10ρ,k ̸=i

M t
i,k(y

t
i − ytk)


︸ ︷︷ ︸

B

−

 ∑
|i−k|>10ρ

M t
i+j,k(y

t
i+j − ytk)−M t

i,k(y
t
i − ytk)


︸ ︷︷ ︸

C

.

We can combine and simplify the two summations in B by using Lemma 2.4. Since these

are λx,λy-dense εx,εy-discrete curves, know that for any k where |i − k| ≤ 10ρ, M t
i+j,k =
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M t
i,k + δi+j,i such that |δi+j,i| < ρ2(λ2

x + λ2
y). Therefore we have two summations become the

following:

B = 2M t
i+j,i(y

t
i+j − yti) +

∑
|i−k|≤10ρ,k ̸=i+j,i

M t
i+j,k(y

t
i+j − ytk)−M t

i,k(y
t
i − ytk),

= 2M t
i+j,i(y

t
i+j − yti) +

∑
|i−k|≤10ρ,k ̸=i+j,i

M t
i+j,k(y

t
i+j − yti) + δi+j,i(y

t
i − ytk),

=

2M t
i+j,i +

∑
|i−k|≤10ρ,k ̸=i+j,i

M t
i+j,k

 (yti+j − yti) +
∑

|i−k|≤10ρ,k ̸=i+j,i

δi+j,i(y
t
i − ytk).

(4.1)

Now we want to find upper bounds on the norms of B and C. Applying the triangle inequality

to Line 4.1, we have that

∥B∥ ≤
∣∣∣∣2M t

i+j,i +
∑

k ̸=i+j,i

M t
i+j,k

∣∣∣∣∥yti+j − yti∥+
∑

k ̸=i+j,i

|δi+j,i|∥yti − ytk∥

≤ 40he

n
∥yti+j − yti∥+ 10ρ3(λ2

x + λ2
y)∥yti+t − yti∥ (4.2)

Line 4.2 comes from two different estimations. For the first term we use the bound given by

Lemma 2.5. For the second term we use the estimation from Lemma 2.2 and use the fact

|i− k| is at most 10ρ.

Now we want to find a bound on the norm of C. Since these are from points outside of the

10ρ nearest neighbors, we have a different bound for |M·,k|. Instead, since we have lower

bounds on the pairwise distances, Lemma 2.5 gives us |M·,k| ≤ εy
4n2 . Thus we have that an
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upper bound on the norm of C to be

∥C∥ ≤ 2
∑

|i−k|>10ρ

|M t
i+j,k|∥yti+j − ytk∥

≤ 2(n− 10ρ)
εy
4n2

|n− 10ρ|
j

∥yti+j − yti∥

≤ εy
2
∥yti+j − yti∥. (4.3)

Combining the results of Line 4.2 and 4.3, we have the entire bound of ∥yti+j − yti∥ to be the

following.

∥yti+j − yti∥ ≤ ∥yt+1
i+j − yt+1

i ∥+
[
40he

n
+ 10(h+ 1)ρ3(λ2

x + λ2
y) +

εy
2

]
∥yti+j − yti∥

≤ ∥yt+1
i+j − yt+1

i ∥+
[ε
2
+

ε

2

]
∥yti+j − yti∥ (4.4)

The bound in Line 4.4 comes from our assumption that 40he
n

+ 10(h+ 1)ρ3(λ2
x + λ2

y) <
εy
2
.

Therefore we can conclude that

∥yti+j − yti∥ ≤
1

1− εy
∥yt+1

i+j − yt+1
i ∥.

We can also use the proof in Lemma 4.1 to show that density is preserved after an iteration

of t-SNE.

Corollary 4.1. Assume we have a high-dimensional dataset (xi)
n
i=1 that is a λx-dense, εx-

discrete curve and that for some t > 0, the visualization (yti)
n
i=1 of (xi)

n
i=1 is also a λy-dense,

εy-discrete curve. If the following hold:

• The perplexity ρ, and the step size of t-SNE’s gradient, h, satisfy

40he
n

+ 10(h+ 1)ρ3(λ2
x + λ2

y) <
εy
2
,
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• For k such that |i− k| > 10ρ, we have ∥ytk − yti∥ > 4
√

16h/εy,

then for iteration t+ 1, we have that

∥yt+1
i+1 − yt+1

i ∥ ≤ (1 + εy)λy.

Proof. By a similar estimation in Lemma 4.1, we have that

yt+1
i+1 − yt+1

i = (yti+1 − yti)︸ ︷︷ ︸
A

+

 ∑
|i−k|≤10ρ,k ̸=i+j

M t
i+j,k(y

t
i+j − ytk)−

∑
|i−k|≤10ρ,k ̸=i

M t
i,k(y

t
i − ytk)


︸ ︷︷ ︸

B

+

 ∑
|i−k|>10ρ

M t
i+j,k(y

t
i+j − ytk)−M t

i,k(y
t
i − ytk)


︸ ︷︷ ︸

C

.

However, the bounds on A, B and C are still all applicable in this case. So by following the

same proof (4.4) now becomes

∥yt+1
i+1 − yt+1

i ∥ ≤ ∥yti+1 − yti∥+ εy∥yti+1 − yti∥,

≤ (1 + εy)λy, (4.5)

where (4.5) comes from the density assumption on immediate pairwise distances.

Now that we have a relationship between the pairwise distances in the previous iteration and

current iteration, we can show λ-dense, ϵ-discrete curves will retain their structure in the next

iteration of t-SNE. What this bound tells us is that as there is less curvature in the dataset,

the upper bound will be tighter, so there is less room for expansion each iteration. However,

for a discrete curve with a lot of curvature, there is more potential for the visualization to
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expand.

Lemma 4.2. Assume we have high-dimensional dataset (xi)
n
i=1 that is a λx-dense εx-discrete

curve and that for some t > 0, the visualization (yti)
n
i=1 of (xi)

n
i=1 is also a λy-dense εy-discrete

curve. If the following hold:

• The perplexity ρ, and the step size of t-SNE’s gradient, h, satisfy

40he
n

+ 10(h+ 1)ρ3(λ2
x + λ2

y) <
εy
2
,

• For all i, k where |i − k| > 10ρ, ∥xi − xk∥ ≥ ρ2 log(n)/n2 and ∥yti − ytk∥ ≥ 4
√

3h/εy,

where h is the step size in t-SNE’s gradient.

then for iteration t+ 1, for any i, i− j, i+ j ∈ [ρ] we have that

∥yt+1
i+j + yt+1

i−j − 2yt+1
i ∥ ≤

[
2εy + (1 + 10ρ)ρ3(λ2

x + λ2
y) +

40heεy
n

]
∥yti+j − yti∥.

Proof. Let N be the 10ρ nearest neighbors of i. From the construction of t-SNE’s gradient

we have that

yt+1
i+j + yt+1

i−j − 2yt+1
i = (yti+t + yti−j − 2yti)︸ ︷︷ ︸

A

− (3M t
i+j,i(y

t
i+j − yti) + 3M t

i−j,i(y
t
i−j − yti))︸ ︷︷ ︸

B1

−

 ∑
|i−k|≤10ρ,k ̸=i,i+j,i−j

M t
i+j,k(y

t
i+j − ytk) +M t

i−j,k(y
t
i−j − ytk)− 2M t

i,k(y
t
i − ytk)


︸ ︷︷ ︸

B2

−

 ∑
|i−k|>10ρ

M t
i+j,k(y

t
i+j − ytk) +M t

i−j,k(y
t
i−j − ytk)− 2M t

i,k(y
t
i − ytk)


︸ ︷︷ ︸

C
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We want to find bounds on the norms of these terms. Since we assume the previous iteration

is a εy-discrete curve, then the norm of A has the bound

∥A∥ ≤ εy∥yti+j − yti∥. (4.6)

We can simplify the terms in B1 by using the substitution yti+j − yti = yti − yti−j + etij where

∥etij∥ ≤ εy∥yti+j − yti∥. Substituting this in gives us

B1 = −3
(
(M t

i+j,i −M t
i−j,i)(y

t
i+j − yti) + 3M t

i−j,ie
t
ij

)
. (4.7)

Before we take the norm ofB1, we consider the terms inB2. Lemma 2.4 gives us a relationship

between M t
i+j,k,M

t
i−j,k and M t

i,k so substituting that into B2 we have

B2 =
∑

|i−k|≤10ρ,k ̸=i+j,i−j,i

M t
i+j,k(y

t
i+j − yti) +M t

i−j,k(y
t
i−j − yti) +

∑
|i−k|≤10ρ,k ̸=i+j,i−j,i

δti+j,i,k(y
t
i − ytk)

(4.8)

where |δti+j,i,k| ≤ ρ2(λ2
x + λ2

y). Additionally, since we assume the previous iteration is a

ε-discrete curve, we know that yti−j − yti = yti − yti+j + etij where ∥etij∥ ≤ εy∥yti+j − yti∥.

Substituting this into Line 4.8 we have

B2 =
∑

|i−k|≤10ρ,k ̸=i+j,i−j,i

(M t
i+j,k −M t

i−j,k)(y
t
i+j − yti) +M t

i−j,k(e
t
ij) +

∑
|i−k|≤10ρ,k ̸=i,i+j,i−j

δti+j,i,k(y
t
i − ytk).

(4.9)

However, the terms in the first sum in Line 4.10 are the same in those in Line 4.7 so we can

combine them to get

B1 +B2 =
∑

|i−k|≤10ρ

(M t
i+j,k −M t

i−j,k)(y
t
i+j − yti) +M t

i−j,k(e
t
ij) +

∑
|i−k|≤10ρ,k ̸=i,i+j,i−j

δti+j,i,k(y
t
i − ytk).

(4.10)
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By a similar argument in Lemma 2.4, we know that |M t
i+j,k −M t

i−j,k| ≤ ρ2(λ2
x + λ2

y) and by

Lemma 2.5 we know that |M t
i−j,k| ≤ 4he

ρn
. So taking the norm of Line 4.10 we have

∥[B1 +B2∥ ≤ 10ρ3(λ2
x + λ2

y)∥yti+j − yti∥+
40heεy

n
∥yti+j − yti∥

+ (10ρ− 3)ρ2(λ2
x + λ2

y)
|i− k|

j
∥yti+j − yti∥. (4.11)

The last estimation in Line 4.11 comes from the results in Lemma 2.2 to estimate ∥yti − ytk∥.

Since |i− k| < 10ρ and j ≥ 1, then the upper bound in Line 4.11 becomes

∥B1 +B2∥ ≤
[
(1 + 10ρ)ρ3(λ2

x + λ2
y) +

40heεy
n

]
∥yti+j − yti∥. (4.12)

Finally, we find a bound for the third part of the gradient, C. Here, we can use the assumption

that for any |i− k| > 10ρ, ∥yti+j − ytk∥, ∥yti−j − ytk∥ and ∥yti − ytk∥ are all at least d = 4
√

3h/εy.

From Lemma 2.5 that means |M t
ν,k| ≤

h(1+d2)−2

n2 ≤ εy
3n2 where ν ∈ {i + j, i, i − j}. Applying

this bound along with the results of Lemma 2.2 to the terms in C to get the bound:

∥C∥ ≤ 3(n− 10ρ)εy
3n2

(n− 10ρ)

j
∥yti+j − yti∥ ≤ εy∥yti+j − yti∥. (4.13)

Now we can apply the bounds from Lines 4.6, 4.12 and 4.13 to get

∥yt+1
i+j + yt+1

i−j − 2yt+1
i ∥ ≤

[
2εy + (1 + 10ρ)ρ3(λ2

x + λ2
y) +

40heεy
n

]
∥yti+j − yti∥,

≤ 1

1− εy

[
2εy + (1 + 10ρ)ρ3(λ2

x + λ2
y) +

40heεy
n

]
∥yt+1

i+j − yt+1
i ∥,

(4.14)

where (4.14) follows from the bound given in Lemma 4.1.

Now that we have an upper bound on the error vector in the next iteration, we can bring

this all together to categorize how t-SNE preserves discrete curves in each iteration.
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Theorem 4.1. Assume a high-dimensional dataset (xi)
n
i=1 is a λx-dense, εx-discrete curve

and that for some t > 0, the visualization (yi)
n
i=1 of (xi)

n
i=1 is also a λt

y-dense, ε
t
y-discrete

curve. If the following hold:

• λt
x and λt

y are both less than 1
n
,

• The size of the neighborhood ρ, and the step size of t-SNE’s gradient, h, satisfy 40he
n

+

10(h+ 1)ρ3(λ2
x + λ2

y) <
εy
2
,

• For all i, k where |i− k| > 10ρ, ∥xi − xk∥ ≥ ρ2 log(n)/n and ∥yti − ytk∥ ≥ 4
√

16h/εy

then (yt+1
i )ni=1 is a λt+1

y -dense, εt+1
y -discrete curve where

λt+1
y = (1 + εty)λ

t
y, (4.15)

εt+1
y =

1

1− εty

[
2εty +

(1 + 10ρ)ρ3

n2
+

40heεty
n

]
. (4.16)

Proof. The proof follows directly from Corollary 4.1 and Lemma 4.2.

4.2 Discussion

Looking at the results in Theorem 4.1, we can see that as n→∞, then we have that

εt+1
y =

2εty
1− εty

.

This implies that a a discrete curve becomes more well-populated, there will be less of

an expansion each iteration and we can expect t-SNE to preserve the structure for more

iterations. Additionally, we notice that if the discrete curve given is a perfect line (εy = 0)
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then there will be no additive error for both the density and new εy. Theorem 4.1 requires

that εty < 1, so it will no longer necessarily hold once εty ≥ 1. We can estimate when this

happens in the following lemma.

Lemma 4.3. Assume that εty and εt+1
y are as described in Theorem 4.1. If t ≥ log2(1/ε

0
y)−1,

then εt+1
y ≥ 1.

Proof. Since each εky < 1 for all k ≤ t, then we have

εt+1
y =

2εty
1− εty

,

≥ 2εty,

≥ 2t−1ε0y,

≥ 1, (4.17)

where the last line follows from the assumption that t ≥ log2(1/ε
t
y)− 1.

This Lemma quantifies the intuition that as the curvature, εy gets smaller then the longer

t-SNE’s iterations will definitely preserve the structure.

While Theorem 4.1 shows that t-SNE will preserve the discrete curve structure over a certain

number of iterations, there are some significant assumptions that needed to be made. First,

both the high-dimensional data and visualization couldn’t have global structures that are too

dense, i.e. no critical overlaps and no tight coils. Because of t-SNE’s random initialization,

we cannot guarantee that after early exaggeration the visualization is not too tight of a coil

nor has any overlaps. In fact, since t-SNE initializes in such a small box and globally doesn’t

expand much during early exaggeration, it is reasonable to assume there is more likely to be

significant overlap as n grows large.
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Chapter 5

AVIDA

Up until now, this work has focused on the theoretical aspects of t-SNE’s treatment of discrete

curves. There are many instances in real-life datasets where t-SNE’s ability to preserve

discrete curves is important those who are use t-SNE to visualize datasets whose structure

they may not understand. Alternating method for Visualing and Integrating Data (AVIDA)

is a data integration framework where the use of t-SNE is critical to preserving discrete

curves when integrating datasets. This chapter gives an overview of the importance of data

integration in single-cell analysis and how AVIDA utilizes data visualization techniques to

better integrate datasets in low-dimensions, oftentimes preserving discrete curves.

5.1 Background Information

Databases are expanding not only in size but also with increasing complexity. In many appli-

cations, multiple measurements of a system are taken across different samples or in different

feature spaces which produce multimodal data such as texts attached to images [25]. Mul-

timodality allows a more comprehensive investigation of a system. Establishing connections
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among the modalities is the foundation of coherent analysis. Recently, the emerging multi-

modal single-cell omics has become a powerful tool to analyze different aspects of a biological

system at the same time [53]. Fusing multimodal single-cell data is especially challenging

when there is no direct correspondence between the measurements and the samples.

Single-cell RNA sequencing (scRNA-seq) is a recent technology that measures RNA abun-

dance at transcriptomics level with single-cell resolution [42]. The maturation of the technol-

ogy allows analysis with scRNA-seq assays across many samples that, for example, represent

different ages or healthy and diseased individuals [41, 48]. On the other hand, the emerging

single-cell assays provide a more comprehensive examination of a system, such as single-cell

ATAC-seq (scATAC-seq) [7] that measures chromatin accessibility and single-cell Hi-C [33]

that explores chromosome architecture.

Integrating the various single-cell assays across different samples provides a comprehensive

characterization of a biological system. Many computational methods have been developed

to integrate the same single-cell assays of multiple samples [21,40,49] or different single-cell

assays [19, 20]. In the integration of multiple single-cell omics assays, most current meth-

ods rely on the known correspondence between features, for example by mapping chromatin

loci to genes and assuming the similarity between the samples. The multi-omics integration

becomes a harder problem when no prior correspondence is assumed, for example, a gene

actually corresponds to multiple loci and accessible loci do not directly indicate gene expres-

sion. This leads to a general problem of integrating datasets without known correspondence

between features.

When no feature correspondence is given, the structures of the individual datasets can be

exploited and matched to integrate the datasets. For example, canonical correlation analysis

examines covariances between the datasets but is limited to deriving linear correspondence

between the features. When the datasets are represented as graphs with edges annotating

pairs of similar data points within each dataset, the integration problem can be addressed
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using various graph alignment methods [35, 51]. Among the graph alignment methods,

Gromov-Wasserstein optimal transport (GW-OT) can align graphs based only on the graph

structures [30]. It finds a coupling of the distributions representing the graphs that best

preserves the intra-dataset distances between the nodes.

Optimal transport (OT) compares and finds connections between measures. It seeks the

coupling between distributions with the minimum total coupling cost based on predefined

costs between locations [24, 31, 47]. OT has been a versatile tool widely used in practical

problems, such as generative deep learning models [3], domain adaptation [12], and image

sciences [17]. It has been used to find correspondence between data points in single-cell gene

expression data with common features [9,34,39]. The aforementioned GW-OT has been used

in this field to exploit the structural information within individual datasets. SpaOTsc [9]

uses fused Wasserstein-Gromov-Wasserstein optimal transport to improve the integration of

spatial data and scRNA-seq data with few shared genes by matching the spatial structure

and the structure in scRNA-seq data based on gene expression similarity. SCOT [13] uses

Gromov-Wasserstein optimal transport to align scRNA-seq and scATAC-seq data by match-

ing the structures represented by intra-dataset similarity among cells. Pamona [10] uses

partial Gromov-Wasserstein optimal transport to partially align scRNA-seq and scATAC-

seq data to address the partially overlapping cell populations among different samples.

In addition to studying shared structures revealed by the overlapping part of integrated data,

it is equivalently important to examine the structures of non-overlapping parts which may

depict a biological process uniquely captured by a certain assay [50]. Since most integration

methods depend on similarities between samples, the dissimilar parts are often overlooked.

Efforts have been made to keep the variation among samples examined with the same single-

cell assay [50].

In the analysis of high-dimensional multimodal datasets, another crucial step is dimension-

ality reduction. Dimensionality reduction is the process of taking high-dimensional data and
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finding a representation in lower dimensions that is still meaningful. It has many important

applications because dimensionality reduction helps address the curse of dimensionality and

other challenges that come with working with high-dimensional data [23]. Principal Com-

ponent Analysis (PCA) [36] is the most traditional linear technique used in dimensionality

reduction but there are many popular non-linear techniques, such as Local Linear Embed-

ding [38], Isomap [43], UMAP [29], and t-SNE [45].

t-SNE is a popular dimensionality reduction and visualization technique that was intro-

duced in 2008 by van der Matten and Hinton [45]. It has been applied to a variety of

high dimensional data, including deep learning [28], physics [46], and medicine [1]. Given a

high dimensional dataset, t-SNE outputs a low dimensional representation. t-SNE works by

making pairwise affinities between points in high dimensions and pairwise affinities between

points in low dimensions. It then uses gradient descent to find the set of points (in low

dimensions) that minimize the KL divergence between the two sets of joint probabilities.

In the analysis of multimodal single-cell data, the dimensionality reduction and the inte-

gration steps are often performed separately or sequentially, including the existing methods

that integrate datasets without known feature correspondences [10,13]. However, these two

steps are closely related in that they both preserve the structures from high dimension to

low dimension or from the original spaces to the joint space. The benefit of combining these

two steps has been shown in many recent works. For example, MultiMAP performs dimen-

sionality reduction and integration utilizing both shared and non-shared features between

datasets [22]. As another example, j-SNE learns a joint representation in low dimensions

without shared features across multiple data sets with one-to-one correspondences [14]. In

this work, we present a workflow called AVIDA (Alternating Method for Visualizing and Inte-

grating Data), that integrates 2D representations of high dimensional data sets by alternating

between dimension reduction and alignment. AVIDA operates without knowledge or the ne-

cessity of shared features or one-to-one correspondences across data sets. To demonstrate
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this workflow, we use t-SNE for the dimension reduction module and Gromov-Wasserstein

optimal transport for the integration module. Different choices for the dimension reduction

module and alignment module can be utilized in this framework, depending on the applica-

tion. We also include a small set of additional experiments in A.1, which utilize UMAP in

the dimension reduction step instead of t-SNE to further demonstrate AVIDA’s flexibility

as a framework. In four synthetic datasets and two real biological datasets with ground

truth, we show that AVIDA better preserves the structures of the individual datasets while

achieving comparable integration quality compared to other methods.

5.2 Results

5.2.1 Overview of AVIDA

Figure 5.1: A visual schematic of AVIDA.

The proposed method is called the alternating method for visualizing and integrating data, or

AVIDA. AVIDA alternates between improving the low dimensional representation through
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a dimensionality reduction technique and the alignment of data points in low dimensions

across different datasets. The purpose of alternating between dimensionality reduction

and alignment is to find a balance between a good representation while still accurately

aligning the datasets. We denote AVIDA as a function, taking as input the datasets

X1, . . . , Xk, and is parameterized by choice of dimensionality reduction and alignment tech-

niques: AVIDA(X1, X2, ..., Xk; DR,ALIGN). A simplified schematic of the method is shown

in Figure 5.1. As shown in Figure 5.1, AVIDA can take as input two datasets and organizes

the data as a pairwise distance matrix. Next, dimensionality reduction using the given pair-

wise distance matrix is performed on both datasets independently. An alignment method

is used to “align” the datasets in the lower dimensional space and using the aligned data

points, a new pairwise distance matrix is formed for each dataset, and the process iterates.

This framework is flexible in its choice of dimensionality reduction technique (in fact, differ-

ent dimension reduction algorithms can be used on different datasets if one so chooses) and

alignment method.

Suppose one is given two datasets X(1) and X(2) and the goal is to create a joint represen-

tation of the datasets in a common lower dimensional space. Using some technique DR for

dimensionality reduction (e.g., PCA, t-SNE, Random Forests, etc.) and GW-OT for align-

ment, we can formulate the objective function for AVIDA as AVIDA(X1, X2; DR,GW). The

GW-OT objective is defined with respect to the low dimensional representation of points:

GW(Y (1), Y (2)) =
∑

i,j,i′ ,j′

Li,j,i′,j′Ti,i′Tj,j′ − ϵ(H(T)), (5.1)

where H(T) =
∑

i,j Tij log(Tij) is the Entropic regularization term and

Li,j,i′,j′ = ∥d(y(1)i , y
(1)
j )− d(y

(2)

i′
, y

(2)

j′
)∥2 with a chosen distance metric d(·, ·). This objective is

minimized by using the projected gradient descent method with KL metric-based projections

[37], T ← ProjKL
U(a,b)(T ⊙ e−τ(L⊗T+ϵ log(T ))) where

U(a,b) = {T ∈ Rn1×n2
+ : T1 = a, T T

1 = b} and τ is the step size. The implementation in
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Python Optimal Transport [18] package is used. The representation for Y (1) will subsequently

be mapped to Y (2) using the mapping found by minimizing (5.1) with respect to T , i.e., by

setting Y (1) = TY (2). Our combined loss function can be represented as

AVIDA(X(1), X(2); DR,GW)

= min
Y (1),Y (2)

DR(X(1), Y (1)) + DR(X(2), Y (2)) + GW(Y (1), Y (2)), (5.2)

where DR(X(i), Y (i)) represents the objective loss associated with the dimensionality reduc-

tion technique DR. For example, if t-SNE is used for the DR step, the objective can be

represented as the KL loss between probability distributions on the points in high and low

dimensions. See 5.4 for more details.

5.2.2 AVIDA accurately reproduces the intra-dataset structures

in integration of synthetic data

We compared AVIDA(X1, X2; TSNE,GW) to both Pamona and SCOT across four simulated

datasets and two real-world single-cell multi-omics datasets. We chose Pamona and SCOT

as a comparison because they are both advanced integration methods that do not require

common features or one-to-one correspondence across data sets. To have a fair comparison

with SCOT and Pamona, for these experiments we had SCOT and Pamona perform their

alignment and then used t-SNE to visualize their low dimensional representations rather than

UMAP or PCA. This way we are not comparing different kinds of visualization techniques

to each other. To see how these methods would perform using UMAP instead of t-SNE, see

Appendix A. Table 5.1 contains the performance metrics for AVIDA(X1, X2; TSNE,GW),

SCOT and Pamona on both the simulated and real-life datasets. We used five different

metrics to assess the performance of these methods: the fraction of samples closer than the

true match (FOSCTTM), alignment, integration, accuracy, and representation loss. The
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accuracy metric is only included on the datasets where the ground truth is known and an

empty cell in the table implies the dataset did not meet that requirement. Details on the

metrics are included in Section 5.4.2.

Dataset Method FOSCTTM Integration Accuracy Alignment Representation Loss

Bifurcated Tree
AVIDA 0.1202 1.0820 4.3863 0.5157 0.3275
Pamona 0.1108 0.2933 7.6098 0.9897 1.0969
SCOT 0.2103 1.0016 12.2095 0.75 2.1466

Circular Frustrum
AVIDA 0.1187 0.9699 2.9377 0.4267 0.3955
Pamona 0.0186 0.2532 1.2577 0.9363 0.8377
SCOT 0.0515 1.0032 4.3857 0.9727 1.7083

Dumbbell
AVIDA 0.5228 0.5568 25.1281 0.6385 0.1220
Pamona 0.5055 0.3679 32.1714 0.7785 0.6176
SCOT 0.4754 2.565 11.2244 0.2070 3.6008

Distant Rings
AVIDA 0.3138 0.6847 5.3429 0.639 0.1916
Pamona 0.2580 1.2407 1.0 0.993 1.1784
SCOT 0.0056 0.0791 0.2759 0.9125 0.9261

sc-GEM
AVIDA 0.2070 0.4700 2.4996 0.8994 0.4879
Pamona 0.2108 0.3567 10.894 0.7237 1.4298
SCOT 0.1818 2.3164 6.9267 0.5616 0.8790

scNMT-seq
AVIDA 0.2745 0.3631 4.5787 0.6619 1.0489
Pamona 0.3889 0.2446 0.7032 0.9746 4.2435
SCOT 0.2675 2.4333 28.6287 0.7522 1.1979

Table 5.1: Metrics for AVIDA(X1, X2; TSNE,GW) (labeled as AVIDA above), Pamona and
SCOT experiments.

Our four simulated datasets include a bifurcated tree, a circular frustum (from [27]), a

dumbbell, and distant rings. The dumbbell and distant rings datasets are introduced in

order to highlight the difference between AVIDA and SCOT and Pamona. The dumbbell

dataset consists of two rings that are connected by a line. We consider the following split

of the dumbbell data set: X1 contains data points from the two rings and a subset of the

points along the line connecting the two rings. Then dataset X2 contains all the points along

the line connecting the two rings. Thus, the dumbbell dataset allows us to investigate the

performance of AVIDA when there is only a partial direct correspondence between data sets.

We also introduce the distant rings dataset. The rings dataset consists of two rings that

are far apart from each other in high dimensions. We set the sizes of their radii to be much

smaller than the distance between the centers of the rings. Then, the datasets X1 and X2 are
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Figure 5.2: (a) Pamona, AVIDA, SCOT, and t-SNE representation of the dumbbell dataset.
(b) The H1 persistence diagrams of Vietoris-Rips filtration with Euclidean distance of the
original data, and AVIDA and SCOT embeddings. The birth and death values are the
scales at which topological features appear and disappear. A point farther away from the
diagonal (blue line) represents a significant 1-dimensional loop. “Domain 1” and “Domain
2” correspond to the points colored red and black respectively in (a).

generated such that they both contain the entirety of the two rings dataset, i.e. X1 = X2.

This is done so that there is a direct correspondence between points in X1 and X2. Thus,

the rings dataset allows us to investigate the performance of AVIDA when there is a full

direct correspondence between data sets. In addition, the difference in scale of the distances

in the rings dataset allows us to highlight the advantage of using AVIDA rather than other

forms of alignment.

The specific parameters used to generate these datasets are given in Section 5.4. The eval-
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uations of these methods on the various metrics are given by Table 5.1.

Looking at Figures 5.2 and 5.3, it is clear why we want to introduce these datasets. In

Figure 5.2, AVIDA clearly preserved the local structure of both datasets while Pamona and

SCOT highlight the linear structure found in both datasets. This is demonstrated by both

visual inspection of the loop structures preserved by AVIDA, as shown in Figure 5.2(a) and

Figure 5.3(a) and the persistence diagrams, as shown in Figure 5.2(b) and Figure 5.3(b).

The persistence diagram is the result of persistent homology [16, 54] which grows a simpli-

cial complex on a point cloud and tracks the scale at which the topological features appear

(birth value) and disappear (death value). A topological feature with large persistence value

(difference between birth and death values) is considered significant and we are interested in

the one dimensional H1 features that correspond to circles in data. Details of persistent ho-

mology are discussed in Section 4.2.2. AVIDA is the only method that is able to successfully

integrate the two representations generated by t-SNE’s representation. Figure 5.3 shows that

Pamona’s method collapses both rings to a single point, destroying the local structure of the

data. SCOT is able to integrate the datasets while still preserving some linear structure

but compared to t-SNE’s actual 2D representation, AVIDA produces a 2D representation

with the most accurate local structure. Since AVIDA allows t-SNE to construct the local

structure of the line before mapping, that structure is preserved in the final representation.

However, if we were to look at the FOSCTTM and accuracy scores in Table 5.1 for Fig-

ure 5.2 and Figure 5.3, Pamona scores best because all the points are correctly mapped close

together. The datasets illustrate our need for a representation metric since the traditional

metrics do not penalize for poor representations in 2D. We use t-SNE’s loss function as our

representation loss since it is a popular dimensionality reduction technique, however, it could

easily be replaced by a loss function from other methods (e.g. UMAP).
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Figure 5.3: (a) t-SNE, AVIDA, SCOT and Pamona representation of the distant rings
dataset. (b) The H1 persistence diagrams of Vietoris-Rips filtration with Euclidean dis-
tance of the original data, and AVIDA and SCOT embeddings. The birth and death values
are the scales at which topological features appear and disappear. A point farther away
from the diagonal (blue line) represents a significant 1-dimensional loop. The H1 diagrams
of Pamona embeddings are empty. “Domain 1” and “Domain 2” correspond to the points
colored red and black respectively in (a).

5.2.3 AVIDA achieves a balance between structure representation

and multimodal dataset alignment

We also compare the outputs from two real-world single-cell multi-omics datasets. The first

is sc-GEM, a dataset from [11] which contains both gene expression and DNA methylation

at multiple loci on human somatic cell samples under coversion to induced pluripotent stem

cells. The second is scNMT-seq, a dataset of chromatin accessibility, DNA methylation,

and gene expression on mouse gastrulation samples collected at four different time states

from [2]. The evaluations of AVIDA, SCOT, and Pamona on these datasets are also given
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in Table 5.1. In Figure 5.4, we can see the different 2D representations for sc-GEM. The left

Figure 5.4: AVIDA, SCOT and Pamona representation of sc-GEM. The visualizations for
each of the methods were made by t-SNE.

column of the figure shows the integration between the two datasets and the right column

has the data points colored by cell. From these representations, we can see that AVIDA is

able to fully integrate the two different datasets where there is some noticeable separation in

the SCOT representation. Since this dataset contains the conversion from somatic cells to

stem cells, we hope to see a gradient of colors from one end of the representation to the other

which all methods are able to achieve. This is a good example of how AVIDA’s performance

on integration of real-life datasets is comparable to both SCOT and Pamona.
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We can also confirm this observation in Table 5.1. AVIDA is able to achieve FOSCTTM and

alignment scores that are comparable to SCOT and Pamona while simultaneously having

the best representation loss. The same holds true for scNMT-seq as well. These examples

illustrate that AVIDA is comparable to both Pamona and SCOT on real-life datasets while

also performing well on the adversarial datasets: the dumbbell and distant rings datasets.

While we did not plot every dataset’s low dimensional representation here, Figure 5.5 com-

pares the FOSCTTM and representation losses for each 2D representation generated by

SCOT, AVIDA, and Pamona. The shapes designate the dataset’s low dimensional represen-

tation and the different colors represent the method that was used. We can see that across

the different datasets, all three methods have comparable FOSCTTM scores, indicating that

the integration of the datasets are similar. However, we can also see that AVIDA by far has

the best representation loss, indicating a more accurate low dimensional representation.

Figure 5.5: A comparison of methods using integration and 2D representation.
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5.3 Discussion

Motivated by the similar fundamental assumptions in dimension reduction and data integra-

tion that they both try to preserve the structures of datasets, we developed an alternating

method, AVIDA, which combines these two processes for joint 2D representation of datasets

without shared features. Comparing with the methods that perform integration first and

then dimension reduction, AVIDA better preserves the detailed structures of the datasets

being integrated especially the structures present in only one of the datasets. This property

allows the identification of mechanisms that can only be revealed with one of the technologies.

In this work, we demonstrate the method using t-SNE for dimension reduction and Gromov-

Wasserstein optimal transport for data integration. In general, other dimension reduction

methods and integration methods could be used. The representation loss used in the compar-

ison can also be used as a control metric about how well the structures of individual datasets

are preserved in the joint representation. This metric can be used to find a balance between

integration and representation when other methods are used for the dimension reduction

and integration modules. The comparison indicates that a method could do a perfect job in

integration while missing structures presented in the individual datasets. It is thus impor-

tant to also evaluate the quality of the structure representation of individual datasets when

developing joint dimension reduction methods for high-dimensional multimodal datasets.

Despite the improvements on performing the two processes separately, the quality of the

joint 2D representation still heavily depends on the performance of the specific dimension

reduction method and integration method. While the quality of dimension reduction can be

checked by comparing it to the structures present in the original high dimensional datasets,

it is hard to evaluate the integration quality without ground truth. It is thus also important

to further validate the result with prior knowledge or assess the robustness of the integration

with, for example, subsampling.
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Upon the joint representation of multimodal datasets, one major downstream task is to

find the correspondence between the non-overlapping features across the datasets. A po-

tential method for this is to track the contributions of original features to the common low

dimensional representations and subsequently find the correspondence between them.

5.4 Methods

AVIDA is a framework that takes input data sets {X(ℓ)}Ni=1 where the data sets X(ℓ) ∈

Rnℓ×dℓ need not be in the same feature space. The output of AVIDA is a low dimensional

representation of all data sets simultaneously in a single feature space. This is accomplished

by alternating between dimensionality reduction and alignment. The AVIDA framework is

presented in Algorithm 2. The choice of dimensionality reduction technique and alignment

method is up to the user and can be chosen based on the use case. In Section 5.4.1, we

present a detailed implementation of AVIDA using t-SNE for dimensionality reduction and

GW-OT for alignment.

Algorithm 2 AVIDA

Input:N datasets X(ℓ) = {x(ℓ)
i }

nℓ
i=1 ⊂ Rdℓ , target dimension d, Dimensionality Reduction

Method DR(·), Alignment Method ALIGN(·).
Output: Low-dimensional representations Y (ℓ) = {y(ℓ)i }

nℓ
i=1 ⊂ Rd.

Initialize Y
(ℓ)
0 for ℓ ∈ [N ] and set t = 0.

do
Dimensionality reduction step:

Ŷ
(ℓ)
t = DR(X(ℓ), Y

(ℓ)
t ) for ℓ ∈ [N ]. ▷ Input dataset X(ℓ) and initialization Y

(ℓ)
t

Alignment step:
[Y

(1)
t+1, · · · , Y

(N)
t+1 ] = ALIGN(Ŷ

(1)
t , · · · , Ŷ (N)

t ).
Increment iteration count: t = t+ 1.

while stopping criteria not satisfied
Return Y (ℓ) = Y

(ℓ)
t for ℓ ∈ [N ].
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5.4.1 AVIDA with t-SNE and GW-OT

In this section, we present our implementation of the AVIDA framework using t-SNE for

dimensionality reduction and GW-OT for alignment, i.e., AVIDA(X1, X2; TSNE,GW). For

simplicity, we assume there are two input data sets X(1) = {x(1)
i }

n1
i=1 ⊂ Rd1 and X(2) =

{x(2)
i }

n2
i=1 ⊂ Rd2 and that the low dimensional output feature space has dimension d = 2, i.e.,

Y (1) = {y(1)i }
n1
i=1 ⊂ R2 and Y (2) = {y(2)i }

n2
i=1 ⊂ R2.

In the dimensionality reduction step, t-SNE generates pairwise affinity values {p(ℓ)ij } for each

of the dataset X(ℓ), as given by

p
(ℓ)
j|i =

exp(−∥x(ℓ)
i − x

(ℓ)
j ∥2/2σ

(ℓ)
i )∑

k ̸=i exp(−∥x
(ℓ)
k − x

(ℓ)
i ∥2/2σ

(ℓ)
i )

(5.3)

p
(ℓ)
ij =

p
(ℓ)
j|i + p

(ℓ)
i|j

2nℓ

, (5.4)

where the σ
(ℓ)
i ’s satisfy

ρ = 2−
∑

j ̸=i p
(ℓ)
j|i log(p

(ℓ)
j|i ), (5.5)

for a perplexity value ρ chosen by the user. To obtain y
(ℓ)
i , t-SNE minimizes the Kullback-

Leibler divergence between {p(ℓ)ij }j ̸=i and {q(ℓ)ij }j ̸=i using gradient descent. The target prob-

abilities q
(ℓ)
ij are defined as:

q
(ℓ)
ij =

(1 + ∥y(ℓ)i − y
(ℓ)
j ∥2)−1∑

i′ ,j′ (1 + ∥y
(ℓ)

i′
− y

(ℓ)

j′
∥2)−1

. (5.6)
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To obtain y
(ℓ)
i , t-SNE minimizes the Kullback-Leibler divergence between {p(ℓ)ij }j ̸=i and

{q(ℓ)ij }j ̸=i using gradient descent:

KL(Pℓ||Qℓ) =

nℓ∑
i,j=1

p
(ℓ)
ij log

(
p
(ℓ)
ij

q
(ℓ)
ij

)
, (5.7)

The t-SNE method utilizes a “early exaggeration” phase to artificially highlights the attrac-

tions between points in similar neighborhoods, promoting clusters. This period is a very

important tool that allows t-SNE to develop local structures in its representation. The early

exaggeration phase occurs in the first 200 iterations of gradient descent in which p
(ℓ)
ij values

are scaled by a factor of 4. It has been shown that the early exaggeration phase in t-SNE

promotes clustering of similar points [26]. After the first 200 iterations, the p
(ℓ)
ij values are

returned to their original value and t-SNE continues to perform gradient descent.

In the alignment step of AVIDA, GW-OT is used to align data points across data sets. Given

the current low dimensional representations outputs from t-SNE, Y (1) and Y (2), the following

optimization problem is solved to compute the transport matrix T:

GW(Y (1), Y (2))

= min
T

∑
i,j,i′ ,j′

∥d(y(1)i , y
(1)
j )− d(y

(2)

i′
, y

(2)

j′
)∥2Ti,i′Tj,j′ − ϵ(H(T)), (5.8)

where H(T) =
∑

i,j Tij log(Tij) is an Entropic regularization term and d(·, ·) is a chosen

distance metric. The representation for Y (1) is mapped to Y (2) using the mapping found

by minimizing (5.8), or by computing Y (1) = TY (2). AVIDA(X(1), X(2); TSNE,GW) con-

tinues alternating between minimizing the KL loss in t-SNE and using optimal transport

to align points until a stopping criteria is reached. In this implementation, we choose to

limit the number of iterations to 1000 and perform alignment every 100 iterations after the

early exaggeration phase (i.e., after the first 200 iterations) of t-SNE. The pseudo-code for

AVIDA(X(1), X(2); TSNE,GW) is provided in Algorithm 3.
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Algorithm 3 AVIDA(X1, X2; TSNE,GW)

Input: datasets X(1) = {x(1)
1 , . . . , x

(1)
n1 }, X(2) = {x(2)

1 , . . . , x
(2)
n2 }, perplexity ρ, and regular-

ization parameter ϵ
Output: low-dimensional representations: Y

(1)
0 = {y(1)1 , . . . , y

(1)
n1 }, Y

(2)
0 = {y(2)1 , . . . , y

(2)
n2 }

Compute pairwise affinities p
(1)
ij , p

(2)
ij with perplexity ρ (using Eq. (5.3) and Eq. (5.4))

Initialize solutions Y
(1)
0 , Y

(2)
0 with points drawn i.i.d. from N (0,10−4I)

while t < 1000 do
if mod (t, 100) ̸= 0 then

for ℓ = 1, 2 do
Compute pairwise affinities q

(ℓ)
ij (using Eq. 5.6)

Compute gradients ∆
(ℓ)
t = δ

δY
(ℓ)
t

TSNE(X(ℓ), Y
(ℓ)
t ) (using Eq. 5.7)

Set Y
(ℓ)
t = Y

(ℓ)
t +∆

(ℓ)
t

end for
else

Compute the GW-OT mapping, T, between Y
(1)
t and Y

(2)
t (using Eq. 5.1)

Set Y
(ℓ)
(t+1) =T Y

(ℓ)
t

end if
t← t+ 1

end while

5.4.2 Metrics, parameters, hardware

The metrics used in Section 5.2 are described in detail in this section. For reproducibility,

we also include the hardware settings under which these experiments were run and the user-

selected parameters employed to obtain our numerical results.

Metrics

To compare AVIDA(X1, X2; TSNE,GW), Pamona, and SCOT five different metrics are em-

ployed: fraction of samples closer than the true match (FOSCTTM), alignment, integration,

accuracy, and representation loss. The FOSCTTM and alignment are metrics proposed in

previous works. FOSCTTM was originally proposed by Liu et al. [27] and was used to val-

idate the performance of SCOT. The alignment score was used in [10] to compare Pamona
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and SCOT. In addition to the metrics used in previous works, we also introduce a few others

to capture various aspects of the output representation. The additional metrics we measure

are integration, accuracy, and representation loss. In this section, we define each and the

conditions under which these metrics are meaningful. For notational simplicity, D ∈ Rn1×n2

such that Dij = d(y
(1)
i , y

(2)
j ) denote the pairwise distance matrix between points in Y (1) and

points in Y (2).

The FOSCTTM captures roughly the accuracy of the representation. FOSCTTM operates

under the assumption that every point has a “true match” and that the “true matches”

should be close together in the lower dimensional representation. This is formalized as

follows. Assume, for simplicity, and n1 = n2 = n and without loss of generality that the true

match of x
(1)
i is x

(2)
i for all i ∈ [n]. The FOSCTTM is defined as:

FOSCTTM =
n∑

i=1

|{j : Dij < Dii}|
n− 1

+
n∑

j=1

|{i : Dij < Djj}|
n− 1

. (5.9)

In other words, for each point Y (1), determine the fraction of the points y
(2)
i that are closer

to y
(1)
i than y

(2)
i . Then, repeat the process for points in Y (2). Smaller values of FOSCTTM

indicate better performance.

Under these same assumptions (that every point has a true match), we can also define an

accuracy score. The idea is that points that are true matches should appear close together

in the lower dimensional representation. This is measured by taking a simple trace of the

matrix D:

Accuracy =
n∑

i=1

Dii = tr(D)

The Alignment score used in this work was also used in [10]. The alignment score measures

how well aligned the two datasets being integrated are in low dimensions. For the alignment

score, we assume that each data set has class labels and that those class labels can be shared
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across data sets. The points in each data set are split into “shared” and “dataset specific”.

“Shared” data points have representation in both Y (1) and Y (2) whereas “dataset specific”

data points only appear in one of the datasets. The alignment score is computed as follows.

Let S(1) ∪ P (1) = Y (1) and S(2) ∪ V (2) = Y (2) where sets S(ℓ) denote the set of all points

corresponding to “shared” data points and V (ℓ) denote the set indices of all dataset specific

points in Y (ℓ). The alignment score is defined as:

Alignment = 1− |x̄s − k/(ℓ+ 1)|
k − k/(ℓ+ 1)

,

where x̄s is the average number of nearest neighbors that are shared points from the same

dataset.

The aforementioned metrics have been utilized in previous works. We also propose to use the

following for evaluating the representation of the low dimensional data. First, we employ a

symmetrized Kullback-Leibler loss with a student t-distribution kernel to evaluate how well

the output represents the high dimensional data in an integrated fashion. We refer to this

as the Representation Loss:

Representation Loss =
1

2

(
KL(X(1)∥Y (1)) + KL(Y (1)∥X(1))

)
+

1

2

(
KL(X(2)∥Y (2)) + KL(Y (2)∥X(2))

)
.

The choice of this representation loss as a way to measure the quality of the representation

in 2D is based on the fact that popular data dimensionality reduction techniques such as

UMAP and t-SNE, both use a version of the KL loss. We recognize that there are other

dimensionality reduction techniques, such as PCA or Laplacian Eigenmaps. However such

techniques are spectral methods whose loss functions are evaluated by manifold-based metrics

similar to FOSCTTM (5.9) and Integration (5.10). This representation loss is a way to

measure the quality of the representation in cases of structures that are not best described
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by the alignment of nearest neighbors, such as clusters or rings. Since t-SNE and UMAP

are most adept at preserving these structures in low dimensions, it seems natural to modify

their loss function as a way to measure the quality of the 2D representations.

Lastly, we want to evaluate how well integrated the two data sets are in low dimensions. We

say that integration is the average, minimum distance between a data point in Y1 and any

data point in Y2. The integration is defined as:

Integration =
1

n1

n1∑
i=1

min
j

Dij +
1

n2

n2∑
j=1

min
i

Dij. (5.10)

Persistent homology

Persistent homology [16, 54] is used to evaluate the conservation of local geometries of the

synthetic datasets. On a point cloud, a filtration of a simplicial complex K such that

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K is constructed based on certain rules such as the Vietoris-

Rips filtration, which we employ here. For each simplicial complex Ki, the rank of the kth

homology group Hk(K
i) represents the kth Betti number of Ki. For the examples here, we

focus on the 1st homology group which represents the 1-dimensional holes in the data such as

loops and rings. Along the filtration, the appearance and disappearance of these homology

groups are tracked by computing the p-persistent kth homology group of Ki, Hp
k(K

i) which

records the homology classes of Ki that persist at least until Ki+p. Each homology class

is then represented by a pair of filtration values at which the class appears and disappears,

usually called the birth and death values. These outputs of persistent homology can be

visualized as persistence diagrams by taking the birth and death values as 2D coordinates.

A more persistent homology class (with a large difference between death and birth values or

equivalently farther away from the diagonal in the persistence diagram plots) is considered a

significant feature. For the examples here, we are interested in the significant 1-dimensional

loops which are captured as significant off-diagonal points in the H1 persistence diagram.
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We refer interested readers to [15] for complete details of persistent homology. Here, the

package Dionysus 2 [32] was used for persistent homology computation with Vietoris-Rips

filtration on Euclidean distance.

Parameters

The default perplexity value in most standard implementations of t-SNE is 30. However,

depending on the dataset, the perplexity value may need to be adjusted. Table 5.2 shows

the perplexity value choices for each experiment presented in Section 5.2. In addition to

Dataset Bifurcated Tree Circular Frustrum Dumbbell Distant Rings sc-GEM scNMT-seq
Perplexity Value 30 60 30 30 50 100

Table 5.2: Perplexity choices for each dataset.

perplexity, another important parameter is ε in Equation 5.1. For all of our experiments, ε

was set to be 5× 10−3 but depending on the dataset could be adjusted.

Hardware

We ran the experiments on an Intel i7-10750H CPU (base frequency 2.60GHz) with 8GB

memory.

5.4.3 Datasets

For our analysis, we introduced two synthetic datasets: the dumbbell dataset and distant

rings dataset. The dumbbell dataset consists of two sub-datasets, X(d,1), X(d,2) ⊂ R2 with
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200 datapoints each. For all 0 ≤ i ≤ 200,

X
(d,1)
i,1 ∼ 50U(0, 1)

X
(d,1)
i,2 ∼ N(0, 1)

where U(0, 1) is the uniform distribution and N(0, 1) is the normal distribution. This essen-

tially constructs X(d,1) as a line in 2D with a little bit of noise. To construct the two rings

in X(d,2), we consider θ ∼ U(0, 2π) and r ∼ N(3, 0.5), then use it in our construction.

X
(d,2)
i,1 ∼ r cos(θ), 1 ≤ i ≤ 50

X
(d,2)
i,2 ∼ r sin(θ), 1 ≤ i ≤ 50

X
(d,2)
i,1 ∼ r cos(θ) + 14, 50 < i ≤ 100

X
(d,2)
i,2 ∼ r sin(θ), 50 < i ≤ 100

The first 50 points in X(2) are a slightly noisy circle centered at 0, where the next 50 points

in the dataset are the same slightly noisy circle centered instead at 14. These two rings are

then connected by a line.

X
(d,2)
i,1 ∼ U(3, 10), 100 < i ≤ 200

X
(d,2)
i,2 ∼ N(0, 0.2), 100 < i ≤ 200

This line is the last 100 points and also has small noise across one dimension.

The distant rings dataset also contains two subdatasets, X(c,1), X(c,2) ⊂ R. Again, we let

θ ∼ U(0, 2π) and now we define r1 ∼ N(5, 1) and r2 ∼ N(5, 0.1) and define two different
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rings.

X
(c,1)
:,1 ∼ r1 cos(θ)

X
(c,1)
:,2 ∼ r1 sin(θ)

X
(c,2)
:,1 ∼ r2 cos(θ) + 100

X
(c,2)
:,2 ∼ r2 sin(θ) + 100

Essentially for each dataset, we construct two rings where the distance between them dwarfs

the radius of each ring. To make these two rings distinct, we constructed one ring to have

much less noise than the other.
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Appendix A

AVIDA and UMAP

A.1 Using Alternate Dimensionality Reduction Tech-

niques

We introduce AVIDA as a framework that allows for different methods for dimension reduc-

tion (or visualization) and alignment can be used depending on the dataset and applications.

UMAP is another common dimensionality reduction technique utilized in computational bi-

ology. Here, we demonstrate AVIDA using UMAP for the dimension reduction module and

GW-OT for the alignment module. The purpose of these brief experiments is to demon-

strate AVIDA’s viability as a framework. The experiments here essentially replicate a small

subset of the experiments presented in the main section of our paper with the main differ-

ence being the utilization of UMAP for dimension reduction instead of t-SNE. To create 2D

representations for SCOT and Pamona, we also used UMAP.

In Figure A.1, we apply AVIDA(X1, X2; UMAP,GW) to the sc-GEM dataset, a dataset

from [11] which contains both gene expression and DNA methylation at multiple loci on
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human somatic cell samples under coversion to induced pluripotent stem cells. We can see

comparing Figure A.1 (which uses UMAP for dimension reduction) with Figure 5.4 (which

uses t-SNE for dimension reduction), using UMAP produces nearly the same clusters, but

here we see a more distinct separation between the two point clouds, both for AVIDA and

for Pamona. This shows that there may be datasets where another dimensionality reduction

technique might be superior over other choices. However, the reverse can also be true.

In Figure A.2 we apply AVIDA(X1, X2; UMAP,GW) to the rings data set described in

Section 5.4.3 and see that using UMAP does not preserve the local structure as well as

using t-SNE, as shown in Figure 5.3, for all three of the data integration methods. It

is not surprising different dimensionality reduction techniques for the same dataaset will

produce different representations and we encourage any users of AVIDA to incorporate the

dimensionality reduction technique that works best on the dataset they are working with.
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Figure A.1: AVIDA, SCOT, and Pamona representation of the scGEM dataset. In this
experiment, UMAP was applied to SCOT and Pamona’s output and UMAP’s gradient was
incorporated into AVIDA for the dimension reduction module.
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Figure A.2: UMAP, AVIDA, SCOT and Pamona representation of the distant rings dataset.
In this experiment, UMAP was applied to SCOT and Pamona’s output and UMAP’s gradient
was incorporated into AVIDA for the dimension reduction module.
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