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Chapter 1

Menu-Dependent Stochastic Fea-
sibility

Abstract: We examine the role of stochastic feasibility in consumer choice

using a random conditional choice set rule (RCCSR) and uniquely characterize the

model from conditions on stochastic choice data. Feasibility is modeled to permit

correlation in availability of alternatives, which provides a natural way to examine

substitutability/complementarity. We show that an RCCSR generalizes the random

consideration set rule of Manzini and Mariotti (2014). We then relate this model

to existing literature. In particular, an RCCSR is not a random utility model.

1
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1.1 Introduction

We investigate the role of stochastic feasibility in consumer choice. Consider

a researcher with scanner data on a consumer’s purchases from repeated visits to a

grocery store. In addition, the store supplies the researcher with the list of offered

alternatives. However, there is random variation of alternatives that are available

to consumers that is unknown to the researcher. For example, the researcher may

not know if a delivery is delayed, food is spoiled, or some alternatives are out of

stock.1 In each case, a rational consumer’s choices will depend on the available

alternatives. Therefore, random variation in feasibility causes a rational consumer’s

choices to appear stochastic to the researcher. Hence, stochastic feasibility induces

a stochastic choice function.2

The events mentioned above may cause correlation in availability of alter-

natives. For example, a delivery truck carrying meat and dairy may be delayed,

a disease can spoil certain fruits, and stock-outs may depend on similar products

being offered. When feasibility is driven by stock-outs, correlation provides a

natural way to discuss substitutability/complementarity.3 For example, we say two

alternatives are substitutes if there is negative correlation in feasibility because one

alternative is less likely to be available in the presence of the other.4

We model stochastic feasibility using a Random Conditional Choice Set

Rule (RCCSR). An RCCSR assumes the agent has deterministic preferences while

feasibility is driven by an exogenous stochastic process. In particular, the proba-

1This could also be a limited attention model where the researcher does not know the subset
of alternatives the consumer considered.

2We are grateful to Doron Ravid for suggesting this interpretation.
3See Manzini, Mariotti, and Ülkü (2015) for a discussion on the appeal of using correlation to

identify substitutes/complements.
4If feasibility is driven by consideration, correlation captures substitutability/complementarity

of their consideration.
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bility of a particular set being feasible is conditioned on the offered menu. This

feature permits correlation in availability which facilitates discussion of substi-

tutability/complementarity. We model the possibility that the feasible set is empty

with a default option. We show that an RCCSR is uniquely characterized from

conditions on stochastic choice data (Theorem 1.3.1). Further, we demonstrate how

an RCCSR generalizes the random consideration set rule of Manzini and Mariotti

(2014) (henceforth MM) and provide a new characterization (Theorem 1.3.3).

The rest of the paper proceeds as follows: Section 1.2 introduces notation and

defines an RCCSR. Section 1.3 uniquely characterizes an RCCSR using conditions

on stochastic choice data. Section 1.4 demonstrates how an RCCSR differs from

existing models.

1.2 Definitions and notation

Let X be a non-empty finite set of alternatives and D a domain of menus

which are subsets of X. We assume that the domain satisfies the following richness

condition: {a, b} ∈ D for all distinct a, b ∈ X and B ∈ D whenever A ∈ D and

B ⊆ A.5 Let the default option be x∗ /∈ X. The default option is available for each

menu and can be interpreted as choosing nothing or not choosing from a particular

class of alternatives.6 We use the notation X∗ = X ∪ {x∗} and A∗ = A ∪ {x∗} for

all A ∈ D.

Definition 1.2.1. A random choice rule is a map P : X∗ ×D → [0, 1] such that:

for all A ∈ D,
∑

a∈A∗ P (a,A) = 1; for all a /∈ A∗, P (a,A) = 0; and for all A ∈ D\∅,
5This domain assumption captures two important special cases: classical stochastic choice

framework and classical binary stochastic choice.
6Outside of an experimental study, it may be difficult to observe a consumer “choosing” nothing.

This can be ameliorated if one is interested in consumer choice within a class of alternatives. For
example, if the researcher is concerned about the purchase of fruit, the default option could be
interpreted as “did not buy fruit”.
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for all a ∈ A∗, P (a,A) ∈ (0, 1).

In the above definition, P (a,A) is the probability that alternative a is chosen

from A∗. When the menu is empty, the default option x∗ is always chosen, so

P (x∗, ∅) = 1. For all A ∈ D and B ⊆ A∗, we denote P (B,A) =
∑

b∈B P (b, A).

We investigate the behavior of an agent whose preferences are given by

a strict total ordering � on X.7 For any A ∈ D, we denote the set of feasible

alternatives as F (A) ⊆ A. We call F (A) the feasible set. An agent’s choice is made

by maximizing � over alternatives in F (A). We allow F (A) to be empty, in which

case the agent chooses the default option x∗. Therefore, P (x∗, A) is the probability

that F (A) is empty.

For a random conditional choice set rule (RCCSR), we consider a full support

probability distribution π on D. Thus, there is a positive probability each A ∈ D

is feasible.8 When D = 2X , π(A) represents the probability that A is feasible in X.

For a menu A, the probability of facing the feasible set B ⊆ A is

Pr(F (A) = B) =
π(B)∑
C⊆A π(C)

.

If B is not a subset of A, then Pr(F (A) = B) = 0. Thus, the probability of facing

a given feasible set is conditioned on the offered menu.9 For a menu A ∈ D and

a ∈ A, let Aa = {B ⊆ A | a ∈ B and ∀b ∈ B \ {a} a � b}. Aa is the set of subsets

of A where a is the most preferred alternative. We now formally define an RCCSR.

7 A strict total ordering is an asymmetric, transitive, and weakly connected binary relation.
A binary relation � on a set X is asymmetric if for all x, y ∈ X, x � y implies that y � x does
not hold. The relation � is transitive if for all x, y, z ∈ X, [x � y and y � z] implies x � z. The
relation � is weakly connected if for all a, b ∈ X such that a 6= b, then a � b or b � a.

8We find this condition reasonable for the feasibility interpretation. However, this is hardly
defensible for consideration sets. We refer the reader to Appendix C of the Supplemental Material
for a model where an agent considers at most a pair of alternatives.

9We discuss an alternative type of conditioning in Appendix B of the Supplemental Material.
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Definition 1.2.2. A random conditional choice set rule (RCCSR) is a random

choice rule P�,π for which there exists a pair (�, π), where � is a strict preference

ordering on X and π : D → (0, 1) a full support probability distribution over D,

such that for all A ∈ D and for all a ∈ A

P�,π(a,A) =

∑
B∈Aa π(B)∑
C⊆A π(C)

.

Thus, P�,π(a,A) is the probability that a is the best feasible alternative

when offered menu A. Menu-dependence is clear since Pr(F (A) = B) is conditioned

on the subsets of the offered menu. Further, an RCCSR incorporates correlation in

availability of alternatives.

We now define the random consideration set rule of Manzini and Mariotti

(2014) (MM) which we re-characterize in Section 1.3.3.10

Definition 1.2.3. A random consideration set rule is a random choice rule P�,γ

for which there exists a pair (�, γ), where � is a strict preference ordering on X

and γ is a map γ : X → (0, 1), such that for all A ∈ D and for all a ∈ A that

P�,γ(a,A) = γ(a)
∏

b∈A:b�a

(1− γ(b)).

The random consideration set rule is a simple model with only |X| parameters

which represent how likely an object is considered. Setting π(A) =
∏

b∈X\A(1 −

γ(b))
∏

a∈A γ(a) gives P�,π = P�,γ. Hence, a random consideration set rule is a

special case of an RCCSR.

10Horan (2014) provides a characterization of a random consideration set rule without a default
alternative. See Section 1.3.1 for a discussion on difficulties with removing the default option.
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1.3 Characterization

1.3.1 Revealed preference and limited data

The revealed preference relation of our model is based on a sequential

independence condition. We say that alternative b is sequentially independent from

alternative a in menu A ∈ D for menus |A| ≥ 2 denoted bIAa if

P (b, A) = P (b, A \ {a})P (A∗ \ {a}, A).

Assuming an agent faces random feasible sets and has a deterministic

preference � with a � b, then b will be chosen only if a is not available. Thus, it

seems reasonable that the agent chooses b independent of a not being available.

However, the term P (A∗ \ {a}, A) is the probability a is not available in A. Thus,

sequential independence is the case described. In contrast, the most preferred option

is chosen when available with any other alternatives. Hence, removal of a sub-

optimal alternative may cause non-independent changes to the choice probability

of a.

We define the revealed preference relation � by a � b if and only if bIAa for

some menu A with a, b ∈ A. In contrast, the revealed preference relation �̃ of MM

is given by a �̃ b if and only if P (b, A) < P (b, A \ {a}) for some menu A, so the

revealed preference relation � implies �̃.

Upon rearranging, one sees that sequential independence is a hazard rate

condition. For example, bIAa if and only if the probability of choosing b in A \ {a}

is the hazard rate

P (b, A \ {a}) =
P (b, A)

1− P (a,A)
.

We see that the probability b is chosen from the set A \ {a} is the same as the
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probability b is chosen from A conditional on a being sold out. This relaxes the

“stochastic path independence” of a random consideration set choice rule in MM.11

Now suppose we observe stochastic choice data of all alternatives from only

two menus A,B ∈ D generated by an RCCSR. What can we infer about π and �?

Suppose B = A \ {b} for some alternative b ∈ A. Then, we can determine b’s rank

relative to all alternatives in A. To see this, note that any c ∈ A \ {b} satisfying

P (c, A \ {b})
P (c, A)

=
P (x∗, A \ {b})
P (x∗, A)

must also satisfy b � c. This is because the choice frequencies of all goods inferior

to b change by the same proportion as the change in choice frequency of x∗ once b

is removed from the menu. All alternatives a such that the equality does not hold

satisfy a � b. Thus, b’s rank among the alternatives is established.

Further, it is possible to find the probability that b is feasible in A since

Pr(b ∈ F (A)) =

∑
B⊆A|b∈B

π(B)∑
C⊆A π(C)

= 1− P (x∗, A)

P (x∗, A \ {b})
.

We can then use that
∑

B⊆A|b∈B
π(B) ≤ P (b ∈ F (A)) to place bounds on π with

limited data.

Now consider an RCCSR when the feasible set must be nonempty, so

π is a probability distribution over D\∅. As in MM, an RCCSR lacks unique

identification once the default option is removed. For example, let X = {a, b} and

suppose P (a, {a, b}) = α and P (b, {a, b}) = β.12 This is consistent with a � b

11 One might also expect similarities between an RCCSR and the regular perception-adjusted
Luce model from Echenique, Saito, and Tserenjigmid (2014) which imposes conditions on hazard
rates. However, these models differ in many ways which we discuss in Section 1.4 and Appendix
D of the Supplemental Material.

12Note that P (a, {a}) = P (b, {b}) = 1 in this framework.
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and π({a}) + π({a, b}) = α and π({b}) = β or with b � a and π({a}) = α and

π({b}) + π({a, b}) = β. However, if D = 2X we can still identify a revealed

preference ordering which is unique up to the two least preferred alternatives. That

is, for any distinct a, b, c ∈ X we can identify the most preferred alternative among

them by evoking sequential independence on the menu {a, b, c}. Whether the

default option can be removed by a process similar to Horan (2014) remains an

open question.

1.3.2 Characterization of RCCSR

We now characterize an RCCSR using conditions on stochastic choice data.

ASI : (Asymmetric Sequential Independence) For all distinct a, b ∈ X,

exactly one of the following holds:

aI{a,b}b or bI{a,b}a.

ASI assumes that the alternatives are asymmetric in sequential independence.

The intuition for this condition was argued earlier when discussing the revealed

preference relation.

TSI: (Transitive Sequential Independence) For all distinct a, b, c ∈ X,

aI{a,b}b and bI{b,c}c ⇒ aI{a,c}c.

TSI says that if a is chosen independently when b is not feasible and b is

chosen independently when c is not feasible in their respective binary menus, then

a is chosen independently when c is not feasible in menu {a, c}. This condition

imposes that the I relation is an ordering over alternatives in binary menus.

ESI: (Expansive Sequential Independence) For all a ∈ X and all menus
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A,B ∈ D such that a ∈ A ∩B, if

∀b ∈ A \ {a} bIAa and ∀c ∈ B \ {a} cIBa ⇒ ∀d ∈ A∪B \ {a} dIA∪Ba.

ESI expands sequential independence from binary to arbitrary menus. It

says if an agent chooses alternatives independently when a is not feasible in different

menus, then they are still chosen independently when a is not feasible in the union

of the menus.

We introduce some new notation for the following condition. For all A ∈ D\∅,

let OA = P (A,A)
P (x∗,A)

be the odds of the feasible set being nonempty in menu A. For

the empty set, let O∅ = 0. For A,B ∈ D, we define ∆BOA = OA − OA\B =

P (A,A)
P (x∗,A)

− P (A\B,A\B)
P (x∗,A\B)

. Let B = {B1, . . . , Bn} be any collection of sets such that

Bi ∈ D. Let ∆BOA = ∆Bn . . .∆B1OA = ∆Bn . . .∆B2OA−∆Bn . . .∆B2OA\B1 be the

successive marginal differences of feasible odds.

IFO: (Increasing Feasible Odds) For any A ∈ D \ ∅, |A| ≥ 2, and for any

finite collection B = {B1, . . . , Bn} with Bi ∈ D,

∆BOA > 0.

IFO states that enlarging the menu decreases the odds the default option

is chosen at an increasing rate.13 Aguiar (2015b) further examines successive

difference conditions on choice probabilities to study the role of capacities in

stochastic choice. We note this condition is equivalent to a multiplicative version of

the Block-Marschak polynomials on the default option. Thus, choice of the default

13Note this defines a capacity from the odds that the feasible set is non-empty. Making this
inequality weak characterizes a model with {A ∈ D | |A| ≤ 2} ⊆ support(π). Removing this
condition, we would characterize a model where π(·) represents set intensities on choice which
could be negative.
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option behaves as if in a random utility model. In particular, IFO is equivalent to

the condition that for all A ∈ D such that |A| ≥ 2,

∑
B⊆A

(−1)|A\B|
∏

C⊆A:C 6=B

P (x∗, C) > 0.

One can make other restrictions on how choice probabilities of the default

option behave when removing alternatives. For example, if we instead require that

the choice frequency of the default option exhibits a menu-independent marginal

effect when adding an alternative, we arrive at the random consideration set model

of MM (Theorem 1.3.3). We also characterize a model where π has limited support

in Appendix B of the Supplemental Material. We now present the main result.

Theorem 1.3.1. A random choice rule satisfies ASI, TSI, ESI, and IFO if and

only if it is an RCCSR P�,π. Moreover, both � and π are unique, that is, for any

RCCSR with P�,π = P�′,π′ we have that (�, π) = (�′, π′).

All proofs can be found in Appendix A. We give intuition for showing

sufficiency. We first show the revealed preference relation � described previously

is a strict preference ordering using ASI, TSI, and ESI. Next, we show that the

probability of choosing the default option has the an RCCSR representation on

the domain. We then prove the representation holds for arbitrary alternatives on

singleton and binary menus. Finally, we extended the representation to all other

menus via induction. We then define a valid probability distribution π using IFO

and a Möbius inversion formula.

We now present a lemma used in the proof of the main result.

Lemma 1.3.1. If ASI, TSI, and ESI hold, then for any A ∈ D such that |A| ≥ 2

and ã ∈ A such that ∀b ∈ A \ {ã} ã � b we have that x∗IAã.
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Lemma 1.3.1 shows that these conditions restrict choice of the default option

to satisfy sequential independence. Therefore, a model where the default option is

more preferred than some alternative would require a different characterization.

An RCCSR’s appeal is being able to exhibit menu-dependent feasibility

without assuming menu-dependent parameters. A counterpart to an RCCSR is a

model with menu-dependent feasibility parameters. We define a menu-dependent

random conditional choice set rule as a random choice rule P�,ν for which there exists

a pair (�, ν), where� is a strict total order onX and ν is a map ν : D×D\∅ → (0, 1),

such that

P�,ν(a,A) =

∑
B∈Aa ν(B,A)∑
C⊆A ν(C,A)

∀A ∈ D,∀a ∈ A.

However, a model with menu-dependent feasibility parameters has no empirical

content.

Theorem 1.3.2. For every strict total order � on X and for every random choice

rule P , there exists a menu-dependent random conditional choice set rule P�,ν such

that P = P�,ν.

1.3.3 Characterization of random consideration set rule

We now obtain the random consideration set rule of Manzini and Mariotti

(2014) by replacing IFO with a constant marginal effects condition on the choice

probability of the default option.

MIDO : (Menu Independent Default Option) For all a ∈ X and for

all A,B ∈ D such that a ∈ A ∩B then

P (x∗, A \ {a})
P (x∗, A)

=
P (x∗, B \ {a})
P (x∗, B)

This is MM’s i-Independence on the default option. It restricts how the
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choice frequency of the default option changes once an alternative is removed from

the menu. Specifically, the condition requires the effect to be menu independent.

This condition is similar to the independence condition of Luce (1959a) and is one

reasonable way to restrict choice of the default option.

Theorem 1.3.3. A random choice rule satisfies ASI, TSI, ESI, and MIDO if and

only if it is a random consideration set rule P�,γ. Moreover, both � and γ are

unique, that is, for any random consideration set rule with P�,γ = P�′,γ′ we have

that (�, γ) = (�′, γ′).

1.4 Comparison to related models

Although an RCCSR has a strong structure and a rational agent, it allows for

deviations from a standard model of choice and permits correlation among feasible

alternatives. One could think of using data on feasibility and stated preferences

to generate predictions from the model which could be tested against observed

consumer choice frequencies. Additionally, since the random consideration set rule

is a special case of an RCCSR, an RCCSR can exhibit choice frequency reversals

and violations of stochastic transitivity.

We examine the i-Asymmetry condition required for the random considera-

tion set rule of MM. i-Asymmetry states that

P (a,A \ {b})
P (a,A)

6= 1 ⇒ P (b, A \ {a})
P (b, A)

= 1.

This says that if removing b affects the choice probability of a in a menu, then

removing a cannot affect the choice probability of b in the same menu. However,

it is reasonable that removal of either alternative may affect the other’s choice
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probability within a menu. We will show that an RCCSR allows violations of

i-Asymmetry.

First, return to the story of a researcher following an agent’s choices in the

introduction. Suppose in addition that the researcher has knowledge of alternatives

that were available at the time of choice. It would be reasonable to think correlation

exists between which objects are feasible. Correlation would mean that Pr(a ∈

F (A) | b ∈ F (A)) 6= Pr(a ∈ F (A)) for some a, b ∈ A with a 6= b. We note that a

random consideration set rule does not allow these effects. The following example

details a situation in which an RCCSR generates choice frequencies which violate

i-Asymmetry and alternatives have correlation in availability.

Example 1. (Grocery Store) Consider a researcher with scanner data of a con-

sumer’s purchases from several grocery stores. The alternatives of interest are

apples (a), bananas (b), and carrots (c). Here the set of alternatives is X = {a, b, c}

and D = 2X . Suppose we observe choice from all possible nonempty menus given

by Table 1.1.

Table 1.1. Grocery store stochastic choice data

{a, b, c} {a, b} {a, c} {b, c} {a} {b} {c}
a 7/20 1/3 1/2 0 1/2 0 0
b 11/20 1/2 0 11/13 0 3/4 0
c 1/20 0 1/4 1/13 0 0 1/2

One can use this data and the revealed preference relation to find that

a � b � c and that the π system is given by

π(∅) =
1

20
π({a}) =

1

20
π({b}) =

3

20
π({c}) =

1

20
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π({a, b}) =
1

20
π({a, c}) =

1

20
π({b, c}) =

8

20
π({a, b, c}) =

4

20
.

Looking at the pair a and b, we see that

P (a, {a, c})
P (a,X)

=
10

7
and

P (b, {b, c})
P (b,X)

=
20

13

which is a violation of i-Asymmetry. Here we see that a and b both benefit from

the other’s removal. Next, suppose that a researcher observes b is available when

the agent chooses from X. Now, the researcher can back out the probability that a

was also in the feasible set since

P (a ∈ F (X) | b ∈ F (X)) =
π({a, b}) + π({a, b, c})

π({a, b}) + π({a, b, c}) + π({b, c}) + π({b})
=

5

16

but P (a ∈ F (X)) = 7/20. As discussed earlier, if menus are subject to stock-outs

this may suggest that apples and bananas are substitutes since apples are less likely

to be available given bananas are still available.

We now consider how an RCCSR compares to other models in the literature.14

Block and Marschak (1960) considered a class of stochastic choice functions known as

random utility models. A random utility model is described by a probability measure

over preference orderings, where the agent selects the maximal alternative available

according to the randomly assigned preference ordering. Random utility models

obey the regularity condition that P (a,B) ≥ P (a,A) for any a ∈ B ⊆ A. However,

Example 1 violates this condition as seen by examining the choice probabilities of

a in {a, b} and X. Therefore, RCCSRs are not nested in random utility models.

14Like many models of stochastic choice, we do not explicitly include measurement or feasibility
errors in our characterization based on choice probabilities. However, it may be interesting to see
if choice behavior similar to an RCCSR could be generated by a profit maximizing firm choosing
a costly technology which yields a stochastic menu of goods to rational consumers.
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Moreover, random utility models are not nested in RCCSRs. To see this, consider

the model from Luce (1959a), which is a special case of a random utility model.

The Luce model is of the form P (a,A) = u(a)∑
b∈A u(b)

for a strictly positive utility

function u and is characterized by the IIA condition.15 However, an RCCSR will

necessarily violate IIA when A ∈ D and |A| ≥ 3 since the ratio of the probability

of choosing the most preferred alternative over the probability of choosing the least

preferred alternative will necessarily decrease once the middle-ranked alternative is

removed from the menu. Lastly, we note that there are models which are both a

random utility model and an RCCSR such as the random consideration set rule.

A recent model which appears similar to an RCCSR is the regular perception-

adjusted Luce model (rPALM) from Echenique, Saito, and Tserenjigmid (2014). In

fact, both an RCCSR and rPALM use conditions on hazard rates to characterize

the models. Furthermore, both an RCCSR and rPALM accommodate violations of

regularity, IIA, and stochastic transitivity. Nonetheless, an RCCSR and rPALM

are distinct.16 One strong prediction of an RCCSR is that choice frequency of the

default alternative decreases as alternatives are added to a menu. However in an

rPALM, default alternative choice probabilities need not systematically increase or

decrease since they are driven by a menu dependent parameter. An rPALM also

requires ratios of hazard rates to be constant across menus and satisfy a regularity

condition. Both of these conditions are difficult to interpret, but neither is required

in an RCCSR. This suggests several ways to discern which model is appropriate

from data.

The recent work of Gul, Natenzon, and Pesendorfer (2014) axiomatizes

an attribute rule where the decision maker first randomly chooses an attribute

15IIA states that P (a,A)
P (b,A) = P (a,B)

P (b,B) for any a, b and menus A,B such that a, b ∈ A ∩B.
16In particular, an rPALM cannot generate the choice frequencies exhibited in Example 1

(Appendix D of Supplemental Material).



16

from all perceived attributes and then randomly selects an alternative containing

the selected attribute. Every attribute rule is a random utility model and the

Luce model is a special case. Therefore, an RCCSR and an attribute rule are not

equivalent from the discussion of random utility models.

There are other works worthy of mention which take a different approach than

those mentioned here. The models of Machina (1985), Mattsson and Weibull (2002),

and Fudenberg, Iijima, and Strzalecki (2015) assume an agent has deterministic

preferences over lotteries and chooses a probability distribution to maximize utility

on a menu. Therefore, these models induce “stochastic choice” from deterministic

preferences on lotteries. We refer the reader to the survey by Rieskamp, Busemeyer,

and Mellers (2006) for a survey of other related works.

Chapter1 will appear in a forthcoming issue of Econometrica and was coau-

thored with John Rehbeck. The copyright of this article is held by the Econometric

Society.
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1.5 Appendix A: Main results

We present a series of lemmas which characterize the preference relation,

properties on larger menus, and the proof of Lemma 1.3.1. We then present a

statement of the Möbius inverse formula used in the proof of Theorem 1.3.1. The

proof of Theorem 1.3.1 follows.

Lemma 1.5.1. If ASI and TSI hold, then there exists a strict total order of X

such that for any a, b ∈ X

a � b ⇔ P (b, {a, b}) = P (b, {b})P ({b, x∗}, {a, b}).

Proof. The relation � is asymmetric and weakly connected since by ASI for distinct

a, b ∈ X we have that exactly one of the below is true

P (a, {a, b}) = P (a, {a})P ({a, x∗}, {a, b})

or

P (b, {a, b}) = P (b, {b})P ({b, x∗}, {a, b}).

Suppose for a, b, c ∈ X that a � b and b � c. By definition we have

P (b, {a, b}) = P (b, {b})P ({b, x∗}, {a, b})

and

P (c, {b, c}) = P (c, {c})P ({c, x∗}, {b, c}).

By TSI we have that P (c, {a, c}) = P (c, {c})P ({c, x∗}, {a, c}) so by definition of �

we have a � c, so that � is transitive.
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Lemma 1.5.2. If ASI, TSI, and ESI hold, then for any menu A ∈ D there exists

an ã ∈ A such that for all b ∈ A \ {ã} we have

P (b, A) = P (b, A \ {ã})P (A∗ \ {ã}, A).

Proof. By Lemma 1.5.1 we know � is strict, so for any A ∈ D there exists an ã

such that ã � b for all b ∈ A \ {ã}. The result obviously holds for binary menus by

ASI so assume |A| = 3 with A = {ã, b, c}. By definition of � we know

P (b, {ã, b}) = P (b, {b})P ({b, x∗}, {ã, b}) and

P (c, {ã, c}) = P (c, {c})P ({c, x∗}, {ã, c}).

By ESI we have

P (b, {ã, b, c}) = P (b, {b, c})P ({b, c, x∗}, {ã, b, c})

with an analogous statement for c. For|A| > 3 the result holds by induction.

Proof of Lemma 1.3.1. Lemma 1.5.2 established the existence of a maximal alter-

native in any menu, so let A ∈ D with |A| ≥ 2 and let ã ∈ A be the maximal

alternative. Using some basic algebra and the sequential independence result from
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Lemma 1.5.2 we have that

P (x∗, A) = 1− P (ã, A)−
∑

b∈A\{ã}

P (b, A)

= 1− P (ã, A)−
∑

b∈A\{ã}

P (b, A \ {ã})P (A∗ \ {ã}, A)

= 1− P (ã, A)− P (A∗ \ {ã}, A)
∑

b∈A\{ã}

P (b, A \ {ã})

= 1− P (ã, A)− P (A∗ \ {ã}, A)(1− P (x∗, A \ {ã}))

= 1− P (ã, A)− P (A∗ \ {ã}, A) + P (x∗, A \ {ã})P (A∗ \ {ã}, A)

= P (x∗, A \ {ã})P (A∗ \ {ã}, A).

Möbius inversion has been used in economics since Shapley (1953). In

particular, the result of Falmagne (1978) that the Block-Marschak polynomials are

sufficient for a random utility model was proved by Fiorini (2004) using Möbius

inversion. In general, it is a powerful tool to move between two functions when

there is a partial order. Here we use the partial order over sets. We now present a

version of Möbius inversion from Shafer (1976).

Theorem 1.5.1. (Möbius inversion (Shafer, 1976) ) If Θ is a finite set with f and

g functions on 2Θ then

f(A) =
∑
B⊆A

g(B)

for all A ⊆ Θ if and only if

g(A) =
∑
B⊆A

(−1)|A\B|f(B)
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for all A ⊆ Θ.

Using the expression from Section 1.3.1, this will hold for an RCCSR for

Θ = X with g(A) = π(A) and f(A) = P (x∗,X)
P (x∗,A)

.

Corollary 1.5.1. If P = P�,π is a RCCSR with D = 2X then for all A ⊆ 2X we

have that

P (x∗, X)

P (x∗, A)
=
∑
B⊆A

π(B)

For the proof of the main result, we have that D may not be the power set.

However, this will affect the above intuition by changing only a scaling factor. We

now present the proof of the main result.

Proof of Theorem 1.3.1 . That an RCCSR satisfies ASI, TSI, ESI, and IFO is

simple to check and is omitted here.

Now, suppose |X| = N ≥ 1 and P is a random choice rule that satisfies ASI,

TSI, ESI, and IFO. From Lemma 1.5.1 and D rich, we can define an ordering � on

X which is a total order. We want to show that the P (·, ·) is an RCCSR. We prove

the representation inductively on menu size. Let M = maxA∈D |A| be the largest

order of sets in D. Let DM = argmaxA∈D|A| be the elements of D with maximal

order. First, define λ : D → R such that for A ∈ D we have that

λA = λ(A) =
∑
B⊆A

(−1)|A\B|
1

P (x∗, B)
.

Note that this imposes λ∅ = 1
P (x∗,∅) = 1. Moreover, we have that for A = {a} for

a ∈ X that

λa =
1

P (x∗, {a})
− 1 > 0

since P (x∗, {a}) ∈ (0, 1) by definition of a random choice rule. For A ∈ D with
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|A| ≥ 2 since IFO is equivalent to positivity of the multiplicative polynomial

∑
B⊆A

(−1)|A\B|
∏

C⊆A:C 6=B

P (x∗, C) > 0⇔
∑
B⊆A

(−1)|A\B|
1

P (x∗, B)
> 0⇔ λ(A) > 0

by dividing the polynomial by
∏

C⊆A P (x∗, C).

Using the Möbius inversion formula Theorem 1.5.1 gives us that

1

P (x∗, A)
=
∑
B⊆A

λB.

We first examine the choice of the default option option from any menu

A ∈ D. Here

P (x∗, A) =

(
1

P (x∗, A)

)−1

= λ∅

(∑
B⊆A

λB

)−1

=
λ∅∑

B⊆A λB
.

Now, singleton menus are in D by richness. Thus, focusing on singleton

menus A = {a} for a ∈ X the above result can be used to show that

P (a, {a}) = 1− P (x∗, {a})

= 1− λ∅
λ∅ + λ{a}

=
λ{a}

λ∅ + λ{a}

Next, binary menus are in D by richness, so suppose that the menu is binary i.e.

A = {a, b} for a, b ∈ X and that a � b without loss of generality. By definition
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of � we have P (b, {a, b}) = P (b, {b})P ({b, x∗}, {a, b}) and by Lemma 1.3.1 that

P (x∗, {a, b}) = P (x∗, {b})P ({b, x∗}, {a, b}). Combining these two gives us

P (b, {a, b})
P (x∗, {a, b})

=
P (b, {b})P ({b, x∗}, {a, b})
P (x∗, {b})P ({b, x∗}, {a, b})

=
P (b, {b})
P (x∗, {b})

.

However, after a simple rearrangement we have that

P (b, {a, b})
P (b, {b})

=
P (x∗, {a, b})
P (x∗, {b})

=

(∑
B⊆{a,b} λB

)−1

(∑
B⊆{b} λB

)−1 =

∑
B⊆{b} λB∑
B⊆{a,b} λB

This relates the ratios of probabilities to the weight function λ defined earlier.

Moreover, using this result and Lemma 1.5.2 and Lemma 1.3.1 it is clear that for

any menu A and alternative b which is not the maximal element ã of � in A, we

have that

P (b, A)

P (b, A \ {ã})
=

∑
B⊆A\{ã} λB∑
B⊆A λB

. (1.1)

Using this and the earlier result from singleton menus it follows that

P (b, {a, b}) = P (b, {b})P (b, {a, b})
P (b, {b})

=

(
λ{b}∑
B⊆{b} λB

)( ∑
B⊆{b} λB∑
B⊆{a,b} λB

)

=
λ{b}∑

B⊆{a,b} λB
.
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Next, examining the choice probability of a, the most preferred alternative in {a, b},

P (a, {a, b}) = 1− P (b, {a, b})− P (x∗, {a, b})

= 1−
λ{b}∑

B⊆{a,b} λB
− λ∅∑

B⊆{a,b} λB

=
λ{a} + λ{a,b}∑

B⊆{a,b} λB
.

Summarizing, we have for any singleton or binary menu A and a ∈ A that

P (a,A) =

∑
B∈Aa λB∑
B⊆A λB

where as before Aa = {B ⊆ A | a ∈ B and ∀b ∈ B\{a} a � b}. Assume inductively

that the representation holds for menus of size m− 1 < M in D. Let A ∈ D be a

menu such that |A| = m. Recall B ∈ D for all B ⊆ A from richness. Thus, for all

a ∈ A then P (·, A \ {a}) satisfies the representation. From Lemma 1.5.2 we have

that there is a unique maximal element ã ∈ A. Therefore, for any b ∈ A \ {ã} we

have

P (b, A) = P (b, A \ {ã})
(

P (b, A)

P (b, A \ {ã})

)
=

(∑
B∈(A\{ã})b λB∑
B⊆A\{ã} λB

)(∑
B⊆A\{ã} λB∑
B⊆A λB

)

=

∑
B∈Ab λB∑
B⊆A λB

.

where the second equality follows by the induction hypothesis and (1.1) and the

third equality follows because Ab = (A \ {ã})b since ã � b. Now examining the
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choice probability of ã in A we see that

P (ã, A) = 1−
∑

b∈A∗\{ã}

P (b, A)

= 1−
∑

b∈A∗\{ã}

∑
B∈Ab λB∑
B⊆A λB

=

∑
B∈Aã λB∑
B⊆A λB

where the second equality follows by the previous result and the third equality

follows since
∑

B⊆A λB −
∑

b∈A∗\{ã}
∑

B∈Ab λB =
∑

B∈Aã λB.

We now have the appropriate definition but λ is not necessarily a probability.

We define λ̃ : D → R by λ̃(A) = λ(A)∑
B∈D λ(B)

. Thus, we have that

∑
A∈D

λ̃A =
∑
A∈D

λ(A)∑
B∈D λ(B)

= 1

and for A ∈ D that λ̃A ∈ (0, 1). Therefore, λ̃ forms a valid full support probability

distribution on D which is related to λ by a constant.

Therefore, we have that P is an RCCSR with � as defined from Lemma

1.5.1 and λ̃ = π.

To show that (�, π) is unique, suppose that there exists a (�′, π′) such that

P�,π = P�′,π′ . First, we note for singleton menus {a} ∈ D that

P�,π(a, {a})
P�,π(x∗, {a})

=
π({a})
π(∅)

=
π′({a})
π′(∅)

=
P�′,π′(a, {a})
P�′,π′(x∗, {a})

⇒ π′(∅) = π(∅)π
′({a})
π({a})

.

This means that π′(∅) = απ(∅) for α > 0 and π′({a}) = απ({a}) for any singleton
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menu. Then, since �′ 6=� we know that there exist a � b and b �′ a so

P�,π(a, {a, b}) =
π({a}) + π({a, b})

π({a, b}) + π({a}) + π({b}) + π(∅)

=
π′({a})

π′({a, b}) + π′({a}) + π′({b}) + π′(∅)
= P�′,π′(a, {a, b}).

However, cross multiplying equations, using the scale relation, and eliminating

variables

π′({a, b})(π({a}) + π({a, b})) + α(π({b}) + π(∅))π({a, b}) = 0.

This is a contradiction since all of the quantities are positive. Therefore we have

that �=�′. The uniqueness of π follows immediately since � is uniquely defined

then π′ = απ. However, for π′ to be a probability requires α = 1. Therefore, the

pair (�, π) is unique for each RCCSR.

Proof of Theorem 1.3.2. The proof follows immediately from Theorem 2 in Manzini

and Mariotti (2014) by letting ν(B,A) =
∏

b∈B δ(b, A)
∏

a∈A\B(1 − δ(a,A)) for δ

defined as in the proof of Manzini and Mariotti (2014).

Proof of Theorem 1.3.3. That a random consideration set rule satisfies ASI, TSI,

ESI, and MIDO is simple to check and is omitted here.

Now, suppose |X| = N ≥ 1 and P is a random choice rule that satisfies

ASI, TSI, ESI, and MIDO. By Lemma 1.5.1 and D rich, we can define an ordering

� on X which is a total order. Let M = maxA∈D |A| be the largest order of sets

in D. Let DM = argmaxA∈D|A| be the elements of D with maximal order. We

want to show that the P (·, ·) is a random consideration set rule. We prove the

representation inductively on menu size.
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For all a ∈ X we define λa = λ(a) = P (a, {a}). Now examining the choice

of the default option in any menu A ∈ D and any alternative a ∈ A, we have by

MIDO that

P (x∗, A \ {a})
P (x∗, A)

=
P (x∗, ∅)
P (x∗, a)

=
1

P (x∗, a)
=⇒ P (x∗, A) = P (x∗, {a})P (x∗, A \ {a}).

Since the above argument was for a generic alternative and menu, we have

P (x∗, A) =
∏
a∈A

P (x∗, {a}) =
∏
a∈A

(1− P (a, {a})) =
∏
a∈A

(1− λa)

For singleton menus, the representation trivially holds. Next we examine the

case of choice in binary menus. For a, b ∈ X we suppose without loss of generality

that a � b. By ASI and D rich , we have

P (b, {a, b}) = P (b, {b})P ({x∗, b}, {a, b})

= P (b, {b})P (x∗, {a, b})
P (x∗, {b})

= λb
(1− λb)(1− λa)

(1− λb)

= λb(1− λa).

Where the second equality is by Lemma 1.3.1 and the third equality is by the

representation of the choice of the default option in terms of λ. Then for the best
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alternative a,

P (a, {a, b}) = 1− P (b, {a, b})− P (x∗, {a, b})

= 1− λb(1− λa)− (1− λa)(1− λb)

= λa.

Now assume that the representation holds for all sets of size m − 1 < M so if

|A| < m

P (a,A) = λa
∏

b∈A|b�a

(1− λb).

For the a menu A with |A| = m we have by Lemma 1.5.2 that there is a

maximal element ã � b for all b ∈ A. Now looking at the choice of b ∈ A such that

ã � b we have that

P (b, A) = P (b, A \ {a})P (A∗ \ {ã}, A)

= P (b, A \ {a}) P (x∗, A)

P (x∗, A \ {ã})

=

λb ∏
c∈A\{ã}|c�b

(1− λc)

 (1− λã)

= λb
∏

c∈A|c�b

(1− λc).

Where the first equality follows from Lemma 1.5.2 and definition of �, the second

equality follows from Lemma 1.3.1, and the last equality follows since ã � b. Now
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examining the choice of ã, we have that

P (ã, A) = 1− P (A∗ \ {ã}, A)

= 1− P (x∗, A)

P (x∗, A \ {ã})

= 1− (1− λã)

= λã.

Therefore, P is a random consideration set rule with preference � and attention

parameters γ(a) = λ(a). Where for all a ∈ X we have γ(a) ∈ (0, 1) since P is

a random choice rule and γ(a) = P (a, {a}). That this representation is unique

follows immediately from Theorem 1 in Manzini and Mariotti (2014).

Appendix B contains a discussion on an alternative form of conditioning for

feasible set probabilities. Appendix C replaces IFO with a condition which restricts

the support of π to sets of at most two elements. Appendix D examines differences

between the regular Perception Adjusted Luce Model and an RCCSR.

1.6 Appendix B: Alternative conditioning

Recall that throughout our analysis, we have considered a model where the

probability of obtaining a feasible set is given by

Pr(F (A) = B) =
π(B)∑
C⊆A π(C)

.
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However, there are other ways that one could condition to obtain a feasible set. In

particular, one could consider the model given by

Pr(F (A) = B) =
∑

C∈D:C∩A=B

π(C),

where the default option is chosen if B = ∅. This alternative conditioning formula

is used in Barberà and Grodal (2011) to characterize a preference for flexibility

over menus.

We prefer the conditioning formula used in an RCCSR for two main reasons.

First, suppose that a feasible set is generated by what items an agent considers

from a menu. In this case, an RCCSR says an agent first looks at the menu, then

considers a set of alternatives from the menu, and lastly makes a choice. If we

used the alternative conditioning formula, it will change the timing of these actions.

In particular, the alternative formulation says an agent first considers a set of

alternatives, then looks at the menu and further restricts the considered objects,

and finally makes a choice.17 Therefore, in this alternative formulation an agent

could be thinking of a better/worse alternative when choosing from the menu. The

alternative formulation also seems ill suited for the case of general feasibility. For

example, it would seem surprising that the probability an alternative is out of stock

in a menu depends on alternatives not offered.

Secondly, we prefer the formulation used in an RCCSR for its identifiability

and flexibility. The alternative formulation makes it difficult to identify π completely.

In addition, this alternative conditioning formula produces choice probabilities

consistent with a random utility model.

17Using the “in the mood” interpretation, an RCCSR conditioning says a consumer sees
the menu and draws a random mood which is consistent with the offered alternatives. In the
alternative formulation, the consumer receives a mood before looking at the offered menu.
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1.7 Appendix C: Binary support

We can also characterize some models which have limited support by replac-

ing IFO with other conditions. Here we still assume that D is rich.

BIFO : (Binary Increasing Feasible Odds) For all distinct a, b ∈ X,

∆a∆bO{a,b} > 0

This condition restricts IFO to binary menus. In a consideration set framework,

this would mean that adding acceptable alternatives draws consideration away from

the default option.

CMD : (Constant Marginal Differences) For all distinct a, b ∈ X and A,B ∈ D

with a, b ∈ A ∩B then

P (a,A)

P (x∗, A)
− P (a,A \ {b})
P (x∗, A \ {b})

=
P (a,B)

P (x∗, B)
− P (a,B \ {b})
P (x∗, B \ {b})

This condition states that the marginal effect on the odds ratio with respect to the

default option of removing an alternative is constant across menus. Replacing IFO

with these conditions, we get a model with |X|+
(|X|

2

)
parameters. We now define

a binary random choice set rule.

Definition 1.7.1. A binary random choice set rule (BRCSR) is a random choice

rule P�,α for which there exists a pair (�, α), where � is a strict preference ordering

on X and α : D → [0, 1) a distribution with α(A) > 0 for sets A ∈ D with |A| ≤ 2

and zero otherwise, such that for all A ∈ D and for all a ∈ A

P�,α(a,A) =
α({a}) +

∑
b∈A|a�b α({a, b})∑

C⊆A:|C|≤2 α(C)
.
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Theorem 1.7.1. A random choice rule satisfies ASI, TSI, ESI, BIFO, and CMD

if and only if it is a BRCSR P�,α. Moreover, both � and α are unique, that is, for

any BRCSR with P�,α = P�′,α′ we have that (�, α) = (�′, α′).

Proof. Note that a BRCSR satisfies ASI, TSI, ESI, BIFO, and CMD is simple to

check and omitted here.

Now, suppose |X| = N ≥ 1 and P is a random choice rule that satisfies

ASI, TSI, ESI, BIFO, and CMD. By Lemma 1.5.1 and D rich, we can define an

ordering � on X which is a total order. Let M = maxA∈D |A| be the largest order

of sets in D. Let DM = argmaxA∈D|A| be the elements of D with maximal order.

We want to show that the P (·, ·) has the BRCSR representation. We prove the

representation inductively on menu size.

First, define λ : D → R such that for A ∈ D we have that

λA = λ(A) =
∑
B⊆A

(−1)|A\B|
1

P (x∗, B)
.

This is related to a Möbius inversion formula. Theorem 1.5.1 gives us that

1

P (x∗, A)
=
∑
B⊆A

λB.

First, note that for singleton menus {a} ∈ 2X that

λ{a} =
1

P (x∗, {a})
− 1 > 0

since P (x∗, {a}) < 1 by definition of a random choice rule. Next, for binary menus
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{a, b} ∈ D assume without loss of generality that a � b. Then BIFO implies

∆a∆bO{a,b} =
∑

B⊆{a,b}:B 6=∅

(−1)|{a,b}\B|
P (B,B)

P (x∗, B)

=
∑

B⊆{a,b}

(−1)|{a,b}\B| +
∑

B⊆{a,b}:B 6=∅

(−1)|{a,b}\B|
P (B,B)

P (x∗, B)

=
∑

B⊆{a,b}

(−1)|{a,b}\B|
(

1 +
P (B,B)

P (x∗, B)

)
=

∑
B⊆{a,b}

(−1)|{a,b}\B|
1

P (x∗, B)
> 0

where we used that
∑

B⊆{a,b}(−1)|{a,b}\B| =
∑2

i=0(−1)i
(

2
i

)
= 0.

Therefore, we have

P (x∗, {a, b})−1 − P (x∗, {b})−1 − P (x∗, {a})−1 + 1 > 0

where we used Lemma 3.1 to get to the second equality. Thus we have

λ{a,b} =
∑

B⊆{a,b}

(−1)|{a,b}\B|
1

P (x∗, B)
> 0.

Now, we show a result on how the λ terms relate to P (·, ·) under CMD and

then show for all A ∈ D such that |A| ≥ 3 that λA = 0. Note for A = {a, b, c} such

that a � b and a � c then we have by CMD that

P (a,A)

P (x∗, A)
− P (a, {a, c})
P (x∗, {a, c})

=
P (a, {a, b})
P (x∗, {a, b})

− P (a, {a})
P (x∗, {a})

.
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First, looking at the left side of the equality and using Lemma 3.1

P (a,A)

P (x∗, A)
− P (a, {a, c})
P (x∗, {a, c})

=
1− P ((A \ {a})∗, A)

P (x∗, A)
− 1− P ({c, x∗}, {a, c})

P (x∗, {a, c})

= P (x∗, A)−1 − P (x∗, {b, c})−1

− P (x∗, {a, c})−1 + P (x∗, {c})−1.

Similarly, looking at the right side of the equality and using Lemma 3.1

P (a, {a, b})
P (x∗, {a, b})

− P (a, {a})
P (x∗, {a})

= P (x∗, {a, b})−1 − P (x∗, {b})−1 − P (x∗, {a})−1 + 1.

= λ{a,b}

Rearranging the equality we see that

P (x∗, A)−1 = λ{a,b} + P (x∗, {b, c})−1 + P (x∗, {a, c})−1 − P (x∗, {c})−1

= λ{a,b} +
(
P (x∗, {b, c})−1 − P (x∗, {b})−1 − P (x∗, {c})−1 + 1

)
+ P (x∗, {a, c})−1 + (P (x∗, {b})−1 − 1)

= λ{a,b} + λ{b,c} + λ{b} + P (x∗, {a, c})−1

= λ{a,b} + λ{b,c} + λ{b} + (P (x∗, {a, c})−1 − P (x∗, {a})−1

− P (x∗, {c})−1 + 1) + (P (x∗, {a})−1 − 1) + (P (x∗, {c})−1 − 1) + 1

=
∑
B(A

λB

Therefore, we have that 1
P (x∗,A)

=
∑

B(A λB for all |A| = 3. However, using the

Möbius inversion result we know that

∑
B(A

λB =
1

P (x∗, A)
=
∑
B⊆A

λB ⇒ λA = 0.
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Now, suppose that 1
P (x∗,A)

=
∑

B(A λB holds for sets A ∈ D with |A| = m− 1 and

3 ≤ m − 1 < M . For A ∈ D such that |A| = m and ∀c ∈ A \ {a, b} such that

a � b � c, we have

P (a,A)

P (x∗, A)
− P (a,A \ {b})
P (x∗, A \ {b})

=
P (a, {a, b})
P (x∗, {a, b})

− P (a, {a})
P (x∗, {a})

.

We can perform the same substitutions using Lemma 3.1 as in the three element

case so

P (x∗, A)−1 − P (x∗, A \ {a})−1 − P (x∗, A \ {b})−1 + P (x∗, A \ {a, b})−1 = λ{a,b}.

Since A \ {a} and A \ {b} are m− 1 element sets, we can use our induction step

and then rearrange so

P (x∗, A)−1 = λ{a,b} +
∑

B⊆A\{a}:|B|≤2

λB +
∑

B⊆A\{b}:|B|≤2

λB −
∑

B⊆A\{a,b}:|B|≤2

λB

= λ{a,b} +
∑

B⊆A\{a}:|B|≤2

λB +
∑

B⊆A\{b}:|B|=2 and a∈B

λB + λ{a}

=
∑

B⊆A:|B|≤2

λB.

We restrict looking at weights λB with |B| ≤ 2 since the inductive step makes

other λ terms zero. Performing subtraction of the rightmost terms leads to the

second equality. The third equality comes by collecting all terms. Thus, we have

that 1
P (x∗,A)

=
∑

B⊆A:|B|≤2 λB =
∑

B(A λB since λB = 0 for all B ( A with |B| ≥ 3

by induction. Using the Möbius inversion formula,
∑

B(A λB =
∑

B⊆A λB so that

λA = 0. Therefore, we have shown by induction that λA = 0 for all A ∈ D with

|A| ≥ 3. The representation now holds immediately from the proof of Theorem 3.1.
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and letting α = λ̃.

1.8 Appendix D: Comparison to PALM

The regular perception-adjusted Luce model (rPALM) of Echenique, Saito,

and Tserenjigmid (2014) is described by a pair (%P , u) where %P is a weak order

on X and u : 2X → R is a function such that

P%P ,u(a,A) = µ(a,A)
∏

α∈A/%P :α�P a

(1−
∑

c∈A:c∈α

µ(c, A))

where

µ(a,A) =
u(a)∑

b∈A u(b) + u(A)

and

u(c) ≥ u({a, b})− u({a, b, c})

for all a, b, c ∈ X with strict inequality with if b �P c.

The notation A/ %P is for the set of equivalence classes according to %P

that partition A, so the product is over all classes of alternatives that are ordered

ahead of a. In rPALM, %P is interpreted as a perception priority relation, and

the authors attribute all violations of IIA to perception priority. More specifically,

when a, b ∈ X do not violate IIA, then we have a ∼P b.

One of the distinguising features of an RCCSR relative to an rPALM is

that the choice frequency of the default alternative must obey monotonicity with

respect to set inclusion under an RCCSR: B ⊂ A⇒ P (x∗, B) > P (x∗, A). In the

context of availability, this restriction is logical in that larger menus are more likely

to have an alternative available. An rPALM places no such consistency restrictions
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on choice frequency of the default alternative. This is one potential way in which

the two models can be distinguished from choice data.

Another feature of rPALM is the hazard rate the authors define as

q(a,A) =
P%P ,u(a,A)

1− P%P ,u(A
a, A)

where Aa = {b ∈ A : b �P a}. The authors impose that the hazard rate obeys both

IIA ( q(a,{a,b})
q(b,{a,b}) = q(a,A)

q(b,A)
for all a, b ∈ X and A ⊆ X such that a, b ∈ A) and regularity

(q(a, {a, b}) ≥ q(a, {a, b, c}) for all a, b, c ∈ X and with strict inequality only when

b �P c). We will use this to show that an RCCSR is not a special case of rPALM.

It is easy to see that an RCCSR can violate hazard rate IIA (in Example 1 it is

violated for a, b). Now consider the choice frequencies in Example 1 and note that

we have P (a, {a, b, c}) > P (a, {a, b}) and P (b, {a, b, c}) > P (b, {a, b}). An rPALM

is unable to generate these choice frequencies. In what follows, let A = {a, b, c}.

Case 1: a %P b, a %P c, b �P c. By regularity we have

P%P ,u(a,A) = q(a,A) < q(a, {a, b}) = P%P ,u(a, {a, b}).

Case 2: a �P b ∼P c. By regularity we have

P%P ,u(a,A) = q(a,A) = q(a, {a, b}) = P%P ,u(a, {a, b}).

Case 3: b %P a, b %P c, a �P c. By regularity we have

P%P ,u(b, A) = q(b, A) < q(b, {a, b}) = P%P ,u(b, {a, b}).
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Case 4: b �P a ∼P c. By regularity we have

P%P ,u(b, A) = q(b, A) = q(b, {a, b}) = P%P ,u(b, {a, b}).

Case 5: c �P a %P b. By regularity we have

P%P ,u(a,A) = q(a,A)(1− P%P ,u(c, A)) < q(a,A) ≤ q(a, {a, b}) = P%P ,u(a, {a, b}).

Case 6: c �P b %P a. By regularity we have

P%P ,u(b, A) = q(b, A)(1− P%P ,u(c, A)) < q(b, A) ≤ q(b, {a, b}) = P%P ,u(b, {a, b}).

Case 7: a ∼P b ∼P c. rPALM cannot violate IIA in this case, but

P (a,A)

P (b, A)
=

7

11
6= 2

3
=
P (a, {a, b})
P (b, {a, b})

in Example 1.



Chapter 2

A Spatial Analogue of May’s The-
orem

Abstract: In a spatial model with Euclidean preferences, we establish that

the geometric median satisfies Maskin monotonicity, anonymity, and neutrality.

For three agents, it is the unique such rule.

38
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2.1 Introduction

An early social-choice theoretic foundation for majority rule was provided

by May (1952). In an environment with a group of agents who choose one of two

alternatives based on strict preferences, he shows that majority rule is the unique

rule satisfying three natural axioms. The first of these axioms, anonymity, requires

that the names of the agents do not matter. The second, neutrality, requires that

the names of the alternatives do not matter. The third, positive responsiveness,

means that in any given profile, if the collection of agents who prefer the chosen

alternative increases with respect to set inclusion, then that alternative should

remain chosen.

We work in an environment of Euclidean preferences; that is, policy space is

given by Euclidean space, and each agent has a “favorite” alternative. The further

a policy is from this favored alternative (the ideal or bliss point), the worse it is

for the agent. Our aim is to provide a notion of majority rule in such a context

analogous to May’s. That is, we investigate this environment axiomatically.

In this paper, we show that a concept called the geometric median satisfies

the natural counterparts of anonymity, neutrality, and positive responsiveness in a

spatial framework. We also establish that, for three agents, it is the unique such

rule.1

Generalizing anonymity to spatial environments is straightforward. Describ-

ing the content of the remaining two axioms (neutrality and positive responsiveness)

takes some work. With regard to neutrality, we cannot “rename” alternatives

arbitrarily. If we were to do so, the resulting preference profile may not be Eu-

1Other works using the geometric median in economics or political science research include Cer-
vone, Dai, Gnoutcheff, Lanterman, Mackenzie, Morse, Srivastava, and Zwicker (2012), Baranchuk
and Dybvig (2009), and Chung and Duggan (2014). In particular, the latter work describes an
interesting generalization of the concept to general convex preferences.
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clidean. To this end, we interpret neutrality as an equivariance of the social rule to

isometries: it does not matter which coordinate system we use to describe ideal

points. This axiom formalizes the idea that the names of alternatives should not

matter, and is the counterpart of the classical neutrality axiom in our setting.

Positive responsiveness also has a natural generalization to this environment.

Maskin Monotonicity (Maskin (1999)) states that, if the chosen alternative moves

up in the ranking of all agents, it remains chosen. This is entirely analogous to

May’s criterion that if the chosen alternative moves up in everybody’s ranking, it

remains chosen. Thus, Maskin Monotonicity seems an appropriate generalization

of May’s positive responsiveness condition to spatial environments.

The geometric median (or medians in the case of an even number of agents)

is any point which minimizes the aggregate Euclidean distance to the agents’

ideal points. We show that, in general, the geometric median satisfies these three

properties. Moreover, in the case of three agents, it is the unique such rule. More

generally, we do not know whether the geometric median is the unique rule satisfying

the properties, but it seems plausible that with a high enough dimension of the

underlying Euclidean space, it will be.

2.1.1 Related literature

Early attempts to provide a notion of majority rule in spatial environments

(such as Plott (1967)) were guided by generalizing the classic results of Hotelling

(1929) and Black (1948) to spatial environments. That is, they took the notion of

majority rule core as given and tried to compute the corresponding equilibrium

concept. In fact, this equilibrium, termed the median in all directions, very seldom

exists.

A related paper is Duggan (2015), who also provides a spatial generalization
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of May’s Theorem. His work can be distinguished from ours on several grounds:

first, he works with more general single-peaked preferences; but he does so only in

one-dimensional environments. Second, instead of working with a social choice rule,

he works with a rule which aggregates preferences into a single social preference.

Third, instead of a positive responsiveness condition, he utilizes different transitivity

conditions.

In an earlier paper (Brady and Chambers, 2015) we show that the geometric

median is the smallest rule (with respect to set inclusion) satisfying a host of

compelling properties appropriate for a variable population model. Although

neutrality and anonymity play no role in the variable population framework, Maskin

monotonicity is a central property as in the present paper.

We note that there is a large literature on the relationship between Maskin

monotonicity and strategy-proof implementation.2 However, strategy-proofness is in

general incompatible with the notion that the outcome of a rule does not depend on

choice of coordinates together with any reasonable anonymity properties. Nonethe-

less, Maskin monotonicity is known to be necessary for Nash implementability, and

we briefly discuss the Nash implementability of the geometric median.

The paper is organized as follows. Section 2 presents the model. Section 3

provides the results. Section 4 concludes.

2.2 Model

Let X = Rd be the policy space. For any x, y ∈ X let ‖x − y‖ denote

the Euclidean distance. Let N = {1, . . . , n} be a finite set of agents. Each

agent i ∈ N is equipped with a preference relation %i (with associated strict

2See, for example, Muller and Satterthwaite (1977); Dasgupta, Hammond, and Maskin (1979);
Barbera and Peleg (1990); Berga and Moreno (2009).



42

preference �i). Preferences are assumed to be Euclidean so that for each i ∈ N ,

%i can be represented by an “ideal point”, zi ∈ X, with the property that for

any x, y ∈ X, x %i y if and only if ‖x − zi‖ ≤ ‖y − zi‖. We define an isometry

as any distance preserving mapping f : X → X so that for all x, y ∈ X we have

‖x− y‖ = ‖f(x)− f(y)‖.3

An aggregation or social choice rule is a mapping ϕ : XN → X. Since there

is a one-to-one relationship between preference profiles and a set of points in X, we

will use the notation Z ∈ XN to indicate a preference profile of the agents that is

represented by the points Z = (zi)i∈N where zi ∈ X for each i.

For i ∈ N and zi, x ∈ X, let UCi(zi, x) = {y ∈ X | ‖y − zi‖ ≤ ‖x − zi‖}

be the upper contour set for the preference relation represented by the point zi

at the point x. This is simply the set of all outcomes agent i weakly prefers

to x. We will say that the preference relation represented by a point z′i is a

monotonic transformation of the preference relation represented by zi at a point x if

UCi(z
′
i, x) ⊆ UCi(zi, x). Let MT (zi, x) be the set of all monotonic transformations

of the preference relation represented by the point zi at the point x and MT (Z, x)

be the set of all monotonic transformations of a preference profile represented by

the set of points Z at a point x.

For x, y ∈ X we will denote the line segment with x and y as endpoints by

xy = {t ∈ X | ‖x− t‖+ ‖t− y‖ = ‖x− y‖}.

We say that an outcome x ∈ X is weakly Pareto efficient (WPE) if there

does not exist y ∈ X such that y �i x for all i ∈ N . The outcome is Pareto efficient

(PE) if there does not exist y ∈ X such that y %i x for all i ∈ N and y �j x for at

least one j ∈ N . We will say that a social choice rule ϕ satisfies Pareto efficiency

3Since X = Rd, isometries are bijections that correspond to reflections, rotations, and transla-
tions.



43

if for any Z ∈ XN , ϕ(Z) is PE.

For an agent i with ideal point zi ∈ X we will often use the utility repre-

sentation ui(y) = −(y − zi) · (y − zi) for y ∈ X to represent i’s preference relation.

For a profile of preferences Z ∈ XN and utility representations (ui(y))i∈N , consider

the sets

comp(Z) = {a = (a1, . . . , an) | ∃y ∈ X such that ai ≤ ui(y) for all i ∈ N}

and

con(Z) =

{
x ∈ X | x =

n∑
i=1

λizi such that λi ≥ 0 for all i and
n∑
i=1

λi = 1

}
.

The first set is said to be the comprehensive hull of the utility possibility set, where

by comprehensive we mean that for any a ∈ comp(Z) and b ≤ a coordinate-wise,

then b ∈ comp(Z). The latter set is simply the convex hull of the set of ideal points.

For a set S ⊂ Rd, we let bd(S) denote its boundary and int(S) denote its interior.

For a set of points (a1, . . . , an) with each ai ∈ X, we define a geometric

median as a solution to the following minimization problem:

min
x∈X

n∑
i=1

‖x− ai‖. (2.1)

That is, a geometric median minimizes the sum of distances between itself and all

of the points.

The geometric median for a finite set of points always exists; further, it is

unique if n is odd or if the points (a1, . . . , an) are not collinear (Haldane (1948)). In

the case of collinear points, there could be multiple geometric medians, in particular

when the number of distinct points is even. In this case, the geometric median is a
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set-valued concept; any selection from this set would result in a single-valued rule.

For simplicity, we assume throughout that n is odd (to ensure uniqueness).

In the conclusion, we discuss how our results should be modified in the case of an

even number of agents. For a preference profile Z ∈ XN , we will let x∗Z denote the

geometric median of the ideal points.

Before presenting the axioms, we first state some facts about the geometric

median for the case of n = 3 and d = 2 (see Deimling (2011) p. 325-326 and

Coxeter (1989) p. 21-22).4 Let A = (a1, a2, a3) be the points. First, suppose that

the three points are not collinear and that bd(con(A)) forms a triangle (denoted

as 4a1a2a3). Suppose all interior angles of the triangle are less than 120◦.5 In this

case the geometric median is the unique point in int(con(A)) such that the angle

between any two line segments connecting the geometric median to the vertices of

the triangle ai and aj with i 6= j (denoted ∠aix∗Aaj
) is 120◦. See Figure 2.1. For the

special case in which 4a1a2a3 is equilateral, the geometric median will coincide with

the intersection of the three medians of the triangle.6 If the triangle is isosceles,

then the geometric median lies on the axis of symmetry. If 4a1a2a3 has an angle

that is at least 120◦, then the geometric median corresponds to the obtuse-angled

vertex. If the points are collinear then the geometric median is the point lying

between the other two or where multiple points are located if the points are not

distinct.

We now briefly describe the axioms we will impose on a social choice rule.

In the appendix, we show the axioms are independent.

Axiom 2.2.1. A social choice rule ϕ satisfies anonymity if for every bijection

4The geometric median has a rich history in this special case and is sometimes referred to as
the Fermat-Torricelli point of a triangle.

5An interior angle is simply the angle formed by two adjacent sides of the triangle
6A median of a triangle is any of the line segments connecting a vertex to the midpoint of the

opposite side of the triangle
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120○ 120○

120○

Figure 2.1. The geometric median

σ : N → N and for every Z ∈ XN we have ϕ(zσ(1), . . . , zσ(n)) = ϕ(Z).

In words, anonymity states that the outcome from our social choice rule is

invariant to changing the names of the agents.

Axiom 2.2.2. A social choice rule ϕ satisfies neutrality if for any isometry f and

any Z ∈ XN we have ϕ(f(z1), . . . , f(zn)) = f(ϕ(z1, . . . , zn)).

Neutrality states that the social choice resulting from any reflection, rotation,

or translation of agents’ ideal points is the same as applying the reflection, rotation,

or translation to the social choice from the untransformed ideal points.

The final axiom says that the social choice is preserved through monotonic

transformations.

Axiom 2.2.3. A social choice rule ϕ satisfies Maskin monotonicity or positive

responsiveness if for all Z ∈ XN and for any Z ′ ∈MT (Z, ϕ(Z)) we have ϕ(Z ′) =

ϕ(Z).
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2.3 Results

In this section, we propose a class of social choice rules that satisfy the

axioms discussed in the previous section. We also show that Pareto Efficiency

of a social choice rule is a consequence of imposing two of our axioms. Further,

Nash-implementation is briefly discussed as we show that our proposed class meets

conditions sufficient for such implementation. Finally, we show that this class of

social choice rules is the only class satisfying our axioms for the case of n = 3.

Let us assume that n is odd. Consider the social choice rule ϕ such that

for any Z ∈ XN , ϕ(Z) = x∗Z . That is, given any preference profile, the social

choice is always the point in X that minimizes the total distance between itself

and the agents’ ideal points. This choice has a nice appeal in many settings. For

example, the choice could be over the location of a supply distribution hub given

the location of n factories. Then this rule selects the location that minimizes the

total transportation cost between the hub and factories. Or, in a political science

context, the choice for a socially optimal candidate would be the location that is

minimally far from the policy relevant locations of the set of n voters.

Our first result shows that this rule satisfies our axioms.

Proposition 2.3.1. Let ϕ be a social choice rule such that for any Z ∈ XN ,

ϕ(Z) = x∗Z. Then ϕ satisfies anonymity, neutrality, and Maskin monotonicity.

Before presenting the proof, we first provide two lemmas, whose proofs

can be found in Brady and Chambers (2015). The first characterizes monotonic

transformations and the second establishes that the geometric median satisfies

Maskin monotonicity. Figure 2.2 gives a visual depiction of the results for d = 2.

Lemma 2.3.1. Suppose zi, z
′
i ∈ X represent two preference relations. For x ∈ X,

z′i ∈MT (zi, x) if and only if z′i ∈ zix.
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xzi
z′i

UCi(zi, x)

UCi(z
′
i, x)

(a) z′i ∈MT (zi, x) ⇐⇒ z′i ∈ zix

z1

z′1
z2

z′2

z3

z′3

x∗Z′=x
∗
Z

(b) Z ′ ∈MT (Z, x∗Z) =⇒ x∗Z′ = x∗Z

Figure 2.2. Lemmas 2.3.1 and 2.3.2

The following result was originally established by Gini and Galvani (1929).

Lemma 2.3.2. For Z ∈ XN , if Z ′ ∈MT (Z, x∗Z), then x∗Z′ = x∗Z.

We now prove Proposition 2.3.1.

Proof. It is trivial that ϕ satisfies anonymity.

Let f be any isometry. By uniqueness of the geometric median it follows

that
n∑
i=1

‖x∗Z − zi‖ <
n∑
i=1

‖x− zi‖

for any x ∈ X\{x∗Z}. Since f is an isometry we have

n∑
i=1

‖x∗Z − zi‖ =
n∑
i=1

‖f(x∗Z)− f(zi)‖ <
n∑
i=1

‖f(x)− f(zi)‖

for any x ∈ X\{x∗Z}. Since f is bijective it follows that f(x∗Z) is the geometric

median for the set of points (f(z1), . . . , f(zn)) and thus f(ϕ(Z)) = f(x∗Z) =

ϕ(f(z1), . . . , f(zn)).

Finally, ϕ satisfying Maskin monotonicity immediately follows from Lemma
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2.3.2.

We did not impose any efficiency assumptions in our axiomatization. As we

show next, PE of a social choice rule immediately follows from satisfying neutrality

and Maskin monotonicity. Thus, the social choice rule such that ϕ(Z) = x∗Z satisfies

PE by Proposition 2.3.1.

Proposition 2.3.2. Let Z ∈ XN be a preference profile and x ∈ X an outcome.

Then, x is PE if and only if x ∈ con(Z).

Lemma 2.3.3. For Z ∈ XN , the set comp(Z) is convex.

Proof. Take any a, b ∈ comp(Z) so that there exists ya, yb ∈ X such that ui(ya) ≥ ai

and ui(yb) ≥ bi for all i ∈ N . It follows by convexity of Euclidean distance that for

any t ∈ [0, 1] and for all i ∈ N we have

ui(tya + (1− t)yb) ≥ tui(ya) + (1− t)ui(yb) ≥ tai + (1− t)bi.

Since X is convex and ya, yb ∈ X, it follows that tya+(1−t)yb ∈ X for any t ∈ [0, 1].

Thus, ta+ (1− t)b ∈ comp(Z) by definition, and so comp(Z) is a convex set.

Lemma 2.3.4. For Z ∈ XN and an outcome x ∈ X, if x is PE then u(x) =

(u1(x), . . . , un(x)) ∈ bd(comp(Z)).

Proof. Fix Z ∈ XN and suppose x ∈ X is PE but u(x) /∈ bd(comp(Z)). Since u(x)

is not on the boundary, there exists a = (a1, . . . , an) ∈ comp(Z) such that ai > ui(x)

for all i. By definition of comp(Z) there exists z ∈ X such that ui(z) ≥ ai > ui(x)

for all i, contradicting x is PE.

We now prove Proposition 2.3.2.
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Proof. First, note that x =
∑n

i=1 λixi for λi ≥ 0,
∑n

i=1 λi = 1, and xi ∈ X if and

only if x solves

max
y∈X
−

n∑
i=1

λi(y − xi) · (y − xi). (2.2)

Suppose x ∈ X is PE. By Lemma 2.3.4, u(x) = (u1(x), . . . , un(x)) ∈ bd(comp(Z))

and by Lemma 2.3.3 comp(Z) is convex. Thus, it follows by the supporting

hyperplane theorem (see Theorem 6.8 in Güler (2010)) that there exists α =

(α1, . . . , αn) ∈ Rn with α 6= 0 such that α · u(x) ≥ α · a for all a ∈ comp(Z).

Further, αi ≥ 0 for all i. If not, e.g. if αi < 0, by comprehensivity we could

find ã ∈ comp(Z) with ãi < 0 small enough such that α · u(x) < α · ã. Define

λi = αi∑n
j=1 αj

so that λi ≥ 0,
∑n

i=1 λi = 1, and λ · u(x) ≥ λ · a for all a ∈ comp(Z).

It follows that x solves

max
y∈X

n∑
i=1

λiui(y), (2.3)

which is of the same form as (2.2). Thus, x =
∑n

i=1 λizi and we can conclude that

x ∈ con(Z).

Now suppose x ∈ con(Z) and so it follows that x solves (2.3). However,

suppose that x is not PE so that there exists x′ ∈ X such that x′ %i x for all i with

x′ �j x for at least one j. Since x solves (2.3) and x′ Pareto dominates x, then it

must be the case that λj = 0 for all j such that x′ �j x. Let x′′ = tx + (1− t)x′

for some t ∈ (0, 1) so that x′′ ∈ X by convexity of the outcome space. By strict

convexity of Euclidean preferences, x′′ �i x′ %i x for all i, contradicting x as a

solution to (2.3).

Proposition 2.3.3. Let ϕ be a social choice rule that satisfies Maskin monotonicity

and neutrality. Then ϕ satisfies Pareto efficiency.

Proof. Suppose ϕ is a social choice rule that satisfies Maskin monotonicity and
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neutrality but not Pareto efficiency. Then, by Proposition 2.3.2, there exists

Z = (z1, . . . , zn) ∈ XN such that ϕ(Z) /∈ con(Z). By the separating hyperplane

theorem (see Theorem 6.9 in Güler (2010)), there exists a hyperplane H(α,c) = {x ∈

X | α · x = c} for some 0 6= α ∈ X and c ∈ R that separates con(Z) and {ϕ(Z)}.

For each i ∈ N let z′i ∈ X satisfy z′i ∈ ziϕ(Z) and z′i ∈ H(α,c), so z′i is the intercept

with the hyperplane of the line segment connecting agent i’s ideal point to the

social choice. It follows by Lemma 2.3.1 that Z ′ = (z′1, . . . , z
′
n) ∈ MT (Z, ϕ(Z))

and thus ϕ(Z ′) = ϕ(Z) by Maskin monotonicity. Let f : X → X be the reflection

about the hyperplane H(α,c) and define z′′i = f(z′i) for each i ∈ N . Since z′i ∈ H(α,c)

it follows that z′′i = f(z′i) = z′i and thus ϕ(f(z′1), . . . , f(z′n)) = ϕ(Z ′). However,

ϕ(Z ′) 6= f(ϕ(Z ′)), contradicting neutrality

Maskin provides sufficient conditions under which a social choice function is

Nash implementable by some game form (Maskin (1999)). The two conditions cited

are monotonicity (which we have imposed as one of our axioms) and no veto power.

In words, a social choice function satisfies no veto power if for any preference profile

in which an outcome is most preferred by n− 1 of the agents, then this outcome

is the social choice. To see that the function ϕ(Z) = x∗Z for Z ∈ XN satisfies no

veto power note that the only instance in which the condition is not vacuously

satisfied is when at least n− 1 of the agents have the same ideal point, in which

case it is obvious that the geometric median also coincides with this point. Thus,

the geometric median is Nash implementable as long as there are three agents.

2.3.1 The three agent case

We now show for n = 3 that the only social rule satisfying our axioms is

the rule that selects the geometric median from the set of ideal points. In the

conclusion we discuss the difficulties of extending the characterization to a fixed
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n > 3.

We make note of a few preliminary results that will be used in the proof.

Note that by Proposition 2.3.2 and Proposition 2.3.3 it must be the case that

ϕ(Z) ∈ con(Z). To this end, it is without loss to assume that d = 2, as the

convex hull of any three points has at most two dimensions, and all monotonic

transformations of those three points with respect to an element in the convex hull

also lie in the convex hull. In what follows BP,ε will denote an ε-ball about a point

P ∈ X for some ε > 0.

Lemma 2.3.5. Let A′ = (a′1, a
′
2, a
′
3) be such that 4a′1a

′
2a
′
3

has all interior angles

less than or equal to 120◦. Then A′ ∈MT (A, x∗A) for some A such that 4a1a2a3 is

equilateral.

Proof. Let 4c1c2c3 be some arbitrary equilateral triangle and x∗C the associated

geometric median. Since x∗C ∈ int(con(C)), it follows that we can find an ε > 0

such that the associated Bx∗C ,ε
= {c ∈ int(con(C)) | ‖c− x∗C‖ < ε} ⊂ int(con(C)).

Consider 4c′1c
′
2c
′
3

∼= 4a′1a
′
2a
′
3

such that con(C ′) ⊂ Bx∗C ,ε
, c′2 ∈ c2x∗C , c′3 = x∗C ∈ c3x∗C ,

and c′1 ∈ con(4c1x∗Cc2
).7 Now consider a movement of 4c′1c

′
2c
′
3

such that c′2 = x∗C ∈

c2x∗C , c′3 ∈ c3x∗C , and c′1 ∈ con(4c1x∗Cc3
). Note that this movement is a continuous

“shift” of c′2 along c2x∗C and c′3 along c3x∗C that sends c′1 from con(4c1x∗Cc2
) to

con(4c1x∗Cc3
). It thus follows that at some point along this movement we have

c′i ∈ cix∗C for each i and thus C ′ ∈ MT (C, x∗C) by Lemma 2.3.1. See Figure 2.3

for an illustration of this procedure. Since 4c′1c
′
2c
′
3

∼= 4a′1a
′
2a
′
3
, the result follows

by simply scaling both 4c′1c
′
2c
′
3

and 4c1c2c3 appropriately and then applying any

needed isometries so that 4c′1c
′
2c
′
3

= 4a′1a
′
2a
′
3

and then defining A to be the scaled

and transformed C.

7Note that c′1 ∈ con(4c1x∗Cc2) will follow since it is assumed 4c′1c
′
2c
′
3

has all angles less than or
equal to 120◦ while ∠c1x∗Cc2 = 120◦
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Figure 2.3. Finding C ′ ∈MT (C, x∗C)

Lemma 2.3.6. Let A′ = (a′1, a
′
2, a
′
3) be such that 4a′1a

′
2a
′
3

is scalene8 and has an

angle greater than 120◦. Then A′ ∈ MT (A, x∗A) for some A such that 4a1a2a3 is

isosceles and the measure of the obtuse angles of the two triangles are the same.

Proof. Without loss of generality let a′1 be the obtuse-angled vertex of 4a′1a
′
2a
′
3
. Let

4c1c2c3 be an arbitrary isosceles triangle such that ∠c2c1c3 = ∠a′2a
′
1a
′
3
. Note that this

implies x∗C = c1. Since 4a′1a
′
2a
′
3

is scalene, it follows that either ∠a′1a
′
2a
′
3
< ∠a′1a

′
3a
′
2

or vice versa. Without loss of generality, assume the former holds. Since 4c1c2c3

is isosceles and ∠c2c1c3 = ∠a′2a
′
1a
′
3

it then follows that ∠a′1a
′
2a
′
3
< ∠c1c2c3 = ∠c1c3c2 <

∠a′1a
′
3a
′
2
. Consider c′3 ∈ c3x∗C = c3c1 such that ∠a′1a

′
2a
′
3

= ∠c1c2c′3
and ∠c1c′3c2

=

∠a′1a
′
3a
′
2
.9 Setting c′2 = c2 and c′1 = c1 gives us C ′ ∈MT (C, x∗C) by Lemma 2.3.1 and

4c′1c
′
2c
′
3

∼= 4a′1a
′
2a
′
3
. The result follows by simply scaling both 4c′1c

′
2c
′
3

and 4c1c2c3

appropriately and then applying any needed isometries so that 4c′1c
′
2c
′
3

= 4a′1a
′
2a
′
3

and then defining A to be the scaled and transformed C.

Now suppose A consists of distinct collinear points, and without loss of

generality, assume a3 ∈ a1a2. Further, assume P 6= ai for any i and that P ∈ a1a2.

We now show how to construct A′ ∈ MT (A,P ) such that a′3 is the midpoint of

a′1a
′
2, something we refer to as the collinear midpoint construction in the proof.

8A scalene triangle has all three interior angles of different measure.
9Note that as c3 → c1 we have ∠c1c2c3 → 0 so finding such a c′3 is always possible by the

Intermediate Value Theorem
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First, assume a3 ∈ Pa2. If ‖P − a3‖ < 1
2
‖P − a2‖ then choose a′3 = a3 and

a′2 ∈ Pa2 such that ‖P − a′3‖ = 1
2
‖P − a′2‖. If ‖P − a3‖ ≥ 1

2
‖P − a2‖ then choose

a′2 = a2 and a′3 ∈ Pa3 such that ‖P − a′3‖ = 1
2
‖P − a′2‖. Choosing a′1 = P gives us

A′ ∈ MT (A,P ) such that a′3 is the midpoint of a′1a
′
2. Now, if a3 ∈ Pa1, we can

repeat the same procedure but reverse the roles of a1 and a2 so that a′1 and a′3

satisfy ‖P − a′3‖ = 1
2
‖P − a′1‖ and a′2 = P .

We now present our main result.

Theorem 2.3.1. Suppose n = 3 and let ϕ be a social choice rule. Then ϕ satisfies

anonymity, neutrality, and Maskin monotonicity if and only if for any Z ∈ XN ,

ϕ(Z) = x∗Z.

Proof. Proposition 2.3.1 showed that the geometric median satisfies our three

axioms. We prove the converse by cases.

Case 1 Let Z ∈ XN be a preference profile such that 4z1z2z3 is equilateral.

Since the geometric median lies at the point of intersection of the three medians

for the triangle, if we can show that ϕ(Z) must lie on one of these medians chosen

arbitrarily, then the claim will be true for Case 1. Let y be the midpoint between

z2 and z3 and z1y the corresponding median. Suppose however that ϕ(Z) /∈ z1y.

Let f : X → X be a reflection in z1y and define z′i = f(zi) for each i ∈ N . It

follows that f simply switches the vertices z2 and z3 in 4z1z2z3 so that z′2 = z3 and

z′3 = z2. Note that f is equivalent to a bijection that switches agent 2’s ideal point

with agent 3’s and, thus, by anonymity it must be the case that ϕ(Z ′) = ϕ(Z).

However, by neutrality ϕ(f(z1), f(z2), f(z3)) = ϕ(Z ′) = f(ϕ(Z)), a contradiction.

Thus, ϕ(Z) ∈ z1y and we must have ϕ(Z) = x∗Z when 4z1z2z3 is equilateral.

Case 2 Suppose now 4z1z2z3 is has all interior angles less than or equal

to 120◦. By Lemma 2.3.5 there exists Ẑ such that Z ∈MT (Ẑ, x∗
Ẑ

) and 4ẑ1ẑ2ẑ3 is
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equilateral. By Case 1, it follows that ϕ(Ẑ) = x∗
Ẑ

. By Lemma 2.3.2 it follows that

x∗Z = x∗
Ẑ

. The result then follows by Maskin montonicity.

Case 3 Consider now 4z1z2z3 that is isosceles with an interior angle greater

than 120◦. Suppose, without loss of generality, that z1 is the obtuse-angled vertex

so that x∗Z = z1. By appealing to arguments similar to Case 1, it is easy to see that

ϕ(Z) must lie on the axis of symmetry. Suppose ϕ(Z) ∈ int(con(Z)) so it follows

that ∠z2ϕ(Z)z3 > 120◦ and ∠z2ϕ(Z)z1 = ∠z3ϕ(Z)z1 . Note that we can find z′2 ∈ z2ϕ(Z)

and z′3 ∈ z3ϕ(Z) such that ∠z′2z1z
′
3
≤ 120◦ and 4z1z′2z

′
3

is isosceles with an axis of

symmetry through z1. Choosing z′1 = z1 gives us Z ′ ∈ MT (Z, ϕ(Z)) and thus

ϕ(Z ′) = ϕ(Z) by Maskin monotonicity. By Case 2, it follows that ϕ(Z ′) = x∗Z′

and thus ∠z′iϕ(Z′)z′j
= 120◦ for all i 6= j. Thus, it follows by Lemma 2.3.1 that

∠ziϕ(Z)zj = 120◦ for all i 6= j. But no such ϕ(Z) ∈ int(con(Z)) that lies on the axis

of symmetry exists since ∠z2ϕ(Z)z3 > 120◦ by assumption. It then follows that the

only choices for ϕ(Z) are z1 and the midpoint of z2z3. Suppose then that ϕ(Z) is the

midpoint of z2z3. Then, it is easy to see that we can find Z ′ ∈MT (Z, ϕ(Z)) such

that 4z′1z
′
2z
′
3

is equilateral10 and ϕ(Z ′) is the midpoint of z′2z
′
3, which contradicts

Case 1. Thus we must have ϕ(Z) = x∗Z = z1.

Case 4 Suppose now 4z1z2z3 is scalene with an interior angle greater than

120◦. Without loss of generality, assume z1 is the obtuse-angled vertex. By

Lemma 2.3.6 there exists Ẑ such that Z ∈MT (Ẑ, x∗
Ẑ

) and 4ẑ1ẑ2ẑ3 is isosceles with

∠ẑ2ẑ1ẑ3 = ∠z2z1z3 . By Case 3, it follows that ϕ(Ẑ) = x∗
Ẑ

= ẑ1. By Lemma 2.3.2 it

follows that x∗Z = x∗
Ẑ

. The result then follows by Maskin montonicity.

Case 5 The last case to consider is when Z is a set of collinear points. If

z1 = z2 = z3 then trivially we must have ϕ(Z) = z1 = x∗Z since that is the only choice

10This is achieved by moving z2 and z3 in tandem towards ϕ(Z) until each side of the triangle
is equal in length
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in con(Z). Suppose the points in Z are distinct and that z3 ∈ z1z2 so that x∗Z = z3.

If ϕ(Z) 6= z3 then we can find Z ′ ∈MT (Z, ϕ(Z)) such that z′3 is the midpoint of

z′1z
′
2 and, without loss of generality, z′1 = ϕ(Z ′) = ϕ(Z) by Maskin monotonicity11.

Let f : X → X be a reflection in the line perpendicular to z′1z
′
2 running through

z′3 and let z′′i = f(z′i). By neutrality we must have ϕ(Z ′′) = f(ϕ(Z)) = z′′1 but

by anonymity, we must have ϕ(Z ′′) = z′′2 a contradiction. Thus, we must have

ϕ(Z) = x∗Z when the points are collinear and distinct. Note that if the points

were not distinct e.g. z1 6= z2 = z3 so that x∗Z = z3 still, but ϕ(Z) 6= z3, then the

previous argument still goes through by choosing z′2 = z2, z
′
3 ∈ ϕ(Z)z3 such that

‖ϕ(Z)− z′3‖ = 1
2
‖ϕ(Z)− z′2‖ and z′1 = ϕ(Z). Thus, in all collinear cases we have

ϕ(Z) = x∗Z , which completes the proof.

2.4 Conclusion

This paper has considered a natural generalization of the classical notions

of May to spatial environments. The main contribution includes a characterization

of the geometric median for the case of n = 3. A difficulty in extending the result

is that there is no explicit solution to (2.1) for n > 4, although a characterization

to the dual problem does exist.12

For the general case with an even number of agents, we would need to weaken

the implicit hypothesis that our rule is single-valued. Importantly, the natural

generalization of Proposition 2.3.3 fails for multi-valued rules. Further, even if we

were to assume as a hypothesis that our rule is Pareto efficient, a characterization of

the geometric median would fail to materialize; it is easy to see that the rule which

selects the Pareto efficient correspondence satisfies natural counterparts of our

11This follows by the midpoint collinear construction outlined previously
12See Brady and Chambers (2015) for a discussion and result using the dual solution.
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axioms. However, it is quite easy to see that the rule selecting the set of geometric

medians satisfies the natural counterparts of our three axioms in the multi-valued

case. Our conjecture in this general environment is that, for a sufficient number of

dimensions, the rule selecting the geometric median is the smallest rule satisfying

our three axioms, in the sense that any other nonempty-valued rule satisfying our

three axioms must contain the set of geometric medians for any profile of ideal

points.

Chapter 2 will appear in a forthcoming issue of Social Choice and Welfare

and was coauthored with Christopher P. Chambers. The copyright of this article is

held by Springer Publishing.
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2.5 Appendix: Independence of the axioms

We now show that the axioms are independent. First, consider the dictator-

ship social choice rule ϕd such that ϕd(Z) = z1 for all Z ∈ XN . It is clear that this

rule satisfies neutrality and Maskin monotonicity but violates anonymity.

Next, consider the social choice rule ϕc such that, for each Z in XN , ϕc(Z)

is the unique solution to

min
x∈X

n∑
i=1

(zi − x)2 . (2.4)

The solution to (2.4) is the mean (or centroid) of the ideal points. Clearly ϕc

satisfies anonymity. It is also easy to see that ϕc satisfies neutrality.

However, ϕc does not satisfy Maskin monotonicity. Consider the profile of n

agents Z = (e1,−e1, 0, . . . , 0) with ei being the ith standard basis vector in Rd. It

follows that ϕc(Z) = 0. Now Z ′ = (1
2
e1,−e1, 0, . . . , 0) ∈MT (Z, ϕc(Z)) by Lemma

2.3.1 but ϕc(Z
′) 6= 0 = ϕc(Z).

Finally consider the social choice rule ϕm such that ϕm(Z) solves

min
x∈X

n∑
i=1

|zi · ej − x · ej|

for each j ∈ {1, . . . , d}. That is, ϕm selects the coordinate-wise median of the ideal

points. It is obvious ϕm satisfies anonymity. It is also fairly easy to see that ϕm

satisfies Maskin monotonicity. To see this, simply apply the proof technique used

in Lemma 2.3.2 (see Brady and Chambers (2015)) for each coordinate. However, it

is a well known fact that the coordinate-wise median does not satisfy neutrality as

it is not equivariant with isometries.



Chapter 3

Testability, Identification, and Es-
timation in Distance-Monotonic
Noise Models with Application to
Online Voting Platforms

Abstract: I work in an environment in which agents vote for the best

alternative from a set of alternatives. The set of alternatives has a correct objective

ranking as in the classic work of Condorcet (1785). A researcher samples votes

from a large population of potential voters such as an online voting platform. I

model voting behavior using the class of distance-monotonic noise models, a large

class of voting models that contains the popular model of Mallows (1957). I present

a number of theoretical results concerning testable implications, identification, and

estimation based on observation of voting probabilities generated by these models.

A large emphasis is placed on operationalizing the theoretical results by providing

statistical methods based on sample data.
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3.1 Introduction

Online crowdsourcing systems have become a common approach to obtain-

ing contributions from a large group of people. For example, large-scale online

voting platforms provide an efficient way to develop a ranking of a set of alterna-

tives. Motivated by the prevalence of such platforms, I investigate the testability,

identification, and estimation of a large class of voting models relevant for the

crowdsourcing domain. My starting point is a finite set of alternatives X that

has a true, objective ranking according to some criteria. A researcher samples

from a large population of voters who are ignorant of the correct ranking. Each

respondent is presented with a choice set A ⊆ X and is asked to vote for the highest

ranked (i.e. “best”) alternative according to the specified criteria. Absent any

strategic incentives, each respondent’s vote can be viewed as a noisy estimate of

which alternative is truly best. As a working example, consider a set of reading

passages that have been assigned a difficulty level according to some accepted

standards, such as Flesch-Kincaid grade level score (Kincaid, Fishburne Jr, Rogers,

and Chissom, 1975). Each respondent is shown a subset of the passages and asked

to vote for the one with the highest reading difficulty as in Collins-Thompson and

Callan (2004) and Chen, Bennett, Collins-Thompson, and Horvitz (2013).

In some cases the researcher’s goal is to approximate the correct ranking

or the best alternative based on the sampled votes. For example, the EteRNA

project (http://www.eternagame.org/web/) solicits votes on RNA folding designs

to identify which designs are most stable. The designs receiving the most votes

are then synthesized in a lab to verify the stability of each. Ideally, the researcher

can approximate the correct ranking with a high degree of probabilistic certainty

using as few samples as possible. Thus, knowing how many votes to sample and
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how they should be used to approximate the correct ranking or best alternative are

important considerations. When the correct ranking is known to the researcher,

such as in the reading difficulty example mentioned previously, the goal usually

involves developing/testing an algorithm for machine learning purposes. Developing

and testing an algorithm requires modeling how votes are generated, in which case

model refutability and identification are of paramount importance.

3.1.1 Contribution

I model voting behavior as if votes are generated by a distance-monotonic

noise model. A noise model specifies a probability distribution over rankings of

the alternatives. These models generate a vote as the top ranked alternative in

the choice set according to a random draw from the distribution over rankings.

A distance-monotonic noise model requires that the likelihood of a ranking is

increasing in its “similarity” (as measured by a distance function) to the true

ranking. The distance functions I employ satisfy two assumptions. First, they are

right-invariant - the distance between two rankings is preserved by a relabeling of

the alternatives. Secondly, they are swap-increasing - the distance between any

two rankings that agree on the relative ranking of a pair of alternatives cannot

decrease by swapping the ranks of those alternatives in one of the rankings.

In the first half of Section 3.3, I investigate voting behavior in terms of the

population vote probabilities generated by a distance-monotonic noise model. The

purpose of this section is to provide simple theoretical conditions by which the class

of models can be refuted. The results can be interpreted as how difficult it would

be for an individual drawn at random to identify the top ranked alternative in and

across different choice sets. I show that behavior is quite plausible in this setting:

higher ranked alternatives (according to the true ranking) are more likely than



61

lower ranked alternatives to be identified as the best (Proposition 3.3.2), increasing

the size of the choice set makes the task more difficult (Proposition 3.3.1), and

replacing an alternative that is not ranked best in a choice set with a lower ranked

one makes it more likely the top ranked alternative is identified (Proposition 3.3.3).

I also prove a strong invariance property for the class of models that are monotonic

with respect to the Kendall tau distance, arguably the most ubiquitous distance

function on rankings. The result states that the population vote probabilities are

invariant across choice sets which have the same cardinality and are composed of

alternatives that have the same relative spacing in the true ranking (Proposition

3.3.4). For example, identifying the best alternative from those ranked third, fourth,

and eighth is identical in terms of difficulty as identifying the best from those

ranked fifth, sixth, and tenth.

In the second half of Section 3.3, I introduce two statistical tests that can

be used to refute the class of models when the true ranking is known. Both tests

are shown to show control size (Type I error probability) even in finite samples

(Theorem 3.3.1). This section is part of a recurring theme of the paper in which

I bridge the gap between purely theoretical results, which involve empirically

unobservable population vote probabilities, and data a researcher may actually be

able to elicit, which are inherently finite.

Section 3.4 discusses identification of the true ranking and distribution over

rankings. I show that observation of the population vote probabilities identifies the

true ranking (Theorem 3.4.1). However, in the class of Kendall tau monotonic noise

models, only set identification of the distribution over rankings is possible. That

is, for every noise model in this class, there is a set of observationally equivalent

models also in this class. I show how to construct such a model given observation

of the population vote probabilities (Theorem 3.4.2). A linear program is presented
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whose solutions constitute the identified set of noise models compatible with the

population vote probabilities. In a similar fashion to the latter half of Section 3.3,

I propose finite sample confidence sets for the true ranking and the distribution

over rankings as a means of operationalizing the theoretical results.

Estimation and choice experiment design are discussed in Section 3.5. I

introduce the class of pairwise consistent estimators for the true ranking. If the

data can form a valid ranking based on pairwise comparisons of vote counts, then

any estimator in this class must return this ranking.1 In a sense, pairwise consistent

estimators can be thought of as an extension to Condorcet consistent estimators

for the best alternative. I show that with adequate data any Condorcet consistent

estimator and any pairwise consistent estimator converge almost surely to the

best alternative and the true ranking respectively (Theorems 3.5.1 and 3.5.2).

Working with a particularly tractable class of models introduced by Mallows (1957),

I investigate choice experiment design in the latter half of the section. Specifically,

I find upper bounds on the number of samples needed to return the best alternative

or the true ranking with high probability under a commonly used vote sampling

scheme (Theorem 3.5.3).

3.1.2 Related work

The notion of votes being viewed as noisy estimates of an underlying ground

truth is due to Condorcet (1785). In Condorcet’s approach, each voter ranks every

pair of alternatives. The voter correctly ranks any given pair with probability

q > 1
2
. When the output of each voter’s pairwise comparisons is required to be a

consistent ranking, Condorcet’s model is equivalent to one proposed by Mallows

1A similar class of estimators are discussed in Caragiannis, Procaccia, and Shah (2013) called
pairwise-majority consistent voting rules. In their setting, votes are submitted as entire rankings
of the entire set X rather than a single alternative from a presented choice set.
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(1957). Mallows’ model specifies that the likelihood of any ranking is exponentially

decreasing in its distance from the true ranking. It is one of the first and arguably

the most ubiquitous of all distance-monotonic noise models, and has inspired

many generalizations (see e.g. Fligner and Verducci, 1986; Critchlow, Fligner, and

Verducci, 1991).

These types of models have received considerable recent attention in the

computer science and machine learning literatures since the assumption of a true

ranking of alternatives is satisfied in many crowdsourcing and human computation

platforms in which voting plays a crucial role.2 Contrary to the current context,

this literature usually assumes that voters submit an entire ranking of the set X.

I choose to focus on voters submitting a single vote from a choice set for several

reasons. First, it can be difficult to submit an entire ranking, particularly if the

cardinality of the set X is large or if discerning differences among the alternatives

is demanding. Thus, asking for a single vote for the best alternative shown greatly

reduces the burden on voters. Secondly, by working with voting probabilities from

different choice sets, the analysis is directly comparable to the stochastic choice

literature as pioneered by the work of Luce (1959b) and Block and Marschak (1960).

Finally, soliciting a vote for a single alternative is more common in practice than

requiring the submission of an entire ranking.

The analysis in Section 3.3 is most closely related to the aforementioned

stochastic choice literature, which seeks to explain the randomness observed in

individual choice. Typically, a behavioral model is proposed and then characterized

2See e.g. Conitzer, Rognlie, and Xia (2009); Elkind, Faliszewski, and Slinko (2010); Lu and
Boutilier (2011); Conitzer and Sandholm (2012); Procaccia, Reddi, and Shah (2012); Caragiannis,
Procaccia, and Shah (2013); Mao, Procaccia, and Chen (2013); Soufiani, Chen, Parkes, and Xia
(2013); Busa-Fekete, Hüllermeier, and Szörényi (2014); Caragiannis, Procaccia, and Shah (2014);
Chierichetti and Kleinberg (2014); Jiang, Marcolino, Procaccia, Sandholm, Shah, and Tambe
(2014); Soufiani, Parkes, and Xia (2014).
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in terms of axioms which describe how choice probabilities differ across menus (see

e.g. Echenique, Saito, and Tserenjigmid, 2013; Fudenberg, Iijima, and Strzalecki,

2013; Manzini and Mariotti, 2014; Aguiar, 2015a). These characterizations provide

the testable content of the model. However, the axioms are usually complicated

and no guidance is provided on how one might statistically test them in practice

given sample choice data.

The class of random utility models (RUMs) proposed by Block and Marschak

(1960) are particularly relevant. A variant of RUMs postulates choice as being

generated from a probability distribution over preference orderings. Thus, the class

of distance-monotonic noise models is a subset of this variant of RUMs. Section 3.4

is related to the small literature on identification of the distribution over preference

orderings given observation of the RUM generated choice probabilities (Falmagne,

1978; Barbera and Pattanaik, 1986; Manski, 2007; Sher, Fox, Kim, and Bajari,

2011). This literature points to the general impossibility of unique identification,

similar to Theorem 3.4.2. Sher, Fox, Kim, and Bajari (2011) give the most thorough

treatment of the topic and investigate several variants of datasets which might

reduce the degree of underidentification.

Finally, the work of Caragiannis, Procaccia, and Shah (2013) is of particular

importance as some of the terminology used here was introduced in their paper.

The authors ask which voting rules will return the true ranking with probability

1 given infinite samples of rankings drawn from distance-monotonic noise models,

a concept they define as accuracy in the limit. They define two classes of voting

rules and characterize the distance functions for which these rules are accurate in

the limit. They also investigate the performance of common voting rules under

sampling from Mallows’ model in terms of the number of samples needed to return

the true ranking with high probability. Thus, their analysis is most similar to that
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presented in Section 3.5. However, in their setting votes consist of an entire ranking

of the set of alternatives.

3.2 Preliminaries

Let X be a finite set of m > 2 alternatives. Denote the set of (strict)

rankings over X as L(X). I represent a ranking by a bijection σ : X → {1, . . . ,m}

where σ(a) is the rank of alternative a ∈ X according to σ. Thus, σ(a) < σ(b)

indicates a is ranked better (colloquially “higher”) than b under σ, also denoted

as a �σ b. I will occasionally write a ranking as the ordering it induces with the

alternatives ordered from best to worst such as σ = abc . . . .

Any A ⊆ X with |A| > 1 is called a choice set or menu. Let O be the set

of observations, which are pairs of the form (A, a) where A is a choice set and

a ∈ A. The interpretation of an observation is that a respondent voted a as the

best alternative from A. A dataset is any collection of observations ω ∈ On with

n ∈ N.

3.2.1 Noise models and distances

I assume there is a true ranking of the alternatives σ∗ ∈ L(X). I will often

label the alternatives in X according to their ranking in σ∗, so that the ith ranked

alternative is ai i.e. σ∗(ai) = i.

A function d : L(X)×L(X)→ R+ is called a distance function or metric if

for all σ, σ′, σ′′ ∈ L(X) it satisfies: i) d(σ, σ′) ≥ 0 with equality if and only if σ = σ′,

ii) d(σ, σ′) = d(σ′, σ), and iii) d(σ, σ′) ≤ d(σ, σ′′) + d(σ′′, σ′). The following are

considered some of the most widely used distance functions on rankings (Diaconis,
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1988):

dK(σ, σ′) =
∑
i<j

1 {[σ(ai)− σ(aj)]× [σ′(ai)− σ′(aj)] < 0}

is the Kendall tau distance,

dF (σ, σ′) =
∑
i

|σ(ai)− σ′(ai)|

is the footrule distance, and

dH(σ, σ′) =
∑
i

1 {σ(ai) 6= σ(a′i)}

is the Hamming distance.

Each distance function above provides a degree of dissimilarity between two

rankings: dK counts the number of discordant pairs, dF is the total difference in

the alternatives’ rankings, and dH is the number of alternatives ranked differently

in the two rankings. The Kendall tau distance dK is especially prominent: it has a

natural axiomatic foundation (Kemeny, 1959) and is often used in the social choice,

statistics, and computer science literatures.3

A distance function d is said to be right-invariant if the distance between

any two rankings does not change if alternatives are relabeled. Note that a distance

function that is right-invariant is fully specified by the distances of all rankings

from a single base ranking. For a ranking σ, let σa↔b denote the ranking in which

the ranks of a and b are swapped in σ i.e. σ(c) = σa↔b(c) for all c 6= a, b and

σ(a) = σa↔b(b) and σ(b) = σa↔b(a). A distance function d is said to be swap-

3See e.g. Young and Levenglick (1978); Fligner and Verducci (1986); Young (1988); Critchlow,
Fligner, and Verducci (1991); Bossert and Storcken (1992); Klamler (2008); Lu and Boutilier
(2011); Baldiga and Green (2013); Caragiannis, Procaccia, and Shah (2013); Mao, Procaccia, and
Chen (2013); Busa-Fekete, Hüllermeier, and Szörényi (2014); Coffman (2015); Procaccia and Shah
(2015).
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increasing if for any σ, σ′ and any alternatives a, b such that a �σ b and a �σ′ b

it follows that d(σ, σ′) ≤ d(σa↔b, σ
′) and is said to be strictly swap-increasing if

the inequality is strict. Most, if not all, commonly used distance functions are

right-invariant, including the three discussed above (Diaconis, 1988). Further, it has

been shown that dF and dH are swap-increasing (Critchlow, Fligner, and Verducci,

1991) while dK is strictly swap-increasing (Caragiannis, Procaccia, and Shah, 2013).

I assume all distance functions discussed in this paper are right-invariant and

swap-increasing.

Given a true ranking σ∗ ∈ L(X), a noise model defines the probability of

observing any ranking σ, denoted as Pr (σ|σ∗) for all σ ∈ L(X). Let d be a distance

function on rankings. A noise model is said to be monotonic with respect to d if for

any rankings σ, σ′ and true ranking σ∗ it follows that Pr(σ|σ∗) ≥ Pr(σ′|σ∗) ⇐⇒

d(σ, σ∗) ≤ d(σ′, σ∗).4 Thus, the further a ranking is from the true ranking according

to d, the less likely it is realized. Let G be the set of all noise models that are

monotonic with respect to some distance function d. When referring to a specific

distance function d I will denote this subset of G as Gd, e.g. GdK .

One of the most common distance-monotonic noise models was proposed

by Mallows (1957) in which the probability of observing any particular ranking is

exponentially decreasing in its Kendall tau distance from the true ranking. For

Mallows’ model, the probability of observing a ranking σ given true ranking σ∗ is

given by

Pr(σ|σ∗) =
φdK(σ,σ∗)

Zm
φ

(3.1)

where φ ∈ (0, 1) and Zm
φ is a normalization factor independent of the true ranking.

4Models in this class have been used as early as Mallows (1957). This particular naming of
the class is due to Caragiannis, Procaccia, and Shah (2013).
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Mallows’ model is a simple model and provides a basis for much of the recent

computational voting literature.5 The scale parameter φ has the feature that as

φ→ 0 the distribution over rankings approaches degeneracy at the true ranking

and as φ→ 1 the distribution approaches uniformity.

Due to the prominence of the Kendall tau distance, I pay particular attention

to the general class GdK , of which Mallows’ model is a special case. For any noise

model G ∈ G, I maintain the assumption of a full support distribution on L(X).

3.2.2 Data collection

I assume a data collection process of a researcher soliciting the votes of

a large number of people such as in a crowdsourcing platform. Each respondent

is presented with a choice set from which they are asked to submit a vote for

the top ranked alternative. The result is an observation e.g. (A, a). I assume

that the correct ranking of alternatives is not known to each respondent. The

researcher controls the experiment design by choosing which choice sets to use and

how many observations to collect on each choice set. The researcher may collect

as many observations as desired to achieve her goal. Given a choice set A and

alternative a ∈ A, let L(a|A) = {σ ∈ L(X) : a �σ b for all b ∈ A \ {a}} be the

set of rationalizing rankings and let p(a|A) =
∑

σ∈L(a|A)

Pr(σ|σ∗) be the population

probability of a vote for a from A. When confusion may arise with the alternative

numbering scheme according to σ∗, I will refer to observation i in a dataset ω ∈ On

as (Bi, bi). Votes are sampled independently, so the probability of observing the

5See e.g. Lu and Boutilier (2011); Meila, Phadnis, Patterson, and Bilmes (2012); Procaccia,
Reddi, and Shah (2012); Aledo, Gámez, and Molina (2013); Caragiannis, Procaccia, and Shah
(2013); Busa-Fekete, Hüllermeier, and Szörényi (2014); Aledo, Gámez, and Molina (2016).
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dataset ω = ((B1, b1) . . . , (Bn, bn)) is given by

Pr(ω|σ∗) =
n∏
i=1

p(bi|Bi).

3.3 Voting behavior and testability

In this section, I examine some testable implications of the population

vote probabilities generated by a d-monotonic noise model. Rather than provide

a complete characterization, I investigate simple conditions which have a clear

interpretation. As a means to operationalize some of the conditions, I propose some

statistical tests by which the model can be refuted with adequate data. I end the

section with a brief discussion on how more complicated testing procedures might

be employed.

3.3.1 Testable implications

I first look at probabilistic voting behavior generated by the general class

of models G. A reasonable interpretation for the results is in terms of the relative

difficulty an individual would have in correctly identifying the best alternative

within and across choice sets. The results suggest behavior in line with intuition.

For example, correctly identifying the passage with highest reading difficulty out of

two should be more likely than identifying that same passage as most difficult when

more options have been added to the choice set, which is the content of Proposition

3.3.1.

Proposition 3.3.1. Let G ∈ G be a d-monotonic noise model. For any choice sets

A,C such that A ⊂ C and alternative a ∈ A it follows that p(a|A) > p(a|C).
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Proof. Trivial by the full support assumption on L(X) and noting that L(a|A) ⊂

L(a|C).

The result in Proposition 3.3.1 is not new and is referred to as regularity

in the choice-theoretic literature, although it is usually presented with a weak

inequality. It is known to hold for a large class of models known as random utility

models (Block and Marschak, 1960) which subsumes the class G.

Proposition 3.3.2 and its corollary compare the relative likelihood of al-

ternatives being voted for across different choice sets. Intuitively, higher ranked

alternatives would be more likely to be identified as the best from a choice set than

lower ranked alternatives. For instance, it is reasonable to expect a reading passage

of grade level 10 to receive at least as many votes for being the most difficult in a

choice set as one of grade level 3 regardless of the choice set’s composition. The

proof relies on creating a bijection between rationalizing sets of rankings using the

mapping σa↔b for any two alternatives a, b in a choice set. If a is truly better than

b, then such a bijection always transforms a ranking yielding a vote for a into a

ranking yielding a vote for b which is at least as far away from the true ranking. A

result using Mallows specification is also presented, which will be helpful in the

analysis on choice experiment designs in Section 3.5. Recall that the numbering of

alternatives is given by their ranking according to σ∗.

Proposition 3.3.2. Let G ∈ G be a d-monotonic noise model. Then for any choice

set A and ai, aj ∈ A such that i < j it follows that p(ai|A) ≥ p(aj|A) where the

inequality is strict if d is strictly swap-increasing. In Mallows’ model, if j = i+ 1

then p(aj|A) = φ p(ai|A).

Proof of Proposition 3.3.2. Take any σ ∈ L(ai|A). Note that σai↔aj is a bijection

from L(ai|A) to L(aj|A). Further, d(σ, σ∗) ≤ d(σai↔aj , σ
∗) if i < j by definition of
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swap-increasing. Using this, the result then follows by definition of d-monotonic

noise model. Using the definition for strictly swap-increasing d proves the strict

inequality claim. To prove the case of Mallows’ model where d = dK , I use the

following lemma.

Lemma 3.3.1. If j = i+ 1 then

dK(σ, σ∗) + 1 = dK(σai↔aj , σ
∗).

Proof of Lemma 3.3.1. Since j = i+ 1 the following equalities hold:

|{k : ak �σ∗ ai and ai �σ ak}|+ 1 = |{k : ak �σ∗ aj and aj �σai↔aj ak}|,

|{k : ai �σ∗ ak and ak �σ ai}| = |{k : aj �σ∗ ak and ak �σai↔aj aj}|,

|{k : ak �σ∗ aj and aj �σ ak}| = |{k : ak �σ∗ ai and ai �σai↔aj ak}|, and

|{k : aj �σ∗ ak and ak �σ aj}| = |{k : ai �σ∗ ak and ak �σai↔aj ai}|

from which the result follows.

To prove the case of Mallows’ model, note that

p(aj|A) =
∑

σ′∈L(aj |A)

φdK(σ′,σ∗)

Zm
φ

=
∑

σ∈L(ai|A)

φdK(σai↔aj ,σ
∗)

Zm
φ

=
∑

σ∈L(ai|A)

φdK(σ,σ∗)+1

Zm
φ

= φ

 ∑
σ∈L(ai|A)

φdK(σ,σ∗)

Zm
φ

 = φp(ai|A)
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where the second transition follows since σai↔aj is a bijection from L(ai|A) to

L(aj|A) and the third transition follows by Lemma 3.3.1.

The corollary to Proposition 3.3.2 states that the best alternative in a choice

set has the highest likelihood of receiving a vote.

Corollary 3.3.1. If a ∈ A satisfies σ∗(a) < σ∗(b) for all b ∈ A \ {a} then

p(a|A) > p(b|A)

for all b ∈ A \ {a}.

Proof. Since a �σ∗ b for all b 6= a it follows σ∗ ∈ L(a|A). Thus, d(σ∗, σ∗) <

d(σ∗a↔b, σ
∗) and the result follows by Proposition 3.3.2 and definition of d-monotonic

noise model.

Suppose a respondent was shown passages of grade difficulty levels 10 and 9

and asked to vote for the one of higher difficulty. This should be a more challenging

task than if the respondent were comparing the grade level 10 document to one of a

grade level lower than 9 e.g. grade level 5. Proposition 3.3.3 formalizes this intuition.

The result follows by similar arguments as those used to prove Proposition 3.3.2.

Proposition 3.3.3. Let G ∈ G be a d-monotonic noise model. Then for any two

choice sets C,D such that C = D \ {aj} ∪ {ai} for some aj ∈ D, ai /∈ D and i < j

it follows that p(a|D) ≥ p(a|C) for all a ∈ C ∩D where the inequality is strict if d

is strictly swap-increasing.

Proof of Proposition 3.3.3. Take any σ ∈ L(a|D). If σ(a) < σ(ai) then σ ∈ L(a|C).

Suppose σ(a) > σ(ai) so that ai �σ a �σ aj. Note that such a ranking σ always

exists since ai /∈ D. Since aj /∈ C it follows that σai↔aj ∈ L(a|C). Further,
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σ∗ a1 a2 a3 a4 a5 a6 a7

σ a7 a1 a4 a3 a2 a5 a6

Figure 3.1. Orderings induced by σ∗ and σ

d(σ∗, σ) ≤ d(σ∗, σai↔aj) by definition of swap-increasing. Thus, for every σ ∈

L(a|D), either σ ∈ L(a|C) or there is a corresponding σai↔aj ∈ L(a|C) that is

at least as far away from σ∗ as σ is. The result then follows by definition of

d-monotonic noise model. Proving the strict inequality case follows by using the

definition of strictly swap-increasing.

The final result in this section establishes a strong invariance property for

the class GdK . It states that choice sets of the same cardinality that are composed

of alternatives with the same relative rank differences in the true ranking can be

viewed as equivalent according to the vote probabilities they induce. For example,

choosing the most difficult among reading passages of grade levels 1, 3, and 6 would

be considered equally as challenging as choosing the most difficult among passages

of grade levels 4, 6, and 9. The result is a significant generalization of one first

shown by Mallows (1957). The proof is rather technical. Fix any choice set and fix

the relative rank differences of the alternatives in that choice set according to σ∗.

Then, take any ranking σ in which the alternatives in the choice set have the same

relative rank differences according to σ as they do according to σ∗ (see Figure 3.1).

It turns out that the vote probabilities induced on the choice set are equal to the

vote probabilities that would be induced if σ were the true ranking rather than σ∗.

This can then be used to establish the equivalence across choice sets satisfying the

conditions of the Proposition.
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Proposition 3.3.4. Let G ∈ GdK be a dK-monotonic noise model and let C and D

be two choice sets with |C| = |D| = s. Label the alternatives in C according to their

ranking in σ∗ i.e. {c1, . . . , cs} with i < j ⇐⇒ ci �σ∗ cj and label the alternatives

in D accordingly. If σ∗(ci+1)−σ∗(ci) = σ∗(di+1)−σ∗(di) for each i ∈ {1, . . . , s− 1}

then p(ci|C) = p(di|D) for each i.

The proof relies on the following lemma. The result says that any ranking in

which the relative spacing of the alternatives in C is the same as that in σ∗ induces

the same distribution of distances on rankings that solicit a vote for ci for every i.

Lemma 3.3.2. Take any σ′ ∈ L(X) such that σ′(ci+1)− σ′(ci) = σ∗(ci+1)− σ∗(ci)

for each i ∈ {1, . . . , s− 1}. Then

|{σ ∈ L(ci|C) : dK(σ∗, σ) = δ}| = |{σ ∈ L(ci|C) : dK(σ′, σ) = δ}|

for each possible distance δ and for every i.

Proof of Lemma 3.3.2. If σ′ = σ∗ then the result is trivially true, so assume σ′ 6= σ∗.

The proof proceeds in cases. For any i, pick a δ such that {σ ∈ L(ci|C) : dK(σ∗, σ) =

δ} is nonempty and let σ be an arbitrary ranking in this set.

Case 1: σ′(ci) = σ∗(ci) for every i.

Let τ : X → X be the unique bijection acting on the ordering induced by

σ∗ that yields the ordering induced by σ′ written as τ(σ∗) = σ′. Note that this

operation constitutes a simple relabeling of the alternatives in X \ C. Further

τ(σ) ∈ L(ci|C) by the assumption in place for Case 1. By right-invariance of

dK , it follows that dK(σ∗, σ) = dK (τ(σ∗), τ(σ)) = dK (σ′, τ(σ)) = δ. Thus, for

every ranking in {σ ∈ L(ci|C) : dK(σ∗, σ) = δ} there is a unique ranking in

{σ ∈ L(ci|C) : dK(σ′, σ) = δ}, proving the result for Case 1.
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Case 2: am /∈ C and σ′ = ama1 . . . am−1.

Suppose σ(am) = r. Construct the ranking σ′′ such that the ordering of the

alternatives in X \ {am} agrees with the ordering according to σ but σ′′(am) =

m − (r − 1). It is clear based on the assumptions of Case 2 that σ′′ ∈ L(ci|C).

For any pair of alternatives in X \ {am} it follows that σ∗ and σ disagree on their

ordering if and only if σ′ and σ′′ do also by construction. Further, the ranking

of am in σ is responsible for an additional m − r disagreements with σ∗ and the

ranking of am in σ′′ is responsible for an additional m− r disagreements with σ′.

Thus, for every ranking in {σ ∈ L(ci|C) : dK(σ∗, σ) = δ} there is a unique ranking

in {σ ∈ L(ci|C) : dK(σ′, σ) = δ}, proving the result for Case 2.

Case 3: am /∈ C and σ′(ci) = σ̃(ci) for every i where σ̃ = ama1 . . . am−1.

Let τ : X → X be the unique bijection acting on the ordering induced by σ̃

that yields the ordering induced by σ′ written as τ(σ̃) = σ′. By arguments similar

to Case 1 it is clear that

|{σ ∈ L(ci|C) : dK(σ̃, σ) = δ}| = |{σ ∈ L(ci|C) : dK(σ′, σ) = δ}|

for every possible distance δ and every i and thus by Case 2

|{σ ∈ L(ci|C) : dK(σ∗, σ) = δ}| = |{σ ∈ L(ci|C) : dK(σ′, σ) = δ}|

which proves the result for Case 3.

Case 4: all other cases.

Note that if am−1 /∈ C then using σ̃ = am−1ama1 . . . am−2 and repeating

the arguments from Case 2 and Case 3 would establish the result for all σ′ such

that σ′(ci) = σ̃(ci) for every i. It is straightforward to see how continuing to cycle
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in this manner will stop once the result has been established for all σ′ such that

σ′(cs) = m.

Additionally, if a1 /∈ C, then considering σ̃ = a2 . . . ama1 and arguments as

in Cases 2 and 3 will establish the result for all σ′ such that σ′(ci) = σ̃(ci) for every

i. Continuing to cycle in this manner will stop once the result has been established

for all σ′ such that σ′(c1) = 1. This concludes the proof of Case 4 and Lemma

3.3.2.

Proof of Proposition 3.3.4. If C = D then the result is trivially true, so suppose

C 6= D. The proof proceeds in cases.

Case 1: c1 = a1 and d1 = a2.

Consider the ranking σ′ = a2 . . . ama1. I claim that

|{σ ∈ L(ci|C) : dK(σ∗, σ) = δ}| = |{σ ∈ L(di|D) : dK(σ′, σ) = δ}| (3.2)

for each possible distance δ and for every i. To prove this, take any i and possible

δ such that the former set is nonempty, and let σ be any ranking in the former

set. Let τ : X → X be the unique bijection acting on the ordering induced

by σ∗ that yields the ordering induced by σ′ written as τ(σ∗) = σ′. Note that

τ(σ) ∈ L(di|D) since ci maps to di for every i under τ . Further, by right-invariance

dK(σ∗, σ) = dK(σ′, τ(σ)) = δ, which proves (3.2) holds. Further, applying Lemma

3.3.2 to choice set D and using (3.2) , it is straightforward to see that

|{σ ∈ L(di|D) : dK(σ∗, σ) = δ}| =|{σ ∈ L(di|D) : dK(σ′, σ) = δ}|

=|{σ ∈ L(ci|C) : dK(σ∗, σ) = δ}|

for every possible distance δ and every i. Thus, p(ci|C) = p(di|D) since G is a
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dK-monotonic noise model, proving the result for Case 1.

Case 2: c1 = a1 and d1 6= a2.

If d1 = a3 then a similar argument as in Case 1 using σ′ = a3 . . . ama1a2

shows that (3.2) holds. The result then holds by a simple application of Lemma

3.3.2 to choice set D and using the definition of dK-monotonic noise model. It is

easy to see how this process can continue for d1 = aj for any j 6= 1, 2, 3 by using

the ranking σ′ = aj . . . aj−2aj−1 and proceeding as in Case 1. This establishes the

result for Case 2.

Case 3: all other cases.

Now c1 6= a1 and d1 6= a1. Note that there exists a choice set E such that

|E| = s, e1 = a1 (where the labeling is done according to ranking by σ∗), and

σ∗(ei+1)− σ∗(ei) = σ∗(ci+1)− σ∗(ci) = σ∗(di+1)− σ∗(di) for each i ∈ {1, . . . , s− 1}.

Using Case 1 or 2 will establish the equalities p(ei|E) = p(ci|C) and p(ei|E) =

p(di|D) for every i, which yields the result for Case 3. This concludes the proof of

Proposition 3.3.4.

3.3.2 Specification tests when σ∗ is known - votes from
the set X

Using the previous results, I now propose some simple statistical testing

procedures that can be used to refute models in the class G. I assume that the

true ranking σ∗ is known and that the available dataset ω consists of n votes from

the choice set X. I will let Yi be the random variable of total votes for ai and let

pi = p(ai|X). Note that the random vector Y = (Y1, . . . , Ym) has a multinomial

distribution with parameters p = (p1, . . . , pm) and n. Further, by Proposition 3.3.2,

if votes are generated according to some G ∈ G, then it must be the case that



78

p1 ≥ p2 ≥ · · · ≥ pm. Thus, a rejection of the hypothesis

H0 : p1 ≥ p2 ≥ · · · ≥ pm > 0 (3.3)

is sufficient for rejecting the hypothesis of a d-monotonic noise model.6 At the risk

of stating the obvious, failure to reject such a hypothesis does not imply consistency

with some G ∈ G since a d-monotonic noise model will in general be incapable of

generating all vote probability vectors consistent with (3.3).

Chafai and Concordet test

The first test I present adapts a procedure from Chafai and Concordet (2009)

to the current context, which I refer to as the CC test. Chafai and Concordet

propose confidence regions for a multinomial probability vector that control coverage

probability and have small volume even in small samples. Let

Λm =

{
(q1, . . . , qm) ∈ [0, 1]m :

m∑
i=1

qi = 1

}

be the probability simplex and let

Om,n =

{
(y1, . . . , ym) ∈ {0, . . . , n}m :

m∑
i=1

yi = n

}

be the set of potential realizations of an m-dimensional multinomial random vector

with n trials. For y ∈ Om,n and q ∈ Λm, let µq(y) be the multinomial probability

6Testing a strict inequality version for a strictly swap-increasing d will generally be identical
to the procedures for the weak inequality version.
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mass function evaluated at y. Given α ∈ (0, 1) let

u(q, α) = sup

u ∈ [0, 1] :
∑

y∈Om,n
µq(y)≥u

µq(y) ≥ 1− α

 .

The set of realizations y ∈ Om,n such that µq(y) < u(q, α) are the most “extreme”

(i.e. least likely) possible given α and q. For a realization of Y , Chafai and

Concordet propose the confidence region for p given by

CRα(Y ) = {q ∈ Λm : µq(Y ) ≥ u(q, α)} . (3.4)

The set in (3.4) is all probability vectors for which the realization of Y is not one

of the most extreme possible.

Adapting the above method to test (3.3) is straightforward. Consider the

subset of the probability simplex consistent with H0:

Λm,H0 = {q ∈ Λm : q1 ≥ · · · ≥ qm > 0} .

Given a sample size n > 0 and α ∈ (0, 1), the CC test for H0 has a rejection region

given by

RCC (n, α) = {y ∈ Om,n : CRα(y) ∩ Λm,H0 = ∅} .

This is the set of realizations for which the confidence region proposed by Chafai

and Concordet contains no probability vectors consistent with (3.3). The CC test

is given by

ψCC(Y ) = 1{Y ∈ RCC (n, α)}.

One disadvantage of the CC test is that it can be computationally demanding,
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particularly if m or n or both are large. However, it should be used to construct

exact confidence sets for the true ranking σ∗ when it is unknown and votes are

generated by some G ∈ G (see Section 3.4.3).

Conditional binomial test

I now propose a test that relies on a series of binomial tests by conditioning

on the vote counts of the alternatives. A well known fact about multinomial

distributions is that the conditional distribution of (Y1, Y2) given (Y3, . . . , Ym) =

(y3, . . . , ym) is equivalent to a binomial distribution with parameters n−
∑m

i=3 yi

and p1
p1+p2

.7 According to (3.3) the probability of “success” (a vote for a1) from this

distribution should be at least 1
2
. Thus, a rejection of p1

p1+p2
≥ 1

2
is sufficient for

rejecting the hypothesis of a d-monotonic noise model. Intuitively, it should not be

the case that a2 is voted for significantly more often than a1 is when considering

votes for only that pair.

Rewrite (3.3) as

H0 :
pi

pi + pi+1

≥ 1

2
for all i ∈ {1, . . . ,m− 1}. (3.5)

Given n > 0 and α ∈ (0, 1) the CB test specifies the rejection region

RCB (n, α) ={
y ∈ Om,n :

(
1

2

)yi+yi+1 yi∑
`=0

(
yi + yi+1

`

)
≤ α

m− 1
for any i ≤ m− 1

}
.

The rejection region specifies rejecting in any case in which ai receives significantly

less than half of the votes out of the pair {ai, ai+1} assuming equal probability of

7Note that this type of conditioning will work for any pair of the random vector Y .
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voting for either alternative. The CB test is given by

ψCB(Y ) = 1{Y ∈ RCB (n, α)}.

Both the CC and CB tests control Type I error probability even in finite

samples.

Theorem 3.3.1. Given n > 0 and α ∈ (0, 1) both the CC and CB statistical tests

are level α tests.

Proof of Theorem 3.3.1. I first prove the result for the CC test. Consider the sub

hypothesis H0,q : p = q for some q ∈ Λm,H0 . Specify a rejection region for a test of

this hypothesis by

Rq(n, α) = {y ∈ Om,n : q /∈ CRα(y)} .

The rejection region for the CC test can now be rewritten as

RCC (n, α) =
⋂

q∈Λm,H0

Rq(n, α).

By construction

Pr (Y ∈ Rq(n, α)) ≤ α

for each q ∈ Λm,H0 . If H0 is true, it follows that p = q′ for some q′ ∈ Λm,H0 and

therefore

Pr (Y ∈ RCC (n, α)) ≤ Pr (Y ∈ Rq′(n, α)) ≤ α.

I now prove the result for the CB test. For each i ∈ {1, . . . ,m − 1} let

RCB,i(n, α) ⊂ RCB(n, α) be the realizations in which
(

1
2

)yi+yi+1
∑yi

`=0

(
yi+yi+1

`

)
≤

α
m−1

. Let Y−i be the random vector Y without Yi and Yi+1. The set of potential
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realizations of this vector for all i is Om−2,n. By the law of total probability it

follows that

Pr (Y ∈ RCB,i(n, α)) =
∑

y−i∈Om−2,n

Pr (Y ∈ RCB,i(n, α)|Y−i = y−i) Pr (Y−i = y−i) .

(3.6)

Let (yi, yi+1, y−i) = (y1, . . . , yi, yi+1, . . . , ym). For each y−i ∈ Om−2,n, define

y∗i (y−i) = sup {yi : (yi, yi+1, y−i) ∈ RCB,i(n, α)}.8 Given Y−i = y−i, it follows that

Y ∈ RCB,i(n, α) if and only if Yi ≤ y∗i (y−i). Thus, (3.6) becomes

Pr (Y ∈ RCB,i(n, α)) =
∑

y−i∈Om−2,n

Pr (Yi ≤ y∗i (y−i)|Y−i = y−i) Pr (Y−i = y−i) .

(3.7)

Note that Pr (Yi ≤ y∗i (y−i)|Y−i = y−i) is the cumulative distribution function of a

binomial random variable, which is decreasing in its success probability pi
pi+pi+1

.

Thus, when (3.5) is true, it follows by definition of y∗i (y−i) that

Pr (Y ∈ RCB,i(n, α)) =
∑

y−i∈Om−2,n

Pr (Yi ≤ y∗i (y−i)|Y−i = y−i) Pr (Y−i = y−i)

≤ α

m− 1

∑
y−i∈Om−2,n

Pr (Y−i = y−i) ≤
α

m− 1
.

8By convention sup(∅) = −∞.
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Using this to conclude the proof, note that when (3.5) holds

Pr (Y ∈ RCB(n, α)) ≤ Pr

 ⋃
i∈{1,...,m−1}

Y ∈ RCB,i(n, α)


≤

∑
i∈{1,...,m−1}

Pr (Y ∈ RCB,i(n, α))

≤ (m− 1)

(
α

m− 1

)
= α.

For large m,n it is clear to see that the CB test is more convenient for

implementation purposes, and so there is reason to prefer it in practice. However,

as mentioned earlier, the CC method is convenient for constructing exact confidence

sets for σ∗.

I chose to focus on testing for violations of Proposition 3.3.2 since it is

the easiest condition to test of those presented. It is straightforward to test the

condition across choice sets using the independence of votes across choice sets. For

example, suppose the data consists of votes from two binary menus. Testing for

a violation of Proposition 3.3.2 would then involve a binomial test at significance

level α
2

in each menu to achieve an overall significance level α. If the dataset is rich

enough, more complicated testing procedures involving the conditions from other

Propositions is possible, although developing reasonable tests that control size in

finite samples is difficult. An asymptotic approach to testing various inequality

restrictions on multiple multinomial probability parameters has been developed. I

refer the interested reader to Davis-Stober (2009).
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3.4 Identification and confidence sets

The first half of this section concerns identifying parameters of the model

under the assumption that a researcher observes the population vote probabilities

p(a|A) for all (A, a) ∈ O generated by a noise model G ∈ G. I say that a ranking

σ is identified as the true ranking from vote probabilities if the vote probabilities

are inconsistent with any other ranking σ′ being the true ranking. I say the model

G ∈ G is identified from vote probabilities if G 6= G′ implies that pG(a|A) 6= pG
′
(a|A)

for some observation (A, a) where I have added superscripts to distinguish between

vote probabilities generated by G and G′.

3.4.1 Identification of the true ranking

The first result shows that the population vote probabilities always identify

a unique true ranking. The intuition follows directly from Proposition 3.3.2 and

Corollary 3.3.1: the true ranking will always reveal itself by placing the highest vote

probability on the highest ranked alternative in any choice set, yielding asymmetric

and transitive vote probabilities.

Theorem 3.4.1. Define the binary relation τ as: for any a, b ∈ X, a �τ b if and

only if there exists a choice set A ⊇ {a, b} such that p(a|A) > p(b|A). Then the

ranking according to τ is identified as the true ranking from vote probabilities.

Proof of Theorem 3.4.1. Since voting probabilities are generated by some G ∈ G,

it is easy to see that τ ∈ L(X) by appealing to Propositions 3.3.2 and 3.3.3 and

Corollary 3.3.1. Take any ranking σ 6= τ so that there is a pair a, b such that a �τ b

but b �σ a. If σ = σ∗ were true (i.e. the true ranking were σ), then it follows by

Corollary 3.3.1 that p(b|{a, b}) > p(a|{a, b}), a contradiction to the definition of τ

and thus inconsistent with the vote probabilities. Since σ was arbitrary, it follows
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that τ is identified as the true ranking from vote probabilities.

3.4.2 Identification of the distribution over rankings

I now turn to the task of identifying the distribution over rankings as

specified by G. Several papers have discussed the general impossibility of point

identification of a probability distribution over rankings from observing choice

probabilities (Falmagne, 1978; Barbera and Pattanaik, 1986; Sher, Fox, Kim, and

Bajari, 2011). In particular, Sher, Fox, Kim, and Bajari quantify the extent of

underidentification, which can be severe for large m.9

To keep the analysis tractable, I focus on the case G ∈ GdK i.e. Kendall

tau monotonic noise models. Restricting the analysis to this class of models

greatly reduces the number of parameters that need to be identified in order to

point identify the entire distribution. Specifically, identifying the likelihood of

any ranking of distance d from σ∗ for each d ∈
{

0, . . . , m(m−1)
2

}
will suffice. This

seemingly manageable task unfortunately is not possible when m > 3.

Theorem 3.4.2. If m > 3, then for every G ∈ GdK there exists a G′ ∈ GdK with

G′ 6= G such that pG(a|A) = pG
′
(a|A) for every (A, a) ∈ O.

The proof relies on the following lemma.

Lemma 3.4.1. If m > 3 then for every (A, a) ∈ O it follows that

|{σ ∈ L(a|A) : dK(σ, σ∗) is even}| = |{σ ∈ L(a|A) : dK(σ, σ∗) is odd}| .

Proof of Lemma 3.4.1. The proof uses concepts and notation introduced in Ap-

pendix A. Take any choice set A with |A| = s for some s ≤ m. For m > 3 and any

9Specifically, the number of potential mass points of the distribution is the number of rankings
m!, whereas the number of observable population moments is

∑m
i=2 i

(
m
i

)
=
(
2m−1 − 1

)
m.
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a ∈ A it is obvious that |L(a|A)| = m!
s

is an even number and thus divisible by 2,

so it is always possible for the conjecture of the lemma to hold.

Let ã ∈ A be the best alternative in choice set A according to σ∗. Take

any σ ∈ L(ã|A) and consider σã↔b ∈ L(b|A) for some b ∈ A \ {ã}. Note that the

ordering induced by σã↔b can be expressed as the composition of a permutation (the

unique π ∈ Sm associated with σ) and a transposition, the latter simply switching

the ranks of ã and b. It follows that the permutations associated with σ and σã↔b

are of different parity. Therefore, if dK(σ, σ∗) is even (odd) then dK(σã↔b, σ
∗) is odd

(even). It is straightforward to verify that there are both even and odd permutations

associated with the rankings in L(ã|A). Thus, since σ was arbitrary it follows that

for every ranking in L(ã|A) of an even (odd) distance from σ∗ there is a unique

ranking in L(b|A) of an odd (even) distance from σ∗. Since b was arbitrary, the

previous conclusion holds for every a ∈ A \ {ã}. The conjecture of the lemma

will follow by establishing an equal number of odd-distanced and even-distanced

rankings in L(ã|A). For s ≥ 3 this obviously holds - otherwise there would be an

unequal number of even and odd permutations in Sm.

To establish the result for s = 2, I provide a constructive proof. To this

end, let |A| = 2 and take any σ ∈ L(ã|A) such that σ(ã) = r for some r ≤ m− 1.

Construct σ′ ∈ L(ã|A) by fixing the r − 1 alternatives that are ranked better than

ã in σ and permuting only the m− r alternatives ranked worse than ã in σ. Note

that such a permutation π is part of the symmetric group of a set with m − r

elements which is a subset of Sm i.e. π ∈ Sm−r ⊂ Sm. There are an equal number

of even and odd permutations in Sm−r (including the identity permutation, which

yields σ) so applying each of these yields an equal number of even-distanced and

odd-distanced rankings contributed to L(ã|A). Since the r − 1 alternatives ranked

better than ã in σ were arbitrary, the preceding holds for every distinct instance of
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possible r − 1 alternatives being ranked ahead of ã in the set L(ã|A). Conclude

that there are an equal number of even-distanced and odd-distanced rankings in

L(ã|A) with ã in rank r ≤ m− 1. Since r was arbitrary, conclude that there are

an equal number of even-distanced and odd-distanced rankings in L(ã|A). This

concludes the proof.

Proof of Theorem 3.4.2. Let m > 3 and G ∈ GdK . I will construct a G′ ∈ GdK with

G′ 6= G such that pG(a|A) = pG
′
(a|A) for every (A, a) ∈ O. Let σ′ be the reverse

ranking of σ∗ i.e. the unique least likely ranking according to G. Define

δ∗ = min
σ,τ∈L(X)

|dK(σ,σ∗)−dK(τ,σ∗)|=1

∣∣PrG(σ|σ∗)− PrG(τ |σ∗)
∣∣

so that δ∗ > 0 is the smallest difference in likelihood between any two rankings of

different distances from σ∗. Let ε > 0 satisfy

ε < min

{
δ∗

2
,PrG(σ′|σ∗)

}
.

Note that such an ε exists due to the full support assumption on G.

Define G′ by

PrG
′
(σ|σ∗) = PrG(σ|σ∗) + (−1)dK(σ,σ∗) × ε

for every σ ∈ L(X) so that every even-distanced ranking from σ∗ gets ε mass

added to its likelihood in G and every odd-distanced ranking from σ∗ gets ε mass

taken away from its likelihood in G. There are an equal number of even-distanced

and odd-distanced rankings in L(X), so the net effect of this mass transfer is zero.

Further, ε was constructed in such a way so that PrG
′
(σ|σ∗) > 0 for every σ ∈ L(X).
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Thus G′ is a valid probability distribution on L(X). Additionally, G′ ∈ GdK since

it was constructed from G and an ε that preserves the monotonicity with respect

to dK .

By Lemma 3.4.1, for any (A, a) ∈ O there are an equal number of even-

distanced and odd-distanced rankings from σ∗ in L(a|A). Thus, the net effect on

the voting probabilities of the mass transfer in the construction of G′ is zero, so

that pG(a|A) = pG
′
(a|A) for all (A, a) ∈ O.

The proof of Theorem 3.4.2 relies on some results from group theory (see

Appendix A). In the proof, I construct a new distribution on L(X) from the

distribution specified by G. The proof hinges on the fact that there an equal

number of even-distanced and odd-distanced rankings from σ∗ in L(X) and the

set L(a|A) for every (A, a) ∈ O when m > 3. Thus I can shift mass from odd-

distanced rankings to even-distanced rankings systematically while preserving the

monotonicity with respect to dK and the population vote probabilities. The property

does not hold for m = 3 since the cardinality of the set of rationalizing rankings

on binary choice sets is 3!
2

= 3. From a linear algebra perspective, the number of

unknowns is m(m−1)
2

+ 1 i.e. the number of possible distances, but the number of

linearly independent equations is at most m(m−1)
2

when m > 3. For m = 3, point

identification of any distribution on rankings is possible from observation of the

population vote probabilities.10

A linear programming approach

In light of Theorem 3.4.2, I present a linear program whose solutions consti-

tute the identified set {G} ⊂ GdK given the population vote probabilities. A similar

approach has been provided by Sher, Fox, Kim, and Bajari (2011) and Manski (2007).

10See Sher, Fox, Kim, and Bajari (2011) for a discussion.
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Define σ∗ ∈ L(X) as a �σ∗ b ⇐⇒ p(a|{a, b}) > p(b|{a, b}) for any a, b ∈ X. The

program is given by the following linear system:

p(a|A) =
∑

σ∈L(a|A)

PrG (σ|σ∗) , (A, a) ∈ O, (3.8)

∑
σ∈L(X)

PrG (σ|σ∗) = 1; PrG (σ|σ∗) > 0, σ ∈ L(X), (3.9)

G ∈ GdK . (3.10)

The noise models solving (3.8), (3.9), and (3.10) constitute the identified

set in this framework. It is easy to adapt the program to find probabilistic bounds

on any set of rankings S ⊂ L(X). For example, a researcher could be interested

in knowing an upper bound on the probability of realizing a ranking of at most

distance δ away from σ∗. This is given by

sup
G∈GdK

∑
σ∈L(X)

dK(σ,σ∗)≤δ

PrG (σ|σ∗) subject to (3.8), (3.9), and (3.10).

3.4.3 Finite sample confidence sets

I now bring the results of the previous section into the context of a researcher

with a finite dataset ω ∈ On generated by some G ∈ GdK . That is, the researcher

does not observe the population vote probabilities. My concern here is with the

construction of confidence sets for the underlying distribution on rankings that

have a desired coverage probability. The results here are derived in an analogous

fashion to those in Manski (2007).
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Votes from the set X

I start with the simplest case in which the dataset consists of n votes from

the set X. Given a significance level α ∈ (0, 1), the researcher forms a confidence

set for the probability vector (p(a|X), a ∈ X) using the method proposed in Chafai

and Concordet (2009) which is detailed in Section 3.3.2. For simplicity, assume that

all of the vote probability vectors in this confidence set are consistent with only

one ranking in L(X). Denote this ranking as σ′. By definition, {σ′} is a confidence

set (in this case, a singleton) for the true ranking σ∗ with coverage probability at

least 1−α. Let Y = (y1, . . . , ym) be the realized vector of votes for each alternative

ordered sequentially from highest to lowest count so that the ordering is consistent

with σ′. Let CRα(Y ) be the confidence set for the vote probability vector. Take

any q = (q1, . . . , qm) ∈ CRα(Y ) and let Gq be the set of noise models satisfying:

qi =
∑

σ∈L(i|X)

PrG (σ|σ′) , 1 ≤ i ≤ m,

∑
σ∈L(X)

PrG (σ|σ′) = 1; PrG (σ|σ′) > 0, σ ∈ L(X),

G ∈ GdK .

Then GCRα(Y ) = ∪q∈CRα(Y )Gq is a confidence set for the distribution over rankings

with coverage probability at least 1− α.

Votes from all binary choice sets

I now consider the case of votes from all binary choice sets. For simplicity

assume ω ∈ On contains an equal number of votes from each binary choice set.

The method proceeds by first constructing a confidence interval for either vote
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probability in each binary menu, which can be done again using the method of

Chafai and Concordet (2009). For example, take an arbitrary binary choice set

{a, b} and suppose the researcher chooses to construct a confidence interval for

p(a|{a, b}). Let ya,b be the realized vote count for a from this choice set and αa,b

a specified significance level, where I will explain how to choose αa,b shortly. Let

CRαa,b(ya,b) be the realized confidence interval constructed for p(a|{a, b}) that

has coverage probability at least 1 − αa,b. For each choice set, the researcher

chooses αa,b such that
∏
{a,b}⊂X(1 − αa,b) ≥ 1 − α where α ∈ (0, 1) is an overall

desired significance level. Since the vote counts across menus are independent, the

confidence rectangle defined by the Cartesian product

CRα = ×
{a,b}⊂X

CRαa,b(ya,b)

has coverage probability at least 1 − α for the vector (p(a|{a, b}), {a, b} ⊂ X).

Assume that this construction is consistent with only one ranking σ′ ∈ L(X).

Take any q =
(
q(a|{a,b}), {a, b} ⊂ X

)
∈ CRα and let Gq be the set of noise models

satisfying:

q(a|{a,b}) =
∑

σ∈L(a|{a,b})

PrG (σ|σ′) , {a, b} ⊂ X,

∑
σ∈L(X)

PrG (σ|σ′) = 1; PrG (σ|σ′) > 0, σ ∈ L(X),

G ∈ GdK .

Then GCRα = ∪q∈CRαGq is a confidence set for the distribution over rankings with

coverage probability at least 1− α.
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It is straightforward to see how the previous constructions can be generalized

to accommodate other datasets including those whose realized vote counts may

generate a non-singleton confidence set for the true ranking σ∗.

3.5 Estimators and choice designs

The first portion of this section is devoted to estimation of the best alternative

or true ranking. The theory shows that for certain datasets a large class of estimators

will almost surely return the correct best alternative or ranking as the sample size

tends to infinity. I then investigate choice experiment designs using the tractable

model of Mallows. Using a ubiquitous sampling scheme, I derive upper bounds on

the number of samples needed to estimate either the best alternative or the true

ranking with a high degree of probabilistic confidence.

3.5.1 Estimators

In cases where the true ranking is unknown, I assume the goal of the

researcher is to estimate either the best alternative a1 or the ranking σ∗ based on

the sampled votes. Past literature has explored this topic and by finding conditions

under which common voting rules can be viewed as a maximum likelihood estimator

(MLE) of the true ranking when observations consist of full rankings in L(X) (see

e.g. Young, 1988; Conitzer and Sandholm, 2012; Procaccia, Reddi, and Shah, 2012).

With the general class of noise models I am considering here, requiring an estimator

to be an MLE is too stringent a task. Rather, I ask that an estimator return the

true best alternative or true ranking with probability one given an infinite number

of samples from any noise model G ∈ G. Any such estimator will be “correct” with

high probability given a large number of sampled votes, an appealing feature in

line with the convenience of crowdsourcing systems.
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I define two types of estimators. An estimator for the top-ranked alternative

is any mapping ân : On → 2X \∅. An estimator for the true ranking is any mapping

σ̂n : On → 2L(X) \ ∅. Note that both types of estimators may be set-valued. Let

Yac denote the random variable that counts the number of times alternative a was

voted for over c in a dataset i.e. Yac = |{i ≤ n : bi = a and c ∈ Bi}|. The estimator

ân is said to be Condorcet consistent if for any dataset such that there exists a ∈ X

with Yac > Yca for all c 6= a then ân = a. The estimator σ̂n is said to be pairwise

consistent if for any dataset such that there exists a ranking σ̃ ∈ L(X) defined by

a �σ̃ c ⇐⇒ Yac > Yca then σ̂n = σ̃.

The next results show that any estimators in these classes will almost surely

converge to the correct best alternative and ranking respectively. The proofs rely

on Proposition 3.3.2 and its Corollary, which provide the intuition for the results:

as the number of votes solicited from any binary choice set tends to infinity, the

true better alternative will emerge by almost surely receving more votes.

Theorem 3.5.1. Let (B1, b1), (B2, b2), . . . , (Bn, bn) be a sequence of observations

from some G ∈ G and ωn = ((Bi, bi))i≤n the corresponding datasets satisfying

|{i ≤ n : a, c ∈ Bi}| → ∞ as n → ∞ for every distinct a, c ∈ X. Then for any

sequence of Condorcet consistent estimators {ân} it follows that ân
a.s.−−→ a1.11

Proof of Theorem 3.5.1. For a choice set A and alternative a ∈ A let YA,a =

|{i ≤ n : bi = a and Bi = A}| be the number of times a was voted for from

choice set A and let nA = |{i ≤ n : Bi = A}| be the number of times choice

set A appears in the dataset. By assumption, for a1 and each other alternative

c there is a choice set D ⊇ {a1, c} such that nD → ∞ as n → ∞. Define

11An event is said to happen almost surely (a.s.) if it occurs with probability equal to one. A
sequence of random variables {Yn} converges almost surely to (possibly non-random) Y (denoted

Yn
a.s.−−→ Y ) if the event limn→∞ Yn = Y occurs with probability equal to one.
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λD,a1c = E [(YD,a1 − YD,c)/nD] = p(a1|D) − p(c|D) which is strictly positive by

Corollary 3.3.1. Thus,

Pr

(
YD,a1 − YD,c

nD
≤ 0

)
≤ Pr

(∣∣∣∣YD,a1 − YD,cnD
− E

(
YD,a1 − YD,c

nD

)∣∣∣∣≥ λD,a1c

)
≤ 2e−2nDλ

2
D,a1c (3.11)

where the second transition follows from Hoeffding’s inequality (Hoeffding, 1963).

Since
∑∞

k=1 e
−k <∞ it follows from the Borel-Cantelli Lemma (Durrett, 2010) that

almost surely YD,a1 − YD,c > 0 for all but finitely many values of nD. Since D was

arbitrary and since Ya1c−Yca1 =
∑

A⊇{a1,c} YA,a1−YA,c, almost surely Ya1c−Yca1 > 0

for all but finitely many observations. Since c was arbitrary, it follows that

Pr

(⋃
c 6=a1

Ya1c − Yca1 ≤ 0 for infinitely many observations

)
= 0

so that for all but finitely many observations, almost surely Ya1c − Yca1 > 0 for

every c 6= a . By Condorcet consistency, almost surely ân = a1 for all but finitely

many n , which proves the result.

Note that the result stated in Theorem 3.5.1 holds with less strict requirement

|{i ≤ n : a1, c ∈ Bi}| → ∞ as n→∞ for every c 6= a1. However, without a priori

knowledge of a1, the sufficient condition given in the theorem is better suited for

data collection.

Theorem 3.5.2. Let (B1, b1), (B2, b2), . . . , (Bn, bn) be a sequence of observations

from some G ∈ G and ωn = ((Bi, bi))i≤n the corresponding datasets satisfying

|{i ≤ n : Bi = {a, c}}| → ∞ as n→∞ for every distinct a, c ∈ X. Then for any

sequence of pairwise consistent estimators {σ̂n} it follows that σ̂n
a.s.−−→ σ∗.
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Proof of Theorem 3.5.2. For a choice set A and alternative a ∈ A let YA,a = |{i ≤

n : bi = a and Bi = A}| be the number of times a was voted for from choice set A

and let nA = |{i ≤ n : Bi = A}| be the number of times choice set A appears in the

dataset. Let a, c be two distinct alternatives. By assumption n{a,c} →∞ as n→∞.

Suppose WLOG that a �σ∗ c. Using Corollary 3.3.1 and arguments similar to those

in the proof of Theorem 3.5.1, almost surely Y{a,c},a− Y{a,c},c > 0 for all but finitely

many values of n{a,c}. For any other D ⊃ {a, c} satisfying nD →∞ as n→∞, it

follows by Proposition 3.3.2 and a simple Strong Law of Large Numbers argument

(Durrett, 2010) that almost surely YD,a − YD,c ≥ 0 as n→∞. Thus, it follows that

almost surely Yac − Yca > 0 as n → ∞. Since a, c were arbitrary the preceding

analysis applies to every pair of alternatives. Thus, by pairwise consistency it

follows that almost surely σ̂n = σ∗ as n→∞.

3.5.2 Choice experiment design

As a natural counterpart to the previous section, I now investigate the

efficiency of a commonly used choice experiment design in achieving a researcher’s

goal of estimating the best alternative or true ranking. Specifically, I analyze

the number of samples needed to guarantee that the classes of estimators in the

previous section return the best alternative or true ranking with probability at least

1− ε for some ε ∈ (0, 1). For tractability, I work with Mallows’ model (introduced

in Section 3.2).

I make use of a binary choice design in which votes are solicited from

numerous binary choice sets. When approximating the best alternative, I assume the

researcher first pairs two alternatives at random and keeps the winning alternative.

The winner is then to be paired with another randomly chosen alternative. Thus,

m− 1 such comparisons will need to be made, with the winner in each pair being
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determined with high enough probability so that the overall achieved probabilistic

confidence is 1− ε. When approximating the ranking σ∗ I assume all
(
m
2

)
pairwise

comparisons are made.

The sufficient number of samples is presented as a function of φ, ε, and m.

Theorem 3.5.3. Let ε ∈ (0, 1). Then with Mallows’ model, any Condorcet con-

sistent estimator will determine the top ranked alternative with probability at least

1− ε given m−1
2

[(
1+φ
1−φ

)2

log
(

2m
ε

)]
samples from the binary choice design. Further,

any pairwise consistent estimator will determine the true ranking with probability

at least 1− ε given m(m−1)
4

[(
1+φ
1−φ

)2

log
(
m(m−1)

2ε

)]
samples from the binary choice

design.

Proof of Theorem 3.5.3. Let ω ∈ On be a dataset of n observations generated from

Mallows’ model where each observation is a vote from some binary choice set. For

any two alternatives a, c let n{a,c} be defined as in Theorem 3.5.1. Note that by

the independence of votes across choice sets, identifying the better alternative in

any of the m − 1 sampled binary choice sets with probability at least 1 − ε
m

is

sufficient for guaranteeing that a1 is identified as the best with overall probability

at least 1− ε. Using Propositions 3.3.3 and 3.3.4 it is easy to see that determining

the better alternative from a binary choice set is most difficult for choice sets

{ai, ai+1} where i ∈ {1, . . . ,m− 1}. Further, by Proposition 3.3.2 it follows that

p(ai|{ai, ai+1})− p(ai+1|{ai, ai+1}) = 1−φ
1+φ

.

Let YA,a be defined as in the proof of Theorem 3.5.1. By Condorcet consis-

tency of the estimator, it is sufficient that Y{a,c},a − Y{a,c},c > 0 for any two paired

alternatives a, c with a �σ∗ c. Using Hoeffding’s inequality as in (3.11) it follows

that

Pr

(
Y{a,c},a − Y{a,c},c

n
≤ 0

)
≤ 2e−2n{a,c}λ

2
{a,c},ac ≤ 2e−2n{a,c}λ

2
min
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where λmin = p(ai|{ai, ai+1}) − p(ai+1|{ai, ai+1}) = 1−φ
1+φ

and λ is defined as in

the proof of Theorem 3.5.1. Thus, having n{a,c} ≥ (1+φ)2

2(1−φ)2
log
(

2m
ε

)
is sufficient to

guarantee that the probability of not identifying the better alternative from {a, c}

is at most ε
m

. Collecting the sufficient number of samples in each of m− 1 binary

choice sets gives the result for the binary choice design.

The results for estimating the correct ranking with pairwise consistent

estimators are easily derived from the above results by collecting the sufficient

number of samples in each of the
(
m
2

)
binary menus where in each menu the better

alternative is identified with probability at least 1− ε

(m2 )
.

Although the sufficient bounds are complicated expressions, they provide

useful guidance as to experiment designs, particularly if the researcher has some

knowledge as to the value of φ. Future work should focus on deriving similar upper

bounds for other popular sampling schemes such as soliciting votes from the entire

set X. Additionally, it would be interesting to see if the results using Mallows’

model can be used to bound sample sizes for more general models in the class GdK .

Chapter 3 is solo authored and is being prepared for submission for publica-

tion.
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3.6 Appendix: Preliminaries for Theorem 3.4.2

The following results from group theory are used in the proof of Theorem

3.4.2 (see e.g. Jacobson, 2012). Labeling the alternatives as X = {1, . . . ,m}, an

alternative way to identify rankings in L(X) is to view them as permutations. A

permutation is any bijective mapping π : X → X and the set of permutations on X

is known as the symmetric group on X and denoted Sm. I associate each ranking

σ ∈ L(X) with a unique permutation π ∈ Sm by the relation σ(i) = π−1(i) for each

i. Thus, π(j) is the item with rank j. I label the identity permutation as π∗ such

that σ∗(i) = π∗−1(i) = i.

A transposition is a permutation which consists of permuting only two

elements. It is known that every permutation π ∈ Sm can be expressed as the

composition of transpositions. Such a composition is generally not unique; however,

every composition of a permutation will involve only an even number of transposi-

tions or an odd number of transpositions. A permutation can be classified by its

parity which is either even or odd depending on whether every composition involves

an even or odd number of transpositions. There are an equal number of even and

odd permutations in Sm i.e. m!
2

. Since every transposition is an odd permutation,

composing a permutation with a transposition results in a permutation of the

opposite parity as the original.

The number of inversions of a permutation π relative to the identity permu-

tation is defined as

Inv(π) =
∣∣{(i, j) : j > i and π−1(j) < π−1(i)

}∣∣ .
If σ ∈ L(X) is the ranking associated with π ∈ Sm then it is clear that Inv(π) =
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dK(σ, σ∗). Further, the parity of a permutation can also be determined by the

evenness or oddness of the number of inversions since each inversion can be con-

sidered a transposition of adjacent alternatives. Since there are an equal number

of even and odd permutations in Sm, it follows that there are an equal number of

even-distanced and odd-distanced rankings from σ∗ in L(X). This fact is crucial to

the proof of Theorem 3.4.2.
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