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ABSTRACT OF THE THESIS

A combined approach for predicting sparse variables

such as tips ratio and daily precipitation

by

Jinshu Li

Master of Science in Statistics

University of California, Los Angeles, 2019

Professor Yingnian Wu, Chair

A sparse variable is a variable whose values are mostly zero. Because of its sparsity, satis-

factory prediction results of a sparse variable usually cannot be obtained by either pure (i.e.

single) regression or pure classification machine learning methods. Therefore, to resolve this

difficulty, this thesis paper proposes a framework that combines a regression model and a

classification model. Furthermore, two types of the combined regression and classification

framework are discussed, and their differences are illustrated. Two sparse variables are se-

lected as the case studies: taxi tips ratio (i.e. tips amount divided by total fare) and daily

precipitation volume (i.e. total rainfall amount in one day). The author first employs Lasso

regression to select relevant features for each sparse variable, with the best Lasso parameter

determined by cross-validation (CV). Second, the author selects Logistic regression and the

AdaBoost method as the classification methods, while the XGBoost method is chosen as the

regression method. The hyperparameters are determined by fine-tuning. The author then

surveys over the prediction results of the pure classification method, the pure regression

method, and the combined method, using root mean square error (RMSE) as the metric.

The results show that the pure regression method provides the least RMSE for both vari-

ables; however, it does not satisfy the sparsity requirement. On the contrary, the combined

method, whose RMSE is close to the RMSE of the pure regression method, can also provide

the sparse results, which makes it an efficient way to predict sparse variables like taxi tip

ratio and daily precipitation.
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CHAPTER 1

Introduction

Predicting the value of a random variable is an essential task in statistics and machine learn-

ing. It typically involves an activity where a mapping function is first inferred from a set

of labeled training examples, then a prediction can be made based on the learned mapping

function and a new testing example. The predictions based on such procedures are called

supervised learning.

Supervised learning is focused on learning the relation between training input variables

and training output variables. On the contrary, unsupervised learning, another kind of learn-

ing method, does not have labeled training examples (i.e. no obvious categories of input and

output variables); instead, it focuses on investigating the hidden structure from the unla-

beled training data (Murphy, 2012; Wu, 2019). Also, since no labeled training output is

available, it is much harder to evaluate the performance of unsupervised learning methods

than supervised learning methods. The widely-used unsupervised learning methods include

Principal Component Analysis (PCA) (Pearson, 1901; Hotelling, 1933), Independent Com-

ponent Analysis (ICA) (Hyvrinen, A. and Oja, 2000), embedding methods, clustering algo-

rithms (Murphy, 2012; Wu, 2019), etc. Reinforcement learning (Sutton and Barto, 2014;

Wu, 2019) is another kind of learning method that is newly emerged in the field of deep

learning. Its learning strategy is between supervised learning and unsupervised learning,

which involves mapping from state to action based on some policies. However, since most

prediction activities are conducted under supervised learning, in this study the author will

focus on supervised learning.
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Many popular statistical models and machine learning methods belong to supervised

learning. Depending on the format of outputs, they can be divided into two categories:

regression methods and classification methods (Murphy, 2012; Wu, 2019). Regression mod-

els output continuous prediction results. Popular regression results include ordinary least-

squares regression (OLS), ridge regression (Hoerl and Kennard, 1970), lasso regression (Tib-

shirani, 1996), kernel regression (Takeda et al., 2006), boosting machine (Schapire, 1990) (e.g.

gradient boosting), and artificial neural network (ANN) (McCulloch and Pitts, 1943), etc.

Unlike regression, classification models provide binary classes prediction (or multi-classes

prediction). Popular classification models are logistic regression (Walker et al., 1967), sup-

port vector machine (SVM) (Cortes and Vapnik, 1995), boost machine (e.g. Adaboost), and

ANN, etc.

Because of different output formats, classification models and regression models typically

cannot be mix-used. In other words, for a given prediction problem, it can either be solved

by a regression problem or a classification problem. If the output variable is continuous,

a regression model is used, while classification models are more appropriate if the output

variable is binary.

Sparse variable is a special variable x that has a positive probability weight on value zero

(i.e. P (x = 0) = β > 0), and the rest of the probability weight is on the rest support of

x (e.g. P (x 6= 0) = 1 − β). In other words, the sparse variable x is discrete between zero

and the rest of support, but continuous on the rest of support. The definition of sparse

variable x decides that it is more likely for x to be equal to zero than any other values,

since P (x = b) = 0, where b is a nonzero value on the support. Thus, if we sample from

the distribution of sparse variable x and store the results in a vector, the vector would be a

sparse vector, in which most elements are zero.

Predicting a sparse variable’s value based on learned relation is worth studying, since

sparse variables are very common in engineering and daily life. For example, the taxi tips
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ratio is defined as the tips amount divided by the total trip fare, which can be regarded as

a sparse variable. Since giving tips is not mandatory in some regions, many customers in

those regions will choose not to give tips, and this will lead to many zero values for the ratio

variable. Another sparse variable example in hydrology is daily precipitation. For a given

day, the daily precipitation would be zero if there is no rain on that day, which is very often.

However, daily precipitation can also be a very high number if there is a heavy rain on that

day.

Precisely predicting a sparse variable is not easy, and often more difficult than predict-

ing other variables. This is because a sparse variable is neither discrete nor continuous, so

directly applying either regression or classification methods may not yield desired results.

Therefore, in this study, I propose a framework that combines a classification model and a

regression model, for predicting the sparse variable. I will then compare the predicting per-

formance of the proposed framework with a single classification and a single regression model.

The classification models selected in this study are logistic regression (Walker et al., 1967)

and Adaboost (Freund and Schapire, 1997). Logistic regression is a traditional classifica-

tion model that can be regarded as one of the generalized linear models (GLM). Adaboost

belongs to boosting machine and consists of several weak classifiers. The final classification

decision is made upon a perceptron based on those weak classifiers. The regression model

selected in this study is extreme gradient boosting (XGB). XGB (Chen and Guestrin, 2016)

is a newly emerged gradient boosting techniques that quickly drew a lot attention due to its

good accuracy and efficiency. All the methods will be elaborated in the following methodol-

ogy section.

All the aforementioned supervised learning methods require a design matrix (i.e. training

examples) that consists of a number of features. To achieve a good prediction, it is necessary

to select a subset of available features that are related to the output variable, but not highly

related with each other. This is due to the fact that if the selected features are not related
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to the output variable, then the designed model based on such features are weak in predic-

tion. And if the selected features are highly related with each other, then collinearity may

occur, which will lead to a non-full rank design matrix. Therefore, feature selection must be

conducted before any models are built. Lasso regression is a linear regression model with a

l1 regularization, which is known for feature selection by selecting a relatively small number

of regression coefficients to be non-zeros, and setting the coefficients of other features to

be zeros. Thus, Lasso regression will be employed for feature selection before constructing

machine learning models.

Here is an outline of this thesis: Section 2.1 elaborates on the Lasso regression for fea-

ture selection and cross-validation (CV) method for the determination of Lasso parameter.

Section 2.2 discusses the proposed classification-regression framework for predicting sparse

variables. Section 2.3 elaborates on the specific machine learning models used in this study,

which include logistic regression, Adaboost, and XGBoost. Chapter 3 applies a pure classifi-

cation model, a pure regression model and the proposed classification-regression framework

on two sparse variables: taxi tips ratio and daily precipitation volume. Final remarks and

conclusions are provided in Chapter 4.
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CHAPTER 2

Methodology

The main contribution of this thesis is the proposal of a classification-regression framework to

predict sparse variables (i.e. classification-regression framework type I and II ). A flowchart

of our proposed method of predicting sparse variables is shown in Figure 2.1. I first elaborate

on how to use Lasso regression to select relevant features. Next, a classification-regression

framework is proposed for predicting sparse variables. Then I discuss several classification

and regression methods that can be used in the proposed framework, including logistic re-

gression, Adaboost, and XGBoost. Finally, the proposed classification-regression is tested to

predict two sparse variables: taxi tips ratio and daily precipitation volume, using real-world

data.

2.1 Lasso regression for feature selection

Lasso regression is typically referred to the linear regression with l1 regularization. For the

following generic linear model:

yi =

p∑
j=1

xijβj + εi, (2.1)

where yi is the output (response, dependent variable); xij is the ith observation of jth feature

(predictor, regressor); βj is the regression coefficient of jth feature;

The ordinary linear regression (OLS) is aimed at solving the following least square opti-
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Figure 2.1: A flowchart of the proposed method.

mization problem:

minimize
β

RSS(β) = ||Y −Xβ||22, (2.2)

where RSS is the function of Residual Square, defined as square of the difference between the

data and its prediction value. X is the design matrix; β is the regression coefficient vector;

Y is the response vector.

OLS does not penalize on the β, which might lead to a non-sparse β vector. Thus, the

l1 regularization is added in the above optimization problem to make β vector as sparse as

possible, shown as Eqn.(2.3).

minimize
β

RSS(β) + λ · ||β||1 (2.3)

where ||β||1 is the l1 norm of β vector; λ is the a tuning parameter (i.e. Lasso parameter).

Since any norm is a convex function, so Eqn.(2.3) is still a convex optimization problem.

However, ||β||1 is not differentiable, which prevents us using gradient method to solve that

problem. We can choose other optimization method, such as sub-gradient method, proximal
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gradient method, or ADMM (Alternating direction method of multiplier), to solve this non-

smooth problem. Note this problem can also be transformed into a smooth problem and

then solved easily, which is adopted by CVX and other popular solvers.

The Lasso (shrinkage) parameter λ controls the amount of regularization and the sparsity

of β vector. For each λ, we have a solution (β vector). So, we can vary the value of λ trace

out a path of solution and select the λ value, under which all solutions are stable.

Another method to determine Lasso parameter λ is to use K-fold cross-validation. It

partitions the training data T into K separate equal-size sets and fits the model to the

training set excluding the kth-fold Tk. This Tk will serve as the testing set for each fitted

model and the test error (residual square) is calculated for each model. Figure 2.2 provides

an illustrative diagram. The average residual square (CV error) is computed based on those

k models. So, a range of λ value is first selected, then the CV error is calculated for each

λ. The best λ value in the range is the λ with the minimum CV error. In this thesis, both

methods of determining are conducted: I first employ the Lasso trace method, and then

apply CV to validate the results.

2.2 Classification-regression framework for predicting sparse vari-

ables

As discussed, the sparse variable has a positive probability weight on zero, and the rest of

the probability weight is on the rest of support. In other words, the sparse variable x is

discrete between zero and the rest of support, but continuous on the rest of support. Thus,

the prediction of its value based on the selected features is an interesting challenge. In

this thesis, I propose and test the following four methods that can be used to predict such

variable’s value.
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Figure 2.2: An illustrative diagram for K-folds cross-validation.

2.2.1 Pure regression method

Assume the sparse variable is continuous and select a regression model to predict the variable.

Calculate the root mean square error (RMSE). The pseudo code is shown as follows:

fr = train(Xtrain), (2.4)

Ŷr = fr(X), (2.5)

RMSEr = ||Ŷr − Y ||2, (2.6)

where Xtrain is the training design matrix of selected features; X is the testing design matrix

of selected features; fr is a trained regression model; Ŷr is the output vector based on the

regression model and the testing design matrix; Y is the real testing value vector.

2.2.2 Pure classification method

Assume the sparse variable is discrete and select a classification model (0/1) to predict the

variable. For every value that is classified as 1, multiply the average testing value. Calculate
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the RMSE. The pseudo code is shown as follows:

fc = train(Xtrain), (2.7)

Ŷc = fc(X), (2.8)

Ŷc(Ŷc == 1) = mean(Ytrain), (2.9)

RMSEc = ||Ŷc − Y ||2, (2.10)

where Xtrain is the training design matrix of selected features; X is the testing design matrix

of selected features; train(*) represents the training action based on *; fc is a trained clas-

sification model; Ŷc is the output vector based on the classification model and the testing

design matrix; Ytrain is the training value vector; Y is the real testing value vector. Note

that the equations from (2.4) to (2.25) represent assigning the value of right side term to

the left side term. And the expression Y (Y == 1) indicates all elements in Y whose values

are 1. Thus for example, Eqn.(2.9) means: a) Find all elements in Ŷc whose values are 1; b)

Assign the mean value of Ytrain to all the elements found in a). The reason to use the mean

value of Ytrain as our predicting results instead of the predicted ”1” is that we want to lower

the RMSE as much as possible, and the mean value of Ytrain is a much better choice than

the original predicted ”1”.

2.2.3 Classification-Regression framework type I

We select a classification model to predict the variable, and we also select a regression

model to predict the variable. Then, for every value that is classified as 1, equate it to the

corresponding prediction in the regression model. Calculate the RMSE. The pseudo code is

shown as follows:

fc = train(Xtrain), (2.11)

fr = train(Xtrain), (2.12)

Ŷc = fc(X), (2.13)

Ŷr = fr(X), (2.14)
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[Ŷc(Ŷc == 1)] = [Ŷr(Ŷc == 1)], (2.15)

ŶCR−1 = Ŷc, (2.16)

RMSECR−1 = ||ŶCR−1 − Y ||2, (2.17)

where Xtrain is the training design matrix of selected features; X is the testing design matrix

of selected features; fc is a trained classification model; fr is a trained regression model; Ŷc

is the output vector based on the classification model and the testing design matrix; Ŷr is

the output vector based on the regression model and the testing design matrix; ŶCR−1 is the

final prediction vector under this framework; Y is the real testing value vector. Remind that

Eqn.(2.15) indicates: a) Find all the elements in Ŷr whose positions corresponding to the

elements in Ŷc whose values are 1. b) Find all elements in Ŷc whose values are 1. c) Assign

the values of found elements in a) to the found elements in b), one-to-one correspondingly.

2.2.4 Classification-Regression framework type II

We select a classification model to predict the variable, based on the whole training design

matrix. Next, we extract the observations in the training design matrix where the corre-

sponding output is classified as 1. Those extracted observations are combined as a new

design matrix, We then train a regression model based on this new design matrix to predict

the variable values. These values from regression model are used as the prediction for the

output classified as 1. The pseudo code is shown as follows:

fc = train(Xtrain), (2.18)

Ŷc = fc(X), (2.19)

Xnew = Xtrain[Yc == 1], (2.20)

fr = train(Xnew), (2.21)

Ŷr = fr(X), (2.22)

Ŷc(Ŷc == 1) = Ŷr, (2.23)

ŶCR−2 = Ŷc, (2.24)
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RMSECR−2 = ||ŶCR−2 − Y ||2, (2.25)

where Xtrain is the training design matrix of selected features; X is the testing design matrix

of selected features; Xnew is the new design matrix (only contains extracted observations);

fc is a trained classification model; fr is a trained regression model; Ŷc is the output vector

based on the classification model and the testing design matrix; Ŷr is the output vector based

on the regression model and the testing design matrix; ŶCR−2 is the final prediction vector

under this framework; Y is the real testing value vector.

Among the four methods, the first and second method are the ordinary regression and

classification model, except that we multiply the average training output to the non-zero

prediction in the classification model. They are the widely-used methods that are applied to

predict sparse variables. However, both of them have the drawbacks: for the pure regression

method, it treats the sparse variable as the continuous variable, which ignores the internal

property of sparse variable, and the prediction result is not a sparse vector. This violates the

goal to produce a sparse prediction vector. For the classification method, although it can

provide a sparse prediction, the RMSE is expected to be high due to the assumed discreteness.

To alleviate these drawbacks, in this thesis, the aforementioned two types of Classification-

Regression framework are proposed. It can be seen that the difference between type I and

type II is how to train the regression model: type I uses the whole design matrix, while

type II only uses part of the design matrix, whose observations corresponds to the output

classified as label 1. We will evaluate and compare the performance of these two different

types in this next section.

2.3 Selected classification and regression models

In the proposed framework, we need to choose a classification model and a regression model.

In this thesis, we select two popular classification models: logistic regression and Adaboost;

and one regression model: XGBoost. These models are explained briefly in this section.
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2.3.1 Logistic regression

Logistic regression is one of generalized linear models (GLM), designed for classification.

The random structure is:

yi ∼ Bernoulli(pi), (2.26)

[i.e. Pr(yi = 1|xi,β) = pi]. and the systematic structure is:

logit(E(yi)) = logit(pi) = log(
pi

1− pi
) = si = xTi β, (2.27)

pi = sigmoid(si) =
esi

1 + esi
=

1

1 + e−si
, (2.28)

where logit() is the logit function, also the link function in this GLM; pi is the probability;

xi is the predictor of ith observation. β is the coefficient vector to be determined. In this

thesis, we apply the deterministic version of logistic regression:

yi = round(pi), (2.29)

round() is a function: round(x)=0 if x is in [0,0.5); round(x)=1 if x is in [0.5,1].

To compute β, we optimize the following loss function:

max
n∏
i=1

Pr(yi|xi,β), (2.30)

It is equivalent to:

max
n∏
i=1

eyisi

1 + esi
(2.31)

Take the log:

max
n∑
i=1

log(Pr(yi|xi, β)) =
n∑
i=1

[yisi − log(1 + esi)], (2.32)

It is equivalent to:

min −
n∑
i=1

[yisi − log(1 + esi)]. (2.33)

This is a convex optimization problem that can be easily solved. Also, the above logistic

regression is the binary version, and it can be extended to multiclass classification. But in

this thesis, it is enough to adopt the binary version.

12



Figure 2.3: An illustrative diagram of Adaboost

2.3.2 Adaboost

Adaboost belongs to boosting machine for classification. It consists of many weak classifiers

hk(xi). The final classification result is a perceptron based on the weighted results of weak

classifiers:

yi = sign(
d∑

k=1

βkhk(xi)), (2.34)

where βk is the weight of vote of classifier hk.

How to add weak classifiers is the central question in Adaboost. Typically, each iteration

adds a new weak classifier, and then assigns a bigger weight to the observation that is falsely

classified. Then by adding a new classifier in the next iteration, we try to minimize our

misclassifications. The final classifier is the linear combination of the selected classifiers.

Figure 2.3 shows an example of this procedure.

To find the weak classifier hk in each iteration. We first define the classifier at mth

iteration:

Fm(xi) = Fm−1(xi) + βmhm(xi). (2.35)

Use exponential loss function:

L(hm, βm) =
n∑
i=1

exp[−yi(Fm−1(xi)) + βmhm(xi)] ∝
n∑
i=1

Di exp[−βmyihm(xi)], (2.36)

where Di ∝ exp[−(yiFm−1(xi))]. Since yihm(xi) can only be +1 or -1, we simplify the loss

function as:

L(hm, βm) =
∑

i:hm(xi)=yi

Die
−βm +

∑
i:hm(xi)6=yi

Die
βm = (1− ε)e−βm + εeβm , (2.37)
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where ε =
∑

i:hm(xi)6=yi
Di is the error of hm on the reweighted dataset. Also, it can be shown

that minimizing L(hm, βm) is equivalent to minimizing the error ε. Thus, we can choose a

new weak classifier hm by minimizing ε. And for a fixed hm, its weight βm is calculated by

equating the two parts in L(hm, βm) [i.e. this is to minimize L(hm, βm)]:

(1− ε)e−βm = εeβm , (2.38)

which leads to:

βm =
1

2
log(

1− ε
ε

). (2.39)

2.3.3 XGBoost (XGB)

XGBboost is a gradient boosting machine but more principled. It expands the gradient

boosting loss function by the second order Taylor expansion. Let the current function be

Fm−1(x):

Fm−1(x) =
m−1∑
k=1

hk(x), (2.40)

where hk(x) is the base function (classification and regression tree). We want to learn a new

tree in the next iteration:

Fm(x) = Fm−1(x) + hm(x), (2.41)

The loss function of regression is:

L =
n∑
i=1

[yi − (Fm−1(xi) + hm(xi))]
2 =

n∑
i=1

(ri − hm(xi))
2, (2.42)

where ri is the residual error for observation i. The gradient boosting is aimed at minimizing

L to find the new hm(x). XGBoost further expand L by the Taylor expansion:

si = Fm−1(xi) + hm(xi), (2.43)

L(si, yi) = (yi − si)2. (2.44)

L(si, yi) ≈ L(ŝi, yi) + L
′
(ŝi, yi)hm(xi) +

1

2
L

′′
(ŝi, yi)hm(xi)

2, (2.45)

where:

L
′
(ŝi, yi) =

∂

∂s
L(si, yi), (2.46)
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L
′′
(ŝi, yi) =

∂2

∂s2
L(si, yi). (2.47)

Let ri = −L′
(ŝi, yi) and wi = L

′′
(ŝi, yi). Then we can rewrite:

L(si, yi) =
wi
2

[ỹi − hm(xi)]
2 + c, (2.48)

where ỹi = ri/wi and c is a constant. We can minimize Eqn. (2.48) to find hm(x) by weighted

least square method. Also, compared loss function (2.42) and (2.48), we see that XGBoost

is typically faster than gradient boosting because it accounts for the curvature wi.
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CHAPTER 3

Case study

In this section, we will test our proposed frameworks by predicting two sparse variables. One

is taxi tips ratio, the other is daily precipitation volume. Through these tests, we compare

the performance of our proposed frameworks with the pure regression model and the pure

classification model. RMSE is used as the criteria.

3.1 Taxi tips ratio

Taxi tips ratio is defined as the tips amount divided by the total trip fare. It represents the

willingness of passengers to give tips, and it is very meaningful to the taxi drivers and taxi

companies. Thus, how to predict taxi tips ratio based on some features is an interesting

question. Since giving tips is not mandatory, many passengers would choose not to give tips,

which will lead to a high weight on zero. If the tip ratio is not zero, it can be any positive

value less or equal to one. Thus, taxi tips ratio can be regarded as a sparse variable.

3.1.1 Data description

In this study, we use data from the New York City Taxi commission about Green Taxis in

Sep, 2015. The data are public at NYC government website and can be obtained at:

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

There are 1.5 million records in total. To expiate the algorithms, we only use the first 500,000

observations to run algorithms.

In one observation, the features (predictors) include: Passenger count, Trip distance,
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Figure 3.1: A histogram of tips ratio (sparse variable)

Fare amount, Extra, MTA tax, Tolls amount, and Improvement surcharge. The response

is taxi tips ratio. We plot the histogram of the tips ratio (the sparse variable) to show its

sparsity (i.e. most values are zero) in Figure 3.1 as an example. We also plot the histograms

of two important features (predictors): trip distances and total fare amount behind, from

which we can see that the features are not necessarily sparse.

3.1.2 Lasso for feature selection

Before running any predicting models, we need to first select effective predictors by Lasso

regression introduced above. We first conduct the trace method to determine the Lasso

parameter λ. The trace plot is shown in Figure 3.2. We can see in Figure 3.4 that only

three features have non-zero coefficients when λ approaches to 0.001. To confirm this value,

we conduct a 10-folds cross validation to find the best λ. The CV results indicate that

λbest = 0.001, which validates Figure 3.4. So, under λbest = 0.001, we select the following
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Figure 3.2: A histogram of trip distance (feature)
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Figure 3.3: A histogram of total fare amount (feature)
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Figure 3.4: Trace plot for Lasso parameter of tips ratio
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three predictors: Trip distance, Fare amount, and Tolls amount, whose lasso regression

coefficients are non-zero. The design matrix used in the following models are based on these

three predictors.

3.1.3 Predicting performance of proposed method

In this subsection, we compare the four aforementioned methods for predicting sparse vari-

ables: 1.Pure regression model; 2.Pure classification model; 3.Classification-Regression frame-

work type I; 4.Classification-Regression framework type II. Logistic regression and XGBoost

are selected as the pure classification and pure regression model, respectively. For the

Classification-Regression framework, we use both logistic regression and Adaboost as the

classification models, and the regression model is still XGBoost. The hyperparameters in

each model are determined by fine-tuning. RMSE is used as the criteria and the results are

shown in Table 3.1. Note that the RMSE in this chapter is calculated based on train-test

split method, with the testing data ratio equal to 0.2.

Table 3.1: RMSE results of different frameworks for predicting tips ratio

Proposed frameworks RMSE

1. Pure XGB 0.0871

2. Pure Logistric 0.1059

3. Logistic + XGB framework type I 0.1057

4. Adaboost + XGB framework type I 0.1034

5. Logistic + XGB framework type II 0.1081

6. Adaboost + XGB framework type II 0.1075

It can be seen from Table 3.1 that: First, except the pure regression model, all the rest

five frameworks can provide spare predictions. Thus. although the pure regression (XGB)

model has the least RMSE, its non-sparse predictions prevent it from being the best choice.

The pure classification (Logistic) model behaves better than Type II classification-regression

framework, but not as good as Type I classification-regression framework, which indicates
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that type I is generally better than type II. Compare experiments 3 and 4, 5 and 6, we see

that using Adaboost instead of logistic regression as the classification model in the proposed

framework works better, regardless of in type I or II. This might be because that Adaboost

has the stronger classification power.

In sum, to obtain sparse prediction results with the lowest RMSE, I suggest use method

4: (Adaboost + XGB framework type I) to predict taxi tips ratio in this section.

3.2 Daily precipitation volume

Daily precipitation volume is an important index in hydrology. It represents the total rainfall

amount for a given day, typically with the unit of inches or mm. If daily precipitation volume

can be predicted based on some features, the water resources can be deployed accordingly,

which will maximize the irrigation benefits and minimize the flood risk. Thus, it is our desire

to find a way to predict daily precipitation volume. Since for most regions, the rainfall does

not appear on a daily basis, so it is obvious that daily precipitation volume can be regarded

as a sparse variable.

3.2.1 Data description

In this study, we use the hydro data in Hobbs basin. Hobbs basin (USGS 01104430 HOBBS

BK BELOW CAMBRIDGE RES NR KENDALL GREEN, MA) is in the Middlesex County,

Massachusetts, USA, with Latitude 4223
′
53” and Longitude 7116

′
26”. Figure 3.5 is a loca-

tion map showing its relative position. The drainage area is 6.86 square miles, and the

contributing drainage area is also 6.86 square miles, which indicates it is not a big basin.

We collect the hydro data for Hobbs basin from 9/30/2006-1/1/2019, which is available at

USGS official website: https : //waterdata.usgs.gov/ (ID: 01104430). The testing data ratio

is still 0.2.
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Figure 3.5: A location map of Hobbs basin

In one observation, there are 11 features (predictors), including: Average reservoir stor-

age, Average discharge, Maximum water temperature, Minimum water temperature, Average

water temperature, Maximum specific conductance, Minimum specific conductance, Average

specific conductance, Maximum air temperature, Minimum air temperature, and Average

air temperature. We plot the histogram of the response variable (i.e daily precipitation vol-

ume) to show its sparsity (i.e. most values are zero) in Figure 3.6. The important features

(average reservoir storage and average water temperature) are also plotted to characterize

the watershed as follows.

3.2.2 Lasso for feature selection

As discussed, we need to first select effective predictors by Lasso regression. The trace plot

is shown in Figure 3.5 to determine the Lasso parameter λ. We can see in Figure 3.9 that

most regression coefficients are non-zero under a larger range of λ value, which prompts

us to conduct a 10-folds cross validation to find the best λ. The CV results indicate that

λbest = 0.001. So, under λbest = 0.001, we select the following three predictors: Maximum
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Figure 3.6: A histogram of daily precipitation
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Figure 3.7: A histogram of mean reservoir storage
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Figure 3.8: A histogram of mean water temperature
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Figure 3.9: Trace plot for Lasso parameter of daily precipitation volume
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water temperature, Average water temperature, Maximum air temperature, and Minimum

air temperature, whose lasso regression coefficients are non-zero and significant. The design

matrix used in the following models are based on these four predictors.

3.2.3 Predicting performance of proposed method

We compare the four aforementioned methods for predicting sparse variables: 1.Pure re-

gression model; 2.Pure classification model; 3.Classification-Regression framework type I;

4.Classification-Regression framework type II. The selected classification models, regression

models and other settings are the same with section 3.1.3. RMSE is used as the criteria and

the results are shown in Table 3.2.

Table 3.2: RMSE results of different frameworks for predicting daily precipitation volume

Proposed frameworks RMSE

1. Pure XGB 0.3011

2. Pure Logistric 0.3222

3. Logistic + XGB framework type I 0.3090

4. Adaboost + XGB framework type I 0.3126

5. Logistic + XGB framework type II 0.3165

6. Adaboost + XGB framework type II 0.3182

It can be seen from Table 3.2 that: The pure regression (XGB) model still has the least

RMSE. But as we discussed, its non-sparse predictions prevent it from being the legal choice.

The pure classification (Logistic) model, in this experiment, behaves as the worst. Type I

framework outperforms Type II framework according to the comparison between experi-

ments 3 and 5, 4 and 6. And this time, using logistic regression instead of Adaboost as the

classification model in the framework works better.

In sum, to obtain sparse prediction results with the lowest RMSE, I suggest use method

3: (Logistic regression + XGB framework Type I) to predict daily precipitation volume in
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this section. This is due to the fact that method 3 can not only provide sparse predictions,

but also has the minimum RMSE.
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CHAPTER 4

Discussion and conclusion

In this thesis, I describe sparse variables that have non-zero probability weights on zero. Four

methods are discussed to predict sparse variables: 1.Pure regression model; 2.Pure classifica-

tion model; 3.Classification-Regression framework type I; 4.Classification-Regression frame-

work type II. Several widely used classification and regression models are introduced, such

as: logistic regression, Adaboost, and XGBoost. Lasso regression is also elaborated for fea-

ture selection.

In the case studies, I select two sparse variables as examples: Taxi tips ratio and daily

precipitation volume. By analyzing the results, it is found that Classification-Regression

framework type I is the best method to predict sparse variables like taxi tips ratio and

daily precipitation volume, since it obtains sparse prediction results with the lowest RMSE,

for both examples. While the best framework is determined (i.e. type I), the optimal

regression and classification models in this framework are flexible, which seems to depend

on the particular problem (i.e. different sparse variables to be predicted).
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