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Abstract 

The rapid growth in biomedical research has generated vast amounts of data, including 

genomic, molecular, imaging, and clinical information from humans and other species. 

Leveraging this data is essential for groundbreaking scientific discoveries and a deeper 

understanding of health and disease across different species. However, the complexity 

and volume of these datasets present significant computational challenges, limiting their 

potential. 

This dissertation addresses two key challenges in biomedical data analysis: the efficient 

evaluation of sequencing data and the effective management and analysis of gene sets. 

By focusing on these areas, we develop innovative computational methods that enable 

the rapid, scalable, and accurate processing of large-scale biomedical data. For 

sequencing data, we create algorithms that enhance the speed and precision of data 

evaluation, making it feasible to manage the increasing volume of sequences generated 

by modern technologies. For gene sets, we devise tools for their efficient management 

and analysis, allowing researchers to draw meaningful insights from complex genetic 

information. 

Through this research, we aim to contribute to the development of new analytical tools 

and methods, ultimately supporting the advancement of precision medicine and 

personalized healthcare for both human and veterinary applications.
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Chapter 1 

Background: Scalability of 

Computational Tools for Biomedical 

Data Analysis 

We are surrounded by data but starved for insights. 

Jay Baer 

Motivation 

The biomedical data landscape includes genomic, molecular, imaging, and clinical data, 

such as electronic health records. Technological advances, such as next-generation and 

single-cell sequencing, have enhanced the resolution with which we study genes. At the 

same time, high-resolution imaging and electronic health records have improved disease 

detection and data integration, advancing personalized medicine and research. 

However, the vast amount of available biomedical data presents a unique challenge 

(Dinov, 2016): its potential remains untapped without adequate tools and methods. 

Developing innovative approaches to harness this data is essential, as it can lead to 

significant scientific discoveries and a deeper understanding of human health and 

disease. 
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Background 

Computational Techniques for Scalability 

Sequence Alignment and Alignment-Free Methods 

The quest for efficient sequence alignment has driven dramatic advances in 

bioinformatics, with notable milestones in algorithmic innovation and 

implementation. The state-of-the-art BLAST tool (Altschul et al., 1990) introduced a 

heuristic approach for rapid local similarity searches, vastly accelerating database 

comparisons. Later, Bowtie (Langmead et al., 2009) and BWA (Li, 2013) leveraged 

the Burrows-Wheeler Transform and FM-index to align short DNA reads to large 

genomes with unprecedented speed and memory efficiency. These developments 

have been instrumental in analyzing next-generation sequencing data. More recently, 

DIAMOND (Buchfink et al., 2015) has pushed the boundaries further with double 

indexing, achieving BLAST-like speeds with reduced computational demands, 

which is particularly suited for protein alignment in metagenomics. Despite these 

advancements, large-scale bioinformatics applications pose significant 

computational challenges, necessitating ongoing innovation to optimize resource 

utilization, accuracy, and analysis time for the ever-growing volumes of genomic 

data (Genomic Data Resources, n.d.). 
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In contrast, alignment-free techniques offer a scalable alternative by estimating 

sequence similarity through statistical properties rather than explicit alignment 

(Vinga & Almeida, 2003) (Sims et al., 2009) (Zielezinski et al., 2017). For instance, k-

mer counting facilitates the rapid comparison of sequences without the 

computational overhead associated with traditional alignment methods (Manekar & 

Sathe, 2018). These techniques enable faster data processing and support tasks like 

clustering and classification. 

 

Alignment-free Exact vs. Non-Exact Sequence 

Representation 

In genomic research, inexact data representations offer a scalable solution for 

efficient analysis but can introduce inaccuracies, while exact representations ensure 

high precision at the cost of increased computational resources. The choice depends 

on research goals, with exact representations suited for applications requiring high 

accuracy and inexact representations suitable for scalable analyses. 

 

Exact Sequence Representation 

Exact data (lossless) representations maintain the original sequence data without 

alteration, precisely capturing all its information. This approach is essential when 

studying specific genomic variants that can be a single SNP or even 1Kbp variation 

or identifying unique genetic markers in individuals or sub-populations (Chaung et 
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al., 2023). Pinpointing exact mutations within a patient's genetic makeup is crucial 

for personalized medicine applications, such as tailoring pharmacogenomic 

treatments or designing targeted gene therapies (Gasic et al., 2021). Similarly, in 

microbial genomics, distinguishing between closely related strains—each potentially 

harboring different pathogenic traits—relies on exact sequence data to accurately 

trace transmission pathways and resistance mechanisms (Hooper & Jacoby, 2015). 

 

In DNA, exact data representation can be exemplified by k-mer full spectra, which 

rely on the complete set of k-mers in a genome or a sample to perform downstream 

analysis. This approach is crucial in genomics, as it enables researchers to capture 

the entire genomic landscape and gain a more comprehensive understanding of the 

underlying biology. To extract k-mers efficiently, high-performance tools like KMC 

(Kokot et al., 2017), Jellyfish (Marçais & Kingsford, 2011), and DSK are commonly 

employed, facilitating the rapid identification of k-mers that can then be utilized in 

various applications, such as sequence assembly (Koren et al., 2017), comparing 

datasets, contamination analysis (Wingett & Andrews, 2018), and reads binning in the 

metagenomics domain (Kawulok & Deorowicz, 2015). Notably, the full k-mer 

spectrum has recently been utilized to construct pan-genome full k-mer content, 

which has numerous applications, including investigating and studying structural 

variants at scale (Chaung et al., 2023). Moreover, the full k-mer spectrum offers a 

robust framework for exploring genomic data, allowing researchers to probe the 

complexities of genomic structure and function with precision, and by leveraging k-
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mer full spectra, researchers can gain a deeper understanding of the intricate 

relationships between genomic elements and their role in shaping the evolution and 

diversity of species. 

 

 

Despite the power of k-mer full spectra in genomics research, harnessing their 

potential at scale poses significant scalability challenges. One major hurdle is 

memory requirements, as the sheer volume of long k-mers in a single genome (e.g., 

k=31bp) can be staggering. For instance, the human genome alone contains 

approximately 3 billion k-mers, requiring around 24GB of memory (64bits x 3.2 

billion k-mers). This becomes even more daunting when comparing hundreds of 

highly sequenced human samples, which would necessitate enormous computational 

resources and memory capacities. As such, researchers face significant technical 

barriers in scaling k-mer full spectra analysis to meet the demands of large-scale 

genomics studies, highlighting the need for innovative solutions to overcome these 

limitations and fully unlock the potential of k-mer full spectra in genomics research. 

 

Non-Exact Data Representations in Large-Scale Genomic Studies 

Sketching is a computational technique that transforms large datasets into compact, 

lossy representations called sketches (Rowe, 2019). Sketching algorithms, such as 

MinHash, offer a solution by providing a sublinear space representation of data. 



6 

 

Initially developed for document clustering and deduplication (Broder, 1997), 

MinHash uses hashing to guarantee query precision while balancing memory usage 

and accuracy. By converting documents into sets through shingling and reducing 

them to shorter, similarity-preserving signatures, MinHash efficiently estimates 

Jaccard similarity and containment between documents - crucial for comparing 

genomic datasets. 

 

Recent innovations like Mash (Ondov et al., 2016a) have adapted MinHash for 

genomic data, employing fixed-size signatures to estimate similarity and introducing 

additional metrics for genomic complexity. CMash further enhances this approach 

by utilizing Bloom Filters for scalable containment estimates (Liu & Koslicki, 2022), 

supporting the comparison of diverse-sized datasets without excessive hash storage. 

Mash Screen streamlines containment score calculation by mapping distinct hashes 

from reference sketches to a query sequence, avoiding redundant data storage and 

processing (Ondov et al., 2019). Scaled MinHash (FracMinHash), introduced in 

sourmash (Pierce et al., 2019a) (Irber, Brooks, et al., 2022), refines this approach 

by adjusting hash selection based on a scaling parameter, combining the benefits of 

fixed and dynamic-sized sketches to suit large-scale, diverse, and comparing 

unequal-size complex datasets. 
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The FracMinHash is defined as: 

FRAC𝑠 (𝑆) = {ℎ(𝑘) ∣ 𝑘 ∈ 𝑆 and ℎ(𝑘) ≤ 𝐻𝑠 } 

Where: 

• S  is a set of elements, 

• h(k)  is a hash function applied to each element 𝑘 in the set S 

• Hs  is a threshold calculated as 
264 −1

scale
 

 

FracMinHash’s Operational Steps: 

1. Hash Function Application: Every element k in the set S is processed through 

the hash function h, generating a hash value h(k). 

2. Threshold Comparison: Each hash value h(k) is compared against the 

threshold Hs . If h(k) is less than or equal to Hs , it is included in the resultant 

hash set. Otherwise, it is excluded. 

3. Subset Formation: The hash values that meet the threshold criterion form the 

FracMinHash of the set S, serving as a probabilistic representative of the set. 
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The scale  parameter directly influences Hs , allowing precise control over the 

fraction of hash values included in the FracMinHash. A smaller 𝑠𝑐𝑎𝑙𝑒 value includes 

a broader range of hash values, increasing the sensitivity and size of the 

FracMinHash, whereas a larger 𝑠𝑐𝑎𝑙𝑒  value results in a more selective, smaller 

FracMinHash. By selectively including only a fraction of hash values, FracMinHash 

efficiently manages large datasets, reducing computational overhead while retaining 

the ability to estimate set similarities accurately. 

 

The cornerstone of the FracMinHash is a good hash function. For instance, sourmash 

constructs the FracMinHash using the MurmurHash3 (MurmurHash3 · 

Aappleby/Smhasher Wiki, n.d.) hash function. MurmurHash3 is a robust and efficient 

non-cryptographic hashing function with the following properties: 

• Simplicity: MurmurHash3 is computationally efficient, requiring a minimal 

number of assembly instructions. 

• Excellent distribution: It passes rigorous chi-squared tests for various keysets 

and bucket sizes, ensuring a uniform hash distribution. 

• Avalanche behavior: MurmurHash3 exhibits strong avalanche properties, 

with a maximum bias of 0.5%. This means that changing a single bit in the 

input will flip, on average, 32 bits (50%) of the 64-bit output hash. This 

ensures that even small input changes result in significantly different output 

hashes. That is why the Avalanche Effect is the primary reason behind 

FracMinHash's efficiency in representing DNA sequences, whether raw samples or 
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genomes. 

Balancing Exactness and Computational Efficiency 

The choice between exact and non-exact data representations often hinges on the 

specific goals of the research and the computational resources available. Exact 

representations are indispensable for detailed studies requiring high-fidelity data, 

such as variant calling or strain differentiation. However, non-exact methods can 

significantly reduce computational demands and expedite the research process for 

exploratory studies to identify general trends or patterns. 

 

Furthermore, the trend towards integrating exact and non-exact methods into hybrid 

approaches is gaining momentum. This strategy involves leveraging the efficiency of 

non-exact methods for initial screening, followed by precise methods for validation 

and refinement. 

 

As a part of this PhD research, a hybrid decontamination workflow was developed 

that combines the strengths of both exact and approximate methods. This workflow 

begins with FracMinHash, which quickly compares query samples to thousands of 

microbial genomes (cite sourmash gather), identifying a list of potential 

contaminants within minutes. The workflow can then utilize the full k-mer content of 

these genomes to perform a more thorough read-level decontamination.  
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Dissertation Objectives & Research Questions 

This dissertation aims to advance bioinformatics by developing pioneering 

computational methodologies for processing and analyzing large-scale datasets. This 

research is dedicated to enhancing three fundamental aspects: sequence 

characterization, quality control, and exploring relationships among gene sets. This 

dissertation contributes to bioinformatics research by fulfilling these goals, 

empowering researchers to address complex biological queries and unravel the 

intricate webs of relationships that govern biological systems. 

 

Dissertation Objectives 

The objective of this dissertation is to devise and implement innovative 

computational strategies for the analysis of massive-scale bioinformatics data, with a 

particular focus on the following two domains: 

1. Sequence Characterization and Quality Control: 

a. Using lightweight sequence sketches, we aim to implement methods 

that would replace traditional sequence alignment to estimate the 

depth of sequencing and target sequence coverage and introduce new 

metrics to quantify the amplicon enrichment. 

b. Using a small subset of the raw sequencing samples, we can predict 

the coverage gain that more sequencing would achieve. 

c. We aim to distinguish between sequencing errors, contamination, and 
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novel sequence content. 

2. Gene Set Relationship Exploration: 

a. Develop an algorithm that leverages the sparse nature of gene sets to 

perform efficient pairwise comparisons, reducing computational 

complexity and enabling scalable analysis. 

b. Implement a framework that would adapt the pairwise comparisons 

algorithm to apply algorithms designed to discover direct and indirect 

relationships among gene sets. This includes coexistences and 

associations among pathways, diseases, genetic variants, 

pharmaceuticals, and other gene set categories. 

 

  



12 

 

Research questions 

1. Can k-mer sketch-based methods replace sequence alignment with minor trade-

offs in accuracy for estimating the primary alignment statistics in mammalian 

species? 

2. Can large-scale analysis of thousands of unmapped reads be used to construct a 

comprehensive pan-genome k-mer content, and what new sequences can be 

revealed through a k-mer-based view of pan-genome content? 

3. Can we utilize massive-scale analysis to create k-mer content that efficiently 

produces a reference genome k-mer content to perform reference-free 

downstream analysis? 

4. Is it possible to predict the coverage gain that extra sequencing would achieve for 

the same biosample? 

5. Gene sets are very sparse; would leveraging that sparsity in the data allow large-

scale pairwise comparisons to connect different gene sets (pathways, diseases, 

variants, drugs, etc.) and find answers quickly for critical biological problems? 
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Dissertation structure 

Chapter 2 introduces Snipe, a highly scalable set of methods for estimating alignment-

based metrics (coverage, depth, mapping rate, amplicon enrichment) in mammalian 

space.  Snipe was able to utilize approximately 
1

10,000
 of the unique k-mer content in 

canine unassembled samples to estimate alignment metrics and perform extensive 

sequence-based quality control. It could also discriminate between new canine k-mer 

content (pan-genomic) and contaminants. Lastly, it was able to effectively predict the 

gain of coverage that extra sequencing efforts would achieve for a specific biosample, 

which significantly helps in quickly calculating the potential return on investment when 

considering deeper sequencing. 

Chapter 3 presents DBRetina, a set of methods to analyze and explore gene sets during 

large-scale pairwise comparisons. It can incorporate gene sets of different types (e.g., 

diseases, pathways, drugs, and pathways) to find the underlying connections and 

associations. For example, with a small set of commands, we could identify all the co-

existent diseases with Alzheimer's disease. Another example is finding pathways similar 

to those found in multiple databases to a list of genes, which can improve the statistical 

significance of the gene set enrichment analysis. 

Chapter 4 discusses the significance of the introduced methods in the dissertation and 

provides future directions on how we can continue to improve highly scalable 

computational methods to leverage the exponential growth of biomedical data. 
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Chapter 2 

Snipe: Lightning Reference-Based 

Quality Control of Next-generation 

Sequencing Data 

 

Abstract 

Background: Aligning sequencing data enables the calculation of valuable quality 

control metrics, but its high computational demands restrict scalability for large-scale 

analyses.   

Aim: We aim to create a lightweight, alignment-free method with broad applications, 

including precise estimation of sequencing coverage and depth, return on investment in 

more sequencing, error rate, and possible contamination. This approach bypasses the 

constraints of traditional alignment methods, facilitating analysis on a petabyte scale. 

Methods: We introduce Snipe, an alignment-free tool for thoroughly and efficiently 

evaluating sequencing datasets by comparing lightweight k-mer sketches of sequencing 

data with reference genomes and target amplicons at scale. 
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Results: Our approach has demonstrated exceptional efficiency, being at least 100-fold 

faster and more memory-efficient, with minimal disk space requirements compared to 

conventional alignment methods. Snipe was evaluated by analyzing ~19,000 canine SRA 

experiments, accurately estimating their alignment-based statistics. Moreover, it 

effectively identified duplications, detected mis-annotations, and pinpointed samples that 

could contribute novel content to the canine genome. Additionally, Snipe enabled the 

construction of pangenome k-mer content sketches, facilitating the identification of new 

sequence content and providing accurate predictions of return on investment (ROI) for 

sequencing experiments. A website has been developed to facilitate the search and 

visualization of results using SRA identifiers. 

Conclusions: Our comprehensive evaluation of canine SRA datasets with Snipe enables 

the effective reuse of these valuable resources, enhancing the genomic research 

landscape. Researchers can now efficiently compare their new sequencing data against 

all available SRA samples, facilitating advancements in genomic studies through 

improved accessibility and insightful comparative analysis. Snipe's ability to predict ROI 

and construct pangenome sketches further empowers researchers to make informed 

decisions about sequencing experiments and identify new sequence content. 

Keywords: dog – coverage - depth – pangenome – ROI – QC 

 

Introduction 

Sequence alignment is a vital computational method in bioinformatics, with diverse 
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applications in high-throughput sequencing data, including quality control and 

contamination detection. Tools like Qualimap (García-Alcalde et al., 2012) and Samtools 

(Li et al., 2009) summarize alignment statistics to evaluate library quality, while 

VerifyBamID (Zhang et al., 2020) uses sequence alignment to identify contaminants. 

Moreover, sequence alignment-based tools like MarkDuplicates (Picard) (Picard Tools - 

By Broad Institute, n.d.) enable the quantification of duplicate reads, which helps predict 

the effectiveness of additional sequencing efforts. By leveraging sequence alignment, 

researchers can optimize their sequencing strategies, enhance data quality, and improve 

the overall efficiency of their workflows. 

Despite the efficiency of short-read aligners like Bowtie (Langmead & Salzberg, 2012, p. 

2) and BWA (Li, 2013), the computational intensity of sequence alignment methods still 

poses a significant bottleneck, exacting a heavy toll on processing power, memory 

resources, and storage capacity (Patro & Salmela, 2020). As of May 2024, the SRA has 

reached 91.2 PB of data, showing a 67.5% volume increase to 2022 (Supplementary 

Figure 2.1). This exponential growth of Next Generation Sequencing data has 

dramatically amplified this challenge, inundating researchers with an unprecedented 

deluge of complex sequencing data (Bansal et al., 2018). This has put public repositories 

like the SRA under immense pressure to manage the sheer scale of data and makes it 

challenging for researchers to identify, access, and utilize relevant datasets. Therefore, 

developing innovative solutions to address the challenges of sequence alignment 

scalability has become crucial to catering to the evolving needs of genomics research and 

enabling efficient analysis of massive-scale sequencing data. 
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K-mer-based alignment-free approaches offer an efficient alternative for analyzing 

genomic data, but they have limitations when dealing with thousands of samples. While 

techniques that utilize the full k-mer spectra, such as KMC (Kokot et al., 2017), Jellyfish 

(Marçais & Kingsford, 2011), and DSK (Rizk et al., 2013), have made significant 

progress, they still manifest a gap in enabling massive-scale quality control on thousands 

of samples. However, sketching methods have bridged this gap by compressing raw data 

into compact, lightweight representations using a subset of its k-mers (Rowe, 2019). 

Techniques like Mash (Ondov et al., 2016b) and sourmash (Pierce et al., 2019b) have 

made it possible to efficiently analyze, search, and compare large datasets, paving the 

way for discoveries in genomics research (Irber, Pierce-Ward, et al., 2022). 

FracMinHash sketching selects the k-mers whose hash values fall below a certain 

fraction of the maximum possible hash value, determined by a user-defined scaling 

factor (Irber, Brooks, et al., 2022). FracMinHash was proven reliable in the DNA 

representation of the prokaryotic space, accurately estimating genome containment, and 

is successfully applied in metagenomic taxonomic profiling (Irber, Brooks, et al., 2022). 

It was also used to estimate Average Nucleotide Identity (ANI) (Hera et al., 2023), 

showing promise in estimating other sequence alignment metrics. 

This paper introduces ultrafast sequence assessment and quality control methods utilizing 

the FracMinHash sketching to the mammalian space for accurately estimating sequence-

alignment-based statistics, including sequencing coverage, depth, mapping rate, and 

amplicon enrichment. Our approach enables rapid and informed decisions about resource 

allocation by predicting the gain in coverage additional sequencing would achieve, 
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thereby facilitating the calculation of return on investment (ROI). We showcase how our 

method can easily utilize sequencing datasets on a population scale to construct sketches 

for the whole pangenome k-mer content, enabling reference-free processing, discovery of 

new sequence content, and revealing new insights into genetic diversity. 
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Materials and Methods 

SRA Data retrieval and sketching 

All Illumina sequencing runs (n=19,914; 182 terabytes of compressed SRA files), either 

Whole-genome sequencing (WGS) and whole-exome sequencing (WXS), of Canis lupus 

familiaris were retrieved from the SRA repository using a target query: (txid9615[All 

Fields]) AND "illumina"[Platform] AND ("wgs"[Strategy] OR "wxs"[Strategy]) AND 

("2000/01/01"[PDAT] : "2023/12/25"[PDAT]). Bioprojects PRJNA525883 and 

PRJEB22026, containing RNA and mitochondrial sequencing data, respectively, were 

excluded. The Bioprojects with metagenomic sequencing were kept to mimic the 

scenario of canine WGS samples with variable levels of bacterial contamination. 

Sequencing runs were sketched to FracMinHash sketches using sourmash v4.8.6 (Pierce 

et al., 2019b). Sketching was done using a k-mer size of 51 bp and a scale of 10,000, 

representing approximately every 10Kbp with a single k-mer. Duplicate sequencing runs 

were removed based on sourmash's MD5 checksums. SRA experiments with multiple 

runs were merged into a single sketch by summing k-mer abundances. Sketches with 

fewer than 100 genomic hashes and those with extreme k-mer-to-bases ratios (indicating 

inadequate representation) were excluded. The former represents tiny samples, usually 

less than one megabase pair of sequencing data, while the latter happens to samples with 

reads too short or have high N content and thus cannot generate enough k-mers. The data 

preprocessing ends with 18,067 sketches for SRA experiments in 215 bioprojects. 

 



20 

 

Preparation of the reference materials 

The Reference CanFam3.1 genome assembly (accession GCF_000002285.3) and the 

corresponding annotation GFF were downloaded from the NCBI Genome database. The 

exome sequences were extracted from the genome using a homemade script. The 

reference genome and exome sequences were sketched similarly to the SRA datasets 

using the same sourmash parameters. 

 

K-mer-based sequence assessment metrics 

Unique k-mer count: The number of hashes in a sourmash sketch reflects the complexity 

of the sequencing library. The unique k-mer count in an experiment is expected to be 

close to the size of the target reference, but it increases with off -target sequencing, 

sample contaminations, and sequencing errors. 

Total k-mer abundance: The sum of all hash abundances is a proxy for estimating the 

number of sequenced bases and is expected to rise with the increase in sequencing depth. 

K-mer coverage Index: The coverage index is a ratio between the number of unique k-

mers shared between sample and target sketches and the total number of unique k-mers 

in the sketch of this target reference. It quantifies the coverage percentage of the target 

sequence in a sequencing experiment.  

K-mer mapping index: The mapping index is a ratio between the abundance of k-mers 

shared between sample and target sketches to the total k-mer abundance in this sample’s 

sketch. It is an estimator of the mapping rate of sequencing reads. 
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k-mer mean abundance: The mean abundance of k-mers shared between sample sketches 

and a target reference is an estimate for the sequencing depth in this sample.  

Return-on-investment (ROI): In sequencing, ROI is defined as the anticipated gain in 

coverage, reflected by an increase in the coverage index, with more sequencing. ROI can 

guide decisions on the necessity of additional sequencing. 

Relative coverage: Calculated as the ratio of coverage indexes for an amplicon and a 

reference genome, quantifying the amplicon enrichment in a sequencing experiment. 

This ratio is typically higher in targeted sequencing experiments, such as WXS than in 

WGS. Median-trimmed relative coverage is a modified version of relative coverage, 

calculated after trimming k-mers at or below the median abundance to minimize the 

effect of shallow off-target sequences in WXS. 

Relative mean abundance: Calculated as the ratio of k-mers mean abundances in a 

targeted amplicon region to that in non-targeted regions.  Similar to relative coverage, it 

quantifies the amplicon enrichment but is based on the sequencing depth. 

Amplicon score: A composite metric for quantifying amplicon enrichment in a 

sequencing experiment. It is calculated by multiplying median-trimmed relative coverage 

by relative mean abundance. 

Sample selection for benchmark analysis 

For the benchmark of our k-mer-based sequence assessment metrics, 6,778 sequencing 

datasets were aligned by BWA v0.7.17-r1188 (Li & Durbin, 2009), and subsequent 

BAM QC was done by Qualimap v.2.2.2 (García-Alcalde et al., 2012) as a ground truth. 
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To select these datasets, 4,939 WGS and 1,896 WXS experiments from 91 and 38 canine 

BioProjects, respectively, were randomly selected from the SRA repository. The exome 

mapping rate was utilized to circumvent likely misannotation in SRA experiments 

(Supplementary Figure 2.3). WGS experiments exhibiting atypical exonic sequence 

enrichment with an exome mapping rate > 8% and WXS experiments demonstrating 

insufficient enrichment with an exome mapping rate < 20% were eliminated from the 

dataset. This filtered 9 WGS and 36 WXS experiments from the analysis. 

 

Downstream analysis 

For the detection of microbial contaminants, the Branchwater plugin of sourmash 

(specifically, the fastmultigather command) was used to compare all the canine SRA 

sketches against the sketches of all bacterial species in the Genome Taxonomy Database 

(GTDB) v214. Furthermore, we leveraged kSpider for pairwise comparisons and 

clustering the breeds' pan-genomic k-mers. We utilized iTOL (Interactive Tree of Life) 

(Letunic & Bork, 2021) to visualize the breed hierarchical clusters. Finally, we used 

Matplotlib and Seaborn for additional visualizations. 

 

Results 

Snipe is a Python API with a command-line interface (https://github.com/snipe-

bio/snipe). Additionally, it has a Java script/WebAssembly implementation for a web 

portal (https://snipe-bio.github.io/web).  Snipe efficiently calculates several k-mer-based 
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statistics for sourmash sketches to enable alignment-free or even reference-free QC of 

sequencing datasets. To benchmark Snipe's computational performance, five sequencing 

experiments with varying depths were randomly selected to evaluate Snipe and BWA 

alignment statistics. Our comparison in Table 2.1 showed that alignment-free QC by 

snipe required, on average, 65 times less time, 83 times less memory, and 673 times less 

disk space than BWA Alignment, using a single core for Snipe, 32 cores for BWA, and a 

single core for qualimap BAMQC reports. 

To showcase the power and versatility of Snipe in analyzing large-scale mammalian 

sequencing datasets, we sketched 182 terabytes of compressed SRA data into 67 

gigabytes of sourmash sketches for 18,067 SRA experiments. Using Snipe, we calculate 

their proposed k-mer-based metrics to estimate their alignment-based coverage, depth, 

and mapping rate. Moreover, we showed how Snipe can be used to study the complexity 

of sequencing libraries to predict the possible gain in coverage if more sequencing was 

done. Finally, we present how Snipe can utilize the vast repositories of sequencing data 

to build pangenome sketches. Snipe used these sketches to calculate the k-mer-based 

metrics in a completely reference-free mode and to identify the common contaminants of 

the species. The precalculated statistics for all canine sequencing datasets are accessible 

through interactive visualizations on the Snipe web portal. 
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Table 2.1 Snipe’s computational efficiency: Average computational statistics for data 

sketching and Snipe analysis versus BWA alignment and Qualimap assessment for 

randomly selected samples at different sequencing depths. Snipe requires sourmash, and 

Qualimap requires BWA's BAM file. 

Metric Depth BWA/Samtools 

(32 cores) 

Qualimap 

(1 cores) 

Sourmash 

(1 core) 

Snipe 

(1 core) Wall 

time 

(min) 

1x 17.11 5.52 5.14 0.04 

5x 56.32 17.08 20.51 0.03 

10x 109.59 27.30 36.73 0.04 

20x 225.01 57.21 79.12 0.05 

Memory 

1x 11.4 GB 3.8 GB 104 MB 64 MB 

5x 11.3 GB 3.4 GB 120 MB 76 MB 

10x 12.2 GB 3.5 GB 129 MB 87 MB 

20x 12.4 GB 3.3 GB 155 MB 119 MB 

Disk 

Space 

1x 1.3 GB 1.4 MB 2.3 MB 10 MB 

5x 3.7 GB 1.5 MB 5.0 MB 10 MB 

10x 5.6 GB 1.5 MB 6.7 MB 10 MB 

20x 11 GB 1.5 MB 11 MB 10 MB 

 

K-mer sketching provides an efficient representation of 

the reference genome  

FracMinHash sketching hash all the k-mers to of a given sequence or dataset and choose 

only those with hash values within a fraction of the total hash space.  Sketching the 

Boxer's 2.4 Gb genome (CanFam3.1) comprises 231,482 k-mer hashes. Evaluating the 

efficiency of FracMinHash sketching in representing the Canine Reference Genome, we 

observed that k-mer distances follow a Poisson distribution with a lambda (λ) value of 

approximately 10,000 bp, which aligns with the algorithm's scale factor of 10,000 

(Figure 2. 1A, Supplementary Figure 2.2). This consistency confirms that the 
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sketching technique efficiently represents the genome despite challenges such as 

polyploidy and repetitive sequences. However, applying the same sketching scale to the 

exome sequences excluded 85% of canine genes, with only 15% retained, mostly 

represented by a single hash, as shown in Figure 2. 1B. 

 

Figure 2. 1 Benchmark of k-mer-based metrics: (A) A histogram for the distances 

between selected k-mers from CanFam3.1 reference genome by FracMinhash sketching 

at a scale factor of 10,000. (B) A histogram for the counts of selected k-mers per gene 

from the canine exome by FracMinhash sketching at the same scale. (C) A scatter plot of 

the k-mer amplicon score (x-axis) versus the mapping rate of sequencing reads to the 

exome capture regions (y-axis). (D) A scatter plot of the k-mer mapping index (x-axis) 

versus the mapping rate of sequencing reads to the reference genome (y-axis). (E, F): 

Scatter plots of the k-mer-based coverage index (x-axis) versus the alignment-based 

coverages (y-axis) of the reference genome in WGS experiments (E) and the exome 

regions in WXS experiments (F). (G, H) Scatter plots of the k-mer abundance (x-axis) 
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versus the sequencing depths (y-axis) of the reference genome in WGS experiments (G) 

and the exome regions in WXS experiments (H). C and D are colored by the assay type, 

while F and H are colored by the SRA BioProject IDs. 

 

Accurate estimation of alignment-based metrics 

Benchmarking Snipe’s k-mer metrics against Qualimap’s alignment statistics in a dataset 

of 6,777 sequencing experiments demonstrated the robust estimation capabilities of k-

mer metrics. Snipe’s amplicon score, one of the k-mer-based metrics, combines depth 

and coverage data of targeted and non-targeted amplicon regions to quantify enrichment 

efficiency. Figure 2. 1C reveals a strong association between the Amplicon Score and 

the percentage of reads mapped to the exome, effectively discriminating between WGS 

and WXS sequencing types, with WGS experiments scoring less than 3 while WXS 

experiments scoring above 7.  The k-mer mapping index is another Snipe metric that 

correlates with the alignment-based mapping rate of sequencing reads. However, this 

correlation weakens toward the high end (Figure 2. 1D). The Coverage Index (CI) 

estimates the coverage of a target sequence, whether a whole genome or a specific 

amplicon. Figure 2. 1E and F show a strong polynomial regression (quadratic) between 

CI and alignment-based coverage, validating its accuracy. Similarly, the k-mer mean 

abundance shows a strong linear correlation with alignment-based depth (Figure 2. 1G 

and H). However, a batch effect associated with BioProject is observed mainly in WXS 

experiments, resulting in a systematic deviation from the regression line in Figure 2. 1F 

and H.  
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Snipe Enables Quality Control of SRA-scale 

Sequencing Data  

 

Figure 2.2 Massive-scale quality-control analysis of sequencing datasets: Snipe’s 

analysis of all canine SRA experiments shows the distribution of many k-mer-based 

statistics, including (A) k-mer-based amplicon scores plotted in a scatter plot versus the 

total abundance of the k-mers recognized in the canine reference genome per sketch, (B) 

alignment-free mapping rates plotted in a histogram, (C, D) coverage indices of canine 

reference genome plotted in scatter plots versus the count of unique k-mers per sketch 

(C) and versus the corresponding coverage indices of canine exome (D), (E, F) mean 

abundances of the k-mers recognized in the canine reference genome (E) and the canine 
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exome (F) per sketch plotted in versus plotted in scatter plots against the corresponding 

unique k-mer count. All plots are stratified by the WGS, WXS, and MGS sequencing 

experiment type. In addition, the WXS experiments are colored by SRA Bioproject IDs 

in D. An extra y axes are added in C, E, and F for the predicted alignment-based 

statistics. 

 

Calculating the amplicon score for the Canine SRA experiments revealed some cases of 

unexpected enrichment and/or misannotation (Supplementary Figure 2.5). Therefore, 

experiments were categorized based on their amplicon scores as follows: 1) Likely, if the 

score aligns with the SRA annotation; 2) Unlikely, if it contradicts the annotation; and 3) 

Ambiguous, if the score falls between 3 and 7 units, which corresponds to the grey zone 

in Figure 1C. The canine exome constitutes approximately 3.8% of the entire genome, 

representing the expected average mapping rate to exome capture regions if no 

enrichment occurs. In WXS experiments, successful enrichment is anticipated to elevate 

this rate. Therefore, we used sequence alignment to verify and correct unlikely 

annotations in subsequent references throughout the manuscript (Supplementary 

Figure 2.6).  

 The computational efficiency of Snipe allowed quality control analysis of all WGS and 

WXS datasets in the SRA repository until the end of 2023, which resulted in several 

valuable insights. Most of the canine WXS experiments, even those with high depth of 

sequences, show high enrichment for exome sequences except for a subpopulation in the 

Bioproject PRJEB53653. On the other hand, almost all WGS experiments, after fixing 
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the likely misannotated experiments, show homogenous coverage of the genome 

manifested by low Amplicon Scores, while some metagenomic samples show higher 

scores (Figure 2A, Supplementary Figures 5 and 6). Moreover, the analysis shows that 

most WGS and WXS, unlike metagenomics, have high mapping rates (Figure 2.2B). 

Snipe’s analysis for the coverage of target sequences reveals an expected correlation 

between the total number of unique k-mers and the coverage of the genome but also 

shows that many samples have a high number of k-mers that don’t contribute to that 

coverage (Figure 2.2C).  Some of these novel k-mers are caused by genetic variance, 

especially in non-boxer breeds, while the major load of these k-mers is possibly due to 

sequencing errors and/or contamination. Focusing on WXS, most of these experiments 

have a genome coverage score of less than 0.2, corresponding to 32% predicted 

coverage, with a long tapering tail of experiments with high genome coverage (Figure 

2.2C). On the contrary, the WXS datasets show much more variable exome coverage 

than might be expected with different capture panels and the known bias of target 

sequencing. Figure 2.2D shows that most WXS samples achieve suboptimum coverage 

of the exome sequence, which is justifiable by targeting different genomic regions, panel 

design, and limitations of target sequencing. However, a few WXS Bioprojects at the top 

left corner of Figure 2D achieve a higher exome coverage index (~0.8) with a relatively 

low genome coverage index (less than 0.4), indicating a more efficient design for 

capturing exome sequences. This cluster consists of three bioprojects: PRJNA891496, 

PRJNA752630, and PRJNA701141. No WXS datasets can achieve near-full exome 

coverage without equivalently high full genome coverage consistent with poor 

enrichment like the WXS in PRJEB53653 at the top right corner of Figure 2D. Lastly, 
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WXS datasets in the bottom left cluster, primarily composed of PRJEB7540, 

PRJEB55865, and PRJEB55864, show shallow sequencing with minimal exome and 

genome coverage. Figure 2.2E and F illustrate the relationship between the number of 

unique k-mers and their mean abundance for WGS, WXS, and MGS experiments.  

Surprisingly, many MGS experiments share k-mers with the genome or exome with very 

high sequencing dept, suggesting possible reference contamination or lateral gene 

transfer. 

In Figure 2.2E, WGS shows a gradual increase in sequencing depth with more unique k-

mers, while WXS shows significant variability in depth and coverage. MGS has a high 

mean abundance with few unique k-mers, likely due to low mapping rates (Figure 2.2B). 

In Figure 2.2F, WGS maintains a gradual depth increase, and WXS continues to show 

variability, possibly due to different targeted regions or enrichment kits. The presence of 

multiple depths at the same coverage level suggests that higher depths do not always 

improve coverage. These figures highlight the variability in WXS sequencing compared 

to the consistent patterns in WGS. 
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Predicting Sequencing Coverage and BioSample 

Reliability for Optimal Return-on-Investment 

 

 

Figure 2.3 Predicting coverage gain from small data fraction: (A) Scatter plot of 

genomic coverage index versus genomic depth for all whole-genome sequencing (WGS) 

experiments, highlighting six experiments selected for further analysis. (B) Detailed 

analysis of the highlighted WGS experiments, divided into 30 sequential segments. 

Subplots display cumulative depth against delta coverage for each segment, color-

matched to the corresponding experiments in panel A. Delta coverage is calculated as the 

difference in coverage between successive additions of segments. C) Correlation plots 

for WGS, comparing predicted genomic coverage using different data fractions (16.7%, 

33.3%, and 50%) against actual coverage. Each point represents prediction accuracy for 
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each fraction, demonstrating the model's ability to predict total coverage from partial 

data. (D-F) Scatter plots and correlation analyses for WXS experiments, analogous to 

panels A-C, but displaying exon depth versus exon coverage index. Panels D, E, and F 

show the same analysis as panels A, B, and C, respectively, but for WXS experiments. 

 

In Figure 2.3A and D, we selected six experiments from each assay type (WXS and 

WGS) that exhibit varying depths for similar coverage, indicating that increased depth 

does not necessarily lead to greater genomic or exonic coverage. To investigate this 

further, we split each experiment's raw data into 30 equal parts, cumulatively added 

successive parts, and plotted the combined depth against delta coverage (Figure 2.3B 

and 3E). The resulting curves show a high negative correlation when the biosample is 

suitable for further sequencing and a plateau when additional sequencing will not 

contribute to increased coverage. This is exemplified in Figure 2.3B, where 

SRX14575733 (dark red) exhibits a high negative correlation, indicating a potential need 

for further sequencing, while ERX3121125 (pink) has reached a plateau. In Figure 2.3C 

and F, we simulated a real-life application of Snipe's ROI calculation by predicting final 

coverage for 68 WGS and 54 WXS experiments using fractions of the original sequences 

(5/30, 10/30, and 15/30). Our predictions achieved a Pearson R2 of 0.99 with the actual 

coverage, demonstrating the accuracy of Snipe's ROI calculation.  
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Snipe enables pan-genomic analysis of all SRA content 

 

Figure 2.4 Canine genomics and pangenome exploration: (A) A scatter plot of 18,067 

experiments, colored by Assay Type. X-axis: reference genome coverage index. Y-axis: 

constructed core-genome coverage index. (B) A scatter plot of the non-genomic k-mers 
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shared with the pangenome k-mer content with the number of unique k-mers on the x-

axis and its total abundance on the y-axis, colored by BioProject ID. (C) A boxplot 

showing the unique k-mer count distribution selected from Plot B sketches across 18 

randomly selected breeds. (D) Hierarchical clusters of Plot C k-mer content colored by 

breed. (E) Scatter plot of non-canine k-mers absent in the reference genome and the 

pangenome content colored by Bioproject ID. (F) A barplot representing the aggregated 

number of unique k-mers for the top 26 contaminants identified in Plot E using the 

GTDB database. 

 

We selected the best candidate signatures from 2,216 experiments for constructing core 

genome and pangenome k-mer content sketches (Supplementary Figure 2. 7). K-mers 

present in at least 50% of these sketches were retained as core genome k-mers, resulting 

in the retention of 95.6% of the CanFam3.1 reference genome k-mers. 

The core genome coverage index was calculated (Figure 2.4A) and perfectly correlated 

to the k-mer-based genomic coverage in Figure 2.2C. A pangenome k-mer content was 

constructed to investigate non-reference canine sequences by retaining k-mers in at least 

1% of the sketches. The pangenome k-mer content intersected with k-mers absent in the 

reference genome (Figure 2.4B). 

Seventeen dog breeds from different clades were randomly selected from Parker et al. 

(2017) (Parker et al., 2017), and their pangenome k-mer content was analyzed (Figure 

2.4C). The results revealed unrepresented genetic diversity in all breeds, with the least 

diversity in the Boxer breed (the reference genome's breed). Clustering these new k-mers 
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formed distinct breed-specific clusters (Figure 2.4D), with no major Bioprojects batch 

effects (Supplementary Figure 2.9), validating the method for constructing the 

pangenome k-mer content. 

K-mers absent from the reference genome and pangenome k-mer content (Figure 2.4E) 

displayed a diagonal trend of increasing total abundance with a unique k-mer count, 

consistent with sequencing errors. However, vertical surges in total abundance suggested 

possible contamination, confirmed by compositional analysis against the GTDB v214 

database, identifying contaminants linked to canines, notably oral bacteria, corroborating 

findings by Ruparell et al (2020) (Ruparell et al., 2020) 
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Discussion and Conclusion 

Sequence alignment plays a crucial role in sequencing quality control by validating data 

accuracy through the BAMQC metrics, thus enabling reliable bioinformatics analysis. 

However, traditional sequence alignment methods, such as BWA, struggle to scale with 

the vast data outputs and computational demands of next-generation sequencing. In 

response, we introduce Snipe, a novel alignment-free tool that is both lightweight and 

highly scalable. Snipe efficiently estimates essential sequence alignment metrics used in 

sequence content quality control and, for the first time, facilitates SRA-wide exploration 

of sequence content. This capability significantly enhances the scalability of meta-

analysis and pangenome studies, which is critical for understanding the complex 

relationships between genomes and their associated biological phenomena. 

FracMinHash, a key component of Snipe, efficiently represents prokaryotic communities 

and estimates Average Nucleotide Identity (ANI) using lightweight sketches, 

maintaining high resolution with reduced computational demands. Although its 

application to complex mammalian genomes remains underexplored, our results 

demonstrate its reliability in representing the canine genome, as shown in Figure 2. 1, 

suggesting promising applications for other vertebrates. Snipe efficiently estimates 

genome coverage, sequencing depth, and mapping rate through the k-mer-based metrics 

and calculates additional metrics to quantify amplicon enrichment in targeted 

sequencing. These metrics are computed in under a minute using a minimal memory 

footprint, making Snipe a valuable tool for quality control and annotation of sequencing 

experiments at scale. 
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Snipe's efficiency enables the rapid processing of thousands of sequencing experiments 

on standard laptops, making it ideal for deployment as a lightweight client-side web 

application. This web application provides an intuitive interface for visually comparing 

experiments with public sequencing data, large-scale meta-analyses, and discovering 

new k-mer content. Snipe also generates error profiles, facilitating contamination 

analysis, PCR duplicate identification, and differentiation from known sequencing errors. 

Furthermore, the command-line tool and API offer flexibility for custom integrations, 

allowing developers to extend Snipe's functionality and adapt it to emerging technologies 

and methodologies. 

Snipe's ability to predict experiment coverage and the effectiveness of additional 

sequencing significantly transform how ROI is calculated (Figure 2.3). This feature 

enables researchers to make informed decisions about the cost-effectiveness of additional 

sequencing, maximizing the value of their research investment. Consequently, Snipe's 

Fast Mode is implemented to rapidly estimate alignment-based metrics from a small 

fraction of the raw data, reducing sketching time and enhancing scalability. 

Because of our method's scalability, we utilized all the SRA experiments for canines to 

identify breed-specific k-mers, demonstrating the reliability and potential of our 

approach for analyzing complex genomes. Dog breeds are genetically complicated due to 

their recent origins, rapid evolution, and extensive artificial selection, resulting in high 

genetic variation and admixture between breeds (Streitberger et al., 2012). Despite these 

challenges, our method successfully constructed a canine pangenome k-mer content and 

detected unrepresented genetic diversity in 17 randomly selected breeds, with breed -
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specific clusters emerging from the analysis as demonstrated in Figure 2.4. This 

achievement highlights the potential of our approach for extending to other complex 

genomes, enabling the discovery of novel genetic variations and a deeper understanding 

of genomic diversity across species. Our approach also enabled the detection of 

contamination and error profiling in the sequencing data, and by removing genomic and 

pan-genomic k-mers from sketches and focusing on the still highly abundant k-mers, we 

were able to separate contaminants from new sequence content. This allowed us to 

distinguish between contaminants and new k-mers that might contribute to the canine 

pangenome. 

The core genome k-mer content constructed demonstrated a remarkable concordance 

with reference genome coverage, exhibiting a perfect correlation. This highlights a 

crucial aspect of our method: its capacity for reference-free applicability. By harnessing 

k-mer content, our approach can be seamlessly extended to non-model organisms, 

enabling the analysis of genomes without a pre-existing reference. This feature facilitates 

the exploration of genetic diversity in previously understudied species, providing 

valuable insights into their evolutionary trajectories. 

While FracMinHash sketching effectively selects representative k-mers, it faces 

difficulties with short coding genes, resulting in significant gene loss. Despite this, the 

remaining genes were adequate for the analysis. This highlights the primary limitation of 

our method: it cannot provide accurate calculations for sequencing experiments with read 

lengths shorter than the k-mer size or reads that mostly contain Ns, which makes the k-

mers invalid (Supplementary Figure 2. 8). In such scenarios, Snipe alerts users with 
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warnings, ensuring they are aware of these potential limitations during analysis. Note 

that we retained the metagenomic samples (green) in Figure 2.2  to demonstrate how 

samples with contamination and low genomic coverage will behave. 

In conclusion, our development of Snipe has enabled the efficient and accurate 

estimation of coverage, depth, and sequence content. Through benchmarking against 

BWA, we demonstrated the reliability of our metrics, which were further validated 

through quality control on a large scale using ~19,000 canine SRA experiments. 

Additionally, Snipe's ability to predict the ROI, facilitate reference-free analysis, and 

construct pangenome k-mer content sketches enables researchers to make informed 

decisions about sequencing experiments and identify new sequence content extending to 

non-model species. 
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Supplementary Figures and Tables 

 

Supplementary Figure 2.1 The growth of the data volume in the Sequence Read 

Archive (SRA) from 2007 to 2024: A line chart where the data volume is shown on a 

logarithmic scale on the y-axis, ranging from 10 GB to 100 PB, with years marked on the 

x-axis. The blue line indicates the total data volume in the archive, while the yellow line 

represents the open-access data volume. Key milestones in data volume are annotated on 

the graph. This plot is updated monthly and is available on GitHub: https://www.mr-

eyes.com/sra_size_plot/. 

https://www.mr-eyes.com/sra_size_plot/
https://www.mr-eyes.com/sra_size_plot/
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Supplementary Figure 2.2 Uniform distribution of k-mers selected from the genome 

by the FracMinHash function: A circular plot illustrating the distribution of selected k-

mers along chromosome 38 of the CanFam3.1 genome assembly. Each red line 

represents a selected k-mer, while each black line indicates skipped k-mers. The lines 

radiate from a central origin point, and their positioning around the circle corresponds to 

specific locations on the chromosome, marked by base pair (bp) distances from the 

origin. The FracMinHash scale used in this experiment is 10,000, meaning the 

approximate selection of a single k-mer for each 10,000 k-mer. This is the same scale 

used for data sketching throughout the manuscript. 
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Supplementary Figure 2.3  Assay-Specific Density of Mapped Reads to the Exome 
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Density ridgeline plot with BioProjects on the y-axis and percentage of mapped reads to 

the exome extracted from Qualimap on the x-axis. Ridge colors differentiate assay types: 

dark blue for Whole Genome Sequencing (WGS), dark orange for Whole Exome 

Sequencing (WXS), and introduces color codes for anomalies—cyan for "Unexpected 

WGS" when the percentage is greater than or equal to 8, and magenta for "Unexpected 

WXS" when the percentage is less than or equal to 20. These anomalous categories 

highlight deviations from typical distributions. 

 

 

Supplementary Figure 2.4  Exome Relative Coverage and Abundance in WXS and 

WGS Assays (A) This plot displays median-trimmed exome relative coverage, where we 

trim k-mers at or below the median to remove abundant genomic k-mers and isolate 

exonic k-mers. Dividing exonic by non-exonic k-mers in both WXS and WGS 

experiments reveals that WXS yields a high relative coverage. In contrast, WGS yields a 

low relative coverage, allowing for clear differentiation between the assay types. (B) 

shows relative mean abundance by dividing the exome k-mers mean abundance over the 

genomic mean abundance, and that will also yield a differentiation between both assay 
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types since WXS has a relatively higher abundance than genomic mean abundance. 

 

 

Supplementary Figure 2.5 Unexpected amplicon scores for multiple experiments   A 

log-log scatter plot revealing the relationship between Genomic K-mer Total Abundance 

and Exome Amplicon Score, colored by assay type prediction. Decision thresholds at 

Exome Amplicon Scores of 3 and 7 categorize assays based on target amplicon 

detectability. Notably, "WGS: Unlikely" designates data points with Amplicon Scores > 
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7, characteristic of WXS, while "WXS: Unlikely" represents data points with scores < 3, 

resembling WGS. Data points between these thresholds are classified as "WXS: 

Ambiguous" or "WGS: Ambiguous", reflecting categorization uncertainty. Data points 

convincingly meeting each sequencing type's criteria are labeled "WGS: Likely" or 

"WXS: Likely". 
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Supplementary Figure 2.6 Bioproject-Level Analysis of Assay Type QC by 

Amplicon Score Scatter plots for each Bioproject showing three categories of 

experiments: (1) Likely, confirming the original annotation; (2) Unlikely, that we think 

are showing characteristics of the opposite assay type; and (3) Ambiguous, that we don't 

have enough data to support a decision regarding them. Assay types of the experiments 
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categorized as Unlikely were changed to reflect the opposite one. The Bioproject 

PRJNA48733 on the bottom left, collected from saliva, might be why some of its 

experiments overlap with MGS experiments due to contamination. The MGS Bioprojects 

were not included in this analysis, and they are (PRJEB31756, PRJEB34360, 

PRJEB38078, PRJEB66438, PRJEB66439, PRJNA407973, PRJNA471557, 

PRJNA473018) and were confirmed to contain metagenomic sequences from their 

description on the SRA. 

 

 

Supplementary Figure 2. 7 The distribution of Unique k-mer Counts in WGS 

Experiments: A histogram of the unique k-mer counts of the WGS experiments, 

showing the selection boundaries of signatures selected in the pangenome k-mer content 

construction. 
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Supplementary Figure 2. 8 Sketching efficiency assessment with k-mers-to-bases 

ratio: with  A scatter plot showing the number of bases obtained from the SRA metadata 

on the x-axis and the total number of k-mers obtained from the sourmash signatures on 

the y-axis, colored by k-mers-to-bases ratio = (𝑘−𝑚𝑒𝑟𝑠 𝑡𝑜𝑡𝑎𝑙 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑒𝑠
× 𝑠𝑐𝑎𝑙𝑒). Snipe utilizes 

this metric to assess sketching efficiency, as a low k-mers-to-bases ratio will yield a 

significant loss in reads and potentially cause inaccurate calculations. 
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Supplementary Figure 2.9 Hierarchical clusters of the pan-genomic k-mers showing 

their breeds and Bioprojects: This plot is identical to Figure 2.4D, with the addition of 

a BioProject legend, demonstrating the absence of Bioproject batch effects. 
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Chapter 3 

DBRetina: A Scalable Framework 

for Gene-based Networks Analysis 

 

Abstract 

Gene-set analysis is a fundamental bioinformatics method, but publicly-available gene 

sets suffer from high duplication rates, hindering robust statistical analyses. Existing 

databases are fragmented and inconsistent, each containing unique gene sets designed for 

specific purposes. This fragmentation limits the ability to merge, deduplicate, and 

connect gene sets through an integrated network. 

To address these challenges, we introduce DBRetina, a comprehensive framework for 

managing and analyzing gene sets and pathway databases. By leveraging gene name 

hashing, DBRetina creates extensive similarity networks that integrate multiple 

databases, enabling large-scale comparative analysis and providing a scalable solution 

for merging and deduplicating thousands of gene sets. To our knowledge, no publicly-

available tool offers this comparative analysis and integration level, making DBRetina a 

valuable resource for bioinformatics research. 
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Introduction 

Gene set enrichment analysis (GSEA) has become a cornerstone in bioinformatics for 

interpreting large-scale genomic data. Traditional GSEA methods, introduced by 

Subramanian et al. in 2005, involve a single dataset and a single gene set database to 

determine whether a predefined set of genes shows statistically significant, concordant 

differences between two biological states (Subramanian et al., 2005). While effective, 

this approach is limited in scope and flexibility, restricting the analysis to a narrow 

context. 

 

Recent advancements have aimed to overcome these limitations. For instance, the 

PAGER (Pathway, Annotated-list, and Gene-signature Electronic Repository) web 

application allows GSEA across multiple gene-set databases, constructing pathway-

annotated graphs (PAGs) and establishing new PAG-PAG relationships to facilitate a 

network-based understanding of gene sets and pathways (Chen et al., 2006, 2006; Yue et 

al., 2015). However, PAGER still confines users to a single gene set as the query, 

limiting the flexibility and scope of the analysis. 

 

Beyond PAGER, several other tools have made significant contributions to the field. The 

DAVID (Database for Annotation, Visualization, and Integrated Discovery) tool 

integrates functional annotation with enrichment analysis, offering a more 

comprehensive interpretation of gene lists (Huang et al., 2007). Enrichr, developed by 
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Kuleshov et al., provides an interactive and user-friendly interface for GSEA, 

incorporating a wide range of gene set libraries and visualization options (Kuleshov et 

al., 2016). GeneMANIA, by Warde-Farley et al., predicts gene function by integrating 

gene networks and functional associations, allowing for a more holistic understanding of 

gene interactions and their biological implications (Warde-Farley et al., 2010). 

 

Studies have emphasized the importance of integrating multiple types of genomic data 

for a more comprehensive understanding of biological processes. Huang et al. 

highlighted the need for tools that can dynamically integrate new gene set databases as 

they become available, ensuring that analyses remain current and accurate (Huang et al., 

2009). Similarly, Liberzon et al. discussed the importance of tools that can keep pace 

with the growing complexity and volume of genomic data, integrating multiple 

functionalities to provide a seamless environment for enrichment analysis (Liberzon et 

al., 2015). Platforms such as GSEA-MSigDB and Cytoscape have made strides in this 

direction, combining multiple functionalities to offer robust environments for enrichment 

analysis and network visualization (Shannon et al., 2003; Subramanian et al., 2005). 

 

Despite these advancements, significant gaps remain in the current landscape of GSEA 

tools. Firstly, most existing tools do not allow for the integration of custom gene set 

databases, limiting the flexibility of the analysis. Secondly, few tools can utilize multiple 

gene sets simultaneously to perform GSEA, which is crucial for statistically accurate 

interpretation for large-scale studies (Lu et al., 2018). Lastly, current tools often lack 
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advanced downstream analysis functionalities, such as clustering, network analysis, and 

flexible gene network visualization, which are essential for studying the connectivity 

between gene sets and target databases. These limitations prevent a comprehensive 

understanding of the data and reduce the potential insights that can be drawn from 

complex genomic datasets.  

 

The inability to integrate custom gene set databases limits researchers' ability to tailor 

their analyses to specific datasets or research questions. Moreover, the lack of frequent 

updates in online tools like PAGER results in outdated data, affecting the accuracy and 

relevance of the analysis. Additionally, the absence of advanced downstream analysis 

features hinders researchers' ability to perform comprehensive meta-analyses, integrating 

multiple datasets and identifying robust patterns and insights that may not be apparent 

from individual studies. 

 

This chapter introduces DBRetina, an efficient command-line tool designed to fill these 

gaps by offering flexibility and control over gene set downstream processing. DBRetina 

allows users to integrate custom databases, apply various search methods, and utilize 

downstream functionalities (e.g., querying, filtering, and building targeted gene 

networks). To demonstrate the capabilities of DBRetina, we will apply it to DisGeNET, a 

comprehensive repository of disease-gene associations, hosting over 1 million 

relationships between 20,000+ genes and 30,000+ diseases (Piñero et al., 2015). 
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Methods 

Gene sets indexing and pairwise similarity calculations 

 

Figure 3.1 Schematic representation of the indexing and pairwise similarity 

calculations. It starts by indexing the gene sets to create a color table for them. Each 

gene is associated with a single color, which maps to one or more sources. Finally, a 

sparse distance matrix is constructed by iterating over the color count table to count the 

number of shared genes between each two gene sets. 

DBRetina indexes two key input formats: the Gene Matrix Transposed (GMT) format 

and the Association TSV file. The GMT format is standard, encompassing the gene set 

name in the first column, descriptive metadata in the second, and individual genes in the 

remaining columns. Conversely, the Association TSV file, with its two-column structure, 

features the gene set name in the first column and a single gene in the second. The 

indexing process involves a single iteration over the input data, creating two hash tables. 

The first hash table maps a gene key to a color, while the second links each color to a 

combination of associated gene sets, thus enabling a coherent connection between each 

gene, its color, and its source sets (Figure 3.1). The index information is utilized for 

pairwise comparisons and query functions.  



55 

 

 

 

Algorithm 3.1 Pairwise Distance Calculation 

 

In the development of the pairwise comparison algorithm, we focused on the 

computational challenges associated with processing large sparse hash sets. A brute-

force approach typically suffers from quadratic time complexity (O(n2)) due to 

exhaustive pairwise comparisons. Our algorithm, however, capitalizes on the sparsity of 

the data to significantly enhance computational efficiency. The algorithm’s key operation 

involves an iterative process over a color-datasets hash table. Each color in the hash table 

represents a combination of datasets, and the shared hashes between each pair of datasets 

are computed by aggregating the counts of colors they share. This is formalized as  

(SharedHashes(Di, Dj) = ∑c∈Ci j ColorCount(c)) where (Di and Dj) represent pairs of 

datasets, (Ci j) denotes the set of colors shared by these datasets, and (ColorCount(c)) is 
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the count associated with each color. The resulting sparse pairwise matrix efficiently 

encapsulates the shared hashes across all dataset pairs. Figure 3.1 and Algorithm 3.1 

illustrate the core steps for the pairwise comparisons of highly sparse datasets. 

 

This algorithm allowed us to compare only gene sets with shared genes, streamlining 

efficiency by achieving one billion comparisons in under 10 minutes on a standard 

laptop. The algorithm incorporates multi-processing execution for enhanced 

performance. 

Gene set similarity calculations 

Let A and B be two gene sets. We calculate similarity metrics as follows: 

- Containment: measures the proportion of shared genes between A and B, normalized 

by the minimum number of genes in  

either set containment = (100 × |A ∩ B|) / min (|A|, |B|) 

- Jaccard distance: a measure of dissimilarity based on the size of the intersection and  

the sum of the set sizes: Jaccard = 100 × (|A ∩ B| / (|A| + |B| - |A ∩ B|)) 

- Ochiai distance: an alternative measure of similarity that is less sensitive to set size 

differences compared to Jaccard distance because it uses the geometric mean of  

the set sizes, rather than the arithmetic mean, in its calculation:  

Ochiai = 100 × (|A ∩ B| / √(|A| × |B|)). This makes Ochiai distance less affected by 

differences in set size and more focused on the intersection size, compared to Jaccard 

distance. 
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We implemented statistical tests to evaluate the significance and strength of associations 

between gene sets. P-values are calculated using the hypergeometric distribution to 

determine the statistical significance of overlaps between gene sets. Additionally, we 

compute odds ratios using Fisher's exact test to quantify the strength of associations. By 

combining these metrics, we gain an improved understanding of the results. 

 

Querying pairwise comparisons 

Querying the DBRetina gene sets pairwise comparisons can be done using a combination 

of similarity thresholds and statistical tests to filter the results. It also allows for finding 

direct and indirect connections among a list of gene sets. Figure 3. 2 demonstrates the 

network extension functionality. In Figure 3. 2A, a query on gene sets (1, 2, 5) returns 

their direct connections, while in Figure 3. 2B, the `extend` flag retrieves the second 

layer of connections. This functionality is crucial for identifying related diseases that 

might indirectly influence the query gene set. 
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Figure 3. 2 Demonstration of the query functionality in DBRetina.  (A) The selected 

nodes (1, 2, 3) are highlighted in orange, demonstrating the node query feature. (B) The 

query is expanded to retrieve the next layer of connected nodes (0, 9, 6), showcasing the 

ability to fetch additional related nodes. 

Building an interactome 

DBRetina builds an interactome graph to visualize the intricate network of gene-gene 

interactions within a specific study. In this graph, nodes represent genes, and edges 

represent their interactions, such as regulatory relationships, co-expression patterns, 

pathways, and other relationships. Building the interactome network with a specific list 

of gene sets enables focusing on specific gene interactions within a targeted study. 

Bipartite Connections 

DBRetina implements a Bipartite graph between a query and a target gene set, and it 

provides significant insights into the co-occurrence of gene sets. For example, it can find 

diseases that coexist with sickle cell disease, such as malaria anemia.  
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Results and Discussion 

DBRetina's capabilities were applied to DisGeNET, demonstrating its potential. A target 

module of diseases related to Alzheimer's disease was identified, along with the primary 

causative genes for both Alzheimer's disease and autism spectrum disorder (ASD). This 

showcases DBRetina's ability to uncover novel disease relationships and provide new 

insights into disease mechanisms. 

 

Enhancing disease-disease similarity analysis with 

DBRetina 

DisGeNET provides a comprehensive collection of disease-gene associations, however, 

its approach to calculating disease-disease similarity has limitations. Specifically, it treats 

all disease-gene associations equally without accommodating user-defined filters or 

weights to prioritize or validate them. Furthermore, the search output does not provide 

insight into the similarity between matching diseases, hindering the identification of 

meaningful disease clusters. 

In contrast, DBRetina offers a more robust and scalable approach to disease-disease 

similarity analysis. By applying user-defined filters and weights to disease-gene 

associations, DBRetina enables the identification of high-priority disease relationships. 

Additionally, DBRetina's visualization capabilities facilitate the exploration of disease 

clusters and networks. 
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DBRetina identified diseases closely related to 

Alzheimer’s disease 

In Figure 3.3, the heatmap elucidates the disorders sharing many causative genes with 

several types of Alzheimer's diseases. Unlike traditional search methodologies, the 

pairwise distance approach organizes the matching hits into distinct clusters. The 

heatmap reveals three primary clusters: the first encompasses multiple subtypes of 

Alzheimer's disease, the second is enriched with mental disorders, and the third includes 

a group of metabolomic and vascular disorders, many of which are recognized as 

comorbidities of Alzheimer's disease (Craft, 2009; Heilman & Nadeau, 2022). This 

clustering highlights the genetic overlap and potential shared mechanisms among these 

disorders, providing insights into the complex interplay between Alzheimer's disease and 

other related diseases. 
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Figure 3.3 Heatmap displaying clusters of diseases sharing significant causative 

genes with Alzheimer's subtypes. Clusters include Alzheimer's disease subtypes, 

mental disorders, and metabolomic and vascular disorders. 

 

Causal Genes Identification from Multi-Gene Sets 

Identifying causative genes for specific diseases through their gene sets provides 

valuable insights into the complex relationships between genetic disorders. By 

examining the gene sets associated with a disease, researchers can determine which 

genes are responsible for the disease's clinical presentation, treatment response, and 

potential complications. This process can reveal that a single gene might contribute to 

multiple diseases, or a particular disease could indicate a genetic predisposition to others. 

In DBRetina, we highlight this functionality by focusing on two neurological disorders: 

Alzheimer's disease and ASD. For that study, we used DisGeNET to find the primary 

causative genes. 

 

In Figure 3.4, we extracted the gene set names that have the word “Alzheimer”, then we 

queried the DisGeNet pairwise connections to create a network of Alzheimer's disease, 

followed by creating an interactome of the genes that shows their co-occurrence. We 

used the 4-path score for nodes to control their size. Three genes were distinguished by 

that operation (APOE, PSEN1, and ADAM10). APOE and PSEN1 show the strongest co-

occurrence in the graph and frequently occur with the ADAM10 gene (Yuan et al., 2017) 

(Raulin et al., 2022). 
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Figure 3. 4 Network visualization of Alzheimer's disease-related genes. Nodes 

represent genes, sized by the number of 4-paths (sequences of four edges connecting five 

nodes). Links represent interactions, with thickness indicating the number of 4-paths. 

Key genes. 

 

In Figure 3. 5, we visualized the network of autism-related genes by querying the 
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DisGeNet pairwise connections to identify co-occurrences. The gene interactome graph 

highlighted key genes based on their betweenness centrality. Nodes are sized according 

to their betweenness centrality, indicating their importance within the network. 

 

Prominent genes PTEN, CHD8, NLGN3, NLGN4X, SHANK2, and PTCHD1 exhibited 

the highest centrality scores, suggesting their pivotal roles in the network. These six 

genes are equally connected to the other genes in the network, indicating their 

widespread influence and significant involvement in autism-related pathways. The thick 

blue links between these genes denote strong interactions and frequent co-occurrence, 

emphasizing their interconnected nature. 

 

When performing over-representation analysis, these genes were significantly associated 

with autism, highlighting their relevance to the disorder. This extensive connectivity 

underscores the potential shared mechanisms and interactions among these key genes, 

providing insights into the genetic architecture underlying autism. The relatedness of 

these genes is supported in the literature, with recent studies showing some of the gene's 

connection to autism. (Chatterjee et al., 2023; Cummings et al., 2022; Lai et al., 2024; 

Nguyen et al., 2020) 
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Figure 3. 5 Network visualization of autism-related genes. Nodes represent genes, 

sized by their betweenness centrality. Links represent interactions, with thickness 

indicating the betweenness centrality of the connections. Key genes, including PTEN, 

CHD8, NLGN3, NLGN4X, SHANK2, and PTCHD1, are highlighted, showing their 

central roles. The color gradient from red to blue reflects the increasing betweenness 

centrality for nodes and links.  
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Conclusion 

This chapter introduced DBRetina as a flexible command-line tool for processing large-

scale gene sets. Although DBRetina offers a wide array of functionalities, we focused on 

demonstrating its capabilities in querying and filtering pairwise connections and 

constructing gene interactomes. DBRetina has proven its effectiveness by identifying 

diseases strongly related to Alzheimer's disease and pinpointing core genes contributing 

to neurodegenerative diseases such as Alzheimer's disease and ASD. 

 

We believe that DBRetina has the potential to significantly improve how scientists 

conduct meta-analysis studies at a scale. By integrating diverse datasets—including 

expression profiles, drug databases, variant databases, and various other gene-based 

datasets—DBRetina can uncover new direct and indirect relationships among these 

datasets. This capability positions DBRetina as a powerful tool for advancing our 

understanding of complex biological systems and diseases. 

 

Software availability 

DBRetina is open-source and available on GitHub 

(https://github.com/DBRetina/DBRetina). 
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Chapter 4 

Conclusion and Future Directions 

Every day, massive amounts of biomedical data are generated from various sources such 

as laboratories, hospitals, research studies, and sequencing facilities. To unlock new 

research possibilities, it is crucial to have the right tools to analyze and process these 

large datasets efficiently, using minimal computational resources.  

 

Researchers often rely on publicly available data to validate their experiments, 

investigate findings, or conduct meta-analysis studies. However, public databases like 

NCBI do not provide detailed statistics on the quality of uploaded sequencing data due to 

the computationally intensive sequence alignment process. This lack of information 

hinders other researchers from fully utilizing this public data. 

 

As introduced in Chapter 2, Snipe offers a lightweight sequence representation that 

replaces traditional sequence aligners for estimating coverage, depth, and other essential 

statistics. By integrating Snipe into bioinformatics pipelines as a quality control step, we 

expect to save significant time and effort in selecting the best candidate experiments, all 

while minimizing resources. Additionally, Snipe can predict the extra sequencing 

coverage gain using a small fraction of the raw data, saving time and cost associated with 
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resequencing the same biomaterial. 

 

We envision Snipe's capabilities extending beyond its current applications to benefit a 

broader range of species, including humans, farm animals, and other mammals. By 

utilizing Snipe to construct pan-genome k-mer content and differentiating it from 

contamination, researchers can lay the groundwork for performing population-level 

analysis, like finding breed-specific k-mers or common phenotypes in certain 

populations. Furthermore, Snipe can facilitate investigations into population-level 

phenotypes. 

 

In Chapter 3, we introduced DBRetina, a framework designed to facilitate the analysis 

and integration of gene sets through multiple approaches. We envision DBRetina’s utility 

in refining the focus of certain clinical investigations by identifying specific pathways or 

genes for targeted research. By consolidating and linking diverse gene sets from various 

sources, DBRetina offers a time-saving advantage, enabling researchers to efficiently 

navigate complex gene relationships and prioritize experimental design. 

 

As a future direction, we intend to develop a comprehensive database integrating 

symptoms, pathways, diseases, MeSH terms, expression profiles, and drug databases, 

leveraging the DBRetina framework. This database will be designed as a readily 

queryable network, facilitating the exploration of complex biological relationships. 
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Furthermore, we aim to harness the advancements in large language models (LLMs) and 

artificial intelligence to enhance accessibility for scientists and biologists without 

expertise in network queries. To achieve this, we plan to incorporate an AI-driven system 

capable of translating research questions into network queries, summarizing findings, 

and visualizing connections, thereby streamlining the discovery process. 

 

By providing our introduced tools as easily usable and flexible methods to biologists and 

bioinformaticians, we aim to empower researchers to tackle complex biomedical 

questions more efficiently and effectively, bridging the gap between data generation and 

knowledge discovery. By leveraging scalable computational methods, we ultimately aim 

to contribute to the betterment of human lives and the world at large by accelerating the 

pace of scientific progress and its translation into tangible benefits for society.  
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