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Abstract
Restriction-site-associated DNA sequencing (RADseq) has become an accessible way 
to obtain genome-wide data in the form of single-nucleotide polymorphisms (SNPs) 
for phylogenetic inference. Nonetheless, how differences in RADseq methods influ-
ence phylogenetic estimation is poorly understood because most comparisons have 
largely relied on conceptual predictions rather than empirical tests. We examine how 
differences in ddRAD and 2bRAD data influence phylogenetic estimation in two non-
model frog groups. We compare the impact of method choice on phylogenetic infor-
mation, missing data, and allelic dropout, considering different sequencing depths. 
Given that researchers must balance input (funding, time) with output (amount and 
quality of data), we also provide comparisons of laboratory effort, computational time, 
monetary costs, and the repeatability of library preparation and sequencing. Both 
2bRAD and ddRAD methods estimated well-supported trees, even at low sequencing 
depths, and had comparable amounts of missing data, patterns of allelic dropout, and 
phylogenetic signal. Compared to ddRAD, 2bRAD produced more repeatable data-
sets, had simpler laboratory protocols, and had an overall faster bioinformatics assem-
bly. However, many fewer parsimony-informative sites per SNP were obtained from 
2bRAD data when using native pipelines, highlighting a need for further investigation 
into the effects of each pipeline on resulting datasets. Our study underscores the 
importance of comparing RADseq methods, such as expected results and theoretical 
performance using empirical datasets, before undertaking costly experiments.
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1  |  INTRODUC TION

Although first introduced for genotyping and population genom-
ics studies, genome-wide reduced representation datasets have 
become increasingly common for phylogeny estimation at deeper 
timescales (Cariou et al., 2013; DaCosta & Sorenson, 2016; Eaton 
et al., 2017; Leaché & Oaks, 2017; Rubin et al., 2012). These data-
sets are commonly generated using restriction-site-associated DNA 
sequencing methods (RADseq; Davey & Blaxter, 2010), which rely 
on restriction endonucleases to fragment the genome, followed by 
sequencing a small portion (usually 0.1%–1%) of the genome to re-
duce sequencing costs. PCR amplification and sequencing of these 
fragments generate thousands of loci with single-nucleotide poly-
morphisms (SNPs) across the entire genomes of focal taxa and are 
useful for population genetics analyses and phylogeny estimation.

With the emerging popularity of RADseq for phylogenetics, 
there has been a corresponding desire to understand how charac-
teristics of SNP data, such as missing data and phylogenetic sig-
nal, affect phylogenetic performance (Eaton et al., 2017; Huang & 
Knowles, 2016; Leaché, Banbury, et al., 2015). However, few studies 
have explored how differences among RADseq methods, such as 
fragment size, enzyme type, and number of SNPs recovered, influ-
ence dataset assembly and phylogenetic estimates. To date, most 
comparisons between RADseq methods have relied largely on com-
putational or modeling approaches using simulated data (Andrews 
et al.,  2016; Catchen et al.,  2017; Eaton et al.,  2017; Flanagan & 
Jones, 2018; Lowry et al., 2017). Here, we perform a direct empir-
ical examination of how data produced by two common methods 
– ddRAD (double-digest RADseq; Peterson et al., 2012) and 2bRAD 
(Wang et al., 2012) – influence phylogenetic estimation.

The ddRAD method uses two restriction enzymes with differ-
ent cutting frequencies to cleave the genome into fragments. Next, 
fragments of a desired size range are retained (size selection) to 
ensure efficiency in sequencing. By altering the enzyme pair and 
selected fragment size, the desired percentage of the genome can 
be targeted for sequencing. Because of these advantages, ddRAD 
rapidly became the standard RADseq method for population genet-
ics (Halbritter et al., 2019; Mynhardt et al., 2020; Puritz et al., 2014) 
and phylogenetic estimation (Devitt et al., 2019; Leaché, Chavez, 
et al., 2015) for species lacking a reference genome.

In contrast, the 2bRAD method employs a single  type-IIB re-
striction enzyme that cleaves DNA on either side of its recogni-
tion site. No size-selection step is necessary as fragments are all 
the same length (36 bp in the case of BcgI) and sequencing is ex-
pected to recover all fragments (although it is possible to restrict 
the sequencing to a subset of all fragments through modification 
of ligation adaptors; see Barbanti et al., 2020; Wang et al., 2012). 
Apart from the original publication in which the method was 
used on humans (Wang et al., 2012), few vertebrate groups have 
been studied with 2bRAD, including fishes, mice, and turtles 
(e.g., Barbanti et al., 2020; Borrego et al., 2022; Cui et al., 2018; 
Manuzzi et al., 2019), and its use in phylogenetics is limited (but see 
Seetharam & Stuart, 2013).

In theory, we would expect ddRAD to outperform 2bRAD in phy-
logenetic reconstruction, because the shorter and invariant length 
of 2bRAD fragments might result in incorrectly clustering paralogs 
into the same putative locus, potentially resulting in less phyloge-
netic signal (Andrews et al., 2016). On the contrary, because typical 
2bRAD library preparation has no size-selection step, it presumably 
recovers every fragment across the genome with the selected rec-
ognition site, which means that with deep sequencing, all loci could 
theoretically be recovered. This would result in better repeatability 
across libraries, although it could also be problematic in organisms 
with large genomes (Andrews et al., 2016). Finally, the shorter locus 
lengths of 2bRAD may be preferable when working with samples 
with degraded DNA (Barbanti et al., 2020).

Here, we compare ddRAD and 2bRAD sequencing from the 
same specimens from two frog clades. We first examine differences 
in sequence assembly between ddRAD and 2bRAD datasets, includ-
ing dataset rarefaction to approximate differing sequencing depths. 
Then we ask, what are the advantages and disadvantages of each 
method for phylogenetic inference? We answer this question by 
using both ddRAD and 2bRAD datasets to estimate phylogenies 
and to measure phylogenetic signal, levels of missing data, and allelic 
dropout. Finally, we explore practical aspects including differences 
in cost, effort, and the reproducibility of libraries.

2  |  MATERIAL S AND METHODS

2.1  |  Sample selection, sequencing, and assembly

We selected species from two distantly related frog clades under 
investigation within our labs: five species of Rana (Ranidae) and five 
species of poison frogs (Dendrobatidae), including three Epipedobates 
species and two close relatives (Silverstoneia erasmios and Ameerega 
hahneli). Although the poison frogs include three genera, for brevity 
we refer to this clade by the name of the ingroup clade, Epipedobates. 
Two individuals of each species were chosen for sequencing, yield-
ing 20 samples. We selected species for each clade such that diver-
gence times were comparable; that is, the ratio of shallowest node 
age (1.25 million years ago [Ma] in Rana and 1.0 Ma in Epipedobates) 
to deepest node age (21 Ma/24 Ma; Rana/Epipedobates) was similar 
(Figure 1 and Table S1; Santos et al., 2009; Yuan et al., 2016). DNA 
was extracted from liver tissue using Qiagen DNeasy blood and tis-
sue kits (Qiagen). Prior to library preparation, DNA was quantified 
using the dsDNA high-sensitivity assay on a Qubit 3.0 fluorometer 
(Life Technologies).

2.1.1  |  ddRAD sequencing

To determine appropriate restriction enzyme combinations and in-
sert size for ddRAD protocols, 500 ng of DNA for two samples from 
each clade (R. chiricahuensis and E. anthonyi) was double digested 
with four enzyme pairs: SphI + EcoRI, EcoRI + MspI, SphI + MluCl, 
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and SphI + MspI (New England BioLabs), cleaned using handmade 
Serapure beads (see Rohland & Reich,  2012), and sent to the 
University of Texas at Austin Genomics Sequencing and Analysis 
Facility (GSAF) for fragment visualization using an Agilent 2100 
Bioanalyzer (Agilent) and standard 2100 Expert Software. We se-
lected the SphI + MluCl enzyme combination for both Epipedobates 
and Rana because they sheared reasonable subsets of the genomes 
(~1%) at a size range amenable to Illumina sequencing technology 
(~300 nt). Based on our Bioanalyzer results, we aimed to recover 
0.98% of the genome in Epipedobates (size selection window: 275–
325 nt; x = 291 nt) and 1.21% of the genome in Rana (size selection 
window: 300–350 nt; x = 314 nt). We estimated the genome size of 
Epipedobates as 9GB, based on the upper limit for the dendrobatid 
Oophaga (Rogers et al., 2018), and 6GB for Rana catesbeiana follow-
ing Hammond et al. (2017). To target a coverage depth of 20×, we re-
quested 7.27 and 5.55 million paired-end reads (2 × 150 paired-end 
reads) per sample for Epipedobates and Rana, respectively (Table 1; 
see also Supporting Information). Preliminary data now suggest that 
Epipedobates genomes are closer to 6GB in size (R. D. Tarvin, unpub-
lished data), which would imply that fewer reads could have been 
requested. Library preparation was performed following Peterson 
et al. (2012), using handmade Sera-mag Speedbeads for all but the 
final bead clean-up step (in which Dynabeads were used). DNA was 
quantified using PicoGreen dsDNA quantitation, DNA was stand-
ardized, and size selection was accomplished using a Pippin Prep 
machine (using a 2% cassette). Pooled libraries (total concentrations 
of 0.92 ng/μL for Epipedobates and 1.91 ng/μL for Rana) were then 
sequenced at the GSAF on an Illumina HiSeq 4000.

2.1.2  |  2bRAD sequencing

Using the BcgI enzyme, we digested the same four samples used 
for the ddRAD test digestion. The Bioanalyzer analysis showed no 
obvious peak at the size of the 2bRAD insert (36 bp), which is close 
to the smallest fragment in the ladder of Bioanalyzer gels (35 bp). 
Therefore, it was difficult to quantify the amount of the genome 
digested, and we conservatively estimated that the Bcgl enzyme cut 
0.5% of the genome (based on estimates from previous vertebrates 
on which this enzyme had been tested). Using the same genome 
size estimates and depth of coverage (20×) as with ddRAD, we 

aimed to obtain 25 and 17 million 50-bp single-end reads per sam-
ple for Epipedobates and Rana, respectively (Table 1; see Supporting 
Information for calculations). Extracted DNA was cleaned using 
Zymo Genomic DNA Clean & Concentrator (Zymo Research), and 
100 ng of cleaned DNA was then digested using the BcgI enzyme 
(New England BioLabs). All libraries were prepared using protocols 
developed by the Matz lab (see https://github.com/z0on/2bRAD_
denovo for the most current protocols and Supporting Information 
for the protocol used here). Following ligation, libraries were pooled 
together and then run on an agarose gel; the target 176 bp band 
was excised manually and purified using agarose gel extractions. 
Final pooled libraries with total concentrations of 0.22 ng/μL for 
Epipedobates and 0.28 ng/μL for Rana were sequenced at the GSAF 
on an Illumina HiSeq 4000.

2.1.3  |  Rarefaction of sequencing depths 
by sampling

In ddRAD studies, typical targets of 1–2 M reads/individual are used 
to reach a 10× sequencing depth, at which shared locus coverage 
is high among individuals, and genotypes can be called with confi-
dence, enabling researchers to answer questions at both population 
and phylogenetic levels (Valencia et al., 2018). To determine the ef-
fect of different sequencing depths on phylogenetic inference, we 
targeted a larger number of reads that is typical and then subsam-
pled these. Although rarefaction is not equivalent to sequencing at 
different depths, we consider it an adequate proxy. We aimed to re-
cover 5.6–7.3 M reads per individual for ddRAD and 17–25 M reads 
per individual for 2bRAD to yield data at a depth of 20×, two-fold 
more than is typical (see Supporting Information for calculations). 
We randomly sampled reads (without replacement) at arbitrarily se-
lected proportions to represent different sequencing depths from 
the Epipedobates and Rana datasets using the sample function of 
seqtk (https://github.com/lh3/seqtk) to yield four sampling depths 
(t1, t2, t3, and total; Figure  2a). At the lowest sampling depth (t1), 
we sampled 14%–16% of the total reads to yield approximately 1 M 
reads per individual, 33%–42% at depth t2, and 66%–71% at depth 
t3 (Table 2). We sampled the 2bRAD datasets using the same per-
centages (Table  2). All sampling occurred prior to data processing 
or filtering.

F I G U R E  1 Chronograms of target 
species from (a) Rana (Yuan et al., 2016) 
and (b) Epipedobates (Santos et al., 2009). 
Two specimens were sequenced from 
each species. Asterisks indicate that 
one specimen was sequenced twice as a 
replicate. Illustrated species: Epipedobates 
tricolor, Rana berlandieri (illustrations by 
EAC).

https://github.com/z0on/2bRAD_denovo
https://github.com/z0on/2bRAD_denovo
https://github.com/lh3/seqtk
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2.1.4  |  ddRAD assembly

Bioinformatics pipelines for 2bRAD and ddRAD were run on the 
Lonestar 5 system of the Texas Advanced Computing Center (TACC) 
at the University of Texas at Austin. We used iPyrad v.0.7.23 (Eato
n, 2014; Eaton & Overcast, 2020) to assemble the ddRAD datasets 
of each clade separately. The total dataset was used to determine 
the clustering threshold, which is the percent similarity at which 
two sequences are considered orthologous and assigned to the 
same cluster (iPyrad parameter 14, clust_threshold). If this param-
eter is too high (too stringent), loci may be over-split, meaning that 
true homologs are interpreted as different loci; however, if the pa-
rameter is too low, loci may be under-split, i.e., paralogs incorrectly 
clustered into a single locus (Harvey et al., 2015; Ilut et al., 2014). 
iPyrad applies the clustering threshold parameter during two steps 
in the pipeline: first, to build clusters within samples, and then, to 
construct loci among samples. We tested 16 clustering threshold 
values from 0.80 to 0.95 to assess the effect of this parameter on 
both steps. As the clustering threshold increases, we expect to see 
the number of loci assembled per individual increases with the re-
duced stringency of this parameter. However, when the clustering 
threshold becomes too high, some putative loci will begin to be er-
roneously split into different loci, after which the min_samples_locus 
parameter will remove them, resulting in a decrease in the number of 
useful loci. Thus, the optimal parameter value maximizes the number 
of loci in individual assembly, thereby also ensuring orthologs are not 
oversplit. Based on the number of loci obtained for tested clustering 
values (Figure  3), we chose a conservative clustering threshold of 
0.91 for the ddRAD assembly. Although consideration of Rana and 
Epipedobates separately would have led us to choose slightly differ-
ent values for each, we chose a single value because applying similar 
values of clustering threshold is important for cross-taxon compari-
sons (Harvey et al., 2015).

To ensure consistency with the 2bRAD data assembly, consen-
sus reads containing an N (uncalled base) were removed by setting 
the iPyrad parameter max_Ns_consens equal to 0, 0. The number of 
samples required to share a locus so that it is retained in the assem-
bly (min_samples_locus) was set to 4 to maximize the number of loci 
across all samples. Reads were trimmed to 120 bases, removing the 
first 5 and last 25 bases, which had lower quality (trim_reads  =  5, 
−25, 0, 0). The minimum read length was set to 35 nt (filter_min_trim_
len). To ensure consistency between final assemblies from each data 
type, we retained only forward reads and set remaining iPyrad pa-
rameters to the default (Table 3).

2.1.5  |  2bRAD assembly

The 2bRAD data were processed separately for each clade using 
the de novo pipeline developed by Wang et al. (2012) and modi-
fied to incorporate deduplication and a triple-barcoding scheme. 
This modified pipeline splits reads by in-read barcode and at the 
same time deduplicates them based on the ligated degenerate TA
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tag. Quality filtering was achieved using cutadapt (https://cutad​
apt.readt​hedocs.io/en/stabl​e/#) to remove any tags shorter 
than the designated 36 bp length, and we once again tested 16 

clustering threshold values (0.80–0.95) to assess the effect of 
this parameter using cd-hit-est (Fu et al., 2012), with a “cluster-
derived reference” produced by concatenating the most common 

F I G U R E  2 Flowchart of methods. (a) To simulate varying sequencing depths (t1, t2, and t3), we randomly subsampled the complete (total) 
datasets. This produced 16 datasets, 8 for each RADseq method and 1 for each clade. (b) Phylogenetic reconstructions were run using 
complete datasets (all sites), producing 16 trees. (c) SNP datasets were used to calculate unambiguous changes along branches of trees to 
quantify phylogenetic information. Allelic dropout was quantified using binary-recoded (1/0 for presence/absence) SNP datasets under 
Dollo parsimony.

(a)

(b)

(c)

https://cutadapt.readthedocs.io/en/stable/
https://cutadapt.readthedocs.io/en/stable/
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representatives of each cluster. This reference was formatted 
using bowtie2 v.2.3.5.1 (Langmead & Salzberg, 2012) and sam-
tools v.1.9 (Li et al., 2009). The trimmed and filtered reads were 
mapped to the cluster-derived reference using bowtie2 with de-
fault parameters, and ANGSD v.5.2.3 (Korneliussen et al., 2014) 
was used to make genotype calls and build consensus sequences. 

The same missing data threshold was used for the 2bRAD data 
(minInd parameter set to 4 in ANGSD; see Table  3 for further 
details). A detailed guide to all scripts can be found at https://
github.com/z0on/2bRAD_denovo, and details regarding the bio-
informatics pipeline for our dataset can be found in Supporting 
Information.

TA B L E  2 Numbers of raw reads (summed over all individuals) for each sampling scheme by method and taxon.

Sampling 
depth

Epipedobates Rana

Proportion 
sampled (%) ddRAD 2bRAD

Proportion 
sampled (%) ddRAD 2bRAD

t1 14.5 12,008,757 27,199,735 16.1 11,486,579 24,115,588

t2 42.0 34,808,757 78,841,547 32.9 23,486,579 49,309,082

t3 71.0 58,808,757 133,201,348 66.4 47,486,579 99,696,069

Total 100 82,808,757 187,561,150 100 71,486,579 150,083,057

Note: The total sampling depth is the total number of reads sequenced.

F I G U R E  3 Number of consensus reads (good reads before clustering) and total number of loci (shared between samples) per individual 
for clustering threshold values from 80% to 95% for Rana and Epipedobates for ddRAD and 2bRAD datasets. We selected a clustering 
threshold value of 91% for our analysis (black dotted lines).

https://github.com/z0on/2bRAD_denovo
https://github.com/z0on/2bRAD_denovo
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2.1.6  |  Consistency between bioinformatics  
pipelines

As detailed above, we assembled each dataset – 2bRAD and ddRAD – 
using different pipelines (Matz Lab and iPyrad, respectively) that cor-
respond to the typical user workflow for each type of data. However, 
to examine how different bioinformatics pipelines may affect assem-
blies, we ran each dataset through the reciprocal pipeline – 2bRAD 
data using iPyrad and ddRAD data using the Matz Lab pipeline – and 
reported general characteristics of the resulting assemblies. All data 
have been made publicly available (see Supporting Information on 
Dryad) for further investigation.

To analyze the 2bRAD data with iPyrad, we used the same pa-
rameter settings as described above in section  2.1.4, except for 
changes in the following parameters: data type (datatype  =  gbs), 

restriction overhang sequence (restriction overhang = TGCAG), mini-
mum read length after adapters have been trimmed (filter_min_trim_
length = 20), and how much to trim raw reads (trim_reads = 0,0,0,0). 
To run the ddRAD data through the Matz Lab pipeline, we began 
by deduplicating and filtering reads using iPyrad (steps 1 and 2 in 
iPyrad), followed by the same protocol as described in section 2.1.5, 
starting at the cluster-derived reference step (see Supporting 
Information for a detailed walkthrough and associated output files). 
No other modifications were made to the Matz Lab pipeline for pro-
cessing ddRAD data.

To compare the performance of reciprocal bioinformatics pipe-
lines, we examined basic characteristics of final assemblies, including 
numbers of sites, loci, SNPs, parsimony-informative sites, average 
read depth per individual, and proportions of missing data. We cal-
culated the average read depth per individual (across all variable 

TA B L E  3 Assembly pipeline parameter settings used in iPyrad v.0.7.23 (Eaton, 2014) for ddRAD assembly and the Matz native pipeline 
for 2bRAD assembly.

Description

iPyrad ddRAD pipeline Matz 2bRAD native pipeline

Parameter Setting Parameter Setting

Type of input data datatype ddrad N/A N/A

Restriction enzyme overhang restriction_overhang CATGC N/A N/A

Quality filtering max_low_qual_bases
phred_Qscore_offset
max_barcode_

mismatch
filter_adapters†

filter_min_trim_len

5
33
0
2
35

-minQ (ANGSD)
-remove_bads (ANGSD)
trim2bRAD_2barcodes_dedup.pl
trim2bRAD_2barcodes_dedup.pl
-m (cutadapt)

30
1
0
Default parameters
36

Minimum read depth for base calling mindepth_statistical
mindepth_majrule

5
5

-minInd (ANGSD)
-postCutoff (ANGSD)

1
0.95

Maximum allowed cluster depth within 
samples

maxdepth 10,000 N/A N/A

Percent similarity required to cluster 
reads into a locusa

clust_threshold (using 
vsearch)

0.91 -c (cd-hit-est) 0.91

Maximum number of alleles per site in 
consensus sequences

max_alleles_consens 2 Most common read in a cluster 
is assigned as the reference 
(cd-hit-est)

N/A

Maximum number of N's (uncalled 
bases) and heterozygotes allowed in 
consensus (R1, R2)

max_Ns_consens
max_Hs_consens

0, 0
8, 8

No consensus is inferred N/A

Minimum number of samples required to 
share a locus in order to be retained 
in final assembly

min_samples_locusa 4 -minInd (ANGSD) 4

Maximum number of SNPs, indels, or 
heterozygous sites allowed per locus

max_SNPs_locus
max_Indels_locus
max_shared_Hs_locus

20, 20
8, 8
0.5

N/A
bowtie2
bowtie2 (parameter is used to 

map individual reads to locus; 
there is no limit to locus-level 
heterozygotes)

N/A
N/A
default parameters 
(0 + 0.15*read 
length = 5.4)

Trim raw read edges trim_readsa 5, −25, 0, 0 -q in cutadapt 15,15

Trim locus edges trim_loci 0, 0, 0, 0 N/A N/A

Note: These are the parameters used after testing various clustering threshold values (iPyrad clust_threshold parameter). iPyrad was used for the basis 
of comparison here; parameters are not directly comparable.
aParameters altered from default settings.
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sites in the final assemblies) by extracting the “DP” element from 
vcf files; this element indicates the read depth for each sample at 
a given site. We performed this calculation using the vcfR package 
(Knaus & Grunwald, 2017) within a custom R script (see Supporting 
Information). All subsequent analyses were performed only using 
the pipelines that corresponded to each data type (i.e., the Matz Lab 
pipeline for 2bRAD and iPyrad for ddRAD).

2.2  |  Phylogenetic inference

To assess the impact of the type and quantity of data on estimating 
phylogeny, we estimated phylogenetic trees under maximum likeli-
hood at each sampling depth (t1, t2, t3, and total) across both meth-
ods and both clades (Figure 2b); this generated 16 trees. Phylogenies 
were estimated using RAxML-ng v.0.5.1b (Kozlov et al.,  2019; 
Stamatakis,  2014) with the GTR + Γ model using entire locus se-
quences in a concatenated matrix, with clades run separately. We 
used 10 searches to estimate the optimal tree and 200 replicates 
to calculate bootstrap proportions on the best likelihood tree. We 
examined bootstrap support and branch lengths using R v.3.6.3 (R 
Core Team, 2018) with the packages ape (Paradis & Schliep, 2019), 
phangorn (Schliep, 2011), and dplyr (Wickham et al., 2018), and we 
visualized data using cowplot (Wilke, 2017), ggplot2 (Wickham, 2016), 
and ggtree (Yu et al., 2017; scripts in Supporting Information).

To quantify the deepest genetic divergence within a clade, we 
used PAUP* to calculate the (uncorrected) p-distance between ran-
domly chosen ingroup and outgroup individuals (A. hahneli 2a and 
E. tricolor 2; R. chiricahuensis 1a and R. berlandieri 1a; see Table S1 for 
sample coding), using the total datasets and including variable and 
constant sites (see Supporting Information). Similarly, we determined 
the deepest genetic divergence for each clade using sequences (1965 
bases) of the 12 S–16 S mitochondrial ribosomal gene from GenBank 
accessions AY779226 for R. chiricahuensis, AY779235 for R. berland-
ieri, HQ290998 for A. hahneli, and HQ291001 for E. tricolor.

2.3  |  Phylogenetic signal in SNP data

We compared the amounts of phylogenetic signal or information 
(the converse of homoplasy or noise) in 2bRAD and ddRAD datasets. 
Although there is no universally accepted measure of phylogenetic 
information, we considered three measures that discriminate among 
alternative solutions in the 16 datasets: the number of parsimony-
informative sites (characters), the distribution of unambiguous 
synapomorphies on a tree, and the retention index (Farris, 1989), all 
calculated using PAUP* 4.0a, build 166 (Swofford, 2002). For these 
analyses, we only used variable sites (SNPs).

2.3.1  |  Parsimony-informative sites

A parsimony-informative site is one that does not have the same 
length (number of steps) on all trees, and so it can be used to 

discriminate among alternative trees under the parsimony criterion. 
At least two taxa must have one state, and two others must have 
a different state, for a character to be parsimony informative. The 
number of parsimony-informative sites is reported by PAUP* as 
standard output.

2.3.2  |  Unambiguous synapomorphies

We examined the distribution of unambiguous synapomorphies (or 
more simply, changes) on each branch of the tree. Unambiguous 
synapomorphies provide clear evidence of branch support because 
they have only one reconstruction on a tree; in other words, with a 
synapomorphy, all descendants of a common ancestor share a state 
which is not present in any other taxa on the tree, and support is 
unanimous because no other reconstruction of the data is equally 
parsimonious. In contrast, ambiguous synapomorphies have alter-
native equally parsimonious reconstructions, and it is not possible 
to determine on which branch the change occurs (Swofford, 2002). 
Thus, the number of unambiguous synapomorphies informs us how 
much unambiguous (under parsimony) phylogenetic information is 
contained in the data along each branch of the tree. To determine 
the numbers of unambiguous changes on each branch, we optimized 
each dataset on its optimal likelihood tree under the accelerated 
transformation (ACCTRAN) algorithm (Figure 2c) and used custom 
R scripts to parse the PAUP* output (see Supporting Information).

To compare the phylogenetic information across sampling depths 
and datasets, we divided the number of unambiguous changes on 
each branch by the total changes on the tree and plotted the pro-
portions on the branches. For the root edge, however, we plotted 
the aggregate changes for the two edges descending from the root 
node in a single graph because it is not possible to determine on 
which of the two edges the change occurs. For example, if a SNP has 
state G in the outgroup but A in all ingroup taxa, one cannot deter-
mine whether the change between G and A occurred on the branch 
ancestral to the outgroup or on the branch ancestral to the ingroup.

2.3.3  |  Retention index

For each dataset, we obtained the retention index from PAUP* by 
heuristic search using the hsearch command. This measure ranges 
from 0 (no signal) to 1.0 (no homoplasy). The retention index is typi-
cally not correlated with the number of characters or taxa, allowing 
for comparison between datasets of different sizes (Archie, 1996).

2.4  |  Missing data and allelic dropout

2.4.1  | Missing data

A common feature of RADseq datasets is variation in missing data, 
which may bias phylogeny estimation (Crotti et al.,  2019; Eaton 
et al., 2017). We calculated the proportion of missing data (number 
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of matrix cells with “?” or “N,” divided by the total number of cells) in 
the SNP datasets, for each sampling depth and each individual, using 
the missdata command in PAUP*.

2.4.2  |  Allelic dropout and phylogenetic signal

Missing data may have several sources, such as poor DNA quality, 
variation in library preparation, or selection of assembly param-
eter values. An important biological cause of missing data is allelic 
dropout, in which a mutation at a restriction site prevents cutting of 
that fragment so that the putative locus “drops out” of the final as-
sembly; Eaton et al. (2017) referred to this as “mutation-disruption.” 
Distinguishing allelic dropout from other causes of missing data can 
be difficult. We used a phylogenetic criterion to identify allelic drop-
out by examining the patterns of gains and losses of loci on a tree, 
under the assumption that close relatives share the same pattern 
of missing loci (Eaton et al., 2017). In other words, losses showing 
phylogenetic signal are most likely due to allelic dropout, as opposed 
to randomly distributed losses of a locus, which might be due to non-
biological causes.

Although our question of allelic dropout is similar to that of 
Eaton et al. (2017), who used simulated RADseq datasets to inves-
tigate the occurrence and patterns of missing data caused by allelic 
dropout, our approach is different. We first inferred patterns of 
gains and losses of loci by analyzing the SNP data under Dollo par-
simony, which is appropriate for analyzing allelic dropout because 
it assumes that a locus will be gained only once on the tree, can be 
lost multiple times, and is not regained if lost (Swofford, 2002). For 
each assembly, cells with non-missing nucleotide data were recoded 
as 1, or “present,” and cells with missing data were recoded as 0, or 
“absent.” Sites with an alignment gap were excluded (<2% of sites). 
Using PAUP*, we determined the numbers of unambiguous synapo-
morphies (changes) on each branch by optimizing each dataset onto 
its best tree as before (Figure 2c). Allelic dropout was quantified by 
counting the unambiguous changes from 1 to 0, using R scripts to 
parse PAUP* output from the command describe/apolist chglist diag. 
We then plotted the proportions of changes on each branch for all 
sampling depths.

Not all instances of dropout are equally informative about phy-
logeny. A locus that undergoes a single loss on a tree has maximum 
signal (no homoplasy), but one that shows, for example, four losses 
on a tree of 10 tips has little signal and is highly homoplastic. To de-
termine whether an instance of allelic dropout has significant signal, 
we compared its expected number of changes on the tree for each 
locus (null expectation) to the observed number of changes with a 
chi-square test, using the total datasets (see Supporting Information 
for further explanation).

2.5  |  Repeatability

Due to stochasticity in library preparation and sequencing, RADseq 
methods may not be ideal for augmenting an existing dataset 

(Andrews et al., 2016). If re-sequencing a sample yields only a small 
fraction of the original loci, sequencing more deeply may be re-
quired to capture sufficient loci shared across previously and newly 
sequenced samples. To assess the repeatability of re-sequencing, 
a replicate library was constructed and sequenced for two indi-
vidual frogs from each clade using an ingroup and outgroup spe-
cies (R. chiricahuensis and R. berlandieri; A. hahneli and E. anthonyi) 
for both 2bRAD and ddRAD. Using custom scripts (see Supporting 
Information), we quantified repeatability as the number of loci 
shared by the two replicates divided by the total number of unique 
loci in both replicates.

2.6  |  Time and cost considerations

The authors who prepared the libraries (E.A.C and R.D.T) had no 
prior experience with either method and were guided by experi-
enced researchers (see Acknowledgments). We briefly compared 
the methods qualitatively in terms of overall difficulty relative to 
standard laboratory techniques and quantitatively in overall cost of 
library preparation and sequencing, library preparation time, use of 
specialized equipment, and computational time required for each 
bioinformatics pipeline. All costs were made based on estimates 
from 2018.

3  |  RESULTS

3.1  |  Dataset characteristics

Relatively fewer reads were obtained for 2bRAD than requested 
as compared to ddRAD (Table  1), potentially related to nucleo-
tide base diversity problems with the Illumina HiSeq 4000 chem-
istry (UT GSAF technical staff, personal communication). When 
data were analyzed with their respective pipeline, the average 
read depth per site was 10.10/9.88 for 2bRAD and 21.40/18.10 
for ddRAD (Epipedobates/Rana, respectively; Table  1). The two 
methods were consistent in the number of sites recovered for 
each clade (~3.5 M for Epipedobates and ~8.5 M for Rana; Table 1). 
However, 2bRAD recovered 2.8/3.4 times (Epipedobates/Rana) 
more loci and 3.3/2.4 times (Epipedobates/Rana) fewer SNPs 
than ddRAD. Interestingly, 2bRAD recovered 8.9/7.8 times fewer 
parsimony-informative sites (PIs) and 2.7/3.3 times fewer PIs 
per SNP than ddRAD, meaning that PI sites were less frequent 
in 2bRAD data than in ddRAD (Epipedobates/Rana). Overall, the 
differences among the datasets were due primarily to the library 
preparation, sequencing methods, and analysis pipelines rather 
than differences in clades. These patterns were observed across 
all sampling depths (Tables 4 and 5).

After using reciprocal bioinformatics pipelines to process data-
sets, we found that the pipelines typically used for each data type 
(i.e., Matz Lab pipeline for 2bRAD data and iPyrad for ddRAD data) 
recovered more total sites and loci for that data type (Table  4). 
However, iPyrad consistently recovered a greater number of SNPs 
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(and correspondingly, PIs) for both 2bRAD and ddRAD datasets than 
the Matz Lab pipeline. In some cases, the discrepancy between SNPs 
recovered using iPyrad and Matz Lab pipeline was striking; for exam-
ple, in Epipedobates ddRAD dataset, iPyrad recovered 208,428 SNPs, 
as compared to 19,583 recovered using the Matz Lab pipeline, an in-
crease of more than 10-fold. Proportions of missing data were com-
parable for datasets regardless of which bioinformatics pipeline was 
used, although average read depth per individual was consistently 
lower in the data processed using the Matz Lab pipeline (Figure 4).

3.2  |  Phylogenetic inference

Maximum likelihood analyses of the Rana and Epipedobates data-
sets at all sampling depths and across methods yielded the same 
topology for each clade (Figure  5). The Epipedobates tree showed 
the same relationships found by Santos et al.  (2009) and Tarvin 
et al.  (2017). However, the Rana tree differed from recently pub-
lished trees. Although previous studies found R. blairi to be the sis-
ter species of R. berlandieri + R. neovolcanica (Hillis & Wilcox, 2005; 
Yuan et al., 2016), we found R. blairi to be the sister species of R. 
sphenocephala. Bootstrap support values were 100% across nearly 
all nodes on trees, regardless of taxon, method, or sampling depth, 
with just a few exceptions (Figure 5).

Interestingly, the relative branch lengths differed between the 
2bRAD and ddRAD trees. In the Epipedobates and Rana ddRAD trees, 
the tips of the ingroup taxa were roughly the same distance from the 
root (Figure 5, right column), similar to an ultrametric tree. In contrast, 
in the 2bRAD trees, the ingroup tips were at varying distances from 
the root, and this was more pronounced in Epipedobates (Figure 5).

For all datasets, the amount of sequence divergence between in-
group and outgroup was greater for Epipedobates than for Rana. For 

the 2bRAD data, the p-distance between the ingroup and outgroup 
was 0.02297 for Rana and 0.03429 for Epipedobates (Epipedobates 
is 1.49× larger). For the ddRAD data, the p-distance was 0.03059 
for Rana and 0.03931 for Epipedobates (1.29× larger). For the 12 S–
16 S sequences, the p-distance was 0.0880 for Rana and 0.1390 for 
Epipedobates (1.58× larger).

3.3  |  Phylogenetic signal in SNP data

3.3.1  |  Parsimony-informative sites

The number of PIs was much higher in ddRAD than in 2bRAD within 
each taxon, even though the total number of sites was similar. 
Notably, in both clades, the PIs/SNP and PIs/locus ratios were much 
higher in ddRAD than in 2bRAD, with ddRAD having about three 
times as many PIs/SNP and 25 times as many PIs/locus than 2bRAD 
(Table 1). However, the lower PIs/SNP ratio in 2bRAD data may be 
partly attributable to differences in pipelines, as iPyrad recovered 
approximately three times more PIs/SNP than the Matz Lab pipe-
line in both data types; PIs per locus remained low in 2bRAD for 
both pipelines (Table 4). Using native pipelines, the PIs/SNP ratio in-
creased continuously with sampling depth in 2bRAD datasets, sug-
gesting that coverage limited locus inference in 2bRAD. In contrast, 
in the ddRAD datasets, the PIs/SNP ratio reached a plateau at t2 or 
t3 and decreased slightly in total in both clades (Figure 6).

3.3.2  |  Unambiguous synapomorphies

We describe the distribution of unambiguous synapomor-
phies on branches at four levels: the root branch or edge, the 

TA B L E  4 Results of assembly pipeline for complete dataset (total sampling depth). Rows with bolded text indicate assemblies used for all 
subsequent analyses.

Dataset

Bioinformatics 
processing 
pipeline

Avg. read 
deptha

Missing 
data (%)b Total sites

Total 
loci

Total 
SNPsc

Total 
PIsd

SNPs per 
locus

SNPs 
per site

PIs per 
SNP

PIs per 
locus

Epipedobates

2bRAD iPyrad 16.2 45.8 2,377,133 76,739 129,433 59,616 1.69 0.05 0.46 0.78

Matz 9.4 50.6 3,208,050 89,952 63,070 8196 0.70 0.02 0.13 0.09

ddRAD iPyrad 29.9 56.3 3,558,310 32,371 208,428 73,187 6.44 0.06 0.35 2.26

Matz 5.5 57.4 2,798,131 30,376 19,583 2320 0.64 0.007 0.12 0.08

Rana

2bRAD iPyrad 14.6 51.4 4,835,880 156,037 210,491 77,409 1.35 0.04 0.37 0.50

Matz 8.8 44.3 9,133,414 255,197 161,952 19,281 0.63 0.02 0.12 0.08

ddRAD iPyrad 26.5 43.6 8,312,261 75,393 381,817 149,816 5.06 0.05 0.39 1.99

Matz 18.7 34.1 1,558,513 14,196 9428 1016 0.66 0.006 0.11 0.07

Note: Native pipelines are in bold.
aAverage depth across all individuals.
bProportion of missing cells in SNP datasets.
cSNPs, single-nucleotide polymorphisms.
dPIs, parsimony-informative sites.
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intermediate branches (in Rana, the two sister branches de-
scending from the ingroup ancestral node, and in Epipedobates, 
the two sequential branches descending from the ingroup an-
cestral node), the shallow branches (those that are ancestral 
to the pair of tips comprising a species), and the tip branches 
(those with no descendants).

Proportions of unambiguous synapomorphies on branches (or 
more simply, changes) were generally similar between 2bRAD and 
ddRAD (Figure 7 and Figure S1), although proportions of changes in 
ddRAD were not affected by sampling depth as much as in 2bRAD. 
With the exception of the Rana ddRAD dataset, root edges had rel-
atively fewer changes than the ingroup branches overall. Relatively 
few changes were found on the intermediate branches in both 
clades. In both 2bRAD and ddRAD, the shallow branches generally 
had the largest proportions of changes. The tip branches, not sur-
prisingly, had low proportions of changes, and these were typically 
higher in the recently diverged species and higher in Epipedobates 
than in Rana. Tip branches of the outgroup species (A. hahneli and 
R. chiricahuensis) had fewer changes than the ingroup branches 
(Figure 7 and Figure S1).

3.3.3  |  Retention index

Retention indices were very high in all analyses and did not vary sub-
stantially between 2bRAD and ddRAD datasets (Figure 6). We noted 
a slight decrease in retention indices with increasing sampling depth.

3.4  |  Missing data and allelic dropout

3.4.1  | Missing data

The proportion of matrix cells with missing data was comparable 
between RADseq methods (including when assembling with recip-
rocal pipelines) and across sampling depths (Figure 8; Table 1). The 
distribution of missing data among individuals varied widely in that 
recently diverged species (E. anthonyi, E. tricolor, R. berlandieri, and R. 
neovolcanica) had the lowest proportions of missing data across all 
sampling depths and both methods, ranging from 24.21% to 43.98% 
in the total dataset, while the outgroup species (S. erasmios, A. hah-
neli, R. blairi, and R. chiricahuensis) had the highest proportions, rang-
ing from 41.82% to 94.84% in the total datasets (Figure 8). Replicate 
samples did not contain similar levels of missing data across sam-
pling depths, with differences in missing data proportions between 
replicates ranging from 0% to 15.3% in ddRAD and from 2.7% to 
14.6% in 2bRAD (Table S2). The most similar proportions of miss-
ing data between replicates were consistently observed in the total 
sampling depth datasets and least similar in t1 sampling depth for 
both ddRAD and 2bRAD. Correspondingly, patterns of missing data 
were somewhat consistent with patterns of mean read depth per 
sample (Table 1), in which the most divergent species also had the 
lowest average read depths and those within the ingroup had the TA
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highest, although this relationship was more apparent within ddRAD 
datasets (Figure 4).

3.4.2  |  Allelic dropout and phylogenetic signal

We plotted the relative proportions of allele gains and losses at 
all sampling depths on the trees (Figure 9). Because the patterns 
from these analyses did not vary with sampling depth, we only 
report the results for the total dataset (Figure 10). In all datasets, 
the number of changes (gains or losses) occurring only once on the 
tree far exceeded the proportions expected under a null model 
(compare blue bars to orange bars for the first column in each sub-
plot in Figure  S2). The exception was the extreme condition of 
state-frequency pattern 0011111111, in which the frequency of 
two changes (no signal) was far fewer than expected by chance. 
Our overall conclusion from the chi-square analysis is that both 
gains of loci and losses of loci (allelic dropout) show overwhelming 
phylogenetic signal (Table S3).

The patterns of gains and losses on branches differed more be-
tween taxa than between sequencing methods, potentially because 
of topological differences. In both clades, the outgroup species 
showed very large proportions of allele absence (state 0, typically 
>70%) as reflected in the amount of missing data (Figure 8); these 
patterns were generally similar across the sampling depths.

A large proportion of changes (~20%) between 0 and 1 (in either 
direction) occurred along the root edge in Rana; the proportions on 

the Epipedobates root edge were smaller (~10%; Figure 10). In both 
clades, the proportion of changes having signal was similar to that 
without signal (compare dark and light brown bars). The changes 
were largely from 0 (outgroup) to 1 (ingroup), but without informa-
tion from closest relatives of these clades, we cannot definitively 
determine whether 0s represents dropout or ancestral absence.

3.5  |  Repeatability

Overall, the repeatability of libraries and sequencing was slightly 
lower in ddRAD than in 2bRAD (Table S2, Figure 11), with an aver-
age of 87.93% shared loci recovered between replicates for 2bRAD 
compared to 83.07% in ddRAD for total datasets. Replicates for the 
outgroups (R. chiricahuensis and A. hahneli) shared fewer loci than 
those of ingroup species (R. berlandieri and E. anthonyi). As sampling 
depth increased, the proportions of shared loci increased in all sam-
ples except for the t2 dataset for Epipedobates ddRAD.

3.6  |  Comparisons of effort, cost, and 
bioinformatics skills

3.6.1  |  Laboratory effort

By necessity, our comparisons of person-effort and cost are qualita-
tive. In our experience, the library preparation for ddRAD is more 

F I G U R E  4 The distribution of read depth (average number of reads per individual per locus) in total SNP datasets, including from 
reciprocal pipelines (left axis, in black), compared to mean proportions of missing data for total SNP datasets (right axis; in gray).
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complex than for 2bRAD in part because it requires selection of 
appropriate enzymes, specialized reagents such as magnetic beads 
(e.g., AMPure or SeraPure and Dynabeads), and additional protocols 
such as size selection using a Pippin Prep. Therefore, ddRAD library 
preparation took more time, required access to and experience 
using specialized equipment, potentially making it difficult for inex-
perienced researchers or labs with less equipment (Table 6). In con-
trast, we found the 2bRAD library preparation protocol to be more 
straightforward, involving only a series of PCR steps (see Supporting 
Information), one enzyme, and no size selection.

3.6.2  |  Costs

Library preparation for 2bRAD (including a Bioanalyzer qual-
ity check) was less expensive than ddRAD ($11.04/$12.89 for 
2bRAD and ddRAD, respectively). Although both 2bRAD and 
ddRAD protocols require the up-front purchase of adaptors, 
ddRAD was particularly costly because it requires relatively more 

expensive adaptors (see Supporting Information for additional de-
tails). Sequencing costs were lower for ddRAD ($40.00 compared 
to $70.50 for 2bRAD; Table 7) because the higher number of inde-
pendent loci predicted for 2bRAD required more reads (on aver-
age across clades, 14.1 M reads/sample for 2bRAD vs. 6.3 M reads/
sample for ddRAD; Table  1). Costs per SNP and PI were around 
three-  to five-fold greater in 2bRAD than in ddRAD (Table  7). 
Similarly, the cost per unlinked SNP and PI (one per locus) were 
much more variable but were overall higher in 2bRAD with one ex-
ception: the cost per unlinked SNP was approximately 20% cheaper 
in Epipedobates. At more typical levels of sequencing (1–2 M reads/
sample), costs would be substantially lower for 2bRAD (50-bp 
single-end reads) than for ddRAD (typically 150-bp paired-end 
reads), although this may result in fewer loci and SNPs retained in 
the final 2bRAD assemblies (see Supporting Information). To re-
duce costs while ensuring adequate numbers of SNPs and loci are 
obtained in 2bRAD assemblies, selective-base ligation can be per-
formed, in which researchers can more accurately select loci that 
will be sequenced, which may be particularly useful in species with 

F I G U R E  5 Rana and Epipedobates maximum likelihood trees for the total sampling depth datasets; replicate samples were pruned. Only 
bootstrap values <100% are shown. All trees reconstructed from remaining sampling depths had node support >0.85. See Table S1 for 
sample codes.
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large genomes (Barbanti et al., 2020). Alternatively, users may wish 
to use the iPyrad pipeline for 2bRAD data, which produced more 
SNPs/locus and may make the method more cost-effective. In the 
long term, sequencing costs per read will likely remain lower for 
2bRAD given its shorter fragment length.

3.6.3  |  Computational time and bioinformatics skills

Given our experience, the computational time and bioinformat-
ics skills required for ddRAD assembly exceeded those for 2bRAD, 
though this may depend on researchers' own personal experience 

level with programming languages and command-line software. For 
ddRAD, a maximum runtime of 48 h was allocated for analysis of 
each sampling depth, using a large memory node (512GB, 32 cores/
node). For the t3 and total depths in Rana and Epipedobates, jobs ex-
ceeded the 48-h limit because of the computationally costly process 
of within-sample clustering (iPyrad, Step 3). To remedy this, we sub-
mitted a separate job for each sample and then merged samples and 
ran the remaining assembly steps in iPyrad (Steps 4–7). Thus, iPyrad 
and ddRAD data require computational resources that are often only 
available on large computing clusters. By comparison, our 2bRAD 
analyses at all sampling depths were run on a high-performance 
computer within 2–4 h (Table 6).

F I G U R E  6 The proportion of parsimony-informative sites to total sites (left axis; in black) and retention indices (right axis; in gray) 
between RAxML trees from SNP datasets with four different sampling depths.
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4  |  DISCUSSION

Much attention has been devoted to exploring the implications of 
selecting different reduced-representation genome sequencing 

methods (Andrews et al., 2016; Cammen et al., 2016; Matz, 2018; 
McKain et al., 2018). In selecting a method, researchers must weigh 
the costs of sequencing against the informativeness of the result-
ing datasets, as well as the equipment and computational resources 

F I G U R E  7 The proportion of unambiguous changes to the total number of SNPs along each branch of the Rana and Epipedobates trees 
for each sampling depth, calculated using SNP datasets. This metric provides an estimate of the amount of phylogenetic information.
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required to produce and analyze such datasets. These considera-
tions are especially relevant for non-model organisms or those with 
large genomes, in which the lack of a reference genome makes as-
sembly challenging.

4.1  |  Sequencing and assembly

In this study, we used two methods (ddRAD and 2bRAD) and tar-
geted a sequencing depth that would yield comparable numbers of 
sites for each method; indeed, after processing, the total number of 
sites retained in the total datasets was comparable between both 
methods within each clade (~3.5  M for Epipedobates and ~8.5  M 
for Rana). However, each method differed in the quality of data ob-
tained. For example, 2bRAD produced roughly three times more 
loci than ddRAD (Table 1) yet fewer SNPs and fewer PIs sites per 
locus, likely attributed to shorter fragment lengths, lower depth of 
coverage, and pipeline characteristics specific to 2bRAD and the 
Matz Lab pipeline (Table 4). Up to 38% fewer reads than requested 
were obtained for 2bRAD, which likely contributed to our ability to 

assemble loci and confidently infer variants. In both datasets, the 
numbers of recovered SNPs and loci increased predictably with 
sampling depth, though patterns in missing data remained the same 
(Table 5 and Figure 8). Repeatability was similar between methods, 
although 2bRAD repeatability was less affected by sampling depth 
(Figure 11).

Each pipeline produced higher numbers of sites and loci for its 
corresponding data type (i.e., iPyrad for ddRAD and the Matz Lab 
pipeline for 2bRAD data). However, iPyrad consistently recovered 
more SNPs and PIs for both datasets than did the Matz Lab pipe-
line. While the goal of our manuscript was not to compare the two 
pipelines (i.e., iPyrad vs. Matz Lab pipeline), we suspect that dif-
ferences in how loci are clustered by each pipeline may have influ-
enced the number of loci obtained (see Table 3 for some relevant 
parameter comparisons). For example, iPyrad first clusters reads 
separately within each sample using vsearch and a percent similar-
ity cutoff. Then, the most common allele from each locus is clus-
tered among samples, again using vsearch and a percent similarity 
cutoff. In contrast, the Matz Lab pipeline first creates a pseudog-
enome by clustering reads from all samples using cd-hit-est and a 

F I G U R E  8 Proportions of missing 
data contained in each SNP dataset at 
varying sampling depths per individual 
and averaged across taxa. For samples 
in which two replicates were sequenced, 
only replicate “a” (see Table S1 for coding) 
was included here.



    |  17 of 25CHAMBERS et al.

F I G U R E  9 The proportion of unambiguous changes to total number of SNPs along each branch of the Rana and Epipedobates trees for 
each sampling depth, calculated using the binary (presence or absence) SNP datasets under Dollo parsimony. Unambiguous changes are 
categorized based on the type of change; the direction of change along the root edge (double-headed arrows <==>) is ingroup (first state) to 
outgroup (second state).
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percent similarity value. Then, reads from each sample are mapped 
to the pseudogenome with bowtie2 which uses a minimum score 
threshold rather than a percent similarity metric. Other differ-
ences between pipelines (e.g., approaches to statistical base call-
ing in ANGSD compared to iPyrad) likely also affected the resulting 
assemblies; future analyses could use the data herein to further 
explore the implications of differing bioinformatics pipelines for 
RADseq datasets.

An important consideration for some researchers may be de-
ciding whether to obtain single-end versus paired-end reads. To re-
tain consistency across the two methods, we only included results 
from single-end read sequencing data for ddRAD, although typical 
ddRAD workflows involve paired-end sequencing. Obtaining paired-
end reads may be advantageous for researchers in that it would pro-
duce greater numbers of SNPs and PIs, although with diminishing 
returns if users require unlinked SNPs (Rochette et al., 2017).

4.2  |  Phylogenetic inference

All analyses of the various datasets yielded identical tree topologies 
for each clade, and bootstrap support was very high, even at the 
lowest sampling depth. Although the Epipedobates topology was the 
same as recovered by previous studies, the Rana topology was not. 
Hillis and Wilcox (2005) and Yuan et al. (2016) found R. blairi to be 
more closely related to R. berlandieri than to R. sphenocephala; how-
ever, we recovered R. blairi as the sister species of R. sphenocephala. 
This difference is likely due to the influence of the mitochondrial 
genes; Hillis and Wilcox (2005) analyzed only mtDNA, and although 
Yuan et al. (2016) analyzed both mtDNA and nDNA, their sample of 
R. blairi was represented only by mitochondrial genes. Interestingly, 
two earlier studies based on allozymes (Hillis et al., 1983) and re-
striction sites from nuclear rDNA (Hillis & Davis, 1986) also found 
R. blairi to be more closely related to R. sphenocephala than to R. 
berlandieri. Thus, it seems that the discrepancy in the position of R. 
blairi is an example of mitonuclear discordance. We consider the SNP 
phylogeny to be a better estimate of the species trees than mtDNA 
phylogeny alone.

4.3  |  Phylogenetic signal in SNP data

Overall, the 2bRAD and ddRAD datasets for both clades contained 
large amounts of phylogenetic signal as measured by numbers of 
parsimony-informative characters, retention indices, numbers of 
unambiguous synapomorphies, and high bootstrap support values 
(Tables 1 and 5; Figures 4, 6, and 7). This was particularly impressive 
within the 2bRAD dataset, which was phylogenetically robust to the 
relatively low proportions of SNPs and PIs compared to the ddRAD 
datasets. Given that both methods putatively sample the genome 
randomly, we expected to find roughly the same amount of potential 
phylogenetic information in the data, yet we recovered more PIs/
SNP in ddRAD than in 2bRAD data (Table 1). However, the number 

of PIs/SNP was similar if the same pipeline was used across both 
data types (Table 4).

Properties of the enzyme cut sites that differ between methods, 
differences between clustering algorithms used by iPyrad versus the 
Matz Lab pipeline, or the lower depth coverage in 2bRAD datasets 
may have influenced these patterns. For example, the fragments 
cut by the BcgI enzyme may be more conservative because of the 
structure of the BcgI cut site (CGA[N]6TGC), which requires 6 exact 
nucleotide matches spaced exactly 6 nucleotides apart, versus that 
of ddRAD enzyme cut sites, which require two sets of 4–5 exact 
nucleotide matches but allow up to 50-nt differences in the number 
of nucleotides between two cut sites (e.g., GCATG[N]270-325AATT 
for Epipedobates). Differences in clustering algorithms, as reviewed 
in the Methods and in Table 4, combined with lower average read 
depth in 2bRAD, could influence the propensity for different alleles 
to be clustered, labeled as sequencing errors and removed, or split 
into separate loci. In 2bRAD specifically, the PIs/SNP ratio increased 
with greater sampling depth, suggesting that phylogenetic informa-
tion (or statistical base calling) was limited by read depth. For some 
methods, researchers can choose to modify library preparation pro-
tocol and bioinformatics pipelines to optimize amount and quality of 
data in final assemblies (e.g., Obiol et al., 2014, for strategies to mod-
ify data assembly for phylogenetic inference; McCartney-Melstad 
et al., 2019, for using a computational approach to select clustering 
threshold parameter; Barbanti et al., 2020, for performing selective 
base ligation for size selection in 2bRAD in organisms with large ge-
nome sizes). The extent to which RADseq locus-building pipelines 
alter downstream analyses is likely to depend on the taxon and en-
zymes selected and may not be generalizable (e.g., Casanova et al., 
2021; O'Leary  et  al., 2018;  Shafer et al.,  2017). Nevertheless, be-
cause we did not a priori expect the number of PIs/SNP to differ be-
tween 2bRAD and ddRAD loci, and because the PIs/SNP ratios were 
similar between 2bRAD and ddRAD for each pipeline (Table 4), we 
suspect that the pipelines drove most of the differences in phyloge-
netic information rather than characteristics of the loci themselves.

The regional patterns of unambiguous synapomorphies on the 
trees were generally similar between methods and sampling depths, 
although the proportions of changes along the root edge were 
smaller in Epipedobates than in Rana. Typically, the root edges and 
the shallow branches had proportionately more changes than did the 
intermediate branches (Figures 4 and 7). This pattern contrasts with 
the regional distribution of gains and losses of loci, where the largest 
proportions of gains occurred along the intermediate branches of 
Epipedobates and Rana.

4.4  |  Missing data and allelic dropout

4.4.1  | Missing data

Because of the ubiquity of missing data in RADseq datasets, much 
literature has focused on its effects on phylogenetic estimation 
(e.g., Attard et al., 2018; Eaton et al., 2017; Huang & Knowles, 2016; 
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F I G U R E  1 0 Proportions of unambiguous changes for total datasets from the binary SNP datasets under Dollo parsimony. State changes 
are categorized based on whether changes were greater than (GT) or less than (or equal to; LTE) expected at random, determined using a chi-
square test. GT changes represent those that exhibited phylogenetic signal and can, therefore, be attributed to allelic dropout. The direction 
of change along the root edge (double-headed arrows <==>) is ingroup (first state) to outgroup (second state); thus, 0 <=>1 is a state of 0 in 
the ingroup and a state of 1 in the outgroup, and single-headed arrows (==>) are state changes along the remaining branches.
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Leaché, Banbury, et al., 2015), with a general conclusion being that 
datasets with high amounts of missing data should be retained to op-
timize phylogenetic inference (e.g., Jiang et al., 2014). However, the 
role of missing data as a bearer of signal in RADseq data has rarely 
been studied (Eaton et al., 2017; Leaché & Oaks, 2017).

Patterns of missing data might be expected to vary depending on 
the RADseq method (Eaton et al., 2017; Hovmöller et al., 2013), but 
we did not observe this. 2bRAD and ddRAD yielded datasets with 
comparable levels of missing data (Table 1 and Figure 8), although 
there were some differences in proportions of missing data which 
were largely dependent on the taxon. Importantly, there was greater 
variation in percentage of missing data among species than among 
sampling depths, implying that even with deeper sequencing, the 
amount of missing data will be strongly dictated by the divergence 
patterns of the taxa (Eaton et al.,  2017; Ferrer Obiol et al., 2021; 
Jiang et al., 2014;  Xi et al., 2016). Correspondingly, this also meant 
that the increased read depth observed in larger sampling depths did 
not reduce proportions of missing data, though it did provide more 
phylogenetic information in terms of numbers of SNPs and PIs.

Patterns in missing data and read depth were also shaped by the 
parameter defining the minimum number of individuals per locus. 
Our results suggest that including a minimum number of samples in 
each divergent clade can limit the total amount of missing data, but 
also that loci recovered from divergent clades (such as Ameerega) 
may not overlap with ingroup clades, in effect limiting the phylo-
genetic information at deeper nodes in highly divergent datasets. 

Similarly, read depth decreased with distance from ingroup, but was 
overall more consistent across samples in 2bRAD (Figure 4).

4.4.2  |  Allelic dropout

One of the primary causes for missing data in RADseq may be al-
lelic dropout, in which mutations disrupt a recognition site, such that 
all descendants no longer share a locus (mutation-disruption; Eaton 
et al., 2017). Artifacts of this process are apparent when there is a 
phylogenetic pattern to missing data, in which closer relatives are 
more likely to share sites and distant relatives are more likely to have 
lost them (Gautier et al., 2013).

2bRAD and ddRAD did not differ substantially in amounts of al-
lelic dropout. As with phylogenetic signal and missing data, we found 
greater differences in allelic dropout between clades than between 
methods, which may reflect differences in the ages of the taxa. If one 
assumes that the rate of molecular evolution is similar in both clades, 
then the paucity of changes across the root edge of Epipedobates 
(compared to Rana) in conjunction with gains on intermediate depth 
branches is consistent with an older age for the Epipedobates clade 
(Figure 10). The limits of effectiveness for RADseq at deeper levels 
of genetic divergence remain unclear (Collins & Hrbek, 2018; Eaton 
et al., 2017; Harvey et al., 2016; Rubin et al., 2012). Interestingly, we 
found that gains of loci showed overwhelming phylogenetic signal, 
while losses showed a mixture of signal and noise, suggesting that 

F I G U R E  11 Repeatability of ddRAD 
and 2bRAD libraries and sequencing. 
Two replicate samples per dataset were 
used to assess how many loci were 
shared between replicates, measured as a 
proportion of the total number of unique 
loci in both samples.
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allelic dropout is stochastic and not necessarily a good measure of 
phylogenetic signal (Figure 10).

4.5  |  Repeatability

Sequencing replicate samples is useful for comparing the repeatabil-
ity of libraries, as well as for determining the rates of genotyping 
error (Mastretta-Yanes et al., 2015). Our results were consistent with 
our predictions: we assumed that because 2bRAD sequencing ampli-
fies fragments at every occurrence of restriction site, 2bRAD librar-
ies would be more reproducible (Andrews et al., 2016). Generally, 
we found similar levels of reproducibility for both methods across 
sampling depths, but 2bRAD tended to have higher proportions of 
shared loci, especially for outgroup species (Figure 11).

4.6  |  Comparisons of effort, cost, and 
bioinformatics skills

One aspect of the ddRAD protocol that drove its early and enthu-
siastic adoption was the relatively low effort required to acquire 

genome-wide data as well as publicly accessible documentation and 
well-established bioinformatics pipelines. Nevertheless, we found 
that the ddRAD library preparation and bioinformatic pipelines 
required more time and expertise than 2bRAD. As with ddRAD, 
protocols and annotated scripts for 2bRAD are available online, 
but in contrast to ddRAD, the 2bRAD laboratory techniques are 
straightforward (based on our personal experience, though this 
may differ depending on the researcher's own personal labora-
tory experience) and do not require specialized skills or equipment 
(Wang et al., 2017; see Supporting Information). Taking these con-
siderations into account, the time and effort required for 2bRAD 
were less than ddRAD. Overall, although sequencing costs were 
higher for 2bRAD than for ddRAD, this was outweighed by the 
relatively lower cost of 2bRAD library preparation and the ease of 
both laboratory protocols and bioinformatics assembly. However, 
if maximizing numbers of SNPs and PIs is prioritized by research-
ers, ddRAD is preferred given that costs are lower on a per-SNP 
basis (Table 7). Another alternative might be to use 3RAD (Bayona-
Vásquez et al., 2019), which allows for customizability of recovered 
loci and is quite cost-effective.

For some study systems, whole-genome sequencing (WGS) has 
become an affordable alternative to RADseq. However, a reference 
genome is necessary to reliably call SNPs from WGS data, and many 
non-model systems, including the species included here, still lack 
high-quality references. In our focal clades, per sample costs for li-
brary preparation and 10× coverage WGS would be between $200 
and $250 per sample (~2–4× higher than RADseq; see Supporting 
Information). Because of the large genomes of amphibians and other 
non-model systems, it may be some time before WGS replaces 
RADseq or other reduced-representation methods.

4.7  |  Conclusions

Both ddRAD and 2bRAD methods provided abundant and informa-
tive data for phylogenetic inference at shallow and intermediate di-
vergence times in non-model organisms, and so we recommend that 
selecting between the methods should be based on other considera-
tions, such as person-effort, costs, and availability of other resources 
(Table 6). Despite the lower PIs per SNP proportion we identified in 
2bRAD, potential users may be interested in unlinked SNPs, which 
could be facilitated by the greater number of shorter loci obtained in 
this method, along with more even read depth across phylogenetic 
divergence. Nevertheless, the quantity of SNPs and PIs are likely to 
vary with study design, and the PI per SNP ratio varied widely across 
our methods and clades. Another important consideration which we 
observed in both methods – as has been observed in other RADseq 
studies – was the loss of phylogenetic information and shared sites 
at deeper nodes of the tree. We observed that there appeared to be 
a level of mitochondrial sequence divergence beyond which phylo-
genetic information was lost (~15%); genetic divergence calculated 
from mitochondrial data may be a relevant benchmark with which 
researchers can gauge the utility of RADseq.

TA B L E  6 Comparison of 2bRAD and ddRAD methods.

2bRAD ddRAD

Overall costsa Low Moderate

DNA required 100 ng 200–500 ng

Laboratory time required 1.5 days 3 days

Library preparation 
difficultyb

Easy Difficult

Specialized equipment None Pippin Prep

High-performance computer 
access

Not required Required

Computational time for 
bioinformatics assembly

2–4 hc >48 hc

Reproducibility 79% (67–85%)d 76% (55–79%)d

PIse for each SNPf obtainedg 0.12 0.37

Cost per SNPf $0.0009 $0.0002

Cost per PIe $0.007 $0.0005

aThis is the combined cost for library preparation and sequencing on the 
Illumina HiSeq 4000.
bThis assumes that personnel have no previous experience with library 
preparation.
cTime required for running full bioinformatics assembly on a high-
performance computer (using iPyrad [Eaton, 2014] for ddRAD data and 
the Matz Lab pipeline for 2bRAD data). These time estimates are based 
on our datasets; they are contingent on the amount of data and number 
of samples a researcher needs to process.
dThis is the median and range of the proportion of shared loci recovered 
for two replicate samples from total datasets (Table S2).
eParsimony-informative sites.
fSingle-nucleotide polymorphism.
gValue averaged across taxa; see Table 7 and calculations in Supporting 
Information.
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Although 2bRAD was designed primarily for population genomic 
studies, and despite concerns that the short fragment lengths may 
pose problems in assembly for taxa lacking a reference genome or 
having large genomes, we found that 2bRAD data were as reliable 
and robust for phylogenetic inference as ddRAD data. Phylogenetic 
reconstruction and support, overall phylogenetic information, pro-
portions of missing data, and rates of allelic dropout in 2bRAD data-
sets were comparable to those of ddRAD, even at lower sequencing 
depths. These findings were contrary to common recommendations 
against the use of 2bRAD (Andrews et al., 2016; Arnold et al., 2013), 
highlighting the importance of supplementing conceptual compar-
isons with empirical tests to obtain reliable comparisons between 
methods.
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TA B L E  7 Summary statistics of data and costs for obtaining phylogenetically informative characters from each method.

2bRAD ddRAD

Rana Epipedobates Rana Epipedobates

Sites per samplea 9,133,414 3,208,050 8,312,261 3,558,310

Total loci 75,393 89,952 255,197 32,371

SNPsb 161,952 63,070 381,817 208,428

PIsc 19,281 8196 149,816 73,187

PIsc per SNPb 0.12 0.13 0.39 0.35

PIsc per locus 0.08 0.09 1.99 2.26

SNPsb per locus 0.63 0.70 5.06 6.44

Cost of library prep. and lab costs (per sample)d $11.04 $11.04 $12.89 $12.89

Cost of sequencing (per sample)d,e $70.50 $70.50 $40.00 $40.00

Cost per sampled $81.54 $81.54 $52.89 $52.89

Cost per SNPb $0.00050 $0.0013 $0.00014 $0.00025

Cost per PIc $0.0042 $0.0099 $0.00035 $0.00072

Cost per SNP/locusf $0.0017 $0.0013 $0.00021 $0.0016

Cost per PI/locusg $0.014 $0.010 $0.00021 $0.0016

aValue averaged across all 12 individuals.
bSingle-nucleotide polymorphisms.
cParsimony-informative sites.
dValues obtained using estimates provided in Cost Breakdown section of Supporting Information.
eEstimated costs for sequencing 1.5 M reads per sample.
fIf SNPs per locus <1, calculated as: cost per sample divided by (SNPs per locus × total loci). If SNPs per locus >1, calculated as: cost per sample 
divided by total loci.
gIf PIs per locus <1, calculated as: cost per sample divided by (PIs per locus × total loci). If PIs per locus >1, calculated as: cost per sample divided by 
total loci.
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