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Abstract
Restriction-	site-	associated	DNA	sequencing	(RADseq)	has	become	an	accessible	way	
to	obtain	genome-	wide	data	in	the	form	of	single-	nucleotide	polymorphisms	(SNPs)	
for	phylogenetic	inference.	Nonetheless,	how	differences	in	RADseq	methods	influ-
ence	phylogenetic	estimation	is	poorly	understood	because	most	comparisons	have	
largely	relied	on	conceptual	predictions	rather	than	empirical	tests.	We	examine	how	
differences	in	ddRAD	and	2bRAD	data	influence	phylogenetic	estimation	in	two	non-	
model	frog	groups.	We	compare	the	impact	of	method	choice	on	phylogenetic	infor-
mation,	missing	data,	 and	 allelic	 dropout,	 considering	different	 sequencing	depths.	
Given	that	researchers	must	balance	input	(funding,	time)	with	output	(amount	and	
quality	of	data),	we	also	provide	comparisons	of	laboratory	effort,	computational	time,	
monetary	 costs,	 and	 the	 repeatability	 of	 library	 preparation	 and	 sequencing.	 Both	
2bRAD	and	ddRAD	methods	estimated	well-	supported	trees,	even	at	low	sequencing	
depths,	and	had	comparable	amounts	of	missing	data,	patterns	of	allelic	dropout,	and	
phylogenetic	signal.	Compared	to	ddRAD,	2bRAD	produced	more	repeatable	data-
sets,	had	simpler	laboratory	protocols,	and	had	an	overall	faster	bioinformatics	assem-
bly.	However,	many	fewer	parsimony-	informative	sites	per	SNP	were	obtained	from	
2bRAD	data	when	using	native	pipelines,	highlighting	a	need	for	further	investigation	
into the effects of each pipeline on resulting datasets. Our study underscores the 
importance	of	comparing	RADseq	methods,	such	as	expected	results	and	theoretical	
performance	using	empirical	datasets,	before	undertaking	costly	experiments.
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sequencing

T A X O N O M Y  C L A S S I F I C A T I O N
Genomics, Phylogenetics

http://www.ecolevol.org
mailto:
https://orcid.org/0000-0002-7369-0108
https://orcid.org/0000-0001-5387-7250
mailto:
https://orcid.org/0000-0001-6300-9350
https://orcid.org/0000-0001-5453-9819
http://creativecommons.org/licenses/by/4.0/
mailto:eachambers@berkeley.edu


2 of 25  |     CHAMBERS et al.

1  |  INTRODUC TION

Although	 first	 introduced	 for	 genotyping	 and	 population	 genom-
ics studies, genome- wide reduced representation datasets have 
become	 increasingly	 common	 for	 phylogeny	 estimation	 at	 deeper	
timescales	 (Cariou	et	al.,	2013;	DaCosta	&	Sorenson,	2016; Eaton 
et al., 2017;	Leaché	&	Oaks,	2017;	Rubin	et	al.,	2012).	These	data-
sets	are	commonly	generated	using	restriction-	site-	associated	DNA	
sequencing	methods	 (RADseq;	Davey	&	Blaxter,	2010),	which	 rely	
on	restriction	endonucleases	to	fragment	the	genome,	followed	by	
sequencing	a	small	portion	(usually	0.1%–	1%)	of	the	genome	to	re-
duce	sequencing	costs.	PCR	amplification	and	sequencing	of	these	
fragments generate thousands of loci with single- nucleotide poly-
morphisms	(SNPs)	across	the	entire	genomes	of	focal	taxa	and	are	
useful for population genetics analyses and phylogeny estimation.

With	 the	 emerging	 popularity	 of	 RADseq	 for	 phylogenetics,	
there	has	been	a	corresponding	desire	to	understand	how	charac-
teristics	 of	 SNP	 data,	 such	 as	 missing	 data	 and	 phylogenetic	 sig-
nal,	affect	phylogenetic	performance	 (Eaton	et	al.,	2017;	Huang	&	
Knowles, 2016;	Leaché,	Banbury,	et	al.,	2015).	However,	few	studies	
have	 explored	 how	 differences	 among	 RADseq	methods,	 such	 as	
fragment	size,	enzyme	type,	and	number	of	SNPs	recovered,	influ-
ence	 dataset	 assembly	 and	 phylogenetic	 estimates.	 To	 date,	most	
comparisons	between	RADseq	methods	have	relied	largely	on	com-
putational	or	modeling	approaches	using	simulated	data	 (Andrews	
et al., 2016; Catchen et al., 2017; Eaton et al., 2017;	 Flanagan	 &	
Jones, 2018; Lowry et al., 2017).	Here,	we	perform	a	direct	empir-
ical	 examination	 of	 how	data	 produced	 by	 two	 common	methods	
–		ddRAD	(double-	digest	RADseq;	Peterson	et	al.,	2012)	and	2bRAD	
(Wang	et	al.,	2012)	–		influence	phylogenetic	estimation.

The	ddRAD	method	uses	 two	 restriction	enzymes	with	differ-
ent	cutting	frequencies	to	cleave	the	genome	into	fragments.	Next,	
fragments	 of	 a	 desired	 size	 range	 are	 retained	 (size	 selection)	 to	
ensure	 efficiency	 in	 sequencing.	 By	 altering	 the	 enzyme	 pair	 and	
selected fragment size, the desired percentage of the genome can 
be	 targeted	 for	sequencing.	Because	of	 these	advantages,	ddRAD	
rapidly	became	the	standard	RADseq	method	for	population	genet-
ics	(Halbritter	et	al.,	2019; Mynhardt et al., 2020; Puritz et al., 2014)	
and	 phylogenetic	 estimation	 (Devitt	 et	 al.,	2019; Leaché, Chavez, 
et al., 2015)	for	species	lacking	a	reference	genome.

In	 contrast,	 the	2bRAD	method	employs	a	 single	 type-	IIB	 re-
striction	 enzyme	 that	 cleaves	DNA	on	 either	 side	 of	 its	 recogni-
tion	site.	No	size-	selection	step	 is	necessary	as	 fragments	are	all	
the	same	 length	 (36 bp	 in	 the	case	of	BcgI)	and	sequencing	 is	ex-
pected	to	recover	all	 fragments	(although	it	 is	possible	to	restrict	
the	sequencing	to	a	subset	of	all	 fragments	through	modification	
of	ligation	adaptors;	see	Barbanti	et	al.,	2020;	Wang	et	al.,	2012).	
Apart	 from	 the	 original	 publication	 in	 which	 the	 method	 was	
used	on	humans	 (Wang	et	al.,	2012),	 few	vertebrate	groups	have	
been	 studied	 with	 2bRAD,	 including	 fishes,	 mice,	 and	 turtles	
(e.g.,	Barbanti	 et	 al.,	2020; Borrego et al., 2022; Cui et al., 2018; 
Manuzzi et al., 2019),	and	its	use	in	phylogenetics	is	limited	(but	see	
Seetharam	&	Stuart,	2013).

In	theory,	we	would	expect	ddRAD	to	outperform	2bRAD	in	phy-
logenetic	reconstruction,	because	the	shorter	and	 invariant	 length	
of	2bRAD	fragments	might	result	in	incorrectly	clustering	paralogs	
into the same putative locus, potentially resulting in less phyloge-
netic	signal	(Andrews	et	al.,	2016).	On	the	contrary,	because	typical	
2bRAD	library	preparation	has	no	size-	selection	step,	it	presumably	
recovers every fragment across the genome with the selected rec-
ognition	site,	which	means	that	with	deep	sequencing,	all	loci	could	
theoretically	be	recovered.	This	would	result	in	better	repeatability	
across	libraries,	although	it	could	also	be	problematic	 in	organisms	
with	large	genomes	(Andrews	et	al.,	2016).	Finally,	the	shorter	locus	
lengths	of	2bRAD	may	be	preferable	when	working	with	 samples	
with	degraded	DNA	(Barbanti	et	al.,	2020).

Here,	 we	 compare	 ddRAD	 and	 2bRAD	 sequencing	 from	 the	
same	specimens	from	two	frog	clades.	We	first	examine	differences	
in	sequence	assembly	between	ddRAD	and	2bRAD	datasets,	includ-
ing	dataset	rarefaction	to	approximate	differing	sequencing	depths.	
Then we ask, what are the advantages and disadvantages of each 
method	 for	 phylogenetic	 inference?	 We	 answer	 this	 question	 by	
using	 both	 ddRAD	 and	 2bRAD	 datasets	 to	 estimate	 phylogenies	
and to measure phylogenetic signal, levels of missing data, and allelic 
dropout.	Finally,	we	explore	practical	aspects	including	differences	
in	cost,	effort,	and	the	reproducibility	of	libraries.

2  |  MATERIAL S AND METHODS

2.1  |  Sample selection, sequencing, and assembly

We	selected	 species	 from	 two	distantly	 related	 frog	 clades	under	
investigation	within	our	labs:	five	species	of	Rana	(Ranidae)	and	five	
species	of	poison	frogs	(Dendrobatidae),	including	three	Epipedobates 
species	and	two	close	relatives	(Silverstoneia erasmios and Ameerega 
hahneli).	Although	the	poison	frogs	include	three	genera,	for	brevity	
we	refer	to	this	clade	by	the	name	of	the	ingroup	clade,	Epipedobates. 
Two	individuals	of	each	species	were	chosen	for	sequencing,	yield-
ing	20	samples.	We	selected	species	for	each	clade	such	that	diver-
gence	times	were	comparable;	that	is,	the	ratio	of	shallowest	node	
age	(1.25	million	years	ago	[Ma]	in	Rana and 1.0 Ma in Epipedobates)	
to	deepest	node	age	(21 Ma/24 Ma;	Rana/Epipedobates)	was	similar	
(Figure 1 and Table S1;	Santos	et	al.,	2009;	Yuan	et	al.,	2016).	DNA	
was	extracted	from	liver	tissue	using	Qiagen	DNeasy	blood	and	tis-
sue	kits	 (Qiagen).	Prior	to	 library	preparation,	DNA	was	quantified	
using	the	dsDNA	high-	sensitivity	assay	on	a	Qubit	3.0	fluorometer	
(Life	Technologies).

2.1.1  |  ddRAD	sequencing

To	determine	appropriate	restriction	enzyme	combinations	and	in-
sert	size	for	ddRAD	protocols,	500 ng	of	DNA	for	two	samples	from	
each	 clade	 (R. chiricahuensis and E. anthonyi)	was	 double	 digested	
with four enzyme pairs: SphI + EcoRI, EcoRI + MspI, SphI + MluCl, 
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and SphI + MspI	 (New	 England	 BioLabs),	 cleaned	 using	 handmade	
Serapure	 beads	 (see	 Rohland	 &	 Reich,	 2012),	 and	 sent	 to	 the	
University	 of	 Texas	 at	 Austin	 Genomics	 Sequencing	 and	 Analysis	
Facility	 (GSAF)	 for	 fragment	 visualization	 using	 an	 Agilent	 2100	
Bioanalyzer	 (Agilent)	 and	 standard	2100	Expert	Software.	We	se-
lected the SphI + MluCl	enzyme	combination	for	both	Epipedobates 
and Rana	because	they	sheared	reasonable	subsets	of	the	genomes	
(~1%)	 at	 a	 size	 range	 amenable	 to	 Illumina	 sequencing	 technology	
(~300 nt).	 Based	 on	 our	 Bioanalyzer	 results,	 we	 aimed	 to	 recover	
0.98%	of	the	genome	in	Epipedobates	(size	selection	window:	275–	
325 nt;	x =	291 nt)	and	1.21%	of	the	genome	in	Rana	(size	selection	
window:	300–	350 nt;	x =	314 nt).	We	estimated	the	genome	size	of	
Epipedobates	as	9GB,	based	on	the	upper	limit	for	the	dendrobatid	
Oophaga	(Rogers	et	al.,	2018),	and	6GB	for	Rana catesbeiana follow-
ing	Hammond	et	al.	(2017).	To	target	a	coverage	depth	of	20×, we re-
quested	7.27	and	5.55	million	paired-	end	reads	(2 × 150	paired-	end	
reads)	per	sample	for	Epipedobates and Rana,	respectively	(Table 1; 
see also Supporting	Information).	Preliminary	data	now	suggest	that	
Epipedobates	genomes	are	closer	to	6GB	in	size	(R.	D.	Tarvin,	unpub-
lished data),	which	would	 imply	 that	 fewer	 reads	 could	 have	 been	
requested.	 Library	 preparation	was	 performed	 following	Peterson	
et	al.	(2012),	using	handmade	Sera-	mag	Speedbeads	for	all	but	the	
final	bead	clean-	up	step	(in	which	Dynabeads	were	used).	DNA	was	
quantified	 using	 PicoGreen	 dsDNA	quantitation,	DNA	was	 stand-
ardized, and size selection was accomplished using a Pippin Prep 
machine	(using	a	2%	cassette).	Pooled	libraries	(total	concentrations	
of	0.92 ng/μL for Epipedobates	and	1.91 ng/μL for Rana)	were	 then	
sequenced	at	the	GSAF	on	an	Illumina	HiSeq	4000.

2.1.2  |  2bRAD	sequencing

Using the BcgI enzyme, we digested the same four samples used 
for	the	ddRAD	test	digestion.	The	Bioanalyzer	analysis	showed	no	
obvious	peak	at	the	size	of	the	2bRAD	insert	(36 bp),	which	is	close	
to	 the	smallest	 fragment	 in	 the	 ladder	of	Bioanalyzer	gels	 (35 bp).	
Therefore,	 it	was	difficult	 to	quantify	 the	 amount	of	 the	genome	
digested, and we conservatively estimated that the Bcgl enzyme cut 
0.5%	of	the	genome	(based	on	estimates	from	previous	vertebrates	
on	which	 this	 enzyme	had	been	 tested).	Using	 the	 same	genome	
size	 estimates	 and	 depth	 of	 coverage	 (20×)	 as	 with	 ddRAD,	 we	

aimed	to	obtain	25	and	17	million	50-	bp	single-	end	reads	per	sam-
ple for Epipedobates and Rana,	respectively	(Table 1; see Supporting	
Information	 for	 calculations).	 Extracted	 DNA	 was	 cleaned	 using	
Zymo	Genomic	DNA	Clean	&	Concentrator	 (Zymo	Research),	and	
100 ng	of	cleaned	DNA	was	then	digested	using	the	BcgI enzyme 
(New	England	BioLabs).	All	libraries	were	prepared	using	protocols	
developed	by	the	Matz	 lab	 (see	https://github.com/z0on/2bRAD_
denovo for the most current protocols and Supporting	Information 
for	the	protocol	used	here).	Following	ligation,	libraries	were	pooled	
together	 and	 then	 run	on	 an	 agarose	 gel;	 the	 target	 176 bp	 band	
was excised manually and purified using agarose gel extractions. 
Final	 pooled	 libraries	 with	 total	 concentrations	 of	 0.22 ng/μL for 
Epipedobates	and	0.28 ng/μL for Rana	were	sequenced	at	the	GSAF	
on	an	Illumina	HiSeq	4000.

2.1.3  |  Rarefaction	of	sequencing	depths	
by	sampling

In	ddRAD	studies,	typical	targets	of	1–	2	M	reads/individual	are	used	
to reach a 10×	 sequencing	depth,	at	which	shared	 locus	coverage	
is	high	among	individuals,	and	genotypes	can	be	called	with	confi-
dence,	enabling	researchers	to	answer	questions	at	both	population	
and	phylogenetic	levels	(Valencia	et	al.,	2018).	To	determine	the	ef-
fect	of	different	sequencing	depths	on	phylogenetic	 inference,	we	
targeted	a	larger	number	of	reads	that	is	typical	and	then	subsam-
pled	these.	Although	rarefaction	is	not	equivalent	to	sequencing	at	
different	depths,	we	consider	it	an	adequate	proxy.	We	aimed	to	re-
cover	5.6–	7.3	M	reads	per	individual	for	ddRAD	and	17–	25 M	reads	
per	individual	for	2bRAD	to	yield	data	at	a	depth	of	20×, two- fold 
more	 than	 is	 typical	 (see	 Supporting	 Information	 for	 calculations).	
We	randomly	sampled	reads	(without	replacement)	at	arbitrarily	se-
lected	proportions	 to	 represent	different	 sequencing	depths	 from	
the Epipedobates and Rana datasets using the sample function of 
seqtk	 (https://github.com/lh3/seqtk)	 to	 yield	 four	 sampling	 depths	
(t1, t2, t3, and total; Figure 2a).	At	 the	 lowest	 sampling	depth	 (t1),	
we	sampled	14%–	16%	of	the	total	reads	to	yield	approximately	1	M	
reads	per	individual,	33%–	42%	at	depth	t2,	and	66%–	71%	at	depth	
t3	 (Table 2).	We	sampled	the	2bRAD	datasets	using	the	same	per-
centages	 (Table 2).	 All	 sampling	 occurred	prior	 to	 data	 processing	
or filtering.

F I G U R E  1 Chronograms	of	target	
species	from	(a)	Rana	(Yuan	et	al.,	2016)	
and	(b)	Epipedobates	(Santos	et	al.,	2009).	
Two	specimens	were	sequenced	from	
each	species.	Asterisks	indicate	that	
one	specimen	was	sequenced	twice	as	a	
replicate. Illustrated species: Epipedobates 
tricolor, Rana berlandieri	(illustrations	by	
EAC).

https://github.com/z0on/2bRAD_denovo
https://github.com/z0on/2bRAD_denovo
https://github.com/lh3/seqtk
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2.1.4  |  ddRAD	assembly

Bioinformatics	 pipelines	 for	 2bRAD	 and	 ddRAD	were	 run	 on	 the	
Lonestar	5	system	of	the	Texas	Advanced	Computing	Center	(TACC)	
at	the	University	of	Texas	at	Austin.	We	used	iPyrad	v.0.7.23	(Eato
n, 2014;	Eaton	&	Overcast,	2020)	to	assemble	the	ddRAD	datasets	
of each clade separately. The total dataset was used to determine 
the clustering threshold, which is the percent similarity at which 
two	 sequences	 are	 considered	 orthologous	 and	 assigned	 to	 the	
same	 cluster	 (iPyrad	 parameter	 14,	 clust_threshold).	 If	 this	 param-
eter	is	too	high	(too	stringent),	loci	may	be	over-	split,	meaning	that	
true homologs are interpreted as different loci; however, if the pa-
rameter	is	too	low,	loci	may	be	under-	split,	i.e.,	paralogs	incorrectly	
clustered	 into	a	single	 locus	 (Harvey	et	al.,	2015; Ilut et al., 2014).	
iPyrad applies the clustering threshold parameter during two steps 
in	 the	pipeline:	 first,	 to	build	clusters	within	samples,	and	then,	 to	
construct	 loci	 among	 samples.	We	 tested	 16	 clustering	 threshold	
values from 0.80 to 0.95 to assess the effect of this parameter on 
both	steps.	As	the	clustering	threshold	increases,	we	expect	to	see	
the	number	of	 loci	assembled	per	 individual	 increases	with	the	re-
duced	stringency	of	 this	parameter.	However,	when	the	clustering	
threshold	becomes	too	high,	some	putative	loci	will	begin	to	be	er-
roneously split into different loci, after which the min_samples_locus 
parameter	will	remove	them,	resulting	in	a	decrease	in	the	number	of	
useful	loci.	Thus,	the	optimal	parameter	value	maximizes	the	number	
of	loci	in	individual	assembly,	thereby	also	ensuring	orthologs	are	not	
oversplit.	Based	on	the	number	of	loci	obtained	for	tested	clustering	
values	 (Figure 3),	we	 chose	 a	 conservative	 clustering	 threshold	of	
0.91	for	the	ddRAD	assembly.	Although	consideration	of	Rana and 
Epipedobates separately would have led us to choose slightly differ-
ent	values	for	each,	we	chose	a	single	value	because	applying	similar	
values of clustering threshold is important for cross- taxon compari-
sons	(Harvey	et	al.,	2015).

To	ensure	consistency	with	the	2bRAD	data	assembly,	consen-
sus	reads	containing	an	N	(uncalled	base)	were	removed	by	setting	
the iPyrad parameter max_Ns_consens	equal	to	0,	0.	The	number	of	
samples	required	to	share	a	locus	so	that	it	is	retained	in	the	assem-
bly	(min_samples_locus)	was	set	to	4	to	maximize	the	number	of	loci	
across	all	samples.	Reads	were	trimmed	to	120	bases,	removing	the	
first	5	and	 last	25	bases,	which	had	 lower	quality	 (trim_reads = 5, 
−25,	0,	0).	The	minimum	read	length	was	set	to	35 nt	(filter_min_trim_
len).	To	ensure	consistency	between	final	assemblies	from	each	data	
type, we retained only forward reads and set remaining iPyrad pa-
rameters	to	the	default	(Table 3).

2.1.5  |  2bRAD	assembly

The	2bRAD	data	were	processed	separately	for	each	clade	using	
the	de	novo	pipeline	developed	by	Wang	et	al.	(2012)	and	modi-
fied	to	incorporate	deduplication	and	a	triple-	barcoding	scheme.	
This	modified	pipeline	splits	reads	by	in-	read	barcode	and	at	the	
same	 time	 deduplicates	 them	 based	 on	 the	 ligated	 degenerate	TA
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tag.	Quality	filtering	was	achieved	using	cutadapt	(https://cutad 
apt.readt	hedocs.io/en/stabl	e/#)	 to	 remove	 any	 tags	 shorter	
than	 the	designated	36 bp	 length,	and	we	once	again	 tested	16	

clustering	 threshold	 values	 (0.80–	0.95)	 to	 assess	 the	 effect	 of	
this	parameter	using	cd-	hit-	est	 (Fu	et	al.,	2012),	with	a	“cluster-	
derived	reference”	produced	by	concatenating	the	most	common	

F I G U R E  2 Flowchart	of	methods.	(a)	To	simulate	varying	sequencing	depths	(t1, t2, and t3),	we	randomly	subsampled	the	complete	(total)	
datasets.	This	produced	16	datasets,	8	for	each	RADseq	method	and	1	for	each	clade.	(b)	Phylogenetic	reconstructions	were	run	using	
complete	datasets	(all	sites),	producing	16	trees.	(c)	SNP	datasets	were	used	to	calculate	unambiguous	changes	along	branches	of	trees	to	
quantify	phylogenetic	information.	Allelic	dropout	was	quantified	using	binary-	recoded	(1/0	for	presence/absence)	SNP	datasets	under	
Dollo parsimony.

(a)

(b)

(c)

https://cutadapt.readthedocs.io/en/stable/
https://cutadapt.readthedocs.io/en/stable/
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representatives of each cluster. This reference was formatted 
using	bowtie2	v.2.3.5.1	 (Langmead	&	Salzberg,	2012)	 and	 sam-
tools	v.1.9	(Li	et	al.,	2009).	The	trimmed	and	filtered	reads	were	
mapped	to	the	cluster-	derived	reference	using	bowtie2	with	de-
fault	parameters,	and	ANGSD	v.5.2.3	(Korneliussen	et	al.,	2014)	
was	used	to	make	genotype	calls	and	build	consensus	sequences.	

The	same	missing	data	 threshold	was	used	 for	 the	2bRAD	data	
(minInd	 parameter	 set	 to	 4	 in	 ANGSD;	 see	 Table 3 for further 
details).	A	 detailed	 guide	 to	 all	 scripts	 can	be	 found	 at	https://
github.com/z0on/2bRAD_denovo,	and	details	regarding	the	bio-
informatics	pipeline	for	our	dataset	can	be	found	 in	Supporting	
Information.

TA B L E  2 Numbers	of	raw	reads	(summed	over	all	individuals)	for	each	sampling	scheme	by	method	and	taxon.

Sampling 
depth

Epipedobates Rana

Proportion 
sampled (%) ddRAD 2bRAD

Proportion 
sampled (%) ddRAD 2bRAD

t1 14.5 12,008,757 27,199,735 16.1 11,486,579 24,115,588

t2 42.0 34,808,757 78,841,547 32.9 23,486,579 49,309,082

t3 71.0 58,808,757 133,201,348 66.4 47,486,579 99,696,069

Total 100 82,808,757 187,561,150 100 71,486,579 150,083,057

Note: The total	sampling	depth	is	the	total	number	of	reads	sequenced.

F I G U R E  3 Number	of	consensus	reads	(good	reads	before	clustering)	and	total	number	of	loci	(shared	between	samples)	per	individual	
for	clustering	threshold	values	from	80%	to	95%	for	Rana and Epipedobates	for	ddRAD	and	2bRAD	datasets.	We	selected	a	clustering	
threshold	value	of	91%	for	our	analysis	(black	dotted	lines).

https://github.com/z0on/2bRAD_denovo
https://github.com/z0on/2bRAD_denovo
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2.1.6  |  Consistency	between	bioinformatics	 
pipelines

As	detailed	above,	we	assembled	each	dataset	–		2bRAD	and	ddRAD	–		
using	different	pipelines	(Matz	Lab	and	iPyrad,	respectively)	that	cor-
respond	to	the	typical	user	workflow	for	each	type	of	data.	However,	
to	examine	how	different	bioinformatics	pipelines	may	affect	assem-
blies,	we	ran	each	dataset	through	the	reciprocal	pipeline	–		2bRAD	
data	using	iPyrad	and	ddRAD	data	using	the	Matz	Lab	pipeline	–		and	
reported	general	characteristics	of	the	resulting	assemblies.	All	data	
have	 been	made	 publicly	 available	 (see	 Supporting	 Information on 
Dryad)	for	further	investigation.

To	analyze	the	2bRAD	data	with	iPyrad,	we	used	the	same	pa-
rameter	 settings	 as	 described	 above	 in	 section	 2.1.4, except for 
changes	 in	 the	 following	 parameters:	 data	 type	 (datatype = gbs),	

restriction	overhang	sequence	(restriction overhang =	TGCAG),	mini-
mum	read	length	after	adapters	have	been	trimmed	(filter_min_trim_
length =	20),	and	how	much	to	trim	raw	reads	(trim_reads =	0,0,0,0).	
To	 run	 the	ddRAD	data	 through	 the	Matz	Lab	pipeline,	we	began	
by	deduplicating	and	 filtering	 reads	using	 iPyrad	 (steps	1	and	2	 in	
iPyrad),	followed	by	the	same	protocol	as	described	in	section	2.1.5, 
starting	 at	 the	 cluster-	derived	 reference	 step	 (see	 Supporting	
Information	for	a	detailed	walkthrough	and	associated	output	files).	
No	other	modifications	were	made	to	the	Matz	Lab	pipeline	for	pro-
cessing	ddRAD	data.

To	compare	the	performance	of	reciprocal	bioinformatics	pipe-
lines,	we	examined	basic	characteristics	of	final	assemblies,	including	
numbers	 of	 sites,	 loci,	 SNPs,	 parsimony-	informative	 sites,	 average	
read	depth	per	individual,	and	proportions	of	missing	data.	We	cal-
culated	 the	 average	 read	 depth	 per	 individual	 (across	 all	 variable	

TA B L E  3 Assembly	pipeline	parameter	settings	used	in	iPyrad	v.0.7.23	(Eaton,	2014)	for	ddRAD	assembly	and	the	Matz	native	pipeline	
for	2bRAD	assembly.

Description

iPyrad ddRAD pipeline Matz 2bRAD native pipeline

Parameter Setting Parameter Setting

Type of input data datatype ddrad N/A N/A

Restriction enzyme overhang restriction_overhang CATGC N/A N/A

Quality filtering max_low_qual_bases
phred_Qscore_offset
max_barcode_

mismatch
filter_adapters†

filter_min_trim_len

5
33
0
2
35

- minQ	(ANGSD)
- remove_bads	(ANGSD)
trim2bRAD_2barcodes_dedup.pl
trim2bRAD_2barcodes_dedup.pl
- m	(cutadapt)

30
1
0
Default parameters
36

Minimum	read	depth	for	base	calling mindepth_statistical
mindepth_majrule

5
5

- minInd	(ANGSD)
- postCutoff	(ANGSD)

1
0.95

Maximum allowed cluster depth within 
samples

maxdepth 10,000 N/A N/A

Percent	similarity	required	to	cluster	
reads into a locusa

clust_threshold	(using	
vsearch)

0.91 - c	(cd-	hit-	est) 0.91

Maximum	number	of	alleles	per	site	in	
consensus	sequences

max_alleles_consens 2 Most common read in a cluster 
is assigned as the reference 
(cd-	hit-	est)

N/A

Maximum	number	of	N's	(uncalled	
bases)	and	heterozygotes	allowed	in	
consensus	(R1,	R2)

max_Ns_consens
max_Hs_consens

0, 0
8, 8

No	consensus	is	inferred N/A

Minimum	number	of	samples	required	to	
share	a	locus	in	order	to	be	retained	
in	final	assembly

min_samples_locusa 4 - minInd	(ANGSD) 4

Maximum	number	of	SNPs,	indels,	or	
heterozygous sites allowed per locus

max_SNPs_locus
max_Indels_locus
max_shared_Hs_locus

20, 20
8, 8
0.5

N/A
bowtie2
bowtie2	(parameter	is	used	to	

map individual reads to locus; 
there is no limit to locus- level 
heterozygotes)

N/A
N/A
default parameters 
(0 + 0.15*read	
length =	5.4)

Trim raw read edges trim_readsa 5,	−25,	0,	0 - q in cutadapt 15,15

Trim locus edges trim_loci 0, 0, 0, 0 N/A N/A

Note:	These	are	the	parameters	used	after	testing	various	clustering	threshold	values	(iPyrad	clust_threshold	parameter).	iPyrad	was	used	for	the	basis	
of	comparison	here;	parameters	are	not	directly	comparable.
aParameters altered from default settings.
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sites	 in	 the	 final	 assemblies)	 by	extracting	 the	 “DP”	element	 from	
vcf files; this element indicates the read depth for each sample at 
a	given	site.	We	performed	this	calculation	using	the	vcfR package 
(Knaus	&	Grunwald,	2017)	within	a	custom	R	script	(see	Supporting	
Information).	 All	 subsequent	 analyses	 were	 performed	 only	 using	
the	pipelines	that	corresponded	to	each	data	type	(i.e.,	the	Matz	Lab	
pipeline	for	2bRAD	and	iPyrad	for	ddRAD).

2.2  |  Phylogenetic inference

To	assess	the	impact	of	the	type	and	quantity	of	data	on	estimating	
phylogeny, we estimated phylogenetic trees under maximum likeli-
hood	at	each	sampling	depth	(t1, t2, t3, and total)	across	both	meth-
ods	and	both	clades	(Figure 2b);	this	generated	16	trees.	Phylogenies	
were	 estimated	 using	 RAxML-	ng	 v.0.5.1b	 (Kozlov	 et	 al.,	 2019; 
Stamatakis,	 2014)	 with	 the	 GTR + Γ model using entire locus se-
quences	 in	a	 concatenated	matrix,	with	clades	 run	 separately.	We	
used 10 searches to estimate the optimal tree and 200 replicates 
to	calculate	bootstrap	proportions	on	the	best	 likelihood	tree.	We	
examined	bootstrap	support	and	branch	lengths	using	R	v.3.6.3	(R	
Core Team, 2018)	with	the	packages	ape	(Paradis	&	Schliep,	2019),	
phangorn	 (Schliep,	2011),	and	dplyr	 (Wickham	et	al.,	2018),	and	we	
visualized data using cowplot	(Wilke,	2017),	ggplot2	(Wickham,	2016),	
and ggtree	(Yu	et	al.,	2017; scripts in Supporting	Information).

To	quantify	 the	deepest	genetic	divergence	within	a	clade,	we	
used	PAUP*	to	calculate	the	(uncorrected)	p-	distance	between	ran-
domly	chosen	 ingroup	and	outgroup	 individuals	 (A. hahneli 2a and 
E. tricolor 2; R. chiricahuensis 1a and R. berlandieri 1a; see Table S1 for 
sample	coding),	using	the	total	datasets	and	 including	variable	and	
constant	sites	(see	Supporting	Information).	Similarly,	we	determined	
the	deepest	genetic	divergence	for	each	clade	using	sequences	(1965	
bases)	of	the	12 S–	16 S	mitochondrial	ribosomal	gene	from	GenBank	
accessions	AY779226	for	R. chiricahuensis,	AY779235	for	R. berland-
ieri,	HQ290998	for	A. hahneli,	and	HQ291001	for	E. tricolor.

2.3  |  Phylogenetic signal in SNP data

We	 compared	 the	 amounts	 of	 phylogenetic	 signal	 or	 information	
(the	converse	of	homoplasy	or	noise)	in	2bRAD	and	ddRAD	datasets.	
Although	there	is	no	universally	accepted	measure	of	phylogenetic	
information, we considered three measures that discriminate among 
alternative	solutions	in	the	16	datasets:	the	number	of	parsimony-	
informative	 sites	 (characters),	 the	 distribution	 of	 unambiguous	
synapomorphies	on	a	tree,	and	the	retention	index	(Farris,	1989),	all	
calculated	using	PAUP*	4.0a,	build	166	(Swofford,	2002).	For	these	
analyses,	we	only	used	variable	sites	(SNPs).

2.3.1  |  Parsimony-	informative	sites

A	 parsimony-	informative	 site	 is	 one	 that	 does	 not	 have	 the	 same	
length	 (number	 of	 steps)	 on	 all	 trees,	 and	 so	 it	 can	 be	 used	 to	

discriminate among alternative trees under the parsimony criterion. 
At	 least	 two	taxa	must	have	one	state,	and	two	others	must	have	
a	different	state,	for	a	character	to	be	parsimony	 informative.	The	
number	 of	 parsimony-	informative	 sites	 is	 reported	 by	 PAUP*	 as	
standard output.

2.3.2  |  Unambiguous	synapomorphies

We	examined	the	distribution	of	unambiguous	synapomorphies	(or	
more	 simply,	 changes)	 on	 each	 branch	 of	 the	 tree.	 Unambiguous	
synapomorphies	provide	clear	evidence	of	branch	support	because	
they have only one reconstruction on a tree; in other words, with a 
synapomorphy, all descendants of a common ancestor share a state 
which is not present in any other taxa on the tree, and support is 
unanimous	because	no	other	 reconstruction	of	 the	data	 is	equally	
parsimonious.	 In	 contrast,	 ambiguous	 synapomorphies	 have	 alter-
native	equally	parsimonious	 reconstructions,	and	 it	 is	not	possible	
to	determine	on	which	branch	the	change	occurs	(Swofford,	2002).	
Thus,	the	number	of	unambiguous	synapomorphies	informs	us	how	
much	unambiguous	 (under	 parsimony)	 phylogenetic	 information	 is	
contained	in	the	data	along	each	branch	of	the	tree.	To	determine	
the	numbers	of	unambiguous	changes	on	each	branch,	we	optimized	
each dataset on its optimal likelihood tree under the accelerated 
transformation	 (ACCTRAN)	algorithm	(Figure 2c)	and	used	custom	
R	scripts	to	parse	the	PAUP*	output	(see	Supporting	Information).

To compare the phylogenetic information across sampling depths 
and	datasets,	we	divided	 the	number	of	unambiguous	changes	on	
each	branch	by	the	total	changes	on	the	tree	and	plotted	the	pro-
portions	on	the	branches.	For	 the	root	edge,	however,	we	plotted	
the aggregate changes for the two edges descending from the root 
node	 in	 a	 single	 graph	 because	 it	 is	 not	 possible	 to	 determine	 on	
which	of	the	two	edges	the	change	occurs.	For	example,	if	a	SNP	has	
state	G	in	the	outgroup	but	A	in	all	ingroup	taxa,	one	cannot	deter-
mine	whether	the	change	between	G	and	A	occurred	on	the	branch	
ancestral	to	the	outgroup	or	on	the	branch	ancestral	to	the	ingroup.

2.3.3  |  Retention	index

For	each	dataset,	we	obtained	the	retention	 index	from	PAUP*	by	
heuristic search using the hsearch command. This measure ranges 
from	0	(no	signal)	to	1.0	(no	homoplasy).	The	retention	index	is	typi-
cally	not	correlated	with	the	number	of	characters	or	taxa,	allowing	
for	comparison	between	datasets	of	different	sizes	(Archie,	1996).

2.4  |  Missing data and allelic dropout

2.4.1  | Missing	data

A	common	feature	of	RADseq	datasets	is	variation	in	missing	data,	
which	 may	 bias	 phylogeny	 estimation	 (Crotti	 et	 al.,	 2019; Eaton 
et al., 2017).	We	calculated	the	proportion	of	missing	data	(number	
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of	matrix	cells	with	“?”	or	“N,”	divided	by	the	total	number	of	cells)	in	
the	SNP	datasets,	for	each	sampling	depth	and	each	individual,	using	
the missdata	command	in	PAUP*.

2.4.2  |  Allelic	dropout	and	phylogenetic	signal

Missing	data	may	have	several	sources,	such	as	poor	DNA	quality,	
variation	 in	 library	 preparation,	 or	 selection	 of	 assembly	 param-
eter	values.	An	important	biological	cause	of	missing	data	 is	allelic	
dropout, in which a mutation at a restriction site prevents cutting of 
that	fragment	so	that	the	putative	locus	“drops	out”	of	the	final	as-
sembly;	Eaton	et	al.	(2017)	referred	to	this	as	“mutation-	disruption.”	
Distinguishing allelic dropout from other causes of missing data can 
be	difficult.	We	used	a	phylogenetic	criterion	to	identify	allelic	drop-
out	by	examining	the	patterns	of	gains	and	losses	of	loci	on	a	tree,	
under the assumption that close relatives share the same pattern 
of	missing	 loci	 (Eaton	et	al.,	2017).	 In	other	words,	 losses	showing	
phylogenetic signal are most likely due to allelic dropout, as opposed 
to	randomly	distributed	losses	of	a	locus,	which	might	be	due	to	non-	
biological	causes.

Although	 our	 question	 of	 allelic	 dropout	 is	 similar	 to	 that	 of	
Eaton	et	al.	(2017),	who	used	simulated	RADseq	datasets	to	inves-
tigate	the	occurrence	and	patterns	of	missing	data	caused	by	allelic	
dropout,	 our	 approach	 is	 different.	 We	 first	 inferred	 patterns	 of	
gains	and	losses	of	loci	by	analyzing	the	SNP	data	under	Dollo	par-
simony,	which	 is	 appropriate	 for	 analyzing	allelic	dropout	because	
it	assumes	that	a	locus	will	be	gained	only	once	on	the	tree,	can	be	
lost	multiple	times,	and	is	not	regained	if	lost	(Swofford,	2002).	For	
each	assembly,	cells	with	non-	missing	nucleotide	data	were	recoded	
as	1,	or	“present,”	and	cells	with	missing	data	were	recoded	as	0,	or	
“absent.”	Sites	with	an	alignment	gap	were	excluded	(<2%	of	sites).	
Using	PAUP*,	we	determined	the	numbers	of	unambiguous	synapo-
morphies	(changes)	on	each	branch	by	optimizing	each	dataset	onto	
its	best	tree	as	before	(Figure 2c).	Allelic	dropout	was	quantified	by	
counting	the	unambiguous	changes	from	1	to	0,	using	R	scripts	to	
parse	PAUP*	output	from	the	command	describe/apolist chglist diag. 
We	then	plotted	the	proportions	of	changes	on	each	branch	for	all	
sampling depths.

Not	all	instances	of	dropout	are	equally	informative	about	phy-
logeny.	A	locus	that	undergoes	a	single	loss	on	a	tree	has	maximum	
signal	(no	homoplasy),	but	one	that	shows,	for	example,	four	losses	
on a tree of 10 tips has little signal and is highly homoplastic. To de-
termine whether an instance of allelic dropout has significant signal, 
we	compared	its	expected	number	of	changes	on	the	tree	for	each	
locus	(null	expectation)	to	the	observed	number	of	changes	with	a	
chi-	square	test,	using	the	total	datasets	(see	Supporting	Information 
for	further	explanation).

2.5  |  Repeatability

Due	to	stochasticity	in	library	preparation	and	sequencing,	RADseq	
methods	 may	 not	 be	 ideal	 for	 augmenting	 an	 existing	 dataset	

(Andrews	et	al.,	2016).	If	re-	sequencing	a	sample	yields	only	a	small	
fraction	 of	 the	 original	 loci,	 sequencing	 more	 deeply	 may	 be	 re-
quired	to	capture	sufficient	loci	shared	across	previously	and	newly	
sequenced	 samples.	 To	 assess	 the	 repeatability	 of	 re-	sequencing,	
a	 replicate	 library	 was	 constructed	 and	 sequenced	 for	 two	 indi-
vidual frogs from each clade using an ingroup and outgroup spe-
cies	 (R. chiricahuensis and R. berlandieri; A. hahneli and E. anthonyi)	
for	both	2bRAD	and	ddRAD.	Using	custom	scripts	(see	Supporting	
Information),	 we	 quantified	 repeatability	 as	 the	 number	 of	 loci	
shared	by	the	two	replicates	divided	by	the	total	number	of	unique	
loci	in	both	replicates.

2.6  |  Time and cost considerations

The	 authors	who	 prepared	 the	 libraries	 (E.A.C	 and	 R.D.T)	 had	 no	
prior	 experience	 with	 either	 method	 and	 were	 guided	 by	 experi-
enced	 researchers	 (see	 Acknowledgments).	 We	 briefly	 compared	
the	methods	 qualitatively	 in	 terms	 of	 overall	 difficulty	 relative	 to	
standard	laboratory	techniques	and	quantitatively	in	overall	cost	of	
library	preparation	and	sequencing,	library	preparation	time,	use	of	
specialized	 equipment,	 and	 computational	 time	 required	 for	 each	
bioinformatics	 pipeline.	 All	 costs	 were	 made	 based	 on	 estimates	
from 2018.

3  |  RESULTS

3.1  |  Dataset characteristics

Relatively	fewer	reads	were	obtained	for	2bRAD	than	requested	
as	 compared	 to	 ddRAD	 (Table 1),	 potentially	 related	 to	 nucleo-
tide	base	diversity	problems	with	the	Illumina	HiSeq	4000	chem-
istry	 (UT	 GSAF	 technical	 staff,	 personal	 communication).	When	
data were analyzed with their respective pipeline, the average 
read	depth	per	 site	was	10.10/9.88	 for	2bRAD	and	21.40/18.10	
for	 ddRAD	 (Epipedobates/Rana, respectively; Table 1).	 The	 two	
methods	 were	 consistent	 in	 the	 number	 of	 sites	 recovered	 for	
each	clade	(~3.5 M for Epipedobates and ~8.5 M for Rana; Table 1).	
However,	 2bRAD	 recovered	 2.8/3.4	 times	 (Epipedobates/Rana)	
more	 loci	 and	 3.3/2.4	 times	 (Epipedobates/Rana)	 fewer	 SNPs	
than	ddRAD.	Interestingly,	2bRAD	recovered	8.9/7.8	times	fewer	
parsimony-	informative	 sites	 (PIs)	 and	 2.7/3.3	 times	 fewer	 PIs	
per	 SNP	 than	 ddRAD,	meaning	 that	 PI	 sites	 were	 less	 frequent	
in	 2bRAD	data	 than	 in	 ddRAD	 (Epipedobates/Rana).	Overall,	 the	
differences	among	the	datasets	were	due	primarily	to	the	library	
preparation,	 sequencing	 methods,	 and	 analysis	 pipelines	 rather	
than	differences	 in	clades.	These	patterns	were	observed	across	
all	sampling	depths	(Tables 4 and 5).

After	 using	 reciprocal	 bioinformatics	 pipelines	 to	process	data-
sets, we found that the pipelines typically used for each data type 
(i.e.,	Matz	Lab	pipeline	for	2bRAD	data	and	iPyrad	for	ddRAD	data)	
recovered	 more	 total	 sites	 and	 loci	 for	 that	 data	 type	 (Table 4).	
However,	 iPyrad	 consistently	 recovered	a	greater	number	of	SNPs	
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(and	correspondingly,	PIs)	for	both	2bRAD	and	ddRAD	datasets	than	
the	Matz	Lab	pipeline.	In	some	cases,	the	discrepancy	between	SNPs	
recovered	using	iPyrad	and	Matz	Lab	pipeline	was	striking;	for	exam-
ple, in Epipedobates	ddRAD	dataset,	iPyrad	recovered	208,428	SNPs,	
as	compared	to	19,583	recovered	using	the	Matz	Lab	pipeline,	an	in-
crease of more than 10- fold. Proportions of missing data were com-
parable	for	datasets	regardless	of	which	bioinformatics	pipeline	was	
used, although average read depth per individual was consistently 
lower	in	the	data	processed	using	the	Matz	Lab	pipeline	(Figure 4).

3.2  |  Phylogenetic inference

Maximum likelihood analyses of the Rana and Epipedobates data-
sets at all sampling depths and across methods yielded the same 
topology	 for	 each	 clade	 (Figure 5).	 The	Epipedobates tree showed 
the	 same	 relationships	 found	 by	 Santos	 et	 al.	 (2009)	 and	 Tarvin	
et	 al.	 (2017).	However,	 the	Rana	 tree	 differed	 from	 recently	 pub-
lished	trees.	Although	previous	studies	found	R. blairi	to	be	the	sis-
ter species of R. berlandieri + R. neovolcanica	(Hillis	&	Wilcox,	2005; 
Yuan	et	al.,	2016),	we	 found	R. blairi	 to	be	 the	sister	 species	of	R. 
sphenocephala.	Bootstrap	support	values	were	100%	across	nearly	
all nodes on trees, regardless of taxon, method, or sampling depth, 
with	just	a	few	exceptions	(Figure 5).

Interestingly,	 the	 relative	 branch	 lengths	 differed	 between	 the	
2bRAD	and	ddRAD	trees.	In	the	Epipedobates and Rana	ddRAD	trees,	
the tips of the ingroup taxa were roughly the same distance from the 
root	(Figure 5,	right	column),	similar	to	an	ultrametric	tree.	In	contrast,	
in	the	2bRAD	trees,	the	ingroup	tips	were	at	varying	distances	from	
the root, and this was more pronounced in Epipedobates	(Figure 5).

For	all	datasets,	the	amount	of	sequence	divergence	between	in-
group and outgroup was greater for Epipedobates than for Rana.	For	

the	2bRAD	data,	the	p-	distance	between	the	ingroup	and	outgroup	
was	0.02297	for	Rana and 0.03429 for Epipedobates	 (Epipedobates 
is 1.49×	 larger).	For	 the	ddRAD	data,	 the	p-	distance	was	0.03059	
for Rana and 0.03931 for Epipedobates	(1.29×	larger).	For	the	12 S–	
16 S	sequences,	the	p-	distance	was	0.0880	for	Rana and 0.1390 for 
Epipedobates	(1.58×	larger).

3.3  |  Phylogenetic signal in SNP data

3.3.1  |  Parsimony-	informative	sites

The	number	of	PIs	was	much	higher	in	ddRAD	than	in	2bRAD	within	
each	 taxon,	 even	 though	 the	 total	 number	 of	 sites	 was	 similar.	
Notably,	in	both	clades,	the	PIs/SNP	and	PIs/locus	ratios	were	much	
higher	 in	ddRAD	than	 in	2bRAD,	with	ddRAD	having	about	three	
times	as	many	PIs/SNP	and	25	times	as	many	PIs/locus	than	2bRAD	
(Table 1).	However,	the	lower	PIs/SNP	ratio	in	2bRAD	data	may	be	
partly	attributable	to	differences	in	pipelines,	as	iPyrad	recovered	
approximately	three	times	more	PIs/SNP	than	the	Matz	Lab	pipe-
line	 in	both	data	 types;	PIs	per	 locus	 remained	 low	 in	2bRAD	for	
both	pipelines	(Table 4).	Using	native	pipelines,	the	PIs/SNP	ratio	in-
creased	continuously	with	sampling	depth	in	2bRAD	datasets,	sug-
gesting	that	coverage	limited	locus	inference	in	2bRAD.	In	contrast,	
in	the	ddRAD	datasets,	the	PIs/SNP	ratio	reached	a	plateau	at	t2 or 
t3 and decreased slightly in total	in	both	clades	(Figure 6).

3.3.2  |  Unambiguous	synapomorphies

We	 describe	 the	 distribution	 of	 unambiguous	 synapomor-
phies	on	branches	 at	 four	 levels:	 the	 root	branch	or	 edge,	 the	

TA B L E  4 Results	of	assembly	pipeline	for	complete	dataset	(total	sampling	depth).	Rows	with	bolded	text	indicate	assemblies	used	for	all	
subsequent	analyses.

Dataset

Bioinformatics 
processing 
pipeline

Avg. read 
deptha

Missing 
data (%)b Total sites

Total 
loci

Total 
SNPsc

Total 
PIsd

SNPs per 
locus

SNPs 
per site

PIs per 
SNP

PIs per 
locus

Epipedobates

2bRAD iPyrad 16.2 45.8 2,377,133 76,739 129,433 59,616 1.69 0.05 0.46 0.78

Matz 9.4 50.6 3,208,050 89,952 63,070 8196 0.70 0.02 0.13 0.09

ddRAD iPyrad 29.9 56.3 3,558,310 32,371 208,428 73,187 6.44 0.06 0.35 2.26

Matz 5.5 57.4 2,798,131 30,376 19,583 2320 0.64 0.007 0.12 0.08

Rana

2bRAD iPyrad 14.6 51.4 4,835,880 156,037 210,491 77,409 1.35 0.04 0.37 0.50

Matz 8.8 44.3 9,133,414 255,197 161,952 19,281 0.63 0.02 0.12 0.08

ddRAD iPyrad 26.5 43.6 8,312,261 75,393 381,817 149,816 5.06 0.05 0.39 1.99

Matz 18.7 34.1 1,558,513 14,196 9428 1016 0.66 0.006 0.11 0.07

Note:	Native	pipelines	are	in	bold.
aAverage	depth	across	all	individuals.
bProportion	of	missing	cells	in	SNP	datasets.
cSNPs,	single-	nucleotide	polymorphisms.
dPIs, parsimony- informative sites.
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intermediate	 branches	 (in	 Rana,	 the	 two	 sister	 branches	 de-
scending from the ingroup ancestral node, and in Epipedobates, 
the	 two	 sequential	 branches	descending	 from	 the	 ingroup	 an-
cestral	 node),	 the	 shallow	 branches	 (those	 that	 are	 ancestral	
to	 the	 pair	 of	 tips	 comprising	 a	 species),	 and	 the	 tip	 branches	
(those	with	no	descendants).

Proportions	 of	 unambiguous	 synapomorphies	 on	 branches	 (or	
more	simply,	changes)	were	generally	similar	between	2bRAD	and	
ddRAD	(Figure 7 and Figure S1),	although	proportions	of	changes	in	
ddRAD	were	not	affected	by	sampling	depth	as	much	as	in	2bRAD.	
With	the	exception	of	the	Rana	ddRAD	dataset,	root	edges	had	rel-
atively	fewer	changes	than	the	ingroup	branches	overall.	Relatively	
few	 changes	 were	 found	 on	 the	 intermediate	 branches	 in	 both	
clades.	In	both	2bRAD	and	ddRAD,	the	shallow	branches	generally	
had	the	 largest	proportions	of	changes.	The	tip	branches,	not	sur-
prisingly, had low proportions of changes, and these were typically 
higher in the recently diverged species and higher in Epipedobates 
than in Rana.	Tip	branches	of	the	outgroup	species	(A. hahneli and 
R. chiricahuensis)	 had	 fewer	 changes	 than	 the	 ingroup	 branches	
(Figure 7 and Figure S1).

3.3.3  |  Retention	index

Retention	indices	were	very	high	in	all	analyses	and	did	not	vary	sub-
stantially	between	2bRAD	and	ddRAD	datasets	(Figure 6).	We	noted	
a slight decrease in retention indices with increasing sampling depth.

3.4  |  Missing data and allelic dropout

3.4.1  | Missing	data

The	 proportion	 of	matrix	 cells	 with	missing	 data	was	 comparable	
between	RADseq	methods	(including	when	assembling	with	recip-
rocal	pipelines)	and	across	sampling	depths	(Figure 8; Table 1).	The	
distribution	of	missing	data	among	individuals	varied	widely	in	that	
recently	diverged	species	(E. anthonyi, E. tricolor, R. berlandieri, and R. 
neovolcanica)	had	the	lowest	proportions	of	missing	data	across	all	
sampling	depths	and	both	methods,	ranging	from	24.21%	to	43.98%	
in the total	dataset,	while	the	outgroup	species	(S. erasmios, A. hah-
neli, R. blairi, and R. chiricahuensis)	had	the	highest	proportions,	rang-
ing	from	41.82%	to	94.84%	in	the	total	datasets	(Figure 8).	Replicate	
samples did not contain similar levels of missing data across sam-
pling	depths,	with	differences	in	missing	data	proportions	between	
replicates	 ranging	 from	0%	 to	15.3%	 in	ddRAD	and	 from	2.7%	 to	
14.6%	 in	2bRAD	 (Table S2).	The	most	 similar	proportions	of	miss-
ing	data	between	replicates	were	consistently	observed	in	the	total 
sampling depth datasets and least similar in t1 sampling depth for 
both	ddRAD	and	2bRAD.	Correspondingly,	patterns	of	missing	data	
were somewhat consistent with patterns of mean read depth per 
sample	(Table 1),	 in	which	the	most	divergent	species	also	had	the	
lowest average read depths and those within the ingroup had the TA
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highest,	although	this	relationship	was	more	apparent	within	ddRAD	
datasets	(Figure 4).

3.4.2  |  Allelic	dropout	and	phylogenetic	signal

We	plotted	 the	 relative	proportions	of	 allele	gains	and	 losses	at	
all	sampling	depths	on	the	trees	(Figure 9).	Because	the	patterns	
from these analyses did not vary with sampling depth, we only 
report the results for the total	dataset	(Figure 10).	In	all	datasets,	
the	number	of	changes	(gains	or	losses)	occurring	only	once	on	the	
tree far exceeded the proportions expected under a null model 
(compare	blue	bars	to	orange	bars	for	the	first	column	in	each	sub-
plot in Figure S2).	 The	 exception	 was	 the	 extreme	 condition	 of	
state-	frequency	pattern	0011111111,	 in	which	 the	 frequency	of	
two	changes	 (no	signal)	was	 far	 fewer	 than	expected	by	chance.	
Our	 overall	 conclusion	 from	 the	 chi-	square	 analysis	 is	 that	 both	
gains	of	loci	and	losses	of	loci	(allelic	dropout)	show	overwhelming	
phylogenetic	signal	(Table S3).

The	patterns	of	gains	and	losses	on	branches	differed	more	be-
tween	taxa	than	between	sequencing	methods,	potentially	because	
of	 topological	 differences.	 In	 both	 clades,	 the	 outgroup	 species	
showed	very	 large	proportions	of	allele	absence	 (state	0,	 typically	
>70%)	as	reflected	 in	the	amount	of	missing	data	 (Figure 8);	 these	
patterns were generally similar across the sampling depths.

A	large	proportion	of	changes	(~20%)	between	0	and	1	(in	either	
direction)	occurred	along	the	root	edge	in	Rana; the proportions on 

the Epipedobates	root	edge	were	smaller	(~10%;	Figure 10).	In	both	
clades, the proportion of changes having signal was similar to that 
without	 signal	 (compare	 dark	 and	 light	 brown	 bars).	 The	 changes	
were	largely	from	0	(outgroup)	to	1	(ingroup),	but	without	informa-
tion from closest relatives of these clades, we cannot definitively 
determine	whether	0s	represents	dropout	or	ancestral	absence.

3.5  |  Repeatability

Overall,	 the	 repeatability	 of	 libraries	 and	 sequencing	 was	 slightly	
lower	in	ddRAD	than	in	2bRAD	(Table S2, Figure 11),	with	an	aver-
age	of	87.93%	shared	loci	recovered	between	replicates	for	2bRAD	
compared	to	83.07%	in	ddRAD	for	total datasets. Replicates for the 
outgroups	 (R. chiricahuensis and A. hahneli)	 shared	 fewer	 loci	 than	
those	of	ingroup	species	(R. berlandieri and E. anthonyi).	As	sampling	
depth increased, the proportions of shared loci increased in all sam-
ples except for the t2 dataset for Epipedobates	ddRAD.

3.6  |  Comparisons of effort, cost, and 
bioinformatics skills

3.6.1  |  Laboratory	effort

By	necessity,	our	comparisons	of	person-	effort	and	cost	are	qualita-
tive.	 In	our	experience,	 the	 library	preparation	for	ddRAD	 is	more	

F I G U R E  4 The	distribution	of	read	depth	(average	number	of	reads	per	individual	per	locus)	in	total	SNP	datasets,	including	from	
reciprocal	pipelines	(left	axis,	in	black),	compared	to	mean	proportions	of	missing	data	for	total	SNP	datasets	(right	axis;	in	gray).
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complex	 than	 for	 2bRAD	 in	 part	 because	 it	 requires	 selection	 of	
appropriate	enzymes,	specialized	reagents	such	as	magnetic	beads	
(e.g.,	AMPure	or	SeraPure	and	Dynabeads),	and	additional	protocols	
such	as	size	selection	using	a	Pippin	Prep.	Therefore,	ddRAD	library	
preparation	 took	 more	 time,	 required	 access	 to	 and	 experience	
using	specialized	equipment,	potentially	making	it	difficult	for	inex-
perienced	researchers	or	labs	with	less	equipment	(Table 6).	In	con-
trast,	we	found	the	2bRAD	library	preparation	protocol	to	be	more	
straightforward,	involving	only	a	series	of	PCR	steps	(see	Supporting	
Information),	one	enzyme,	and	no	size	selection.

3.6.2  |  Costs

Library	 preparation	 for	 2bRAD	 (including	 a	 Bioanalyzer	 qual-
ity	 check)	 was	 less	 expensive	 than	 ddRAD	 ($11.04/$12.89	 for	
2bRAD	 and	 ddRAD,	 respectively).	 Although	 both	 2bRAD	 and	
ddRAD	 protocols	 require	 the	 up-	front	 purchase	 of	 adaptors,	
ddRAD	was	particularly	costly	because	it	requires	relatively	more	

expensive	adaptors	(see	Supporting	Information for additional de-
tails).	Sequencing	costs	were	lower	for	ddRAD	($40.00	compared	
to	$70.50	for	2bRAD;	Table 7)	because	the	higher	number	of	inde-
pendent	 loci	predicted	 for	2bRAD	 required	more	 reads	 (on	aver-
age	across	clades,	14.1	M	reads/sample	for	2bRAD	vs.	6.3 M	reads/
sample	 for	 ddRAD;	 Table 1).	 Costs	 per	 SNP	 and	 PI	were	 around	
three-		 to	 five-	fold	 greater	 in	 2bRAD	 than	 in	 ddRAD	 (Table 7).	
Similarly,	 the	 cost	 per	 unlinked	 SNP	 and	 PI	 (one	 per	 locus)	were	
much	more	variable	but	were	overall	higher	in	2bRAD	with	one	ex-
ception:	the	cost	per	unlinked	SNP	was	approximately	20%	cheaper	
in Epipedobates.	At	more	typical	levels	of	sequencing	(1–	2	M	reads/
sample),	 costs	 would	 be	 substantially	 lower	 for	 2bRAD	 (50-	bp	
single-	end	 reads)	 than	 for	 ddRAD	 (typically	 150-	bp	 paired-	end	
reads),	although	this	may	result	in	fewer	loci	and	SNPs	retained	in	
the	 final	 2bRAD	 assemblies	 (see	 Supporting	 Information).	 To	 re-
duce	costs	while	ensuring	adequate	numbers	of	SNPs	and	loci	are	
obtained	in	2bRAD	assemblies,	selective-	base	ligation	can	be	per-
formed, in which researchers can more accurately select loci that 
will	be	sequenced,	which	may	be	particularly	useful	in	species	with	

F I G U R E  5 Rana and Epipedobates maximum likelihood trees for the total sampling depth datasets; replicate samples were pruned. Only 
bootstrap	values	<100%	are	shown.	All	trees	reconstructed	from	remaining	sampling	depths	had	node	support	>0.85.	See	Table S1 for 
sample codes.
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large	genomes	(Barbanti	et	al.,	2020).	Alternatively,	users	may	wish	
to	use	the	iPyrad	pipeline	for	2bRAD	data,	which	produced	more	
SNPs/locus	and	may	make	the	method	more	cost-	effective.	In	the	
long	 term,	 sequencing	 costs	 per	 read	will	 likely	 remain	 lower	 for	
2bRAD	given	its	shorter	fragment	length.

3.6.3  |  Computational	time	and	bioinformatics	skills

Given	 our	 experience,	 the	 computational	 time	 and	 bioinformat-
ics	skills	required	for	ddRAD	assembly	exceeded	those	for	2bRAD,	
though	 this	may	depend	on	 researchers'	own	personal	experience	

level	with	programming	languages	and	command-	line	software.	For	
ddRAD,	 a	maximum	 runtime	 of	 48 h	was	 allocated	 for	 analysis	 of	
each	sampling	depth,	using	a	large	memory	node	(512GB,	32	cores/
node).	For	the	t3 and total depths in Rana and Epipedobates,	jobs	ex-
ceeded	the	48-	h	limit	because	of	the	computationally	costly	process	
of	within-	sample	clustering	(iPyrad,	Step	3).	To	remedy	this,	we	sub-
mitted	a	separate	job	for	each	sample	and	then	merged	samples	and	
ran	the	remaining	assembly	steps	in	iPyrad	(Steps	4–	7).	Thus,	iPyrad	
and	ddRAD	data	require	computational	resources	that	are	often	only	
available	on	 large	 computing	 clusters.	By	 comparison,	 our	2bRAD	
analyses at all sampling depths were run on a high- performance 
computer	within	2–	4	h	(Table 6).

F I G U R E  6 The	proportion	of	parsimony-	informative	sites	to	total	sites	(left	axis;	in	black)	and	retention	indices	(right	axis;	in	gray)	
between	RAxML	trees	from	SNP	datasets	with	four	different	sampling	depths.
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4  |  DISCUSSION

Much	attention	has	been	devoted	 to	exploring	 the	 implications	of	
selecting	 different	 reduced-	representation	 genome	 sequencing	

methods	 (Andrews	et	al.,	2016; Cammen et al., 2016; Matz, 2018; 
McKain et al., 2018).	In	selecting	a	method,	researchers	must	weigh	
the	costs	of	 sequencing	against	 the	 informativeness	of	 the	 result-
ing	datasets,	as	well	as	the	equipment	and	computational	resources	

F I G U R E  7 The	proportion	of	unambiguous	changes	to	the	total	number	of	SNPs	along	each	branch	of	the	Rana and Epipedobates trees 
for	each	sampling	depth,	calculated	using	SNP	datasets.	This	metric	provides	an	estimate	of	the	amount	of	phylogenetic	information.
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required	 to	 produce	 and	 analyze	 such	 datasets.	 These	 considera-
tions are especially relevant for non- model organisms or those with 
large genomes, in which the lack of a reference genome makes as-
sembly	challenging.

4.1  |  Sequencing and assembly

In	 this	 study,	we	used	 two	methods	 (ddRAD	and	2bRAD)	and	 tar-
geted	a	sequencing	depth	that	would	yield	comparable	numbers	of	
sites	for	each	method;	indeed,	after	processing,	the	total	number	of	
sites retained in the total	 datasets	was	 comparable	between	both	
methods	 within	 each	 clade	 (~3.5 M for Epipedobates and ~8.5 M 
for Rana).	However,	each	method	differed	in	the	quality	of	data	ob-
tained.	 For	 example,	 2bRAD	 produced	 roughly	 three	 times	 more	
loci	 than	ddRAD	 (Table 1)	yet	 fewer	SNPs	and	 fewer	PIs	sites	per	
locus,	likely	attributed	to	shorter	fragment	lengths,	lower	depth	of	
coverage,	 and	 pipeline	 characteristics	 specific	 to	 2bRAD	 and	 the	
Matz	Lab	pipeline	(Table 4).	Up	to	38%	fewer	reads	than	requested	
were	obtained	for	2bRAD,	which	likely	contributed	to	our	ability	to	

assemble	 loci	 and	 confidently	 infer	 variants.	 In	 both	datasets,	 the	
numbers	 of	 recovered	 SNPs	 and	 loci	 increased	 predictably	 with	
sampling depth, though patterns in missing data remained the same 
(Table 5 and Figure 8).	Repeatability	was	similar	between	methods,	
although	2bRAD	repeatability	was	less	affected	by	sampling	depth	
(Figure 11).

Each	pipeline	produced	higher	numbers	of	sites	and	loci	for	its	
corresponding	data	type	(i.e.,	iPyrad	for	ddRAD	and	the	Matz	Lab	
pipeline	for	2bRAD	data).	However,	iPyrad	consistently	recovered	
more	SNPs	and	PIs	for	both	datasets	than	did	the	Matz	Lab	pipe-
line.	While	the	goal	of	our	manuscript	was	not	to	compare	the	two	
pipelines	 (i.e.,	 iPyrad	vs.	Matz	Lab	pipeline),	we	suspect	 that	dif-
ferences	in	how	loci	are	clustered	by	each	pipeline	may	have	influ-
enced	the	number	of	loci	obtained	(see	Table 3 for some relevant 
parameter	 comparisons).	 For	 example,	 iPyrad	 first	 clusters	 reads	
separately within each sample using vsearch and a percent similar-
ity cutoff. Then, the most common allele from each locus is clus-
tered among samples, again using vsearch and a percent similarity 
cutoff.	In	contrast,	the	Matz	Lab	pipeline	first	creates	a	pseudog-
enome	by	clustering	reads	from	all	samples	using	cd-	hit-	est	and	a	

F I G U R E  8 Proportions	of	missing	
data	contained	in	each	SNP	dataset	at	
varying sampling depths per individual 
and	averaged	across	taxa.	For	samples	
in	which	two	replicates	were	sequenced,	
only	replicate	“a”	(see	Table S1	for	coding)	
was included here.
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F I G U R E  9 The	proportion	of	unambiguous	changes	to	total	number	of	SNPs	along	each	branch	of	the	Rana and Epipedobates trees for 
each	sampling	depth,	calculated	using	the	binary	(presence	or	absence)	SNP	datasets	under	Dollo	parsimony.	Unambiguous	changes	are	
categorized	based	on	the	type	of	change;	the	direction	of	change	along	the	root	edge	(double-	headed	arrows	<==>)	is	ingroup	(first	state)	to	
outgroup	(second	state).
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percent similarity value. Then, reads from each sample are mapped 
to	the	pseudogenome	with	bowtie2	which	uses	a	minimum	score	
threshold rather than a percent similarity metric. Other differ-
ences	between	pipelines	(e.g.,	approaches	to	statistical	base	call-
ing	in	ANGSD	compared	to	iPyrad)	likely	also	affected	the	resulting	
assemblies;	 future	 analyses	 could	 use	 the	 data	 herein	 to	 further	
explore	 the	 implications	 of	 differing	 bioinformatics	 pipelines	 for	
RADseq	datasets.

An	 important	 consideration	 for	 some	 researchers	 may	 be	 de-
ciding	whether	to	obtain	single-	end	versus	paired-	end	reads.	To	re-
tain consistency across the two methods, we only included results 
from	single-	end	read	sequencing	data	for	ddRAD,	although	typical	
ddRAD	workflows	involve	paired-	end	sequencing.	Obtaining	paired-	
end	reads	may	be	advantageous	for	researchers	in	that	it	would	pro-
duce	greater	numbers	of	 SNPs	and	PIs,	 although	with	diminishing	
returns	if	users	require	unlinked	SNPs	(Rochette	et	al.,	2017).

4.2  |  Phylogenetic inference

All	analyses	of	the	various	datasets	yielded	identical	tree	topologies	
for	 each	 clade,	 and	bootstrap	 support	was	 very	 high,	 even	 at	 the	
lowest	sampling	depth.	Although	the	Epipedobates topology was the 
same	as	recovered	by	previous	studies,	the	Rana topology was not. 
Hillis	and	Wilcox	(2005)	and	Yuan	et	al.	(2016)	found	R. blairi	to	be	
more closely related to R. berlandieri than to R. sphenocephala; how-
ever, we recovered R. blairi as the sister species of R. sphenocephala. 
This difference is likely due to the influence of the mitochondrial 
genes;	Hillis	and	Wilcox	(2005)	analyzed	only	mtDNA,	and	although	
Yuan	et	al.	(2016)	analyzed	both	mtDNA	and	nDNA,	their	sample	of	
R. blairi	was	represented	only	by	mitochondrial	genes.	Interestingly,	
two	earlier	 studies	based	on	allozymes	 (Hillis	 et	 al.,	1983)	 and	 re-
striction	sites	 from	nuclear	 rDNA	(Hillis	&	Davis,	1986)	also	found	
R. blairi	 to	 be	more	 closely	 related	 to	R. sphenocephala than to R. 
berlandieri. Thus, it seems that the discrepancy in the position of R. 
blairi	is	an	example	of	mitonuclear	discordance.	We	consider	the	SNP	
phylogeny	to	be	a	better	estimate	of	the	species	trees	than	mtDNA	
phylogeny alone.

4.3  |  Phylogenetic signal in SNP data

Overall,	the	2bRAD	and	ddRAD	datasets	for	both	clades	contained	
large	 amounts	 of	 phylogenetic	 signal	 as	measured	 by	 numbers	 of	
parsimony-	informative	 characters,	 retention	 indices,	 numbers	 of	
unambiguous	 synapomorphies,	 and	high	bootstrap	 support	 values	
(Tables 1 and 5; Figures 4, 6, and 7).	This	was	particularly	impressive	
within	the	2bRAD	dataset,	which	was	phylogenetically	robust	to	the	
relatively	low	proportions	of	SNPs	and	PIs	compared	to	the	ddRAD	
datasets.	Given	 that	 both	methods	putatively	 sample	 the	 genome	
randomly, we expected to find roughly the same amount of potential 
phylogenetic information in the data, yet we recovered more PIs/
SNP	in	ddRAD	than	in	2bRAD	data	(Table 1).	However,	the	number	

of	PIs/SNP	was	 similar	 if	 the	 same	pipeline	was	used	 across	 both	
data	types	(Table 4).

Properties	of	the	enzyme	cut	sites	that	differ	between	methods,	
differences	between	clustering	algorithms	used	by	iPyrad	versus	the	
Matz	Lab	pipeline,	or	the	lower	depth	coverage	in	2bRAD	datasets	
may	 have	 influenced	 these	 patterns.	 For	 example,	 the	 fragments	
cut	by	the	BcgI	enzyme	may	be	more	conservative	because	of	the	
structure of the BcgI	cut	site	(CGA[N]6TGC),	which	requires	6	exact	
nucleotide matches spaced exactly 6 nucleotides apart, versus that 
of	 ddRAD	enzyme	 cut	 sites,	which	 require	 two	 sets	 of	 4–	5	 exact	
nucleotide	matches	but	allow	up	to	50-	nt	differences	in	the	number	
of	 nucleotides	 between	 two	 cut	 sites	 (e.g.,	 GCATG[N]270-	325AATT	
for Epipedobates).	Differences	in	clustering	algorithms,	as	reviewed	
in the Methods and in Table 4,	combined	with	 lower	average	read	
depth	in	2bRAD,	could	influence	the	propensity	for	different	alleles	
to	be	clustered,	labeled	as	sequencing	errors	and	removed,	or	split	
into	separate	loci.	In	2bRAD	specifically,	the	PIs/SNP	ratio	increased	
with greater sampling depth, suggesting that phylogenetic informa-
tion	(or	statistical	base	calling)	was	limited	by	read	depth.	For	some	
methods,	researchers	can	choose	to	modify	library	preparation	pro-
tocol	and	bioinformatics	pipelines	to	optimize	amount	and	quality	of	
data	in	final	assemblies	(e.g.,	Obiol	et	al.,	2014,	for	strategies	to	mod-
ify	 data	 assembly	 for	 phylogenetic	 inference;	McCartney-	Melstad	
et al., 2019, for using a computational approach to select clustering 
threshold	parameter;	Barbanti	et	al.,	2020, for performing selective 
base	ligation	for	size	selection	in	2bRAD	in	organisms	with	large	ge-
nome	sizes).	The	extent	 to	which	RADseq	 locus-	building	pipelines	
alter downstream analyses is likely to depend on the taxon and en-
zymes	selected	and	may	not	be	generalizable	(e.g.,	Casanova	et	al.,	
2021;	O'Leary	 et	 al.,	2018;	 Shafer	 et	 al.,	 2017).	Nevertheless,	 be-
cause	we	did	not	a	priori	expect	the	number	of	PIs/SNP	to	differ	be-
tween	2bRAD	and	ddRAD	loci,	and	because	the	PIs/SNP	ratios	were	
similar	between	2bRAD	and	ddRAD	for	each	pipeline	(Table 4),	we	
suspect that the pipelines drove most of the differences in phyloge-
netic information rather than characteristics of the loci themselves.

The	 regional	patterns	of	unambiguous	 synapomorphies	on	 the	
trees	were	generally	similar	between	methods	and	sampling	depths,	
although the proportions of changes along the root edge were 
smaller in Epipedobates than in Rana. Typically, the root edges and 
the	shallow	branches	had	proportionately	more	changes	than	did	the	
intermediate	branches	(Figures 4 and 7).	This	pattern	contrasts	with	
the	regional	distribution	of	gains	and	losses	of	loci,	where	the	largest	
proportions	 of	 gains	 occurred	 along	 the	 intermediate	 branches	 of	
Epipedobates and Rana.

4.4  |  Missing data and allelic dropout

4.4.1  | Missing	data

Because	of	the	ubiquity	of	missing	data	in	RADseq	datasets,	much	
literature has focused on its effects on phylogenetic estimation 
(e.g.,	Attard	et	al.,	2018; Eaton et al., 2017;	Huang	&	Knowles,	2016; 
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F I G U R E  1 0 Proportions	of	unambiguous	changes	for	total	datasets	from	the	binary	SNP	datasets	under	Dollo	parsimony.	State	changes	
are	categorized	based	on	whether	changes	were	greater	than	(GT)	or	less	than	(or	equal	to;	LTE)	expected	at	random,	determined	using	a	chi-	
square	test.	GT	changes	represent	those	that	exhibited	phylogenetic	signal	and	can,	therefore,	be	attributed	to	allelic	dropout.	The	direction	
of	change	along	the	root	edge	(double-	headed	arrows	<==>)	is	ingroup	(first	state)	to	outgroup	(second	state);	thus,	0 <=>1 is a state of 0 in 
the	ingroup	and	a	state	of	1	in	the	outgroup,	and	single-	headed	arrows	(==>)	are	state	changes	along	the	remaining	branches.
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Leaché,	Banbury,	et	al.,	2015),	with	a	general	conclusion	being	that	
datasets	with	high	amounts	of	missing	data	should	be	retained	to	op-
timize	phylogenetic	inference	(e.g.,	Jiang	et	al.,	2014).	However,	the	
role	of	missing	data	as	a	bearer	of	signal	in	RADseq	data	has	rarely	
been	studied	(Eaton	et	al.,	2017;	Leaché	&	Oaks,	2017).

Patterns	of	missing	data	might	be	expected	to	vary	depending	on	
the	RADseq	method	(Eaton	et	al.,	2017;	Hovmöller	et	al.,	2013),	but	
we	did	not	observe	this.	2bRAD	and	ddRAD	yielded	datasets	with	
comparable	 levels	of	missing	data	 (Table 1 and Figure 8),	although	
there were some differences in proportions of missing data which 
were largely dependent on the taxon. Importantly, there was greater 
variation in percentage of missing data among species than among 
sampling	 depths,	 implying	 that	 even	with	 deeper	 sequencing,	 the	
amount	of	missing	data	will	be	strongly	dictated	by	the	divergence	
patterns	 of	 the	 taxa	 (Eaton	 et	 al.,	 2017;	 Ferrer	Obiol	 et	 al.,	2021; 
Jiang et al., 2014;  Xi et al., 2016).	Correspondingly,	this	also	meant	
that	the	increased	read	depth	observed	in	larger	sampling	depths	did	
not reduce proportions of missing data, though it did provide more 
phylogenetic	information	in	terms	of	numbers	of	SNPs	and	PIs.

Patterns	in	missing	data	and	read	depth	were	also	shaped	by	the	
parameter	 defining	 the	minimum	number	 of	 individuals	 per	 locus.	
Our	results	suggest	that	including	a	minimum	number	of	samples	in	
each	divergent	clade	can	limit	the	total	amount	of	missing	data,	but	
also	 that	 loci	 recovered	 from	 divergent	 clades	 (such	 as	Ameerega)	
may not overlap with ingroup clades, in effect limiting the phylo-
genetic information at deeper nodes in highly divergent datasets. 

Similarly,	read	depth	decreased	with	distance	from	ingroup,	but	was	
overall	more	consistent	across	samples	in	2bRAD	(Figure 4).

4.4.2  |  Allelic	dropout

One	of	 the	primary	causes	for	missing	data	 in	RADseq	may	be	al-
lelic dropout, in which mutations disrupt a recognition site, such that 
all	descendants	no	longer	share	a	locus	(mutation-	disruption;	Eaton	
et al., 2017).	Artifacts	of	this	process	are	apparent	when	there	is	a	
phylogenetic pattern to missing data, in which closer relatives are 
more likely to share sites and distant relatives are more likely to have 
lost	them	(Gautier	et	al.,	2013).

2bRAD	and	ddRAD	did	not	differ	substantially	in	amounts	of	al-
lelic	dropout.	As	with	phylogenetic	signal	and	missing	data,	we	found	
greater	differences	in	allelic	dropout	between	clades	than	between	
methods, which may reflect differences in the ages of the taxa. If one 
assumes	that	the	rate	of	molecular	evolution	is	similar	in	both	clades,	
then the paucity of changes across the root edge of Epipedobates 
(compared	to	Rana)	in	conjunction	with	gains	on	intermediate	depth	
branches	is	consistent	with	an	older	age	for	the	Epipedobates clade 
(Figure 10).	The	limits	of	effectiveness	for	RADseq	at	deeper	levels	
of	genetic	divergence	remain	unclear	(Collins	&	Hrbek,	2018; Eaton 
et al., 2017;	Harvey	et	al.,	2016;	Rubin	et	al.,	2012).	Interestingly,	we	
found that gains of loci showed overwhelming phylogenetic signal, 
while losses showed a mixture of signal and noise, suggesting that 

F I G U R E  11 Repeatability	of	ddRAD	
and	2bRAD	libraries	and	sequencing.	
Two replicate samples per dataset were 
used to assess how many loci were 
shared	between	replicates,	measured	as	a	
proportion	of	the	total	number	of	unique	
loci	in	both	samples.
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allelic dropout is stochastic and not necessarily a good measure of 
phylogenetic	signal	(Figure 10).

4.5  |  Repeatability

Sequencing	replicate	samples	is	useful	for	comparing	the	repeatabil-
ity	 of	 libraries,	 as	well	 as	 for	 determining	 the	 rates	of	 genotyping	
error	(Mastretta-	Yanes	et	al.,	2015).	Our	results	were	consistent	with	
our	predictions:	we	assumed	that	because	2bRAD	sequencing	ampli-
fies	fragments	at	every	occurrence	of	restriction	site,	2bRAD	librar-
ies	would	be	more	 reproducible	 (Andrews	et	 al.,	2016).	Generally,	
we	 found	similar	 levels	of	 reproducibility	 for	both	methods	across	
sampling	depths,	but	2bRAD	tended	to	have	higher	proportions	of	
shared	loci,	especially	for	outgroup	species	(Figure 11).

4.6  |  Comparisons of effort, cost, and 
bioinformatics skills

One	aspect	of	the	ddRAD	protocol	that	drove	its	early	and	enthu-
siastic	 adoption	was	 the	 relatively	 low	 effort	 required	 to	 acquire	

genome-	wide	data	as	well	as	publicly	accessible	documentation	and	
well-	established	bioinformatics	pipelines.	Nevertheless,	we	found	
that	 the	 ddRAD	 library	 preparation	 and	 bioinformatic	 pipelines	
required	more	 time	 and	 expertise	 than	 2bRAD.	 As	 with	 ddRAD,	
protocols	 and	 annotated	 scripts	 for	 2bRAD	 are	 available	 online,	
but	 in	 contrast	 to	 ddRAD,	 the	 2bRAD	 laboratory	 techniques	 are	
straightforward	 (based	 on	 our	 personal	 experience,	 though	 this	
may	 differ	 depending	 on	 the	 researcher's	 own	 personal	 labora-
tory	experience)	and	do	not	require	specialized	skills	or	equipment	
(Wang	et	al.,	2017; see Supporting	Information).	Taking	these	con-
siderations	 into	account,	 the	 time	and	effort	 required	 for	2bRAD	
were	 less	 than	 ddRAD.	 Overall,	 although	 sequencing	 costs	 were	
higher	 for	 2bRAD	 than	 for	 ddRAD,	 this	 was	 outweighed	 by	 the	
relatively	lower	cost	of	2bRAD	library	preparation	and	the	ease	of	
both	 laboratory	protocols	 and	bioinformatics	 assembly.	However,	
if	maximizing	numbers	of	SNPs	and	PIs	 is	prioritized	by	research-
ers,	 ddRAD	 is	 preferred	 given	 that	 costs	 are	 lower	on	 a	 per-	SNP	
basis	(Table 7).	Another	alternative	might	be	to	use	3RAD	(Bayona-	
Vásquez	et	al.,	2019),	which	allows	for	customizability	of	recovered	
loci	and	is	quite	cost-	effective.

For	some	study	systems,	whole-	genome	sequencing	(WGS)	has	
become	an	affordable	alternative	to	RADseq.	However,	a	reference	
genome	is	necessary	to	reliably	call	SNPs	from	WGS	data,	and	many	
non- model systems, including the species included here, still lack 
high-	quality	references.	In	our	focal	clades,	per	sample	costs	for	li-
brary	preparation	and	10×	coverage	WGS	would	be	between	$200	
and	$250	per	sample	 (~2–	4×	higher	 than	RADseq;	see	Supporting	
Information).	Because	of	the	large	genomes	of	amphibians	and	other	
non-	model	 systems,	 it	 may	 be	 some	 time	 before	 WGS	 replaces	
RADseq	or	other	reduced-	representation	methods.

4.7  |  Conclusions

Both	ddRAD	and	2bRAD	methods	provided	abundant	and	informa-
tive data for phylogenetic inference at shallow and intermediate di-
vergence times in non- model organisms, and so we recommend that 
selecting	between	the	methods	should	be	based	on	other	considera-
tions,	such	as	person-	effort,	costs,	and	availability	of	other	resources	
(Table 6).	Despite	the	lower	PIs	per	SNP	proportion	we	identified	in	
2bRAD,	potential	users	may	be	interested	in	unlinked	SNPs,	which	
could	be	facilitated	by	the	greater	number	of	shorter	loci	obtained	in	
this method, along with more even read depth across phylogenetic 
divergence.	Nevertheless,	the	quantity	of	SNPs	and	PIs	are	likely	to	
vary	with	study	design,	and	the	PI	per	SNP	ratio	varied	widely	across	
our	methods	and	clades.	Another	important	consideration	which	we	
observed	in	both	methods	–		as	has	been	observed	in	other	RADseq	
studies	–		was	the	loss	of	phylogenetic	information	and	shared	sites	
at	deeper	nodes	of	the	tree.	We	observed	that	there	appeared	to	be	
a	level	of	mitochondrial	sequence	divergence	beyond	which	phylo-
genetic	 information	was	 lost	 (~15%);	genetic	divergence	calculated	
from	mitochondrial	data	may	be	a	relevant	benchmark	with	which	
researchers	can	gauge	the	utility	of	RADseq.

TA B L E  6 Comparison	of	2bRAD	and	ddRAD	methods.

2bRAD ddRAD

Overall costsa Low Moderate

DNA	required 100 ng 200–	500 ng

Laboratory	time	required 1.5 days 3 days

Library	preparation	
difficultyb

Easy Difficult

Specialized	equipment None Pippin Prep

High-	performance	computer	
access

Not	required Required

Computational time for 
bioinformatics	assembly

2–	4	hc >48 hc

Reproducibility 79%	(67–	85%)d 76%	(55–	79%)d

PIse	for	each	SNPf	obtainedg 0.12 0.37

Cost	per	SNPf $0.0009 $0.0002

Cost per PIe $0.007 $0.0005

aThis	is	the	combined	cost	for	library	preparation	and	sequencing	on	the	
Illumina	HiSeq	4000.
bThis	assumes	that	personnel	have	no	previous	experience	with	library	
preparation.
cTime	required	for	running	full	bioinformatics	assembly	on	a	high-	
performance	computer	(using	iPyrad	[Eaton,	2014]	for	ddRAD	data	and	
the	Matz	Lab	pipeline	for	2bRAD	data).	These	time	estimates	are	based	
on	our	datasets;	they	are	contingent	on	the	amount	of	data	and	number	
of samples a researcher needs to process.
dThis is the median and range of the proportion of shared loci recovered 
for two replicate samples from total	datasets	(Table S2).
eParsimony- informative sites.
fSingle-	nucleotide	polymorphism.
gValue averaged across taxa; see Table 7 and calculations in Supporting	
Information.
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Although	2bRAD	was	designed	primarily	for	population	genomic	
studies, and despite concerns that the short fragment lengths may 
pose	problems	in	assembly	for	taxa	lacking	a	reference	genome	or	
having	large	genomes,	we	found	that	2bRAD	data	were	as	reliable	
and	robust	for	phylogenetic	inference	as	ddRAD	data.	Phylogenetic	
reconstruction and support, overall phylogenetic information, pro-
portions	of	missing	data,	and	rates	of	allelic	dropout	in	2bRAD	data-
sets	were	comparable	to	those	of	ddRAD,	even	at	lower	sequencing	
depths. These findings were contrary to common recommendations 
against	the	use	of	2bRAD	(Andrews	et	al.,	2016;	Arnold	et	al.,	2013),	
highlighting the importance of supplementing conceptual compar-
isons	with	 empirical	 tests	 to	obtain	 reliable	 comparisons	between	
methods.
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