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ABSTRACT OF THE DISSERTATION 

 

Flexible and Energy-Efficient Circuits  

for Implantable Biomedical Systems 

 

    by 

Dejan Rozgić 

Doctor of Philosophy in Electrical Engineering 

University of California, Los Angeles, 2017 

Professor Dejan Marković, Chair 

 

Biomedical implant-scale electronics have gained a lot of attention in recent years. Particularly, 

neuromodulation implants are an important tool in treating drug-resistant neurological conditions, 

while also improving our understanding of the brain. Although demands for adding more 

functionality to the implant are constantly increasing, their power consumption and size are usually 

limiting factors that determine longevity of the battery and dictates the overall throughput of brain 

data.  Therefore, in order to gain more insight into brain dynamics while keeping device small, it 

is crucial to increase number of accessing channels and to improve the overall device efficiency.  

Enabling better platform technologies that would greatly impact the field of neuroscience and 

enhance the quality of life of patients with neurological disorders is a difficult task. This work 

seeks to address some of the design challenges related to a variety of biomedical applications, 

while providing the power efficiency and flexibility needed for implantable devices. 

First, a new self-powered, thermo-electric harvesting architecture is proposed and 

demonstrated. The miniaturized system, accompanied with efficient energy processing circuits 

was able to achieve a cold startup with a few 10’s of mV of input voltage while achieving good 
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end-to-end efficiency. This design was further verified in real environment (in-vivo, rat) and 

showed a good trade-off between the form factor and extracted power. 

Second, we demonstrated a ‘holy grail’ implant-scale neuromodulation interface with high 

linear input range that enables concurrent sensing and stimulation. Our 64-channel interface meets 

the requirements of human-quality implants at an unprecedented level of electronic miniaturization 

as compared to prior art. It offers major new clinical perspectives: it supports different power 

delivery options, always-on sensing for enhanced closed-loop therapy, multi-channel arbitrary 

stimulation waveforms with user-friendly programming, high-resolution neural interface for more 

precise target localization. 

Finally, a new neural recording paradigm based on the fast calcium imaging is described. This 

technology can provide communication between the brain and the external world at the resolution 

of individual neurons. We propose a hardware friendly approach for analyzing 1000’s of neurons 

in a single pipeline and in real-time, while relaxing the memory and computational requirements. 

This method is capable of delivering two orders of magnitude higher brain coverage as compared 

to the state-of-the-art electrophysiological approach, leading to a high-resolution, high-data-rate 

neural interface. 
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CHAPTER 1 

Thesis Overview 
 This dissertation is concerned with energy efficient and flexible circuits for implant-scale 

biomedical systems and consists of 3 different parts. Chapter 2 introduces and analyze a new 

architecture for miniaturize thermo-electric harvesting. Chapter 3 presents the work on implantable 

multi-channel neuromodulation platform that can support various power delivery options, while 

chapter 4 explains the path towards dedicated hardware for neural recording paradigm based on 

the fast brain imaging. A more detail explanation of every chapter is offered bellow. Each chapter 

presents a separated topic and therefore results and conclusions are derived at the end of each 

chapter. 

Chapter 2: A Fully Autonomous TE Energy-Harvesting Platform for Biomedical Sensors 

 In order to use thermoelectric energy harvesters (TEHs) as a truly autonomous energy source 

for size-limited sensing applications, it is essential to improve the power conversion efficiency and 

energy density. This chapter presents a thin-film, array-based TEH with a surface area of 0.83cm2. 

The TEH autonomously supplies a power management IC fabricated in a 65nm CMOS technology. 

The IC utilizes a single-inductor topology with integrated analog maximum power point tracking 

(MPPT), resulting in a 68% peak end-to-end efficiency (92% converter efficiency) and less than 

20ms MPP tracking time. In an in-vivo test, a 645µW regulated output power (effective 3.5K of 

temperature gradient) was harvested from a rat implanted with our TEH, demonstrating true energy 

independence in a real environment while showing a 7.9x improvement in regulated power density 

compared to the state-of-the-art. The system showed autonomous operation down to 65mV of TEH 

input. 
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Chapter 3: A Miniaturized 64-Channel Neuromodulation Platform for Simultaneous 

Stimulation and Sensing 

Brain machine interfaces (BMI) have the opportunity to advance our understanding of the 

brain, restore motor function, and improve the quality of life to patients with neurological 

conditions. For example, deep-brain stimulation (DBS) can provide symptomatic relief for 

neurological patients by emitting electrical pulses. For human use, a neuromodulation (NM) 

implant should be minimally invasive, with high-precision interface that can record neural activity 

in presence of stimulation. 

In chapter 3 a first full duplex implant-scale NM unit, with extreme miniaturization packing a 

32/64-channel interface in 0.135cm3/0.22cm3 is demonstrated while meeting human-grade implant 

requirements. As an integrative part of the platform, integrated and flexible power management 

unit is shown. Power-management circuits in the NM should have high power conversion 

efficiency (PCE) to operate with smaller received power, but also should show a high level of 

integration. Circuits techniques that led to improvements in the PCE for wireless/wired 

implantable devices are analyzed. Specifically, neural stimulating systems should perform with 

high stimulation efficiency with a minimum amount of energy while ensuring charge-balanced 

stimulation, providing advantages such as a wide range of stimulus currents, a longer battery life, 

reconfigurability, etc. are demonstrated. 
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Chapter 4: Hardware accelerator for simultaneous, real-time neuronal recording of 

large ensembles for brain imaging 

In this chapter, we report an alternative approach for neuronal recording. With recent advances 

in fluorescent imaging sensors, and their improved speed (100’s of fps), we can simultaneously 

track and record data from a large number of neurons (100~10 000). However, the image sensors 

generate a large amount of data (0.1GB/s~1GB/s), while its real-time hardware implementation is 

bounded by large memory and heavy computation requirements, since the system performs frame-

level processing. There are a few obstacles that prevent a wider use of this technology: i) The 

camera receives the frames with motion jitter ii) The position and shapes of neurons are unknown 

iii) Valuable information (spiking signals) have to be extracted from the raw fluorescence traces 

which are contaminated with high baseline noise and convolved with other unwanted content. So 

far, all data processing has been performed offline. In this chapter, we proposed a hardware 

approach that solves all these issues in a single pipeline and in real-time. Motion Correction and 

Blind Neuron Detection are realized by employing modified computer vision algorithms such as 

Maximally Stable Extremal Regions and Template Matching. By exploiting the sparse nature of 

neurons and spiking signals both in the spatial and time domains, specialized dedicated units that 

map the Sparse Approximation algorithm into hardware, are able to extract spikes and achieve 

100x data reduction. The envisioned system consists of a fast photonic neural transducer and a 

smart DSP unit for low-power signal processing capable of spatio-temporal localization and 

tracking of single units in real-time. Every frame from the video is processed independently and 

does not require loading the whole frame into memory, thus reducing memory requirements. 
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CHAPTER 2 

A Fully Autonomous TE Energy-Harvesting Platform for Biomedical Sensors 

2.1 Introduction 

Harvesting thermal energy and its usage as a potential source for miniaturized electronic 

systems, has attracted a lot of attention in recent years. Many studies showed that extracting 

thermal energy can potentially supply hundreds of microwatts of useful power. Even though the 

power levels are adequate, such harvesters produce very low voltage levels, 10’s-100’s of mV, 

which are insufficient to power CMOS electronics. The focus of the research community [1]-[9] 

has been on improving the harvester’s efficiency and low-power circuit design. Their main goal 

was to achieve high efficiency of processing circuits and to reduce the number of off-chip 

components, so that the system is optimized for size, power and cost. However, prior work lacks 

power density, with state-of-the-art power density below 200µW/cm2. Equivalently, a 1mW of 

power would require a 5-6cm2 surface area, which is unacceptable for minimally-invasive 

implantable devices. The TEH conversion efficiency and power density need to be improved in 

order to have a miniaturized autonomous energy source. Also, it is necessary to miniaturize the 

thermoelectric transducer and integrate it with the power management IC. Previous designs lack a 

system-level design and optimization approach, which is offered here. 

Four major obstacles prevent autonomous thermal energy usage, as described below. First, 

since the output voltage from the transducer (that is responsible for thermal-to-electrical energy 

conversion) can be very low, harvesting systems should have a cold startup ability, i.e. the circuit 

should trigger (startup) its operation without any stored energy. A few prior designs have 

demonstrated this ability for thermal harvesters, [1]-[7]. Their startup units require off-chip 

components, which makes them unattractive for miniaturization. Some designs require a battery 
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[1] or the output storage element to be charged to certain voltage [2], which can be used as the 

initial trigger. No prior work has reported an autonomous-integrated startup, from a fully-

discharged device. A mechanical off-chip switch [3] is used in the boost converter design that is 

able to harvest energy even from a 30mV voltage input. The use of a mechanical (motion based) 

switch is not autonomous and hence has limited utility. Further, it achieves peak efficiency at lower 

voltages; the range of high efficiency (above 50%) is quite narrow, with the efficiency dropping 

at higher voltages. In order to reduce the startup voltage, the authors in [6], showed post-fabricated 

trimmed oscillator operation down to 90mV. Transformer based cold startup was demonstrated in 

[4]; however, this method requires a large volume to accommodate the transformer, limiting the 

practical usage of the system and affecting the maximum available efficiency. To facilitate startup, 

the authors in [7] have recently proposed a multiple-ambient-sources-harvesting approach, where 

the system would start operation by using one of the energy sources and then continue to harvest 

higher power from another source. A pre-calibration scheme and explicit control over inductive 

peaking current were employed to improve efficiency; however, this approach requires RF-

assisted startup, which does not qualify as a fully autonomous TE self-start. Second, maximum 

power point tracking (MPPT) scheme has to be implemented to match the impedance of the 

harvester’s circuit with that of the heat source, in order to maximize the available power. It is 

important to note that most of prior research focused on increasing converter efficiency [1]-[9], 

demonstrating sub-100mV operation limited to a controlled lab environment. References [2]-[4] 

are rare exceptions that report end-to-end efficiencies. Still, their PCB + TEG systems occupy a 

large area and harvesting in natural environments (where temperature differences are <3K) would 

be very difficult and unreliable. Third, providing a stable thermal gradient, with minimal heat 

leakage in a small footprint, is very challenging and it further hindered previous attempts at truly 
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autonomous energy harvesting. Lastly, the number of off-chip parts has to be reduced for better 

miniaturization.  

Our work addresses the aforementioned challenges related to thermal harvesting from low 

input voltages, but takes into account miniaturization demands for biomedical implants. The 

overall system is presented in Section 2.2, features an on-chip startup CMOS circuit that is 

assembled with TE platform capable of extracting autonomous power. Section 2.3 describes our 

power management solution that makes power extraction efficient and agnostic to the harvester 

environment. With the fast closed-loop control techniques, described in Section 2.4, the low-power 

PM circuitry achieves high efficiency across a wide range of load currents and PVT. The high 

efficiency is due to accurate detection of inductor current zero-crossing and low-power comparator 

design. A miniaturized, custom TEH platform is described in Section 2.5. Together with a 65nm 

CMOS chip, the platform was tested in-vivo on a rat. Measurement results, discussed in Section 

2.6, are the new state-of-the-art in autonomous thermoelectric harvesting. Our system achieves the 

highest level of integration, including both the PCB (circuit innovation) and TEH (materials, 

physics, mechanical, assembly, and surgery). 

 

2.2 System Architecture 

Fig. 2.1 shows the proposed system-level single-inductor hybrid-type architecture. A thermo-

electric harvester, to a first-order approximation, is depicted as a DC-voltage source, VTEH, with 

its internal resistance, RTEH. The system comprises of an analog-domain MPPT circuit, a cold 

startup block based on inductive-load ring oscillator (ILRO) and mode controller. Charge transfer 

is done through the main boost branch comprised of an off-chip inductor, active diode AD, main 
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boost switch MPS and a storage element COUT. Active diode implementation is crucial for an 

efficient and low-leakage power delivery. The details of the boost operation will be discussed in 

Section III. During the self-startup mode, an ILRO, a charge-transfer-switch (CTS) charge pump, 

and native NMOS mode switch with negative VT, are employed. Once the startup block charges 

the output voltage (VCC) to an intermediate level (0.8V), a negative voltage generator (NVG) shuts 

down the startup block and the boost converter transitions to the MPPT Mode. To extract 

maximum power, the MPPT block is enabled; the active control of MPS periodically turns the 

switch off whenever the inductor current reaches zero in the falling charge-transfer operation. The 

MPPT operation is detailed in Section 2.4. In the MPPT mode, a dedicated output regulation unit 
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Fig. 2.1: Proposed thermoelctric harvesting architecture. 
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is used for output voltage control. Since the main boost switch (MPS) carries 10’s of mA of current, 

active body control is employed to prevent reverse current flow and to mitigate the leakage current. 

2.3 Power Management and Timing Control 

2.3.1 Inductive Load Ring Oscillator (ILRO) 
As mentioned before, starting up CMOS circuits with sub-100mV input presents a difficult 

task in cold startup circuit design. Below 100mV, active circuitry (transistors) operates in weak 

inversion (WI). In order to decrease the startup voltage, circuit designers usually connect the 

harvester output directly to some kind of an oscillator which acts as the system activation unit. 

Such oscillators demand either bulky off-chip components or their transistors require some post-

fabrication tuning. Motivated by the work in [10], we leverage the fact that the inductive-load ring 

oscillator (ILRO) architecture can push the oscillation amplitude above the supply rails, allowing 

it to be triggered with very low input voltages, Fig. 2.2a. We employed a 2-stage ILRO due to its 

simplicity and the good trade-off between the performance (low-voltage startup) and active chip 

area. Using the EKV Model [11], and the small-signal equivalent circuit for ILRO, Fig. 2.2b, it 

can be shown that the minimum startup voltage for a 2-stage ILRO is half of the startup voltage 

for a classical CMOS inverter-based oscillator. The lower bound for the classical oscillator startup 

that operates in subthreshold region is described in [12] and given by: 

VDD(min) = 2ϕtln (1 + n),                                                (2.1) 

where ϕt = kT/q is the thermal voltage and n represents the subthreshold slope. 

Analog high-performance (native-depleted) transistors have threshold voltages around zero, 

resulting in a high current drive and high output gain. Thus, their ILRO implementation can 

produce high output frequencies while supplied with low input voltages. The upper bound for the 

oscillator frequency is dictated by the transistor’s unity-gain frequency fT and by the load attached 
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to the output. In a 65nm technology, fT for the native transistors is in the 100MHz– 1GHz range, 

for VGS of several 10’s of mV (10mV-40mV). To derive the relationship between the minimum 

startup voltage for the ILRO and the transistor’s geometry, we refer to Fig. 2.2b, [10]-[11]. The 

single-stage transfer characteristic implies: 

Vo

Vin
= −

gm

gmd+GL

1

1−jtanφ
 .                                                     (2.2)                                                  

The gm, gmd and gms represent the gate, drain and source transconductances of the transistor. The 

GL denotes the inductor losses. 

The phase shift  for the single stage is assumed to be  without lost of generality. Assuming 

that Q =
ωC

GL
 is the quality factor, the Barkhausen’s criterion for oscillation startup is:  

gm−gmd

C
−
ω

Q
> 0                                                        (2.3) 
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Fig. 2.2: (a) Inductive-load ring oscillator chain and its (b) small-signal circuit equivalent. (c) 

Schematic of 8-stage CTS charge pump. 
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The capacitance C in (2.3), which represents the ILRO load, is given as C = CCTS + CDS, where 

CCTS is the input capacitance of the CTS charge pump and CDS is the equivalent drain-source 

capacitance of the ILRO transistor. 

The EKV model of the transistor in WI [11], implies the relationship between gmd, gms, gm 

and the drain-source voltage is given by (2.4)-(2.5):  

ngm = gms − gmd,                                                    (2.4) 

gms

gmd
= e

Vds

φt  .                                                        (2.5) 

From (2.2), (2.4) and (2.5), the minimum supply voltage needed for ILRO startup is given by: 

VDD(min) = VDS(min) = ϕtln [1 + n(1 +
GL

gmd
)] .                          (2.6) 

 In the ideal case, the minimum supply voltage for oscillations to occur is ϕtln (1 + n), which 

is exactly one-half of the minimum supply voltage needed to startup an inverter-based ring 

oscillator. Fig. 2.3a shows the simulated startup condition (for sustained oscillations) in terms of 

the minimum harvester voltage (VTEH) for the oscillator using a 65 nm technology.  

 In order to get more insight into the properties of the native MOS transistor, Fig. 2.3b plots gm 
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Fig. 2.3: (a) Simulated startup condition for a different VTEH; (b) Simulated gate and drain 

transconductances of the ULVT transistors (VS=VB=0). 
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and 𝑔𝑚𝑑 transconductances versus drain-source voltage VDS that is swept from 0 to 80mV. 

 The ILRO is built with inductors with L ≈ 15nH and transistors with W/L=2400µm/0.2µm. 

The inductor was chosen such that its GL value was as low as possible within the expected 

frequency of operation (300 to 500 MHz). Additional headroom allocated for PVT variation and 

layout parasitics marginally increased the startup voltage and contributed to the drop in oscillation 

frequency from 350MHz (designed) to 300MHz (measured).  

 The minimum voltage needed to start the oscillation was measured to be 65 mV, closely 

matching the value of 60 mV obtained from PEX simulations. The efficiency of ILRO is 15% for 

the minimum startup voltage (simulations showed IDC-ILRO ≈ 0.13mA @ VIN=60mV, IDC-ILRO ≈ 

0.39mA @ VIN=100mV). 

 

2.3.2 Charge-Transfer-Switch-Charge Pump 
The design goal for the CTS charge pump (CP) is to achieve sufficient output DC voltage and 

to be able to supply the control circuitry while minimizing the equivalent input capacitance. The 

schematic of the CTS charge pump in the proposed startup circuit is shown in Fig. 2.2c. The 

dynamic CTS CP uses the backward and forward control for NMOS and PMOS pass transistors 

respectively. This scheme employs the high voltages generated in the succeeding stage to control 

the NMOS transistor and low voltages generated in preceding stage for the PMOS transistor. The 

body effect in the last stage is successfully eliminated by PMOS CTS. The CTS CP shifts the 

charge stage-by-stage synchronously with negligible voltage drop. The pass transistors in the 

charge pump are completely turned off by VOSC and completely turned on by higher voltages from 

the following stage. This leads to higher efficiency since the reverse current flow is significantly 

reduced. The CTS also uses low-VT (≈0V) transistors and their aspect ratio increases in 

consecutive stages in order to keep the output impedance low.  Our 8-stage CTS charge pump 
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shows 41% and 71% simulated power efficiency for VOSC=100mVpk-pk and VOSC=500mVpk-pk, 

respectively. 

 

2.3.3 Active Diode with Low-Voltage Drop 
Since the current from the harvester flows through the diode, in all operating modes, its 

realization should be energy efficient and yet it should show sufficient performance. Using off-

chip Schottky diodes would prevent the reverse current leakage, but their threshold voltage is 

bounded to 0.2V-0.3V and they would occupy extra PCB space. For area-limited applications, 

active diode implementation is a must, provided that static power is minimized. Previous solutions 

on active diodes [13]-[14] show fast circuits consisting of comparators, which with help of 

feedback actively control the diode (NMOS/PMOS) switch. The advantage of these approaches is 

that the diode will achieve almost zero current switching and the circuit will compensate any delay 

in the switch response. On the other hand, these implementations consume a lot of power in 

comparators and auxiliary circuitry; for biomedical applications, this approach does not offer a 

good trade-off between design needs and power consumption. Our active diode schematic is shown 

in Fig. 2.4. The circuit is designed so that the bias current IB presents a very small fraction of the 

forward current IF; this ratio is dictated by transistor geometry. During the conduction period (VS> 

Vout+VDROP), the bias current exists and the bulk of MD is tied to the highest available potential to 

mitigate the current leakage though MD. During the blocking period, both bias and conduction 

currents drop down to zero due to the positive feedback in the circuit. Transistors MR1 and MR2 act 

as large resistors and they additionally limit the static current consumption. If the forward currents 

are low, transistor MD operates in subthreshold regime and with proper sizing of MD, M1 and M2, 

the voltage drop VDROP can be very low, [15]. If the forward currents are high (10’s of mA), the 
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voltage drop (normally 10’s of mV) is inversely proportional to the forward current. This simple 

design approach can reach the performance similar to the ideal Schottky diode, but with lower 

power.  The active diode can carry 10’s of mA of forward current while providing sufficiently fast 

signal switching. 

 

2.3.4 Startup Mode and Relevant Waveforms 
As previously explained, the inductive-load ring oscillator was employed due to its low voltage 

startup and compact area. Bulky off-chip inductors would additionally increase the startup time 

and voltage, and also increase the load at the ILRO output. At t=0, since there is no accumulated 

energy in the system, the current flows from the harvester through the startup path. The native-

NMOS transistor with large negative threshold voltage VT is used as the mode switch; initially 

(t=0) it is ON. Cross-coupled transistors M1-2 in the ILRO are realized with high-performance (HP) 

ultralow-VT analog transistors. These transistors have enough voltage gain and high current drive 
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Fig. 2.4: Active diode (AD) during (a) OFF and (b) ON states. 
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even at low voltage supplies; our simulations showed QILRO=10.5 at 300MHz and 60mV startup 

voltage.  

For a main boost switch MPS, a low-VT transistor was used, as it lowers the leakage current as 

compared to the native one, when the switch is OFF. As the loading of this converter is a simple 

digital logic, the load current (ILOAD) is relatively low. Discontinuous conduction mode (DCM) is 

the preferable operation mode of the boost converter if the output voltage of the harvester is low. 

In DCM – the boost converter can still have a large boosting ratio even with a light load current 

and low input voltage (1 +
VinD

2

2L0fSWILOAD
 ), [16]. The duty cycle is set to be ¾. The efficiency of the 

boost converter, during this mode, is inherently bounded by losses during conduction (Pα) due to 

resistance on the current path, and losses due to switching (PSW). The effective resistance on the 

current path is given by Rα = RSW + RL + RTEH, where RL is the series resistance of the inductor 

and RSW is the on-resistance of the main boost switch.  
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Fig. 2.5: Active circuitry during the startup mode in (a) discharging and (b) charging phases 

c) Simulated power distribution after design optimization. 
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The power (PR) accumulated in the inductor during the current rising can be approximated with 

PR =
1

2

L0ipeak
2

tR
,                                                           (2.7), 

where ipeak is the inductor current at the end of the rising period tR. The current iR can be expressed 

as  

ipeak =
VTEH

Rα
(1 − e

−
Rα
L0
tR).                                               (2.8) 

Substituting (2.8) in (2.7) yields  

PR =
L0VTEH

2

Rα
2

(1−e
−
Rα
L0
tR)2

2tR
.                                                  (2.9)                                             

The falling time tF in DCM during the current drop can be approximated with 

tF =
VTEH

Rα

L0

VCC+VDROP
≈
VTEH

Rα

L0

VCC
 ,                                         (2.10)                                               

if we assume VDROP ≪ VCC. In order to maximize the average power PR delivered during one 

period, main switch ON-resistance and the inductor ESR have to satisfy RSW + RL ≪ RTEH . 

Larger switch will mitigate the ON resistance and result in a higher dynamic power dissipation. 

Preservation of energy during the startup mode gives us relation between the energy stored in the 

inductor when MPS is ON and the energy dissipated on the diode during its forward bias (tF) and 

on the load during the entire period: 

1

2
L0ipeak

2 ≥ EESR|VCC=0.8V + EDIODE|VCC=0.8V + VCCILOADTS|VCC=0.8V.  (2.11) 

 

With maximizing power PR (i.e.  
dPR

dtR
= 0) and given (2.7)-(2.11) we can determine the lower 

bound of the inductance L0 and desired DCM period TS. We employed TS = 80µs and L0 = 150µH 
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(footprint: 6mm x 5.6mm). Note that L0 does not have a linear impact on the footprint; the footprint 

is more sensitive to RL than to L0. Fig. 2.5c shows the power distribution during one converter 

cycle after parameter optimization.  Out of 27% total power loss, 22% is in the conduction loss. 

Simulation results indicate an available load current close to 0.4µA, which is sufficient to drive 

the auxiliary control circuits. 

 Fig. 2.5 shows the startup mode during both phases. After voltage VPP passes 0.3V, the 

thyristor-based oscillator (TRO) will start driving the buffer in the gate-control (GC) block which 

will conduct charging/discharging of the power switch MPS. In the charging phase, the startup 

block is turned OFF since the current flows through the path of lower resistance (Z2 in this case). 

In the discharging phase (VG is low), the energy stored in L0 is transferred through AD to the 

output capacitance CPP. Concurrently, the current from the harvester closes the loop through ILRO 

again; starts oscillations and the charge pump additionally recharges the auxiliary capacitance CPP. 

Control circuitry that is biased from CPP consumes less than 100nA over one period. The startup 

block is turning on periodically while the output voltage VCC keeps increasing. 

The true single-phase latch (TPSC) keeps the MPPT controller in idle mode during the startup 

phase. Post-layout simulated waveforms during startup mode are shown in Fig. 2.6. The MPPT 

controller becomes active after the output voltage is boosted to 0.8V.  

 

2.4 MPPT Mode and Timing Diagrams 

The MPPT mode requires a low-power comparator scheme that can achieve adequately fast 

state transitioning. In order to satisfy these requirements, a two-stage OTA-based comparator is 

employed, as shown in Fig. 2.7a. 
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The comparator is designed so that the current consumption is less than 470nA for a supply voltage 

of 1.8V while achieving switching frequency of 0.1MHz. 

The maximum power point (MPP) of a thermoelectric harvester is attained when the input 

voltage is at one half of the open-circuit voltage. Because the MPP changes the value with the 

environment conditions such as the pressure, temperature fluctuations and also it varies with load 

requirements, a control circuit for MPP tracking is employed to sense half of the open-circuit 

voltage and to adaptively follow the MPP. 

The maximum output power, Pmax, can be expressed as:  

Pmax =
VTEH

2

4RTEH
, with Vin =

VTEH

2
,                                           (2.12)    

The MPPT loop and all active circuits during this mode are shown in Fig. 2.7b. After the 

activation of the MPPT controller (SET_MPPT = high), the negative voltage generator produces 

−0.4V at its output to turn-off the native transistor (the mode switch) and the startup block. A clock 
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Fig. 2.6: PEX-simulated startup for a different VTEH.  
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generator outputs complementary signals S and S̅ with a 7/8 duty ratio and a 600µs period. When 

S = low, the open-circuit voltage VTEH is sampled, while the PWM and GC blocks keep 

 

CMP3 dynamically matches the input voltage Vin and VTEH/2, by accommodating the pulse 

width of the gate voltage VG through the feedback loop formed by CMP3, inductor, the PWM and 

GC blocks. For precise control, it is important to minimize offset of CMP3 comparator. The energy 

stored in inductor is transferred to COUT during the S̅ phase, Fig. 2.8a.  

Fig. 2.8b shows the active circuitry in the feedback loop when S is high. If the input voltage is 

higher than VTEH/2, CMP3 will turn-on the main boost switch MPS through TG1, TPSC and GC 

blocks. As the current through inductor keeps increasing, the input voltage is decreasing. After 
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signals VPWM and VG at zero, Fig 2.8a. During this period, the active diode prevents the reverse 

current flow from output capacitor COUT. When S = high, the capacitive divider gives VTEH/2 by 

sharing the charge between the capacitors Cd1 and Cd2. 

When the input voltage reaches VTEH/2, the MPPT controller turns off the main switch MPS. 

Potential VS  becomes higher than the output voltage, and the energy stored in the inductor is 

transferred into COUT via AD. Then the current through the inductor starts to decrease, while Vin 

goes further below VTEH. After a full period, the input voltage will go up while the inductor current 

will go down; this sequence starts repeating periodically, after Vin becomes higher than VTEH/2. 
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Due to the fast voltage sensing (Cd1=Cd2=50pF) and comparator fast transition, CMP3 enables 

the system to find MPP very quickly; less than 20ms is needed for complete MPP regulation. The 

fast feedback-loop response results in a small voltage ripple at Vin  with a small (2nF) input 

capacitance Cin and short settling time (3µs). The amount of ripple is dependent on the input 

capacitance (Cin). The regulated output of the TEH is kept at its MPP with negligible voltage ripple. 

Any voltage fluctuations at the harvester side (up to 50Hz) can be captured by the feedback loop 
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in MPPT controller. The input signal periodically moves between VTEH and VTEH/2 confirming the 

correct impedance matching. Until the output voltage doesn’t reach 1.8V, which is the target value 

(to power neural recording interfaces), MPPT mode is active. Comparator CMP2 keeps the output 

voltage at the desired value by dynamically alternating the control signal SET_OUT. Auxiliary 

circuitry and MPPT controller consume less than 2.9µA during active mode and 0.07µA during 

idle mode, which directly translates into high converter efficiency. Circuit details of auxiliary 

blocks used in MPPT block and GC are shown in Fig. 2.9. The clock generation block uses 

thyristor-based cells, while the reference on the chip employs simple, low power diode-based 

circuitry.  

The measured inductor current and the voltage VS at the inductor current zero-crossing are 

shown in Fig. 2.10. The potential at the node VS shows no undershoots or overshoots while crossing 

zero which implies almost perfect zero detection during S̅ period. Fig. 2.11 shows the simulated 
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Fig. 2.11:  Relevant waveforms during MPPT operation: (a) shut-down voltage, (b) input 
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waveforms during MPPT control. With this MPPT regulation scheme, we can approximate (to a 

first order) the available average load current during one period as: 

ILOAD,avg ≈ γBf(L0, D, f, Rα)
VTEH

2RTEH

L0

T
,                                       (2.13) 

where B =
VTEH

VCC
 is the reciprocal boosting ratio, f = (1 − e

DRα
fL0 )

2

and γ depends on the input ripple 

and the speed of the feedback loop [16], [18]. As (2.13) implies, the higher output current and 

boosting ratio require higher inductance value. 

2.5 Compound TEH Platform 

We have designed and fabricated compound TEH module (Fig. 2.12) in order to meet the 

stringent anatomical and biophysical confinements of living subjects including but not limited to 

rats. The animal’s cerebrovascular system is directly in contact with the bottom part of the TEH 

platform which is made of bio-friendly material – titanium. At the bottom titanium plate, we have 

arranged 3x3 thermo-electrical elements (µTEGs [19]); each µTEG behaves as an independent 

voltage source. The µTEG array is attached to the titanium plate with a thin layer of thermo-

conductive glue.  

Regulated Pout = 645µWΔT=3.5K effective

+ –
170mV

Measured VTEH

 
 

Fig. 2.12: Implanted TEH module shows 170mV in-vivo, with 645µW regulated output 

power. 
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Each µTEG element, [19], is composed of n thermocouples, where every thermocouple consists 

of two thermoelectric bars that are made of different materials, and joined at one end. Because of 

the thermoelectric Seebeck effect, the thermoelectric electromotive force, is created in the presence 

of a temperature difference between these two materials. The voltage is proportional to the junction 

temperature difference ΔT and to the difference between the Seebeck coefficients S = S1 − S2, 

and U = SΔT. Thermocouples are usually made of semiconductors and connected electrically in 

series to obtain higher output power and voltage. The generating performance of a μTEG is 

primarily evaluated in terms of its output power. More power at the output means more 

thermocouples connected in series (bigger area) and/or higher temperature gradient ΔT. 

By serially stacking three µTEGs and connecting these stacks in parallel the output power can 

be increased while maintaining the equivalent source impedance of a single µTEG source. Post-

fabrication measurements of our TEH structure showed an equivalent 6.3Ω of internal impedance. 

Slight increase in impedance is due to the bond wires and Ohmic contacts. Also, 11mm x 7.5mm 

heat sink is utilized, which is large enough to cover all three TEGs, while the bottom plate extends 

1mm on both sides to accommodate skull-fixing screws. Further, in order to confine the heat flow 

and prevent unwanted heat leakage on the side, the exposed space between the heat sink and the 
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Fig. 2.13: (a) Chip micrograph, (b) Fabricated compound TEH platform. 
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bottom plate is filled with a biocompatible insulator. By controlling the output resistance, we have 

an explicit control over the power delivered to the load. Compared to standard animal head-stages, 

our design occupies a smaller volume and does not present a burden to animal behavior.  

 

2.6 Measurements Results 

The proposed low-power, boost-converter for TE harvesting applications was implemented in 

a 65nm CMOS technology. Fig. 2.13 shows the micrograph of the chip with the MPPT controller 

occupying 0.06mm2 while the ILRO-based startup block takes 0.65mm2 of the chip area. As 

suggested in [10], [20], designing the Colpitt’s-based or multi-stage ILRO would require more on-

chip inductance, with inevitable increase in the chip area. For bench-top evaluation, a voltage DC-

source together with serial resistance was employed to mimic the TEH. The peak end-to- end 

efficiency is defined as the ratio between the maximum available power delivered to the load 

during the impedance matching (Vin = VTEH /2) and the maximum available power from the 

thermo-electric harvester 
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Fig. 2.14: (a) End-to-end efficiency comparison with state-of-the-art. (b) Measured converter 

efficiency as a function of the output load current (left vertical axis), and measured output 

power (right vertical axis) as a function of the source voltage. 
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Peak End to End Efficiency =
Pout|Vout=1.8V

Pin|Vin=VTEH/2
.                            (2.14) 

The chip-verification comprises of two parts: cold startup, and MPPT operation with mode 

change. Peak end-to-end efficiency is 68% at VTEH = 220mV, outperforming prior art, as shown in 

Fig. 2.14. Measured waveforms during the startup mode and the MPPT control (Fig. 2.15) imply 

fully autonomous operation down to VTEH = 65mV. In our bench-top setup, we measured the 

efficiency for VTEH from 60mV to 300mV. 

VTEH is sampled when S̅ is high and stays around VTEH/2 when S̅ is low. In Fig. 2.15, VTEH and 

VIN are 65 mV and 32 mV, respectively, demonstrating the functionality of the MPPT control. In 

the MPPT mode, the main contributors to energy loss are the inductor resistance and switching 

losses associated with the MPS switch, as predicted by simulations. In order to demonstrate fully-

autonomous operation, we also conducted in-vivo testing. Collaborators from the UCLA 

Department of Neurology have provided us with adequate infrastructure for the in-vivo test. There 

was no craniotomy on the animal (for microelectrode insertion). The entire experiment lasted about 

20 minutes, after which the animal got stitched and returned to its habitat, fully recovered. Our 
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Fig. 2.15: Measured lab waveforms show VTEH=65mV and regulation to 1.8V in less 

than 20ms. 
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experiment was far less invasive than a typical animal surgery involving craniotomy and 

cementing of the head stage. The heat sink is only 9 mm tall and it is smaller and lighter than head-

caps used in animal neuroscience, hence it does not negatively impact the animal behavior. It is 

necessary to ensure thermal flow through a small area, hence the need for a thermal antenna. In 

fact, our TEH heat-sink is much less invasive than head-caps used today. We have demonstrated 

feasibility of our technology in a neuroscience application. Further opportunities exist in 

environmental monitoring and similar areas. 

The harvesting platform is mounted on the head of a rat and temperature gradient of 3.5K is 

measured while the system was able to harvest 645µW regulated output power, with 61% end-to-

end and 92% converter efficiencies, Fig. 2.15. The power level indicates that TE harvester outputs 

VTEH = 170mV at stable state. The keys to the improved efficiency lie in integrated power-efficient 

startup unit, the compact TEH source, and the fast fully-analog MPPT controller. Our fully-

autonomous thermoelectric harvester shows a 7.9x improvement in regulated power density from 

a 0.83cm2 surface area (Table I) relative to the current state-of-the-art. With one storage cap and 

Table 2.1: Comparison with state-of-the-art thermal energy harvesters. 
Reference [3][2]+ [4]++

Min Vstart-up 35mV650mV 40mV

Process 0.35µm0.13µm 0.13µm

Peak efficiency
end-end (conv.)

58% e-e
(91% cnv)

63% e-e
(75% cnv)

61% e-e
(N/A cnv)

Startup mechanism Mechanical
External 
voltage

White noise

Off-chip L+C+R 3+4+01+3+0 2+5+0

This work

65mV

65nm

68% e-e
(92% cnv)

Electrical

1+2+0

Regulated Vout 1.8V1V 2V 1.8V

[5]

50mV

65nm

N/A
(73% cnv)

Electrical

3+4+0

1.2V

Vstart-up refers to VTEH

(e-e) end-to-end
(cnv) converter

[7]+++

220mV

0.13µm

N/A
(83% cnv)

RF-Kick
 startup

1+2+0

1.2V

Regulated Power 
Density @ΔT=4K 

(µW/cm2)
3422 N/A** 1285162 80*

[22]

*

0.18µm

N/A
(83.6% cnv)

No 
Start-Up 

Unit

1+3+0

0.5V

N/A**

[23]

80mV

65nm

N/A
(73% cnv)

Electrical

4+2+0

0.7V-1V

350mV

0.18µm

N/A
(80% cnv)w/o 

regulation

Electrical

0+7+4

1.8V

N/A** 128

[25]+

150mV

0.13µm

N/A
(73% cnv)

Electrical

0+6+0

1.8V

N/A**

[24]

Tracking Time ~20msN/A ~20s <20ms~25ms ~ 50s N/A ~20ms <180ms N/A

In-Vivo YESNO NO YESNO YES NO NO NO NO

(+)  no MPPT
(++) uses transformer
(+++) operation down to10mV, but need 220mV for the startup.

(*)  Harvested Power During In-Vivo experiment
without reported area/volume of their system  
(**) Partial Solutions without In-Vivo experiment 
and system reported  
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only one off-chip inductor, the mote-PCB paves the road to the new level of miniaturization. The 

compound TEH together with a small PCB occupies less than 1cm3 of volume and weighs less 

than 3g. TEH platform presented in this work is the new state-of-the-art in the factor and power 

density levels. With the presented approach, elimination of bulky batteries in size-constrained 

neural recording sensors becomes possible and their integration presents the future work. 

 

2.7. Conclusion  

This work demonstrated a fully-integrated, electrical startup boost converter for autonomous 

thermo-electric harvesting. A standalone thermoelectric platform integrates our efficient power 

management IC with customized TEH into a single micro-system. We fabricated our TEH with 

tiny µTEGs, which have a great power levels (measured 645uW end-to-end), and with customized 

and optimized platform we were able to maintain stable temperature gradient over a 9mm thin 

platform. We have shown: 1) the most efficient single-ambient-source circuitry reported to date 

(68% vs. 61% in prior work) while achieving 2) the most compact PCB + TEG reported to date 

(6.3x smaller than prior art) and additionally providing 3) the first demonstration of fully 

autonomous TEG operation in real environment (vs. lab-bench). We require only 1 off-chip 

inductor and two small off-chip capacitors. Overall, this leads to ~6x smaller PCB footprint than 

previous work from [3] and [5]. Our analog MPPT minimizes energy loss and achieves <20ms 

output regulation (very important requirement in the event of temperature fluctuations). 
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CHAPTER 3 

A Miniaturized 64-Channel Neuromodulation Platform for Simultaneous 

Stimulation and Sensing 

3.1 Introduction 

Today, only in USA about 40 million people suffer from various neurological disorders, like 

Parkinson disease, epilepsy, tremor, memory losses, depression, Alzheimer’s disease, etc. Neural 

interfaces are used as a part of therapy to mitigate these conditions.  They are not just effective in 

restoring various functions and improving the quality of life in patients, but they also help our 

understanding of the brain. Current neuromodulation (NM) devices, Fig. 3.1, are not only bulky in 

size, there is a lot of implanted hardware in human body and the wires that are sticking out are 

creating a lot of discomfort to the patient. They have a small number of low-precision contacts, 

 

Fig. 3.1: Current NM devices. NeuroPace RNS-300. 
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and limited sensing capabilities. No NM device has the ability to record neural activity in the 

presence of stimulation artifacts [33]. This technology is decade old and it seems that these 

complicated disorders cannot be treated efficiently with these old tools. Essentially, there is a need 

for better platform technology that will reduce the form factor, introduce more flexibility and 

improve the power efficiency of the device, so the battery life can be extended. 

In the core of every NM interface, we have a unit for sensing neural activity and another unit 

which is responsible for delivering responsive stimulation. Together, they are indispensable tool 

in treatment of the brain disorders. The next generation of NM devices would require concurrent 

stimulation and sensing abilities, where the stimulation parameters can be adapted in real-time 

based on the feedback provided from sensing unit, Fig. 3.2. A real-time stimulation parameter 

update would directly follow the dynamics of the brain and cause the better therapeutic results 

over time.  

State-of-the-art research [34-38] reports low-power neuromodulation (NM) units, mostly for 

animal use, with modest level of integration needing several cm3. Requirements also include a 

high linear input range sensing unit (>100mVp-p and THD<-80dB) and a differential stimulation 
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Fig. 3.2: Closed-Loop Neuromodulation. 
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strategy to prevent tissue large common mode swings. Recently, authors in [39], proposed 

implantable NM module for human patients, but their approach introduces several shortcomings. 

Concurrent, charge-balanced multi-channel stimulation is not possible, while the front-end 

linearity is poor due to the limited THD performances for the high input signal. Also, since front-

end is chopped, the input impedance is reduced. Further, front-end should be able to sample LFP 

signals at >5kHz frequency to allow for the removal of high-frequency stimulation artifacts. Such 

high-fidelity artifact removal is not possible with under-sampled input data at 1kHz as in [39]. 

Insufficient linear range and single-ended stimulation would imply huge voltage excursions in the 

tissue and incapability to perform simultaneous stimulation and recording. 

Neural stimulation is purposeful modulation of nervous system activity. Today, it is widely 

used, from cochlear implants to neurological disorders treatment, and it is proven to have a 

potential to treat brain disorders in patients that do not respond to the medications. E.g., deep-brain 

stimulation (DBS) can provide symptomatic relief for neurological patients by emitting electrical 

 

Fig. 3.3: Neural Interfaces Applications-Behavioral Neuroscience, Pre-Surgical Mapping, 

Decease Therapies. 
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pulses. It is efficacious in Parkinson’s disease and other movement disorders, which are 

anatomically focal, where open-loop stimulation on just one contact is sufficient. The same 

technology doesn't show therapeutic benefit in network-scale indications such as depression or 

Alzheimer’s disease, where a more precise localization as well as distributed sensing and 

stimulation are necessary. Furthermore, various neurological conditions often stem in multiple 

brain regions, so modular neural interface with higher channel count is requirable.  Also, 

continuous open-loop stimulation can lead to harmful outcome and it can lose positive effect 

during the time because of the changes in the brain. Closed-loop system that updates the parameters 

in real-time, will significantly enhance the effects of stimulation, mitigate the undesirable 

outcomes and improve our understanding of the hidden brain dynamics. 

Over past decades, with the advances in technology, many types of neural stimulators have 

been proposed. The main purpose of stimulator is to create a desired neurological response by 

providing the charge from or into the neural cells. The charge amount needed to inhibit a neural 

response depends on many factors: tissue degeneration level, type of neuron, interface (neural 
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Fig. 3.4: High-precision multiscale Neural Probe. Cortical and Sub-Cortical Lead. 
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probe), etc.  Also, while stimulators required to provide a wide range of stimulus energy to the 

tissue, the power needed for the stimulation is usually dominant and itself dictates the overall NM 

power consumption. Adopting cutting-edge power management circuits for the next generation 

NM devices, that can support different power delivery options (wireless, wired, rechargeable 

batteries, etc.) and can improve performance and power efficiency is an imperative. 

This work demonstrates a miniaturized, implant-scale NM implant for concurrent sensing and 

stimulation which includes flexible, electrode-agnostic, 8-driver-to-64-contact stimulator that can 

deliver up to 5.1mA per driver; the implant also houses a full-fledged, multi-mode power 

management unit that supports different NM applications (cochlea implants, DBS, retinal 

prosthesis, etc.) and can extend the battery lifetime compared to state-of-the art. 
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Fig. 3.5: Electrode-Tissue Model. Biphasic Differential Neural Stimulation. 
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3.2 Types of Neural Stimulation and Biphasic Current Pulses 

Neural stimulation is delivered as a train of controlled current pulses, which are usually zero-

mean, into specific brain regions to modulate brain activity. Stimulation is performed through 

neural probe or micro-electrode array, Fig. 3.4, which serves as an interface between neurons and 

the electronic circuitry. As a first order approximation, electrode-tissue model can be depicted as 

it is shown in Fig. 3.5, where R1 is the sum of Faradaic charge transfer resistance and trace 

resistance, C1 models double layer capacitance, while R2 depicts so called Warburg impedance, 

[41]. For all practical reasons during stimulator design, R2 can be neglected. 

Figure 3.6 illustrates different amplitude and timing parameters that can be set during the active 

stimulation. Also, different kinds of stimulus waveforms can be adopted, depending on the 

application. The physiological response generated by the stimulation is directly dependent on the 

waveform. Among different pulse shapes that can be employed, biphasic current pulses, are 

preferred due to the charge balancing property. During biphasic stimulus, anodic phase ensures 

positive charge delivery to the tissue, while cathodic phase provides a negative charge delivery. 

The inter-phase delay separates the cathodic (CP) and anodic pulse (AP) so that the AP does not 

change the effect of the CP. Ideally, these two charge amounts should be equal, so that after one 

bi-phasic pulse, there is no remaining charge in the tissue. Since, the ideal matching for all practical 

reasons is not possible, to ensure safe operation, the residual charge has to be removed. Hence, 

these two phases are followed with shorting phase, in which electrodes are shorted to the gnd or 

some other DC-level and all residual charge is removed. Switches Φ1, Φ2, Φ3 are responsible for 

the bi-phasic stimulation control. Duration of the shorting phase is directly proportional to the R1-

C1 constant of the electrode.  

Safe operation of stimulator is necessary, otherwise the tissue damage may occur. Tissue 
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damage can be induced in several different ways: i) Heat Dissipation – Implanted hardware 

releases too much heat that can effectively cause the temperature rise at the electrode-tissue 

interface – FDA safe limit < 2oC; ii) Charge imbalance during stimulation; iii) Excessive Charge 

Injection – Size (cross-section) and the electrode material dictates the limit for the safe charge 

density. 

Neural stimulation can be monopolar and differential. In monopolar stimulation, usually there 

are several stimulating electrodes and one return electrode, which plays the role in the charge 

recovery. This method shows shortcomings if the precise stimulus localization is necessary. Figure 

3.5, shows an example of differential stimulation, where the pair of electrodes is used at each 

stimulation cites; the current is pushed from current source through working electrode (WE) and 

it closes the loop through CSF (conductive cerebrospinal fluid), counter electrode (CE) and current 

 

Fig. 3.6: Neural Stimulation – Waveform Shape. 
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sink. Differential stimulation is preferable method during the simultaneous stimulation in which 

multiple stimulus drivers are used for concurrent stimulation on several electrode pairs. Also, 

diferential stimulation prevents large common mode swings. 

There are several types of neural stimulation presented so far. Each type brings different type 

of drawbacks and benefits. Voltage Current Stimulation (VCS), proposed in [42], ensures power 

efficient stimulation, but since the electrode impedance may vary over time and position, the 

charge balancing is problematic. Recently proposed Switched-Capacitor Stimulation (SCS), [43], 

offers good tradeoff between safety and efficiency, but SCS requires a big number of off-chip 

capacitors and it cannot be used in multi-channel, simultaneous stimulation, since current splitting 

among channels is undesirable. As widely used method in neural stimulation, current-controlled 

stimulation (CCS) offers an accurate charge control, but it reduces power efficiency because of the 

voltage drops across current mirrors (sink/source) in the output stage of stimulators.  

Different applications need different types of electrodes (deep brain stimulation (DBS), 

epiretinal stimulation, etc); macro and micro electrode contacts show big range in tissue-electrode 

capacitances – from a few nF to a few µF. To support various electrodes and allow a wide range 

of stimulation currents, it is crucial to have the stimulation mechanism that accounts for the 

“capacitance-dominant” electrodes and extends the on-chip voltage headroom for the stimulator 

circuit. Since, our target was a design of simultaneous, multichannel and electrode agnostic 

stimulation engine that will compensate for the variability of electrode-tissue impedance, efficient 

CCS design is a preferable choice. 
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3.3 Design requirements 

Our work targeted the next generation neural interface, that is minimally invasive, and 

addresses the demands for limited area and power, Fig. 3.7. It should provide a real-time, full 

duplex communication during concurrent stimulation and recording of neural signals. Further, our 

modular approach and scalable architecture should allow gathering data from a grid of NM 

implants.  

Our NM implant houses 100mVp-p linear input range sensing unit recently demonstrated in 

[40]. In first stage, we develop a wired supplied 32-channel module together with 4-driver-to-32-

channel fully flexible stimulation module delivering up to 3.1mA per engine in a 128-channel 

implantable closed-loop system.  In stage-2, we scale up sensing capability to 64 channels, 
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stimulation to include 8 drivers (A-H, 5.1mA each), supported with highly efficient wireless power 

and data link. This interface will be integrated together with LLNL implantable electrode arrays 

and packages into a 64-ch modules that will be further assembled into a 256-channel system. 

 

3.4. System Architecture 

There are several primarily targeted applications. The first one considers the implantable 

system for the DBS treatment. The system (Fig. 3.8) consists of several NM “smart lead” units, 

each with stim and sense ICs assembled to cortical or sub-cortical leads using high-density 

feedthroughs.  The Neural Hub (NH) serializes data from 32-ch/64-ch NMs and communicates 

with control module in the chest. The second one (Fig. 3.9) extends the capabilities of the first one 
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and enables wireless power transfer (WPT) which is usually the only way of supplying fully 

implantable medical devices and plays unavoidable power solution for cochlear implants and 

retinal prosthesis. Our target was an implant for restoring active memory, placed at temporal lobe, 

that besides the NM core provides also the wireless data link, Fig. 3.9. 

 

3.4.1. Stimulation Engine 
In the core of every stimulation engine (SE) we have a current source and/or current sink 

depending on types of neural stimulation. The electrode-tissue impedance varies over time and its 

value also depends on electrode placement in the nerves. Also, different electrodes have different 

impedances depending on material they made of and depending on the size of contacts (range -

100’s Ω-1MΩ). To support simultaneous multi-channel, electrode agnostic stimulation we need a 

very high output impedance current source/sink for a wide range of stimulus currents. Furthermore, 

the current mirrors should have a high output compliance to compensate the source/sink additional 

voltage headroom requirements in CCS, so that the most of rail-to-rail voltage can be dedicated to 

the output electrode pair (differential voltage). Motivated by the work in [44], Fig. 3.10(top) shows 

 
Fig. 3.9: Implantable RAM (Restoring Memory Device) Unit. 
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the core of our (SE) – very precise, high-compliance and ultra-high output impedance current 

mirror for source/sink part of SE. These features are possible due to the combination of the positive 

and negative feedback loops employed in the circuit. This high-voltage, current mirror is superior 

in gathering super-high output impedance, high accuracy and high compliance ever achieved by 

any stimulation engine.  

The core of this current mirror is essentially made of two feedback loops: first - positive 

feedback (PF) (made of the error amplifier A1 and transistors M3 and M1) and the second with a 

negative feedback (NF) (A1 and M3). PF is always synchronized (in phase) with the input signal 

and it is determined as a positive loop gain (LG) around a feedback loop. Keeping only amplifier 

A1 and transistors M3 and M1 as a current mirror will limit the output voltage by a single VDSAT.  

But this structure has a serious drawback – for increased values of output voltage, M3 goes into 
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linear region, since the input current source and aspect ratio of M2 dictates the DC value of VG2, 

[44]. The output voltage is bounded: 

VOUT ≤ VG2 − VDSAT3.                                                 (3.1) 

To prevent this, an extra NF that includes another operational amplifier (A2) is added in the 

circuit. The plus terminal of amplifier A2 is connected to a bias voltage, VB. This would imply that 

the voltage at the plus terminal of A1 is going to be set to a desired value and enlarging values of 

VOUT will not push the loop run by A1 to its bound. Connecting the plus terminal of amplifier A2 

to a VB facilitates the VOUT swing by shielding the input of the A1. From the small signal analysis, 

the output resistance of the current mirror can be expressed as 

ROUT = r04gm4r01gm2A2RIN,                                                (3.2) 
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where RIN represents the input resistance of the mirror. This clearly shows that amplifier A2 also 

contributes to the boosted output resistance. The output resistance is boosted and the voltage 

compliance is equal to VDD-2VDSAT. Folded cascode PMOS/NMOS amplifiers are employed to 

ensure the proper control loop operation at voltages close to VSS/VDD. Figure 3.10(bottom) shows 

the DC output characteristics for current source/sink across the wide range of output currents.  

Figure 3.11 shows the complete Stimulation Engine architecture. Digital Control Unit (DCU) 

activates the STIM engine only during active stimulation. The engine comprises of 2 driver slices, 

each with a 7-bit current source/sink for differential stimulation (to reduce artifacts), with 

integrated high-voltage (HV) level shifters (LS). By employing previously explained current mirrors, 

the output impedance of the current mirror is boosted to 100’sMΩ-1GΩ. This architecture ensures 

accurate current matching even for the large voltage swings (94% Vrail-to-rail) at the electrodes.  

The shape, amplitude, various timing parameters and SENSE/STIM MUXs are configured by DCU 

and updated on-the-fly. The output of STIM engine is connected to the local switch matrix (LSM), 

which is employed for the biphasic control and post-stimulation active charge balancing. Any 

residual charge on the electrodes is cancelled out by shorting. The HV channel-selection MUX 
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Fig. 3.12: Unipolar-to-Bipolar High Voltage Level Shifter. 
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provides a fine spatial granularity (8:64 MUX with integrated HV LS), for a multitude of 
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stimulation sites. Since, the control signals are coming in 1.8V level and HV STIM engine requires 

unipolar-to-bipolar voltage conversion, we employed the specific architecture (Fig. 3.12) for the 

HV Bipolar Level Shifting. The stim MUX determines the sense-IC accessibility to electrodes and 

protects the sense-IC from voltage overstress, since sense-IC is designed in lower node technology. 

Power efficient stimulators are necessary in energy-limited systems. The stimulator engine 

dissipates significant power at its output stage, especially when it delivers small currents. This is 

the main drawback of the CCS. To additionally save the power, a high-voltage adaptive-rail 

(VDD/VSS) is provided to accommodate voltage drops across high electrode impedances. When the 

electrode cites are stimulating with specific current levels, DCU can configure (control bits cc_3, 

cc_4) the output of the high voltage generators to produce stimulation power supplies VDD and VSS 

according to the stimulation electrode needs (lower current – lower stimulation voltage and vice 

versa). Adaptive HV stimulation approach prolongs the battery life up to 10x. At the same time, 

reconfigurable BandGap Circuit and Reference Current Source (Fig. 3.13) is designed to be 

immune on these VDD/VSS changes. 

 

3.4.2. Sensing Unit 
 Recording of neural activity plays an important role for diagnosing neurological conditions. 

Presence of biomarkers in recorded traces gives the neuroscientist valuable information. A 

frequency band occupied by the neural signals of interest, and picked by the electrodes, goes up to 

6kHz. The local field potentials (LFPs) occupy a frequency band from 1Hz to 200Hz, while the 

action potentials (APs) fall within 200Hz to 6kHz frequency band. Also, the peak amplitude of 

LFP signals is 1 mV, and the peak amplitude of action potentials is up to 100 µV.  

 To ensure concurrent stimulation and recording, a high dynamic range sensing front-end unit 

is needed. The front-end must digitize neural signals to the required resolution of 8 bits in the 
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presence of stimulation artifacts and the required signal to noise and distortion ratio (SNDR) for 

differential signals is >12 bits, [45]. Saturation of the front-end would cause a loss of information 

(blanking).  

 Apart from the high input dynamic range, if the large DC offset is present at the sensing 

electrodes, it can create constant currents at the electrode because of the finite DC input-impedance 

of the sensing front-end unit. This will induce a tissue damage over time. To ensure a proper and 

safe functioning of front-end, its DC input impedance needs to be larger than 1GΩ.  

Since we were targeting a universal and flexible STIM/PM IC for simultaneous stimulation 

and recording, that would be compatible with recent work on the high input dynamic range front-

end units, [40], [45], we have designed a multichannel implantable NM interface, Fig. 3.8 that 

houses both STIM/PM and SENSE IC. 

 The sensing front-end IC features 32-channel (64-channel) VCO-based design with interleaved 

digital nonlinearity correction (NLC). In the conventional designs [37-38], area per sensing 

channel is dominated by the off-chip coupling capacitors, which dictates the overall size of the 
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Fig. 3.14: Concept of the VCO-based ADC. 
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implant and does not scale with CMOS technology. The VCO-based front-end, Fig. 3.14, 

processes LFP signals in the phase domain [40], thus allowing for low-noise linear digitization of 

voltage within a large input range on accessible electrodes, as controlled by channel selection 

MUXes in the stim IC. The digitized data is sent to the control module via a 3-wire SPI interface. 

An implantable autonomous 2-chip system needs to have built-in clock generation for system 

timing. Therefore, a crystal oscillator driver (XO), high supply-rejection LDOs and associate 

BGRs are embedded in the sense IC, with LDO output voltages of 1.2V (VCO analog), 0.6V (VCO 

digital), 1.2V (NLC & system control) and 1.2V (XO). Power-on reset circuitry is designed, so 

that the 1.2V digital supply is ready first for system reset and configuration before the supplies to 

the VCO front-ends. The XO provides a 12MHz clock with lower jitter (9.8ps) which is sufficient 

for accurate (15 bits) signal capture.  

 

3.4.3. Full-Fledged Power Management 
To minimize the power consumption of a fully implantable biomedical device and to make the 

stimulator design compatible with the rest of the system, as an integrative part of the STIM chip, 

we proposed a full-fledged Implantable Power Management Unit (IPMU). IPMU is highly 

reconfigurable, can process and support different power transfers on-the-chip, depending on the 

application. STIM core and IPMU unit are made in HV technology, to accommodate large voltage 

swings at the electrodes, during stimulation. As a part of specification, we define several important 

targets which will be discussed in detail later: i) The IPMU should adapt the power delivery 

depending on the need at the load ii) Multiple modes of operation and smooth transition between 
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the modes iii) High power conversion efficiency (PCE>90%) iv) Small chip area and a few off-

chip components to satisfy low cost and small volume (implantable interface) requirements.  

IPMU supports 4 different modes of operation, Fig. 3.15., and it is controlled by 6 control 

signals, set through the DCU and user interface. The system can be configured to work in 1) Wired 

Mode – where the power is delivered to the implant, differentially through 2 wires; 2) Wireless 

1X Mode- where the power is deliver through the near-field, inductive link; 3) Wireless 2X Mode 

– in which power is deliver through the inductive link, while simultaneously the rechargeable 

battery is charging and the implant is powered; 4) Battery Mode – where the whole implant is 

supplied from the battery. Figure 3.16 shows the complete block diagram of full-fledged IPMU. 

As the most power greedy blocks, efficient active rectifiers for both wired and wireless power 

transfer are imperative and they are covered in detail. 

To improve the overall efficiency and maintain the efficacy of the NM interface of the 

inductively/wireline supplied stimulating medical devices, the efficiency of every stage in the 

power delivery path, such as the active rectifiers, high voltage generators, inductive link, etc., 

should be maximized. By adopting the system level approach and utilizing power-efficient circuit 

 

Fig. 3.15: Different Modes of Operation. 

1. Wired Mode 2. Wireless 2x & BC Mode

3. Wireless 1x Mode 4. Only BC Mode
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techniques for both TX and RX side, we have designed IPMU that outperforms current state-of-

the-art in flexibility and efficiency. Detail explanation follows. 

 

3.4.3.1. Active Rectifier for Differential Wired Mode 
During the operation in wired mode, the power management (PM) block is configured 

automatically and wireless power transfer & battery management units are turned-off, so there is 

no reverse current flow, Fig.3.17. The implant is powered by a differential AC input and active 

IMPU comprises of an active rectifier (AR-DC), scalable bandgap/reference current block 

(BGR/IR) and multiple-voltage generators for the various implant units. Two wires at the input 

carry sinusoidal signals shifted for 180 degrees to satisfy biomedical requirement, so that the net 

input voltage sum in the wires, is equal to zero at every moment in time. Peak-to-peak voltage is 
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Fig. 3.16: Full-Fledged Power Management Unit. 



 

48 

 

6V at each wire. Duty-cycle control unit plays the role of a shunt regulator that adapts the power 

delivery to the load and also set the rectifier output voltage to the desired value – in our case 2.2V. 

 

Figure 3.18 depicts the adaptive, real-time on/off delay-compensated AR whose efficiency is 

improved and optimized for MHz-level inputs (PCE>80%). AR-DC also mitigates the substrate 

ringing and di/dt noise due to bondwire inductance. Output of the AR supplies the 1.8V LDO with 

high slew-rate and supply rejection. This LDO powers both ICs.  

In the core of the active rectifier for differential wired power transfer is a full-bridge 

architecture. Every Active Diode (AD) inputs two control signals, which are necessary for 

transition from passive to active mode and for preventing excessive power dumping to the load. 

Also, since the targeted rectified voltage is 2.2V and the amplitude of the input signal is 3V, the 

source (drain) of power PMOS/NMOS transistors within the AD can reach 4.1V in the steady state. 

If the drivers inside the AD, are supplied from VREC and gnd, turning off these diodes becomes 

problematic. To handle this, we proposed the active body biasing scheme (ABB), Fig. 3.18, to 

 

Fig. 3.17: Power Management Unit – Wired Mode. 
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mitigate any current leakage and prevent reverse current flow, which connects the bulk of every 

power transistor to the higher potential node. At the same time, the bulk node is used as a supply 

for the driver. The 1.1V offset shows up due to the isolation capacitances at the input of the active 

rectifier. 

3.4.3.2. Wireless Power Link 
For the near-skin implantable biomedical devices, wireless power transfer (WPT) is preferable 

power delivery option, which is usually based on the inductive near-field coupling due to its high 

efficiency. To be consistent with biomedical requirements, implantable applications usually use 

the frequencies from the ISM band, in which 13.56 MHz is the most commonly used carrier 

frequency. By employing WPT, scientists try to avoid bulky batteries, which is critical demand in 

volume-limited applications where form factor plays significant role. Since, our design targets a 

fully-implantable, miniaturized NM platform, WPT is an important task. 

The Active Rectifier (AR) for the WPT is the most critical block regarding the power 

efficiency. AR is designed to operate in two different modes: 1) Regular Mode (1X) provides 2.2V 

 

Fig. 3.18: Active Rectifier Scheme. 
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rectified voltage which is sufficient for further voltage regulation and 2) Charging Mode (Doubling 

Mode-2X) which provides 4.1V output; this voltage is used during the rechargeable battery 

charging. During 1X Mode, AR architecture is configured as a full-bridge rectifier, while during 

the 2X Mode it is configured as a voltage doubler – two half-wave rectifiers connected in series. 

Figure 3.19 shows enabled units in IPMU during the WPT in Charging Mode. The battery charger 

(BC) receives 4.1V at the input which is necessary for the operation. BC charges the battery with 

5-10mA constant DC current. Parallelly, integrated buck DC-DC converter provides 2.2V that is 

needed for multiple LDOs and normal implant operation. Most of the circuitry that was active 

during the Wired Mode is disabled and the reverse current flow into tAC-DC rectifier is prevented. 

Active realization of the AR-WPT requires high power efficiency and Load Adaptation ability. 

During the implant functioning, the load requirement changes in time –from very light to very 

high. Also coupling variations significantly mitigate efficiency and make the output voltage 
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Fig. 3.19: Full-Fledged Power Management Unit in Charging Mode. 
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unstable. Most previous designs, [46]-[50], do not consider the excessive power dumping from the 

input (wireless link) to the output. Excessive power is either dumped to the DC-Limiter or absorbed 

by the body tissue. Usually, the simple DC-limiter circuit or clamping shunt regulator is employed 

to bound the VREC value. This will cause significant current leakage and it will mitigate the overall 

end-to-end efficiency. Since the load requirement varies in the time, power efficient system would 

need a dedicated adaptive load control unit that will accommodate power flow in regards to the 

implant requirements.  

We proposed a reconfigurable, PVT invariant and power efficient AR-WPT which includes 

Adaptive Load Control (ALC) unit that accommodates the power delivery. With the ALC unit, 

input power is controlled and excessive power at the output is significantly reduced. The efficiency 

of the rectifier is improved due to the new real-time offset controlled schemes that are 

implemented.  With these two techniques, our system is able to perform >10x longer (battery life) 

compared to the state-of-the-art and has improved efficiency for a wide range of load currents. 

During design of active rectifiers for WPT, that use 10’s MHz as a carrier frequency, an 

important drawback has to be considered related to the propagation delays which are introduced 

by comparators (drivers). These drivers are driving the gates of the power transistors within the 

active diodes. To have small voltage drops across the active diodes, these power transistors have 

to be wide. The wider the transistors, their gate capacitance is bigger. To drive these capacitances 

at high speeds, the comparators require a buffer chain in the output stage. Naturally, there is a 

delay between changing the state at the comparator input and the buffer chain output. This delay 

causes power transistors to turn-on/turn-off either too late or too early. Both effects are detrimental 
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and affect the performance of the rectifier. Either they result in the reverse current flow that causes 

efficiency drop or the conduction time of diodes is reduced.  

To keep power conversion efficiency high, several previous works proposed different 

techniques to compensate for the propagation delays, [46]-[48], [50]-[53]. Some of them 

introduced a constant offset at the comparator input using the unbalanced-bias scheme 

(asymmetrical input transistors) to compensate for the OFF delay, [46]. This just partially solve 

the problem, since the compensation of ON delay is skipped. Some require off-chip offset 

calibration. A switched offset biasing scheme, [48], was proposed to explicitly control the reverse 

bias current. Ghovanloo in [47] used an off-chip calibration method. Problems with these 

approaches are that they are not flexible due to the various reasons (PVT variations, transistor 

mismatch, offset, etc..). These schemes are usually optimized for the particular operational 

condition, and their design procedure is complicated. Recently, in [52], the authors explained a 

near-optimum approach, that does not incorporate ALC unit and PMOS active diode calibration. 

Without ALC – reaching a steady state and having near-optimum condition is a real challenge.   
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Fig. 3.20: Active Rectifier for WPT. 
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We proposed the simple architecture that incorporates the adaptive, real-time ON/OFF 

calibration scheme for both types of active diodes (PMOS, NMOS) that autonomously generates 

the offset currents for the comparators and is immune to PVT and circuit mismatch. Inspired by 

the work in [51], Fig. 3.20 shows the overall AR-WPT architecture capable of working in Regular 

(VREC=2.2V) and Charging (VREC=4.1V) Mode with ALC Unit with complete Calibration 

Schemes that do not need any tuning.  

AR-WPT consists of five power switches, three adaptive delay compensated comparators (two 

of them for driving the N-type diode and one for driving the P-type diode), duty-cycling control 

unit for output regulation along with startup and mode control units. Depending on the states of 

these 5 switches, the AR-WPT can be configured to work in: 
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Fig. 3.21: Current through the active diodes without calibration schemes implemented. 
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Regular Mode, where RM switches are turned-on and MP transistors are cross-connected with 

the gate of one connected to the drain of other. N-type Active Diodes are enabled, while P-type 
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diode is disabled; 

Charging Mode, where RM switches are turned-off and CM-switches are turned-on. CMP1 and 

CMP3 are enabled. In the steady state, voltage Vac2 (one side of secondary coil) is clamped at 

VREC/2, so MP2 is reversed bias and consequently turned-off. 

Red and blue lines show the paths where the delays are introduced by the comparators. The 

impact of these delays is multifold; Fig. 3.21 depicts the impacts of ON and OFF delays for both 

type of active diodes (AD) without calibration schemes implemented.  
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None of the previous works, [46]-[53], simultaneously dealt with the real-time offset 

calibration for reconfigurable AR-WPT and implemented ALC unit that eliminates a lossy voltage 

limiter.  Figure 3.22 shows the block diagrams of the proposed, near-optimum active rectifier in 

1X/2X mode with negative feedback loops for a real-time delay calibration for both N-type and P-

type turn-on & turn-off delay compensation. These feedbacks are responsible for adaptive 

generation of the ON/OFF offset currents to compensate the switch delays. The signals VC1, VREC 

and VGP are used as an input for the P-type calibration scheme, since they contain the information 

whether the P-type active diode turned-on/off too early/late or if it is close to the optimum timing. 

Similarly, the signals gnd, VC1 and VGN are used for the N-type calibration scheme and derivation 

of the calibration criteria. 

Calibration criteria for both type of active diodes is depicted in Fig. 3.23. Let’s consider, 

optimum timing for the P-type active diode. A similar analogy can be made for the N-type of active 

diode with different desired timing criteria. If PMOS power transistor is turned-off too early (green 

line), conduction time is reduced, which means that VC1>VREC. To fix this, in the next cycle, more 

offset current through the off-branches in comparator has to be added. In the analog manner, if 

PMOS power transistor is turned-off too late (blue line), a reverse current flow will be the result. 

To reduce this in the next cycle, the offset current through the off-branches should be decreased. 

Deriving the conclusions for the turn-on offset calibration is done in a similar way. So, the offset 

is updated in every cycle and within several cycles the desired timing condition is reached. In the 

steady state, if the input signals VC1 and VREC are sampled on the rising and the falling edge of the 

VGP, the sampled values should be equal. That implies that delays are fully-compensated. For the 

N-type of active diode, if the input signal VC1 is sampled on the rising and the falling edge of VGN, 

the sampled value should be equal to gnd. 
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Fig. 3.24: a) Compensation scheme for P-type active diode b) Gate driving circuits-

control signals c) Timing diagrams for the control signals. 
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Detail circuitry of the proposed real-time offset compensation scheme for the P-type active 

diode is shown in Fig. 3.24. N-type scheme is represented by the dual circuit and analysis is similar. 

High voltage transistors are used in the implementation, since AR-WPT supports doubling mode 

and the range of voltages goes up to 5V. 

 

 
Fig. 3.25: Near- Optimum Steady-state for Charging (2X) and Regular Mode(1X). 
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In the core of the calibration scheme is the push-pull common gate comparator with the P-input 

transistors (M1-M10). Two negative feedback loops are added to adaptively generate ON/OFF 

offset currents. Every feedback loop comprises of an offset current source, feedback amplifier and 

the sampling circuitry that plays the role in the ON/OFF timing adjustment. Let us consider the 

ON-delay compensation path: The control logic generates signals sens, sens̅̅ ̅̅ ̅̅ , VKEEP and Smp_on. 

On the rising edge of Smp_on, input voltage VC1 is sampled on Cs1. During the Vkeep that voltage 

value is passed onto Cs2 and the feedback amplifier OTA_N compares the sampled value with 

VREC until the next falling edge of Smp_on, [53]. We have two possible scenarios: 1) If sampled 

voltage is smaller than VREC, OTA_N will drive Von_control to the lower value and more offset 

current ION is pushed through the stacked PMOS current source. Consequently, the PMOS diode 

(switch) will turn on later compared to the previous cycle. 2) If sampled voltage is higher than 

VREC, OTA_N will drive Von_control to the higher value and less offset current ION is pushed through 

the stacked PMOS current source. In this scenario, the PMOS diode (switch) will turn on earlier 

compared to the previous cycle, and as a result, after several 10’s of cycles the system would reach 

a steady state; VSH_ON should be equal or close to VREC indicating the desired optimal timing. OFF-

compensation path is realized and analyzed in the similar manner – in steady state VSH_OFF ≈VREC. 

Feedback amplifiers, OTA_N are realized as the low power folded cascode amplifiers with N-type 

input transistors and GBW <0.5MHz. 

To ensure no oscillation and smooth transition between transistor ON/OFF states, RC time 

delays are added, [48]-[52]. These delays behave also as a low-pass filters; they remove high-

frequency components in the offset currents. 



 

60 

 

Big advantage of the real-time adaptive compensation scheme is its immunity to the process 

mismatch and PVT variations. Figure 3.25 verifies the near-optimum steady-state operation for 

 

 

 
Fig. 3.26: Relevant Waveforms for Active Diodes with delay compensation implemented. 
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both PMOS and NMOS type of diodes. The outputs of sampling circuit VSH_ON  and VSH_OFF follow 

the rectified voltage VREC and gnd for 2X and 1X mode respectively. The relevant waveforms for 

both modes of operations are shown in Fig. 3.26. This demonstrates the effectiveness of the 

proposed technique – with adaptive ON/OFF compensation scheme implemented, the system 

reaches the desired optimum timing and the effect of reverse current and reduced conduction time 

(which affect the efficiency) are eliminated or significantly mitigated. 

Since the load requirement varies over time, implementation of ALC unit is necessary. Our 

ALC unit with Hysteretic Comparator (HC) is shown in Fig. 3.27. The hysteresis is added to the 

two-stage amplifier by employing a resistor of fixed value together with the steering (current) 

circuit. This results in the amplifier’s negative input terminal shift by the value proportional to the 

product of the resistor and hysteresis bias current. Hysteresis bias current controls the hysteresis 

properties (window, slope, etc.). When the output voltage VREC reaches the desired value, the 

comparator in the feedback will change the value of the control signal LS. As a result, all diodes 

in the AR-WPT would be turned-off and power transfer from input to output is suspended. If we 

keep the hysteresis window at 100mV, the output voltage VREC will fluctuate within 100mV 

window around the desired value. If we used a regular comparator, we would introduce the hard 

switching and observe a sharp voltage ringing at the output. This can make circuit intrinsically 

unstable. Consequently, the calibration mechanism would not establish the steady state in the 

rectifier, since it needs dozens of cycles. With hysteretic comparator, the circuit enters periodically 

into shut-down (duty cycling) modes, and still have time to calibrate ON/OFF delays in AR-WPT 

(during LS =0 periods). Load Adaptive signal LS is coupled into comparator enable signals (EN_1-

EN_3). HC dynamically keeps the VREC at the desired level by toggling LS which consequently 
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leads to energy preservation, improving the AR-WPT efficiency and reducing current leakage 

through the ALC unit.  
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Fig. 3.27: a) Control Logic b) Adaptive Load Control – Shunt Regulator with Hysteretic 
Comparator. 
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So far, we have focused on the RX local wireless voltage rectification and regulation. We have 

shown the circuitry that reduces complexity, requires minimal number of off-chip components, 

and leads to the improved efficiency. However, the complete wireless power system also requires 

TX independent IC. There are several works done so far that demonstrated TX-RX wireless 

inductive link for biomedical applications. In [51], [54], authors proposed backscattering, where 

TX is driven by the RX as the impedance changes on the receiver side during implant operation. 

This design requires an extra off-chip coil. Also, [55]-[56] requires TX-RX data link, so that TX 

can receive feedback information from the RX unit, that contains the sensed loading at the implant 

side. These systems usually need microcontrollers, pulse generators and other off-chip units that 

are power hungry. Most previous works, [49]-[51], [53]-[56], use the class D/E power amplifiers 

on the TX side, that are switching at the carrier frequency and driving the inductive link. These 

architectures are not suitable for the implant-scale biomedical applications. 

We have recently proposed in [57], a new wireless power link architecture that is immune to 

distance variation and can sense the implant “needs” without explicit feedback from the RX unit. 

The TX unit together with the link, self-regulates the power delivery to meet implant requirements. 

The basic idea is that by employing simple cross-coupled oscillator architecture with automatic 

amplitude control (AAC), the system can self-tune to one of two stable frequencies, [57]. It can be 

shown that operation in one of these two frequencies would lead to a constant ratio between the 

source and load voltages VL/VS=√
L2

L1
 , thus making it independent of coupling coefficient and load. 

This means that a wireless power system explained in [57] will hold the voltage amplitude at 

remote load constant as load resistance varies.  
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3.4.3.3. Battery Charging Unit 
Battery charging (BC) unit requires 4.1V at the input and charges (5-10mA loading current) a 

Li-ion battery-pack system with a constant current. Li-ion battery requires 3.6V-3.9V for normal 

operation. Integrated buck dc-dc converter steps down the output voltage from charging unit to 

2.2V and is able to provide up to 10mA of output current. Motivated by the work in [58], we have 

implemented a built-in resistance compensator technique that improves the speed of battery 

charging. This technique dynamically estimates the external resistance of the battery system and 

extends the phase of the constant-current stage. As shown in [58], a smooth transition method 

ensures stable transition from the Constant-Current to the Constant-Voltage stage for the BC. In 

the core of the BC, we have LDO-based circuit accompanied with the built-in resistance 

compensator and the Smooth Control Circuit and that includes Reference Shift Circuit, External 

Resistance Detector and Reference Voltage Switch.   

 

3.4.3.4. Adaptive High Voltage Generator 
As we stated before, power efficient stimulation in energy limited applications is an imperative. 

Stimulators require high voltage and high power dual supplies, to support a wide range of 

stimulations currents and differential stimulations. Fully integrated High Voltage Generators 

(HVG) in multi-voltage system design, with high power efficiency is targeted. Most prior works, 

[59-61], rely on bulky external passives (capacitors, inductors, etc.).  

We have designed an adaptive closed-loop 4-stage charge pumps, Fig. 3.28, with leakage 

reduction scheme, that can provide ±7.5V (±5V-v2) supply rails (VDD/VSS) - max 3.5x voltage 
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conversion ratio. Integrated charge pump efficiency is improved as compared to [62-63] by using 

the modified Pellicone’s cross-coupled cell, [65], for the negative and Favrat’s cell, Fig.3.29a, for 

the positive pumping stage. Each Favrat’s cell uses a small auxiliary charge pump structure for 

biasing PMOS devices. The generation of negative voltages on IC is possible due to the triple-well 

process, Fig.3.29b. The structure is very similar to the one demonstrated in [66], except the PMOS 

and NMOS switches exchanged positions and the bulk of PMOS is connected to gnd in order to 

prevent latch-up. The settling time of NVG is very fast due to the high frequency of operation 

(fs=20MHz) and full integration of charge pumps. Their performance is optimized to provide up 

to 1mA of constant DC load current while maintaining a high efficiency.  

To further increase energy savings, an efficient high voltage VDD/VSS scaling is employed. 

DCU can configure control bits cc_3, cc_4 to accommodate the outputs VDD and VSS of HVG at 

the optimal value which is sufficient for power efficient stimulation.  
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In the core of the HVG scheme there are multiple pumping stages with non-overlapping clock 

generators and feedback loop as shown in Fig. 3.28. The feedback loop consists of the clock buffer 

and comparator that provides adaptive control signal. This feedback decides if the output voltage 

(VDD/VSS) of the HVG reaches the desired value. When that happens, the comparator outputs the 

high signal (1.8V), and the charge pump will stop pumping by disabling the clock buffer. Until the 

output voltage does not reach the targeted value, the output of the comparator is kept low. The 

main sources of efficiency drop lie in the timing mismatch and in overlapped clock signals and 

would cause the reverse current flow. To prevent the reversion losses, we have designed a 

dedicated control scheme with HV level shifting unit, that ensure FETs (switches) are not ON at 

the same time. This will enhance the power efficiency, and by adding the filtered capacitors at the 

input of the comparator, the output voltage accuracy is improved. 

In this topology, the voltage drop across the stage is roughly equal to 2VDS, while the output 

voltage can be approximated with   

VOUT ≈ VIN + N(∆V −
IOUT

fsCf
),                                                      (3.3) 
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Fig. 3.29: a) Favrat cell – Positive Pump Stage; b) Negative Voltage Generation, [66]. 
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where ∆V ≈ Vsup
Cf

Cf+Cpar
 and Cf is flying capacitor while fs denotes the switching frequency. For 

integrated implementation (flying capacitors on-chip) and mA output current capability to achieve 

a high voltage gain and high power efficiency, the switching frequency has to be in 10’s of MHz 

range. Power efficiencies for both positive and negative closed-loop charge pumps are shown in 

Fig. 3.30. 

Another constraint comes from the stimulator requirement. During the active stimulation, 

engines can drain 10’s of mA of current from the high voltage supplies VDD/VSS. HVG designed 

on the chip, are not able to provide that amount of current instantly. Logically, the only solution is 

to have a high value (10µF -20µF) storage capacitances at the output of the HVG. The benefits of 

using these high value capacitances is twofold. First, the output voltage ripple is proportional to 

Vripple =
ILOAD

fsCOUT
, hence it will be mitigated. Secondly, the voltage drop during the stimulation 

would be in order of several 10’s of mV. Otherwise, huge voltage drop would introduce a 

stimulator malfunction. Also, keeping the VDD/VSS within the safe range is needed for correct BGR 

and current mirror operation. 
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Fig. 3.30: High Voltage Generator – Simulated efficiencies in HV180nm. 
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Apart from the necessity and benefits that introduction of external capacitances brings into 

design, there are a few challenges that have to be considered. Medical-grade, ceramic SMD 

capacitors show capacitance degradation as the DC voltage across increases, Fig. 3.31a. Also, their 

self-resonance frequency, for the capacitance values in µF order, is up to a few MHz at the best 

case scenario. Since switching frequency of our charge pumps is 20MHz, clearly the external 

ceramic capacitors would clearly show inductive property at that frequency, Fig. 3.31b. As a 

consequence, the output charge pump ripple, that can be expressed as 

Vripple ≈ L
di

dt
+ ESR ∗ i,                                                 (3.4) 

where ESR = Rpcb +Rchip_wire+Rcap denote the serial accumulated resistance, can reach several 100’s 

of mV. Such a big ripple on supplies, is unacceptable and can cause the stability issues. An elegant 

solution for this problem is to use Integrated Passive Device (IPD) devices, [67]. These devices 
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69 

 

show no capacitance degradation over the DC voltage stress. Also, IPD’s negligible serial 

inductance introduces a very small voltage ripple.  Figure 3.31c shows the comparison between 

the IPD and the ceramic external capacitors. Another factor that plays an important role in volume-

limited, miniaturized applications, is the size of external components. IPD is a right choice when 

it comes to 3D passive integration as a top priority. Thickness of these capacitors can be between 

80µm and 100µm while their capacitance density is 4 µF/mm3. An example of a cubic stack, which 

can be stacked further on one of the ICs is shown in Figure 3.31d.  Stacking of the integrated 

storage capacitors, will create more space on the assembly board and will reduce the overall size 

of implant-scale medical device.  

3.5. Simulation and Measurement Results 

To demonstrate the functionality and performances of our system, we have designed two 

different STIM/PM ICs (Fig. 3.32) – the first IC has 4 Stimulation Engines (SE) and can drive 32 

stimulation cites with VDD/VSS absolute maximum set to 7.5V/-7.5V. In the second version, the 

stimulator block includes 8 SE that can be individually programmed for monopolar/ differential 

stimulation. Stimulation current, per engine, covers the range from 20uA to 5.1mA with 20uA 

step. Programmability includes pulse shape, phase duration, full spatial selection, power control, 

etc. Engines are designed to be electrode agnostic.  
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Fig. 3.32: Die Micrographs. 
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High Voltage STIM/SENSE switching matrices are designed for 64 electrodes and STIM 

matrix provides a complex spatial resolution. The stim IC is integrated in HV-180nm CMOS to 

support a large voltage, while the sense IC is implemented in 40nm CMOS technology for reduced 

area and power of digital circuits. VDD/VSS are designed to be programmable with the absolute 

maximum to 5V/-5V. 

Measurements are conducted in two phases as depicted in Fig. 3.33. To evaluate the 

performances of the STIM/PM IC, we have designed the STIM test-bench board, Fig. 3.33a. The 

measurement setup also includes TX board and wireless inductive link. TX board houses the 

transmitter IC with AAC that is explained in [57]. The PC is running a control software which 

sends the STIM and PM control parameters through the FPGA board towards the IC. This setup is 

primarily used to evaluate the performances of our integrated PM unit, specifically – the 

reconfigurable ON/OFF delay compensated active rectifier during the operation in 1X/2X mode. 
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Fig. 3.33: Test Set-Up for NM Assembly In-Vitro Measurement. 
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The 13.56 MHz signal is used for the power carrier frequency during the rectifier’s power 

conversion efficiency (PCE) evaluation while in the overall measurements, the system self-tunes 

to a frequency in the range 10.5MHz-13.56MHz.   

Figure 3.34 shows the PCE performance comparison between the delay compensation 

technique turned-on and turned-off. Measured results show that high PCE is maintained over a 

wide range of output powers. During the Regular (1X) Mode, our approach offers, on average, 8% 

improvements in PCE with 91% peak efficiency and stays above 87% for most of loading 

conditions. Measured rectifier’s PCE, that operates in Charging (2X) Mode, shows up to 12% and 

10% PCE improvement during light and heavy load, respectively. Measurements clearly show that 

implemented adaptive ON/OFF delay compensation technique is more beneficial in eliminating 

the reverse current flow for lighter loads. This is consisted with our prediction, since the integrated 

ALC unit is more effective for moderate and small output currents. 

To demonstrate the functionality of the NM unit, we have conducted in-vitro measurements 

with a 32-electrode probe. Figure 3.33b shows the test set-up that is used to evaluate the system 

integrity under concurrent stim and sense.  
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NM units are designed and assembled for both versions of STIM/PM and SENSE ICs. The 

NM PCB assembly for the first IC version, is smaller than a US penny and occupies 135mm3 of 

volume, Fig. 3.35-Top. The functionality of these two ICs is supported by only a few passives - 6 

off-chip components are placed on the top side of the PCB. The bottom side is reserved for external 

connections - 2 anti-phase AC power lines, STIM and SENSE SPI interfaces, and 34 contact neural 
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Fig. 3.35: Top) NM PCB Assembly – 32 channel version; Bottom) NM PCB Assembly – 64 

channel version 
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electrodes (1 ‘common’, 1 ‘reference’, and 32 targets). This NM unit is small in size, which makes 

a high-channel count, closed-loop neuromodulation possible. The low-profile NM PCB assembly 

can be housed in a small package for on-the-skull implantation. This scheme minimizes the 

recording interference and reduces power in the cables for the NM. Distributed architecture allows 

a clinician to adjust the number of NM satellites without modifying the system design. 

To sense biomedical signals of interest, usually only 60dB of dynamic range is required. On 

the other hand, if the stimulation is enabled during sensing, dynamic range requirement for the 

sensing front-end goes up to 90dB to capture stimulation artifacts. Wall-powered devices, 

available in the current market, covers this range by burning more power. However, spending too 

much power for the implant-scale devices is not suitable because the battery will drain too quickly. 

The NM unit is placed in a spring-loaded socket that is used during the testing since it provides 

a good connection through its feedthrough contacts. Along with the NM test board, a signal 

generator is used to emulate a neural signal, AC-power supplies to deliver power to NM, 

oscilloscope to observe stimulation output, and a PC that is running the control software. 

A 7Hz sine wave signal, that represents a neural signal, is injected through the large probe into 

the beaker. The smaller probe is the actual neural probe that contains both stim and sense contacts. 

During the recording, the sine wave is present, but there are high-frequency components 

(fuzziness) riding on top of it. These high-frequency components that are contaminating the signal, 

are stimulation artifacts. The recorded waveform, Fig. 3.36a, shows no front-end saturation with 

artifacts from periodic 3mA stimulation pulses. The stimulation artifact is ≤40mV because of the 

differential stimulation strategy. The time-domain waveform shows a clear 7Hz envelope and the 

frequency-domain plot reveals no distortion of neural-signals.  
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The stimulation artifacts fall inside the LFP band and conventional filtering is not possible. As 

shown in Fig. 36b, the in-band stimulation artifacts are suppressed by up to 114dB by a custom 

digital stimulation artifact rejection method, [68]. This stimulation artifact rejection method 

implemented as digital signal processing unit removes these artifacts before processing neural 

signals.  

The main advantage of this implantation scheme is the proximity of the sensors and stimulators 

to the electrode arrays, compared to the traditional approach where the pulse generator is in the 

chest area.  

In the similar manner, we have designed NM PCB unit for 64 channels that houses version 2 

of the STIM/PM and SENSE ICs. NM supports different power delivery options and flexibility -

wise outperforms version 1 (32channels). This unit includes stacked integrated IPDIA capacitors 

to further downsize the overall NM module. Similarly, the bottom side has the contacts for external 

connections - 2 anti-phase AC power lines, 3-wire SPI interface, and  66 contacts neural electrodes 

(1 ‘common’, 1 ‘reference’, and 64 targets). Overall the NM capsule occupies 552mm3, while the 
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inner volume where active electronics is placed takes 338mm3 - W=4.5mm and L=22.5mm, Fig. 

3.34-Bottom.  

Figure 3.37a-3.37d shows the measured simultaneous current stimulation waveforms. 
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Fig. 3.37: a) Measured simultaneous current waveforms with active duty-cycling; b-d) 

Arbitrary Waveform Shape – Concurrent Stimulation; e) Power Management Start-Up 

Sequence. 
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Waveform can be configured to have rectangular, exponential, sawtooth, triangle and sine pulse 

shape. Power management start-up sequence is shown in Fig. 3.37e, where control signal EN_CP 

is used to enable/disable HVG.   

Our NM implant shows superior form factor and performance compared to the prior art, Table 

3.1. The improved performance is a result of highly optimized designs and a modular approach 

that combines the best of different CMOS technologies. It also provides a unique ability to rapidly 

Table 3.1: Comparison with the NM state-of-the-art. 

Reference [35][34] [37]

# of STIM Channel / 
# Engines

8/1160/40 8/1

Application CorticalSpinal Cord Cortical

Max Current / 
resolution

30μA(fixed)0.5mA/7 0.23mA/5

Process HV 180nmHV 180nm HV 180nm

STIM freq/pulsewidth/
resolution

N/A20k/8m/10u 220/440u/40u

This work

64/8

Cortical/
Sub-cortical

5.1mA/8

40nm / HV 180nm

20k/1.26m/10u

STIM Mode CurrentCurrent Voltage Current

ENOB (bit) 9.57a8.5a 6.5

# recording channels 816 8

Area(mm2/Ch) 0.38N/A 0.35

Linear Input 
Range (Vpp)

10m36mb 1m

Signal BW (Hz) 1-7k1-7k 500-3k

12.8

64

0.12

100m

1-250

Integrated 
Noise(μVrms)

5.237.68 1.97 4

Supply(V) 1.8/10±1.8/± 12/± 6 1/4.5

SFDR N/AN/A N/A

# of passives N/A6+2 N/A

Sensing Under STIM 
Artifact

NONO NO

Power transfer WirelessWireless Wireless

1.8/1.2/0.6/±7.5
Prog. ±5

>80dB

5+1

YES

Diff. Wired/Wireless/

Rech. Bat.

Peak Rectifier Eff. 84.86%N/A N/A
82% (wired)

91%(wireless)

AFE

Implant Size >3cm30.5cm3 N/A 0.135cm3/0.338cm3

Chip size(mmxmm) 2.76x4.884.4x5.7 3.06x2.53
2.59x3.6 / 3.05x5.3(STIM)

2.6x3.8(SENSE)

a) ENOB only for ADC. The amplifier nonlinearity not 

reported

b) Inferred from reported supply rail and minimum 

amplifier gain

Input Impedance dd d/e  

d) Requires off-chip ac-coupling caps

e) Parallel recording from all channels not possible

[38]

32/1

Cortical

12mA/6

HV 250nm /90nm

1k/12m/100u

Current

8

16mb

±1.8/± 12/± 6

>66

N/A

Not Implantable

N/A

[36]

Cortical/
Sub-cortical

180nm

10.2

64

0.025

4.6m

1-500

1.6

1/3/6/9/12

63dBc

N/A

NO

Wired

80%

N/A

2.4x4.8

30MΩ

64/4

c) Insufficient Linear range and large common mode 

swings

N/A

Current

5.04mA/8

225/500u/15u

NO

1-250

2.3

12a

N/A

d

N/A
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customize systems with varying channel counts via heterogeneous “chiplet” system-in-a-package 

assembly.  

 

3.6 Conclusion 

We proposed the next generation neural interface that is minimally invasive, and addresses the 

demands for limited area and power. It provides a real-time, full duplex communication during 

concurrent stimulation and recording of neural signals. Further, our modular approach and scalable 

architecture allows gathering data from a grid of NM implants. This multi-channel interface meets 

the requirements of human-quality implants at unprecedented level of electronic miniaturization 

as compared to the prior art. It offers major new perspectives that translate into significant clinical 

benefits: always-on sensing for enhanced speed and accuracy of closed-loop therapy, multi-channel 

arbitrary stimulation waveforms with user-friendly programming, high-spatial-resolution neural 

interface for more precise target localization. 

Also, we have presented the first integrated full-fledged MIMO power management unit that 

supports different power delivery options, such as wired, wireless and rechargeable battery. This 

flexibility extends the application range for our NM implant. An adaptive, real-time ON/OFF delay 

compensation schemes for both N-type and P-type active diodes in an active rectifier, are 

implemented.  The active rectifier can operate in 1X and 2X mode as a part of a 13.56 MHz 

wireless power transfer link. Due to the calibration schemes, the circuit delays (propagation delays 

of gate drivers and comparators) are well compensated across PVT corners and mismatches. 

Proposed circuit techniques improved the PCE (>90%) across a wide loading range, while ensuring 

that the wireless power link delivers a stable voltage to the implant across load and coupling 

variations. 
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CHAPTER 4 

Hardware accelerator for simultaneous, real-time recording of 

large neuronal ensembles for brain imaging 

4.1 Introduction 

 

 One of the goals of neuroscience is to explain how neurons process, store and encode 

information. In the brain, information is conveyed through neuron spikes -  neurons fire different 

numbers of spikes in certain time steps. To observe the activity of the brain, currently there are 

two technologies that offer the prospect of dense, high-fidelity recordings from neurons located 

within a local volume of brain tissue. The first is a classical (electrophysiological) technology that 

is based on densely spaced electrodes for extracellular recording. This technology can offer good 

temporal resolution, but there are a few problems present in this approach. Neuroscientists are 

probing the brain with electrodes for the past 40 years, but the resolution with which they can 

probe has progressed slowly. In the best case (theoretically) they can pick up signals from a few 

hundreds of neurons (10’s-100 electrodes), Fig. 4.1. Also, the use of this technology for the spatial 

localization and cell-type classification of recorded cells is limited. A further drawback is the tissue 

damage and neuro-inflammation from large electrodes placed in the brain. 

 Apart from this approach there is an alternative technology that has gained a lot of attention in 

recent years, since it is able to provide large-scale recordings of brain activity, [71] - [74]. The 

development of genetically encoded fluorescent indicators and optical microscopy has allowed 

progress in visualization of neural activity in mammalian and nonmammalian nervous systems. In 

this approach, the brain is genetically encoded with indicators. When neurons fire, the indicators 

come into the cells (neurons) and the fluorescence activity is recorded by image sensor. This 

technology offers a fine spatial granularity (one to two orders of magnitude higher brain coverage), 
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enabling the observation of thousands of neurons and individual cell activity in real-time. 

Furthermore, this technology is relatively non-invasive.  

Currently, two types of indicators are used: 

1) Ca+2 based indicators are commonly used and preferable for picking up slower signals. 

Single/Two-photon imaging of calcium indicators enables simultaneous recording from thousands 

of neurons over long periods of time, and it provides an indirect measure of neuronal spiking 

activity. Often, this type of imaging is combined with the optogenetic method to enable closed 

loop (recording and stimulation) feedback experiments for a specific type of cells. However, this 

is not a straightforward task since Ca+2 imaging only provides an indirect measure of spiking 

activity. The imaging is based on estimating spike trains from the raw calcium fluorescence, often 

contaminated with high, time-varying baseline noise.  This procedure is commonly referred to as 

deconvolution. 
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Fig 4.1: Electrophysiological vs. Optical Approach (DARPA-NESD). 
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 2) Genetically Encoded Voltage Indicators (GEVI) are promising since they enable the 

fluorescence readout of fast (~ms) neural dynamics, allowing the capture of action potentials (AP). 

AP detection needs fast sampling (200Hz-6kHz). GEVI has also progressed to the point where 

response amplitudes (single AP detection) can be similar to those used in Ca+2 indicators, [75] - 

[77]. Apart from the fact that sampling rates are up to 20 times higher than the one used for the 

calcium imaging, so far GEVI indicators showed limiting experiment duration, [75]. 

At the core of this imaging technology is fluorescence microscopy which is miniaturized down 

to the size of a few mm2 of cross-section, [78]. In most common animal experiments, the 

fluorescence camera is attached to the skull of the mouse, and neuroscientists can observe 

individual neural dynamics while the mouse is freely moving, Fig. 4.2a. So far, the neuroscience 

community has resolved design problems related to the ultra-fast miniscope – 100’s of frames per 

second (fps) are now possible, allowing the capture of LFP signals. The next generation of the 

complete system would require real-time neural deconvolution and de-mixing, a closed-loop 

Motion 
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Fig 4.2: a) Wired mini-scope, [77]; b) Calcium Imaging - Single Frame; 

 c) Video Processing Pipeline. 
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feedback system and a low-power wireless data/power link. These requirements have to be 

addressed on the hardware side. But there are a few obstacles that prevent a broader usage of this 

technology: 1) The sensor is not stably fixed, causing motion jitter in the received frames; 2) The 

position of neurons in a frame is unknown – neurons are visible only during the short period of 

time when they fire; 3) Even when the position and shape of neurons are known, extraction of the 

spiking signal (valuable information) from the raw fluorescence traces is necessary. 

 Currently, the state-of-the-art signal processing, in the neuroscience community relies on 

offline processing of captured videos. In the best case, up to 15 mins of recording is feasible before 

the battery powering the miniature camera and its electronics runs out. Even these short-duration 

recordings yield 10’s of GB of data. The custom-developed toolboxes (usually MATLAB) need 

hours to process this amount of data, and often the videos need to be split into several smaller 

segments and then processed separately.  

 Our primary goal was to develop online low-power hardware to support the processing steps 

in Fig. 4.2c in real time. Enabling hardware-friendly processing and drastic data reduction can 

speed up and automate the analysis of calcium imaging videos and provide the extraction of 

biologically relevant information in real-time. Motion Correction and Blind Neuron Detection are 

solved by using a distributed and power efficient implementation of various computer vision 

algorithms. By exploiting the sparse nature of the spiking signals and the neurons, both in time 

and spatial domains, a dedicated processing unit that maps the sparse-approximated (SA) 

algorithm, into hardware, extracts the valuable information in real-time and in a highly parallel 

fashion.  
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4.2 Hardware architecture for real-time frame alignment 

So far, all steps in the processing pipeline, Fig. 4c, are solved in software. Motion Correction 

(MC) is the first task in the pipeline that corrects frame-to-frame motion, which is a big issue in 

freely moving subjects. The MC task is particularly important during closed-loop experiments 

(that involves stimulation), where precise cells detection is necessary. Otherwise, some parts of 

neurons (Region Of Interest - ROI) will fall in or out of ROIs of other neurons during motion. 

Hence, it would corrupt the fluorescence levels across different ROIs. There are different types of 

a motion jitter – slow drifts and faster motions. Fast motions are a result of grooming, since during 

acquisition, the field of view (scanned from top to bottom) moves significantly. This causes non-

rigid deformations, [79]. Fortunately, in the most practical cases, translation motion is dominant 

(rigid motion) and there are several motion-correction techniques that can compensate for this type 

of motion. For motion correction, neuroscientists usually use a Fourier-transform approach (FFT), 

[80], [81] which includes two-dimensional FFT-accelerated convolutions, combination of down-

sampling, dynamic programming, etc. These FFT-based frame-to-frame rigid (or non-rigid) 

alignment methods are very computationally and time execution expensive.  

Essentially, the purpose of the Motion Correction block is to align every upcoming frame with 

the reference frame, which is usually the first frame in the video sequence. This can also be 

achieved through various techniques that rely on intensity-based methods, [82], which compare 

the video frames (frequency or spatial domain) based on pixel intensity. Also, feature-based 

methods, [83], apply different transformations to the frame in order to detect and extract features. 

Later, based on the relation between the features (e.g. edges), motion jitter can be corrected. 

 Inspired by the work on video stabilization, [84], we decided to exploit template matching 

techniques that essentially search the space of parameters to maximize the resemblance between 
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the reference and the transformed version of the current frame. A general transformation would 

assume affine model that would include image translation, rotation and scaling. However, for the 

most practical cases, simple translation is sufficient, which is preferable since the hardware would 

require only arithmetic operations and it would avoid interpolation for more complex 

transformations. 

 The template matching technique requires a similarity metric definition. Similarity function 

describes a metric that compares the candidate image (created by a transformation) to the reference 

one. By employing the similarity metric, the search function examines the translational space to 

derive the motion vector (Δx, Δy) ∈ [-P, P], where P determines the maximum coordinate shift. 

As a rule of thumb, the maximum coordinate shift P is always taken as 10% of the smaller frame 

dimension (P=min (L, W), where LxW determines the resolution of the frame).   

 There are many functions that are used to compare 2-D images, such as sum of squared 

differences, normalized cross-correlation (NCC), sum of absolute differences, etc. Even though 

these functions offer similar results, their computational complexities vary a lot. It is known that 

the 2-D NCC gives the most precise similarity estimate between two images, but from the 

embedded hardware point of view, this choice is inadequate due to high hardware complexity.  

Therefore, to have an efficient implementation in dedicated hardware, we decided to use the Sum 

of Absolute Differences (SAD) metric, (4.1), which requires only arithmetic addition and absolute 

value as operations,  

SAD(∆x, ∆y) = ∑ ∑ |Fcand(m + ∆x, n + ∆y) − Fref(m, n)|
W−1
n=0

L−1
m=0                    (4.1) 

where Fcan and Fref denote translated version of the current frame and reference frame, respectively. 

Here, (Δx, Δy) depicts the translation vector. 
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 Further, we have introduced two modifications that additionally relax the memory 

requirements and reduce the number of computations. By observing the general definition of SAD, 

we can see that one SAD requires 2 complete images pixelwise. Instead, by using the SAD 

definition accompanied with the Integral Projection (IP) approach, suggested in [84], [85], we can 

collapse the image columns and rows onto projection vectors, (4.2), and consequently reduce the 

dimensionality of the task (4.1).  

Fpx(m) = ∑ f(m, n)W−1
n=0 , F_py(n) = ∑ f(m, n)L−1

m=0                            (4.2) 

SADX(∆x) = ∑ |Fcan_px(m + ∆x) − Fref_px(m)|
L−1
m=0                         (4.3) 

SADY(∆y) = ∑ |Fcan_py(n + ∆y) − Fref_py(n)|
W−1
n=0                          (4.4) 

 

 As a result, the IP can be calculated in parallel and on the line as the processing unit receives 

the pixels from the camera. By using IP, the computation of SAD is reduced to 2 one-dimension 

processes, (4.3) - (4.4). The true benefit of the IP approach is noticeable during the exhaustive 

search procedure, in which we are trying to find an optimal displacement vector (Δx, Δy) that will 

maximize the similarity between the reference and the translated current frame. Instead of 

implementing a searching algorithm on 2D images, we can perform Split-Half Search along every 

projection axis and thus parallelize the computation and additionally reduce the memory and 

execution time. The final parameter values denote the Global Motion Vector (GMV), that 

represents a motion estimation between the two frames, (4.5). 

(∆xgmv, ∆ygmv) = argmin [SADX(∆x), SADY(∆y)]                               (4.5) 
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Fig. 4.3. shows the simplified diagram for the motion estimation unit. The camera is sending 

the frames line-by-line, while the local memory buffer stores them in the hardware. IPs for the 

reference frame are calculated during acquisition and the values are stored in local RAM memory.  

 There are two IP blocks, that are concurrently reading the pixels values from the line buffer 

and computing the IP values along x and y axis. The IP blocks are followed by the two minimum-

SAD units that simultaneously calculate the SAD between the reference and current frame 

projections (for each axis), and scan for the optimal (Δx, Δy) vector that minimizes the SAD. These 

units use a simple adder, an absolute value circuit and the accumulator, while the Update Address 

block produces the projections locations in the current frame that are shifted by an offset value. 

The offset values are updated sequentially (from -P to P), in order to perform the exhaustive search. 

Minimum SAD units output the Global Motion Vector.  

Video Stream 
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Fig 4.3: Integral Projection Approach - Motion Estimation Unit. 
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 This procedure does not have to be performed on the whole frame. By calculating the GMV 

vectors on the block level, Fig. 4.4, we can still get sufficiently good results. By simply loading 

the strip of image lines into the buffer, calculating the optimal translation parameters for several 

blocks and averaging the values, (4.6), we can get good performances while reducing the memory 

requirements and parallelizing the computations. With this distributed approach, the execution 

time of the motion estimation unit is reduced by a factor BxS (B=number of blocks within the 

strip, S= number of strips within the frame). 

 After the motion vector is found, the candidate image is a displaced version of the current 

image. This implies that the dimension of the processed image is actually smaller in size. By 

subtracting the GMV vector from the pixel’s original addresses, we can obtain the addresses for 

the new pixels. The pixels will show up at the output with a latency that is equal to the time needed 

for loading the initial strip of lines into the memory buffer.  

 ∆xgmv =
1

B
∑ argmin SADXk(∆x),
B
k=1                                         (4.6) 

∆ygmv =
1

B
∑ argmin SADYk(∆y)

B

k=1
 

 

K K+1K-1

Block K Frame Strip

 
Fig 4.4: Block-Level Motion Estimation. 
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4.3 Neuron Detection 

 Since they are major challenges, segmentation and deconvolution of neural activity from the 

calcium images have attracted a lot of attention in the previous years. Many methods have been 

proposed, [73], [87] - [90], but most of them require the whole video to be loaded into memory, 

while the processing involves various computationally and memory expensive techniques. Even 

though there is no systematic approach to solve these problems, two paths can be found in the 

literature that offer solutions for these tasks. In the first approach, segmentation and deconvolution 

are treated separately. Such methods include greedy algorithms, [88], supervised learning, [89], 

etc. Recently, authors in [73], [87], proposed methods that are based on the hypothesis that spatio-

temporal Ca+2 activity can be expressed as a product of two matrices: a temporal matrix that 

conveys the information about the evolution of Ca+2 concentration for every neuron, and a spatial 

matrix that contains the information about position and shape of each neuron. Mukamel in [73] 

employs PCA/ICA, while Pnevmatikakis in [87] proposed a constrained nonnegative matrix 

factorization (NMF) method for simultaneous denoising, factorization and spike deconvolution.  

 These methods are often manual or semi-manual since they require tuning of various 

regularization parameters, the number of principal components, the number of ROIs that needs to 

be found, threshold setup, etc. Previous approaches also employ some kind of greedy algorithm or 

spatial filtering techniques for the initial estimate of neuron footprints. All these approaches are 

impractical for the implementation in hardware, since they assume offline video processing and 

hence the detection approach has to be revised. 

 Neuron localization and identification of the spatial footprints pose a difficult task due to the 

presence of noise and surrounding neuropil activity. Also, since the camera is projecting a 3D 

volume onto a 2D plane, neuron footprints are often spatially overlapped.  
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 We proposed a real-time processing technique that detects and de-mixes neuron footprints on-

the-fly as the frames are received and does not require any assistance (“blind” detection). 

 The detection step is called the “learning phase”, since during this phase we are trying to obtain 

the shapes and the position of neurons based on incoming frames. To detect neurons, we have used 

a modified version of a computer vision algorithm called Maximally Stable Extremal Regions 

(MSER), [91]. The MSER algorithm can be described as follows. Let’s consider the MxN grid that 

corresponds to the MxN intensity grey image and let’s start thresholding with t=255 down to 0 

with step Δ (i = number of threshold levels | i=1:1:mod (255/ Δ)). During thresholding, all pixels 

that have value equal or above the current threshold t, start showing up as a white pixel in the 

frame. In other words, as t is reducing from 255 towards 0, some white areas will start to become 

visible in the frame. By further decreasing the threshold, new white regions will appear and the 

previous regions will continue growing and possibly merging. Ultimately, the whole frame would 

become white. During this procedure, we keep track of the size (cardinality) for each white region. 

We say that the MSER is detected if the stability function q(t), defined in (4.7), has a local 

minimum. 

q(t) = |Q(t + ∆) − Q(t − ∆)|/Q(t)                                         (4.7) 

Q(t) denotes cardinality of the region at the threshold t. 

 For automatically assigning labels to the above-determined white regions at all t values, an 

efficient Union-Find (UF) algorithm is employed, [92] - [93]. The UF algorithm, also returns the 

seeds (reference points and sizes) and the seed list at each threshold value t. For convenience, the 

first pixel location in every region is assigned to be the reference point. After merging of two or 

more regions, the reference point of the largest region becomes the new reference point. 
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 The detected MSER regions match the positions and shapes of the neurons in the current frame. 

Since the neuron visibility changes with time, it is necessary to conduct the MSER and UF 

procedures on a train of frames, and to update the detected MSER base after every frame.  

To implement MSER and UF algorithm in a hardware friendly way, motivated by the work in [94] 

– [95], we have divided this phase into 4 basic steps: 

1.) Preprocessing – this step outputs the vector that contains pixel positions sorted by the 

number of pixels at each intensity level and by the intensity level. First, the intensity 

histogram is calculated and then it is sorted by using the radix-bin-sort. 

2.) Clustering – during this step, UF algorithm is employed to keep track of the connected 

pixels. UF can check whether two pixels appear within the same region; if not, the 

algorithm can group them and add them to that region. Also, it keeps track of the cardinality 

of the region. This step uses an auxiliary memory bank (Region Map - RM). RM is the 

same size as the image; each location within the RM corresponds to the pixel position in 

the original image. As suggested in [95], each position in RM contains one number (FL) 

whose role is to determine the status of the pixel. If the pixel is not connected to any other 

pixel - (FL=0); if the pixel belongs to the same region as the pixel at position FL – (FL>0); 

if the pixel is the reference point for the region (FL<0). To keep track of whether the pixel 

is placed in the RM, a single-bit is assigned to every pixel-position in the RM. 

3.) Detection – In parallel with changing the threshold, it is necessary to keep track of all 

regions and their cardinality for three consecutive thresholds because of the definition of 

the stability function, (4.7). That explicitly helps in calculating the stability function q and 

detecting the local minimum. To decide whether the function q(t0) has a local extremum in 

t0, we also store the derivative value dq/dt and the value q. Simple hash-tag memory 
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structure is used for this particular task. This hash-tag memory has 5 rows for every 

seed(region), as shown in Fig. 4.5. Note that in order to avoid division by zero, during the 

addition of the new seed, q(t0) and q(t0 − Δ) are filled with ones, [96]. To simplify 

calculations, instead of keeping dq/dt in the memory, a one-bit flag sign(q(t0) − q(t0 − Δ)) 

is sufficient, [94]. When this flag is negative and the stability function is increasing 

(q(t0+Δ)>q(t0)), the function has a local minimum q(t0) at t0.  

4.) Display – when the MSER is detected, it is important to save the MSER position (size and 

the pixels positions) into a separate memory bank. The size of the detected MSER region 

is equal to (1-FL). But, with RM-based approach, there is no efficient way to perform this 

transfer, unless we scan the whole RM structure and check if the pixels have the same 

reference point. Also, to determine if the function has a local minimum at q(t0), all pixels 

with the intensity level t0 +Δ, have to be placed into RM. Otherwise, the readout will be 

wrong. To overcome these shortcomings, the authors in [95], proposed a simple extension 

of the UF algorithm by introducing the linked region concept. The basic idea is that every 

new pixel placed into the RM should refer to the next pixel within the same region. 

Consequently, a circular chain that connects all pixels in the region is formed. An elegant 

way to create this chain is to assign another field for each position in RM, that carries a 
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Fig 4.5: Example of Hash-Tag Memory Update. 



 

92 

 

pointer to the next pixel within the same region. Initially, the pointer value is the position 

of the pixel. 

Furthermore, two modifications were adopted as compared to the original MSER algorithm 

flow. Since we are detecting the neurons across a train of frames, not all neurons are going 

to be visible in one frame. It is important to neglect all MSER regions that are the result of 

merging of previously detected (smaller) MSERs, since it is obvious that we have multiple 

neurons in that region, just visible at different periods of time. Also, if multiple MSERs are 
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detected at the same place, we should keep the one whose stability function q has a global 

minimum, [92]. 

 Implementation of the MSER and the UF algorithms on the whole frame is very memory and 

computationally expensive. Hence, we decided to adopt a distributive approach, [94]. Since pixels 

are coming line by line, we can divide image into strips and every strip into several smaller blocks. 

While we are processing one strip with multiple MSER processing elements (PEs), we can 

simultaneously load the new line strip into the memory buffer. However, by employing a 

distributive approach, certain neurons could be split into several blocks during parallel processing. 

This issue can be elegantly circumvented by employing a single flag memory; whenever a new 

neuron is detected, we can check if its pixels are “touching” the neighboring blocks, and 

accordingly conduct merging, [94]. Figure 4.6 shows the block-level architecture for the neuron 

detection in the calcium imaging. 

 

4.4 Real-Time Deconvolution of the Spiking Signals from Ca+2 Imaging 

After the “learning phase”, when the neuron positions are detected, it is necessary to infer the 

valuable information from the neuron’s fluorescence time series – extracting the raw fluorescence 

traces is not the primary scientific goal. However, determining the underlying neural activity from 

large neural ensembles, and the specific timesteps in which neurons fire, is a difficult and an open 

problem in neuroscience. Current methods, [87], [90], [98], [99] are typically applied on large 

imaging data offline, after the recording experiments are done. Since there is a need for the causal 

exploration of neural activity (dynamics, connectivity), real-time processing that will enable 

closed-loop experiments, is an imperative. Closed-loop experiments in brain-machine interfaces 

are usually driven by electrical recording; enabling the optical method for that purpose would 
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provide more details into how neurons (individual cell resolution) behave during the learning 

(comprehension) phase. 

For this purpose, after identifying neuron locations and de-mixing spatially overlapped sources 

(footprints), deconvolving and denoising the neuron spiking activity from the slower dynamics of 

the Ca+2 indicator is the next step. Motivated by the works in [87], [99], we have adopted the 

proposed algorithms and offer simplifications that can lead to a hardware-friendly solution for the 

sparse, non-negative deconvolution problem.  

 

4.4.1 Mathematical Model for Ca+2 Dynamics 
 Let’s consider a stable auto-regressive (AR) model for the Ca+2 dynamics proposed by 

Pnevmatikakis, [87]. Let xt denote the raw fluorescence trace at the timestep t, and ct denote the 

underlying Ca+2 concentration at the timestep t. The Ca+2 dynamics can be approximated by a 

stable auto-regressive (AR(p)) process of order p, where p is a small positive number, usually 

equal to 1 or 2, as  

xt = ct + b + ϵt, t = 1,… . , T;                                                  (4.8) 

st = ct − ∑ γict−i
p
i=1 , t = p + 1,… . , T.                                         (4.9) 

The variable st in (4,8), represents the spiking signal - the influence of a spike on the Ca+2 level at 

the t-th timestep, while εt ∼ Ν(0, σ2) denotes the noise term with variance σ2. The term b is the 

time-varying baseline noise, which for simplicity is assumed to be zero. The parameter p for all 

practical reasons never takes a value higher than 2. The quantities γi denote the AR model 

parameters. The only accessible (observed) quantity is xt, while all others are unobserved.  

 The purpose of the deconvolution step is to extract the neural activity s from the observation 

vector x. If we assume that the vector s is sparse (in most time-bins there would not be any spikes 

(st = ct −∑ γict−i
p
i=1 = 0)) and that the individual values st are nonnegative since the spiking 
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would only boost the Ca+2 concentration level, the first order AR(p=1) model would lead to the 

following optimization problem, [98]: 

min
𝐜
{
1

2
∑ (xt − ct)

2T
t=1 + θ∑ 1(st≠0)

T
t=2 }    subject to st ≥ 0.                    (4.10) 

The last term in the objective function 1(st≠0) is equal to 1 if st ≠ 0 is true. Also, θ denotes a 

tuning parameter that dictates the number of timesteps at which spiking happens. This form of 

optimization problem that incorporates l0-minimization penalty is known as l0-minimization task, 

it is highly non-convex and there are no efficacious algorithms able to find the global optimum. 

min
𝐜
{
1

2
∑ (xt − ct)

2T
t=1 + θ∑ |st|

T
t=2 }    subject to st ≥ 0                      (4.11) 

 Fortunately, it has been shown that in order to avoid computational challenges, the l0-

minimization penalty can be translated to l1-minimization norm, (4.11), and the implied solution 

would represent a proper approximation of the original problem, [102], [104]. The same logic was 

followed in [87], [90]. Now, the non-convex problem is approximated with the corresponding 

convex problem for which optimization algorithms are available. If we extend the order of AR 

process to 2, the final optimization problem takes the non-negative LASSO form, [109]:   

min
𝐜

1

2
‖x − c‖2 + θ‖s‖1   subject to s = Gc ≥ 0,                              (4.11) 

where G is defined as a lower triangular matrix of autoregression parameters,  

G =

(

 
 
 
 

1 0 0 . . . 0
−γ1 1 . . . . 0
−γ2 −γ1 1 . . . 0
. −γ2 . . . . .
. . . . . . .
. . . . . . .
0 . . . −γ2 −γ1 1)

 
 
 
 

.                                   (4.12) 

 By observing (4.11), we can conclude that authors in [87], [90], [99] introduced a hard 

constraint on the energy of the residual signal between the underlying Ca+2 dynamics and the raw 

fluorescence data (traces) by penalizing the sparsity of each neuron (detected ROI). Also, since 
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the spiking vector contains non-negative values, the last term in the objective function in (4.11) 

can be expressed as a function of matrix G elements and Ca+2 concentration vectors as: 

 θ‖s‖1 =  θ∑ ∑ Gjici =
T
j=1

T
i=1  θ∑ (1 − γ1 − γ2 + (γ1 + γ2)δiT + γ2δi(T−1))ci = ∑ αici

T
i=1

T
i=1                

(4.13) 

where “δ” refers to the Kronecker’s delta function. 

 Before solving the minimization norm, it is necessary to evaluate the unknown parameters – 

AR parameters γi and noise variance σ2. As suggested in [90] and [99], AR parameters can be 

inferred from the time series analysis method. If the AR order p is known, the autocovariance 

function of the observed fluorescence x, ARRx, satisfies the following equality: 

ARRx(t) = {
∑ γkARRx(t − k) − σ

2γt, 1 ≤ k ≤ p
p
k=1

∑ γkARRx(t − k), k > p
p
k=1 .

                        (4.14) 

 The AR parameters can be evaluated by inserting the autocovariance samples into (4.14). 

Later, when the AR coefficients are known, the noise variance σ2 can be found. The autocovariance 

method surmises that the spiking signal s have a uniform Poisson distribution and effectively gives 

very crude estimations for the AR parameters. Since the rising time of the indicator is much faster 

than the duration of the timestep, the order p is assumed to be equal to 2, [87].  

 

4.4.2 Extension to the Spatio-temporal Case 
As discussed in [87], the goal of the constrained NMF method is to decompose the spatio-

temporal neural activity into temporal and spatial parts. In this way, the Ca+2 dynamics can be 

modeled and the individual neuron structure (ROI) can be preserved. After the one-dimensional, 

single neuron deconvolution formalism is explained in 4.4.1, let’s extend analysis to a full spatio-

temporal case. 
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Assume that the field of view captures N neurons and that the time series has a total number of T 

timesteps. If the frame consists of d pixels (single column vector), the overall observation can be 

seen as matrix FdxT.  The Ca+2 activity ci for each neuron i can be depicted with AR dynamics. If  

𝐚𝐢 ∈ R
d and Bt ∈ R

d denote the spatial footprint of the neuron i and the baseline concentration at 

the t-th timestep, the overall spatial Ca+2 concentration (at time t) can be expressed as  

Xt = ∑ aicit
N
i=1 + Bt + Et,   t = 1,… . , T,                                    (4.15) 

where Et depicts the diagonal matrix with additive noise terms.  

 From (4.9) and (4.15) we can derive the matrix form for the spatio-temporal spike inference: 

S = CGT, X = AC + B + E,                                            (4.16) 

S = [𝐬𝟏, … 𝐬𝐍 ]
T, A = [𝐚𝟏, … 𝐚𝐍 ], C = [𝐜𝟏, … 𝐜𝐍 ]

T,                          (4.17) 

B = [B1, …BT ]
T, X = [X1, … XT ].                                       (4.18) 

Solving (4.11) in the spatio-temporal case is not a trivial task. Authors in [87] proposed a method 

that alternatively updates the temporal matrix C, by solving (4.11) in parallel for every pixel, and 

estimates the spatial representation by dividing the problem into d separate programs for each 

pixel. For a single pixel deconvolution, they used a non-negative LARS (least angle regression) 

algorithm, which is convenient due to the structure of the dual representation of (4.11). On the 

other hand, Friedrich in [90] used the pool adjacent violators algorithm (PAVA) for isotonic 

regression to obtain an Online Active Set method to Infer Spikes (OASIS). However, these 

methods are only suitable for CPU/GPU processing since they exhibit very high computational 

complexity and extremely large memory requirements. Hence, their efficient hardware 

implementation, without algorithm modification, is not possible. 

 Since, the matrix A contains vectors that are very sparse, solving (4.11) for every pixel in the 

frame is unnecessary. Instead of updating the spatial representation based on the work in [87], we 
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are proposing solution that will find the initial neural footprints and simultaneously update their 

shapes, based on the method explained in chapter 4.3. Also, instead of searching for the spiking 

vector for every pixel, we have solved the deconvolution problem directly in the spike domain for 

every individual neuron (ROI), by using the sparse approximation formalism (SAF), [110]. SAF 

can offer efficient, hardware friendly algorithms to solve (4.11). 

 

4.4.3 Homotopy/LASSO/LARS Algorithm Design Consideration 
 As we mentioned before, the deconvolution problem (4.11) with a baseline offset included 

(‖𝐱 − 𝐜‖2 → ‖−b𝟏𝐓 + 𝐱 − 𝐜‖2 ) has a form of non-negative (constrained) LASSO problem. 

Often, this expression is presented in a modified form in the spike domain as 

   
min
𝐬

1

2σ2
‖𝐱 − G−1𝐬 − b𝟏𝐓‖2 + θ‖𝐬‖1   subject to 𝐬 ≥ 0, ‖𝐱 − G

−1𝐬 − b𝟏𝐓‖2 ≤ σ2T.      

                    (4.19) 

The optimization problem (4.11), has a very similar structure to the Basis Pursuit Problem (BP) 

which can be efficiently solved by many linear programming algorithms. On the other hand, the 

work in [99] proposes a non-negative LARS algorithm for obtaining the solution of (4.19).  In the 

case of very sparse spiking signals, LARS method is particularly efficient and the algorithm 

l1-Minimization

Homotopy

LARS
Orthogonal 

Matching Pursuit
(x0,Θ0)

(x1,Θ1)

(x2,Θ2)

(xn,Θn)

(xn+1,Θn+1)

(x*,Θ*)

δx0

δx1

δxn

a) b)

 
Fig 4.7: a) Relation between different l1-min algorithms b) Homotopy Path. 
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converges only after a few iterations. Furthermore, positive l1-min problems terminate much 

earlier and yield a more parsimonious solution than general l1-min problems, [111]. 

 Both non-negative LASSO and non-negative LARS can be efficiently solved by employing a 

very fast algorithm called homotopy, which was initially proposed for solving noisy 

overdetermined l1-penalized least squares problems, [104], [113]. The Homotopy algorithm starts 

from an initial solution and converges along the so-called homotopy path, Fig. 4.7, by controlling 

a transformation parameter – the homotopy parameter. Below, we will briefly introduce 

LASSO/LARS homotopy algorithm that solves the problem in (4.20). To be consistent with the 

notation in literature, a constrained minimization problem is expressed as  

   
min
𝐱

1

2
‖𝚽𝐱 − 𝐲‖2 + θ‖𝐱‖1   subject to 𝐱 ≥ 0,                                (4.20) 

where Φ denotes the measurement matrix (dimension M x N), y is the set of measurements and x 

depicts the (sparse) unknow signal. Parameter Θ is the Lagrange multiplier that plays the role of 

the threshold parameter, that controls the tradeoff between the measurement fidelity and the 

sparsity of the solution.  

 Pseudo-code (PC) and description for the non-negative homotopy algorithm, [113]-[114], is 

given below. 

1) Initialize:k = 1, x0 = 0⃗ ,  corr0 = Φ
Ty, Θ0 = ‖corr‖∞, Γ0 = argmaxi|corr(i)|, r0 = y, d = 0⃗   

2) Repeat: ΦΓk−1
T ΦΓk−1d(Γk−1) = sign(corr(Γk−1)), u = ΦΓk−1d(Γk−1) 

3)                t = miniϵΓk−1 (
−xk−1(i)

d(i)
) , δ− = argminiϵΓk−1 (

−xk−1(i)

d(i)
) , γ− = max (t, 0) 

4)                δ+ = argminjϵΓk−1
c (

θk−1−corr(j)

1−𝛗j
Tu

) , γ+ = minjϵΓk−1
c (

θk−1−corr(j)

1−𝛗j
Tu

) 

5) If (γ− < γ+) 

             γ = γ−, Γk = Γk−1\δ
−  
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else       γ = γ+, Γk = Γk−1 ∪ δ
+ 

6) Θk = Θk−1 − γ, xk = xk−1 − γd, rk = rk−1 − γu, corr = Φ
Trk, d = 0⃗     

7)  Until:  ‖rk‖2 ≤ ϵ ∨  Θk ≤ ϵ.  

 Specifically, terms Γ  and corr  denote the support (active set - the index set of nonzero 

coefficients) of the vector xk  and the residual correlation vector, [104], [113]. The algorithm 

estimates solutions xk in an iterative way starting with the initial solution  x0 = 0⃗ . It starts with a 

large value of Θ and decreases Θ down to the final value in a simple sequence of steps. As Θ 

shrinks, the current value xk follows a piecewise-linear and polygonal path. The sign sequence and 

the active set of the solution dictate the direction and the length of every segment within the path. 

While jumping to the new vertex in the homotopy path, the algorithm either removes existing 

elements or adds new one to the active set  Γ. Also, as explained in [113], direction update and the 

step size cause a one-element change in the active set Γ. These parameters can be estimated by 

employing optimality conditions, which are derived from the subdifferential of the objective 

function (4.20). Note that since the positivity constraint is added in (4.20), step 4 in the PC is 

slightly different than the one explained in [104], [113]. Since, we are always dealing with noisy 

data, the algorithm terminates as soon as the residual satisfies ‖rk‖2 ≤ ϵ or Θ has been lowered to 

its desired value. As Θ converges to 0, it is clear that PC provides the solution to the BPDN 

problem for all the values of ϵ, [114]. 

 It has been shown that if the underlying solution of (4.20) has only k non-zeros elements, where 

k<<M, N, the homotopy method reaches the solution in only k iterations. Also, as it is pointed in 

[104], the LARS procedure is very similar to the homotopy method except the LARS omits the 

step that removes the variables from the active set and limits its procedure to the new-element 

addition only.  



 

101 

 

 When the k-step solution property holds, the homotopy method converges to the solution for 

(4.20) much faster than general LP solvers. The bulk of the computational cost comes from 

computing ΦΓk
T ΦΓk (solving the Q x Q linear system, where Q is equal to the size of the current 

active Γ in iteration k) and from computing vectors d and u in step 2 of PC, which are used to 

calculate the step-size.   

 To have an efficient implementation of the homotopy algorithm, Cholesky factorization is 

employed during the computation of ΦΓk
T ΦΓk  term, and during the active set update 

(addition/removal of the new element). If M~N, it can be shown (from [104]) that in the case of 

dense data (no sparsity constraints), k Homotopy steps need  
4kM2

3
+ kMN + 𝒪(kN)  flops 

(floating-point operations), which is significantly better than 𝒪(M3) flops that is required for 

regular LP solvers. Furthermore, if the sparsity constraint holds, and k<<M~N, the homotopy gives 

more favorable estimates and roughly terminates in k3 + kMN flops. For comparison, using the 

least-square to solve the system Φx = y, we would require 2M2N − 2M3/3 flops, [104]. It is 

important to mention that computational complexity does not translate linearly into hardware 

complexity since the VLSI implementation depends on the memory organization, data flow, 

scheduling, choice of architecture, etc.  

 

4.4.4 Homotopy Algorithm Reformulation 
 To reduce the number of operations needed for the homotopy execution, we have adopted 

several mathematical transformations that directly reduce the algorithm complexity. 

 Since A = ΦΓk
T ΦΓk ∈ R

kxk  is a symmetrical, positive-definite matrix, as pointed in [114], 

[116], instead of using conventional Cholskey factorization method that involves square-root 
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operations in calculation of diagonal elements of L in (4.21), an alternative method is employed 

that avoids costly square-root operations by simple reformulation, [114]. 

A = LLT = (LD−1)(DD)(D−1LT) = L′D′L′T                                 (4.21)                                                                    

 Diagonal matrix D ∈ Rkxk  has all the square-rooted factors, while L ∈ Rkxk  is a lower-

triangular matrix. It is easy to show that matrix D and L have the same main diagonals 

(diag(D)=diag(L)). Matrix L′ ∈ Rkxk is a lower-triangular matrix that has all diagonal elements 

equal to one, that satisfies L′ = LDT and the matrix D′ ∈ Rkxk (D′ = D2 ) is a diagonal matrix that 

is free of square-roots. 

 Furthermore, when comes to removing/adding a new element from/into an active set, the 

general procedure (in terms of number of flops) can also be simplified. First, if we want to add a 

new element into the active set in iteration k, the matrix Ak = ΦΓk
T ΦΓk  can be constructed by 

simply adding a new column and row as pointed in (4.22) - (4.23). By employing the Cholesky 

decomposition of matrix Ak , it can be shown that the factorization elements in (4.21) can be 

updated in an incremental way, [114], with only a few simple, recursive operations per iteration.  

Γk = Γk−1 ∪ δ
+, ΦΓk = [ΦΓk−1 , φδ]                                            (4.22) 

  Ak = [
Ak−1 ΦΓk−1

T φδ

φδ
TΦΓk−1 φδ

Tφδ
]                                                 (4.23)                                                                    

 On the other hand, removing a bad atom from the active set is slightly more complicated 

procedure which will be explained in detail. By deleting a row i from a matrix ΦΓ , we are 

effectively deleting the row and column i from the matrix A. Let 

A = [

A11 A12 A13
A12
T A22 A23
A13
T A23

T A33

] = [

L11 0 0
L21 l22 0
L31 L32 L33

] [

L11 0 0
L21 l22 0
L31 L32 L33

]

T

                      (4.24)                                                          

be the Cholesky factorization of matrix A and let 
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A′ = [
A11 0 A13
0 0 0
A13
T 0 A33

] = [

L11
′ 0 0

L21
′ l22

′ 0

L31
′ L32

′ L33
′

] [

L11
′ 0 0

L21
′ l22

′ 0

L31
′ L32

′ L33
′

]

T

                     (4.25) 

be the Cholesky factorization of matrix A′ obtained from matrix A by zeroing the i-th column and 

row. Then it is easy to prove that L11
′ = L11, L21

′ = 0, L31
′ = L31, l22

′ = 0, L32
′ = 0 and 

A33 = L31L31
T + L32L32

T + L33L33
T = L31L31

T + L33
′L33

′T
                      (4.26) 

L33
′L33

′T
= L32L32

T + L33L33
T.                                             (4.27) 

Since L32  is a vector, (4.27) gives a rank-1 update of the Cholesky factorization L33L33
T . 

Removing the i-th row and column of A′  is trivial now. Rank-1 update of the Cholesky 

factorization is a standard task, [117], and can be done in 𝒪(d2) operations, where d is the size of 

L33. It can be shown that if Ak = ΦΓk
T ΦΓk is dense and we want to remove the i-th row from ΦΓk, 

the total number of flops is equal to 2(k − i)2 + 5(k − i) + 1 (roughly k2  if i=1 and k2/2  if 

i=n/2). In the case of sparse matrix ΦΓk (our case), the total number of flops is a small fraction of 

the flop count needed for the dense matrix row removal. 

Following the procedure explained in [114], after new element addition/removal, a residual 

update can be also done in an incremental way; first, the direction d is computed by calculating 

the normal equation from step 2 of PC, and then the residual rk is updated based on the previous 

values rk−1 and uk−1. 

 Going back to our case, we can conclude that in order to infer the spiking vector s, matrix G−1 

in (4.19) plays the role of matrix Φ in (4.20) and PC for homotopy. Note that matrix G is sparse, 

and has only 3 non-zero diagonals (4.12).  If the order of AR process is 1, it is trivial to show that 



 

104 

 

G−1 =

(

 
 
 
 

1 0 0 . . . 0
γ1 1 . . . . 0

γ1
2 γ1 1 . . . 0

. γ1
2 . . . . .

. . . . . . .

. . . . . . .
γ1
T−1 . . . γ1

2 γ1 1)

 
 
 
 

,                                     (4.28) 

where T is the number of timesteps. If p=2, we can use simple polynomial factorization. If G =

(I + Tr), where Tr is the strictly lower triangular matrix (the main diagonal contains all zeros), we 

can get a compact form for G−1 by using the following identity, 

G−1 = (I + Tr)−1 = I + ∑ (−1)jTrjT−1
j=1 .                                    (4.29) 

Since matrix Tr has a trivial form, by employing the binomial theorem, it is easy to show that 

matrix G−1 can be expressed as  

G−1 =

(

 
 
 
 
 

1 0 0 . . . 0
γ1 1 . . . . 0

γ1
2 + γ2 γ1 1 . . . 0

γ1
3 + 2γ2γ1 γ1

2 + γ2 . . . . .

. γ1
3 + 2γ2γ1 . . . . .

. . . . . . .
γ1
T−1 . . γ1

3 + 2γ2γ1 γ1
2 + γ2 γ1 1)

 
 
 
 
 

,             (4.30)                   

 

where all sub-diagonal elements are calculated by combining the coefficients in binomial 

expansion. 

 Note that the optimization problem (4.19) is not underdetermined - the vector of observation 

and the spiking vector are of the same length T (number of timesteps). Hence, since the sampling 

rate is equal to one, the homotopy algorithm achieves very good spiking signal recovery 

performance. Its reconstruction signal-to-noise ratio (RNSR = 20log (
‖s‖2

‖s−s̅‖2
))  goes above 90%, 

[102]. 
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 Simplifications introduced in the PC steps of the Homotopy algorithm will result in significant 

reduction in the number of operations needed per iteration. These modifications on the algorithm 

level are necessary to relax the overall computational requirements and to improve the system 

throughput. Hence, only after the algorithm is decomposed into hardware-friendly tasks, we can 

go into the architectural design. However, homotopy algorithm mapping into hardware was not 

discussed here and it is left for the future work.  

 Flexible and efficient hardware design of the homotopy engine imposes different types of 

challenges – reconfigurability and high parallelism of the processing elements, efficient memory 

control schemes, resource sharing, etc. The goal of the future work is to map the homotopy 

algorithm into a dedicated hardware unit so that we can parallelize the deconvolution method to a 

large extent. Basically, every detected neuron and its fluorescence trace will allocate a specialized 

unit (homotopy/LARS) that will perform spiking signal extraction in real-time.   

4.5 Simulations results 

 To show the performance of the proposed processing technique, we have simulated our 

approach with real data (single-photon Ca+2-based imaging, [78]) and compared the results with 

“ground-truth” spiking activities that were obtained by employing Paninski/ Pnevmatikakis online- 

toolboxes (MATLAB) available online, [87]. In this particular example, the dimension of the 

frame is 512x768 (W x L) and the video sequence contains 1000 frames while it runs at a speed of 

f = 20fps.   
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 Motion Correction Block is enabled during the whole video sequence – the frames are received, 

line-by-line and the unit automatically performs alignment as shown in section 4.2. In the initial 

phase, the frame sequence that contains T =256 frames, is used for the Neuron Detection. Figure 

4.8 shows the detected neurons in a single frame as the output result of this phase. As we can see, 

our method provides compact spatial footprint estimates and separates neurons ROIs even in the 

case of significant spatial overlap. The video used in this simulation had a focused field of view, 

which resulted in a smaller number of detected neurons, while the neuron’s spatial footprint 

occupies more pixels on average. The same memory budget can be used for videos that contain 

tens of thousands of cells. The number of pixels per neuron, in that case, would be much smaller. 
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Fig 4.8: Detected Neurons – their spatial footprints. 
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As a comparison, an offline-method was able to find 161 ROIs for the thousand-frame long 

sequence. 

 As the most memory expensive steps, we have evaluated the resources needed for 

(MSER&UF)-based neuron detection, while the frame alignment is active. Every new frame is 

scanned from top to bottom and (MSER&UF) simultaneously works with two strips of lines – 

while we are processing the first one, the other is simultaneously loaded into the internal memory. 

Processing includes calculation of integral projections, motion estimation, motion correction and 

MSER&UF operations.   Following the distributive approach, if the frame is partitioned into NSTRIP 

strips and every strip is divided into NBL, it is not difficult to show that the memory (in bytes) 

needed for these steps can be approximated with 

MEMReq = 2(NBL(1.25 + 0.5(log2RBL) + 64log2RBL + RBL) + IPMEM + CORRmem      (4.31)                

where RBL is the resolution of the individual block, IPMEM is the memory needed for IP calculation 

and CORRmem defines the memory requirement for the correction operation. Details for (4.31) are 
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Fig 4.9: a) Extracted Temporal Traces (ΔF/F) b) Extracted Spiking Signal (s). 
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omitted, but one can refer to [94], [95] and section 4.2 for more thorough explanations. Note that 

the number of cycles needed for the completion of these tasks is proportional to the number of 

strips NSTRIP. If NSTRIP = 16 and NBL= 12, total memory needed for Motion Correction and Neuron 

Detection is estimated to be 400kB, while the video can run as fast as 200fps.  

 After the Detection step is completed, most of the memory space (Region Map, Hash-tag 

memory, auxiliary memory banks) that was employed, is freed and reused in the deconvolution 

method. The regions of interest are stored in a separate memory bank together with the 

corresponding fluorescence traces. The Neuron Detection Block is disabled and the Decovolution 

Unit that analyses the fluorescence traces and takes advantage of the spatio-temporal data 

structure, is enabled till the end of the sequence. We demonstrated the effectiveness of our 

estimation method on real calcium imaging data based on the deconvolution procedure explained 

in section 4.4. 

 The Deconvolution method extracts the spiking signal, (4.19), based on the fluorescence traces 

that are packetized in groups of 256. Since the number of timesteps in one packet is equal to T=256, 

the Deconvolution Unit sends the results at the output with latency Lat =T/f. 

 The proposed method extracted the spiking signals by employing highly parallelized homotopy 

solvers (multiple homotopy engines), while achieving 100x data reduction and real-time frame 

processing. Figure 4.9 shows the extracted temporal traces and corresponding spiking signals for 

4 randomly chosen neurons (ROI). A commonly used metric for representation of the temporal 

traces is ∆F/F that is defined as  

∆F/F(t) =
∫ R(t−τ)w(τ)dτ
t
0

∫ w(τ)dτ
t
0

 ,                                                   (4.32) 

where w(τ) = e−|τ|/τ0 and R(t) captures the relative change in fluorescence from F(t) and F0(t) 

and can be expressed as  
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R(t) =
F(t)−F0(t)

F0(t)
.                                                          (4.33) 

 The term F0(t) denotes baseline noise and F(t) is the mean fluorescence of a neuron’s ROI at 

the t-th timestep. From Fig. 4.9, we see close match of extracted signals, while the accuracy of 

deconvolved spiking signals is at the satisfying level. However, the offline method would need 

about 45 minutes for data processing, while our approach extracts the results in real-time with 

latency Lat. Table 4.1 summarizes the benefits of the proposed method and compare it with the 

state-of-the-art. The processing resources that were used are very modest, while we achieved 

drastic data reduction and reduction in the computational complexity. Most importantly, we have 

shown that the modified nonnegative matrix factorization formalism that efficiently distinguishes 

the overlapping neural sources and directly models the Ca+2-indicator dynamics, can be 

implemented in real-time, and is a promising and suitable tool for large brain-data processing. 

  

 

 

 

 

 

Table 4.1: Comparison between Electrophysiological and Optical Approach. 

Reference Electrode-based
state-of-the-art

Memory 
Requirement

X 10-100GB

Coverage
No of Neurons Up to 200 Cortical

Data Reduction X 1x

Processing X Offline 

This work

0.4MB

103-105

100x

Real-Time

Fully invasive YES NO NO

Optical
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CHAPTER 5 

Contributions and Future Work 

5.1. Summary of Research Contributions 

The goal of this research is to tackle several different problems that will enhance the field of 

biomedical applications. By employing low-power, flexible energy processing techniques we pave 

the road to the fully integrated self-powered sensors. Furthermore, we have developed an implant-

scale, closed-loop neuromodulation interface that offers superior performance, power efficiency 

and unmatched level of electronic miniaturization. This dissertation also presents a new recording 

paradigm that allows real-time data processing from large neural ensembles at the resolution of 

individual neurons. Several main contributions presented in this research are: 

• Design and demonstration of a thin-film, array-based Thermo-Electric Harvesting platform with 

a surface area of 0.83cm2 that is made of biocompatible materials, mitigates the heat leakage and 

can autonomously supply energy processing IC. The platform meets the stringent anatomical and 

biophysical confinements of living subjects.  

• Proposed and demonstrated the inductive-load ring oscillator (ILRO) architecture that can be 

triggered with very low input voltages. The ILRO was employed as a startup circuit - the minimum 

voltage needed to start the oscillation was measured to be 65 mV. That was the first fully-integrated 

solution for the cold startup in thermal harvesting applications. 

• Developed a single-inductor topology with integrated 2-phase, analog maximum power point 

tracking (MPPT) unit. Integration of startup circuit and MPPT unit was done in 65nm technology 
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and our solution resulted in a 68% peak end-to-end efficiency (92% converter efficiency) and less 

than 20ms MPP tracking time.  

• As a proof of concept, an in-vivo test was conducted - a 645µW regulated output power (effective 

3.5K of temperature gradient) was harvested from a rat implanted with our harvesting system, 

demonstrating true energy independence in a real environment while showing a 7.9x improvement 

in regulated power density compared to the state-of-the-art. 

• Design of two HV 180nm ICs (4-channel and 64-channel respectively) as a part of Restoring 

Active Memory (RAM) project. The IC includes 4 Macro and 4 Micro stimulation engines for 

macro and micro types of electrodes, integrated power management unit (PMU), multiplexers for 

spatial selection and access to sensing IC, etc. PMU is designed for the wireless power transfer 

and features active rectifier, high-voltage generators (HVG), LDOs etc. 

• Development of a highly programmable implantable power management unit that can process 

multiple input power deliveries on-the-chip. Unit is able to process wireless power, power 

delivered through wires and power from/to rechargeable battery. This MIMO Management System 

significantly extends the range of biomedical applications for the implant. 

• Development of reconfigurable active rectifier (AR) for wireless power transfer (WPT), wherein 

the AR operates in a Regular Mode and a Charging Mode, wherein the AR-WPT includes an 

adaptive load control (ALC) unit that accommodates power delivery with load requirements, 

wherein the ALC unit keeps the AR voltage at a desired value. As a part of AR-WPT, we proposed 

an adaptive ON/OFF delay compensation schemes for both types of active diodes (P and N) that 

by employing feedback generates in real-time offset currents to compensate switch delays. 
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Proposed circuit schemes showed improvements in PCE (PCE > 90% - 12% and 10% 

improvement at light and heavy load, respectively) across a wide loading range, while ensuring 

that the wireless power link delivers a stable voltage to the implant across load and coupling 

variations. Also, the ALC unit implementation allowed static current reduction. 

• Development of a programmable electrode agnostic stimulation engine (SE) for the implantable 

neuromodulation systems. The SE features a high output impedance current source and current 

sink in order to support different types of electrodes and a wide range of stimulation currents. In 

the core of a stimulation engine (SE) is a precise, high-compliance and ultra-high output 

impedance current mirror for the source/sink part of the SE. Furthermore, high-voltage adaptive 

generators (Vdd/Vss) are provided to accommodate voltage drops across high electrode impedances 

and to additionally save the power during the stimulation. The SE is designed primarily to enable 

simultaneous, multichannel, differential stimulation that is necessary to achieve concurrent 

stimulation and sensing in the neuromodulation systems. 

• Prototyped two different STIM/PM ICs in HV 180 nm technology – the first IC has 4 Stimulation 

Engines (SE), can drive 32 stimulation cites and VDD/VSS absolute maximum is set to 7.5V/-7.5V. 

The second IC houses 8 SE that can drive 64 stimulation cites and can be individually programmed 

for monopolar/ differential stimulation. The SE current covers the range from 20uA to 5.1mA with 

20uA step, while VDD/VSS are programmable with the absolute maximum set to 5V/-5V. HV STIM 

multiplexers provide a complex spatial resolution. Further, we have designed two low-profile NM 

units (for each version of IC) that occupy 135mm3 and 338mm3 of volume. These high-channel 

count, closed-loop neuromodulation units present the next generation neural interfaces, that is 

minimally invasive, and address the demands for limited area and power. We also, have 
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demonstrated a real-time, full duplex communication during concurrent stimulation and recording 

of neural signals. 

• Developed methodology for a new neural recording paradigm based on the fast calcium imaging. 

Proposed hardware-friendly approach allows analysis of large neural ensembles in a single 

pipeline and in real-time, while relaxing the memory and computational requirements.  

• Developed a Matlab model that implements the Motion Correction and Blind Neuron Detection 

steps for the fast calcium imaging, by employing modified computer vision algorithms such as 

Maximally Stable Extremal Regions and Template Matching. The model abandoned frame-level 

processing and adopted the distributed approach. 

• Introduced algorithm modifications into the deconvolution step, that exploit the sparse nature of 

neurons and spiking signals both in spatial and time domain. The proposed simplifications allow 

the design of specialized dedicated units that map the Sparse Approximation algorithm into 

hardware. This would lead to an extraction of spikes at the resolution of individual neurons at real-

time and 100x data reduction.  
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5.2. Looking to the Future 

 The work presented in this dissertation has provided solutions for a variety of problems related 

to the biomedical applications. Further research is going to be continued and upgraded in many 

ways. The next step is related to the work explained in the chapter 3 - verification and validation 

of the closed-loop, implant-scale NM interface in humans. Apart from the hardware 

characterization during the in-vivo tests, we would also follow the impact that our miniaturized 

implant would have in diagnostics and therapy of neurological disorders in the upcoming years. 

 The research presented in the chapter 4 requires a lot of evaluation of hardware feasibility and 

it is going to be continued. Building application-specific dedicated units/kernels for big data 

analysis is an open research area. Our work will enable high performance processing and lay the 

foundation for real-time brain decoding on a large scale. Efficient hardware mapping of the 

sophisticated algorithms is necessary to allow complete system deployment onto wearable 

platforms and its integration with the fluorescent sensor.  

 Although we have proposed some algorithm simplifications and simulated for their impact, 

more careful analysis and flexible VLSI implementation are needed to verify the functionality of 

the system, to evaluate the accuracy of signal recovery and to estimate the overall power 

consumption. The first step is development of a dedicated accelerator for the homotopy algorithm. 

Implementation of a such unit needs joint algorithm-architecture consideration – their evaluation 

and optimization in a separate manner is inefficient and deteriorate performance and flexibility-

efficiency trade-off. The Homotopy accelerator engine should feature high parallelism and 

configurability so that the algorithm can reuse the hardware resources and have efficient access to 

the memory banks. This would improve the area efficiency and the throughput.  
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 Complete system-level integration of the processing chain is the next step to demonstrate the 

benefits of real-time processing for ultra-fast Ca+2 imaging. Such a system shall embed a 

specialized controller for image alignment that was described in section 4.2, and an on-chip MSER 

detector for simultaneous ROI sensing and updates - section 4.3. Also, hardware implementation 

includes deployment of the processing threads for the manipulation of results and synchronization. 

Furthermore, since many tasks down the processing chain are done in sequential order, we can 

employ massive computing and memory resource sharing. Lastly, flexible hardware 

implementation has to be followed with MAC layer software development, so that after data 

acquisition/processing flow, the information is available to the user.  

 Enabling real-time recording from large neural ensembles would significantly improve our 

understanding of brain dynamics and allow closed-loop experiments for calcium imaging. 

Collecting the signals from thousands and tens of thousands of neurons at the resolution of 

individual neurons, and their simultaneous decoding will enhance the research capabilities of 

brain-computer interfaces. 

 

 

 

 

 

 

 

 



 

116 

 

REFERENCES 

[1] I. Doms, P. Merken, C. V. Hoof, R. P. Mertens, “Capacitive Power Management Circuit 

for Micropower Thermoelectric Generators with a 1.4µA Controller,” IEEE J. Solid-State 

Circuits, vol. 44, no. 10, pp. 2824–2833, Oct. 2009. 

[2] E. J. Carlos, K. Strunz, B. P. Otis, et al., “A 20mV Input Boost Converter with Efficient 

Digital Control for Thermoelectric Energy Harvesting” IEEE J. Solid-State Circuits, vol. 

45, no. 4, Apr. 2010. 

[3] Y.K. Ramadass, A. P. Chandrakasan, et al., “A Battery-Less Thermoelectric Energy 

Harvesting Interface Circuit with 35mV Startup Voltage,” IEEE J. Solid-State Circuits, 

vol. 46, no. 1, Jan. 2010. 

[4] J.-P. Im, S.-W. Wang, S.-T. Ryu, G.-H. Cho, “A 40 mV Transformer-Reuse Self-Startup 

Boost Converter with MPPT Control for Thermoelectric Energy Harvesting,” IEEE J. 

Solid-State Circuits, vol. 47, no. 12, Dec. 2012. 

[5] H.-Y Tang, P.-S. Weng, P.-C. Ku, L.-H. Lu, “A Fully Electrical Startup Batteryless Boost 

Converter with 50mV Input Voltage for Thermoelectric Energy Harvesting,” IEEE Symp. 

VLSI Circuits Dig. Tech. Papers, pp. 196-197, 2012. 

[6] P.-H. Chen, K. Ishida, K. Ikeuchi, X. Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, 

T. Sakurai, et al., “Startup Techniques for 95 mV Step-Up Converter by Capacitor Pass-

On Scheme and VTH-Tuned Oscillator with Fixed Charge Programming,” IEEE J. Solid-

State Circuits, vol. 47, no. 5, May. 2012. 

[7] A. Shrivastava, N. E. Roberts, O. U. Khan, D. D. Wentzloff, B. H. Calhoun, “A 10 mV-

Input Boost Converter with Inductor Peak Current Control and Zero Detection for 



 

117 

 

Thermoelectric and Solar Energy Harvesting with 220 mV Cold-Start and 14.5 dBm, 915 

MHz RF Kick-Start,” IEEE J. Solid-State Circuits, vol. 50, no. 8, May. 2015. 

[8] T. Torfs, V. Leonov, R. F. Yazicioglu, P. Merken, C. V. Hoof, R. J. M. Vullers, B. 

Gyselinckx, “Wearable autonomous wireless electroencephalography system fully 

powered by human body heat,” IEEE Sensors, pp. 1269–1272, Oct. 2008. 

[9] W. Jung, S. Oh, S. Bang, Y. Lee, D. Sylvester, and D. Blaauw, “A 3 nW fully integrated 

energy harvester based self-oscillating switched capacitor DC-DC converter,” in IEEE 

ISSCC Dig. Tech. Papers, Feb. 2014, pp. 398–399. 

[10] M. B. Machado, M. C. Schneider, C Galup-Montoro, “On the Minimum Supply Voltage 

for MOSFET Oscillators,” IEEE Transaction on Circuits and Systems I: Regular Papers, 

vol. 61, no. 2, pp. 347-357, Feb. 2013. 

[11] C. Enz, F. Krummenacher, E. Vittoz, “An analytical MOS transistor model valid in all 

regions of Operation and dedicated to low-voltage and low-current applications”, Journal 

on Analog Integrated Circuits and Signal Processsing, Kluwer Academic Publishers, pp. 

83-114,  July 1995. 

[12] J. D. Meindl and A. J. Davis, “The fundamental limit on binary switching energy for 

terascale integration (TSI),” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1515–1516, 

Oct. 2000. 

[13] H.-M. Lee, M. Ghovanloo, “An Integrated Power-Efficient Active Rectifier with Offset-

Controlled High Speed Comparators for Inductively Powered Applications”, IEEE Trans. 

Circuits and Systems—I: Regular Papers, vol. 58, no. 8, Aug. 2011. 

http://ekv.epfl.ch/files/content/sites/ekv/files/pdf/ekvpaper1.pdf
http://ekv.epfl.ch/files/content/sites/ekv/files/pdf/ekvpaper1.pdf


 

118 

 

[14] C.–S. A. Gong,” An active-diode-based CMOS rectifier for biomedical power harvesting 

applications”, International Journal of Circuit Theory and Applications, 2011; 39(5):439–

449. 

[15] C. van Liempd, S. Stanzione, Y. Allasasmeh, C. van Hoof, “A 1µA-to-1mA energy-aware 

interface IC for piezoelectric harvesting with 40nA quiescent current and zero-bias active 

rectifiers” IEEE ISSCC Dig. Tech. Papers, Feb. 2013, pp. 76–77. 

[16] E. Rogers,” Understanding boost power stages in switch mode power supplies”, 

Application report, Texas Instrument, 1999 

[17] D. Rozgić; D. Marković, “A 0.78mW/cm2 autonomous thermoelectric energy-harvester 

for biomedical sensors”, Symposim on VLSI Circuits, June 2015, pp. 278–279. 

[18] R.W. Erickson, D. Maksimović, “Fundamentals of Power Electronics,” 2nd Ed, Springer, 

2001. 

[19] Laird Technology, <http://lairdtech.com>, eTEG Series PG37. 

[20] A. M. Niknejad, H. Hashemi, “mm-Wave Silicon Technology 60 GHz and Beyond,” New 

York, NY, USA: Springer, 2008. 

[21] S. Bandyopadhyay, P.P. Mercier, A.C. Lysaght, K.M. Stankovic, A.P. Chandrakasan, “A 

1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation 

Implants,” IEEE Journal of Solid-State Circuits (JSSC), vol. 49, no. 12, pp 2812-2824, 

Dec. 2014. 

[22] P.-H. Chen and P.-Y. Fan, “An 83.4% peak efficiency single-inductor multiple-output 

based adaptive gate biasing DC-DC converter for thermoelectric energy harvesting,” 

Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 62, pp. 405–412, Feb 

2015. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Dejan%20Rozgi.AND..HSH.x0107%3B.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Dejan%20Markovi.AND..HSH.x0107%3B.QT.&newsearch=true


 

119 

 

[23] C. Veri, L. Francioso, M. Pasca, C. De Pascali, P. Siciliano, and S. D’Amico, “An 80 mV 

Startup Voltage Fully Electrical DC–DC Converter for Flexible Thermoelectric 

Generators”, IEEE Sensors Journal, vol. 16, no. 8, April 15, 2016. 

[24] S. Carreon-Bautista, L. Huang and E. S. Sinencio, “An Autonomous Energy Harvesting 

Power Management Unit with Digital Regulation for IoT Applications,” IEEE J. Solid-

State Circuits, vol. 51, no. 6, June 2016. 

[25] J. Kim, P. K. T. Mok and C. Kim, “A 0.15 V Input Energy Harvesting Charge Pump with 

Dynamic Body Biasing and Adaptive Dead-Time for Efficiency Improvement”, IEEE J. 

Solid-State Circuits, vol. 50, no. 2, Feb. 2015. 

[26] A. Zurbuchen, A. Haeberlin, A. Pfenniger, L. Bereuter, J. Schaerer, F. Jutzi, C. Huber, J. 

Fuhrer and R. Vogel “Towards Batteryless Cardiac Implantable Electronic Devices—The 

Swiss Way”, IEEE Trans. Biomedical Circuits and Systems, to appear. 

[27] X. Wang, D.Wu, F. Qiao, P. Zhu, K. Li, L. Pan, R. Zhou, “A High Efficiency CMOS 

Charge Pump for Low Voltage Operation,” ASICON '09. IEEE 8th International 

Conference, 2009. 

[28] S. Lineykin, S. Ben-Yaakov, “Modeling and Analysis of Thermoelectric Modules,” IEEE 

Trans. on Industry Application, vol. 43, no. 2, March. 2007. 

[29] A. Shrivastava, Y. K. Ramadass, S. Khanna, S. Bartling, B. H. Calhoun, “A 1.2 W SIMO 

energy harvesting and power management unit with constant peak inductor current control 

achieving 83–92% efficiency across wide input and output voltages,” in Symp. VLSI 

Technology and Circuits, 2014, pp. 1–2. 



 

120 

 

[30] E. E. Aktakka, K. Najafi, “A Micro Inertial Energy Harvesting Platform with Self-Supplied 

Power Management Circuit for Autonomous Wireless Sensor Nodes,” IEEE Journal of 

Solid-State Circuits, vol. 49, no. 9, Sep. 2014. 

[31] M. B. Machado, M. C. Schneider, C Galup-Montoro, “Analysis and Design of Ultra-Low-

Voltage Inductive Ring Oscillators for Energy-Harvesting Applications,” IEEE Fourth 

Latin American Symposium on Circuits and Systems, (LASCAS), March. 2013. 

[32] P. Feng, Z. Yiqi, L. Xiaoming, “A high efficiency charge pump circuit for low power 

applications,” Journal of Semiconductors, 2010, 31(1): 015009. 

[33] A. E. Mendrela et al., “A Bidirectional Neural Interface Circuit with Active Stimulation 

Artifact Cancellation and Cross-Channel Common-Mode Noise Suppression,” JSSC, Apr. 

2016, pp. 955-965. 

[34] Y.-K. Lo, et. al, “A 176-Channel 0.5cm3 0.7g Wireless Implant for Motor Function 

Recovery after Spinal Cord Injury,” ISSCC 2016, pp. 382-383. 

[35] W.-M. Chen, et. al., “A Fully Integrated 8-Channel Closed-Loop Neural-Prosthetic SoC 

for Real-Time Epileptic Seizure Control,” ISSCC 2013, pp. 286-287. 

[36] Rikky Muller, et al., ‘A Minimally Invasive 64-Channel   Wireless µECoG Implant’, JSSC, 

Jan. 2015, 344-359. 

[37] Y. P. Lin et al., “A Battery-Less, Implantable Neuro-Electronic Interface for Studying the 

Mechanisms of Deep Brain Stimulation in Rat Models,” IEEE TBioCAS, 2015, pp 98-112. 

[38] Cong, P. et al, “A 32-Channel Modular Bi-directional Neural Interface System with 

Embedded DSP for Closed-Loop Operation,” ESSCIRC, 2014. 

[39] B. C. Johnson , et al. ,“An Implantable 700μW 64-Channel Neuromodulation IC for 

Simultaneous Recording and Stimulation with Rapid Artifact Recovery”, VLSI, June 2017. 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6516161
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6516161


 

121 

 

[40] W. Jiang, et al., “A ±50mV Linear-Input-Range VCO-Based Neural-Recording Front-End 

with Digital Nonlinearity Correction”, ISSCC 2016, pp 484-485. 

[41] K. Roach, “Electrochemical models for electrode behavior in retinal prostheses," Master’s 

thesis, Massachusetts Institute of Technology, USA, 2003. 

[42] S. Kelly et al., “A power-efficient voltage-based neural tissue stimulator with energy 

recovery," in Solid-State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 

IEEE, 2004, pp. 228-524. 

[43] H.-M. Lee, K.-Y. Kwon, W. Li, M. Ghovanloo, "A power-efficient switched-capacitor 

stimulating system for electrical/optical deep-brain stimulation", IEEE Int. Solid State 

Circuits Conf. Dig. Tech. Papers, pp. 414-415, Feb. 2014. 

[44] M. H. Maghami, A. M. Sodagar, and M. Sawan, “Analysis and design of a high-compliance 

ultra-high output resistance current mirror employing positive shunt feedback,” Int. J. 

Circuit Theory Appl., vol. 43, no. 12, pp. 1935–1952, Dec. 2015. 

[45] H. Chandrakumar, et. al., “A 2.8µW 80mVpp-linear-input-range 1.6GΩ-input impedance 

bio-signal chopper amplifier tolerant to common-mode interference up to 650mVpp,” 

ISSCC 2017, pp. 448-449. 

[46] S. Guo, et al., “An efficiency-enhanced CMOS rectifier with unbalanced-biased 

comparators for transcutaneous-powered high-current implants,” IEEE J. Solid-State 

Circuits, vol. 44, no. 6, pp. 1796–1804, Jun. 2009 

[47] S. B. Lee, et al., “An inductively powered scalable 32-channel wireless neural recording 

system-on-a-chip for neuroscience applications,” IEEE Trans. Biomed. Circuits Syst., vol. 

4, no. 6, pp. 360–371, Dec. 2010 

http://ieeexplore.ieee.org/document/7870454/
http://ieeexplore.ieee.org/document/7870454/


 

122 

 

[48] Y. Lu, et al., “A 13.56 MHz CMOS active rectifier with switched offset and compensated 

biasing for biomedical wireless power transfer systems,” IEEE Trans. Biomed. Circuits 

Syst., vol. 8, no. 3, pp. 334–344, Jun. 2014. 

[49] Y. Lu, et al., “A 13.56 MHz fully integrated 1X/2X active rectifier with compensated bias 

current for inductively powered devices,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. 

Papers, Feb. 2013, pp. 66–67 

[50]  C.-Y. Wu, et al, “A 13.56 MHz 40mW CMOS high-efficiency inductive link power supply 

utilizing on-chip delay-compensated voltage doubler rectifier and multiple LDOs for 

implantable medical devices,” IEEE J. Solid-State Circuits, vol. 49, no. 11, pp. 2397–2407, 

Nov. 2014. 

[51] X. Li, et al, “A 13.56 MHz Wireless Power Transfer System with Reconfigurable Resonant 

Regulating Rectifier and Wireless Power Control for Implantable Medical Devices,” IEEE 

J. Solid-State Circuits, vol. 50, no. 4, Apr. 2015. 

[52] C. Huang, et al, “A Near-Optimum 13.56 MHz CMOS Active Rectifier with Circuit-Delay 

Real-Time Calibrations for High-Current Biomedical Implants,” IEEE J. Solid-State 

Circuits, vol. 51, no. 8, Aug. 2016. 

[53] L. Cheng, et al, “Adaptive On/Off Delay-Compensated Active Rectifiers for Wireless 

Power Transfer Systems,” IEEE J. Solid-State Circuits, vol. 51, no. 3, Mar. 2016. 

[54] G. Wang, et al, “Design and analysis of an adaptive transcutaneous power telemetry for 

biomedical implants ,” IEEE Trans. On Circuits and Sustems I: Regular Papers., vol. 52, 

no. 10, Oct. , 2005. 

[55] K. Chen, et al, “ A system  Verification Platform for High-Density Epiretinal Prosthesis,” 

IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 3, Jun. , 2013. 



 

123 

 

[56] R. R. Harrison, et al, “A Low Power Integrated Circuit for a Wireless 100-Electrode Neural 

Record,” IEEE J. Solid-State Circuits, vol. 42, no. 1, Jan. 2007. 

[57] J. Pan, A. Abidi, D. Rozgić, H. Chandrakumar, D. Marković, “An Inductively-Coupled 

Wireless Power Transfer System that is Immune to Distance and Load Variations,” in Proc. 

IEEE International Solid-State Circuits Conference (ISSCC'17), San Francisco, CA, USA, 

2017, pp. 382-383. 

[58] C.-H. Lin, et al, “A Li-Ion Battery Charger With Smooth Control Circuit and Built-In 

Resistance Compensator for Achieving Stable and Fast Charging,” IEEE Trans. Biomed. 

Circuits Syst., vol. 57, no. 2, Feb. , 2010. 

[59] H. Lee and P. K. T. Mok, “Switching noise and shoot-through current reduction techniques 

for switched-capacitor voltage doubler,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 

1136–1146, May 2005. 

[60] J. F. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an 

improved voltage multiplier technique,” IEEE J. Solid State Circuits, vol. SC-11, no. 3, pp. 

374–378, Jun. 1976. 

[61] J. Wibben and R. Harjani, “A High-Efficiency DC/DC Converter Using 2 nH Integrated 

Inductors,” Journal of Solid-State Circuits, IEEE, vol. 43, no. 4, pp. 844 – 854, 2008. 

[62] Y.-C. Huang, M.-D. Ker, C.-Y. Lin, "Design of negative high voltage generator for 

biphasic stimulator with soc integration consideration", Proc. IEEE BioCAS, pp. 29-32, 

Nov. 2012 

[63] L. Bisoni, et. al, “An HV-CMOS Integrated Circuit for Neural Stimulation in Prosthetic 

Applications,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS 

BRIEFS, VOL. 62, NO. 2, FEBRUARY 2015. 



 

124 

 

[64] P. Favrat, et al., “A High-Efficiency CMOS Voltage Doubler,” IEEE JOURNAL OF 

SOLID-STATE CIRCUITS, VOL. 33, NO. 3, MARCH 1998.  

[65] R. Pelliconi, et al., “Power Efficient Charge Pump in Deep Submicron Standard CMOS 

Technology,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 6, JUNE 

2003. 

[66] S. Either, et al., “A ±9 V fully integrated CMOS electrode driver for high-impedance 

microstimulation,” IEEE International Midwest Symposium on Circuits and Systems, 2009. 

MWSCAS '09.  

[67] http://www.ipdia.com/index.php?page=our_products&item_id=104 

[68] S. Basir-Kazeruni, et al., "A Blind Adaptive Stimulation Artifact Rejection (ASAR) Engine 

for Closed-Loop Implantable Neuromodulation Systems," in Proc. IEEE EMBS Conf. on 

Neural Eng. (NER'17), May 2017, Shanghai, China.  

[69] P. M. Furth et al., "On the design of low-power CMOS comparators with programmable 

hysteresis", 53rd IEEE International Midwest Symposium on Circuits and Systems 

(MWSCAS) 2010., pp. 1077-1080, 1–4 Aug 2010. 

[70] H. Chun, “Stimulating Circuits for Visual Neuroprostheses,” Doctoral Thesis, The 

University of New South Wales, 2011. 

[71] D. Smetters, A. Majewska, and R. Yuste, " Detecting Action Potentials in Neuronal 

Populations with Calcium Imaging ", Proc. ICSSS, pp. 215-221, 1999. 

[72] N. Spruston, et. Al, “Activity-dependent action potential invasion and calcium influx into 

hippocampal CA1 dendrites”, Science 268, 297–300 (1995). 

[73] E. A. Mukamel, A., Nimmerjahn and M. J. Schnitzer, “Automated analysis of cellular 

signals from large-scale calcium imaging data”, Neuron 63, 747–760 (2009). 

http://ieeexplore.ieee.org/document/5236121
http://ieeexplore.ieee.org/document/5236121
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5230480
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5230480
http://www.ipdia.com/index.php?page=our_products&item_id=104


 

125 

 

[74] K. K. Ghosh, et al. “Miniaturized integration of a fluorescence microscope”, Nature 

Methods 8, Aug. 2011. 

[75] M. Z. Lin, M. J. Schnitzer, “Genetically encoded indicators of neuronal activity”, Nature 

Neuroscience 19, pp. 1142–1153, (2016). 

[76] Y. Gong, C. Huang, J. Li, B. Grewe, Y. Zhang, M. Eismann, M. Schnitzer,” High-speed 

recording of neural spikes in awake mice and flies with a fluorescent voltage sensor”, 

Science, Vol. 350 No. 6266, pp. 1361-1366, 2015. 

[77] T. -W. Chen, et al., “Ultrasensitive fluorescent proteins for imaging neuronal activity”, Nature 499, 

July 2013. 

[78] miniscope.org 

[79] D.S. Greenberg, J. N. Kerr, “Automated correction of fast motion artifacts for two-photon 

imaging of awake animals”, Jan. 2009. 

[80] A. Dubbs, J. Guevara, R. Yuste, “moco: Fast Motion Correction for Calcium Imaging”, 

Frontiers in Neuroinformatics, Feb. 2016. 

[81] E. A. Pnevmatikakis, A. Giovannucci, “NoRMCorre: An online for piecewise rigid motion 

correction of calcium image data”, biorxiv, https://doi.org/10.1101/108514. 

[82] Y. Bin and D. Hui-Chuan, “Image stabilization by combining gray-scale projection and 

block matching algorithm,” IEEE International Symposium on Medicine Education, Vol. 

1, Aug. 2009, pp. 1262 –1266. 

[83] T. Sledevic and A. Serackis, “Surf algorithm implementation on FPGA,” in Electronics 

Conference (BEC), 2012 13th Biennial Baltic, 2012, pp. 291–294. 

[84] L. Araneda, M. Figueroa, "Real-time video stabilization on an FPGA", 17th Euromicro 

Conference on Digital System Design, 2014. 

https://doi.org/10.1101/108514


 

126 

 

[85] S. Cain, el al., “Projection-based image registration in the presence of fixed pattern noise”, 

IEEE Image Processing Transaction, Vol. 10, No. 12, PP. 1860-1872, Dec. 2001. 

[86] L. Xu, X. Lin, “Digital Image Stabilization Based on Circular Block Matching”, IEEE 

Transaction on Consumer Electronics, Vol. 52, No 2, May 2006. 

[87] E. A. Pnevmatikakis, et al., “Simultaneous Denoising, Deconvolution and Demixing of 

Calcium Imaging Data”, Neuron, Vol. 89, Issue 2, Jan. 2016. 

[88] B. F. Grewe, et al., “High-speed in vivo calcium imaging reveals neuronal network activity 

with near-millisecond precision”, Nat. Methods 7, 399–405, 2010. 

[89] L. Theis, et al., “Supervised learning sets benchmark for robust spike detection from 

calcium imaging signals”, arXiv:1503.00135, 2015. 

[90] J. Friedrich, et al., “Fast online deconvolution of calcium imaging data”, PLOS 

Computational Biology, March 2017. 

[91] M. Donoser and H. Bischof, “Efficient maximally stable extremal region (mser) tracking,” 

in In Proc. of IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition (CVPR), New York, USA, June 2006, pp. 553–560. 

[92] E. Salahat, et al., "Novel Fast and Scalable Parallel Union-Find Implementation for Real-

Time Digital Image Segmentation," in Annual Conference of the IEEE Industrial 

Electronics Society, Yokohama, Japan, Nov. 2015. 

[93] R. Sedgewick, Algorithms, 2nd ed. Addison-Wesley, 1988. 

[94] V. Petrovic, et al., “A method for real-time memory efficient implementation of blob 

detection in large images”, Serbian Journal of Electrical Engineering, Vol. 17, 2017.  



 

127 

 

[95] F. Kristensen and W. J. MacLean, "Real-Time Extraction of Maximally Stable Extremal 

Regions on an FPGA," in IEEE International Symposium on Circuits and System, New 

Orleans, LA, May 2007. 

[96] E. Salahat, et al., "A Maximally Stable Extremal Regions System-on-Chip for Real-Time 

Visual Surveillance," in Annual Conference of the IEEE Industrial Electronics Society, 

Yokohama, Japan, Nov. 2015.  

[97] www.vlfeat.org 

[98] S. Jewell, Daniella Witten, “Exact Spike Train Inference Via l0 Optimization”, 

https://arxiv.org/abs/1703.08644, March 2017. 

[99] E. A. Pnevmatikakis, et al., “A structured matrix factorization framework for large scale 

calcium imaging data analysis”, https://arxiv.org/abs/1409.2903, Sep. 2014. 

[100] J. P. Rickgauer, et al., “Simultaneous cellular-resolution optical perturbation and imaging 

of place cell firing fields”, Nat Neurosci, 17(12):1816–1824, 2014. 

[101] A. M. Packer, et al. “Simultaneous all-optical manipulation and recording of neural circuit 

activity with cellular resolution in vivo”, Nat Methods, 12(2):140–146, 2015. 

[102] F. Ren, D. Marković, "A configurable 12–237 kS/s 12.8 mW sparse-approximation engine 

for mobile data aggregation of compressively sampled physiological signals", IEEE J. 

Solid-State Circuits, vol. 51, no. 1, pp. 68-78, Jan. 2016. 

[103] H. Huang, H. Yu" Least-squares-solver Based Machine Learning Accelerator for Real-

time Data Analytics in Smart Buildings ", Emerging Technology and Architecture for 

Big-data Analytics, pp. 51-76, Springer, April 2017. 

[104] D. L. Donoho, Y. Tsaig, “Fast Solution of l1-norm Minimization Problems When the 

Solution May be Sparse”, 2006. 

https://arxiv.org/abs/1703.08644
https://arxiv.org/abs/1409.2903
https://link.springer.com/book/10.1007/978-3-319-54840-1
https://link.springer.com/book/10.1007/978-3-319-54840-1


 

128 

 

[105] E. Cands, "Compressive Sampling", Proc. Int'l Congress of Mathematicians, 2006. 

[106] R. Tibshirani, "Regression Shrinkage and Selection via the LASSO", J. Royal Statistical 

Soc. B, vol. 58, no. 1, pp. 267-288, 1996. 

[107] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal 

matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655–4666, Dec. 2007. 

[108] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal 

Process. Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008. 

[109] B. Efron, et al. “Least Angle Regression." The Annals of Statistics, 32(2), 2004. 

[110] B. Natarajan, “Sparse Appr. Solutions to Linear Systems", SIAM J. Comput., May 1995. 

[111] C. Shen, et al., “Sparse representation classification and positive L1 minimization”, Aug. 2014. 

[112] Michael R. Osborne, Brett Presnell, and Berwin A. Turlach, “A new approach to variable 

selection in least squares problems”, IMA J. Numerical Analysis, 20:389–403, 2000. 

[113] M. S. Asif, “Dynamic compressive sensing: Sparse recovery algorithms for streaming 

signals and video,” Doctoral Thesis, Georgia Institute of Technology, 2013. 

[114] F. Ren, “A Scalable VLSI Architecture for Real-Time and Energy-Efficient Sparse 

Approximation in Compressive Sensing Systems,” Doctoral Thesis, University of 

California Los Angeles, 2015. 

[115] G. M. James, C. Paulson and P. Rusmevichientong, “The constrained Lasso”, Technical 

report, University of Southern California, 2013. 

[116] D. Yang, “Turbo Bayesian Compressed Sensing”, Doctoral Thesis, Dept. Elect. 

Eng., Univ. of Tennessee, Knoxville, Knoxville, TN, 2011. 

[117] T. A. Davis, et al. “Row modifications of a sparse Cholesky factorization”, SIAM J. Matrix 

Anal. Appl. 26, 3, 621–639. 2005. 




