
Lawrence Berkeley National Laboratory
LBL Publications

Title

HDF5 As a Vehicle for in Transit Data Movement

Permalink

https://escholarship.org/uc/item/8fk6m88h

ISBN

978-1-4503-7723-2

Authors

Gu, Junmin
Loring, Burlen
Wu, Kesheng
et al.

Publication Date

2019

DOI

10.1145/3364228.3364237
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8fk6m88h
https://escholarship.org/uc/item/8fk6m88h#author
https://escholarship.org
http://www.cdlib.org/


HDF5 as a Vehicle for In Transit Data Movement
Junmin Gu, Burlen Loring, Kesheng Wu, E. Wes Bethel

Lawrence Berkeley National Laboratory
{jgu,bloring,kwu,ewbethel}@lbl.gov

ABSTRACT
For in transit processing, one of the fundamental challenges is the
efficient movement of data from producers to consumers. Exploit-
ing the flexibility offered by the SENSEI generic in situ framework,
we have developed a number of different in transit data transport
mechanisms. In this work, we focus on the transport mechanism
that leverages the HDF5 parallel I/O library, and investigate the per-
formance characteristics of this transport mechanism. For in transit
use cases at scale on HPC platforms, one might expect that an in
transit data transport mechanism that uses faster layers of the stor-
age hierarchy, such as DRAM memory, would always outperform
a transport that uses slower layers of the storage hierarchy, such
as an NVRAM-based persistent storage presented as a distributed
file system. However, our test results show that the performance of
the transport using NVRAM is competitive with the transport that
uses socket-based data movement across varying levels of producer
and consumer concurrency.

CCS CONCEPTS
• Software and its engineering→Massively parallel systems;
• Theory of computation → Parallel computing models; • Com-
puting methodologies → Massively parallel algorithms; Mas-
sively parallel and high-performance simulations;

KEYWORDS
SENSEI, in situ analysis, in situ visualization
ACM Reference Format:
Junmin Gu, Burlen Loring, Kesheng Wu, E. Wes Bethel. 2019. HDF5 as a
Vehicle for In Transit Data Movement. In ISAV: In Situ Infrastructures for
Enabling Extreme-Scale Analysis and Visualization (ISAV’19), November 18,
2019, Denver, CO, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/3364228.3364237

1 INTRODUCTION
In an in transit processing scenario, one of the central challenges is
moving data efficiently from producers to consumers. Currently, the
most successful in transit mechanisms rely on memory to memory
data transfers [6, 8], which are efficient but limit the data size to
the size of the memory. In this work, we design and implement
an in transit transport mechanism that utilizes the file systems
through the HDF5 parallel I/O library [5] and NVRAM storage.
This transport mechanism is accessible to applications through

the SENSEI generic in situ interface [2] as one of several potential
in transit transport mechanisms that can be selected through an
XML-based configuration file.

This HDF5 based transport mechanism would make in transit
process available to tasks that require more space than the avail-
able memory. We expect this file-based option to take more time
because disks and similar permanent storage media are slower than
the main memory. What is unexpected is that, when using the
NVRAM option, the file-based transport mechanism often com-
pletes analysis use cases in less time than a popular socket-based
transport mechanism. This suggests that NVRAM can be effectively
used for in transit processing.

The contribution of this work is twofold. First, we describe the
design and implementation of a new HDF5-based in transit data
transport mechanism that is accessible via the SENSEI API. Second,
our performance measurement results yield some non-obvious
insights: namely that using NVRAM-based storage as the basis for
in transit data movement can outperform a well-known socket-
based, memory-only implementation in many configurations on
at-scale use scenarios on HPC platforms.

2 PREVIOUS WORK
Many scientific and engineering applications consist of data produc-
ers and data consumers, where consumers ingest and process data
from the producers. In scientific computing applications, producers
are typically simulations, and consumers may be other simulations,
or visualization, or analysis tools. In a post hoc use case, all data from
a producer goes to persistent storage, such as disk files, where they
are loaded at a later time for subsequent processing. To minimize
I/O, the in situ processing paradigm avoids writing data to storage
by having consumers operate on the producers’ data at the time
it is computed or generated, with both consumers and producers
executing on the same processors/cores. In in transit processing,
this idea is broadened to have producers running on one set of MPI
ranks, and consumers running on a different set of ranks. In this
configuration, data must be moved from producers to consumers.
Therefore, moving data efficiently is the key challenge.

One of the earliest works on in transit infrastructure is CU-
MULVS from 2006 [6]. It is designed to couple two different codes
and move data between them. Recently, a new set of in transit sys-
tems have been developed. Here, we briefly describe two of them:
libIS and ADIOS. The libIS library [9] is a lightweight vehicle for
moving data between producers and consumers on HPC platforms.
It uses either MPI- or socket-based communication for communica-
tion and memory-memory data movement. The ADIOS system [8]
provides the ability to do parallel I/O to disk files, as well as the
ability to leverage alternative transport layers that enable its use
for in transit data movement between third-party producers and
consumers. These transport layers include implementations like

https://doi.org/10.1145/3364228.3364237
https://doi.org/10.1145/3364228.3364237


Figure 1: The HDF5 transport layout.

FlexPath [4], which does socket-based communication andmemory-
memory data movement between producers and consumers.

Given the variety of in transit systems, there is an effort to
unify them under a common API known as SENSEI [2]. Current
implementation of the SENSEI library could make use of many of
the well-known transport mechanisms [1]. Our work was initially
motivated by a need to expand SENSEI transport options to allow
large data sets to be used for analyses. Though it is possible to write
out data through ADIOS to disks, the current ADIOS adaptor is only
able to make the data available to consumers after the file is closed.
Therefore, we believe it is worthwhile to explore another popular
I/O library known as HDF5 [5]. The HDF5 adaptor in the SENSEI
framework has been designed with in transit in mind, so that a data
producer writes out data at the end of every time step, and a data
consumer can access data as soon as each time step is finished. In
later performance studies, we will be comparing ADIOS and HDF5
as two different data transport mechanisms, where ADIOS (version
1.13) represents socket-based in transit data transport mechanism
and HDF5 (version 1.11) represents the NVRAM option.

3 DESIGN AND IMPLEMENTATION
There are multiple components comprising our HDF5-based in tran-
sit data transport mechanism. One is the SENSEI-HDF5 component
that performs the mappings to/from HDF5 and the underlying SEN-
SEI data model. Another is the NVRAM-based persistent storage
on the HPC platform, which is the underlying platform used for
our implementation and performance studies.

Fig. 1 shows a high-level sketch of the design of the SENSEI-
HDF5 transport mechanism. Following the design patterns used
by other transport mechanisms in SENSEI, the HDF5 transport
mechanism consists of two related adaptors known as the Analysis
Adaptor and the Data Adaptor. The Analysis Adaptor implements
the SENSEI interface for outputting data from data producers, and
the Data Adaptor implements the input interface for consumers to
ingest data. SENSEI is using VTK as the data model. Therefore, in
the HDF5 transport, the Analysis Adaptor receives VTK data, and
stores to HDF5 format, while the Data Adaptor reads from HDF5
file and returns VTK data for SENSEI.

The SENSEI-HDF5 transport mechanism and other SENSEI trans-
ports follow the same metaphor of producers writing data and con-
sumers reading data. The difference is that SENSEI-HDF5 reads and
writes data to file systems. Internally, HDF5 reads and writes data
using efficient parallel mechanisms such as MPI-IO, to complete
the I/O operations. On large HPC systems, the target file systems
typically consist of a large number of disks and can achieve ter-
abyte(TB) per second I/O speed. However, this is still much less
than the aggregate read and write speed to the memory on the
same HPC system.

Recently, the emergence of NVRAM technology has provided
a storage medium that is faster than disk but slower than DRAM
memory. A number of users have demonstrated that NVRAM can
be effectively used for HPC applications [3]. This work explores
the use of NVRAM for temporarily storing data files for in transit
use cases. More specifically, we are using the Burst Buffer on the
NERSC Cori system, which has a total of approximately 1.7 TB/s of
peak I/O performance with 28M IOPs, and about 1.8PB of storage.
This Burst Buffer system is presented to the users through Cray’s
own DataWarp software as a parallel file system based on XFS [3].
Thus the Burst Buffer can be easily used through the file-based
transport mechanism SENSEI-HDF5.

A key reason for us to work with the SENSEI framework is that
it provides an easy way to switch among the available transport
mechanisms. In SENSEI-instrumented codes, this switching is ac-
complished by modifying parameters in an XML configuration file.
For example, for the ADIOS transport using FlexPath, the configu-
ration looks like this:
<sensei>

<analysis type="adios1" filename="./test"
method="FLEXPATH" enabled="1 "/>

</sensei>

To apply the HDF5 transport, change the parameter values of type
and method:
<sensei>

<analysis type="hdf5" filename="/burst/buffer/file"
method="stream" enabled="1" />

</sensei>

4 TEST SETUP
The main objective for our study is to measure the performance
of two in transit data transport systems. One uses a socket-based,
memory-memory data transfer and the other uses temporary files
to transfer the data. Both these options are implemented under
the SENSEI framework, with the socket-based option using ADIOS
(v1.13) and FlexPath, while the file-based option used HDF5 (v1.11).

The data producer used for this study is a SENSEIminiapp known
as the oscillator [1]. It first generates arrays of particle data on
meshes, then delivers data using a given transport mechanism.
The consumer uses the assigned transport mechanism to read the
data and then perform its computation. In tests for this paper, the
consumers all compute a one-dimensional histogram.

The computational platform we use for this study is the Su-
percomputer Cori at NERSC. It is a Cray XC40. Cori contains two
different kinds of nodes: 2,388 Intel Xeon "Haswell" processor nodes
and 9,688 Intel Xeon Phi "Knight’s Landing" (KNL) nodes. Cori also
features 288 Burst Buffer nodes presented as a shared parallel file
system through the DataWarp software. For this test, we have cre-
ated a 10TB reservation consisting of 271 Burst Buffer Nodes. The
granularity of DataWarp is 20GB.

Another relevant feature on Cori is that Cray provides its own
version of the MPI library that bypasses many layers of the IP soft-
ware stack, while applications use socket for data communication
would not have the same accesses to the core communication fabric.
This potentially could lead to different performances for the soft-
ware using MPI and MPI-IO library as in the case of using HDF5



M
ranks

nodes Sent
total rank

1024 32 1 TB 1 GB
2048 64 2 TB 1 GB
4096 128 4 TB 1 GB
8192 256 8 TB 1 GB

M:N
Ratio Received
64:1 64x
32:1 32x
16:1 16x
8:1 8x

the burst buffer option. However, the actual performance measure-
ments show that most often this is not the case, which is a surprise.
There are potentially many different reasons for this surprise. For
example, both ADIOS (used for the socket communication) and
HDF5 (for file I/O operations) are complex software packages with
many parameters that could be adjusted. We might have just hap-
pen to use a unusual combination of the parameters. Next, we
provide some additional performance measurements to see if we
could pinpoint the root cause of the surprising observation.

Fig. 3 shows the memory footprint of one rank from the oscillator
(on the right) and the consumer (on the left), where the option
with ADIOS FLEXPATH is shown in blue and the option with
HDF5 is shown in red. On the simulation side (writer), the socket-
based option appears to be accumulating some number of time
steps, which causes the memory usage to increase. This increasing
memory usage is likely the result of a setting that allows ADIOS
unlimited amount of memory. Since the actual amount of memory
used is still relatively small, we don’t expect this setting to cause
performance issues.

On the right side of Fig. 3, we see that the analysis programs
use the same amount of memory regardless of the transport option
used. As expected, when more producers send their data to a single
consumer, more memory the consumer needs and more time is need
to complete the analysis operations, even though the difference in
analysis time is relatively small.

From Fig. 3, we see again that the socket option requires more
time on this specific rank, which appears as the blue lines extending
more to the right than the red lines. To further investigate this time
difference, we show a more detailed progress chart for two different
configurations on rank 0 in Fig. 4, where the configuration shown
on the left side has eight times more data send to each analysis
program than that on the right side. In this case, we see that the
analysis program took much longer on the left side, which delays
the overall completion time, while on the right side, data produced
by each time step can be consumed relatively quickly, and the
overall completion time is noticeably shorter.

6 CONCLUSION AND FUTUREWORK:
We designed and implemented an in transit mechanism in the
SENSEI framework using the parallel I/O library named HDF5. It
allows us to access both burst buffer and disk based file systems.
We designed this file-based transport option for analysis tasks that
require more data than what could be held in memory and expect it
to be slower than the cases where the data fits in memory. However,
our tests show that in many test cases, by placing HDF5 files on
burst buffers, we were able to complete the in transit() analysis tasks
faster than a popular socket-based in-memory transport option.

Many factors, such as the socket communication may be slower
than Cray MPI on the test machine, could explain observed perfor-
mance measurements. We attempted to dive into some details, but
clearly we have not fully explored the parameters that could affect
the observed performance. For future work, we plan to explore
lower level details of the transport mechanisms to better under-
stand the performance observed. We also plan to explore other
streaming mechanisms to improve in transit performance.

Table 1: Run configurations. M and N are for simulation and analy-
sis ranks, respectively. The left table shows the simulation configu-
rations while the right shows all the M:N ratios used to set up Anal-
ysis configurations. Data received by a consumer rank is a multiple 
of the data sent from a producer rank, determined by the M:N ratio.

to read and write files, and those software using socket for data 
communication as in the case of ADIOS FLEXPATH.

For each test configuration, the simulation job and the analysis 
job are launched back to back. The time to solution is measured 
from the beginning of the first task (simulation) to the completion 
of the last task (analysis). In addition, the memory footprint through 
out the job duration is also measured.

Let M and N be the number of ranks used for simulation (data 
producer) and analysis (data consumer) respectively. We plan to 
keep the simulation work on each rank constant, i.e. weak scaling. 
A default data partition is applied and simulation data is evenly 
distributed to analysis processors. Therefore, the elapsed time pri-
marily varies depending on the M:N ratio. We use four different 
such ratios for each M. The data size produced from simulation 
varies from 1TB to 8TB.

The details of the configurations used are shown in Table 1. We 
use M and N to represent simulation and analysis ranks respectively. 
Note that each M:N ratio is applied to every simulation configura-
tion. With four different simulation ranks and four different M:N 
ratios, a total of 16 combinations will be evaluated.

All the data used for this paper is collected on the KNL nodes 
from the Cori system at NERSC. Data produced are sent through 
sockets, staged on Burst Buffer, or staged on Cori’s Lustre System, 
which is configured to use 128 stripe count and 32MB per stripe.

A similar performance evaluation for ADIOS has been reported 
by Kress et al [7], where the in-memory transport mechanism was 
thoroughly examined. In this study, we contrast the in-memory 
mechanism with the option of using NVRAM.

5 PERFORMANCE MEASUREMENTS
To understand performance, we have collected wall-clock times and 
memory footprints for every rank of each simulation and analysis 
jobs.

Fig. 2 has two pictures. On the left side, the picture shows the total 
elapsed time of three different transport options using socket, burst 
buffer, and disk (labeled as Lustre). In this case, the data producer 
and consumer ratio is fixed as 16:1. We can see that the time required 
by the disk-based option (labeled Lustre) grows with the number of 
simulation cores, and the time to solution is noticeably longer with 
this disk-based option as expected. Therefore, we will not evaluate 
this option further.

The picture on the right side of Fig. 2 shows only two data 
transport options: socket and burst buffer, with more test config-
urations. We expect the socket-based option to use less time than



Figure 2: LEFT: Time to
solution for socket-based
(ADIOS-FLEXPATH),
Burst Buffer (HDF5), and
disk(HDF5) approaches.
RIGHT: Time to solution
for socket-bsed(ADIOS-
FLEXPATH) and Burst
Buffer (HDF5) approaches.
Configurations are stated
in Table 1.

Figure 3: Memory us-
age as a function of
run time for 4096 write
ranks. Simulation(writer)
on the left, and analy-
sis(reader) on the right.
Red lines denote runs us-
ing BB(Burst Buffers) and
blue lines denote runswith
AF(ADIOS-FLEXPATH)
staging method.

Figure 4: Processing time
on rank 0 for the simu-
lation and analysis using
ADIOS FLEXPATH trans-
port, with 4096 ranks of
writers. LEFT: M:N ratio is
64:1. RIGHT: M:N ratio is
8:1.

REFERENCES
[1] U. Ayachit, A. Bauer, E. P. N. Duque, G. Eisenhauer, N. Ferrier, J. Gu, K. Jansen, B.

Loring, Z. Lukić, S. Menon, D. Morozov, P. O’Leary, M. Rasquin, C. P. Stone, V.
Vishwanath, G. H. Weber, B. Whitlock, M. Wolf, K. Wu, and E. W. Bethel. 2016.
Performance Analysis, Design Considerations, and Applications of Extreme-scale
In Situ Infrastructures. InACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC16). Salt Lake City, UT, USA.
https://doi.org/10.1109/SC.2016.78 LBNL-1007264.

[2] U. Ayachit, M. Whitlock, B. Wolf, B. Loring, B. Geveci, D. Lonie, and E. W. Bethel.
2016. The SENSEI Generic In Situ Interface. In Proceedings of In Situ Infrastructures
for Enabling Extreme-scale Analysis and Visualization (ISAV 2016). Salt Lake City,
UT, USA. https://doi.org/10.1109/ISAV.2016.13 LBNL-1007263.

[3] W Bhimji, D Bard, M Romanus, D Paul, A Ovsyannikov, B Friesen, M Bryson, J
Correa, G K Lockwood, V Tsulaia, S Byna, S Farrell, D Gursoy, C Daley, V Beckner,
B Van Straalen, D Trebotich, C Tull, GWeber, N J Wright, K Antypas, and Prabhat.
2016. Accelerating Science with the NERSC Burst Buffer Early User Program.
In CUG 2016. https://cug.org/proceedings/cug2016_proceedings/includes/files/

pap162s2-file1.pdf
[4] J Dayal, D Bratcher, G Eisenhauer, K Schwan, M Wolf, X Zhang, H Abbasi, S

Klasky, and N Podhorszki. 2014. Flexpath: Type-based publish/subscribe system
for large-scale science analytics. In 2014 14th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. IEEE, 246–255.

[5] M Folk, G Heber, Q Koziol, E Pourmal, and D Robinson. 2011. An overview of the
HDF5 technology suite and its applications. In Proceedings of the EDBT/ICDT 2011
Workshop on Array Databases. ACM, 36–47. Software at http://www.hdfgroup.
org/HDF5/.

[6] James A. Kohl, Torsten Wilde, and David E. Bernholdt. 2006. Cumulvs: Interact-
ing with High-Performance Scientific Simulations, for Visualization, Steering
and Fault Tolerance. The International Journal of High Performance Computing
Applications 20, 2 (2006), 255–285. https://doi.org/10.1177/1094342006064502

[7] J. Kress, M. Larsen, J. Choi, M. Kim, M. Wolf, N. Podhorszki, S. Klasky, H. Childs,
andD. Pugmire. 2019. Comparing the Efficiency of In Situ Visualization Paradigms
at Scale. In High Performance Computing, Michèle Weiland, Guido Juckeland,
Carsten Trinitis, and Ponnuswamy Sadayappan (Eds.). Springer International
Publishing, Cham, 99–117.

https://doi.org/10.1109/SC.2016.78
https://doi.org/10.1109/ISAV.2016.13
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap162s2-file1.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap162s2-file1.pdf
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
https://doi.org/10.1177/1094342006064502


[8] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, Jong Y. Choi, S. Klasky, R.
Tchoua, J. Lofstead, R. Oldfield, M. Parashar, N. Samatova, K. Schwan, A. Shoshani,
M. Wolf, K. Wu, and W. Yu. 2014. Hello ADIOS: the challenges and lessons of
developing leadership class I/O frameworks. Concurrency and Computation:
Practice and Experience 26, 7 (2014), 1453–1473.

[9] W Usher, S Rizzi, I Wald, J Amstutz, Jh Insley, V Vishwanath, N Ferrier, M E
Papka, and V Pascucci. 2018. libIS: A Lightweight Library for Flexible in Transit
Visualization. In Proceedings of theWorkshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization (ISAV ’18). ACM, New York, NY, USA,
33–38. https://doi.org/10.1145/3281464.3281466

https://doi.org/10.1145/3281464.3281466

	Abstract
	1 Introduction
	2 Previous Work
	3 Design and Implementation
	4 Test Setup
	5 Performance Measurements
	6 Conclusion and future work:
	References



