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Abstract

Biomechanical Transmission as a Channel for Touch Information in Human Tactile

Sensing

by

Neeli Tummala

The sense of touch arises from a complex interplay between biomechanical and neural

processes that span large areas of skin. Little is understood about these processes and

their interactions beyond the immediate area of touch contact due to experimental con-

straints on biomechanical and neural measurements. This Ph.D. dissertation addresses

these challenges by developing data-driven computational methods to predict and ana-

lyze the widespread neuromechanical processes underlying manual touch. The research

presented here seeks to answer the following questions: How does biomechanical trans-

mission influence neural signals in the human tactile system, and what implications does

that have for human tactile sensing in general? And how can we exploit biomechanical

transmission for technology that interfaces with or takes inspiration from the human

sense of touch?

This dissertation builds upon findings that manual touch interactions biomechani-

cally transmit skin oscillations across the hand and arm (biomechanical transmission),

exciting widespread mechanoreceptive sensory neurons (mechanoreceptors). Chapter 3

uses high-resolution optical vibrometry measurements of whole-hand skin oscillations to

drive neural simulations of mechanoreceptor populations. The results demonstrate that

the hand’s biomechanics modifies skin oscillations in a frequency- and location-dependent

manner that diversifies mechanoreceptor responses, enabling them to efficiently capture

touch information. This research challenges existing characterizations of peripheral tac-
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tile sensing and has implications for how tactile information is processed by the brain.

Critically, this chapter emphasizes the importance of considering the influence of biome-

chanics on neural signals both at and beyond the location of touch contact.

Motivated by research conveying the significance of studying neural circuitry in nat-

ural settings, Chapter 4 extends the data-driven methodology presented in Chapter 3 to

investigate whole-hand tactile encoding of active, unconstrained touch interactions. The

results indicate that information about these interactions is organized within the spatial

structure of the population responses at the level of individual digits. Additionally, this

work demonstrates that biomechanical transmission enables mechanoreceptors in areas

far from locations of touch contact to capture significant tactile information.

This concept of remote tactile sensing underpins the wrist-worn device developed

in Chapter 5, which utilizes accelerometers to measure skin oscillations elicited by tac-

tile sign language (TSL) letters performed on the hand. By extracting various tempo-

ral, spectral, and spectrotemporal features from these measurements and passing them

into simple classifiers, the device achieves a translation accuracy of 94 %. This chapter

presents the first digital input device for TSL users, enabling digital TSL transcription

and communication by leveraging biomechanical transmission.

High-resolution measurements of skin oscillations, such as those employed in this

dissertation, are often time- and resource-intensive. This presents an obstacle for touch

research, given the demonstrated impact of biomechanical transmission on tactile sensing.

To overcome these barriers, Chapter 6 introduces a free-to-use toolbox for predicting

skin oscillations across the upper limb elicited by tactile stimuli applied at one or more

locations on the hand. This toolbox enables the computational analysis of biomechanical

transmission in the skin, reducing the need for physical measurements and supporting

applications in neuroscience and haptics.
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6.1 Overview of SkinSource and impulse response dataset. A) Users
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3-axis frequency magnitude spectra of the impulse responses shown in C.
E) Normalized RMS of 3-axis impulse responses across each measurement
axis for an input at the tip of digit III (in-axis) of P3. F) Normalized RMS
of impulse response acceleration magnitudes for inputs applied at 3 loca-
tions (red arrows, all perpendicular) on the hand of P1. G) Normalized
RMS of impulse response acceleration magnitudes for an input at the tip
of digit III (perpendicular) on the hands of all participants. . . . . . . . . 119
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(perpendicular) across three different participants (P2, P3, and P4). F)
Normalized x-axis skin acceleration at selected locations (blue dots) on
the hand of P3 elicited by a 200 Hz vibration applied at the tip of digit
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6.5 Validation of the linearity of vibration transmission in the upper
limb. A) Skin velocity was measured via laser Doppler vibrometry at
selected locations (blue dots, L0-L12) on the dorsal surface of the hands
of two participants (P1 and P2) during stimulation on the volar side of
the distal phalanx of digit III (red arrow). L0 denotes the measurement
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Chapter 1

Introduction

The sense of touch is critical for activities of daily living, which becomes evident when it

is lost [5]. For instance, when tactile sensation in the hand is impaired due to anesthesia

or neuropathy, mundane tasks like grasping a cup [6], lighting a match [7], or fastening

shirt buttons [8] become prohibitively difficult, even when motor function is intact. The

sense of touch supports these deceptively simple sequences of actions by relaying expected

and, crucially, unexpected information about the environment to the brain.

Touch interactions performed with the hand modify its mechanical state through skin

indentation, stretch, or vibration. The tactile sensation of these mechanical stimuli is

primarily governed by a complex neuromechanical process that involves the biomechanics

(structure and composition) of the hand and tens of thousands of widespread mechanore-

ceptive sensory neurons (mechanoreceptors) embedded in the skin. These mechanorecep-

tors encode touch information in sequences of electrical spikes that are transmitted to the

brain, leading to the conscious perception of touch and supporting a variety of remarkable

sensing and manipulation capabilities.

Technologies in fields such as robotics, prosthetics, and haptics seek to match these

capabilities, but progress has been hindered by an incomplete understanding of the neu-
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romechanical processes underlying the sense of touch. Technologies interfacing with

other sensory systems have greatly benefited from knowledge about the interplay be-

tween biomechanics and neural signals. For example, research that revealed how the

biomechanics of the ear dictates neural signals underlying human auditory perception

revolutionized the cochlear implant [9, 10], making it the most successful neuroprosthetic

device and restoring hearing to hundreds of thousands of people [11].

Two challenges maintain the gap in understanding the neuromechanical basis of the

human tactile system. The first is accurately modeling or predicting the hand’s biome-

chanical response during touch interactions. The hand is a heterogeneous network of

multi-layered soft tissues, muscles, and skeletal structures. Adding to this complexity

are touch-elicited skin oscillations that are biomechanically transmitted far from the lo-

cation of touch contact, often across the entire hand and even the arm [1, 4, 12, 13, 14].

Thus, modeling or predicting changes in the mechanical state of the hand during touch

events often requires simplifying assumptions or models restricted to a small region of

skin.

The second challenge is measuring the responses of mechanoreceptor populations

across the whole hand. It is currently only feasible to record the responses of a few

mechanoreceptors at a time due to the significant time and precision required. However,

any manual touch interaction excites thousands of mechanoreceptors across the entire

upper limb due to the biomechanical transmission of skin oscillations [15, 16, 17]. While

significant research has focused on understanding the responses of mechanoreceptors

near the location of touch contact, far less is known about the responses of widespread

mechanoreceptor populations, despite their contribution to perception [4, 17, 18].

Thus, characterizing and analyzing biomechanical transmission and mechanoreceptor

responses across the upper limb will not only enable a more complete understanding of

the human tactile system but also find widespread application in neuroscience, medicine,
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robotics, prosthetics, and haptics. Toward this goal, this dissertation presents a data-

driven method that combines biomechanical measurements with neural simulation to

computationally predict the signals underlying human tactile sensing in the upper limb

during manual touch interactions. This method is applied to elucidate the influence

of biomechanical transmission on mechanoreceptor population responses in Chapter 3

and to investigate the structure of tactile information in whole-hand mechanoreceptor

responses during natural touch interactions in Chapter 4. The findings demonstrate

that biomechanical transmission supports tactile sensing by distributing diverse tactile

information across large populations of spatially distributed mechanoreceptors. Chap-

ter 5 introduces a wrist-worn device that translates tactile sign language by exploiting

the biomechanical transmission of touch information to remote regions of skin. Finally,

recognizing that skin measurements require significant time and resources, Chapter 6

presents a free-to-use toolbox enabling users to computationally predict skin oscillations

across the upper limb elicited by arbitrary tactile stimuli applied to the hand.

The content and contributions of this dissertation are detailed in the following sec-

tions.

1.1 Overview

Chapter 2 serves as the foundational background to situate the research within this

dissertation. It provides an overview of the biomechanical and neural processes underly-

ing the human sense of touch, along with a review of previous studies that have measured,

modeled, and analyzed these processes. By identifying gaps in existing literature, this

chapter sets the stage for the contributions of this dissertation. Furthermore, Chapter 2

explores potential applications where the methods and insights derived from this research

may prove beneficial.
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Chapter 3, based on [19], employs data-driven neural simulations to examine the inter-

play between biomechanical and neural processes underlying manual touch interactions.

This chapter extends beyond the typical focus on mechanoreceptors close to the stimulus

contact site and examines neural responses across the entire hand. To overcome the prac-

tical challenges of measuring responses from mechanoreceptor populations, vibrometry

measurements of skin oscillations across the whole hand are used to drive spatially dis-

tributed neuron models, each validated on recordings from individual mechanoreceptors.

The findings reveal that as skin oscillations travel, they are modified by the biomechan-

ics of the hand before they reach the widespread mechanoreceptors. This pre-neuronal

biomechanical filtering, which varies with stimulus frequency and hand location, diversi-

fies the response characteristics and spiking activity of whole-hand mechanoreceptor pop-

ulations, thereby enhancing their ability to capture tactile information. These findings

update widely held characterizations of mechanoreceptors, highlighting the importance

of a population-level understanding of tactile encoding that integrates both neural and

non-neural factors. Additionally, it sheds light on unexplained aspects of human touch

perception and physiology, such as the perception of polyharmonic tactile stimuli and

the distribution of mechanoreceptors in the hand.

While Chapter 3 offers valuable insights into whole-hand tactile encoding, the stimuli

are delivered to a passive, restrained hand in a controlled laboratory setting. In contrast,

Chapter 4, based on [16], is motivated by neuroscience research emphasizing the impor-

tance of studying sensory systems in natural settings. The data-driven methodologies

from Chapter 3 are applied to study how commonly performed active touch interactions

like tapping, grasping, and sliding are encoded by mechanoreceptor populations in the

hand. Specifically, Chapter 4 explores how information about natural touch interac-

tions is spatiotemporally organized within these population responses. To achieve this,

it employs a matrix feature representation of spiking population responses and simple
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classifiers, such as a support vector machine and k-nearest neighbors, to quantify the

amount of encoded touch information. This work addresses open questions in touch re-

search, including whether tactile information is encoded through the rate or timing of

mechanoreceptor responses and how this information may be integrated spatially and

temporally in higher-order somatosensory processing. The findings reveal that the spa-

tial organization of responses is more crucial than the temporal organization, with most

tactile information preserved when the spatial structure maintains separation between

the digits. Additionally, Chapter 4 finds that mechanoreceptors distant from the location

of touch contact encode significant tactile information. This result supports the findings

from Chapter 3, showing that biomechanical transmission distributes tactile information

to widespread mechanoreceptors throughout the hand.

Chapter 5, based on [20], introduces a wearable haptic device that captures touch

information disseminated across the hand by biomechanical transmission. The device

consists of four accelerometers mounted on the wrist that measure touch-elicited skin

oscillations during the performance of tactile sign language (TSL) letters. These letters

involve tapping, sliding, grabbing, and pinching gestures performed by the signer on the

receiver’s hand. By employing simple classifiers such as a support vector machine and

a random forest, the device classifies TSL letters with an accuracy of 94 %. This chap-

ter introduces the first digital input device for TSL users, facilitating TSL transcription

for digital communication and important events like court proceedings. Additionally, the

underlying principle and methodology of the device show promise for consumer wearables

like smartwatches by leveraging biomechanical transmission to leave the hand unencum-

bered.

The skin measurements utilized in Chapters 3, 4, and 5 are time and resource-

intensive, presenting an obstacle in touch research given the critical role of biomechanical

transmission in the tactile system demonstrated by Chapters 3 and 4. Chapter 6, based
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on [21], introduces a free-to-use toolbox for predicting touch-elicited skin oscillations

across the upper limb in response to arbitrary tactile stimuli applied at one or more hand

locations. This toolbox enables the computational analysis of biomechanical transmission

in the upper limb, serving applications in haptics and neuroscience. Chapter 6 validates

the methodology underlying the toolbox through several experiments that confirm the

linearity of biomechanical transmission in the skin and compare the toolbox outputs

with actual measurements across a wide range of frequencies. While the toolbox does

not eliminate the need for skin measurements, it offers an accessible method to explore

biomechanical transmission in silico, potentially saving researchers time and resources.

1.2 Contributions

This dissertation presents several contributions summarized here by chapter.

Chapter 3

� The experimental methodology introduced in Chapter 3 contributes the most bi-

ologically plausible representation of tactile encoding by whole-hand mechanore-

ceptor populations currently feasible. This data-driven approach employs opti-

cal vibrometry to capture biomechanically transmitted skin oscillations with high

spatiotemporal resolution during localized tactile stimulation. These vibrometry

measurements then drive a population of computationally simulated mechanore-

ceptors distributed throughout the hand. Their spiking responses are computed

using neuron models extensively trained and validated on physiological data in

prior research. Notably, this method yields spiking responses from mechanore-

ceptors not only adjacent to the site of touch contact but also those excited by

widespread skin oscillations transmitted throughout the hand. The responses of
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these remote mechanoreceptors have received little attention in prior research on

tactile sensing. The method presented in Chapter 3 is a unique tool for examining

tactile encoding by whole-hand mechanoreceptor populations and shedding light

on subsequent processing in the brain.

� Chapter 3 leverages this data-driven method to analyze whole-hand biomechan-

ical transmission and its role in distributing tactile signals to mechanoreceptors

throughout the hand. The findings demonstrate that biomechanical transmission

imparts filtering that alters the frequency content of tactile signals in a complex,

location-dependent manner before neurotransduction. As a result, biomechanical

filtering modulates and diversifies the responses of widespread mechanoreceptors,

thereby increasing the encoding efficiency of tactile information in the hand. This

research greatly revises widely accepted descriptions of these mechanoreceptors as

having highly stereotyped response characteristics. Additionally, Chapter 3 high-

lights the role of biomechanical transmission in the encoding of tactile signals in

the periphery, with implications for perceptual processing in the brain. This work

has garnered recognition within the scientific community, evidenced by receiving

the Best Talk Award at the 2023 Festival of Touch symposium.

Chapter 4

� Chapter 4 extends the data-driven methodology presented in Chapter 3 to analyze

how a large dataset of active, unconstrained touch interactions is encoded by whole-

hand mechanoreceptor populations. This research overcomes limitations in current

neural recording techniques, which cannot measure mechanoreceptor population

responses during unconstrained motion, to address the recognized importance of

investigating neural processing in natural settings. Chapter 4 provides a basis for
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future investigations on the under-explored topic of tactile encoding during natural

touch interactions to illuminate both peripheral and central aspects of human tactile

sensing.

� Chapter 4 is one of the first studies to analyze the spatial organization of touch

information in whole-hand mechanoreceptor responses with high granularity, in

contrast to the focus on temporal organization in prior research. The results

demonstrate that tactile information is best encoded by mechanoreceptor popu-

lation responses when the separation between digits is preserved within the spatial

structure. This aligns with previous studies on the spatiotemporal structure of

whole-hand skin oscillations during the same interactions. Moreover, the findings

show that mechanoreceptors far from the contact location encode significant tactile

information, supporting evidence that tactile perception can be preserved despite

sensory impairment at the contact location. The methods and analyses conducted

in Chapter 4 provide a versatile framework for future investigations into whole-hand

tactile encoding by offering flexibility in manipulating the structure and feature

representation of mechanoreceptor population responses in both space and time.

Chapter 5

� Chapter 5 introduces the first input device designed to support the digital commu-

nication of tactile sign language (TSL). For TSL users, this device enables remote

communication and digital transcription of important events, such as court pro-

ceedings or personal milestones. Furthermore, the device achieves high classifica-

tion accuracy of signed letters (94 %) using simple, unobtrusive, and unoptimized

methods. This work opens avenues for future research, including real-time trans-

lation during TSL signing and decoding the emotion or sentiment conveyed by the
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signer. The contributions of this work were recognized by the Best Conference

Paper Runner-Up award at the 2022 IEEE Haptics Symposium.

� The research conducted in Chapter 5 leverages biomechanical transmission to de-

code touch interactions in a manner that leaves the hand unencumbered and does

not compromise user privacy by recording video or other sensitive data. This work

has the potential to guide the development of wearable consumer devices, such as

smartwatches, to remotely interpret touch interactions for digital input.

Chapter 6

� Chapter 6 presents SkinSource, a free-to-use toolbox for predicting, visualizing, and

analyzing touch-elicited skin oscillations in 3 axes across four different upper limbs.

It is built upon a large dataset of vibrometry measurements obtained with an array

of accelerometers placed on four participants. SkinSource allows users to computa-

tionally investigate biomechanical transmission across the entire upper limb for an

infinitely large stimulus space. The toolbox enables the application of stimuli with

diverse frequency and amplitude components at 20 different locations on the hand,

either individually or simultaneously. Crucially, users can utilize SkinSource to sys-

tematically analyze biomechanical transmission entirely in computation, reducing

the need for time-consuming or expensive measurements. The toolbox can support

research on human tactile sensing and guide the design and engineering of haptic

sensing and feedback devices. The significance of this work is highlighted by its

receipt of the Best Conference Paper award at the 2024 IEEE Haptics Symposium.

� Chapter 6 demonstrates that the upper limb can be approximated as a linear

transmission medium. This conclusion was reached through the analysis of high-

resolution optical vibrometry measurements collected during the application of
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tactile stimuli with a wide range of frequency and amplitude components. This

finding enables the use of tools designed for analyzing linear time-invariant (LTI)

systems, a mature area of research, presenting numerous opportunities for future

investigations of biomechanical transmission. Additionally, these results validate

the methodologies applied in both Chapter 3 and Chapter 6.
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Chapter 2

Background

This chapter presents background and context for this dissertation, which focuses on

modeling and analyzing the biomechanical and neural processes underlying human tactile

sensing in the hand using data-driven methods.

Our hands are our primary tools for interacting with the world. We use them in a

variety of exploration, sensing, and manipulation tasks to execute goal-directed move-

ments and collect information from the environment [22]. But without the sense of touch,

our hands are relatively ineffective. The impairment of tactile sensation by anesthesia,

disease, or traumatic injury dramatically reduces the ability to perform manual tasks

in a way that cannot be fully compensated for by other senses like vision and audi-

tion [5, 6, 7, 8, 23].

Underlying human tactile perception and manipulation capabilities is a complex neu-

romechanical process that begins with the biomechanics of the hand. A touch interaction,

such as grasping an object, modifies the mechanical state of the hand by applying force,

pressure, vibration, or stretch to the skin. The contact event between the skin and the

object also generates skin oscillations that are biomechanically transmitted across the

whole hand and even the arm. This transmission process is mediated by wave propaga-
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tion in soft tissue and rigid body movement of the skeletal structure. Biomechanically

transmitted skin oscillations are instrumental for texture perception [24], object manipu-

lation [25, 26], and tool use [27]. Section 2.1 further discusses background on biomechan-

ical transmission. Chapters 3 and 6 characterize biomechanical transmission across the

upper limb with high spatiotemporal resolution, and Chapter 5 leverages biomechanical

transmission in a haptic sensing device.

Changes in the biomechanical state of the hand directly drive neural circuitry that

produces the sense of touch. Touch-elicited skin oscillations excite widespread mechanore-

ceptive sensory neurons (mechanoreceptors) embedded in the skin. Each mechanorecep-

tor encodes information about the touch interaction in trains of electrical spikes that

are transmitted to the brain. How aspects of the touch interaction, such as force, edge

orientation, or texture, are encoded by populations of mechanoreceptors is an open ques-

tion. While prior work has made significant progress in understanding tactile encoding

by small populations of mechanoreceptors near the location of contact between the skin

and an object, less is known about the influence of biomechanical transmission on whole-

hand mechanoreceptor population responses. Section 2.2 covers further background on

tactile sensing in the human hand, Section 2.3 discusses the influence of biomechanics on

sensory systems, and Chapters 3 and 4 analyze the role of biomechanical transmission in

mechanoreceptor population responses.

The gap in knowledge about the interplay between biomechanical transmission and

mechanoreceptor populations stems from two challenges. First, it is difficult to char-

acterize biomechanical transmission due to the complex and heterogeneous morphology

of the hand. Current methods for measuring and modeling biomechanical transmission

during touch interactions often focus on small regions of skin or lack sufficient spatiotem-

poral resolution. Second, current techniques for measuring mechanoreceptor responses

are time-consuming and tedious, precluding measurement from an entire population of
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mechanoreceptors. Several simulations exist that combine mechanical and neural mod-

eling to predict mechanoreceptor population responses, but these again focus on small

regions of skin or rely on oversimplified assumptions. These challenges and prior works

are further discussed in Sections 2.1 and 2.2. Chapter 6 presents an open-source tool-

box for predicting touch-elicited skin oscillations, and Chapters 3 and 4 present a novel

data-driven methodology for predicting whole-hand mechanoreceptor responses with high

spatiotemporal resolution.

The work presented in this dissertation has implications for many areas, including

neuroscience, medicine, prosthetics, robotics, and haptics. Section 2.4 provides more

specific background in these application areas.

2.1 Biomechanical Transmission in the Hand

The human hand is a network of 27 bones and 29 muscles interconnected by a network

of ligaments and tendons surrounded by skin [28]. Two types of skin cover the surface

of the hand: glabrous skin on the volar surface and hairy skin on the dorsal surface.

Glabrous and hairy skin differ in compliance, thickness, and nerve innervation. Hairy

skin is thin and flexible, while glabrous skin is thick, inflexible, and covered in papillary

ridges, which form fingerprints. The skin consists of several layers: the outer epidermis,

the intermediary dermis, and the underlying hypodermis, which is composed of fat and

connective tissue. The epidermis is composed of five sublayers, while the dermis is com-

posed of two. These layers exist in both glabrous and hairy skin but are thinner and

contain less connective tissue in hairy skin. While this dissertation incorporates mea-

surements of biomechanical transmission in both types of skin (glabrous skin: Chapter 3;

hairy skin: Chapters 4, 5, and 6), it focuses on the neural responses of mechanoreceptors

embedded within the glabrous skin (Chapters 3 and 4).
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2.1.1 Contact Biomechanics

During manual touch interactions, normal and tangential forces are applied to the

skin at the location of contact. This results in a change in the mechanical state (stresses

and strains) of the skin, which directly dictates the tactile information available to em-

bedded mechanoreceptors. A large body of prior work has focused on measuring the local

mechanical response of the skin during contact events, primarily at the fingertip. Such

studies include the measurement of surface strain [29, 30, 31] and sub-surface deforma-

tions [32, 33] of the skin during touch interactions and biomechanical skin properties such

as stiffness, thickness, and anisotropy [34, 35, 36, 37, 38] near the location of mechanical

contact. Significant effort has also been applied to modeling the local biomechanical

response of the skin during touch contact [39]. This includes analytical [40, 41], finite

element [42, 43], and viscoleastic [38, 44] models. Notably omitted from this dissertation

is the exploration of friction at the location of touch contact, a phenomenon that sig-

nificantly influences contact biomechanics during tactile interactions [45, 46]. Although

friction during touch is a rich area of study, it falls outside the scope of the work presented

here.

2.1.2 Whole-Hand Biomechanical Transmission

In addition to local stresses and strains, touch contact elicits skin oscillations that are

biomechanically transmitted across the entire hand and arm [1, 4, 12, 13, 14]. These os-

cillations contain information about the contact events that produce them—for example,

the skin oscillations measured at the wrist during scanning of a texture at the fingertip

contain frequency content that reflects the texture [12]. Chapter 5 leverages this property

by using skin oscillations measured at the wrist to classify tactile sign language (TSL)

letters signed on the hand. Both the soft tissues and the rigid skeletal structure of the
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hand mediate biomechanical transmission.

The soft tissues of the hand exhibit both elastic and viscous behavior and permit

the propagation of waves far from the location of contact during touch events. The

propagation occurs through shear and compression waves in bulk tissue and through

Rayleigh waves at the surface of the skin [47, 48]. Surface Rayleigh waves and shear

waves dominate wave propagation in the tactile frequency range (0 to 1000 Hz), while

compression waves dominate at frequencies outside of the tactile range (> 5000 Hz).

Surface Rayleigh waves and shear waves travel slowly through the skin at frequency-

dependent speeds generally below 40 m/s. Within the hand, experiments have shown that

these waves travel at speeds between 3 and 25 m/s [13, 49]. The resulting wavelengths

are between approximately 10 and 100 mm in the tactile frequency range. Due to these

relatively large wavelengths, surface Rayleigh waves experience little decay with depth

within distances relevant to mechanoreceptors (< 2 mm) [50]. Moreover, prior research

has demonstrated that Rayleigh waves travel cooperatively through all skin layers [14].

Due to the skin’s viscoelastic properties [35, 37], wave propagation is dispersive,

imparting frequency-dependent attenuation to touch-elicited skin oscillations [4, 13, 49].

The attenuation of skin oscillations due to soft tissue viscoelasticity is monotonic with

distance from the location of contact. However, Chapter 3 of this dissertation shows non-

monotonic decay of skin oscillations with distance from the contact location, particularly

at low frequencies. The areas of non-monotonicity correspond with anatomical features

of the hand, such as the metacarpophalangeal joint (MCP) of the stimulated digit and

the thenar and hypothenar eminences in the palm. These findings present evidence that

the hand’s skeletal structure and morphology affect the biomechanical transmission of

touch-elicited skin oscillations. Prior research also supports the hand’s morphology and

skeletal structure playing a role in mediating biomechanical transmission [51, 52, 53].
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2.1.3 Experimental Measurement Techniques

A number of methods are used to measure the biomechanical transmission of oscilla-

tions in the skin. Measurement methods that do not involve physical contact with the skin

include laser vibrometry [4, 13, 38, 54, 55, 56] (Chapter 3), capacitative sensors [48, 47],

and high-speed camera imaging [57]. Methods that involve physical contact with the skin

include accelerometers [1, 20, 58, 59] (Chapters 4, 5, and 6), microphones [12], piezoelec-

tric film sensors [60], phono cartridges [49, 61], and elastography [62]. These techniques

have provided significant insights into biomechanical transmission in the skin. However,

they can be difficult to perform because they are time-intensive and often require expen-

sive or custom-made equipment. Moreover, the resulting measurements are often limited

to small areas of skin or lack sufficient spatiotemporal resolution to capture whole-hand

tactile information.

2.1.4 Computational Models

To address these challenges, several methods have been developed to model biome-

chanical transmission in the upper limb. These include simple viscoelastic mass-spring-

damper models [38, 52, 63, 61], finite element models [64, 65, 66], equation-based analyt-

ical models [14, 57], and empirical models [4, 13, 67]. These prior works have provided

detailed insight into the coarse biodynamic response or overarching properties of biome-

chanical transmission in the upper limb. However, these models employ simplifying as-

sumptions that limit their accuracy or focus on small areas of skin, such as the fingertip,

which limits their generalizability to predicting whole-hand mechanoreceptor population

responses (Chapters 3 and 4).

Unlike the aforementioned examples of explicit models that describe biomechanical

transmission with concrete equations or systems, this dissertation presents an entirely
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data-driven implicit model for predicting touch-elicited skin oscillations across the whole

hand (Chapter 3) and upper limb (Chapter 6). This method involves measuring the

Green’s function or impulse responses of the upper limb by applying a brief mechanical

impulse to the hand and measuring the resulting skin oscillations with a laser Doppler

vibrometer or an array of accelerometers. These measured impulse responses capture

the physics of biomechanical transmission in the skin. With them, the skin oscillations

elicited by an arbitrary input stimulus can be accurately predicted by convolving the

stimulus with the impulse responses. This approach enables systematic computational

experiments in lieu of time-consuming mechanical measurements. It is accurate because

biomechanical transmission in the skin is linear and time-invariant (LTI), demonstrated

by experiments in prior literature [54] and in Chapter 6 of this dissertation. This impulse

response method has also been used for a variety of other applications, including RLC

circuit analysis [68], audio processing [69], cerebral hemodynamic response modeling [70],

and geophysics [71].

2.2 Tactile Sensing in the Hand

Tens of thousands of mechanoreceptors embedded in the glabrous skin mediate the

neural process that follows changes in the biomechanical state of the hand [72, 73]. These

mechanoreceptors transduce changes in the mechanical state of the skin into electrical

impulses that signal information about the touch event to the brain. A main theme in

this dissertation is understanding the role of whole-hand biomechanical transmission in

tactile sensing by populations of mechanoreceptors in the hand (Chapters 3 and 4).
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2.2.1 Mechanoreceptors

The term mechanoreceptor, as used in this dissertation, is a low-threshold mechanore-

ceptor (LTMR) afferent neuron that terminates in one or more mechanosensory end or-

gans embedded in the skin [74, 75, 76]. LTMRs are myelinated Aβ nerve fibers with

conduction velocities ranging from 16 to 100 m/s [74]. The mechanosensory end or-

gans innervated by LTMRs vary in structure and location in the skin. These terminal

end organs also play a role in biomechanically filtering the tactile stimuli (mechanical

stresses) that excite the associated LTMR. While the exact mechanism of mechano-

to-neural transduction varies based on LTMR subtype and end organ, it is generally

mediated by mechanically gated ion channels located on the LTMR’s axon terminals

within the mechanosensory end organs [77, 78, 79]. Mechanical stimuli applied to the

skin during touch events—such as pressure, stretch, or vibration–create mechanical forces

that open the ion channels. This process alters the ionic concentration inside the cell,

potentially leading to membrane depolarization. An electrical action potential, or spike,

is generated if this depolarization reaches a sufficient voltage threshold.

Mechanoreceptors in the glabrous skin can be broadly classified into four main sub-

types based on their response properties, which are determined by the specific mechanosen-

sory end organ and subtype of LTMR innervating them [72, 80]. These mechanorecep-

tors are distinguished by two properties: the adaptation rate of their spiking responses

to sustained indentation (rapidly adapting or slowly adapting) and the size of their re-

ceptive fields (Type I or Type II). Slowly adapting (SA) mechanoreceptors continue to

respond throughout the duration of sustained indentations, while rapidly adapting (RA)

mechanoreceptors primarily respond to changes in indentation, such as the onset or offset.

Type I mechanoreceptors have small receptive fields and are located in more superficial

layers of the skin, while Type II mechanoreceptors have larger receptive fields and are
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embedded in deeper tissues.

Although the exact number and density of mechanoreceptors in the hand are un-

known, there are estimated to be approximately 17,000 mechanoreceptors innervating

the glabrous skin of an adult human hand [72, 81, 82]. Of those, 25 % are SA-I LTMRs

that terminate in Merkel cell-neurite complexes located in the epidermis, 19 % are SA-

II LTMRs that terminate in Ruffini corpuscles embedded in the dermis, 43 % are RA-I

LTMRs that terminate in Meissner corpuscles situated in dermal papillae, and 13 % are

RA-II LTMRs that terminate in Pacinian corpuscles that lie within the dermis. Al-

though each type of mechanoreceptor is traditionally associated with the perception of

specific stimuli (for example, SA-I LTMRs with the perception of coarse texture) [80],

such distinctions can be misleading as all mechanoreceptor types are activated during

most natural touch interactions [75, 83]. In this dissertation, mechanoreceptors are re-

ferred to by the name of their associated end organs (i.e., RA-II LTMRs innervating

Pacinian corpuscle end organs are referred to as Pacinian corpuscle neurons).

Pacinian Corpuscle Neurons (PCs)

Of the four mechanoreceptor types, Chapters 3 and 4 of this dissertation focus on the

Pacinian corpuscle neurons, or PCs. PCs are exquisitely sensitive to transient stimuli [84,

85], including widespread skin vibrations [86] that are readily excited during any touch

interaction [1, 12, 26]. Due to their sensitivity and location in the deep dermis of the

glabrous skin, PCs are described as having extensive receptive fields that encompass

most, if not all, of the hand [87, 88]. Because of these characteristics, PCs play a crucial

role in manual tasks such as object manipulation [25], texture perception [89], and tool

use [26, 27].

The sensitivity of PCs arises from the highly sensitive RA-II LTMRs that innervate

them, which respond to stimulus amplitudes as low as in the tens of nanometers [90].
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The RA-II LTMRs terminate in corpuscle end organs, which are on the order of a mil-

limeter and are composed of concentric lamellar cell layers surrounding the LTMR axon

terminal [91, 92, 93]. This structure enables the corpuscle to biomechanically filter the

mechanical stimuli before they excite the LTMR axon terminal [75].

More specifically, the surrounding corpuscle gives PCs their characteristic rapidly

adapting properties [94] and sensitivity to vibrations between 20 and 1000 Hz [95]. The

corpuscle also acts as a bandpass filter that endows PCs with frequency-dependent sen-

sitivity [96]. PC frequency sensitivity can be quantified by determining the minimum

amplitude of a sinusoidal stimulus required to elicit phase-locked spiking, or entrainment,

where the PC fires once per cycle of the stimulus. PCs typically exhibit entrainment to

oscillatory stimuli across a range of stimulus amplitudes [90, 97, 98], creating a nonlin-

ear relationship between the stimulus amplitude and the PC firing rate—measured as

the number of spikes per second. Entrainment threshold curves determined in numer-

ous studies have revealed that PCs are most sensitive to frequencies between 200 and

300 Hz, with a rapid decrease in sensitivity at frequencies outside of this range, yielding

a U-shaped curve [90, 93, 99, 100]. Furthermore, the frequency sensitivity of PCs, as

determined by entrainment threshold curves, aligns with human perceptual thresholds

for frequencies above 20 Hz [101, 102].

Due to their sensitivity and large receptive fields, PCs across the entire hand and arm

are excited during manual touch interactions [15, 17, 18] (Chapters 3 and 4). The exact

number of PCs in the glabrous skin of the hand is unknown but estimated to be in the

hundreds [3, 103] to thousands [81, 82]. The density of PCs in the hand is also not fully

known. It is estimated that PCs are present in the fingertips at a slightly higher density

than elsewhere in the hand [81, 82]. Studies have also demonstrated that PCs are found

concentrated near joints and along blood vessels [3, 103]. The relatively large number of

PCs in the hand, coupled with their large receptive fields and extreme sensitivity, raises
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questions about response redundancy among PCs in a whole-hand population. Chapter

3 explores this mystery, proposing that the filtering effects of hand biomechanics mitigate

response redundancy by diversifying PC spiking activity.

2.2.2 Neural Pathway for Tactile Information

In humans, tactile information from peripheral mechanoreceptors regarding discrim-

inative touch and proprioception travels along the dorsal column-medial lemniscal path-

way to the brain [101, 104]. First, touch-elicited spikes propagate along the axon of the

LTMR towards its cell body located in the dorsal root ganglia adjacent to the spinal cord.

Once in the spinal cord, these signals synapse with second-order neurons that project to

the thalamus, a relay station for sensory information. From the thalamus, third-order

neurons convey tactile information to the primary somatosensory cortex (S1), the first

major cortical site of tactile processing. From there, tactile information is transmitted

to other areas of the brain, including the secondary somatosensory cortex (S2) and the

primary motor cortex (M1). While S1 plays a critical role in touch perception, tactile

information also undergoes initial processing at earlier stages of the pathway, including

in the spinal cord dorsal horns [74]. This process underlies our conscious perception of

touch and supports our manipulation capabilities. Sensations of pain, temperature, and

crude touch are mediated by the spinothalamic tract, which is a different somatosensory

pathway that also conveys conscious tactile information but is outside of the scope of

this dissertation.

2.2.3 Neural Encoding of Tactile Information

Populations of mechanoreceptors excited by touch contact convey sensory information

to the brain via electrical spikes. The amplitude of these spikes is constant and, therefore,
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does not carry information. Rather, tactile information is conveyed by the frequency or

timing of the spikes [105]. Understanding how tactile information is encoded in the

spiking responses of mechanoreceptors in the hand and how that translates to perception

is an open area of research with a multitude of applications in neuroscience, haptics,

prosthetics, and other areas (Section 2.4). Although tactile perception during most

touch interactions is a function of responses in all four types of mechanoreceptors [83],

this section will mainly focus on tactile encoding by PCs.

Information theory, initially developed for the analysis of communication systems,

provides a framework for understanding the neural encoding of sensory information [106].

It encompasses methods to quantify, analyze, and interpret the information content of

neural signals, as well as how this information is encoded, represented, and transmitted

within the nervous system. A concept borne out of information theory with particular

relevance to this dissertation is the encoding efficiency hypothesis. This hypothesis posits

that neural circuitry maximizes the amount of information encoded while minimizing re-

dundancy [107, 108, 109, 110]. This concept has only been briefly explored in the context

of tactile encoding [2]. Chapter 3 employs measures such as Shannon information en-

tropy, latent dimensionality, and response correlations to demonstrate how biomechanical

filtering supports tactile encoding efficiency by reducing redundancy across whole-hand

PC populations. Chapter 4 further demonstrates how information theoretic techniques

such as classifiers [111] and metric space analysis [112, 113] can be used to quantify the

amount and elucidate the organization of tactile information within neural responses.

The specific mechanisms by which tactile information is encoded in mechanoreceptor

responses—such as through rate coding or spike timing coding—remains a central ques-

tion [114, 115, 116]. Rate codes rely on the number of spikes produced by a mechanore-

ceptor within a certain time period, while spike timing codes depend on the precise timing

of individual spikes. Chapter 4 explores the implications of these codes for how PCs en-
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code natural touch gestures. Prior research indicates that PCs primarily use spike timing

coding, employing millisecond precision to convey details about the frequency content of

tactile stimuli [112]. However, encoding stimulus intensity presents a more complex chal-

lenge for PCs due to their characteristic entrainment behavior—producing a set number

of spikes per cycle of an oscillatory stimulus, regardless of variations in stimulus ampli-

tude [90, 97]. This behavior results in response plateaus, with PC responses remaining

the same across a wide range of stimulus amplitudes. Consequently, individual PCs

cannot directly encode stimulus intensity.

This limitation highlights the importance of exploring responses from populations

of PCs (and other mechanoreceptor types) to fully understand tactile encoding [83, 98,

117, 118]. Chapter 3 underscores this point by demonstrating that whole-hand PC pop-

ulations encode more tactile information than a subset of PCs close to the location of

contact. Furthermore, by considering PC population responses, Chapter 3 also sheds

light on the open question of how humans perceive tactile signals with complex spectral

content [119]. The findings demonstrate that PCs away from the contact location are

tuned to a variety of frequencies outside of the typical 200 to 300 Hz range, providing

support for unconfirmed hypotheses about the basis for the perception of polyharmonic

stimuli [120, 121].

In addition to the importance of population response, neuroscience research highlights

the need to study neural circuitry within the contexts for which it evolved—natural set-

tings rather than only controlled laboratory conditions [122, 123, 124, 125]. While existing

studies on natural sensory encoding have primarily focused on the visual and auditory

systems [109, 126, 127, 128, 129], there is comparatively little research on tactile encoding

of natural stimuli [1, 2, 15, 55, 130, 131] despite its acknowledged importance [132]. The

limited exploration of natural touch can be attributed, in part, to the challenges posed

by the precision and time demands of current peripheral neural recording techniques
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(described further in Section 2.2.4). Chapter 4 seeks to overcome this challenge by lever-

aging data-driven simulations to elucidate how PC populations encode information about

natural touch gestures.

2.2.4 Experimental Techniques for Measuring Mechanorecep-

tor Responses

There are various techniques for measuring spiking responses from mechanorecep-

tors in the hand. In humans, microneurography is the preferred method, involving the

insertion of a tungsten needle electrode into the median or ulnar nerves of the upper

limb [118, 133, 134, 135]. This method enables recordings from single mechanorecep-

tors in awake humans, allowing integration with psychophysical experiments. How-

ever, microneurography demands significant precision and time, making it infeasible to

record responses from populations of mechanoreceptors. An alternative, less invasive

approach involves the use of surface electrodes to record mechanoreceptor spiking re-

sponses [136, 137]. However, these measurements often have low signal-to-noise ratios

and make it difficult to isolate signals from individual mechanoreceptors.

In contrast, fiber splitting [100, 112, 118] and dissection [138, 139] are standard record-

ing techniques in animal studies that produce high quality measurements. However, these

methods are highly invasive and require anesthetizing or sacrificing the animal, precluding

measurements of mechanoreceptor responses during active or natural touch interactions.

Additionally, these techniques do not preserve the influence of skin biomechanics on the

spiking responses and are not feasible for population recordings.

Recent work has introduced an invasive method to measure responses from dorsal

root ganglion (DRG) neurons in awake, freely moving animals, offering a new avenue

to study mechanoreceptor activity in more naturalistic conditions [131]. Additionally,
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there is ongoing development of non-invasive multi-site electrode arrays that enable the

simultaneous recording of responses from multiple DRG neurons [140]. However, these

technologies are still emerging and face challenges in widespread application.

Given the limitations of current mechanoreceptor recording techniques—such as the

need for high precision, the restriction to single-unit recordings, and the requirement for

controlled laboratory conditions—simulation emerges as a valuable tool. Simulations can

overcome some of these constraints by allowing researchers to model mechanoreceptor

population activity without the technical and ethical challenges of direct measurement.

Chapters 3 and 4 present data-driven methodologies for simulating whole-hand PC pop-

ulation responses, while Chapter 6 contributes a toolbox for predicting the touch-elicited

skin oscillations that drive mechanoreceptor responses across the upper limb.

2.2.5 Computational Models of Mechanoreceptor Responses

The challenges of neural recording techniques for measuring mechanoreceptor re-

sponses necessitate simulation to better understand tactile encoding in the human

hand [117]. Various neuron models, including integrate-and-fire [141, 142, 67, 143],

Izhikevich [144], Hodgin-Huxley [145], and Freeman-Johnson [146, 147] models, have

been developed to simulate the spiking responses of individual mechanoreceptors. These

models focus on the responses of isolated receptors, disregarding the influence of skin

biomechanics. Integrate-and-fire, Izhikevich, and Hodgkin-Huxley neuron models simu-

late the dynamics of the mechanoreceptor’s membrane voltage to predict neuronal firing

patterns in response to stimuli, while Freeman-Johnson models are specifically focused

on the empirical response characteristics to vibratory stimuli without directly simulat-

ing the underlying membrane voltage dynamics. Other less common models exist, such

as an electromechanical circuit model combined with a spike synthesizer [148]. Of the
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model types, integrate-and-fire neuron models are the most popular due to their sim-

plicity and computational efficiency, making them suitable for population simulations.

More complex models like the Hodgkin-Huxley or Izhikevich models are preferred when

there is a need to analyze neuronal firing patterns beyond simple spiking. While these

models provide valuable insight into neural encoding by individual mechanoreceptors, a

comprehensive understanding of tactile encoding necessitates simulations that consider

population responses and integrate the skin’s biomechanical contributions [149].

Various approaches have been developed to model the population responses of

mechanoreceptors, each differing in how they simulate the mechanical response of the

skin and the resulting spiking responses of mechanoreceptors [117, 149]. Broadly, the

mechanical component of these simulations can be categorized into data-driven mod-

els [67, 98, 143, 150], finite-element models [151, 152], and analytical models based on

continuum mechanics [153]. For the mechanoreceptor responses, methods range from

integrate-and-fire [67, 143, 152, 154] and Hodgkin-Huxley [151] neuron models to data-

driven firing rate equations [98, 150, 153]. These simulations have significantly advanced

our understanding of tactile encoding by mechanoreceptor populations, revealing insights

into how mechanoreceptors collectively encode aspects of tactile stimuli, such as vibra-

tion intensity [98, 150], edge orientation [155], tool interactions [27], and various standard

experimental stimuli [15].

However, each simulation approach has limitations, which typically include con-

straints to modeling only a small skin area, oversimplifications in biomechanical skin

responses or neural response mechanisms (i.e., modeling only the firing rates rather than

precise spike timing), or prohibitive computational demands. To address these chal-

lenges, Chapters 3 and 4 present a technique for simulating whole-hand PC population

responses. This method leverages data-driven predictions of widespread biomechanical

transmission to drive integrate-and-fire neuron models [67] trained and validated on neu-
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rophysiological recordings [98]. Chapter 6 further details the data-driven approach for

predicting biomechanical transmission across the upper limb. This computationally effi-

cient approach achieves high spatiotemporal resolution in modeling both biomechanical

and neural responses across the whole hand.

2.3 Pre-Neuronal Biomechanics in Sensory Systems

Pre-neuronal biomechanical processes mediate neural circuitry in many sensory sys-

tems. In the vestibular system, the body’s biomechanics shape the statistics of natural

vestibular stimuli prior to neural processing [156]. A more well-studied biomechanical

system is the basilar membrane in the cochlea, which acts as a biomechanical filter that

maps acoustic signals to vibrations that excite auditory nerve fibers at frequency-specific

locations on the membrane before neural processing [157, 158]. Moreover, the cornea

and lens of the eye act as biomechanical filters that focus light onto the retina [159, 160].

The role of pre-neuronal biomechanics in sensory neural processing has also been stud-

ied in other animals, such as how the mechanical properties of whiskers influence tactile

sensing information available to the rodent vibrissal system [161, 162, 163]. In short, the

pre-neuronal effects of biomechanics cannot be decoupled from underlying sensory neural

processes—they must be studied together [164, 165, 166].

Understanding the interplay between the biomechanical and neural processes in

sensory systems is important for several applications, including sensory neuroscience,

medicine, biomedical engineering, and artificial sensing systems. In sensory neuro-

science, studying this interplay sheds light on sensory system function and human

perception [167], as well as insights into the evolutionary adaptations of sensory sys-

tems [14, 168, 169]. Cochlear implants [9, 10] and diagnoses and corrective interventions

for vision loss [170] are prime examples of how knowledge about pre-neuronal biomechan-
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ics can also lead to advances in medicine and biomedical engineering. Knowledge about

the effect of biomechanical processes on neural processes has also been leveraged for arti-

ficial sensing systems, such as biomimetic tactile sensors [171] and robotic whiskers [172].

Such applications are further discussed in Section 2.4.

2.3.1 Tactile System

In the tactile system, the skin is the primary interface between the environment and

the mechanoreceptors. Therefore, changes in the biomechanical state of the hand, local

or otherwise, directly mediate the neural responses of mechanoreceptors embedded in

the skin that eventually give rise to tactile perception. Prior research has identified

pre-neuronal effects of biomechanics in the tactile system, such as introducing response

latency [137, 173]. Moreover, the viscoelastic nature of the skin has been shown to play

a role in mechanoreceptor responses by acting as a low-pass filter [174] and retaining

memory of prior mechanical stimuli [175]. Importantly, research has demonstrated that

hand biomechanics perform pre-neuronal computations on tactile signals, potentially

aiding subsequent neural encoding and perceptual processing [2, 30] (Chapter 3). Indeed,

biomechanical transmission has provided an explanation for some surprising aspects of

human touch perception [4, 17, 18, 56]. Work presented in this dissertation may shed light

on unexplained aspects of human touch perception, such as the perception of complex

vibrotactile stimuli [119, 120, 121] and intensity [98].

Critically, studying biomechanical transmission in the skin facilitates the simulation

and analysis of mechanoreceptor population responses [67, 149], which is crucial for de-

veloping a comprehensive understanding of the tactile system [25, 83, 117]. For example,

it enables the analysis of the spatial and temporal organization of touch information in

mechanoreceptor population responses [15] (Chapter 4), addressing important questions
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in sensory neuroscience, such as rate versus spike timing codes [112, 114, 115, 116]. Fur-

thermore, analysis of biomechanical transmission has revealed evolutionary insights into

the tactile system, such as how wave propagation dictates the depth of PCs in the skin

of various mammals [14]. Such studies exploring the evolutionary aspects of sensory sys-

tems provide a unique lens into biomechanical and neural architecture and morphology.

Chapter 3 may shed light on other evolutionary aspects of the human tactile system,

such as encoding efficiency [2] and the number [81, 82] and distribution [3, 103] of PCs

in the hand.

Understanding the relationship between biomechanics and peripheral neural encoding

in the tactile system, especially at the population level, is challenging due to experimental

constraints. Computational methods combining mechanical and neural data have been

developed to address this, providing new insights into the tactile system. For instance,

these methods have been applied to study tool use [27], proprioception [176, 177], and

the detection of dynamic tactile signals [61]. Similarly, this dissertation applies computa-

tional modeling and data-driven simulations to investigate neuromechanical interactions

within the hand at the population level, contributing an approach that overcomes exper-

imental constraints to improve our understanding of the human tactile system.

2.4 Application Areas

The work in this dissertation on measuring and predicting biomechanical transmission

in the upper limb and investigating the subsequent effects on whole-hand mechanorecep-

tor population responses has applications in a broad range of areas, including medicine,

prosthetics, robotics, and haptics. Specific applications and prior work in these areas are

described in the following subsections.
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2.4.1 Health and Medicine

The biomechanical properties of the skin change with age [178, 179]. Aging also causes

changes in mechanoreceptor morphology, function, and density [82, 180]; for example, it

is hypothesized that the number of PCs in the hand decreases with age [92, 103]. These

changes lead to a decline in tactile sensitivity [181] and spatial acuity [182], which can

significantly affect daily functioning and quality of life. As a result, understanding age-

related biomechanical and neural changes is an active area of research. The mechanical

properties of the skin also change as a result of various diseases such as scleroderma or

Ehlers-Danlos syndrome [39].

Research has been conducted to develop diagnostic methods for these diseases and

age-related changes by characterizing the mechanical properties of the skin. Methods in-

clude applying vibrations and measuring resulting wave propagation [36, 62, 179, 183] or

developing models of biomechanical transmission in the skin to provide a computational

diagnostic testbed [38, 57]. Another study introduced a method to quantify skin de-

formation during the application of von Frey monofilaments [184], which are commonly

used to assess a decline in tactile acuity and sensitivity due to neuropathy, stroke, or

traumatic injury. Moreover, measuring and modeling biomechanical transmission aids

in understanding the impact of extended vibration exposure, common in occupational

power tool use [52, 53, 63, 185].

2.4.2 Tactile Sensory Prostheses

By 2050, it is estimated that 3.6 million individuals in the United States will be living

with limb loss [186], a deficit that significantly impacts day-to-day function and quality

of life [187]. Prosthetic limbs have been developed to replace the lost limb. Traditionally,

the focus of prosthesis development has been forward kinematic control rather than tactile
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feedback [188]. However, studies have demonstrated that daily activities are prohibitively

difficult to perform without the sense of touch [5, 6, 7, 8, 23]. This underscores the need for

developing tactile feedback methods [189], which significantly improve user acceptance,

embodiment, confidence, and task performance [190, 191].

At the periphery, methods for conveying tactile feedback include nerve stimulation

and sensory substitution via mechanical or electrical feedback [192, 193, 194]. Sen-

sory substitution devices have also been developed for individuals who have lost tac-

tile sensation due to circumstances such as diabetic neuropathy, stroke, or traumatic

injury [195, 196]. Among the most promising approaches for providing informative and

realistic feedback are biomimetic methods that mimic the human tactile system [197, 198,

199, 200, 201, 202, 203, 204]. A better understanding of the influence of biomechanics on

mechanoreceptor responses could help bridge the gap between artificial tactile feedback

and the rich sensations felt from an intact, fully functional limb. Similar to how insights

into the interplay between biomechanics and neural encoding in the auditory system have

been pivotal in developing the cochlear implant [9, 10]—a sensory prosthesis that has re-

stored hearing for hundreds of thousands of individuals [11]—analogous understandings

in the tactile system could inform advancements in prosthetic limbs. Tactile feedback in

prosthetic limbs also involves sensing tactile information from the environment, which is

discussed in the following section on robotics.

2.4.3 Robotic Tactile Sensing

A longstanding goal in robotics is to develop robots that can perform dexterous

manipulation tasks at or above the level of their human counterparts. Significant research

has focused on developing artificial tactile perception for robots [205], given that tactile

feedback is crucial for manipulation and sensing tasks [6, 8]. A promising approach,
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like for prosthetic limbs, is to draw inspiration from the human hand and its underlying

tactile system [206, 207, 208, 209, 210]. This has led to the creation of electronic skins

(e-skins), often composed of a soft skin-like polymer with embedded sensors that function

as artificial mechanoreceptors [171, 211, 212]. Along with these advances in hardware,

biomimetic algorithms reflecting how mechanoreceptors encode tactile information in

their spiking responses have been developed [213, 214, 215, 216, 217, 218, 219].

Advancements in understanding the population encoding mechanisms of mechanore-

ceptors in response to diverse tactile interactions may enable more flexible and robust

artificial perception algorithms. Additionally, with e-skins that act as biomechanical

transmission mediums, tactile information can be widely transmitted beyond the imme-

diate point of contact with the environment, as in the skin. Knowledge and concepts

from studying biomechanical transmission in the human hand can then be applied to

artificial tactile sensing. For example, Chapters 3, 4, and 5 demonstrate that sensors can

be situated remotely from the contact site, which not only improves robustness but also

reduces device complexity, allowing a more sparse distribution of sensors [220].

2.4.4 Haptic Technologies

Haptic technologies interface with the sense of touch. Perhaps the most common

haptic devices are smartphones or tablets that provide simple vibration feedback when

receiving a notification or typing on a keyboard. Haptic feedback devices are also becom-

ing increasingly prevalent for gaming, virtual and augmented reality (VR/AR), teleop-

eration, and interpersonal communication. Since most haptic devices first interface with

the skin, biomechanical transmission plays a role in haptic device use and, in some cases,

can be leveraged for sensing and feedback purposes.
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Tactile Sensing

Touch-elicited skin oscillations transmit information about the contact events across

widespread areas of skin [12]. Such acoustic information can be captured remotely from

the contact location using wearable sensors, such as accelerometers [1, 58] and micro-

phones [12], and interpreted using feature extraction and classification methods. The

skin can then become a versatile input device, allowing users to perform touch interac-

tions that can be digitally identified or transcribed [221]. For example, wearable haptic

devices that measure biomechanical transmission have been developed to recognize touch

interactions at various locations on the body [60, 222, 223] or external surfaces [224] for

digital interface manipulation. Chapter 5 presents a haptic wristband device that dig-

itally transcribes tactile sign language letters signed on the hand by leveraging biome-

chanical transmission.

Haptic Feedback

Haptic devices that deliver mechanical feedback, such as vibration, generate

widespread skin oscillations. Studies have shown that it is important to consider biome-

chanical transmission when developing haptic feedback devices because it plays a role in

touch perception [59, 225]. Notably, feedback-elicited skin oscillations can impact per-

ception in unexpected or unwanted ways, such as diminishing a user’s ability to sense the

direction of a stimulus [56]. But, biomechanical transmission can also be harnessed to

create novel haptic feedback techniques. For example, a prior study developed a method

using a single actuator to create sensations that spatially expanded or contracted by

leveraging the frequency-dependent attenuation properties of the skin [4]. Addition-

ally, biomechanical transmission has been utilized to enhance interpersonal communica-

tion [226] and to focus sensation at a specified location on the arm [227]. Developing
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a better understanding of biomechanical transmission in the skin may enable the cre-

ation of new haptic feedback devices and techniques for more realistic and diverse tactile

experiences. Chapter 6 allows users to computationally test haptic feedback patterns

or sensing paradigms that leverage biomechanical transmission, which may guide haptic

device design.
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Chapter 3

Pre-neuronal Biomechanical

Filtering Modulates and Diversifies

Whole-Hand Tactile Encoding

During manual touch interactions, widespread mechanoreceptors are excited by skin os-

cillations transmitted biomechanically across the whole hand. However, little is under-

stood about how biomechanical transmission influences the responses of mechanorecep-

tors, particularly outside the region of direct touch contact. This chapter characterizes

the filtering effects of hand biomechanics on skin oscillations using high-resolution vi-

brometry measurements. It further develops measurement-driven neural simulations to

understand the impact of biomechanical filtering on whole-hand mechanoreceptor popu-

lation responses. The data-driven methodology introduced here is extended in Chapter

4 to analyze whole-hand tactile encoding of natural touch interactions, while Chapter 6

adapts the biomechanical aspect into a free-to-use computational toolbox for applications

in neuroscience and haptics. Additionally, Chapter 5 presents a wearable haptic sensing

device that leverages biomechanical transmission to translate tactile sign language.
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The content of Chapter 3 is adapted from [19]:

N. Tummala, G. Reardon, B. Dandu, Y. Shao, H. P. Saal, Y. Visell, Pre-

neuronal biomechanical filtering modulates and diversifies whole-hand tac-

tile encoding. bioRxiv, 2024. DOI: https://doi.org/10.1101/2023.11.

10.565040.

Abstract

Touching an object elicits skin oscillations that are biomechanically transmitted

throughout the hand, driving responses in numerous exquisitely sensitive Pacinian cor-

puscle neurons (PCs). Previous studies have documented PC response properties using

stimuli applied adjacent to the receptor location. However, activity in the majority of

PCs is evoked by transmitted skin oscillations that are further modified by biomechanical

filtering. The significance of this filtering mechanism and its influence on tactile process-

ing have not been elucidated. Here, we combined vibrometry imaging and computational

experiments to characterize the effects of biomechanical filtering on spiking activity in

whole-hand PC populations. We observed complex, distance- and frequency-dependent

patterns of biomechanical filtering shaped by tissue mechanics and hand morphology.

This biomechanical modulation diversified PC population spiking activity, enhancing

tactile encoding efficiency. These findings indicate that biomechanics furnishes a pre-

neuronal mechanism that facilitates efficient tactile processing.

Significance

Manual touch interactions initiate a dynamic interplay between the biomechanics of

the skin and the responses of tactile sensory neurons throughout the hand. The properties
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of isolated sensory neurons have been described, but the influence of biomechanics on

neuronal population responses is not well understood. Our study uses mechanical imaging

and computational techniques to reveal the prominent effects of skin biomechanics in

modulating and diversifying the responses of widespread sensory neurons. This research

highlights the value of an integrative, population-level understanding that accounts for

both neural and non-neural factors in sensory processing. Our findings also suggest that

the brain should integrate information from widely distributed sensory neurons, an idea

that has implications for neuroscience, haptic engineering, and sensing technologies

3.1 Introduction

The sense of touch is stimulated when the skin comes into contact with the environ-

ment. During such contact events, perceptual information is often regarded as originating

from the responses of tactile sensory neurons terminating near the contact location. But

the sense of touch is also invoked when the environment is explored indirectly through

a probe, such as a tool, fingernail, or whisker. Such probes are not innervated by sen-

sory neurons. Instead, perceptual information is mediated by “internal contacts” that

biomechanically couple the probe to skin innervated by tactile sensory neurons [228].

The same biomechanical couplings that mediate indirect touch are also involved during

direct touch. In both cases, these couplings facilitate the transmission of touch-elicited

skin oscillations to regions far from the contact location [14, 48], which excites remote

tactile sensory neurons [174].

Indeed, manual touch interactions, such as texture exploration [12, 24], dexterous

manipulation [25], and tool use [27], generate prominent skin oscillations that are trans-

mitted across the hand. The biomechanics of the hand transforms localized contact forces

into spatially distributed skin oscillations that carry information about the initial con-
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tact event [1, 12, 55]. These oscillations excite widespread Pacinian corpuscle neurons

(PCs) [13, 14, 15, 16] that encode the transmitted tactile information in their spiking

responses.

There is ample evidence that the brain exploits these widespread skin oscillations

and PC responses in touch perception. For example, humans can discriminate between

different surface textures [17] or vibration frequencies [18] applied to their anesthetized

finger by exploiting information transmitted to remote PCs. The perceptual significance

of widespread PC responses is also exemplified by vibrotactile summation and masking

effects between stimuli applied at distant hand locations [229, 230]. These perceptual

results are consistent with observations that PCs readily respond to subtle vibrations of

the ground or other substrates evoked by a distant contact event [84, 131]. In several

species, this facilitates the detection of substrate vibrations for long-range perception and

communication [231, 232]. Indirectly evoked PC responses also mediate the perception

of contact events during object manipulation and tool use [25, 26, 27].

Recent studies suggest that the biomechanics of the hand modifies transmitted skin

oscillations by applying filtering effects, such as the frequency- and location-dependent at-

tenuation imparted by the soft tissues of the hand [4, 13]. However, the modulatory effects

of biomechanical filtering on PC spiking activity throughout the hand are unknown. Ex-

isting peripheral neural recordings reveal PC response characteristics to be highly stereo-

typed, with the highest frequency sensitivity between 200 to 300 Hz [90, 93, 97, 99, 100].

These recordings, however, are obtained from PCs adjacent to the stimulus contact lo-

cation. As a result, they do not capture the effects of biomechanical filtering that would

modulate the responses of more distant PCs. Thus, the influence of biomechanical fil-

tering on tactile encoding by whole-hand PC populations and its implications for tactile

sensing has received little prior attention.

It is not straightforward to deduce the influence of hand biomechanics on PC pop-
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ulation responses due to the complex and heterogeneous morphology of the hand. Fur-

thermore, extant experimental techniques preclude the simultaneous recording of neu-

ral signals from populations of PCs [149]. To overcome these limitations, we captured

high-resolution vibrometry measurements of skin oscillations across the whole hand. We

then used these measurements to drive whole-hand populations of spiking PC neuron

models. We first analyzed the vibrometry measurements to determine the frequency-

and location-dependent patterns of biomechanical filtering across the hand. Using our

data-driven neural simulation methodology, we then characterized the influence of biome-

chanical filtering on the tuning characteristics of individual PCs distributed across the

hand and on tactile encoding by whole-hand PC populations. Our findings reveal that

biomechanical filtering furnishes a pre-neuronal mechanism that modulates and diversi-

fies PC spiking activity across the hand, thereby supporting efficient tactile processing

in the periphery.

3.2 Imaging Whole-Hand Biomechanical Transmis-

sion

We characterized the transmission of skin oscillations across the glabrous skin of sev-

eral human hands (n = 7, P1 to P7). Mechanical impulses (0.5 ms duration) were applied

at four distinct contact locations, and evoked skin oscillations were recorded at 200 to 350

spatially distributed locations via optical vibrometry (sample rate 20 kHz, grid spacing

8 mm; see Methods, and Fig. 3.1A). These impulse measurements characterized biome-

chanical transmission across the hand within the frequency range relevant to PCs (20 to

800 Hz). The dispersive nature of biomechanical transmission altered both the temporal

structure and frequency content of skin oscillations (Fig. 3.1B, D). As a consequence, we
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observed the pairwise temporal and spectral correlation of skin oscillations at different

locations to decrease with increasing pairwise distance (Fig. 3.1C, D)).

Due to the linearity of biomechanical transmission in the small signal regime [21,

54], the impulse measurements accurately encoded the transmission of skin oscillations

in the hand, which was confirmed in validation experiments (Fig. 3.5). This allowed

us to compute the whole-hand skin oscillations that would be evoked by an arbitrary

input waveform by convolving the input waveform with the impulse measurements (see

Methods, and Fig. 3.6A). Using this technique, we computed the skin oscillations evoked

by diverse tactile input signals, including sinusoids, diharmonics, and bandpass-filtered

noise, via in silico experiments. This method preserved the effects of biomechanical

filtering, including the phase and amplitude of evoked skin oscillations (Fig. 3.1E, F).

3.3 Biomechanically Mediated PC Spiking Activity

PC spiking responses are driven by deformations of the corpuscle caused by mechan-

ical oscillations of surrounding tissues [93]. Thus, we sought to characterize the influence

of biomechanical filtering on PC spiking responses. However, current experimental tech-

niques preclude the in vivo measurement of PC population responses [149]. To overcome

this limitation, we determined the spiking responses of whole-hand PC populations in

silico, using the computed skin oscillations to drive a population of spiking PC neuron

models that were fit to physiological data in prior research [67] (Fig. 3.6A). Each PC

neuron model was driven by skin oscillations at its location in the hand. The spatial

distribution of PCs across the hand was selected based on findings from a prior anatom-

ical study [81]. We used this methodology to obtain whole-hand PC population spiking

responses evoked by arbitrary tactile inputs supplied at any of four contact locations on

the hand.

40



Biomechanical Filtering Modulates and Diversifies Whole-Hand Tactile Encoding Chapter 3

Figure 3.1: Evoked skin oscillations drive location-specific spiking responses
in PCs throughout the hand. (A) Scanning laser Doppler vibrometer (LDV)
measurement setup. (B) Left: vibrometry measurements of skin oscillations at se-
lected locations (blue dots) elicited by an impulse (0.5ms pulse width) applied at the
digit III distal phalanx (DP) (red arrow). Right: PC spiking responses evoked by
respective skin oscillations, shown for PC neuron model type 4. (C) Absolute Pear-
son correlation coefficients between skin oscillations shown in (B). (D) Magnitude
spectra of skin oscillations shown in (B). (E) Reconstructed skin oscillations elicited
by a bandpass-filtered noise stimulus (top trace, 50 to 800Hz band) applied at the
digit III DP. (F) Absolute Pearson correlation coefficients between skin oscillations
at different distances from the contact location shown in (E). (G) Upper panel: PC
mean firing rates elicited by an impulse applied at the digit III DP (red arrow; 15 µm
max. peak-to-peak displacement across hand). Lower panel: cumulative percent of
spikes (black) and responding PCs (blue) located within increasing distances from
the contact location. Shaded region: results within digit III. (H) As in (G), for a
200Hz sinusoidal stimulus (15 µm max. peak-to-peak displacement across hand). (I)
As in (G), for a bandpass-filtered noise stimulus (50 to 800Hz band, 5 µm max. RMS
displacement across hand). (J) PC spiking responses (right, PC neuron model type
4) evoked by skin oscillations (middle) at selected locations (left, blue dots) elicited
by a diharmonic stimulus (f1 = 50Hz, f2 = 100Hz) applied at the digit III DP (red
arrow). Light blue bars: RMS displacements of skin oscillations; black and gray bars:
percent of skin oscillation frequency magnitude spectrum composed of 50Hz (black)
or 100Hz (gray) components; dark blue bars: PC firing rates calculated from spikes
within shaded region. All plots show data from Participant 5 (P5).
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All stimuli evoked spiking activity in PCs throughout the hand, consistent with pre-

dictions from theory and findings from prior studies [12, 13, 14]. The majority of the

elicited spiking activity and responding PCs were in hand regions far removed from the

contact location. This was true for all stimulus types, including brief impulses (Fig. 3.1G),

sinusoids (Fig. 3.1H and Fig. 3.6C), and bandpass-filtered noise stimuli (Fig. 3.1I) and

Fig. 3.6E). In each case, the patterns of evoked spiking activity reflected the effects of

biomechanical filtering (Fig. 3.6B, D). For example, a brief impulse evoked PC spiking

responses that varied based on hand location and exhibited sustained firing for more than

20 ms, reflecting the dispersive effects of biomechanical transmission (Fig. 3.1B).

PC responses also exhibited characteristic entrainment behavior (phase-locking to the

oscillations of periodic stimuli) that was modified by biomechanical filtering. For exam-

ple, a diharmonic stimulus applied at the fingertip evoked distance-dependent patterns of

entrainment (Fig. 3.1J). Receptors near the contact location (< 60 mm) entrained to the

higher frequency signal component (100 Hz), while more distant receptors entrained to

the lower frequency component (50 Hz). This distance-dependent entrainment behavior

arose due to the greater attenuation of higher frequency skin oscillations with distance

(Fig. 3.1J, black and gray bars), an effect of tissue viscoelasticity [4, 48]. Thus, PC spik-

ing activity is altered by effects of biomechanical filtering that vary with the location of

the receptor in the hand.

3.4 Spatial Dependence of Biomechanical Filtering

To more fully characterize the spatial dependence of biomechanical filtering, we ana-

lyzed the frequency-dependent transmission of skin oscillations across the hand. Applied

sinusoidal stimuli (frequencies between 20 and 800 Hz) elicited widespread skin oscilla-

tions, with distance-dependent amplitudes that varied greatly with stimulus frequency
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Figure 3.2: Biomechanical filtering in the hand is frequency- and location-de-
pendent. (A) Normalized root mean square (RMS) skin displacements averaged
within 10mm-wide bands at increasing distances from the contact location elicited by
sinusoidal stimuli of various frequencies (20 to 800Hz). Amplitude scale bars (top,
gray) show maximum peak-to-peak displacement across the hand at each frequency.
Red lines: median transmission distance; red arrow: contact location. Shown for P5.
(B) Median transmission distance of RMS skin displacement distributions across fre-
quency for all participants and contact locations. Red arrows: contact location; lines:
median across participants; dots: data points for each participant. (C) RMS dis-
placement across the hand elicited by sinusoidal stimuli of various frequencies (20 to
800Hz). Red arrow: contact location. Shown for P5. (D) As in (C), for other contact
locations. Shown for P5. (E) As in (C), for P1 to P7. (F) Percent of glabrous skin
where RMS skin displacement is within 20 dB of the maximum RMS displacement,
for all participants and contact locations. Plots can be read as in (B).
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(Fig. 3.2A); results for other participants and contact locations: see Fig. 3.7). At low

frequencies (≤ 100 Hz), the median transmission distance extended well beyond the stim-

ulated digit, and the amplitude decay was non-monotonic with distance from the contact

location. In contrast, higher-frequency components were concentrated within the stimu-

lated digit and exhibited relatively monotonic decay with distance. We obtained similar

findings for all participants and contact locations (Fig. 3.2B). These complex, frequency-

dependent patterns of biomechanical filtering are a function of soft tissue viscoelasticity

and the heterogeneous morphology of the hand.

We further observed the influence of the hand’s morphology and skeletal structure

in the spatial patterns of biomechanical filtering across the whole hand (Fig. 3.2C-E;

results for all participants and contact locations: see Fig. 3.8). At low frequencies

(≤ 100 Hz), transmission was notably enhanced near the metacarpophalangeal (MCP)

joint of the stimulated digit and in the lateral and contralateral extensions of the palmar

surface (thenar and hypothenar eminences). These whole-hand patterns of biomechani-

cal filtering also demonstrated that low-frequency stimuli evoked prominent oscillations

(amplitudes within 20 dB of maximum) over a substantial fraction of the hand surface

(mean 50 %; Fig. 3.2F). In contrast, higher frequencies evoked skin oscillations that were

confined to a smaller proportion of the hand surface (mean 8 %). These findings were

consistent across contact locations and participants.

3.5 Biomechanical Filtering Modulates PC Tuning

We next examined how biomechanical filtering modulates the tuning characteristics

of PCs, as reflected in their frequency-dependent entrainment behavior (Fig. 3.1J). To do

this, we analyzed whole-hand PC spiking activity evoked by sinusoidal stimuli of various

frequencies (20 to 800 Hz). We characterized the frequency-dependent sensitivity of PCs
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Figure 3.3: Biomechanical filtering diversifies PC response characteristics.
(A) Entrainment threshold curves of PCs at selected locations (blue dots). Red ar-
row: Contact location. Shown for PC neuron model type 4 and P1. (B) Entrainment
threshold curves of PCs at selected locations (blue dots) for each of four contact lo-
cations (colored arrows). Line colors correspond to contact locations. Shown for PC
neuron model type 4 and P1. (C) Preferred frequency (left), minimum curve value
(middle), and curve width (right) for each PC in the hand. Red arrow: contact loca-
tion; red text: participant number. (D) Lower panel: Entrainment threshold curves
for all PCs in the hand rank ordered by preferred frequency. Upper panel: Number
of PCs at each frequency with entrainment threshold curve values within 0 dB (light
gray), +2 dB (medium gray), and +6dB (dark gray) of the curve minimum. Partic-
ipants and contact locations as in (C). (E) Pearson correlation coefficients between
all pairs of entrainment threshold curves of PCs located within 10mm of the contact
location and those of PCs located within 20mm-wide bands at increasing distances
from the contact location. Center distance for each band shown. Dots: median; error
bars: IQR; gray dotted lines: linear fit of medians; gray text: R2 value for linear fit.
Participants and contact locations as in (C).
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by computing entrainment threshold curves, which represent the minimum displacement

required to evoke entrainment at each frequency (see Methods). PCs located near the

contact location exhibited U-shaped entrainment threshold curves with preferred (most

sensitive) frequencies between 200 and 300 Hz (Fig. 3.3A and Fig. 3.9A). This result

is consistent with established descriptions of PC function, which are based on in vivo

experiments where the stimulus is applied adjacent to the PC [90, 93, 97, 99, 100].

However, we obtained diverging findings for the larger number of PCs located outside

the contact region. Entrainment threshold curves for remote PCs varied greatly and

exhibited multiple prominent minima, reflecting location-specific effects of biomechanical

filtering (Fig. 3.3A and Fig. 3.9B, C). Moreover, PC entrainment threshold curves varied

as the contact location varied (Fig. 3.3B).

We further analyzed the distribution of frequency tuning across whole-hand PC

populations by rank ordering all entrainment threshold curves by preferred frequency

(Fig. 3.3C, D; results for all participants and contact locations: see Fig. 3.10). Within

each population, PCs exhibited diverse preferred frequencies, ranging from 25 to 420 Hz

(Fig. 3.11A-D). The preferred frequencies of PCs located near the contact location were

consistent with values obtained in prior studies (200 to 300 Hz), as noted above. However,

PCs located outside the contact region exhibited a wider range of frequency sensitivities

(Fig. 3.11E-H). Strikingly, across all participants and contact locations, a substantial

proportion of PCs in a population preferred frequencies below 100 Hz (mean 47 %). In

addition, PCs at greater distances from the contact location exhibited more narrowly

tuned curves and higher thresholds, indicating greater specificity in frequency preference

and lower sensitivity (Fig. 3.3C).

However, the entrainment threshold curves exhibited complex shapes that varied

greatly with hand location in a manner not adequately summarized by preferred fre-

quency, curve width, or minimum threshold. To characterize distance-dependent varia-
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tions in the threshold curves, we instead calculated pairwise correlations between thresh-

old curves of PCs at the contact location and those within regions at progressively greater

distances from the contact location (Fig. 3.3E; results for all participants and contact

locations: Fig. 3.12). For all participants and contact locations, the median pairwise

correlation between threshold curves decreased with increasing distance from the con-

tact location (0.027 to 0.095 per 20 mm; R2 = 0.71 to 0.91). Together, these findings

demonstrate that pre-neuronal biomechanical filtering diversifies frequency response char-

acteristics in whole-hand PC populations.

3.6 Biomechanical Filtering Diversifies Tactile En-

coding

We next asked whether this diversification enhanced information encoding in PC

population spiking responses, particularly for the large proportion of PCs outside the

contact region. To address this, we characterized the dimensionality and information

content of PC population spiking activity as a function of distance from the contact

location. Informed by prior research [98, 112], we employed a diverse set of stimuli con-

taining sinusoidal, diharmonic, and bandpass-filtered noise signals with various frequency

and amplitude parameters (Table 3.1, Table 3.2, Table 3.3). We used principal compo-

nent analysis to assess the latent dimensionality of PC firing rates in subpopulations of

PCs within increasing maximum distances from the contact location. For all participants

and contact locations, dimensionality, calculated as the number of principal components

needed to capture 99 % of the variance in the firing rates, increased with distance. The

dimensionality was 2 to 5 times higher at distances greater than 100 mm from the con-

tact location than at distances less than 20 mm (Fig. 3.4A). Thus, PCs at increasing
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Figure 3.4: Biomechanical filtering diversifies PC spiking activity. ((A) Num-
ber of principal components explaining 99% of the variance in the firing rates of PCs
within increasing distance ranges from the contact location. Colors indicate contact
location; dots: data points for each participant; lines: median across participants.
Analyses are conducted on PC spiking activity evoked by a diverse stimulus set. (B)
Total information entropy of interspike interval (ISI) distributions (1ms bin width)
constructed from the spiking activity of PCs within increasing distance ranges from
the contact location. Plot can be read as in (A). (C) Mean absolute spike train cor-
relation between all pairs of PCs both located within increasing distances from the
contact location. Spike trains were binned with a bin width of 1ms. Plot can be read
as in (A). (D) ISI histograms constructed from the spiking activity of PCs located
within increasing distances from the contact location (hand inset) in response to a
bandpass-filtered noise stimulus (50 to 800Hz band, 5 µm max. RMS displacement
across hand, 175ms duration) applied at the digit II DP of P5. (E) Median (circles),
interquartile range (triangles), and total information entropy (squares) of the ISI his-
tograms in (D).
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distances from the contact location captured progressively more variance, highlighting

the facilitative role of biomechanical filtering in PC population encoding.

In addition to firing rates, PCs signal information about touch events via spike tim-

ing [112]. We characterized information encoded in PC spike timing by computing the

Shannon information entropy of interspike interval (ISI) histograms constructed from

the spiking activity of PC subpopulations within increasing maximum distances from

the contact location. For all stimuli, ISIs were generally larger and more broadly dis-

tributed with increasing distance (Fig. 3.4D, E and Fig. 3.13). Consequently, information

encoded in the ISIs increased monotonically with distance by a factor of more than 1.4

before plateauing at 140 to 180 mm from the contact location (Fig. 3.4B). The findings

were robust to variations in ISI histogram bin widths (Fig. 3.14A-G).

We also analyzed the correlations between spiking responses evoked in subpopulations

of PCs within increasing maximum distances from the contact location. Consistent with

the ISI findings, as distance increased, the spiking responses of remote PCs became

progressively less correlated with the spiking responses of PCs near the contact location,

as quantified by mean pairwise spike train correlations (Fig. 3.4C and Fig. 3.14H-N).

Together, these information encoding measures demonstrate that biomechanical filtering

diversifies PC spiking activity by enabling remote PCs to encode information not captured

by PCs near the contact location, thereby supporting tactile encoding efficiency [107, 108].

The plateaus in the computed measures also indicate that some response redundancy is

preserved within the population responses.

3.7 Discussion

Our study combined high-resolution vibrometry measurements of whole-hand biome-

chanical transmission with neural simulations leveraging extensively validated neuron
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models [67]. The results shed light on the pre-neuronal role of biomechanical filtering in

modulating and diversifying PC population spiking activity. These findings indicate that

previously documented response characteristics of isolated PCs, including entrainment

threshold curves, do not accurately capture the behavior of most PCs within the human

hand. Because the majority of PCs that respond during touch events are distant from

the contact location, neural activity in remote PCs represents a dominant proportion

of the total population response and can thus be expected to affect downstream tactile

processing and, ultimately, perception.

The perceptual significance of widespread PC responses is well established by studies

that reveal prominent vibrotactile summation and masking effects arising between stimuli

applied at distant hand locations [229, 230]. There is also ample evidence that biome-

chanically facilitated activity in remote PCs influences perception. Prior experiments

have demonstrated that in subjects with impaired tactile sensation due to anesthesia,

nerve compression, or traumatic injury, tactile perception in both the high-frequency

(> 80 Hz) and flutter range (∼ 20 Hz) can be mediated by remote PCs [18, 233, 234].

Prior research also shows that fine surface textures explored with the anesthetized finger

can be perceptually discriminated [17]. These discriminative abilities were found to be

facilitated by spiking activity in remote PCs evoked by skin oscillations transmitted far

from the contact location [12].

Prior studies have also demonstrated the significance of biomechanical transmis-

sion for the perception of artificial haptic feedback. For example, the propensity of

lower-frequency skin oscillations to travel greater distances has been exploited to realize

frequency-controlled haptic effects that are perceived to expand or contract in spatial

extent from a single localized site of stimulation [4]. Moreover, a recent study reported

prominent effects of biomechanical transmission on the perception of tactile motion stim-

uli supplied via airborne ultrasound [56].
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Accounting for the effects of biomechanics on peripheral tactile encoding may also

shed light on touch perception in other settings. For example, perceived vibrotactile

intensity is highly frequency-dependent [235, 236], but the observed dependence conflicts

with predictions derived based on responses of PCs adjacent to the contact location [98].

Moreover, our understanding of the perception of polyharmonic stimuli is incomplete. A

proposed model for the perception of stimuli with complex frequency spectra invoked the

existence of mechanoreceptor subpopulations that vary in frequency tuning [120, 121].

However, this model has not gained traction because such subpopulations have not been

previously observed. Indeed, established characterizations of PC function based on stim-

ulation near the receptor location depict PC frequency sensitivity as highly stereotyped.

Our findings may also shed light on a number of peculiar aspects of PC innerva-

tion of the hand. Despite the stereotyped response properties of isolated PCs and their

large receptive fields, which span most of the hand, PCs in the glabrous skin number

in the hundreds or more [3, 81, 82, 103]. Together, these characteristics may be inter-

preted to imply tremendous response redundancy, which would be at odds with encoding

efficiency hypotheses [107, 108]. However, our results demonstrate that biomechanical

filtering diversifies PC response characteristics, thereby reducing PC population response

redundancy and enhancing encoding efficiency. Furthermore, prominent clusters of PCs

are observed near the MCP joints in human hands [3, 103]. Near those locations, we ob-

served elevated oscillation amplitudes at low frequencies (< 100 Hz), suggesting that PCs

may be preferentially located in regions of the hand where biomechanical transmission is

facilitated.

The frequency-dependent patterns of biomechanical transmission and filtering we ob-

served are generally consistent with prior characterizations of mechanical propagation

near the contact location [4, 13, 37], taking into account likely differences in contact con-

ditions. Here, we present whole-hand measurements at significantly greater spatiotempo-
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ral resolution than was used in prior studies. This made it possible to resolve previously

unobserved effects of biomechanical transmission and filtering throughout the hand, in-

cluding the non-monotonic decay of oscillation amplitude with distance and the contact

location-dependent variations in filtering.

Despite the observed complexity of biomechanical transmission in the hand, several

characteristics were conserved across multiple hands and contact locations. These in-

cluded the frequency-dependent variations in transmission amplitude with distance, the

elevated transmission distances at low frequencies (≤ 100 Hz), and the enhancement of

transmission near the MCP joints. These features demonstrate how biomechanical filter-

ing generates spatial and spectral structure that the brain could learn and exploit, similar

to hypotheses for efficient encoding of whole-hand touch events [2], object slippage [30],

and tool use [27].

Overall, the pronounced effects of biomechanics that we observed in the PC system

exemplify how pre-neuronal mechanisms can play a crucial role in sensory processing,

which is supported by analogous findings in other sensory systems. For example, the ef-

fect of biomechanical filtering on tuning properties across PC populations in the hand is

somewhat comparable to the frequency-place transform that is biomechanically affected

by the mammalian cochlea [237, 238]. Moreover, the biomechanics of the human body

filters the frequency content of motion inputs to the vestibular system during natural

movement, which likely has consequences for underlying neural circuitry [156]. Similar

conclusions about the impact of biomechanics in sensory processing have been drawn in

studies of the rodent vibrissal system, where the mechanics of the whiskers are instru-

mental to tactile neural coding [162, 163].
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3.8 Methods

3.8.1 In Vivo Optical Vibrometry

Mechanical oscillations across the volar hand surface were imaged with a scanning

laser Doppler vibrometer (SLDV; model PSV-500, Polytec, Inc., Irvine, CA; sample

frequency 20 kHz) fastened to a pneumatically isolated table. During each recording,

the hand was fixed to the table in an open, palm-up posture via custom-fit 3D-printed

supports that were fastened to the table and adhered to the fingernails of all but the

stimulated digit (Fig. 3.1A). Participants (n = 7, 5 male) were 20 to 45 years of age (mean

27.4 years) and were recruited from the student and staff population at the authors’

institution. The sample size was determined based on previously published research

employing similar methodologies [13, 1, 2, 4]. Participants were seated in a reclined chair

with the arm relaxed, supported by a foam armrest, and constrained with Velcro straps.

All participants gave their informed, written consent prior to the data collection. The

study was approved by the Human Subjects Committee of the University of California,

Santa Barbara (Protocol Number 9-18-0676).

The SLDV imaged spatially and temporally resolved skin oscillations at sampling

locations distributed on a uniform grid covering the entire volar hand surface (grid spacing

8 mm, 200 to 350 locations). The sampling grid exceeded the Nyquist criterion threshold

for frequencies in the tactile range (0 to 1000 Hz), at which spatial wavelengths are

between 20 to 100 mm [2]. Oscillations were imaged in the normal direction to the skin

surface. Prior vibrometry measurements have demonstrated that most of the energy in

evoked skin oscillations is concentrated in oscillations normal to the skin surface [4] and

that stress in the normal direction is highly predictive of PC spiking responses [67].

All data were captured from the right hands of participants. Hand lengths ranged

from 18 to 21.6 cm (mean 19.9 cm) as measured from the tip of digit III to the bottom
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of the hand at the middle of the wrist. Each hand was positioned 36 cm below the

SLDV aperture, which ensured that the measurements captured at least 95 % of the

signal variance at all measurement locations. Each participant’s hand shape and the

2D spatial coordinates of all measurement locations were captured via the integrated

SLDV geometry processor and camera. Measurements were interpolated to obtain skin

oscillations at other locations on the 2D hand surface (see Supplemental Methods).

Measured skin oscillations were evoked by mechanical impulses (rectangular pulse,

duration 0.5 ms) applied at each of the four contact locations described below. Mea-

surements were synchronized to the stimulus onset. Each measurement was obtained

as the median of 10 captures and bandpass filtered to the vibrotactile frequency range

(20 to 1000 Hz). Frequency analysis was performed by computing magnitude spectra,

which were smoothed using a moving median window (width: 3 samples) to remove

measurement artifacts. Numerical frequency-domain integration was employed to obtain

skin displacement from velocity. Stimuli were delivered via an electrodynamic actuator

(Type 4810, Brüel & Kjær) driven with a laboratory amplifier (PA-138, Labworks). The

actuator terminated in a plastic probe (7 × 7 mm contact surface) that was adhesively

attached to the skin at the stimulus contact location. The actuator and probe were

configured to avoid obstructing the optical path used for the SLDV measurements.

Stimuli were applied at each of four different contact locations (CL) that were reg-

istered to standard anatomical positions on the hand: the distal phalanx (DP) of digit

II along the axis of the finger (CL 1, n = 7 participants), the DP of digit III along the

axis of the finger (CL 2, n = 4), the intermediate phalanx (IP) of digit II perpendicular

to the axis of the finger (CL 3, n = 4), and the proximal phalanx (PP) of digit II per-

pendicular to the axis of the finger (CL 4, n = 4) (Fig. 3.1A). These measurements took

approximately 10 minutes per contact condition per participant. Measurements for CL

2, 3, and 4 were captured from a subset of participants from which measurements for CL
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1 were captured (P1, P4, P5, and P6).

3.8.2 Computing Skin Oscillations Evoked by Arbitrary Stimuli

Theory and experimental findings [21, 54] indicate that biomechanical transmission in

the hand is linear for the stimulus magnitudes employed here. Consequently, the trans-

mission of evoked skin oscillations may be mathematically described by a wave equation

of the form Lu(x, t) = 0, where L is a linear partial differential operator encoding wave

transport, x is a skin location, t is time, and u(x, t) is the evoked skin oscillation pat-

tern. From linear systems theory, an arbitrary force stimulus F (t) applied to the skin at

location x0 evokes oscillations u(x, t) given by

u(x, t) = gx0(x, t) ∗ F (t), (3.1)

where ∗ denotes convolution in time and gx0(x, t) is the Green’s function encoding the

excitation of skin oscillations evoked by a unit Dirac impulse applied at x0. We em-

pirically determined the Green’s functions for each hand and contact location x0 using

the impulse-driven skin oscillation measurements described above. The skin oscillations

evoked by arbitrary stimuli F (t) were numerically computed using Equation 3.1.

To confirm the accuracy of this method, we compared the numerically computed

oscillations with measured oscillations evoked by sinusoidal stimuli F (t) with frequencies

ranging from 20 to 640 Hz. The measurement procedure was identical to the one described

above, apart from the input waveform. Consistent with linear systems theory, we found

that the numerically computed oscillations closely approximated the actual measurements

at all frequencies (Fig. 3.5). Because the numerical methodology avoids the need for

time-intensive experiments, we used it to determine skin oscillations evoked by arbitrary

stimuli in the remainder of the experiments.
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Stimuli

We analyzed skin oscillations u(x, t) evoked by sinusoidal, diharmonic, and bandpass-

filtered noise stimulus waveforms F (t). For sinusoidal stimuli, F (t) = F0 sin (2πft),

where f is frequency and F0 is force amplitude. Force amplitudes were approximately

0.25 N, except as noted. For diharmonic stimuli, F (t) = F1sin(2πf1t) + F2sin(2πf2t),

with independent force amplitudes F1 and F2. F1 and F2 were selected to ensure that

the maximum evoked peak-to-peak skin displacements Dpp were equal, where

Dpp = max
x

{
max

t
{u(x, t)} − min

t
{u(x, t)}

}
. (3.2)

Bandpass-filtered noise stimuli were synthesized using a spectral Gaussian white noise

algorithm [239], then bandpass filtered to the desired frequency range. Each bandpass-

filtered noise stimulus was generated from the same Gaussian white noise trace, then

scaled by a force amplitude F0.

3.8.3 Whole-Hand Neural Simulations

PC population spiking responses were obtained in silico by using the skin oscilla-

tions to drive a population of spiking neuron models extracted from a simulation pack-

age (Touchsim [67], Python) (3.6A), similar to the methodology applied in prior work

investigating PC population responses during whole-hand touch events [16]. The PC

neuron models consisted of four PC types, each trained and validated in a prior study

on electrophysiology recordings from non-human primates [98]. Each PC neuron model

type varies slightly in its response properties (3.9A). The PC neuron models supply a

nonlinear mapping from skin displacement to spiking output and accurately reproduce

experimentally identified PC response characteristics, including response thresholds that

56



Biomechanical Filtering Modulates and Diversifies Whole-Hand Tactile Encoding Chapter 3

vary across several orders of magnitude over the vibrotactile frequency range [90, 100]

and frequency-dependent thresholds of entrainment [93, 97, 99]. The stimulus amplitudes

used in this work fell within the range over which the PC models were validated.

Whole-hand PC populations were assembled by sampling a random distribution

weighted by spatial densities σ reported in prior studies [81, 82]: σ = 25 cm2 in the

distal phalanges and σ = 10 cm2 in the rest of the hand. Except where otherwise noted,

the PC neuron model type for each PC in a population was randomly selected to be

one of the four PC neuron model types noted above. Each PC was driven by the time-

varying skin oscillations u(xm, t), where xm is the PC location. This produced a spike

train represented as an ordered sequence Ym = {t1, t2, ..., tQ}, where ti are spike times

and Q is the number of stimulus-evoked spikes.

3.8.4 PC Entrainment Threshold Curves

Entrainment threshold curves were constructed to characterize PC frequency sensi-

tivity. At each frequency (20 to 800 Hz), the force amplitude of the sinusoidal input

stimulus was varied to determine the entrainment threshold for each PC in the whole-

hand population. The entrainment threshold was identified as the minimum input force

amplitude at which one spike was elicited per cycle of the sinusoidal stimulus. For each

mth PC and frequency f , the threshold curve Em(f) recorded the maximum peak-to-peak

displacement of skin oscillations evoked across the hand (Dpp, Eq. 3.2) at the identified

entrainment force amplitude. The maximum Dpp across all conditions was 100µm. In

prior literature, threshold curves were determined by placing the stimulating probe near

the hotspot of the terminating neuron [90, 93, 97, 99, 100] (Fig. 3.9A). Here, however,

we analyzed threshold curves for all PCs across the hand with the stimulus contact loca-

tion held constant. This preserved the effects of biomechanical transmission and filtering
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that were not captured in prior approaches. For each PC, the preferred (most sensitive)

frequency was computed as f ∗ = arg minf{Em(f)}. The width of each threshold curve

was determined as the full width of the threshold curve (not necessarily contiguous) at

half-minimum and characterized the sensitivity bandwidth of the respective PC.

Correlation Analysis

The pairwise similarity of entrainment threshold curves for different PCs was as-

sessed using the Pearson correlation coefficient cij, where i and j index the threshold

curves of PCs in a population. We conducted this analysis by separating whole-hand

PC populations into PC subpopulations Pk located within different distance ranges

from the stimulus contact location, where k = 0, 1, . . . , K indexes the distance range.

P0 contained all N0 PCs located within 10 mm of the contact location. For k > 0,

Pk contained all Nk PCs located at distances dk from the contact location satisfying

(20(k − 1) + 10) ≤ dk < (20k + 10) mm. Distances on the 2D hand surface were com-

puted from the SLDV geometry data using Djikstra’s algorithm. We computed the mean

pairwise correlation σk between all PC threshold curves in P0 and all PC threshold curves

in Pk as

σk =
1

N0Nk

N0∑
i=1

Nk∑
j=1

cij. (3.3)

We computed the mean pairwise correlation σ0 between PC threshold curves in P0 as

σ0 =
2

N0(N0 − 1)

N0∑
i=1

N0∑
j=i+1

cij. (3.4)

3.8.5 PC Population Spiking Activity Analysis

Efficient encoding hypotheses posit that neural sensory circuitry should minimize

redundancy [107, 108]. We assessed encoding efficiency by analyzing mean firing rates and

58



Biomechanical Filtering Modulates and Diversifies Whole-Hand Tactile Encoding Chapter 3

spike timing, both of which are salient to tactile encoding [115, 240, 241]. To this end, we

assembled a diverse set of stimuli encompassing commonly occurring tactile signals based

on prior studies [98, 112]. The stimulus set contained 60 sinusoidal, 117 diharmonic, and

50 bandpass-filtered noise stimuli that varied in amplitude and frequency parameters (see

Supplementary Methods, and Table 3.1, Table 3.2, Table 3.3). We obtained spike trains

evoked in whole-hand PC populations for each stimulus (N = 227), contact location

(N = 4), and participant (N = 4 or N = 7 depending on the contact location).

To assess the redundancy in spiking responses of remotely located PCs, we constructed

PC subpopulations P r located within increasing distances dr = 20r mm from the contact

location. The subpopulations formed a nested array of sets, P 1 ⊂ P 2 ⊂ · · · ⊂ PR,

successively encompassing larger numbers of PCs, N r, where N r = N r−1 + ∆N r. We

analyzed spiking responses from each subpopulation using principal component analysis

(PCA), interspike interval (ISI) information entropy, and spike train correlations.

Firing Rate Latent Dimensionality Analysis

To assess the latent dimensionality of spiking activity from each subpopulation r,

principal component analysis (PCA) was performed on the matrix of time-averaged firing

rates M r
mn, where m indexed PCs and n indexed the stimuli. The data matrix M r

mn was

standardized across stimuli (zero-mean and unit standard deviation). To assess the latent

dimensionality of the subpopulation firing rates, we computed the minimum number B(r)

of principal components that captured at least 99 % of the variance. A higher value of

B(r) indicated greater firing rate heterogeneity in subpopulation r.

Interspike Interval Information Entropy Analysis

We computed interspike intervals (ISIs) from spike trains snm evoked in each PC m by

each stimulus n. From these data, we computed normalized ISI histograms for each PC
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subpopulation P r. In the main results (Fig. 3.4B), the histogram bin size was ∆t = 1 ms

because PCs encode touch information with millisecond precision [112]. We obtained

similar results for values of ∆t between 0.5 and 2 ms (Fig. 3.14A-G). Let prq be the

probability of an ISI t from P r falling in the range tq ≤ t < tq+1, where tq = q ∆t. We

assessed information in spike timing by computing the Shannon information (entropy)

H(r), given by

H(r) = −
Q∑

q=1

prq log2(p
r
q). (3.5)

We also applied the same analysis to individual stimuli (Fig. 3.4D) and Fig. 3.13). Higher

ISI entropy values H(r) indicated more information and less redundancy in spike timing

activity.

Spike Train Correlation Analysis

We computed spike train correlations [242, 243, 244] using binned spike train vectors

with bin width ∆t = 1 ms (Python package elephant [245]) (Fig. 3.4C). We obtained

similar results for values of ∆t between 0.5 and 2 ms (Fig. 3.14H-N). For each stimulus

n and PC subpopulation P r, we assessed pairwise spike train correlations by computing

Pearson correlation coefficients cnij(r) between each pair of binned spike trains sni and snj ,

where i and j index PCs in P r. We computed the mean spike train correlation c(r) for

each subpopulation P r using

c(r) =
2

M(M − 1)N

N∑
n=1

M∑
i=1

M∑
j=i+1

|cnij(r)|, (3.6)

where M is the number of PCs in a subpopulation P r and N is the number of stimuli.

Lower spike train correlations indicated less redundancy within population spike timing

activity. In contrast to the ISI entropy analysis, spike train correlations took into account
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the relative differences in spike times between different PCs.

3.9 Supplementary Methods

3.9.1 Skin Oscillation Interpolation Across Hand Surface

Green’s functions were measured at discrete locations xk in 2D pixel space and

mapped to real space using participants’ hand lengths. The sampling grid exceeded

the Nyquist criterion threshold for frequencies in the tactile range (0 to 1000 Hz), which

exhibit spatial wavelengths between 20 to 100 mm [2]. This enabled us to determine

Green’s functions and skin oscillations at arbitrary locations x via interpolation. Data

was first extrapolated to the boundary of the 2D hand surface outside the convex hull

bounded by the measurement locations using distance weighting. The skin displacements

at boundary locations xb were computed as

u(xb, t) =

∑N
k=1 ϕ(xb,xk)u(xk, t)∑N

k=1 ϕ(xb,xk)
,

where ϕ(a,b) =


1 − d(a,b)

α
d(a,b) ≤ α

0 d(a,b) > α

,

(3.7)

where d(a,b) was the Euclidean distance between locations a and b in pixel space and N

was the total number of measured locations. We selected α = 90 pixels to ensure at least

two measured locations contributed to the extrapolation of the displacement at bound-

ary locations. The extrapolated displacements u(xb, t) and the sampled measurements

u(xk, t) were used to compute displacements at arbitrary locations u(x, t) inside the 2D

hand surface using nearest neighbor interpolation.
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3.9.2 Stimulus Set for PC Population Spiking Activity Analysis

The stimulus set consisted of 60 sinusoidal, 117 diharmonic, and 50 bandpass-filtered

noise stimuli presented at various amplitudes. The sinusoidal stimuli were 100 ms in

duration and comprised 12 frequencies and 5 amplitudes per frequency (stimulus param-

eters: see Table 3.1). The diharmonic stimuli were 100 ms in duration and comprised

13 frequency pairs and 9 amplitude combinations per pair (Table 3.2). The bandpass-

filtered noise stimuli were 1000 ms in duration and comprised 10 frequency bands and 5

amplitudes per band (Table 3.3).

For the sinusoidal stimuli, the force amplitudes of the stimuli were selected to yield

skin oscillations with a specific maximum peak-to-peak displacement across all hand

locations (Dpp, Eq. 3.2). For the diharmonic stimuli, force amplitudes were selected

independently for each sinusoidal component to yield specified values of D1
pp and D2

pp,

the maximum peak-to-peak displacement across all hand locations for each sinusoidal

component separately (see Methods). For the bandpass-filtered noise stimuli, we instead

determined the force amplitude by specifying DRMS, the maximum RMS displacement

of skin oscillations across all hand locations. The maximum peak-to-peak displacement

across the whole hand evoked by any stimulus in the stimulus set was 200µm.

For the sinusoidal and diharmonic stimuli, the minimum Dpp for a given frequency

component was the smallest displacement that elicited entrainment in one of the four

PC models via direct stimulation (i.e., without the effects of biomechanical filtering).

The exception was 800 Hz for which Dpp =10 µm, which was below the entrainment

threshold at that frequency. The maximum Dpp for each frequency component was

either 100µm or the Dpp which yielded a maximum peak-to-peak skin acceleration of

50 × g = 490 m/s2, whichever was smaller. This ensured that displacements remained in

a regime where the skin could be considered approximately linear and in which the PC
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models were validated. For sinusoidal stimuli, the 5 amplitudes were equally spaced in

log space between the identified minimum and maximum Dpp. For diharmonic stimuli, 3

amplitudes were selected for each frequency component and equally spaced in log space

between the identified minimum and maximum Dpp. Stimuli were then presented for each

combination of amplitudes (3 × 3 = 9 amplitude combinations per frequency pair). For

each bandpass-filtered noise stimulus, the selected DRMS were 0.5, 1, 5, 10, and 20µm.
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3.10 Supplementary Tables

Frequency (Hz) Dpp amplitudes (µm)
50 2.3, 5.9, 15.2, 38.9, 100
75 1.6, 4.5, 12.7, 35.6, 100
100 1.1, 3.4, 10.5, 32.4, 100
150 0.5, 1.9, 7.1, 26.6, 100
200 0.3, 1.4, 5.8, 24.2, 100
250 0.4, 1.4, 5.9, 24.3, 100
300 0.6, 2.2, 7.8, 28.2, 100
400 2.1, 5.2, 13, 32.2, 80
500 2.8, 5.8, 11.8, 24.3, 50
600 7.3, 10.8, 16, 23.7, 35
700 21, 21.9, 23, 24, 25
800 10, 11.9, 14.1, 16.8, 20

Table 3.1: Sinusoidal stimulus set parameters for PC population spiking activity analysis.

Frequencies (Hz) D1
pp amplitudes (µm) D2

pp amplitudes (µm)

50/100 2.3, 15.2, 100 1.1, 10.5, 100
50/150 2.3, 15.2, 100 0.5, 7.1, 100
50/250 2.3, 15.2, 100 0.4, 5.9, 100
50/500 2.3, 15.2, 100 2.8, 11.8, 50
50/800 2.3, 15.2, 100 10, 14.1, 20
100/200 1.1, 10.5, 100 0.3, 5.8, 100
100/300 1.1, 10.5, 100 0.6, 7.8, 100
100/500 1.1, 10.5, 100 2.8, 11.8, 50
100/800 1.1, 10.5, 100 10, 14.1, 20
200/400 0.3, 5.8, 100 2.1, 13, 80
200/600 0.3, 5.8, 100 7.3, 16, 35
200/800 0.3, 5.8, 100 10, 14.1, 20
400/800 2.1, 13, 80 10, 14.1, 20

Table 3.2: Diharmonic stimulus set parameters for PC population spiking activity analysis.
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Frequency band (Hz) DRMS amplitudes (µm)
50 to 100 0.5, 1, 5, 10, 25
50 to 250 0.5, 1, 5, 10, 25
50 to 500 0.5, 1, 5, 10, 25
50 to 800 0.5, 1, 5, 10, 25
100 to 250 0.5, 1, 5, 10, 25
100 to 500 0.5, 1, 5, 10, 25
100 to 800 0.5, 1, 5, 10, 25
250 to 500 0.5, 1, 5, 10, 25
250 to 800 0.5, 1, 5, 10, 25
400 to 800 0.5, 1, 5, 10, 25

Table 3.3: Bandpass-filtered noise stimulus set parameters for PC population spiking
activity analysis.
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3.11 Supplementary Figures

Figure 3.5: Numerically determined versus measured whole-hand RMS skin
displacements across frequency. (A) Normalized root mean square (RMS) whole–
hand skin displacements (log scale) elicited by windowed sinusoidal stimuli of various
frequencies (20 to 640Hz) applied at the digit II distal phalanx (DP) of Participant
1 (P1). Top row: numerically determined skin oscillations (Materials and Methods).
Bottom row: experimentally measured skin oscillations. (B) As in (A) for P2. (C)
As in (A) for P3. (D) As in (A) for P4. (E) As in (A) for P5. (F) As in (A) for P6.
(G) As in (A) for P7.
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Figure 3.6: Measurement-driven neural simulation methodology. (A) Skin
oscillations are computed at PC locations (blue dots) in response to an arbitrary
stimulus via convolution with measured impulse responses (Materials and Methods).
The computed skin oscillations are input to integrate-and-fire PC neuron models to
produce spiking responses. Here, the stimulus is a 100Hz sinusoid applied at the digit
III DP of P5. (B) PC spiking responses (right) evoked by skin oscillations (middle) at
selected locations (left, blue dots) elicited by a 100Hz sinusoidal stimulus applied at
the digit III DP of P4 (10 µm max. peak-to-peak displacement across hand). Shown
for PC model type 4. Light blue bars: RMS skin displacements; dark blue bars: PC
mean firing rates calculated from spikes within the shaded region. (C) Upper panel:
PC mean firing rates elicited by the stimulus in (B). Lower panel: cumulative percent
of total spikes (black) and responding PCs (blue) located within increasing distances
from the contact location. Shaded region: results within digit II. (D) As in (B) for
a bandpass noise stimulus (20 to 800Hz band, 5 µm max. RMS displacement across
hand) applied at the digit II intermediate phalanx (IP) of P1. (E) As in (C) for the
stimulus in (D).
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Figure 3.7: RMS skin displacement distributions across frequency for other
contact locations and participants. (A) Normalized root mean square (RMS)
skin displacements averaged within 10mm-wide bands at increasing distances from
the contact location (digit II DP) elicited by sinusoidal stimuli of various frequencies
(20 to 800Hz) for P2. Amplitude scale bars (top, gray) show maximum peak-to-peak
displacement across the hand at each frequency. Horizontal red lines: median trans-
mission distance; red text: participant number; red arrow: contact location. (B) As
in (A) for P4 and stimuli applied at the digit III DP. (C) As in (A) for P1 and stimuli
applied at the digit II IP. (D) As in (A) for P6 and stimuli applied at the digit II PP.
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Figure 3.8: Whole-hand RMS skin displacements across frequency for all
contact locations and participants. (A)Normalized whole-hand RMS skin dis-
placements (log scale) elicited by sinusoidal stimuli of various frequencies (20 to
800Hz) applied at the digit II DP. Shown for all participants. Red text: partici-
pant number; red arrow: contact location. (B) As in (A) for stimuli applied at the
digit III DP. (C) As in (A) for stimuli applied at the digit II IP. (D) As in (A) for
stimuli applied at the digit II PP.
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Figure 3.9: PC entrainment threshold curves for other contact locations and
participants. (A) Entrainment threshold curves for PCs located directly underneath
the contact location. Shown for all four types of PC neuron models. Triangles above
curves: global minimum. (B) Entrainment threshold curves for PCs at three locations
on the hand for stimuli applied at four different contact locations. Shown for PC
model type 4. Red arrow: contact location; red text: participant number; color:
PC locations; filled triangles above curves: global minimums; unfilled triangles above
curves: other local minima (prominence > 6 dB). (C) As in (B), for other participants.
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Figure 3.10: Rank-ordered PC entrainment threshold curves for all contact
locations and participants. (A) Entrainment threshold curves for all PCs in the
whole-hand population rank-ordered by preferred frequency for stimuli applied at
the digit II DP. Each curve is shown on a log scale and normalized from 0 to 1.
Histograms show the number of PCs at each frequency with entrainment threshold
curve values within 0 dB (light gray), +2 dB (medium gray), and +6dB (dark gray)
of the minimum. Red text: participant number. (B) As in (A), for stimuli applied at
the digit III DP. (C) As in (A), for stimuli applied at the digit II IP. (D) As in (A),
for stimuli applied at the digit II PP.
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Figure 3.11: Frequency sensitivity in whole-hand PC populations. (A) Pre-
ferred entrainment frequencies across whole-hand PC populations for each participant
for stimuli applied at the digit II DP. Red arrow in hand plot (top right): contact
location; lower box limits: 25th percentile; upper box limits: 75th percentile; lines
within boxes: 50th percentile; whiskers: range of data within one IQR from the lower
or upper box limits; colored dots: preferred frequencies within the whiskers; gray dots:
outliers. (B) As in (A), for stimuli applied at the digit III DP. (C) As in (A), for
stimuli applied at the digit II IP. (D) As in (A), for stimuli applied at the digit II PP.
(E) Histograms summarizing the number of PCs at each frequency with entrainment
threshold curve values within +2dB of the global minimum for stimuli applied at the
digit II DP. PC subpopulations corresponding to each histogram are constructed by
selecting PCs located within 20mm-wide bands at increasing distances from the con-
tact location. Histogram color corresponds to the colored PC subpopulations shown in
the hand plot (top). Gray text: distance d from contact location; red arrow: contact
location; red text: participant number. (F) As in (E), for stimuli applied at the digit
III DP. (G) As in (E), for stimuli applied at the digit II IP. H As in (E), for stimuli
applied at the digit II PP.
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Figure 3.12: Entrainment threshold curve correlations between PC subpop-
ulations at various distances from the contact location. (A) Pearson cor-
relation coefficients between pairs of entrainment threshold curves of PCs located
within 10mm of the contact location (digit II DP) and those of PCs located within
20mm-wide bands at increasing distances from the contact location. X-axis labels
denote the center distance of each band. Red midlines: median; lower box limits:
25th percentile; upper box limits: 75th percentile; whiskers: range of data within one
IQR from the lower or upper box limits; gray dots: outliers; gray dotted lines: linear
fit of medians; gray text: R2 value for linear fit; red text: participant number. (B) As
in (A) for a contact location at the digit III DP. (C) As in (A), for a contact location
at the digit II IP. (D) As in (A), for a contact location at the digit II PP.
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Figure 3.13: ISI distributions constructed from PCs located within increas-
ing distances from the contact location. (A) Left panel: Histograms comprising
interspike intervals (ISIs) from PCs located within increasing distances from the con-
tact location (hand inset) in response to a sinusoidal stimulus (200Hz, 15 µm max.
peak-to-peak displacement across hand). Right panel: median (circles), standard
deviation (triangles), and total information entropy (squares) of the ISI histograms
shown above. Color: maximum distance from the contact location; red arrow: con-
tact location; red text: participant number. (B) As in (A), for a diharmonic stimulus
(f1 = 50Hz, f2 = 100Hz, 10 µm max. peak-to-peak displacement across hand for
both f1 and f2). (C) As in (A), for a bandpass-filtered noise stimulus (50 to 800Hz
band, 5 µm max. RMS displacement across hand).
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Figure 3.14: Information entropy of ISI histograms and mean spike train
correlations for different bin sizes. (A) Total information entropy (bits) of his-
tograms comprising ISIs from PCs located within increasing distances from the contact
location in response to a diverse stimulus set (see Methods) for an ISI histogram bin
width of ∆t = 0.25ms. Colors: contact location corresponding to arrows in hand plot
(top left); dots: data points for all participants; lines: median. (B) As in (A), for
an ISI histogram bin width of ∆t = 0.5ms. (C) As in (A), for an ISI histogram bin
width of ∆t = 1ms. (D) As in (A), for an ISI histogram bin width of ∆t = 2ms. (E)
As in (A), for an ISI histogram bin width of ∆t = 5ms. (F) As in (A), for an ISI
histogram bin width of ∆t = 10ms. (G) As in (A), for an ISI histogram bin width of
∆t = 25ms. (H) Mean absolute spike train correlation between all pairs of PCs lo-
cated within increasing distances from the contact location for a spike train histogram
bin width of ∆t = 0.25ms. Colors: contact location corresponding to arrows in hand
plot (top left); dots: data points for all participants; lines: median. (I) As in (H),
for a spike train histogram bin width of ∆t = 0.5ms. (J) As in (H), for a spike train
histogram bin width of ∆t = 1ms. (K) As in (H), for a spike train histogram bin
width of ∆t = 2ms. (L) As in (H), for a spike train histogram bin width of ∆t = 5ms.
(M) As in (H), for a spike train histogram bin width of ∆t = 10ms. (N) As in (H),
for a spike train histogram bin width of ∆t = 25ms.
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Chapter 4

Spatiotemporal Organization of

Touch Information in Tactile Neuron

Population Responses

Neuroscience research has emphasized the importance of investigating sensory systems in

natural settings, but this is a challenging task for the tactile system due to experimental

constraints. This chapter builds on the vibrometry-driven neural simulation methodol-

ogy from Chapter 3 to examine how active, unconstrained touch interactions—including

tapping, sliding, and grasping with one or more fingers—are spatiotemporally encoded

by whole-hand mechanoreceptor populations. It also demonstrates that mechanoreceptors

far from the locations of direct touch contact can encode tactile information by leveraging

biomechanical transmission. Building on this idea, Chapter 5 presents a wearable device

that utilizes biomechanical transmission to capture and interpret remote touch contact.

Furthermore, Chapter 6 enables the computational analysis of biomechanical transmission

across the upper limb in response to touch interactions applied at one or more locations

on the hand, such as those investigated in this chapter.
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The content of Chapter 4 is adapted from [16], © 2023 IEEE. Reprinted, with per-

mission, from

N. Tummala, Y. Shao, Y. Visell, Spatiotemporal Organization of Touch In-

formation in Tactile Neuron Population Responses. 2023 IEEE World Hap-

tics Conference (WHC), 2023. DOI: https://doi.org/10.1109/WHC56415.

2023.10224467.

Abstract

Manual touch interactions elicit widespread skin vibrations that excite spiking re-

sponses in tactile neurons distributed throughout the hand. The spatiotemporal struc-

ture of these population responses is not yet fully understood. Here, we evaluate how

touch information is encoded in the spatiotemporal organization of simulated Pacinian

corpuscle neuron (PC) population responses when driven by a vibrometry dataset of

whole-hand skin motion during commonly performed gestures. We assess the amount of

information preserved in these peripheral population responses at various spatiotemporal

scales using several non-parametric classification methods. We find that retaining the

spatial structure of the whole-hand population responses is important for encoding touch

gestures while conserving the temporal structure becomes more consequential for gesture

representation in the responses of PCs located in the palm. In addition, preserving spatial

structure is more beneficial for capturing gestures involving single rather than multiple

digits. This work contributes to further understanding the sense of touch by introduc-

ing novel measurement-driven computational methods for analyzing the population-level

neural representations of natural touch gestures over multiple spatiotemporal scales.

77

https://doi.org/10.1109/WHC56415.2023.10224467
https://doi.org/10.1109/WHC56415.2023.10224467


Spatiotemporal Organization of Information in Tactile Neuron Population Responses Chapter 4

4.1 Introduction

Touch interactions performed with the hands elicit mechanical vibrations that prop-

agate throughout the skin [1, 2, 4, 13, 55]. These propagating vibrations facilitate touch

perception by exciting responses in widespread populations of sensory neurons [12, 17, 14],

including those innervating Pacinian corpuscles (PCs). PCs have large receptive fields [72]

and are exquisitely sensitive to vibrations elicited by touch interactions such as fine ma-

nipulation, texture scanning, and tool use [85, 89, 27]. While spiking responses of isolated

PCs elicited by laboratory stimuli are thoroughly characterized [93, 90, 99], the responses

of PC populations throughout the hand are not well understood. In addition, few stud-

ies have examined PC responses to propagating vibrations originating at locations far

removed from the PC locations. This is partly due to experimental limitations that pre-

clude the measurement of signals from PC populations in an unconstrained hand [133].

Previous research has underscored the significance of investigating population en-

coding in understanding the sense of touch [150, 83]. Numerous studies have char-

acterized the responses of tactile neuron populations to controlled laboratory stimuli,

examining parameters such as intensity [98, 246], frequency [112], textural vibration con-

tent [130, 241, 115], and edge orientation [247], and demonstrated that touch information

is encoded at various spatial and temporal scales. To explore the spatiotemporal structure

of information encoded in population responses, several investigations, including those in

other areas of sensory neuroscience, have utilized stimulus discrimination tasks conducted

via metric space and classification methods [248, 249, 112, 247, 113, 250, 111, 251]. How-

ever, our understanding of information encoding within the spatiotemporal organization

of PC population responses in natural contexts remains limited.

In this paper, we employ a novel measurement-driven approach for simulating the

responses of a spatially distributed population of PCs in the hand during natural touch
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interactions. Leveraging existing vibrometry measurements of whole-hand skin motion

collected during commonly performed tapping, sliding, and grasping gestures involving

contact at the digits [1, 2], we drive an ensemble of neuron models developed in prior

research [67]. We then utilize several machine learning techniques to investigate the spa-

tiotemporal encoding of information generated by these touch interactions in PC popula-

tion responses. We find that preserving spatial structure in whole-hand PC responses is

beneficial for capturing gesture-specific information, particularly for single-digit gestures,

while retaining spike timing becomes more informative for gesture representation by PCs

located in the palm. The findings and methodologies presented here may contribute to

knowledge about the spatiotemporal organization of touch information in PC popula-

tion responses and may inform the engineering of new haptic or robotic technologies that

reflect attributes of tactile sensing and perception in the human hand [189, 202, 203, 207].

In the following section, we describe our methods for integrating spiking neuron mod-

els [67] with mechanical measurements [1, 2], computing population spiking response rep-

resentations by multi-scale spatiotemporal integration, and analyzing information content

preserved by these representations using machine-learning techniques. We then discuss

and analyze the results of these studies and their implications for touch information

encoding in PC population responses. We conclude by synthesizing these findings and

discussing their significance for haptic science and engineering and opportunities for fu-

ture research.

4.2 Methods

Using the methods detailed in this section, we sought to quantify how much touch

gesture information was retained in PC population responses at different spatial and

temporal scales. PC population responses were generated by driving physiologically-
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informed neuron models adapted from previous research [67] with an existing vibrometry

dataset of skin motion measurements collected during everyday touch interactions[1,

2]. To modify the spatiotemporal structure of these population responses, we summed

spiking data over spatial and temporal bins of different sizes, allowing us to capture touch

gesture information at multiple spatiotemporal scales. We then used machine learning

classifiers to analyze how much gesture information was preserved in these spatiotemporal

response representations.

Figure 4.1: A) Placement of the accelerometer array on the dorsal surface of a par-
ticipant’s hand [1, 2]. B) Number of PCs uniformly distributed within each region
of the hand, derived from [3]. C) Skin displacements (top) and corresponding PC
spiking responses (bottom) at selected sensor locations during one trial of the Slide II
gesture. D) Shown for each of the 13 performed gestures: number of spikes produced
by each PC in the hand averaged across all trials of the gesture (left), an image of
a participant executing the gesture (top right), and RMS skin displacements elicited
across the whole hand during the gesture (bottom right). E) RMS skin accelerations
elicited across the dorsal (left column) and volar (right column) surfaces of the hand
during one trial of the Tap I gesture (top row) and one trial of the Tap II gesture
(bottom row), normalized by the maximum skin acceleration produced during each
trial [2].

4.2.1 Whole-Hand Skin Vibrometry Data

Our methodology leveraged an existing dataset of whole-hand skin vibration mea-

surements captured in a prior experiment during manual touch gestures performed by

four participants using an array of 30 miniature accelerometers [1, 2]. The accelerome-

ters were worn on the dorsal surface of the hand during data collection, allowing unob-
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structed movement during gesture execution (Fig. 4.1A). Accelerometers were placed at

the same relative anatomical positions on each hand, standardizing their locations across

participants. The gestures were comprised of commonly performed manual interactions

(Fig. 4.1D). Each gesture was repeated for either 100 (grasping gestures) or 200 (all

other gestures) trials. The patterns of skin vibrations elicited during gestures involving

fingertip movement were found to be similar between the volar and dorsal surfaces of the

hand in a prior investigation (Fig. 4.1E) [2], allowing the utilization of the dorsal skin

oscillation measurements as an approximation of volar skin motion.

Data from each trial were time-aligned with respect to the instant of surface or ob-

ject contact, truncated to a duration of 250 ms, and band-pass filtered between 20-500 Hz.

Acceleration measurements were converted to displacement via double integration. To

facilitate analysis, the three-axis data from each sensor were independently projected

to a principal axis of oscillation through principal component analysis (PCA). The pro-

jection maximally preserved variance in the data. The processed data from each trial

consisted of time-varying signals of 250 ms duration sampled at 2.0 kHz from each of 30

accelerometers, yielding 15000 samples per trial. The dataset consisted of 4564 trials in

total.

4.2.2 Vibrometry-Driven Neural Simulations

The processed skin displacement signals were used as inputs to a population of K

physiologically-informed PC neuron models [67] that produced spiking responses for each

trial, where K = 490 unless otherwise specified (Fig. 4.1C, D). The highly stereotyped

and reproducible responses of PCs were captured with high fidelity by the utilized neuron

models, which were trained and extensively validated on microneurography data collected

from macaque monkeys in prior research [98]. PCs were distributed across a 3D hand
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model according to a recent MRI study on PC distribution in the glabrous skin that

dictated the number of PCs that were uniformly distributed within each hand region

(Fig. 4.1B) [3]. Skin displacements were interpolated to each PC location using an inverse

distance filter informed by biomechanical measurements and described in a previous

publication [2], with distance calculated on the dorsal surface of the 3D hand model.

4.2.3 Spatiotemporal Spike Count Representations

To analyze the PC population responses at various temporal scales, six time bin

widths, ∆t, were defined in decreasing order of preserved temporal resolution. These

widths were ∆t ∈ {5, 10, 25, 50, 125, 250}ms, and the number of time bins was calculated

as N = 250
∆t

= {50, 25, 10, 5, 2, 1}. To analyze the PC population responses at various spa-

tial scales, two distinct collections of sets of spatial bins were defined, with one collection

encompassing the whole hand (WH) and the other encompassing only the palm (P). A

set of spatial bins was defined as a set of M non-overlapping contiguous spatial regions

in the hand based on anatomical regions defined in Fig. 4.2A. To analyze the whole-hand

PC population responses, four sets of spatial bins, each denoted as s, were defined in

decreasing order of preserved spatial resolution, as illustrated in Fig. 4.2B. They were as

follows:

1. s = WH1, M = K: Each PC in the hand (K = 490, unless otherwise specified),

2. s = WH2, M = 25: the distal phalanges (DP), medial phalanges (MP), proximal

phalanges (PP), metacarpophalangeal joint regions (MCP), and metacarpal (MC)

regions corresponding to each digit (I-V) and the carpal (C) region of the palm,

3. s = WH3, M = 6: each digit (I-V) and the palm,

4. s = WH4, M = 1: and the whole hand.
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Figure 4.2: A) Anatomically-based hand regions defined for spatial resolution analyses.
Within the digits, DP are distal phalanges, MP are medial phalanges, and PP are
proximal phalanges. Within the palm, MCP are metacarpophalangeal joint regions,
MC are metacarpal regions, and C is the carpal region. B) Four sets of spatial bins
(s = WH1-WH4) defined for whole-hand analyses where M is the size of each set.
Each PC in the hand is considered a separate spatial bin in WH1. Each spatial bin in
WH2-WH4 is outlined by solid black lines. C) Five sets of spatial bins (sp = P1-P5)
defined for analyses in the palm where M is the size of each set. Each PC in the palm
is considered a separate spatial bin in P1. Each spatial bin in P2-P5 is outlined by
solid black lines. Regions outlined by light gray lines are not included in the spatial
bins. Regions indicated by the star label (*) in P4 are part of the same spatial bin.
D) Binned spike train matrices representing a PC population response elicited by
one trial of the Grasp All gesture shown across all sets of whole-hand spatial bins
s = WH1-WH4 when ∆t = 25ms. E) Binned spike train matrices representing a PC
population response elicited by one trial of the Tap V gesture shown across all time
bin widths ∆t when s = WH1.

To analyze PC population responses from the palm, five sets of spatial bins, each de-

noted as sp, were defined in decreasing order of preserved spatial resolution, as illustrated

in Fig. 4.2C. They were as follows:
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1. sp = P1, M = 162: Each PC in the palm,

2. sp = P2, M = 11: the MCP and MC regions corresponding to each digit (I-V) and

C,

3. sp = P3, M = 3: the Palm {I,II}, Palm III, and Palm {IV,V} regions,

4. sp = P4, M = 3: all MCP, MC, and C regions without digit separation,

5. sp = P5, M = 1: and the whole palm.

Using these bins, the PC population spiking response for each trial was quantified as

a binned spike train matrix B of size M × N , where M was the number of spatial bins

and N was the number of time bins. The element Bij contained the number of spikes

generated in time bin j by PCs situated in spatial bin i. This representation allowed us

to control the spatiotemporal resolution of the population responses by manipulating the

bin sizes without employing dimensionality reduction methods that would complicate the

analysis.

The sets of spatial bins ranged from preserving individual neuron identity of spikes

(s = WH1 or sp = P1) to aggregating spikes across the whole PC population (s = WH4

or sp = P5), as shown for one trial of the Grasp All gesture (Fig. 4.2D). Similarly, the

time bin widths varied from capturing detailed spike timing (∆t = 5 ms) to summing

spike counts over the entire trial (∆t = 250 ms), as demonstrated for one trial of the Tap

V gesture (Fig. 4.2E). These variations in spatiotemporal representations impacted the

degree to which differences in PC population responses evoked by various natural touch

gestures were captured.
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4.2.4 Evaluation of Touch Information in Spatiotemporal Spike

Count Representations

We employed four non-parametric classification methods to elucidate the amount of

information encoded in the spatiotemporal structure of PC population responses elicited

by natural touch gestures. These methods included a linear kernel support vector machine

(SVM), a k-nearest neighbors classifier (kNN), a peristimulus spike timing histogram

(PSTH) template-based classifier (PTB) [248, 249], and an average pairwise distance

classifier (APD). These techniques were applied to binned spike train matrices to analyze

the extent to which PC population responses retained information across spatiotemporal

scales.

For the SVM and kNN classifiers, reported classification accuracies were averaged

over a 10-fold cross-validation procedure with a random 90-10 train-test split. For the

SVM classifier, each feature was standardized using the mean and standard deviation

calculated from the training dataset. For kNN, k = 5 was chosen based on parameter

selection during pre-testing. The kNN and APD classifiers utilized a distance matrix

composed of pairwise Euclidean distances between binned spike train matrices for all

trials. For the PTB and APD classifiers, results were averaged over a leave-one-out

cross-validation procedure where each trial was successively designated as the test set

while the rest of the dataset comprised the training set. For the PTB classifier, template

PSTHs were calculated for each gesture by taking the element-wise average over binned

spike train matrices from all trials of the gesture, excluding the test trial. The test trial

was then classified as the gesture corresponding to the PSTH for which the pairwise

Euclidean distance was the smallest. The APD classifier classified each test trial as the

gesture corresponding to the training samples for which the average pairwise Euclidean

distance to the test trial was the smallest.
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4.3 Results

The responses of tactile neuron populations encode information about mechanical

stimuli in both the spike timing and the identity of neurons generating each spike[130,

247, 112, 115]. Here, we presented the results of our investigation on how information

about natural touch gestures was preserved in spike count representations at multiple

spatiotemporal scales and within hand regions away from the contact location. We

quantified the captured information through the overall and per-gesture classification

accuracies achieved by several non-parametric classification methods.

4.3.1 Varying the Spatiotemporal Resolution of Spike Count

Representations

Whole-Hand PC Population Responses

Our analysis showed that modifying the spatial resolution of spike count representa-

tions had a greater impact on touch gesture classification than modifying the temporal

resolution. When individual neuron identity was preserved and temporal structure elim-

inated (s = WH1, ∆t = 250 ms), the average classification accuracy was 75 % for SVM,

73 % for kNN, and 46 % for PTB and APD (Fig. 4.3A). On the other hand, when precise

spike timing was preserved and spatial structure eliminated (s = WH4, ∆t = 5 ms),

the average classification accuracy dropped significantly: by 33 % for SVM, 28 % for

kNN, 15 % for PTB, and 18 % for APD. Additionally, the median range of classification

accuracies across changes in spatial resolution was greater than that across changes in

temporal resolution by a factor of at least 2 for all classifiers (Fig. 4.3B). When some

spatial structure was preserved (s = WH1, WH2, or WH3), all classifiers performed best

at ∆t = 25-50 ms, suggesting that an intermediate level of temporal integration was
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Figure 4.3: A) Matrix of average classification accuracies achieved using whole-hand
PC responses for all combinations of ∆t and s by all classifiers. B) Median range of
classification accuracies using whole-hand PC responses across changes in ∆t (dark
gray) and across changes in s (light gray) for all classifiers. C) Classification accuracy
as the total number of PCs in the hand K varies for all ∆t when s = WH1. D)
Classification accuracy as the total number of PCs in the hand K varies for all s when
∆t = 25ms. C) and D) are shown for both SVM (left) and kNN (right). E) Average
classification accuracies using PC responses from the whole hand (All), from only the
digits (Digits), and from only the palm (Palm) for all ∆t. Shown for SVM (left) and
kNN (right). F) Decrease in average classification accuracy from using whole-hand
PC responses to using PC responses from the palm for all ∆t. Shown for SVM (left)
and kNN (right). There was no spatial integration performed for E) and F); each PC
was a separate spatial bin. G) Matrix of average classification accuracies achieved
using PC responses from the palm for all combinations of ∆t and sp by SVM (left)
and kNN (right). H) Median range of classification accuracies using PC responses
from the palm across changes in ∆t (dark gray) and across changes in sp (light gray)
for SVM (left) and kNN (right).
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beneficial in accommodating variations in touch information across trials.

While the goal of this research was not to analyze the suitability of classification

methods for this gesture discrimination task, the findings showed that SVM performed

best for all spatiotemporal representations except when s = WH4, where it was outper-

formed by kNN for ∆t ≤ 25 ms. On the other hand, PTB and APD achieved the lowest

average classification accuracies except at coarse spatiotemporal resolution (∆t ≥ 125 ms

and s = WH4), demonstrating that they were more sensitive than other methods to small

perturbations between trials. The remaining analyses focus on SVM and kNN, as they

performed better than PTB and APD in almost all cases and are sufficient to represent

our overall findings, which are consistent across all classifiers. Additionally, as the results

were robust to scaling of the PC population size (Fig. 4.3C, D), K = 490 was utilized

for all other analyses.

PC Population Responses From the Palm

Analyses of responses from PCs restricted to the digits yielded gesture classification

accuracies nearly as high as those obtained from whole-hand PC responses at all temporal

resolutions (Fig. 4.3E), likely due in part to the large proportion of touch contacts that

occurred at the digits in the utilized dataset. However, prior findings have demonstrated

that tactile neurons remote from the stimulus location can encode touch information via

mechanical wave propagation [112, 12, 17]. This motivated our subsequent analysis of

gesture encoding at various spatiotemporal scales by PC subpopulations restricted to the

palm.

Consistent with the findings from the aforementioned studies, our results showed

that gestures were readily recognized when PCs were isolated in the palm. Average

classification accuracy was 66 % in the best case (SVM, sp = P1, ∆t = 25 ms) (Fig. 4.3E,

G). The smallest decrease in performance from whole-hand classification occurred at fine
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temporal resolutions (∆t ≤ 10 ms) (Fig. 4.3F). This finding demonstrates that without

the contribution of spiking responses from PCs located in the digits, precise spike timing

played a larger role in gesture discrimination.

Similar to whole-hand analysis results (Fig. 4.3B), classification accuracy varied more

across changes in spatial resolution than temporal resolution (Fig. 4.3H). However, the

median range of classification accuracies increased by 5 % for changes in temporal res-

olution while decreasing by nearly 20 % for changes in spatial resolution compared to

the whole-hand analysis results for both classifiers. This finding again indicates that the

preservation of temporal structure became more consequential for the representation of

touch gestures by PC subpopulations in the palm.

Nonetheless, spatial structure still impacted the encoding of gesture information in the

palm. Classification accuracy was significantly higher when PC responses were integrated

across palmar regions oriented along the axis of the digits (sp = P3) than when integrated

across regions oriented orthogonal to the digits (sp = P4), despite both sets containing

an equal number of spatial regions (M = 3) (Fig. 4.3G). The integration of spikes over

sp = P3 effectively preserved information about individual digits or pairs of digits, while

such preservation was absent in the integration of spikes over sp = P4. These results

demonstrate the importance of retaining a minimal level of digit separation within the

spatial structure of the spike count representations.

4.3.2 Varying the Spatiotemporal Resolution of Gesture-Level

Spike Count Representations

We next explored the representation of touch information associated with individual

gestures across variations in the spatiotemporal resolution of whole-hand spike count

representations. Single-digit gestures were better represented than multi-digit gestures
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Figure 4.4: A) Median classification accuracy of single-digit (dark gray) and multi-
-digit (light gray) gestures for all ∆t using whole-hand PC responses. The median
is computed across all s and all single- or multi-digit gestures. B) Median classifi-
cation accuracy of single-digit (dark gray) and multi-digit (light gray) gestures for
all s using whole-hand PC responses. The median is computed across all ∆t and all
single- or multi-digit gestures. C) Median range of classification accuracies of sin-
gle-digit (dark gray) and multi-digit (light gray) gestures across changes in ∆t (left)
and across changes in s (right) using whole-hand PC responses. D) Median range of
classification accuracies of single-digit (dark gray) and multi-digit (light gray) gestures
across changes in ∆t (left) and across changes in sp (right) using PC responses from
the palm. In C) and D), when varying ∆t, the median is computed over all s or sp
and all single- or multi-digit gestures. Similarly, when varying s or sp, the median
is computed over all ∆t and all single- or multi-digit gestures. E) Confusion matrix
showing the percent of each gesture (True) classified as another gesture (Predicted)
for the best-performing classifier (SVM, s = WH1, ∆t = 25ms) using whole-hand PC
responses. Per-gesture classification accuracy is read from the diagonal of the matrix.
False positives are read from the columns, and false negatives are read from the rows.
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under most spatiotemporal conditions, except when spatial information was eliminated

(s = WH4) (Fig. 4.4A, B). In addition, single-digit gestures were classified most accu-

rately when ∆t = 10-25 ms, while multi-digit gestures were best captured at a lower

temporal resolution (∆t = 50 ms). These performance differences between gesture types

may have been a consequence of high trial-to-trial variability in the timing of contact with

the target surface or object by the individual digits involved in the multi-digit gestures.

Additionally, we found that spatial structure played a larger role in representing

single-digit gestures, while temporal structure was more consequential for capturing

multi-digit gestures. The median range of classification accuracies when varying spa-

tial resolution was greater for single-digit gestures, while the median range when varying

temporal resolution was slightly greater for multi-digit gestures (Fig. 4.4C). This trend

was preserved for PC responses from the palm (Fig. 4.4D). Though spatial structure

still played a significant role in encoding multi-digit gestures, it was more beneficial for

representing single-digit gestures.

For the best-performing classifier (SVM, ∆t = 25 ms, s = WH1), most misclassi-

fications occurred between cylinder grasps (Grasp C1 {I,II} and Grasp C2 {I,II}) and

between gestures requiring most or all of the digits (Tap {II,III,IV,V}, Tap All, and Grasp

Ball All) (Fig. 4.4E). Cylinder grasps were commonly confused because they were iden-

tical apart from the cylinder sizes, varying in radius by only 1.6 cm. Misclassifications

also occurred between single-digit tapping gestures and between Slide II and cylinder

grasps. PC population responses in the palm contained less information enabling the

distinction between multi-digit gestures and their component single-digit gestures. This

was demonstrated by misclassifications between Tap {II,III} and its corresponding single-

digit gestures Tap II and Tap III and between the cylinder grasps and their constituent

single-digit gestures Tap I and Tap II. Further misclassifications occurred between multi-

digit taps and grasps.
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4.4 Discussion and Conclusion

Our work investigated the spatiotemporal organization of touch information in PC

population spiking responses elicited during common touch gestures. We examined the

amount of gesture information preserved within the responses at different spatiotempo-

ral scales via a novel vibrometry-driven neural simulation method adapted from prior

research [67, 1, 2]. The elicited PC population responses were spatiotemporally inte-

grated and analyzed using several machine learning techniques. Our results showed that

the spatial structure of PC population responses played a significant role in encoding in-

formation about touch gestures, especially single-digit gestures. The temporal structure

of PC population responses was also meaningful, particularly for PCs in the palm.

While these findings necessarily reflect the scope of the included gestures, which do not

capture the full range of manual interactions involved in all activities, they nevertheless

furnish insight into the spatiotemporal organization of natural touch information in PC

population responses in conditions with greater ecological validity than are generally

probed in many laboratory experiments. The analyzed dataset included several multi-

finger tapping and grasping gestures and many gestures engaging one or two digits. The

selection of gestures was informed by prior studies demonstrating that the majority of

natural contact events occur at the fingertips [252]. Our findings suggest that the relative

importance of temporal structure in touch information encoding within PC population

responses may have been enhanced if the analyzed dataset placed greater emphasis on

grasping or multi-digit gestures.

Although the methods employed here are approximate, few alternatives are available

since existing methods preclude the measurement of neural population responses in the

periphery during natural touch behavior. Multiple classification methods and parame-

ters were employed to validate the findings presented here. Despite variations between
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results obtained with different classifiers, which may reflect differences in their expressive

capacity, qualitatively similar findings were obtained from different classification tech-

niques. In addition, results were consistent across changes in PC population size for all

spatiotemporal parameters. Moreover, the spatiotemporal spike count representations

employed for classification analysis condensed the raw spiking data without the need for

intermediary assumptions or dimensionality reduction techniques.

The findings of our study are generally consistent with prior research on the neural

processing of tactile inputs and attributes of somatosensory representations in the pe-

riphery and brain. Highlighting the role of spatial structure in tactile encoding, studies

have shown that representations of different digits in the primary somatosensory cor-

tex (S1) have distinct spatial properties, with larger areas dedicated to the digits that

are most sensitive and agile, such as the thumb and index finger [253]. Recent work

has also indicated that biomechanical coupling in the hand facilitates a hierarchical or-

ganization of tactile information in a gradient from fine (individuated digits) to coarse

(whole-hand) spatial representations [2]. Though the correspondence of those findings to

representations in the brain remains unclear, they point to the utility of spatial struc-

ture in peripheral tactile processing. Our results further underscore the importance of

digit-specific spatial structure in peripheral neural representations of tactile interactions.

Prior research has also shown that tactile neurons in the periphery and S1 exhibit

a high degree of temporal precision, demonstrating the role of temporal structure in

the encoding of touch events[254, 112]. Additionally, our results reflected dependence

on the gesture or action being represented, aligning with prior research showing that

the involvement of spatial and temporal information in somatosensory processing is task

and stimulus-dependent [130, 247, 115]. Furthermore, prior studies have demonstrated

that tactile neurons terminating at locations far from the location of skin-object con-

tact can encode information about haptic properties, such as surface roughness, due to
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biomechanical coupling in the skin[13, 12, 17]. Those observations support our findings

that substantial information is contained in responses of PC populations in palmar areas

and highlight the potential significance of biomechanical coupling in tactile information

encoding.

It is important to note that several of the aforementioned studies reflect the pro-

cessing of peripheral spiking inputs from multiple mechanoreceptive pathways within the

dorsal column and effects of cortical processing in S1 [255, 256, 257], which were not

accounted for in our study. Further analysis is needed to relate our findings to research

on the spatiotemporal organization of touch information in early and cortical processing.

Nonetheless, our results underline the significance of spatial and temporal organization

at multiple scales for the peripheral neural processing of tactile information.

The methodology applied here illustrates how mechanisms of tactile information

processing can be investigated through the combination of mechanical measurements

and neural simulations. Our findings may inform the development of novel computa-

tional models of tactile information encoding by populations of sensory neurons and

contribute to the engineering of technologies for haptic feedback or robotic touch sens-

ing [189, 202, 203, 207]. Future studies may incorporate other mechanoreceptive neuron

types (SA1 and RA), larger datasets of natural touch interactions, or analysis techniques

drawn from other areas of sensory neuroscience [238, 237].
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Chapter 5

A Smart Bracelet for Tactile

Communication and Interaction

Chapter 3 demonstrated that skin oscillations are biomechanically transmitted across

large distances during touch interactions. Chapter 4 further revealed that these oscil-

lations carry information about the touch interactions that produce them. This chapter

leverages these insights to develop a wrist-worn device that captures touch-elicited skin os-

cillations using accelerometers and interprets the encoded tactile information using simple

classifiers. Specifically, the device digitally transcribes tactile sign language (TSL) let-

ters performed on the hand, addressing an unmet need for the Deafblind community. The

ideas and methods presented here can be leveraged in other haptic devices that aim to turn

the skin into a digital input interface for interpreting remote touch interactions. Further-

more, the toolbox presented in Chapter 6 for computationally investigating biomechanical

transmission in the upper limb can guide the design of such devices, saving experimental

time and resources.
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sults, preparing the figures, and writing and editing the manuscript.

Abstract

The sense of touch can convey semantic and emotional information in social or

computer-mediated interactions. Touch plays an essential role in communication with

individuals affected by multiple sensory loss, many of whom use modes of touch commu-

nication that can be broadly described as tactile sign languages. Few technologies exist

today to support such interactions. Here, we present a smart bracelet for facilitating tac-

tile communication and interaction. The smart bracelet captures and analyzes vibrations

that are elicited in the skin via touch gestures performed on the hand. We demonstrate

the utility of this system for supporting communication via the Deafblind Manual al-

phabet, which is a tactile sign language. This smart bracelet can classify signed letters

with greater than 90 % per-letter accuracy. These results show how existing modes of

tactile communication can be integrated with information technologies. This work may

furnish new paradigms for human-computer interaction via self- and interpersonal-touch

contact.
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Figure 5.1: A) Wrist-worn acoustic sensing interface to encode and detect touch ges-
tures on the hand. B) System overview and envisioned applications for detection of
touch gestures on the skin. B1) Touch signals signed on the palm are transmitted to
a PC via serial communication with the microcontroller. The data is processed and
features are extracted to be used for classification. B2) Wearable interface enables
self-signing on the palm of the hand to encode semantic meaning for note-taking pur-
poses, sending a remote text message via touch, or transcription/record-keeping in
the tactile domain. B3) Wearable interface translates interpersonal touch gestures as
they are being signed. This could facilitate learning of TSL gestures, transcription
of conversations in the tactile domain, and translation of TSL in real-time when the
wearer is uncertain of the semantic mappings of the alphabet. C) The 26 letters of
the Deafblind Manual alphabet.

5.1 Introduction

The skin is a highly expressive medium used for perceiving and interacting with the

world, including communication through touch. Indeed, touch interaction can convey

significant meaning, intent, and sentiment. The diverse repertoire of touch interactions

encountered in everyday settings, including interpersonal touch, contrasts starkly with

the limited communicative and expressive range of touch found in most computing sys-

tems today. In some interpersonal interactions, including those involving individuals

with multiple sensory impairments such as deafblindness, touch is the principal medium
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of communication [258, 259, 260]. Several languages, organizations, and educational sys-

tems exist to support the needs of individuals with deafblindness, but there exists a lack

of accessibility for digital communication, which is crucial to address due to its ubiquity.

However, current interaction paradigms primarily lie in the audiovisual domains. New

technologies are needed that can enable individuals with all ranges of sensory abilities to

engage with information technologies and digital resources.

Here, we present a smart bracelet for supporting tactile communication and inter-

action (Fig. 5.1A). This system captures vibration signals elicited in the skin by touch

contact gestures performed on the hand; these gestures could be initiated by the wearer

or by another person. The captured vibrations are analyzed using signal processing and

machine learning methods that can recognize, from a designated lexicon, which gestures

are performed (Fig. 5.1B1). We demonstrate the ability of this system to capture and

classify touch gestures from the Deafblind Manual alphabet (Fig. 5.1C), a tactile sign

language (TSL) used by individuals in Australia who are deafblind, in order to support

digital tactile communication.

While several researchers have investigated output technologies for reproducing

TSL [261, 262, 263, 264], the present work is, to the best of the authors’ knowledge,

the first input device specifically directed at supporting digital TSL communication.

Such a device could address important unmet needs, such as those of transcribing in-

formation conveyed via TSL communications in court proceedings, emergencies, policy

forums, scholarly meetings, or moments of personal or historical significance, especially

where transcripts might otherwise be unavailable. Our TSL input device enables the

letter-by-letter translation of touch gestures performed on the hand. One might, for ex-

ample, use the palm of one’s own hand to enter text, take notes, or send a text message

normally requiring a standard phone interface (Fig. 5.1B2). Such a system could assist

individuals with limited vision, for whom usage of mobile devices can be challenging.
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In other applications, smart bracelets like the one presented here could also support

the training of TSL interpreters. When combined with an output device capable of repro-

ducing TSL gestures, such a smart bracelet could provide a means of TSL communication

over the internet, including remote TSL interpretation, improving access to such services

by many individuals. When combined with computer translation algorithms, such a

smart bracelet could also facilitate conversation between individuals who communicate

via different languages, including deafblind individuals who may not use the same TSL

(Fig. 5.1B3). Indeed, a diverse variety of TSLs are used around the world [263].

5.1.1 Deafblindness and Tactile Communication

Research and development in automatic speech recognition and language processing

over the past 50 years has yielded algorithms and systems for capturing, computation-

ally understanding, and interacting with computers via speech. More recently, analogous

methods to speech recognition have been used to support computer-based communi-

cation by detecting hand poses during visual sign languages, such as American Sign

Language [265]. To date, little attention has been given to achieving similar goals in

tactile communication, particularly TSLs.

A recent report by the World Federation of the Deafblind indicates that between

0.2 to 2 % of people are impacted by sensory impairment of both vision and hearing.

Deafblind individuals use a variety of languages for tactile communication, depending on

their region, community, and individual factors, such as the onset and severity of sensory

impairment. Many TSLs exist today supporting critical daily activities and social interac-

tion [266]; in addition, many of the TSLs are letter-based semantic touch communication

methods. Here, we demonstrate a system for supporting TSL communication, specifically

utilizing the Deafblind Manual alphabet, which involves the performance of touch ges-
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tures, including tapping, lightly pinching, and sliding on the surface of the hand. Each of

the 26 gesture patterns corresponds to a letter in the English alphabet [263] (Fig. 5.1C).

Other technologies for supporting communication by individuals with visual and audi-

tory sensory loss include Braille interfaces, emerging methods for tactile graphic displays,

and more commonly available screen-based accessibility features for those with low vision.

However, such methods do not support the communication needs of all individuals who

are deafblind. More recently, researchers have engineered systems to translate text or

speech into tactile patterns [261, 262], including TSL gestures [263, 266, 267]. However,

the authors are not aware of any prior efforts to facilitate or develop a computational

encoding of tactile input. A system such as the one presented here could support TSL

communication by enabling transcription, analysis, or reproduction of TSL interactions.

5.1.2 Capturing Touch Gestures via Vibration Signatures

Touch interactions with the skin elicit vibrations that travel far from the point

of contact, encoding information about the contact location and nature of the ges-

ture [1, 58, 2, 17, 59]. This physical process makes it feasible to collect information

about tactile interactions using vibration sensors that are positioned remotely from the

contact location. Human-computer interaction research has utilized such processes to

provide means of computational input via contact with the skin, as in the Skinput de-

vice [60]. Many other sensing methods can be used for capturing information from

skin contact, including capacitive, electromyography, ultrasound, force, and other sens-

ing techniques [223, 183, 268, 269]. However, the propensity of touch-elicited vibrations

to travel great distances in the skin and the efficiency with which such signals can be

captured electronically via low-cost, readily available sensors makes this approach par-

ticularly attractive for interactive device engineering, especially in settings where it is
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preferable to leave the hand unencumbered.

5.1.3 Summary of Contributions

We present a smart wrist wearable for capturing and recognizing touch gestures that

occur on the hand during skin-to-skin contact. To inform the design of this smart bracelet,

including the number and placement of sensors, we captured the signal profiles of a subset

of letters of the Deafblind Manual alphabet with high spatial resolution using a sensor

array encompassing the whole hand. By analyzing this data, we identified that even

letters that are highly similar to one another in tactile sign contain unique signal profiles,

even when measured at locations removed from the gesture contact. Informed by this

finding, we designed a compact, wrist-worn device to capture these propagating signals

without hindering natural manual movements and tactile interactions. To demonstrate

the utility of this system for tactile communication, we illustrate the capacity of our

device to classify 26 different touch gestures—in this case, the letters of the Deafblind

Manual alphabet. We find that the device can accurately discriminate between different

touched contact locations (e.g., digit II, digit V, or palm) and between different types

of touch contact (e.g., slides, impulses, pinches, or squeezes). We show using simple,

supervised machine learning methods that such a device is able to identify these 26

different gestures with above 90 % accuracy, even when trained on a small dataset.

5.2 Whole-Hand Sensing

5.2.1 Materials and Methods

In a first experiment, we surveyed the whole-hand mechanical responses produced

during the signing of a subset of letters from the Deafblind Manual alphabet. We used
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two 42-channel, 3-axis accelerometer arrays (Model LI3DSH, ST Microelectronics) [58].

We captured data at a rate of 1300 Hz via a field-programmable gate array (FPGA)

based multichannel data acquisition board, with firmware on the FPGA and software on

a Windows PC. We affixed each accelerometer in the array to the skin via doubled-sided

adhesive, with one array attached to the dorsal side of the hand and the other to the

palmar (Fig. 5.2B).

We captured the skin acceleration for 10 trials of 9 letters of the Deafblind Manual

alphabet (A, D, E, F, I, M, N, O, U), signed on the palmar side of the hand through

interpersonal touch (i.e., one person signs on the hand of another person). Letters were

chosen for high frequency of use (i.e., vowels) and letter similarity (i.e., M and N, D and

E). Because the palmar surface of the hand was also covered with sensors, we slightly

shifted the signed location of M and N to avoid interfering with the sensors. The palm was

held facing upwards, with the forearm stabilized against the edge of a table at chest-level

to minimize noise from spurious hand movements. The data consisted of ten, 84-channel

3-axis acceleration signals for each letter. The data was de-meaned and bandpass filtered,

then compressed to a single axis by computing the magnitude of the vector. We then

computed the RMS of the acceleration magnitude.

To determine the spatial distribution of acceleration energy for each gesture class,

we compute root mean square (RMS) acceleration over all trials. We interpolated these

data using coordinates obtained from an anatomically plausible 3D hand model using

squared distance weighting. We analyzed the differences between letters using this data

and also computed the mean pairwise absolute correlation (Pearson’s r) between the

RMS acceleration of all trials and of all letters.
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Figure 5.2: A) Measured whole-hand mechanical responses for a subset of the Deaf-
blind Manual alphabet. We found that the contact is not only reflected in skin re-
sponses at the touched location, but also that this energy propagated outwards to
regions on the skin, on both sides of the hand, far from the point of contact. B)
We found that the tactile gestures produced consistent, repeatable patterns of RMS
acceleration across the hand (mean absolute correlation > 0.95 within trials of the
same gesture), while yielding very low correlations when comparing across trials of
different gestures.

5.2.2 Results

Each tactile gesture class yielded distributions of RMS acceleration that reflected the

contact location and the nature of the gesture (single touch - A, E, I, O, U and multi-

touch - D, F, M, N) (Fig. 5.2A). For example, the peak RMS acceleration of the letter E

was localized to the point of contact. Multi-touch gestures tended to deliver high RMS

acceleration (relative to the peak RMS acceleration for that gesture) to locations far from

the point of contact, reflecting that the contact location on the hand was much larger

(2-3 times the size of the contact for single touch gestures). Furthermore, all gestures

delivered energy to the wrist; the amount of RMS acceleration delivered at the wrist was

a function of the distance from the contact location (e.g., the contact location for E is

much further from the wrist than for M/N).

The tactile gestures elicited vibration patterns that were consistent across gesture

instances (Fig. 5.2B), and were qualitatively distinct from the other gestures. Consistent
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with the observations of the whole-hand patterns (Fig. 5.2A), some gestures produced

similar distributions of RMS acceleration and thereby high correlations (i.e. M/N and

D/E/F). For the subset of data captured by the ten accelerometers located on the wrist,

averaged within-gesture mean absolute correlations of the RMS acceleration (0.94) were

substantially larger than across-gesture correlations (0.48). These results suggested that

acceleration information captured at the wrist could be used to classify varied tactile

gestures.

5.3 Wrist-Worn Interface

Informed by the preceding findings, including the extent to which similar information

could be captured via sensors at locations removed from the point of contact with the

hand, we designed a smart bracelet using a minimal arrangement of sensors located at

the wrist. We evaluated the utility of this device for classifying touch contact gestures

performed on the hand, in the form of TSL gestures.

5.3.1 Materials and Methods

Device Design

The device was composed of an ABS shell enclosing two Adafruit Feather M0 WiFi

microcontrollers. It employed a total of four 3-axis analog accelerometers (Analog Devices

ADXL335) (Fig. 5.1A). Each sensor was adhered to the skin. Pairs of sensors were

positioned 25 mm apart on both the palmar and dorsal sides of the wrist (Fig. 5.3A), at

locations determined from the preceding experiment. The casing for the electronics was

designed to avoid mechanically disturbing the sensing elements. The data was captured

at a sampling frequency of 1250 Hz and at a resolution of 12 bits using the onboard ADC
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of the microcontroller.

Collection of TSL Data

We collected accelerometer measurements during TSL touch contact in each of two

conditions: one in which the signer performed gestures on their own hand (self-sign, or

SS, depicted in Fig. 5.1B2) and one in which the signer contacts another person’s hand

(interpersonal-sign, or IS, depicted in Fig. 5.1B3). The palmar surface of the hand, held

outstretched and flat, was facing upwards throughout data collection, with the dorsal

side of the forearm stabilized against the edge of a table to minimize disturbance from

unintentional limb movements. In both conditions, we recorded 40 trials of each of the

26 letters.

Signal Processing and Feature Extraction

The data for each letter were segmented, lowpass filtered at 250 Hz, and compressed

from 3 axes to 1 axis using principal component analysis (PCA). After compression, the

data for each trial was normalized independently,

yc,n =
yc,n

max{c,n} |yc,n|
, (5.1)

where n is the sample number and c is the channel number. This preserved the inter-

channel differences between accelerometers, while also reducing inter-trial variability of

the same gesture and improving the consistency of the feature estimates across gestures.

For every trial, we computed time-domain, frequency-domain, and spectro-temporal

features for all 4 channels of each analyzed segment, yielding 96 features per trial. The
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time-domain features were peak-to-peak amplitude

PTPc = |max
n

yc,n − min
n

yc,n| (5.2)

and mean absolute deviation

MADc =
1

N

N∑
n=1

|yc,n − ȳc|, (5.3)

where ȳc is the mean of signal yc,n. This yielded a total of 8 time-domain features per

segment.

For the second set of features, we computed the Discrete Fourier Transform (DFT) of

each of the normalized signals, Yc,k = F{yc,n}, where F is the DFT. From the frequency-

domain representation of the signal, we computed the spectral centroid

SCc =

∑N
k=1 fk|Yc,k|∑N
k=1 |Yc,k|

, (5.4)

where fk is the center frequency of bin k and |Yc,k| is the magnitude of bin k for channel c.

In addition, we computed the center frequency of the DFT bin with the largest magnitude

for each channel c,

Fc = fk∗ s.t. k∗ = arg max
k

|Yc,k|. (5.5)

We computed the mean and standard deviation of the DFT bins over a 50 Hz band-

width. Let the bandwidth bi ∈ {[0 50], [50 100], [100 150], [150 200], [200 250]} for

i = 1, ..., 5. We associate the set of bins Ki whose center frequencies lie within bandwidth

bi and compute:

µc,bi =
1

|Ki|
∑
k∈Ki

|Yc,k| , (5.6)
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σc,bi =

√
1

|Ki|
∑
k∈Ki

(|Yc,k| − µc,bi)
2, (5.7)

where |Ki| is the size of set Ki. This produced 40 features (2 measures × 5 bandwidths

× 4 channels), for a total of 48 frequency-domain features.

Finally, we composed a set of spectro-temporal features to capture temporal variations

in the spectral envelope of the signal. We computed the Short-Time Fourier Transform

(STFT) of the signals (window size K = 256 samples, 50 % overlap, Hanning window),

yielding a matrix of Fourier coefficients (M ×K) for each channel c where each of the M

rows is the DFT of the signal over different times. We computed the mean and standard

deviation of the measure µc,bi (see Eq. 5.6) for each row of the Fourier matrix. Let µc,bi,m

be the mean of bandwidth bi for channel c for row m. We compute

µSTFT
c,bi

=
1

M

M∑
m=1

µc,bi,m , (5.8)

σSTFT
c,bi

=

√√√√ 1

M

M∑
m=1

(µc,bi,m − µSTFT
c,bi

)2. (5.9)

This yielded another set of 40 features (2 measures × 5 bandwidths × 4 channels). All

features (temporal, frequency, and spectro-temporal) were concatenated to form a 96-

dimensional vector, used to train the machine learning model and classify the 26 different

tactile gestures.

TSL Classification

To distinguish the 26 letters of the Deafblind Manual alphabet via our smart bracelet,

we pass computed features into three common supervised machine learning classification

models: a support vector machine with a linear kernel (SVM), logistic regression with

PCA (LR), and a random forest model (RF). To minimize bias during training and
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Figure 5.3: A) Wrist-wearable device using four accelerometers affixed to the skin
to capture mechanical vibrations produced during tactile fingerspelling. B) Measured
accelerometer signals produced during a single trial of each letter of Deafblind Man-
ual alphabet. Palm tap and finger tap gestures (B1 and B2, respectively) produced
transients that rapidly decayed. Finger taps tended to deliver less energy to the wrist
when compared to palm taps, reflecting the difference in distance between the point
of contact and the sensor. Sliding or pinching/grabbing gestures (B3 and B4, re-
spectively) produced signals that tended to decay at a much slower rate on the skin,
reflecting that the gesture occurs over a longer time scale than the tap gestures.

classification, we employed a 10-fold cross-validation procedure with a 90-10 train-test

split. During each classification run, we computed the mean and variance of each feature

in the training data and used these sample moments to whiten both the training and

testing data. We performed classification for each mechanical dataset separately (SS and

IS conditions, 40 trials per letter) and on both datasets (combined condition, 80 trials

per letter).
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5.3.2 Results and Discussion

Mechanical Signal Profiles

We found that the measured signals (Fig. 5.3B) yielded noticeably different time-

domain acceleration responses, which became more prominent when we grouped the

gestures by palm taps (Fig. 5.3B1), finger taps (Fig. 5.3B2), slides (Fig. 5.3B3), and

pinches/grabs (Fig. 5.3B4). We found that tapping gestures yielded transient signals

that decayed rapidly, while slides and pinches/grabs decayed at much slower rates in

the skin. This likely reflects the variation in contact conditions between the gestures,

for which slides and pinches/grabs occur at much longer time scales. We found that

finger taps delivered less energy to the wrist when compared to palm taps, reflecting that

the properties of the skin, which is a highly damped medium, play a role in encoding

the distance from the contact location to the wrist, thereby differentiating the measured

tactile gestures. Finally, we found that sliding gestures, regardless of contact location,

tended to deliver less energy to the wrist, but that this energy was nonetheless measurable

and informative.

TSL Classification

When utilizing data from all four sensors, the SVM classifier consistently outper-

formed the RF and LR classifiers in the SS and IS conditions, with average accuracies

greater than 93 % across cross-validation folds; in the combined condition, the RF clas-

sifier slightly outperformed the others at close to 90 % average accuracy across folds

(Table 5.1). High performance using SVM is promising for real-time applications, as a

trained SVM model can easily be implemented on a micro-controller without the need for

additional computational power. In the following analysis, we focus on the performance

of the SVM model.
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Classifier
Dataset SVM RF LR

SS 93.9 88.7 90.6
IS 93.7 92.2 91.0

Combined 86.3 89.4 76.1

Table 5.1: Average Classification Accuracy (%) Across Datasets and Models for 4-Sen-
sor Configuration

We further analyzed classification performance using different subsets of sensor chan-

nels (Fig. 5.3A) to determine the minimal number of sensing element required for robust

classification. The subsets considered include all four channels (α, β, γ, δ), two channels

on the palmar side of the wrist (α, β), two channels on the dorsal side of the wrist (γ, δ),

one channel on the palmar side of the wrist (α), and one channel on the dorsal side of

the wrist (γ). Table 5.2 summarizes the average classification accuracies across cross-

validation folds for the SS, IS, and combined datasets. The use of all four channels yields

the highest classification accuracies, but the employment of just two sensors maintains

robust performance (above 85 % in the single subject conditions), indicating that they

are sufficient for detecting various sets of tactile gestures. Mounting the sensors on the

palmar or dorsal side of the wrist does not significantly change classification accuracies.

On the other hand, classification accuracy drops significantly when using only one sensor,

indicating that inter-channel differences encode relevant classification information that

cannot be discarded. Close inspection of the signals shown in Fig. 5.3B shows differences

in the phase and shape of signals between channels, most evident in the sliding gestures.

We found that the most commonly misclassified letters were L and N, which is ex-

pected due to the similarity of the tactile gestures; N is signed with two fingers in the

center of the palm whereas L is signed with one finger in the same location (Fig. 5.4).

Additionally, R and T are commonly mislabeled, as they are both taps occuring near the

same palmar location: T with one finger and R with two fingers. Other commonly mis-
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Sensor Configuration
Dataset α, β, γ, δ α, β γ, δ α, γ α γ

SS 93.9 86.5 86.8 87.1 76.3 73.8
IS 93.7 88.3 85.4 87.1 75.0 75.4

Combined 86.3 76.8 75.6 78.4 61.6 64.3

Table 5.2: Average Classification Accuracy (%) Across Datasets and Sensor Configu-
rations for SVM Model

classified letter pairs include G and X, and W and Z. The former are gestures performed

with the signer’s whole hand, producing high acceleration signals at the palm; the latter

produce similar high energy signals, but occur at different locations on the hand.

We also examined classification accuracy within each gesture grouping shown in

Fig. 5.3B (i.e. palm taps, finger taps, slides, and pinches/grabs) for the combined dataset

in the four channel configuration, averaged across cross-validation folds. Sliding gestures

are classified with the highest accuracy (92.8 %), likely because they produce the most

distinct mechanical signals. Finger taps are also accurately classified (90.8 % accuracy)

and are generally only misclassified as other finger taps, likely because the captured sig-

nals often possess similar magnitudes and temporal profiles. Similarly, palm taps (81.1 %

accuracy) are accurately recognized and are typically only misclassified as other palm

taps. This is expected when considering the similarity between many of the palm taps;

for example, L, M, N, and V are all signed in the middle of the palm but with different

finger placements. Finally, pinch or grab gestures (83.8 % accuracy) are somewhat more

likely to be misclassified as other types of gestures due to their heterogeneous nature.

Regardless of the classifier, dataset, or sensor configuration, we observe accuracies

above 60 %, which is significantly higher than chance (3.9 % for 26 classes). In the

majority of SS and IS conditions, accuracies are above 90 % when using four sensors,

regardless of classifier used. This indicates that accuracies approaching 100 % can likely

be achieved via standard techniques such as lexicon-based models that are widely used
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Figure 5.4: Confusion matrix for the linear SVM Classifier on the combined dataset,
with per-letter accuracies along the diagonal. On the off-diagonal, type I (false posi-
tives) read column-wise and type II (false negatives) read row-wise. Commonly mis-
classified letter pairs can often be grouped into the subsets introduced in Fig. 5.3. For
example. {E,D} are both taps on digit II, and {G, X, Z}, {L, N}, and {R, T} are all
taps on the palm.

in natural language processing and automatic speech recognition. Further improvements

might also be achieved through the use of state-of-the-art multi-layer neural network

classifiers.

5.4 Conclusion

We present a smart bracelet system that transforms the skin into a touch gesture in-

put interface. The bracelet can classify touch gestures of the Deafblind Manual alphabet,

via integrated wrist-worn sensors, with significantly higher-than-chance accuracy. Our

approach demonstrates the success of minimal accelerometer-based sensing that leaves

the hand unencumbered for manual interactions and movements. Measurements from a

whole-hand sensing array were used in an initial exploration to identify a subset of four
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sensors that are able to capture enough salient information in a touch gesture, thus reduc-

ing cost and complexity. We demonstrated the utility of this device for supporting tactile

communication via TSL. We present analyses of an experiment in which we captured and

accurately classified signal profiles for all 26 letters of the Deafblind Manual alphabet,

demonstrating promising uses of such systems for supporting tactile communication.

The smart bracelet can be used for input via tactile gestures performed on the hand

of the user by the user, which could be useful for note-taking, transcription, or textual

communication. Such a device could support interpersonal tactile communication by

individuals who prefer using touch over other modalities, in addition to encoding touch

in the digital domain. These findings may also enhance the utility of output devices for

tactile communication. Utilizing input and output devices in conjunction could support

communication between two or more individuals, including people who may communicate

via different TSLs.

While we have demonstrated the capability to accurately classify the 26 gestures of

the Deafblind Manual alphabet, more remains to generalize features for classification

of larger mechanical datasets consisting of various TSL signers, receivers, and alpha-

bets. Further investigation into individual differences between subjects, such as hand

size, signing speeds, and emotion (i.e. happy, angry) conveyed through TSL, will be

experimentally investigated.

We further envision supporting real-time classification of TSL, where signing occurs

as fast as five letters per second [263]. In these cases, intentional or accidental movements

of the hand (such as finger motion from a previously performed tactile gesture) must not

interfere with signals captured from the sensors. Thus, further data capture and signal

processing methods will be explored, examples of which include capturing data from two

devices worn on both the signer’s and receiver’s wrist, or capturing false positive dataset

examples (such as muscle contractions, finger twitches, etc.) to help identify gestural
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noise versus salient gesture data. We will additionally explore multi-layer classification

and feature optimization by additional meta-analysis of similarities and differences be-

tween tactile signals in a gesture set, as well as natural language processing as previously

applied in speech technologies. Such advancements are expected to improve accuracy and

robustness, aiding applications in natural communication. This system holds promise for

supporting tactile communication, including scenarios where it is paired with a haptic

communication output device, to address communication needs of individuals who are

deafblind.
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Chapter 6

SkinSource: A Data-Driven Toolbox

for Predicting Touch-Elicited

Vibrations in the Upper Limb

This chapter presents a free-to-use software toolbox for predicting spatiotemporal patterns

of skin oscillations across the entire upper limb elicited by tactile stimuli applied at one or

more locations on the hand. The underlying dataset consists of impulse responses mea-

sured with an array of accelerometers placed on the upper limbs of four different individ-

uals. Similar to Chapter 3, the toolbox utilizes the measured impulse responses to predict

skin oscillations elicited by arbitrary inputs in software. This work enables researchers or

designers to computationally investigate the design of wearable haptic sensing or feedback

devices, making measurement-informed design processes like that used in Chapter 5 more

efficient. This chapter also reports experiments that validate the accuracy of the linear

systems method used to predict the skin oscillations produced by any user-designed tactile

stimuli, lending support to the methodology used in Chapter 3.
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Abstract

Vibrations transmitted throughout the hand and arm during touch contact play a

central role in haptic science and engineering but are challenging to model or experimen-

tally characterize. Here, we present SkinSource, a data-driven toolbox for predicting skin

vibrations across the upper limb in response to user-specified input forces. The toolbox

leverages impulse response measurements that encode the physics of vibration trans-

mission across the hands and arms of four participants and provides software tools for

analyzing the predicted skin responses. We show that the SkinSource predictions closely

match experimental measurements and confirm the underlying assumption of linear vi-

bration transmission in the skin. We also demonstrate through several usage examples

how SkinSource can act as a versatile computational platform for haptic research appli-

cations, such as characterizing vibrotactile transmission in the skin, engineering haptic

interfaces, and investigating touch perception.
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6.1 Introduction

Manual touch interactions and haptic feedback supplied to the hand generate vi-

brations that are transmitted throughout the hand and arm [12, 1]. These evoked vi-

brations encode perceptually relevant information about the contact events that elicit

them [17, 55, 2]. Characterizing this mechanical process has played an important role

in understanding the interplay between biomechanics and neural encoding in touch

perception [48, 174, 13, 67, 14, 149, 61, 16]. Investigations of vibration transmission

in the upper limb have also informed the engineering of vibrotactile feedback tech-

niques [4, 227] and inspired new approaches for engineering robotic or prosthetic sensing

systems [206, 270, 208]. Moreover, touch-elicited skin vibrations have been leveraged in

the design of wearable sensing and haptic feedback devices [222, 60, 271, 58, 20]. Outside

of haptic technology, vibration transmission in the upper limb has been characterized to

inform the development of occupational safety standards for power tool usage [185] and

diagnostic tests for skin diseases [38].

However, vibration transmission in the upper limb is a complex function of the

anatomical structure and tissue biomechanics of the hand and arm [37, 13, 4, 56, 32]. It

has thus proven challenging to accurately predict the whole-limb response from numer-

ical modeling. Such models have been most effective at characterizing the mechanical

response of localized tissues near the stimulation site [272, 37] or capturing the dynamics

of the musculoskeletal system [273] rather than predicting vibration transmission across

the entire limb. Further, due to the widespread transmission of touch-elicited vibrations

throughout the hand and arm [12, 1], experimental measurements require time-consuming

procedures and specialized equipment [13, 38, 2, 4]. As a result, measurements are often

limited in scope, employing a single stimulation location and application-specific test

signals.
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Here, we introduce SkinSource, a data-driven, open-source toolbox for accurately

predicting skin vibrations across the upper limb in response to input forces applied at

any of 20 distinct locations on the hand. The toolbox integrates a vibrometry dataset

containing impulse response measurements captured at 72 locations on the hands and

arms of four participants and exploits the linearity of vibration transmission in the skin

to predict the mechanical response of the upper limb. SkinSource also includes MATLAB

tools that enable users to design their own stimuli to apply at one or more hand locations

and analyze the predicted skin vibrations in the time or frequency domains.

The functionalities provided by SkinSource are intended to aid haptics research, en-

gineering, and design, like other recently released haptics datasets and tools [274, 67].

SkinSource can serve researchers in sensory neuroscience and perception by providing a

means for investigating the mechanical basis of touch perception. The toolbox may also

aid engineers in designing haptic interfaces, wearable sensors, or assistive devices while

reducing the need for laboratory experiments (Fig. 6.1A). In the remainder of the paper,

we provide an overview of the toolbox and potential use cases (Section 5.2), describe the

data collection (Section 5.3), report results validating the toolbox predictions (Section

5.4), and confirm the linearity of vibration transmission in the upper limb (Section 5.5).

6.2 The SkinSource Toolbox

SkinSource contains a vibrometry dataset (Sec. 5.2.1) and accompanying MATLAB

software tools that allow users to specify time-varying force inputs at any of 20 locations

on the hand. Skin vibrations are predicted at 72 locations on four upper limb models via

convolution with impulse responses measured from four participants (Sec. 5.2.2). These

predictions are returned to users as an array of 3-axis skin accelerations. SkinSource also

provides data exploration tools that allow users to project vibrations onto selected axes,
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Figure 6.1: Overview of SkinSource and impulse response dataset. A) Users
in the haptics community can utilize SkinSource to explore and analyze vibration
transmission in the upper limb and use the outputs to guide and inform research
and design applications. B) Force inputs can be supplied at any of 20 locations on
the palmar surface of the hand (left) perpendicular to the hand surface (red dots) or
in-axis with the digits (black dots). Skin vibrations (accelerations) are predicted at
66 locations on the dorsal surface (and 6 locations on the volar surface, not pictured)
of the upper limb (right). C) Normalized 3-axis impulse responses at selected output
locations (blue dots) on the upper limb of Participant 4 (P4) for an input applied at
the tip of digit III (perpendicular). D) Normalized 3-axis frequency magnitude spectra
of the impulse responses shown in C. E) Normalized RMS of 3-axis impulse responses
across each measurement axis for an input at the tip of digit III (in-axis) of P3.
F) Normalized RMS of impulse response acceleration magnitudes for inputs applied
at 3 locations (red arrows, all perpendicular) on the hand of P1. G) Normalized
RMS of impulse response acceleration magnitudes for an input at the tip of digit III
(perpendicular) on the hands of all participants.

compute frequency-domain spectra, and visualize vibrations on a 2D upper limb model.

The results shown in Fig. 6.1 and Fig. 6.2 were generated using SkinSource and demon-

strate the versatility of the toolbox for applications in characterizing the mechanical

response of the upper limb, designing haptic devices, and investigating touch perception.

SkinSource can be found at https://doi.org/10.5281/zenodo.10547601 along with

documentation and usage examples.
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6.2.1 Impulse Response Dataset

SkinSource integrates a dataset of more than 5000 impulse responses obtained from 3-

axis vibrometry measurements of skin acceleration on the upper limbs of four participants

(sample rate: 1300 Hz), as described in detail in Section 5.3. The impulse responses en-

code the physics of vibration transmission from 20 input locations on the palmar surface

of the hand to 72 output locations on the hand and arm (66 dorsal, 6 volar; Fig. 6.1B). The

measured impulse responses capture previously reported features of vibration transmis-

sion in the skin. These features include frequency-dependent transmission speed (phase

velocity) [13], demonstrated by the temporal spreading of a wave packet with increas-

ing transmission distance (Fig. 6.1C), and frequency-dependent attenuation, with lower

frequency vibrations generally exhibiting less attenuation [4] (Fig. 6.1D). Moreover, the

impulse responses demonstrate that measurable mechanical energy is transmitted to the

wrist and forearm, also reflecting findings from prior work [12, 17, 20]. The dataset

enables investigations of skin vibrations measured in different axes (Fig. 6.1E) and anal-

yses of vibration transmission for different input locations (Fig. 6.1F). Additionally, the

dataset allows users to investigate the differences in vibration transmission across differ-

ent upper limbs by providing data collected from four participants (Fig. 1G; see Section

5.3).

6.2.2 Toolbox Implementation

To predict skin vibrations in the upper limb elicited by a user-specified input stimulus,

SkinSource leverages the measured impulse response dataset. This implementation relies

on the assumption that vibration transmission in the skin is approximately linear for

some small signal regime and can therefore be described compactly as impulse responses

or, equivalently, as frequency domain transfer functions. This assumption of linearity

120



SkinSource: A Data-Driven Toolbox for Predicting Touch-Elicited Vibrations Chapter 6

is validated and discussed in Section 5.5. In this linear regime, vibrations elicited by

arbitrary time-varying forces fyn(t) applied normal to the skin at location yn can be

efficiently computed as

uα(x, t) =
N∑

n=1

hα
yn

(x, t) ∗ fyn(t), (6.1)

where ∗ is convolution in time, N is the number of input locations, uα(x, t) is the time-

varying skin vibration in direction α at location x, and hα
yn

(x, t) is the time-varying skin

vibration in direction α at location x elicited by a unit impulsive force applied normal

to the skin at location yn (the impulse response). Measuring the impulse responses

eliminates the need for multiple experimental measurements of skin vibrations elicited by

different input stimuli of interest. Instead, resulting vibration responses can be predicted

efficiently in silico (< 100 ms computation time).

SkinSource provides four different data-driven models built on measurements obtained

on the upper limbs of four different participants. Although anatomical features and there-

fore distances between accelerometers varied across participants (hand lengths: 165 to

185 mm), input and output locations were mapped to a single 2D dorsal hand surface

for visualization and analysis purposes. Measured skin vibrations were extrapolated to

points on the boundary of the 2D hand surface using weights proportional to the distance

of the two accelerometers closest to each boundary point. Skin vibrations at intermediate

locations on the 2D hand surface were then determined using natural neighbor interpo-

lation. SkinSource also integrates a number of MATLAB software tools to aid users in

analyzing the predicted skin vibrations, including projecting the 3-axis vibrations onto

specified axes (e.g., the tangential or principle component axis) and computing frequency

domain spectra.
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Figure 6.2: SkinSource usage examples. A) Normalized z-axis skin acceleration
at selected locations (blue dots) on the upper limb of Participant 1 (P1) elicited by a
200Hz sinusoidal vibration applied at the tip of digit II (perpendicular). B) Normal-
ized RMS of skin acceleration magnitudes for 4 input sinusoids of varying frequencies
(50, 100, 200, 400Hz) applied to the tip of digit II (perpendicular) of P1. C) Nor-
malized z-axis skin acceleration at selected locations (blue dots) on the upper limb
of P2 elicited by a white noise stimulus applied at the tip of digit V (in-axis). D)
Normalized 3-axis frequency spectrum magnitudes of skin accelerations shown in C.
E) Normalized RMS of skin acceleration magnitudes elicited by the simultaneous ap-
plication of pulses at the locations marked by red arrows (perpendicular) across three
different participants (P2, P3, and P4). F) Normalized x-axis skin acceleration at
selected locations (blue dots) on the hand of P3 elicited by a 200Hz vibration applied
at the tip of digit III (red, perpendicular), a 200Hz vibration applied at the base of
digit III (blue, perpendicular), and the superposition of both input vibrations (black).
G) Perceived spatial extent of vibrations provided to the tip of digit II in a haptic
illusion created by [4] that elicits a spatially contracting (top to bottom) or expand-
ing (bottom to top) sensation using a single actuator. H) Normalized RMS of skin
acceleration magnitudes within 5 consecutive time windows elicited by the stimulus
that produces the illusion in G, which is a train of wavelets varying in frequency (top,
black trace) applied at the tip of digit II (perpendicular) of P4.

6.2.3 Toolbox Usage and Examples

In this section, we briefly explore several potential applications of SkinSource.
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Designing Haptic Devices

SkinSource can facilitate the haptic device design process by predicting skin vibra-

tions elicited by mechanical stimuli. For example, users can input sinusoidal vibrations

of various frequencies to the hand (Fig. 6.2A) and analyze properties of vibration trans-

mission in the upper limb, such as frequency-dependent attenuation (Fig. 6.2B). Such

observations of vibration transmission have led to the establishment of device guide-

lines like the optimal configuration of vibrotactile stimulators in haptic feedback dis-

plays [59, 225] and to the engineering of haptic sensing devices that leverage touch-elicited

vibrations [222, 60, 271, 58, 20].

Understanding Tactile Perception

Prior studies of vibration transmission in the skin have demonstrated that texture-

elicited vibrations play a role in human tactile perception [12, 55]. To aid in such in-

vestigations in the future, SkinSource can be used to examine skin vibrations elicited

during texture exploration. For example, users can predict the skin vibrations elicited

by a texture approximated as white Gaussian noise during transmission across the entire

upper limb in both the time (Fig. 6.2C) and frequency domains (Fig. 6.2D). SkinSource

can also be easily integrated with texture datasets captured during scanning of the fin-

gerpad [275, 55].

Investigating Complex Manual Interactions

Many manual touch interactions, such as grasping a cup or typing on a keyboard,

involve multiple points of touch contact on the hand. With SkinSource, users can investi-

gate vibrations elicited by interactions that can be approximated as the superposition of

force inputs at multiple hand locations. For example, pulse inputs applied simultaneously
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at several fingertips (Fig. 6.2E) closely resemble whole-hand vibrometry measurements

collected during multi-finger tapping gestures [1]. Moreover, the exploration of superim-

posed inputs can produce interesting results, such as constructive and destructive inter-

ference at various regions on the skin after the application of simultaneous vibrations at

multiple locations (Fig. 6.2F, top trace: destructive, second-to-top trace: constructive).

Similar investigations enabled by SkinSource could be used to engineer multi-input stim-

uli for focusing vibrations in the skin [227] or to optimize actuator locations in virtual

reality gloves [276].

Engineering Tactile Feedback Techniques

Examining vibration transmission in the skin can guide the creation of new tactile

feedback techniques. This process is clearly exemplified in [4], where the authors observed

frequency-dependent attenuation of skin vibrations in their mechanical measurements

and used this observation to engineer a novel perceptual effect of spatial expansion or

contraction using only a single actuator (Fig. 6.2G). This iterative design process could be

accelerated with SkinSource, which allows users to rapidly explore skin vibrations elicited

by different test signals. For example, users can observe frequency-dependent attenuation

in the skin by inputting sinusoidal vibrations (Fig. 6.2B). They can then design and test

novel vibrotactile stimuli exploiting this phenomenon, such as the expanding/contracting

stimulus designed in [4]. The spatial extent of the skin vibrations predicted by SkinSource

in response to this stimulus do, in fact, contract and expand (Fig. 6.2H), indicating a

promising perceptual effect for users to later test. The iterative design process described

in this section can also be employed for many other applications, including the design of

wearable and robotic sensing technology.
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6.3 Impulse Response Dataset Capture

6.3.1 Experimental Setup

Skin accelerations were measured using custom accelerometer arrays [1] placed on the

right hands and arms of four participants (two female, two male, ages in years: mean

27.5 ± 3.1 SD; Fig. 6.3A). The experimental protocol was approved by the Human Sub-

jects Committee at UC Santa Barbara and complied with the Declaration of Helsinki.

All participants gave their written and informed consent. Each of the 72 accelerome-

ters in the array was adhered to the skin using double-sided adhesive (66 on the dorsal

surface, 6 on the volar surface). Though hand sizes differed (165 to 185 mm), the rela-

tive anatomical positioning of each accelerometer was preserved across participants. The

stimuli were applied with an electromagnetic actuator (Mini Shaker Type 4810, Brüel &

Kjær, Denmark) at 20 input locations on the volar surface of the hand either perpen-

dicular to the volar hand surface (Fig. 6.3B) or in-axis with the digits (Fig. 6.3C). The

actuator probe tip (square profile, 49 mm2 contact area) was attached to the skin with

double-sided adhesive to ensure that there was no decoupling during the application of

the stimuli. Each participant was seated with their hand and forearm placed palm-down

in a comfortable resting position on a pneumatically-isolated table. The volar side of the

hand and forearm were supported by foam in all areas except where the stimulus was

applied. The upper limb was otherwise unconstrained. Participants were instructed to

keep their hands relaxed throughout the experiment without applying force to the probe

tip beyond that applied through their resting posture. Thus, the actuator preload was

minimal, and the probe tip was primarily secured in place via the double-sided adhesive.
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Figure 6.3: Impulse response dataset capture. A) Data was captured using an
accelerometer array on the upper limb, which was supported by foam but otherwise
unconstrained. Stimuli were delivered both B) perpendicular to the palmar surface of
the hand and C) in-axis with the digits.

6.3.2 Data Collection and Processing

Skin accelerations were collected in 3 axes at a sample rate of 1300 Hz. The z-

axis was normal to the skin surface, while the x- and y-axes were tangential to the

skin surface. However, the x- and y-axes were not oriented with respect to consistent

global axes across accelerometers. Input stimuli were rectangular impulses, which were

lowpass filtered (passband: 600 Hz) to satisfy the Nyquist sampling criterion. The full

width at half maximum of the impulse input was 1 ms, and the average peak input

acceleration at the actuator probe tip was 22.9 m/s2 across contact conditions. The

measured skin accelerations were averaged across 8 trials and de-meaned to produce the

impulse responses, which were 400 ms in duration. Input stimuli were measured at the

actuator probe tip for P1 and averaged across 7 trials. These input signals are provided

with the toolbox to enable compensation of the actuator response in the impulse response

measurements if desired. Data collection took approximately 2 hours per participant.
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Figure 6.4: Comparison of measurements and SkinSource predictions. A)
Normalized z-axis skin accelerations from measurements (top) and SkinSource predic-
tions (bottom) at consecutive time steps for a 104Hz sinusoid applied at the tip of
digit III (perpendicular) of Participant 1 (P1). Top trace shows the measured z-axis
skin acceleration at the measurement location closest to the input location. B) Nor-
malized z-axis skin accelerations at selected points (left, blue dots) on the upper limb
of P1 from measurements (pink) and SkinSource predictions (dark blue) for a 104 Hz
sinusoid applied at the tip of digit III (perpendicular). C) Mean MAE (mean abso-
lute error), D) mean percent amplitude difference, and E) mean Pearson correlation
coefficient between measurements and SkinSource predictions across input sinusoid
frequency. In C-E, the mean is taken across all measurement locations and axes, then
summarized as box plots across all participants and input locations for each frequency.
Box limits: lower and upper quartiles; red center lines: median; whiskers: 1.5x in-
terquartile range; gray dots: outliers.

6.4 Evaluating SkinSource Predictions

SkinSource employs the impulse response dataset and computational methods de-

scribed in the prior sections to predict skin vibrations evoked in the upper limb for

the conditions and input forces specified by the user. To evaluate the accuracy of this

methodology, we compared SkinSource predictions to experimental measurements of skin
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vibrations elicited by sinusoidal inputs (7 sinusoids spaced on a logarithmic scale from 53

to 508 Hz, 10 cycles, averaged across 5 trials). The experimental measurement procedure

was identical to that used to measure the impulse responses (Section 5.3). We computed

the SkinSource predictions (Eq. 6.1) and assessed their similarity to the experimental

measurements (Fig. 6.4A, B). To compare results across these two conditions, data was

normalized by the average RMS signal amplitude within each condition. Skin vibrations

were only compared at locations where the vibration amplitudes were at least twice the

average measurement noise floor.

We analyzed errors averaged across measurement locations and axes for all partic-

ipants and input frequencies. The errors quantified phase and amplitude differences

between the SkinSource predictions and the measurements. The mean absolute error

(MAE), which captured both phase and amplitude differences, was comparable to the

average noise floor of the measurements (Fig. 6.4C). The median percent amplitude differ-

ences, which captured only amplitude errors, remained below 30 % across all frequencies

(Fig. 6.4D). Additionally, median Pearson correlation coefficients, which captured only

phase differences, were above 0.5 across all frequencies (Fig. 6.4E). Though correlations

decreased at higher frequencies, which also led to an increase in MAE, prior work suggests

that this may have little effect on perception [277]. Overall, the SkinSource predictions

were in qualitative and quantitative agreement with the measurements. The small dis-

crepancies between the two conditions may be due to differences in contact conditions,

signal-to-noise ratio (SNR), or time alignment. Notably, measurement collection took

approximately 2 hours per participant, while the SkinSource predictions were obtained

in less than 5 s, highlighting the utility of SkinSource’s data-driven methodology.
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6.5 Linearity of Vibration Transmission in the Up-

per Limb

Figure 6.5: Validation of the linearity of vibration transmission in the up-
per limb. A) Skin velocity was measured via laser Doppler vibrometry at selected
locations (blue dots, L0-L12) on the dorsal surface of the hands of two participants
(P1 and P2) during stimulation on the volar side of the distal phalanx of digit III
(red arrow). L0 denotes the measurement location on the actuator probe tip. B)
Measured velocity normalized by input velocity at 4 locations (L0, L1, L3, and L5)
and 3 frequencies (50, 150, and 300Hz), with measurements at all input velocities
overlaid. Red trace corresponds to highest input velocity (80mm/s). C) Boxplot of
total harmonic distortion (THD) for the set of sinusoidal input signals, aggregated
across all measured locations for each stimulus frequency. Shown for P1 (left) and
P2 (right). Inset shows unloaded actuator response at 25Hz. Box limits: lower and
upper quartiles; red center lines: median; whiskers: 1.5x interquartile range; gray
dots: outliers. D) Linear fits (lines) of input velocity versus measured velocity magni-
tude for all trials of sine sweep measurements (dots). Shown for P1 at L3 for selected
frequency bins (denoted by color). E) Boxplots of adjusted R2 from linear fits of sine
sweep measurement frequency spectra (25-600Hz for P1, 25-500Hz for P2, 2Hz reso-
lution) aggregated across all trials and frequency bins for each measurement location
(L1-L12). Box color: participant (P1: black, P2: gray); box limits: lower and upper
quartiles; red center lines: median; whiskers: 1.5x interquartile range; gray dots: out-
liers. F) Predicted (red) versus measured (black) skin velocity at a selected location
(blue dot) in the time and frequency domains during simultaneous DP (triangle) and
MCP (square) stimulation. Predicted skin velocity is computed as the sum of mea-
surements during DP-only and MCP-only stimulation (top, gray).
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SkinSource leverages impulse responses that encode the physics of vibration trans-

mission in the upper limb and enable the computational experiments described in this

work. This approach relies upon the linearity of vibration transmission in the skin. Prior

work has established the validity of this assumption within a stimulated digit [54]. Here,

we confirm that vibration transmission across the entire upper limb behaves linearly over

a wide range of input velocities, including those at which the SkinSource impulse re-

sponse dataset was collected. To perform this validation, we conducted two experiments

evaluating linearity via amplitude scaling (Linearity Experiment 1) and superposition

(Linearity Experiment 2).

6.5.1 Experimental Setup

Skin velocities were measured at selected locations on the right hands and arms of two

participants (P1 and P2; Fig. 6.5A) using a laser Doppler vibrometer (LDV; model PDV-

100, Polytec, Irvine, CA; 48 kHz sample rate) placed normal to the skin at a distance

of 30 cm above the participants’ hands and arms. To ensure high SNR, small squares of

adhesive retro-reflective tape (5 mm2 area) were placed on the participants’ skin at the

measurement locations. The experimental setup was otherwise identical to that described

in Section 5.3.

6.5.2 Linearity Experiment 1: Amplitude Scaling

To test amplitude scaling, sinusoids (10 frequencies between 25 and 600 Hz) and a

linear sine sweep (25 to 600 Hz; 5 s duration) were applied to the tip of digit III at 5

amplitude levels (5, 10, 20, 40, and 80 mm/s zero-to-peak loaded actuator velocities).

Each input was repeated for 5 trials, and a compensation filter was applied to ensure

that the actuator response was flat in frequency (within 10 % of the target velocity). In
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the SkinSource impulse response dataset, the maximum input velocity across all contact

conditions was 21.6 mm/s.

After normalizing the sinusoid measurements by the input velocity, the responses

of the lowest four amplitude levels were nearly indistinguishable (Fig. 6.5B, overlapped

black traces). At the highest amplitude level (80 mm/s), nonlinearities became noticeable

below 200 Hz and became more pronounced with increasing distance from the actuator

(Fig. 6.5B, red trace). We found evidence of modest shifts (approximately 25◦) of the

fundamental and large contributions of third-order harmonics, the latter of which is

consistent with observations in brain tissue [278]. Due to the observed nonlinearities,

we restricted further analysis to the lowest four amplitude levels (≤ 40 mm/s). We

also found that the average total harmonic distortion (THD) of the sinusoid responses

across all measured locations was −40 dB (Fig. 6.5C). The increased THD at 25 Hz was

primarily due to displacement limitations of the actuator (Fig. 6.5C, inset). The outliers

present for P2 at 600 Hz were due to a large compensation factor that degraded actuator

performance. For this reason, subsequent analyses for P2 were performed only up to

500 Hz.

We used the sine sweep measurements to analyze linearity across the entire frequency

spectrum (25 to 600 Hz for P1, 25 to 500 Hz for P2, 2 Hz resolution). For each repetition

and measured location, we computed the frequency spectrum of the skin vibrations and

performed a linear regression on the spectrum amplitudes (Fig. 6.5D). The quality of

the linear fit was assessed using the adjusted coefficient of determination (adjusted R2),

with a high adjusted R2 indicating linearity. Amplitude levels that fell within 10 % of the

average noise floor or that lacked consistent estimates across trials (index of dispersion

> 0.02) were removed. The mean linear fit across the frequency spectra was nearly

1 at all locations (mean adjusted R2 = 0.99; Fig. 6.5E). We found variations in the

distributions of fits as we moved beyond digit III, likely due to lower SNR and spurious

131



SkinSource: A Data-Driven Toolbox for Predicting Touch-Elicited Vibrations Chapter 6

arm movements resulting in the deviation of the laser off of the reflective tape at the

measurement locations.

6.5.3 Linearity Experiment 2: Superposition

Stimuli were applied in three contact conditions: at the distal phalanx (DP) of digit

III (Condition 1), at the metacarpophalangeal joint (MCP) of digit III (Condition 2), and

at the DP and MCP of digit III simultaneously (Condition 3; Fig. 6.5F, left). Stimuli were

applied at only a single amplitude level (20 mm/s zero-to-peak loaded actuator velocity).

To confirm that vibrotactile transmission in the upper limb followed the superposition

principle, we compared the measured vibrations during Condition 3 to the sum of inde-

pendent measurements made during Conditions 1 and 2. Even in cases where significant

destructive interference occurred at the measured location, the simultaneous application

of sine sweeps at two locations (Condition 3) was nearly identical to the sum of skin vibra-

tions elicited by sine sweeps applied at the two locations independently (Condition 1 +

Condition 2; Fig. 6.5F, right). Across all locations for both participants, both the mean

time-domain and frequency-domain Pearson correlation coefficients between Condition 1

+ Condition 2 and Condition 3 were greater than 0.99, indicating that the superposition

principle held.

6.5.4 Discussion

The SkinSource predictions (Eq. 6.1) rely on the principles of both amplitude scaling

and superposition (i.e., linearity) to compute skin vibrations in the upper limb in re-

sponse to arbitrary input forces applied at multiple input locations. The results of both

experiments in this section indicate that the vibration transmission in the upper limb is

linear at or below 40 mm/s (zero-to-peak), though the upper bound of this range may
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depend on actuator dynamics. Thus, for the ranges at which the SkinSource dataset was

captured (maximum 21.6 mm/s peak velocity), impulse responses can be used to entirely

characterize the upper limb vibration response.

6.6 Conclusion

SkinSource provides data-driven upper limb models that allow users to predict the

skin’s vibration response to specified time-varying input forces supplied to numerous loca-

tions across the hand. In evaluations, we found that the SkinSource predictions accurately

matched measurements of skin vibrations elicited under similar experimental conditions.

Further, we confirmed that the entire upper limb can be considered as a linear medium

for vibration transmission for input velocities within the range employed in SkinSource

(< 40 mm/s zero-to-peak). These results are generally consistent with prior literature on

linearity within a stimulated digit [54]. The toolbox and dataset contributed by Skin-

Source provide a versatile framework for supporting haptics research at the intersection

of mechanics, perception, and neuroscience. By reducing the need for time-intensive

measurements using a data-driven computational methodology, SkinSource may aid in

modeling vibrotactile transmission in the upper limb, understanding the neuromechani-

cal basis of touch perception, and accelerating the design and engineering of novel haptic

technologies.

Similar data-driven modeling techniques can be found in the field of audio engineering.

These approaches involve encoding sound transfer from points in 3D space to the human

ear, analogous to encoding vibration transmission in the skin. Measurements over large

numbers of participants have enabled the personalization of 3D audio rendering based on

user-specific anthropometric features, which has significantly improved the quality and

accessibility of 3D audio reproduction over headphones [279, 280, 281]. Though Skin-
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Source currently integrates only four upper limb models, which limits its ability to gen-

eralize across a more diverse population, the data-driven modeling techniques employed

here may enable similar personalization for haptic rendering given larger datasets.

In its current form, SkinSource nevertheless provides a versatile computational testbed

enabling the systematic study of vibration transmission in the hand and arm for appli-

cations in haptic research and design. However, our characterization of vibration trans-

mission in the upper limb is not exhaustive and does not capture skin vibrations for all

possible contact conditions, upper limbs, input locations, or output locations. Notably,

the spatial resolution of SkinSource output locations does not satisfy the spatial Nyquist

sampling criterion, which requires that high-frequency skin vibrations (≥ 300 Hz) be sam-

pled at ≤ 1 cm spacing to accurately predict vibrations at points between measurement

locations [13]. In addition, to mitigate low-frequency artifacts and satisfy the temporal

Nyquist sampling criterion at high frequencies, SkinSource input signals should be ban-

dlimited between 25 and 600 Hz. This frequency range nonetheless encompasses a large

proportion of frequencies relevant to vibrotactile perception, particularly for Pacinian and

Meissner corpuscle mechanoreceptors [97]. Finally, SkinSource predicts skin vibrations

in response to stimuli applied normally to the skin surface using a contact surface with

dimensions of 7×7 mm. Some differences in the amplitude and phase of the upper limb

skin response would be expected for stimuli applied in shear directions or with different

contact conditions. These constraints highlight several opportunities for extending this

work in the future.
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Conclusion

The sense of touch is fundamental to our interactions with the environment, yet our

understanding of its underlying biomechanical and neural mechanisms—especially away

from the location of touch contact—remains limited. Recent work has demonstrated that

touch-elicited skin oscillations transmitted far from the contact location are relevant to

touch perception [4, 17, 18], but little is known about their role in the tactile system.

This dissertation advances our knowledge of human tactile sensing by characterizing

the widespread biomechanical transmission of touch-elicited skin oscillations and analyz-

ing its influence on the spiking responses of mechanoreceptor populations in the hand.

Employing data-driven modeling and simulation methods, the work here addresses and

overcomes experimental challenges in capturing skin measurements and neural record-

ings.

Chapter 3 introduces a data-driven approach for simulating whole-hand mechanore-

ceptor population responses. High-resolution optical vibrometry measurements of skin

oscillations were collected to drive physiologically validated neuron models distributed

across the hand. The vibrometry measurements demonstrated that touch-elicited skin

oscillations are biomechanically filtered in a frequency- and location-dependent manner
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as they are transmitted across the hand. This filtering process pre-neuronally modifies

the tactile inputs to widespread Pacinian corpuscle mechanoreceptors (PCs), diversifying

their response characteristics and neural activity across the hand. This diversity enables

PCs away from the contact location to capture touch information not encoded by PCs

within the contact region, supporting encoding efficiency in the tactile system. While

touch research often focuses on the mechanical and neural responses near locations of

contact, Chapter 3 emphasizes the need for a spatially distributed, populational-level

understanding of the tactile system. This chapter also builds upon research highlighting

the importance of both neural and non-neural mechanisms in sensory systems, includ-

ing the tactile [175], auditory [157, 158], visual [159, 160], and vestibular [156] systems.

By incorporating both aspects, the findings shed light on surprising and unexplained

aspects of the human tactile system, including the perception of complex vibrotactile

stimuli [4, 119, 120, 121], intact sensation despite tactile impairment [17, 18], and PC

distribution [3, 103] and density [81, 82] in the hand.

Leveraging the data-driven methodology introduced in Chapter 3, Chapter 4 inves-

tigates how whole-hand PC populations encode natural touch interactions. This work

explores neural sensory coding in natural settings, which has been recognized as criti-

cally important in neuroscience [122, 123, 124, 125] yet remains challenging to study in

the tactile system due to experimental constraints. Specifically, Chapter 4 investigates

the spatiotemporal organization of touch information within PC population responses,

addressing topics in sensory neuroscience such as rate versus spike timing codes and

spatiotemporal integration. While previous studies have focused on the temporal orga-

nization of information in PC responses [15, 112], this chapter provides novel insights

into the spatial organization. The spatial organization had a greater impact on gesture

encoding than the temporal organization, and it was crucial for digit separation to be

preserved within the spatial structure of the PC population responses. These results
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align with a previous study showing that whole-hand skin oscillations during the same

touch interactions could be efficiently described by a small set of basis functions em-

phasizing digit individuation [2]. This observation complements findings from Chapter

3 about the influence of biomechanical transmission on PC activity. Further reflecting

insights from Chapter 3, Chapter 4 demonstrates that PCs far from the contact locations

encode significant information about the touch interactions, showing that biomechanical

transmission enables remote tactile encoding [12, 17, 18].

Chapter 5 presents a wrist-worn device that utilizes the information carried by

widespread skin oscillations to digitally transcribe tactile sign language (TSL) let-

ters performed on the hand. This work builds upon an expanding body of research

that employs acoustic measurements to transform the skin into a touch-input inter-

face [60, 221, 222, 223]. Several temporal, spectral, and spectrotemporal features were

extracted from the skin oscillations captured by four accelerometers mounted on the wrist

and passed into simple classifiers, such as an SVM and a random forest. The classifi-

cation accuracy was high, even with simple and un-optimized methods: 94 % with four

accelerometers and 87 % with two. This work addresses a significant accessibility gap

by developing the first digital input device for TSL, facilitating digital transcription and

communication. Additionally, the ideas and methods underlying this device have broader

applications for consumer wearables, such as smartwatches, by enabling the skin to act

as a medium for digital gesture inputs and leaving the hand free.

Motivated by the demonstrated significance of biomechanical transmission in the

tactile system and in haptic device applications, as well as the practical challenges as-

sociated with acquiring skin measurements, Chapter 6 introduces a versatile toolbox

for the computational analysis of biomechanical transmission in the upper limb. This

toolbox enables users to predict skin oscillations generated by arbitrary tactile stimuli

applied at one or more locations on the hand entirely in software. The toolbox utilizes
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over 5000 measured impulse responses that fully encode the physics of biomechanical

transmission, employing a data-driven methodology similar to that in Chapter 3. This

approach was validated by confirming the linearity of biomechanical transmission in the

upper limb and by comparing the toolbox outputs to independent measurements across

a wide frequency range (25 to 600 Hz). This work addresses limitations in prior mod-

els of biomechanical transmission, which are typically restricted to small skin areas or

rely on simplifying assumptions that reduce spatiotemporal resolution. Furthermore, the

toolbox offers an accessible, inexpensive, and efficient alternative to the specialized, ex-

pensive, and time-intensive methods traditionally required to characterize biomechanical

transmission. While it does not eliminate the need for skin measurements, Chapter 6

can inform research on the neuromechanical basis of touch, similar to that in Chapters

3 and 4, and guide the design of haptic devices, as demonstrated in Chapter 5. It may

provide valuable direction and insight for experiments and device designs to save time

and resources.

7.1 Future Research Directions

Overall, this dissertation presents many promising avenues of future research with

implications for a number of areas. Specifically, Chapters 3 and 4 address several unan-

swered question in touch neuroscience by investigating the role of biomechanical trans-

mission in modulating the activity of mechanoreceptors across the whole hand. Chapter

5 demonstrates a practical application of characterizing biomechanical transmission by

leveraging skin oscillations to decode touch interactions within a haptic sensing device.

Finally, Chapter 6 enables the investigation of biomechanical transmission in silico, pro-

viding a computational testbed for applications in neuroscience and haptics.
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7.1.1 Tactile Neuroscience

� The findings from Chapter 3 regarding the influence of biomechanical transmission

on mechanoreceptor population responses present opportunities for future research

into unexplained aspects of human touch perception. For example, the perception

of polyharmonic stimuli remains unexplained by current knowledge of peripheral

tactile encoding. Previous research has suggested that the perception of signals with

complex frequency spectra might be mediated by subpopulations of mechanorecep-

tors tuned to different frequencies [120, 121], although direct evidence for such

subpopulations is lacking. Chapter 3 provides circumstantial evidence supporting

these hypotheses by demonstrating that PC subpopulations are tuned to frequen-

cies outside their typical range by pre-neuronal biomechanical filtering. In the

future, psychophysical and perceptual experiments are needed to further elucidate

the role of biomechanical transmission and filtering in shaping our sensory experi-

ence. The methodologies and findings in Chapter 3 offer a promising foundation

for such explorations.

� The results in Chapter 3 suggest that pre-neuronal biomechanical filtering in the

hand performs a biomechanical mapping analogous to the frequency-place trans-

form affected by the basilar membrane in the cochlea. The similarities between

the tactile and auditory systems have been noted in previous studies as well [237,

238, 282]. This suggests that in the future, insights and methodologies from audi-

tory neuroscience could be applied to develop a better understanding of peripheral

tactile encoding.

� Findings in Chapter 3 may shed light on aspects of mechanoreceptor distribution

and density in the hand. Notably, regions such as the knuckles where larger oscil-

lation amplitudes were observed coincide with areas previously identified as having
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higher densities of PCs [3, 103]. Additionally, Chapter 3 provides insight into how

biomechanical filtering may explain why there are hundreds or more PCs in the

hand despite their large receptive fields suggesting significant response redundancy.

Further research is necessary to more definitively connect the biomechanical findings

of Chapter 3 with the anatomical and morphological characteristics of mechanore-

ceptors in the hand.

� Neuroscience research has increasingly emphasized the importance of studying neu-

ral circuitry within the natural settings where it evolved. However, investigating

peripheral tactile encoding in these unconstrained, natural settings remains chal-

lenging. Chapter 4 contributes to this research by developing a computational

framework for examining how populations of PCs encode natural, unconstrained

touch interactions. This study provides a foundation for future research into tactile

encoding in natural settings.

� The data-driven methodologies introduced in Chapters 3, 4, and 6 take a step to-

ward developing a general computational model of human touch in the hand. Such

a model would be capable of predicting biomechanical transmission, mechanore-

ceptor population responses, and touch perception in response to arbitrary tactile

stimuli. In the immediate future, the research from this dissertation could be ex-

panded toward this goal by including additional types of mechanoreceptors beyond

PCs and incorporating data from more participants.

7.1.2 Health and Medicine

� Aging and medical conditions such as scleroderma can alter the mechanical proper-

ties of the skin and affect mechanoreceptors by reducing their number or changing

their nerve conduction velocity. Such changes can negatively impact tactile sen-
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sitivity and dexterous manipulation capabilities, potentially diminishing quality

of life. The research presented in Chapters 3, 4, and 6 may provide insights into

how these mechanical and neural changes influence biomechanical transmission and

mechanoreceptor population responses, potentially contributing to new diagnostic

or treatment methods.

7.1.3 Haptic Technologies

� Skin oscillations can be leveraged in haptic sensing devices because they trans-

mit touch information across large areas of skin, as demonstrated in Chapter 5.

This information can be captured and interpreted remotely by wearable sensors,

like those in commercial smartwatches. Chapter 6 presents a toolbox that enables

users to generate large datasets of upper limb skin oscillations in response to various

touch interactions. The toolbox facilitates computational analyses, such as feature

extraction on time- and frequency-domain signals, which could inform design de-

cisions for haptic sensing devices, such as optimal sensor number, strategic sensor

placements, and overall device feasibility.

� Because skin oscillations play a role in touch perception, they can be harnessed

for haptic feedback devices. This has led to novel haptic feedback methods, such

as creating patterns of spatial sensation [4] and focusing waves in the skin [227].

The toolbox presented in Chapter 6 enables the efficient and systematic analysis of

biomechanical transmission in the upper limb for a large and diverse set of stim-

uli that includes various amplitude and frequency components. This may inform

feedback patterns in a haptic device, such as a glove designed for use in virtual or

augmented reality environments.

� The data-driven methodology introduced in Chapter 6 holds the potential for per-
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sonalizing haptic rendering based on individual differences in hand anatomy and

skin biomechanics. This approach is similar to data-driven modeling techniques

used in audio engineering, where measurements of head-related transfer functions

have enabled the customization of spatial audio rendering in headphones [279, 280,

281]. By applying similar principles and gathering more data across a diverse range

of participants, the work in Chapter 6 could be leveraged to tailor haptic feedback

to each user’s unique physiological traits.

7.1.4 Tactile Sensory Prostheses and Robotic Tactile Sensing

� Research has shown that biomimetic methods of peripheral nerve stimulation can

improve the experience and manipulation capabilities of prosthetic users [199, 201].

The findings in Chapters 3 and 4 on biomechanical transmission and its influence on

mechanoreceptor populations may provide insights into improving these biomimetic

stimulation techniques to produce more informative and immersive tactile feedback.

� Improving artificial tactile sensing and perception for robotic manipulation remains

an active area of research, with many promising approaches inspired by the human

tactile system [206, 207, 208, 209, 210]. The findings from this dissertation may

provide valuable insights for improving these technologies. For example, the work

presented here demonstrates how an acoustic transmission medium, akin to skin,

can distribute tactile information across large areas and perform passive feature

extraction. Therefore, sensors can be positioned remotely from the contact location,

reducing device complexity and improving computational efficiency. Such insights

may provide potential methods for improving artificial tactile technologies.

Technology that seeks to interface with or emulate the sense of touch is becoming

increasingly prevalent, supporting the continued relevance of the research presented here.
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This dissertation highlights the critical role of biomechanical transmission within the

human tactile system and introduces data-driven tools that advance our understanding of

the interplay between biomechanical and neural processes underlying the sense of touch.

The methodologies and insights developed here not only contribute to current scientific

knowledge but also establish a foundation for future innovations in haptic technologies.
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Personalization of head-related transfer functions (HRTF) based on automatic
photo-anthropometry and inference from a database, Applied Acoustics 97 (2015)
84–95.
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