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SUMMARY

In this study it is found that all axisymmetric waves
travelling in very long composite rods do so at the speed of
certain classical waves, as the wave length approaches zero.
The velocities are those of Rayleigh waves in the casing,
Stoneley waves and the shear velocities in each of the core
and casing materials. The number and nature of waves that
exist asymptotically depend on the properties of the rod.

It is found that all composite, elastic rods can be divided
into four Classes and that in each Class there is a different

combination of the asymptotic classical phase velocities,



INTRODUCTION

1
In a previous paper , a frequency equation was developed which

governs the relationship between frequency and propagation constant for
axisymmetric waves travelling in infinitely long composite rods. A pair
of roots of this equation represents a propagation constant and one of
“its resonant frequencies. In the same paper, the frequency equation was
explored for a large range of frequencies but from necessity a limited
range of propaegation constants, or wavelengths. These roots were shown in
the form of spectral lines and it was noted how the properties of a rod
influences the shape of its spectral lines. As the coordinates of a
point on a spectral line are a measure of the phase velocity of waves
travelling in a rod, interest was directed to how the properties of a
rod influence its dispersive properties. Consideration was given to the
possibility of being able to choose a rod whose properties are such that
its fundamental spectral line is straight so that the rod is essentially
non-dispersive. For such a design the behavior of the fundamental spectral
line would have to be explored for large propagation constant which was
outside the range of the previous paper.

The present paper presents the results of the study prompted by the
earlier paper. In this paper, it is found that all spectral lines approach
certain few straight lines asymptotically, as the propagation constant
becomes infinite. As these lines emanate from the origin,each one repre-
sents a particular phase velocity. There are four possible patterns that
the spectral lines can take corresponding to four types of rods. If we
use the definition that the acoustically denser of two materials is the
one in which the shear velocity is slower, the four rods fall into two

classes; the first where the core is acoustically denser and the second
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the casing. Each class of rod can be further subdivided into those rods
which are capable of propagating Stoneley waves at the interface of the
two materials and those that are not.

The first type of rod has a dense core and sustains Stoneley waves.
For this type, the lowest or fundamental spectral line approaches the line
" representing the Stoneley velocity, the second and all higher approach the
velocity of shear waves in the core.

The second type is the same but does not transmit Stoneley waves so
that all spectral lines are asymptotic to the line representing the shear
velocity of the core.

The casing of the third type of rod is denser and it can transmit
Stoneley waves. Here the fundamental line and the second spectral line
have as their asymptotes lines corresponding to the velocity of Rayleigh
waves in the casing, and the Stoneley velocity respectively. The third
and all higher branches approach the velocity of shear waves in the casing.

The fourth type is the same as the third except Stoneley waves are
not possible, so that the lowest spectral line is asymptotic to the Rayleigh
velocity in the casing;'the second and all higher branches to the shear
velocity in the casing.

As we predict that the Rayleigh, Stoneley or shear are the asymptotic
velocities, it is well to try to validate this prediction using displace-
ment distributions along a radial line of the rod. The shear velocity does
not have a radial displacement distribution with which it can be characterized
but the Rayleigh and Stoneley velocities do. Accordingly three points are
chosen for a large propagation constant; one on the lowest spectral line
for rod one and one on each of the first and second spectral lines for rod
three. The displacement distributions are found and in each of the three

cases the distribution has the classical form it should.



II,

STUDY OF THE FREQUENCY EQUATION -3

The composite rod is referred to a cylindrical coordinate system
within which the radius of the core is "a" and the outer radius of the
casing is "b". The two materials are bonded at their interface. The
core is identified as material one and its properties are identified by

a subscript one preceding the material symbol. The casing is material

" two. In this system represents the mass density of the core and v,
f 2Y2

the shear velocity in the casing, etc.

The frequency equation, which was developed in a previous paperl s
relates the normalized frequency.ﬂ- and the dimensionless propagation
constant g , and for convenience will be repeated here. It is

Icijl =0, (i,j 1-6), (1)
where the i indicates the row and j the column. The elements of the

determinant can be written.
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The notation for each of the elements in Eqs. (2) is given in
reference 1 .,

Roots (2, ; ) of the frequency equation when plotted on the {2 . ;
plane form spectral lines which represent resonant motions of the rod.
The phase velocity is:

v (3)

v = .Z ‘2

so v = constant is represented on the spectral plane by straight lines

emanating from the origin.
The nature of the equation depends on whether the arguments of the

Bessel functions are real or pure imaginary; that is whether ,o(,eo( , ’/5 ,
2 ﬁ , are real or imaginary. It follows that there are five zones on the . ;
plane separated by the lines
o«
L

Iﬂ =
f

!

()

o O © O

such that the spectral lines in any one zone are derived from one of the
five different frequency equations all represented by Eq. (1). The zones
are pie shaped segments of the .Q-; quadrant, numbered so that zone 1 is
adjacent to the ; axis and zone 5 adjacent to the fL axis., As the
asymptotic phase velocities lie only in zones 1 and 2 we will restrict our
attention to these two zones (see Figs la & 1b), and accordingly to two
forms of the frequency equation. We next divide all composite rods into
two classes, so that Class I contains all rods for which the core is the
acoustically denser material (vz*>1) and Class II for which the casing

is (v?'*< 1). TFor rods in Class I, zone 1 is separated from zone 2 by
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the line

B =0 (5)

which represents the velocity v, . For Class II, the line
2ff=0 (6)
separates the two zones, which is the line V = 3vz .

We are primarily concerned in this paper with how the spectral lines
behave when the wave length is very short or when the propagation constant
; is large. The two forms of the frequency equation are complicated, but
insight into the behavior of the spectral lines is gained when we take
advantage of the size of g . When ‘; is large, the arguments of the
Bessel functions are large, so that we can replace the Bessel functions

by simpler expressions. These approximations are:

J, (x) = (-ﬁ?i-)% cos (x - % -Eég
2 % nit
Y, (x) = (',z—x')z sin (x - —% - > ) (7)
I (x) = (2mx)F &
Ko () = (me)? ™.

We will deal with each of the two forms of the frequency equation
separately.
Zone 1
1%, 30(,, and 3/3 are all imaginary in zone 1 so that the frequency
equation contdins only Mo«dified Bessel functions. Using the last two of
Eqs. (7) and retaining only terms of the highest order of § , we find that
the determinantal frequency equation breaks into the product of subdeter-

minants

Exp[tg(a* - 1) (zoc +zﬁ )} Dy Dy =0. (8)
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In Eq. (8)

[J&*(Zgz -0%) -22«&] 268, ax-1)

D. = .
L 27 0 (2£%- %) (9)

" and
-; —'O( —;

o

5 - P - B
[5(2;2 -0°) +2£<] 2p* b ( 3;/3 + 1) [J(z;a-n_avz * )-2,% 2¢(d,B -1)

4

- /** ;b« /&

When Dy is expanded and a term of a lower order of ; is dropped. it becomes

the equation

pr(e - s?)  apH(1-s?)F (2= N2 62 )

(22°-02)% = wPx,p (11)

which we recognize as the equation governing the Rayleigh wave velocity.

The second determinant is more easily recggnized in the form:

2 1 V. 1
(1- 2 —)2 -1 - (1 - kg s2)5 -1

a L

w -

1 : i
1 -(l-s2 )2 1 (l-v2*2 &2 )2

-2 *(1-_52_ )% /*(2-s2) 2 (1 - Ya—z s2> z (2= vz*2 g2 )

Ak .

which is the equation developed by Stoneley'2 governing the phase velocity

of Rayleigh-type waves travelling along a bonded interface of two materials.

If we denote this velocity as Vg i, we have

S =Vet/ ,V, .

It would be advisable here to review Stoneley waves and what has been found

about the equation
D2 =0, (]_3)

x(eg -0%) HX [Py

(10)

2(1-v* 2 )2 | (12)
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At an interface of two materials, Stoneley waves may or may not exist,2

that is there may not be a real "s" which satisfies Eq. (12). Sezewa and
Kanai3 have shown that in general a real root "s" exists only when the
shear velocities in each of the two materials are close to one.another or
when V,* does not differ greatly from one. When Stoneley waves do exist,
" their velocity is a constant so that the waves are non-dispersive. This
can be understood when we note that D, is independent of the frequency or
propagation constant. Koppe)4 established that the lower bound of vst is
the Rayleigh velocity of the acoustically dense medium and also found
that the displacements will decrease exponentially into each of the two
materials away from the interface (the assumption of Stoneley) so long as
the Stoneley wave velocity is less than the shear velocity of the acous-
tically dense material,

In zone one, therefore, only Rayleigh and Stoneley velocities are
possible when g is large.
Zone 2

In zone 2 we will‘examine in detail Class I rods. ,&, fx B </3 are
pure imaginary, </3 is real in zone 2, Class I. Using Egs. (7) the frequency

equation for zone 2 takes the form

Dy =0 (14)

where
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where
ml = l_;ﬂ_ = (1-32)% nl = _l_;f_(_ = (l"s—z- )%
ik
(17)
%2
m = _'ﬁ = (vz#sz-l)% n, = % . (1- vé_z_sz)%
S ¢ g K

With some further manipulation Eq. (16) can be put in the form

tan (Sg'ﬂ- 3T = Ax (18)
Asr

where
1 my 1
AV /‘*(1+m.2)-2 om (/‘ -1) -(1+m,?) (19)
n, [(l-m‘ 2)-2/4,*] [(l-m r*(l+m. )J n, (l+m&2)

DB = m, /A*(l¢m|2)-2 2m|9‘ -1) -(l+m&2) (20)

[(lm )2 ] {(l—m )/x*(1+m ] nz(1+mz_2)

The behavior of the spectral lines in zone 2, when ; is large, is
contained in Eq. (18) which is sufficiently simple for qualitative analysis.
The behavior will become apparent when we can find the roots "s" for a

particular, large ;, say g . On the left side of the equation, "s" appears

only in the m, of the argument (¢§§ ‘m, - ég.). We now examine the plot

of tan (5; 'm, - 3)1'-‘ ) in Fig. (2) and establish the bounds of its
argument as fixed by the bounds of zone 2. The lower bound of zone 2 is

the line ,/3 = O which gives

m, = O. (21)



-11

This establishes the lower bound of the angle (é; ‘m, - ;°’_g_) as (- 3;_")

The upper bound of zone 2 can either be the line .0( = 0 or 3/3 =0
but, as each of the lines is straight, "s" is a constant and therefore mgy
is a constant say Ez . This means that for a particular rod in Class I

- 30 - —
the upper bound of the angle is (J; m, - T" . Tan (J; m, - .3%. ) is then

sketched over the extent of this interval as "s" varies over the extent

of zone 2.

We next exsmine the right side of Eq. (18) and note that

VAV U AV Y * 9,V
= E (S, /"*’F". ),

so for a given rod the right side is a function of "s" only and further
that as "s" approaches the lower bound, m, approaches zero and the function
goes to infinity. So for a particular g the sketch shown in Fig. (2) is a
probable plot of both sides of Eq. (18) so that points of intersection
give the roots "s". Regardless of whether AA/ AB approaches plus
infinity or minus inf}nity, the lowest intersection occurs very close to
(-TL/2). 1If we set

(égmz-%i:[_ . (22)

2

we find that the lowest velocity is

1
s, = _% (1+n22 ) 2 (23)
2
v, * 1647
As ‘; becomes large, "s" approaches 1  from above or the phase velocity
Vy *

V approaches |V, from above. So the lowest spectral line in zone 2

approaches the lower bound of zone 2 asymptotically.
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In Fig. (2) the second intersection is close to, say (-'-H-—)and if we set

the argument of the angle equal to (-)t-:[-) we find the second velocity,

= _l_ l+i%
T Ee (24)

so we can conclude that the second spectral line in zone 2 approaches the
same asymptote as the first, as ; goes to infinity, but approaches it
more slowly.

The number of roots for a particular 'g represents the number of

spectral lines in zone 2 that intersect the line ; = ; . If we take a

new line say g = 25 we find that the interval of the angle (J; m,- 3E )
within zone 2 almost doubles hecause the left boundary remains the same
but the right boundary moves to the right almost twice as far from the
origin as it was before. Consequently there will be almost twice the
roots "s" at ; = Zgas there were for ; = f . The additional spectral lines
have entered zone 2 from zone 3. If we use the arguments just set forth,
we can make the general statement that all spectral lines, except the
lowest one or two, enter zone 2 and eventually epproach its lower bound
if the propagation constant becomes sufficiently large.

Though the same qualitative analysis for Class II rods was not made,
numerical analysis of a few rods in this class, using the full frequency

equation, leads us to conclude that the spectral lines in Class II have

the same pattern as in Class I.

THE FOUR TYPES OF RODS

There are four different patterns that the spectral lines can take as g
becomes large, and these will be demonstrated by examining the spectral
line for four different rods. Two rods are in each of the two Classes and

in each Class one rod will be capable of propagating Stoneley waves and one



will not. The properties of the four rods are listed in Table 1.

Table 1
P P¥ a¥ v R
Rod 1 .20k .10 1.5 .25 .25
Rod 2 k.o 2.0 2.0 .25 .25
Rod 3 4.902 10.0 2.0 .25 .25
Rod L .1075 .2914 8.0 .29 .20

Rod 1 (Fig. 3)

This rod is in Class I and it transmits Stoneley waves. The lowest
asymptotic phase velocity for this rod is the Stoneley velocity. The only
velocity which could be less would be that of Rayleigh waves in the core
material but these are not possible. Here the lowest spectral line is
asymptotic to the straight line for which V = Vg, and all of higher
spectral lines have as their asymptote the straight line represented by
V =,V, . As Rayleigh waves can travel along the casing, resonance will
always occur along thg line V =iyR which is accommodated by means of the
terracing observed in the figure,

Rod 2 (Fig. 4)

This rod is also in Class I but, as no Stoneley waves exist, all of
the spectral lines, including the lowest will have the line V =V, as
their asymptote. The terracing for Rayleigh waves in the casing is the
same as for rod 1.

Rod 3 (Fig. 5)

This rod is in Class II, with Stoneley waves., Here the lowest velocity
is that of Rayleigh waves in the casing and is represented by the line
v =2Y . The lowest spectral line is asymptotic to this line, the second

is asymptotic to V = V_, and the third and all higher spectral lines are

st

asymptotic to the line V =2ﬁr As Rayleigh waves are not possible
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in the core there is no terracing.
Rod L (Fig. 6)

Class II with no Stoneley waves, so the lowest spectral line is
asymptotic to the line V = ZVR and the second and all higher spectral lines
are asymptotic to the line V = ZVz .

DISPLACEMENT DISTRIBUTIONS

We have predicted that, for certain rods, trains of waves associated
with the lowest spectral lines travel at the speed of Rayleigh and Stoneley
waves when the wave length is short. It is important therefore to explore
whether displacement distributions, along radial lines, conform to the
patterns associated with these types of waves.

Accordingly we derive expressions for the magnitude of the displacement
components valid for any combination of frequency and propagation constant.
If we include only the radial dependency, the components are:

= A g o 2 (s8R) - A g2, (psw)]

- ]

M. = A Lzo(A,‘Z, (xSR) - A% W, (x8R)

% T2 (psR). Ay Tw (psR)]




Aj
Ay

The A's, Z's and W's are defined in Ref. (1), R = _L and the
a

(i=2.....6) are found from any five of the six boundary conditions
expressed as Eqs. (16) Reference 1

The distributions have been found for three combinations of frequency
and propagation constant. The first combination identifies a point on the
lowest spectral line for Rod 1 (see point 1 Fig. 3) for which the phase
velocity is the Stoneley velocity. The radial and axial displacement
distributions corresponding to this point, which are shown in Fig. (7),
indeed show the Stoneley wave distribution. As was pointed out in Reference 1.
the radial and axial components of displacement act ninety degrees out of
phase,

Points two and three (see Fig. 5) are on the lowest two spectral lines
of Rod 3 which predict Rayleigh and Stoneley phase velocities respectively.
The displacement distributions for these two points are shown in Figures
(8) and (9). Point two shows the Rayleigh wave distribution and point

three the Stoneley wave distribution, as they should.
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CAPTIONS FOR FIGURES

The Spectral Zones for Class I Composite Rods
The Spectral Zones for Class II Composite Rods

Graphical Solution of the Reduced Frequency Equation for .
Class I Rods in Zone 2

Spectrum for Rod 1 Showing Frequency VS Real Propagation Constant
Spectrum for Rod 2 Showing Frequency VS Real Propagation Constant
Spectrum for Rod 3 Showing Frequency VS Real Propagation Constant
Spectrum for Rod 4 Showing Frequency VS Real Propagation Constant

The Radial and Axial Displacement Distributions Corresponding
to the Point 1, for Rod 1

The Radial and Axial Displacement Distributions Corresponding
to the Point 2, for Rod 3

The Radial and Axial Displacement Distributions Corresponding
to the Point 3, for Rod 3
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