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ABSTRACT OF THE THESIS 

 

Mangroves from the Sky: Comparing Remote Sensing Methods for Regional Analyses in Baja 

California Sur 

 

By 

 

Katherine L Qi 

Master of Science in Marine Biology 

University of California San Diego, 2021 

 

Professor Octavio Aburto, Chair 

 

 

Consequences of global warming are causing mangrove migration from tropical habitats 

towards temperate zones. Forests at limits and transition zones are important to monitor for 

promoting local management and conservation efforts. The advancement of remote sensing 

technology in the past decade has allowed more insight into these habitats at large scales, and 

recent studies using satellite imagery have succeeded in creating baselines for global mangrove 

extent. However, the high surveying range comes with a cost of reduced resolution, causing gaps 



 xiii 

in areas with high fragmentation or low canopy height, such as in dwarf mangrove habitats. By 

using drones, we were able to conduct detailed analyses of canopy height distribution for dwarf 

mangroves in Baja California Sur. This new model provides a focused approach at analyzing 

parameters that contribute to the multidimensionality of mangrove forests with primarily remote 

sensing data. Additionally, improved biomass models were constructed with the drone data and 

compared against satellite data.  Due to its inaccuracies in approximated mangrove extent and 

canopy height, satellite imagery significantly underestimates above ground biomass and carbon 

measurements in this region, and potentially dwarf mangroves in general. The pairing of satellite 

and drone imagery allows for a more robust view of mangrove ecosystems, which is critical in 

understanding their poleward movement with respect to climate change. 
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INTRODUCTION OF THE THESIS 

` Mangroves are coastal tree species that can thrive in shallow ocean water, populating 

subtropical and tropical shores from Mexico to Indonesia. Occupying a small proportion of 

Earth’s surface area, these forests supply an important contribution that lies beyond what be can 

physically seen: their productivity and accumulation of carbon storage (Churma et al. 2003; 

Dontao et al. 2011). Known as a major blue carbon sink, wetland ecosystems hold strong 

potential for mitigating climate change by long term sequestration of carbon and are more 

efficient than most terrestrial forests by area (Mcleod et al. 2011; Hiraishi et al. 2014; Howard et 

al. 2017). Furthermore, mangroves provide crucial ecological services to local communities, 

including but not limited to protection from erosion and tropical storms  habitats for fisheries, 

hotspots for biodiversity, and zones of sociocultural importance (Alongi 2002; Moberg and 

Rönnbäck 2003; Walters et al. 2009; Polidoro et al. 2010). Nonetheless, mangrove loss has been 

prolific due to urbanization, pollution, aquaculture, and lack of political enforcement (Valiela et 

al. 2001, Alongi 2002). Over the last 50 years, an estimated third of the global mangrove extent 

has been decimated, resulting in about millions tons of carbon released back into the atmosphere 

(Alongi 2002). This event is compounded with the combination of other future anthropogenic 

inputs and long term consequences of removing a prominent carbon sink.  

To study mangrove forests, scientists have developed a variety of efforts to collect data 

on growth, biomass measurements, carbon accumulation, and more. Traditional field work 

involve directly going into forests and gathering data by destructive methods. Due to high tree 

density and tidal inundation in these habitats, collecting a robust number of samples are labor 

intensive and time consuming. Development of remote sensing techniques have enabled 

alternatives to ground work, one of which includes satellite imagery. Satellites can map large 

https://doi.org/10.1038/ngeo1123
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swaths of regions and frequently monitor them from a distance, and baseline estimates of total 

extent, canopy height distributions, biomass, and carbon measurements can be established with 

allometric equations (Simard et al. 2019). But, the wide coverage comes with a disadvantage of 

reduced resolution, which can yield significant error ranges (Giri 2016; Lagomasino et al. 2016) 

These can impact contributors in calculating biomass and carbon results, such as measured 

mangrove extent and canopy height estimations.  

On the other hand, the recent advancement and production of commercial drones has 

made them relatively low cost and easy to obtain. Furthermore, their ease of use and ability to 

yield high quality images makes them an efficient tool for surveying sites on a regional scale 

(Ruwaimana et al. 2018). Conversely to the caveats with satellites, the high resolution costs time 

and data storage as flying over large areas can be unfeasible. However, the pairing of both 

instruments to analyze different resolutions of imagery provides a powerful approach at 

understanding mangroves at both global and regional levels. These insights can not only help 

researchers understand how ecosystems are currently changing, but also provide data needed to 

model future changes. Predicting and anticipating shifts within these ecosystem distributions and 

associated services can inform climate adaptation and mitigation policies for local communities.  

Most mangrove species grow between latitudes 30ºN and 30ºS, with the tallest trees 

occupying equatorial regions (Simard et al. 2019). Generally, mangrove height tends to decrease 

closer to more temperate zones, and these general patterns have been recorded by large scale 

global analyses by satellite data (Simard et al. 2019). On a local scale, environmental and 

geophysical drivers have a large role in spatial variability. Important hydrological parameters, 

such as proxies to salinity and waterline complexity, can also be distinguished and interpreted for 

detailed analyses on mangrove distributions (Twilley et al. 1999). In dwarf mangrove habitats, 
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the forest structure can be more fragmented and with shorter trees than their tropical 

counterparts. By incorporating these environmental factors in modelling mangrove growth and 

distribution, we can better understand their ecological drivers as dwarf mangroves still serve as a 

major carbon sink in their respective regions (Ezcurra et al. 2015). Thus, the study of mangroves 

at latitudinal extremes validate their importance for conservation and understanding implications 

of climate change.  

As global warming trends continue, temperate ecosystems have seen a gradual shift in 

dominance to tropical species (Vergés et al. 2014). This phenomenon is known as tropicalization, 

and mangroves have also been documented to establish themselves in historically temperate 

ecosystems (Saintilan et al. 2013; Cavanaugh et al. 2014). More specifically, the rise in sea level 

and decrease in cold weather events in regions that previously lacked mangroves can be partially 

attributed to their migration (Fazlioglu et al. 2020). Detailing the movement of mangrove forests 

is crucial for local management as regional responses to their distribution varies widely. As such, 

monitoring mangroves at the limits of their distribution enables understanding how they will 

respond to climate change, and how their new establishments will affect adjacent communities.  
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Chapter 1: Modelling Dwarf Mangrove Canopy Height Distribution 

METHODS 

Study Site 

Data was collected in two locations in Baja California Sur, Mexico: Puerto San Carlos 

and Ensenada de la Paz. Puerto San Carlos (24° 47' 21.28 " N, 112° 6' 16.32" W) is a small 

fishing community in Magdalena Bay and faces in the Pacific Ocean. It consists of a coastal 

lagoon system surrounded by barrier islands offshore and mudflats and deserts moving inland. 

The climate is desert conditions with rainfall ranging from 48.5 to 153.0 mm per year, depending 

on seasonal oscillations (Funes-Rodríguez et al. 2007; Rodriguez-Auniga et al. 2013). As of 

2010, an estimated 22,312 ha of mangroves populate this region as 3 species: Rhizophora 

mangle, Avicennia germinans, and Laguncularia racemosa. These species were also present in 

the second sampling area, Ensenada de La Paz. The lagoons in this region face the Gulf of 

California, on the southeastern coast of the Baja California Peninsula. La Paz is characterized by 

arid, desert conditions with an average annual rainfall of about 181.8mm (CONAGUA 2011). In 

both sites, small, halophilic plants dominate the fringes of mangroves where the soil is drier and 

more saline. These halophytes tend to grow more inland but can even disperse themselves 

between mangrove patches where the rarely reaches.  

 

Data collection 

Fieldwork was conducted in 2 separate trips in May and July 2018. Quadrat based 

measurements (2x2m2) were predetermined by random samples within the study site and along 

transect lines that covered the high-, mid-, and low-intertidal zones. The maximum canopy 

height (m) was estimated by stacking 1m long PVC pipes to the top of the tallest tree in the 
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quadrat. A handheld Garmin GPS recorded coordinates at the center of each sample. The basal 

diameter (D30) was measured at 30cm for each main root found within the quadrat, along with 

the species of the tree. These measurements were later used for validation of data collected by 

drone.  

 Simultaneously to when ground fieldwork was collected, we captured drone imagery 

using the 20-megapixel camera on a DJI Phantom 4 Pro. At each site, drone flights were 

conducted at 2 altitudes: 120m of entire sites for model reconstruction and 10m of smaller areas 

for vegetation verification. The drone took images at 85% overlap in a lawnmower pattern 

automatically planned by DJI Ground Station Pro. Calibration images were taken prior to and 

after each flight with a gray calibration card to ensure the color scale would remain consistent in 

case of changing weather conditions. Further recommendations and details of flight management 

are described in Hsu et al. 2019. 

 

Model processing and calibration 

 Raw images from the drone were saved on an SD card and imported onto a computer for 

model construction. The photos were first uploaded to Adobe Lightroom to ensure images from 

all flights are consistently color calibrated as changes in weather and time of day can cause color 

differences. The image of the gray calibration card is used as a reference for synchronization, 

and this process is repeated for every set of images per site. After calibration through Lightroom, 

any individual photos that had severe reflections or poor quality were reviewed and removed to 

prevent anomalies during model construction.  

Structure from Motion (SfM), is a technique to create 3-dimensional models by stitching 

together identical features in overlapping images and using geometric information from the 
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camera’s location and motion (Westoby et al. 2012). We used Agisoft PhotoScan (v. 1.4.2 or 

higher) to perform orthorectification using SfM.  The images were uploaded into the program 

and first aligned by generating a sparse point cloud. Any evident outlier points were reviewed 

and removed to prevent errors from propagating in following steps. Next, dense point clouds 

were constructed at Ultra-high quality and further reviewed for any outliers. The red blue green 

(RGB) orthomosaic was built from the resulting DEM with a 3cm (0.03m) pixel resolution.  

The DEM was generated from the dense point cloud, representing a site’s topography 

based on data collected from the drone’s altimeter. The measurements were taken relatively as 

the altitude values have an arbitrary offset and are not representative of the true elevation. Using 

the RGB orthomosaic, the waterline at which the tide was seen was marked and recorded as the 

new baseline elevation. There were at least 5-6 ground control points marked per model, with 

more markers for larger sites (Hsu et al. 2021). We used an algorithm to readjust the camera’s 

positions to minimize the offset for the entire model based on the corrected values. After 

establishing the ground markers and adjusting the point cloud, the DEM was reconstructed along 

with a new orthomosaic. These new models are a result of the tide calibration process to ensure 

canopy height values are accurate and representative of ground measurements. 
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Figure 1.1: Marking Points for Tide Calibration 

An example of the elevation reference markers for 1 site set for calibration. The tide altitude is 

set to 0.70m here along the waterline throughout the site. The offset here is about 27m based on 

initial arbitrary values, which is readjusted after running our algorithm
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Mangrove labelling 

 Once the RGB orthomosaic is calibrated and reconstructed, it is ready for labelling. We 

trained human labelers to manually classify mangrove and non-mangrove classes from the aerial 

models in QGIS version 2.18 or newer. Every annotator underwent extensive training sessions to 

identify mangroves from drone imagery and distinguish them from other types of vegetation. 

This involved drawing creating a vector layer, drawing detailed polygons over the orthomosaic 

raster image, and saving the polygons to their corresponding class. For this study, we used 3 

classes: mangrove, water, and soil. These polygons were all reviewed by experts and verified 

using the 10m imagery as reference. The resulting vector shapefile underwent a final check to 

correct for any geometric errors that may cause discrepancies in analysis.  

Analysis of ecological factors 

 To study which parameters affect mangrove height, data within the models also had to be 

collected. The detailed mangrove, water, soil labels were used as part of the simulated sampling 

for 10 sites. These data were included in the generalized linear model (GLM) used to predict 

canopy height distribution. All statistical tests and models were calculated using R and RStudio.  

 One hypothesis affecting height was a tree’s minimum distance to water, as this can act 

as a proxy for salinity (Lugo and Sneakder 1974; Cintron et al. 1978; Schmitz et al. 2009). To 

distinguish the mangrove class from soil and water, all mangrove polygons were first extracted 

from the label shapefile. The resulting layer was mangrove only, and this was used as the 

mangrove extent. 250 points per site were randomly sampled within each site’s labelled 

mangrove extent, and the distance in meters to the nearest water label was recorded. This was 

done with a Shapely function in Python that uses an expanding circle’s radius to find the 

minimum length from a point to the perimeter of a water polygon. With this function, the 



 10 

distance to water was found for each sample and aggregated into a dataset with its corresponding 

site.  

 The complexity of a forest’s waterline was considered as an influence on height. 

Coastline fractal dimension is a measurement of how smooth or irregular the extent the coast is, 

as higher dimensions indicate more complexity and lower dimensions are more regular. This is 

estimated by using 2 different length rulers to measure the length of a coastline, then using their 

scale factor to calculate the dimension. These equations are described below:  

𝑁 =  
𝑟𝑢𝑙𝑒𝑟1

𝑟𝑢𝑙𝑒𝑟2
∗  

𝑙𝑒𝑛𝑔𝑡ℎ𝑟𝑢𝑙𝑒𝑟1

𝑙𝑒𝑛𝑔𝑡ℎ𝑟𝑢𝑙𝑒𝑟2

 

Equation 1.1: Calculation of how different measurements from 2 rulers are 

𝑟 =  
𝑟𝑢𝑙𝑒𝑟1

𝑟𝑢𝑙𝑒𝑟2
 

Equation 1.2: Scale factor for 2 rulers  

𝐷 =
log (𝑁)

log (𝑟)
  

Equation 1.3: Coastline fractal dimension  

Using QGIS 3.4, the coastline for each site was measured twice by 100m and 10m rulers. This 

was done by setting a fixed length for line features in a vector layer and tracing the waterline 

seen from the site’s orthomosaic. The rulers were traced over main coastline and large creeks, 

and the total lengths were added together. This was done for every site, and these values were set 

as factors for step wise modeling (Table 1.1, Table 1.2). The most extreme examples are shown 

below in Figure 1.2. A threshold distinguishing types of sites was set at 1.1 to classify sites. For 
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sites with a dimension less than the threshold, their type was set to “coastal”, and “creek” was set 

for the higher dimension sites.  

Table 1.1: Coastal sites and fractal dimensions 

All sites with a calculated fractal dimension less than 1.10 and categorized as coastal. 

Site Fractal Dimension 

Puerto San Carlos Site 12 2018 1.0197 

Puerto San Carlos Site 13-14 2018 1.0351 

Puerto San Carlos Site 1 2018 1.0353 

La Paz Site 1 2018 1.0478 

 

Table 1.2: Creek sites and fractal dimensions 

All sites with a calculated fractal dimension greater than 1.10 and categorized as creek. 

Site Fractal Dimension 

Puerto San Carlos Site 8 2018 1.1204 

Puerto San Carlos Site 11 2018 1.1321 

La Paz Site 5 2018 1.1339 

La Paz Site 1 2018 1.1550 

Puerto San Carlos Site 3-4 2018 1.1856 

La Paz Site 4 2018 1.239 
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Figure 1.2: Example of coastal fractal dimension measurements  

(A) The most complex, fragmented site marked with 10m and 100m rulers and recorded as 

“creek”. (B) Most simple, continuous site labelled as “coastal”.   
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The total coverage of each class was also calculated for each site. Each site’s Coordinate 

Reference System (CRS) was set to Universal Transverse Mercator (UTM) in the correct zone 

(12N). A python script using the Geopandas function for calculating area (m2) determined the 

amount of mangrove, water, and soil was present in each site. The ratios of class to class 

(water:mangrove, water:soil, mangrove:soil) was also calculated and included for analysis.  

 

RESULTS 

Drone estimated canopy height is significantly correlated to ground measured canopy 

height 

 In order to assess whether drone estimates of canopy height can be used, the ground and 

drone measurements were compared. The maximum canopy height values from quadrat 

sampling were replotted onto the DEM using the GPS coordinates. A simulated quadrat was 

drawn for each quadrat sample using QGIS, and the DEM’s maximum value was compared 

against the field value after removing any outliers with significant GPS or calibration error. A 

linear regression indicated a good relationship between drone and ground results, with an R2 

coefficient of 0.74 and an RMSE of 0.54m (Graph 1.1). Furthermore, there is a significant 

relationship between the two variables (p-value << 0.01), and the results of a t-test show no 

significant difference in their means (p-value = 0.76).  
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Graph 1.1: Linear regression results 

A comparison between ground and drone measurements, yielding an R2 = 0.74 and an RMSE of 

0.54. The blue line is the line of fit while the red line is a reference line. There is a significant 

relationship between the ground and drone values (p-value << 0.01).  

 

 
  

The majority of mangroves are short, near a main body of water, and creek-like  

 The results of random sampling showed that at over half the sampled mangrove extent 

was less than 3.5m tall, with a minimum height of 0.02m and a maximum of 9.45m. The mean 

height found was 3.52m with a standard deviation of 1.68m. At least half of the sampled points 

were found within 30m of a labelled body of water. The closest points to the water were right 

along the waterline while some mangroves grew over 220m away from a main water source. The 

mean distance from water was 42.07m away with a standard deviation of 38.92m. The sites 

included in this analysis were from Puerto San Carlos and Ensenada de la Paz. From the fractal 
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dimension calculations, 4 sites were labelled as “coastal” and 6 were “creek”. These were split 

by the established threshold of 1.1 and categorized as factors for model analysis. 

 

The combination of different hydrological and site-specific parameters are significant 

factors for modelling and predicting mangrove height distribution 

 Stepwise modeling was conducted to determine the best model given the following 

parameters: site location (Puerto San Carlos or La Paz), minimum distance to water, fractal 

dimension, site type (coastal or creek), and area of labelled classes (mangrove, water, or soil). A 

GLM was run with each variable, one by one, to see which parameters had the most significant 

effect. For the canopy height and minimum distance variables, a square root transform was 

applied to reduce right skewedness. Comparing against minimum distance aggregated from all 

sites, the data is highly variable and show very minor, negative trends by site type (Graph 1.2). 

We used a GLM with a gamma distribution as the continuous data was positive and right 

skewed. This was determined by checking the model output’s residual deviance from the null 

and the Akaike information criterion (AIC). After running every combination, the order of 

variables for the best GLM was: site location, distance to water, fractal dimension, site type, and 

their interactions. Area, along with any of the ratios of coverage, either negatively impacted or 

negatively impacted the model. The data split by site level for modelling is shown in Figure 1.3.  

 

 

 

 



 17 

Graph 1.2: Prepared data for GLM  

The data plotted with square root transformed distance to water (m) and canopy height (m) 

values. The colors represent the site type categorized by fractal dimension, and the shapes 

represent the location at which the sample was taken. Lines of best fit were drawn for each site 

type with slight decreasing trends for both coastal and creek. 
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Figure 1.3: Site level variations in order of fragmentation 

Each site’s relationship with square root transformed distance to water (m) and canopy height 

(m), arranged in order of least to most fragmented. A line of best fit is drawn through the data 

with the slope recorded above. A scaled map is displayed alongside by each corresponding 

graph. The colors indicate the type of site, red for coastal and blue for creek. 
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This model had a null deviance of 208.96 and a residual deviance of 159.43. The AIC was 

2966.7, which was the lowest score in comparison to all the previous models. A multiple 

regressions yielded an adjusted-R2 of 0.28, which is also the fit of the predicted and observed 

results (Graph 1.3). The linear regression for the model’s outputs has an RMSE of 0.23.  

 

Graph 1.3: Linear regression model outputs 

The observed values plotted against predicted values. The blue line is a line of best fit that goes 

through the data. The R2 is 0.28 with an RMSE of 0.23.  
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Fractal dimension has a slight positive relationship with the rate of change for distance to water 

and canopy height 

 The slope of the minimum distance to water against canopy height was calculated for 

each site and compared against the fractal dimension for each site. When split up and arranged 

by a site level, the derived slope appears to change in steepness with increasing fractal dimension 

(Figure 1.3). After comparing the slopes with their corresponding dimensions, there is a slight 

positive trend between the variables (Graph 1.4). There is a low coefficient of determination (R2 

= 0.005) and an RMSE of 0.47. However, fractal dimension has a significant effect on slope (p-

value = 0.0006). Thus, these results show a relationship between the complexity of a forest and 

how canopy height relatively changes with response to distance to water.  
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Graph 1.4: Relationship of fractal dimension to water distance and canopy height slope 

A linear regression each site’s fractal dimension against the rate of change for water distance and 

canopy height. The R2 = 0.005, and the RMSE is 0.47. There is a significant relationship between 

the two variables with a p-value = 0.0006.  
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DISCUSSION 

Drones are effective for capturing details at high resolution for regional analyses that are 

unobservable by satellites 

Given the high resolution of the drone imagery, multidimensionality was able to be 

captured with this level of detail. Several studies have suggested that drones are advantageous 

over satellite imagery in this regard due to the increase in quality and accuracy of estimations 

(Ruwaimana et al. 2018, Jones et al. 2019). For this study, using satellite imagery would have 

been highly ineffective. Label classifications, canopy height estimations, and simulated sampling 

for collecting ecological data within models would all be affected by larger pixel sizes.  

Classifications have improved by coupling satellite labels with drone labels as the 

increased information can serve as correction factors (Hsu et al. 2020). The higher precision is 

necessary for conducting site level analyses as variations in smaller, more fragmented forests can 

hidden from the pixelated view that come with space-borne imagery. Canopy height estimations 

by satellite would also cause implications in a spatial analysis. Decreased resolution results in 

larger pixels sizes, which would mask heterogeneity in canopy height fluctuations. This could 

potentially skew the data to inaccurately represent true canopy height distribution. Further 

consequences of using reduced resolution imagery for site analyses and dwarf forests are 

discussed in Chapter 2. Finally, measuring distance to water, coastal fractal dimension, and area 

per class were possible as the necessary details were visible from drone imagery. For example, 

the coastline fractal dimension experiment suggested larger ruler sizes influence the measured 

length of a forest’s waterline, especially for complex systems. This is a calculation based on 

resolution of the measuring tool, and satellite imagery would likely blur features to an extent that 



 24 

could reduce the difference between lengths by rulers. The continuing pattern of reliance on high 

resolution demonstrate the significance of drone usage for regional studies.  

 

Forest complexity signifies underlying hydrological patterns that increase model confusion 

A mangrove forest’s distribution along the coast is an indicator to how complex it is, 

whether it runs along the waterline continuously or is frequently fragmented by creeks and 

streams. Salinity fluctuates naturally with seasonal rainfall and tidal patterns, and evaporation in 

higher intertidal zones typically result in higher salinity where there is less exposure (Ridd and 

Stieglitz 2002; Jolly et al. 2008). Furthermore, increasing salinity has been observed to have an 

inverse relationship with mangrove canopy height since more energy must be spent to maintain 

internal balance instead of growth (Lugo and Snedaker 1974; Cintron et al. 1978). Using drone 

imagery, calculating minimum distance to water was a proxy for salinity measurements. We 

expected to see clear patterns with mangrove canopy height and their locations respective to 

water but found high variations on a site to site scale (Figure 1.3). Taking coastal fractal 

dimension into account, we found that complex systems are harder to predict. When a forest’s 

waterline is relatively straight and regular, it had a lower dimension and a generally more 

negative relationship with water distance and canopy height. The slope represents how canopy 

height responds to distance to water, so a negative relationship suggests that taller mangroves are 

closer a body of water and shorter mangroves are farther away. This aligns with the findings by 

Cintron et al. for their research on salinity effects on mangrove height. However, this pattern is 

reduced as fractal dimension increases (Graph 1.4). As water ways become more intricate and 

variable throughout a forest, the relationship between distance and mangrove height becomes 

less clear. This could be related to water undetected by drone imagery, such as underlying creeks 
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or ground water flows, that may affect salinity. Potential hidden bodies of water could make the 

height distribution more homogenous throughout as salinity levels would be relatively stable. 

Another possibility is anthropogenic impact. Habit destruction is another cause for fragmentation 

in mangroves as aquaculture, urbanization, and pollution have detrimental effects on forest 

health (Li et al. 2013; Bryan-Brown et al. 2020). One group found effects on leaf area index and 

gross primary productivity with respect to different levels of fragmentation (Kanniah et al. 

2021). Although fragmentation has been researched with relation to effects on biodiversity and 

environmental impacts, there are few studies conducted on the consequences of mangrove 

stocks, especially dwarf mangroves (Tran and Fischer 2017; Corte et al. 2021). Several sites 

from our study are located near urban structures, such as roads and fishing sites. Instead of 

naturally occurring fractality, the mangroves may have been fragmented by human influences. 

The results of our canopy height distribution analysis suggest that fragmented forests are more 

difficult to predict than continuous sites. These causes are yet to be investigated, but can 

potentially reveal important contributors controlling for mangrove height.  

 

Inclusion of other parameters detectable from drone imagery may increase model 

accuracy 

 The relationship between salinity and canopy height has a strong, negative correlation 

(Cintron et al. 1978). However, species distribution is also impacted by salinity zonation (). 

Puerto San Carlos and La Paz have 3 observed mangrove species present. Typically, the general 

trend follow that R. mangle is found in the lower intertidal and more inundated zones, A. 

germanins grows farther inland and can thrive in higher salinity with their pneumatophores, and 

L. racemosa is either usually found in between other species or towards the upper edge of tides 
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(Kruczynski and Fletcher 2012). These species can have distinct zonation patterns, but they are 

commonly found to be mixed together as their elevation ranges overlap (Pulver 1976). As 

salinity affects height distribution, species can also be impacted as different salinity preferences 

and tolerances cause shifts in dominance. In our models, labelling on the species was not feasible 

given time constraints. Though the drone imagery has significantly higher resolution than 

satellite imagery, distinguishing species is still difficult given the density of the forests and 

heterogeneity of species mixing. We found that species were identifiable at 10m, but labelling 

their complex shapes over large areas proved to be too time consuming (Figure 4). For this 

reason, mangroves were labelled as a general category in order to gather more data for analysis. 

Though generating enough data on species by manual labelling is impractical, it is possible to 

use automated methods such as machine learning to generate labels. As methods in automatic 

classification advance, species data could become accessible to use in our current model.  
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Figure 1.4: 10m resolution image of mixed species 

1 image from a 10m flight that captured all 3 species: R. mangle (R), L. racemose (W), A. 

germanins (B). Species are distinguishable from this resolution but are difficult to label as they 

tend to grow over each other. This is also intensive for manual labelling due their irregular 

shapes.   

 

 

 In our water labels, all visible water was categorized in one class. This included the 

ocean, rivers flowing through deltas, and small streams. However, these water bodies may have 

varying levels of salinity depending on their location and size. Creeks and small ponds farther 

from the ocean, the main source of water input, are more exposed and susceptible to evaporation. 

Thus, this environment most likely experiences more fluctuations in temperature, salinity, 

oxygen levels, and other parameters that affect mangrove growth. If vicinity to all types of water 

does not equally affect canopy height, this could contribute to the variability of the canopy height 

distribution. Distinguishing different water sources would require more detailed labelling and 
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further analysis of hydrological patterns in BCS. However, this is possible with the drone 

imagery and can even be incorporated with tidal data. Water labels are created by marking where 

all water is present in the orthomosaics, though water presence is dependent on the tide level at 

the time the drone imagery was collected. By taking tidal height into account with the types of 

water bodies, this can provide information on whether a particular water label is regularly 

inundated or only at high tide; when these data are aligned with the randomly sampled points, 

this may further our understanding on mangrove height distributions. 

 

 

Predictors in canopy height can be linked to better understanding biomass and carbon storage of 

entire sites 

Mangrove canopy height is correlated to annual litterfall rates, indices of organic 

production and litterfall rates (Saenger and Snedaker 1993). Thus, above ground biomass (AGB) 

is intrinsically related to height. Several studies found a significant linear relationship between 

height and AGB and were able to calculate estimates of biomass with satellite remote sensing 

(Saenger and Sneakder 1993; Simard et al. 2006; Fatoyinbo and Simard 2012). The drone DEMs 

used for mapping canopy height distributions can also estimate AGB through established 

allometric equations. Additionally, the drone models are at a higher resolution than satellite 

imagery. This may increase accuracy in biomass estimations for these particular sites, as they are 

predominantly dwarf mangroves and fragmented to a certain extent. As stated in the above 

sections, larger pixel sizes reduce the amount of spatial variability that can be detected from 

remote sensing models. Further elaborated in Chapter 2, a higher resolution perspective of 

canopy height can resolve the errors found in biomass estimations from satellite imagery. As 
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parameters that control for mangrove height distribution are more understood, better baselines 

for biomass and carbon stocks can be established for management and conservation efforts.  

Surveying by drone is becoming more accessible through recent technological 

advancements and commercialization. Utilizing this machine to collect scientific information can 

be a reliable tool for monitoring regional changes. We studied hydrological patterns that were 

observable by drone imagery and significantly affected canopy height, such as distance to water 

and coastal fractality. These factors may also predict how mangroves will respond to these 

changes with tropicalization altering the distribution of wetland vegetation. Additionally, 

predicting shifts in growth and movement of mangroves can to climate change induced 

tropicalization alters the distribution of forest stands. With the poleward movement of 

mangroves at temperate zones, this knowledge can inform climate adaptation and mitigation 

policies in local communities.  

Uncertainty and error in estimations 

 Our study spanned over several locations and trips in BCS with various teams of people 

working on data collection. Consequently, there were likely slight variations in how 

measurements were taken which may have introduced error into our results. One possible source 

of uncertainty stemmed from how field measurements of canopy height were taken. We 

attempted to conduct this study with non-destructive methods, such as uprooting and cutting 

down trees. As most trees did not exceed 4m, we connected and stacked 1m PVC pipes together 

to visually approximate the maximum height per quadrat. Quadrat measurements were rotated 

within field teams, including height estimations. Thus, there may be inconsistencies in measuring 

canopy height if pipes were not properly stacked or if estimation by visual inspection was 

difficult due to thick vegetation in high density areas of forests. Additionally, each group used a 
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handheld GPS to mark the coordinates of each quadrat sample. According to the Garmin manual, 

the error range is typically 5-10m depending on atmospheric conditions. However, fieldwork was 

conducted within forests that could potentially interfere with the GPS signal due to the thick, 

tangled nature of mangrove roots. When comparing ground measurements with model 

estimations, these sources of error can result in more variability instead of having a perfect linear 

relationship (Graph 1.1). Nonetheless, there was no significant difference found between the 

ground and drone heights after quadrats were reviewed for significant GPS errors, and the 

uncertainty is random. Therefore, our models are still representative of the surveyed sites given 

the potential errors. Furthermore, they cover more area than the ground measurements in a 

smaller amount of time, serving as an efficient alternative for ground methods.  

During model construction, the DEMs rely on ground control markers to establish set 

elevation references. Without these points, the models are subject to geometric distortion that 

result in concave or convex shapes. The canopy height analysis experiment depends on the 

validity of the DEMs, and inaccuracies from building the models can introduce significant error 

into the results. Unfortunately, we were unable to collect elevation data at a high enough 

precision and frequency, so tide calibration points were marked throughout the model to resolve 

geometric flaws. The algorithm used to readjust camera positions minimized altitude offsets for 

all the points, though it relied on manually marking where the waterline was visible on the 

model. The calibration was also completed by trained scientists following a written guideline 

(cite drone manual here), though the point locations may have varied per person. Any 

inconsistencies in tide calibration would result in estimated topography errors, affecting the 

canopy height measurements. Also, the edges of DEMs were typically noisier than the rest of the 

model due to less overlapping images. SfM relies on identical features dispersed within photos 
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taken at close vicinities to reconstruct 3D models, and discrepancies would tend to appear more 

at the edges because there are less surrounding images. Thus, mangroves detected at the edge of 

DEMs were more likely to have distortions than the trees towards the center of models. These 

resulted in random over- or under-estimations in canopy height. As described above, the model 

errors did not a significant effect on the final results. There is a strong correlation between 

ground and drone height values, and our models are robust enough to handle small geometric 

errors.  

Conclusions 

 This study utilized drone imagery to conduct site level analyses on mangrove canopy 

height distribution. Drone and ground data are highly correlated, and estimates from the drone’s 

altimeter can create reconstructions of forest topography. Hydrological parameters can also be 

observed at the high resolution of drone DEMs, and they can be used as variables for predicting 

canopy height. It was found that BCS’s dwarf mangroves are typically found near the water and 

can have fragmented coastlines. The level of complexity has a slight significant effect on how 

distance to labelled water can affect forest’s height distribution. This may be attributed to 

underlying patterns not covered by our experiments, such as water that was unobservable by 

drone imagery, species distribution, and anthropogenic influences. With these caveats, drones 

still remain an advantageous method to surveying mangroves for regional analyses. They 

maintain high levels of accuracy in data collection and can capture spatial variations unseen by 

space-borne imagery. This study provides a novel method of harnessing drone data for analyzing 

patterns in mangroves at a fine detail, providing information that can allow scientists to 

anticipate local changes and shifts caused by climate change.  
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Chapter 1, in part, is currently being prepared for submission for publication of the 

material. Qi, Katherine; Hsu, Astrid; Aburto, Octavio; Kastner, Ryan. The thesis author was the 

primary investigator and author of this material.  
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Chapter 2: Above Ground Biomass and Carbon Estimations by Satellite and Drone 

Imagery 

METHODS 

Drone data collection and processing 

Imagery was collected by flying over each site surveyed by ground as described in 

Chapter 1. The data was calibrated and constructed into DEMs and RGB orthomosaics using 

Agisoft, then labelled by trained annotators in QGIS as described in Chapter 1. Mangrove and 

non-mangrove classes were identified and verified by experts to ensure correctness in 

classifications. The labels were processed by another script to automatically resolve any 

geometric or polygon errors from manual labelling. The labels were saved as a polygon vector 

shapefile that contained all the mangrove and non-mangrove classes. After the tide calibrated 

DEM and labels were reviewed, the files were ready to be inputted for biomass calculations.  

 

Satellite data processing 

 Global mangrove satellite data were used from a study published by Simard et al. in 

2019. Canopy height maps were generated by 30m resolution from the Shuttle Radar 

Topography Mission (SRTM) and Geoscience Laser Altimeter System (GLAS) data from 2000. 

These produced global baseline maps for maximum canopy height and basal area weighted 

height, the second of which was used for calculating biomass. Biomass was calculated using a 

specific allometric equation for the North, Central, and South American region (Equation 2.1). 

Mangrove extent was classified with hybrid supervised and unsupervised techniques from a 

previous study (Giri et al. 2011). The rasters for maximum canopy height and above ground 

https://doi.org/10.1111/j.1466-8238.2010.00584.x
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biomass maps were downloaded for Mexico and uploaded into QGIS. Each drone map extent 

was used to clip satellite layers to extract the observed satellite map for that area. There were 10 

surveyed sites from our drone DEMs, and 10 corresponding maps for both canopy height and 

biomass data were also generated. Above ground carbon storage was estimated by multiplying 

0.451 with biomass, as stated in the IPCC guidelines (Hiraishi et al. 2014). The canopy height 

and biomass maps for drone and satellite imagery were used for direct comparisons of each 

other.  

𝐴𝐺𝐵 =  1.418 ∗  𝐻𝑏𝑎
1.6038 

Equation 2.1: Allometric equation for estimating AGB (Mg/ha) for SRTM data 

Equation derived from linear regression of biomass measurements from field sampling in North, 

Central, and South America. The R2 is 0.71 with an RMSE of 54.3 Mg/ha.  

 

 

Calculating biomass and carbon from drone DEMs 

A python script was written to automatically produce biomass maps from DEMs and 

mangrove/non-mangrove labels. The labels were separated by class, and the mangrove polygons 

were extracted and used to clip over the tide calibrated DEM. The resulting raster was a DEM 

that only covered mangrove extent, representative of the canopy height within the flown site. 

After the mangrove extent of the DEM was generated, a global, linear allometric equation 

(Equation 2.2) was applied over the layer (Saenger & Snedaker, 1993). The resulting layer is in 

units of Mg per hectare, which can also be used to determine total biomass of the surveyed 

sites. This script is available on a public GitHub repository (Qi 2021), and detailed steps to run it 

are outlined on the Wiki page.  
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10.8 ∗ 𝐶𝑎𝑛𝑜𝑝𝑦  𝐻𝑒𝑖𝑔ℎ𝑡 (𝑚)  +  34.994 

Equation 2.2: Global allometric mangrove biomass (Mg/ha) equation  

General equation reported from Saenger and Snedaker 1993. A linear regression of biomass 

measurements spanning from mangroves in various latitudes reported an R2 of 0.774 and a 

significant relationship (p < 0.001) between canopy height and AGB.  

 

To calculate total biomass (Mg) of a site, a conversion factor must be multiplied against 

the biomass layer’s cell values (Mg/ha). This is determined from the area of the pixel, the layer’s 

smallest element (expressed in units of m2), which can be found using the resolution of raster. 

For example, if the drone’s resolution is 3.125, its total area expressed in ha would be 9.766 x  

10-8. The product of the summation of all biomass pixels in the biomass layer with this factor is 

the total biomass expressed in Mg. Carbon estimates were calculated from the resulting AGB 

maps. Following the IPCC guidelines, carbon storage was estimated to be about 45.1% of the 

calculated biomass (Hiraishi et al. 2014). This conversion factor was multiplied across the total 

biomass found for each site to estimate the total amount of carbon stored above ground.  

 

1 ℎ𝑎 =  
𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑚)

210000
 

Equation 2.3: Biomass conversion factor from meters to hectares 

 

Grid sampling over drone and satellite models 

 To directly assess the drone and satellite results and their differences, each model was 

sampled using the same technique and extent. A fishnet grid of 30m squares was generated over 

each model to represent the pixel resolution of the satellite data. For reference, each grid would 

contain 1 satellite pixel or up to 100,000 drone pixels for 3cm resolution. Each site shared the 
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same fishnet grid to maintain consistency across instruments. This was done for canopy height 

and biomass maps for both drone and satellite data using a Python script with the Geopandas and 

Rasterio libraries. Thus, grids would be taken from 4 models for 10 sites, resulting in samples 

that spanned across 40 different models. The minimum, maximum, mean, count, and standard 

deviation of all values were taken within each sample and exported for statistical analysis in R. 

Each instrument’s canopy height and biomass maps shared the same extents, and the 

corresponding types of maps were compared to each other by instrument. Additionally, the 

amount of SRTM labelled mangrove extent was cross-referenced with the drone’s non-mangrove 

labels to check how much non-mangrove area was labelled as mangrove. This was done by 

calculating the amount of area labelled as non-mangrove by drone but labelled as mangrove by 

SRTM, which will be referenced as ‘true non-mangrove’. 

 The satellite data had varying extent from the drone’s due to its lower resolution. 

Detailed ecological variations could not be distinguished between as satellite pixel size was too 

large (Figure 2.1). Consequently, non-mangrove classes were sometimes categorized as 

mangrove within satellite images. These edge cases may have an effect on the direct 

comparisons of drone to satellite data. To test this concept, the same fishnet grids were applied to 

both drone and satellite mangrove extents for the biomass models. However, samples were only 

recorded when a grid was completely filled with drone mangrove pixels. This ensured that direct 

comparisons would not be biased if sample sizes per instrument differed. The same statistical 

tests and analyses were also run on these grids using R.  
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Figure 2.1: Comparison of resolution by instrument 

The differences of mangrove detection from drones (a, c) and satellite (b, d). (a) An RGB 

orthomosaic of a site in La Paz taken by 3cm resolution drone imagery. (b) Landsat satellite view 

of the same site in panel (a) with 30m resolution. (c) A 30x30m grid showing mangrove (green), 

soil (brown), and water (blue) labelled with drone imagery. (d) The same grid in panel (c) 

classified as only mangrove by satellite data. 
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RESULTS 

Measured mangrove extent depends on site size and instrument type  

 The resolution differences between drone and satellite imagery is about 1000x in 

magnitude (0.03 m and 30 m). Thus, there are disparities between the amount of area covered by 

instrument due to over- or under-estimations by SRTM data. To check mangrove labels for 

SRTM imagery, the proportion of true non-mangrove labelled as mangrove by SRTM was 

16.56% for all the sites. The mean ratio of true non-mangrove to SRTM mangrove was 25.48% ± 

18.83%. By individual sites, the amount of area ranged from 0.05% to 62% of a total site. The 

total measured area (ha) was measured by summing the number of grid samples per instrument 

and multiplying it against the size of the sample (0.09 ha). Overall, the drone imagery measured 

168.31 ha, and SRTM measured 106.76 ha. There was no significant difference between the 

variance of each area distribution, so a two sample t-test was run for all the samples per 

instrument. There was not a significant difference in the total amount of area found for drone and 

SRTM data (p-value = 0.33), though there appeared to be site to site differences (Graph 2.1a). 

Given that the drone imagery was a much higher resolution, it was used as a baseline to 

determine the relative size of each site. In panel a of Graph 2.1, the sites are arranged by 

increasing measured drone area (left to right), and the difference in measured area by instrument 

seems to widen as drone area increases. The sites were then categorized into different size 

classes given their respective drone area estimations: “small” for sites ≤ 5 ha, “medium” for sites 

> 5 ha and  ≤ to 20 ha, and “big” for sites > 20 ha. The differences between drone and SRTM 

area by site were plotted and grouped together by their corresponding size classes in Graph 2.1b. 

There is a general increase in differences as site size increases. Big sites can have over 15 ha of 

difference between drone and SRTM extents, whereas differences in smaller sites are near 0.  
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Graph 2.1: Measured area by instrument and their site level differences 

(a) The total amount of measured area (ha) by site and instrument, arranged in increasing 

order of drone area. The pink represents drone data while the purple is SRTM. (b) 

Differences between drone and SRTM measured area by site and grouped by size class. 

Red represents the small sites (≤ 5 ha), green are the medium sites (> 5 ha and ≤ 20 ha), 

and blue are the big sites (> 20 ha).  
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A two-way ANOVA by size class and instrument type was run after establishing 

normality and equal variance, and there was a significant interaction effect for the factors (p-

value = 0.009). A post-hoc test (Tukey-Kramer) was run to determine which groups were 

different which are indicated by letters (Graph 2.2). Letters that are the same represent groups 

that are not significantly different from each other. There were no significant differences found 

between area by instrument for the small size class (p-value = 0.99). In the medium class, there 

was also no significant difference found between instruments (p-value = 0.25), but the SRTM 

medium extent was not statistically different from either the drone (p-value = 0.21) or SRTM 

area (p-value = 0.14) in the small class. There was a significant difference between measured 

mangrove area in the big class for SRTM and drone (p-value = 0.004). Overall, the drone data 

had significantly different measured areas by each size class while the SRTM data only had a 

difference between its big and small/medium classes.  
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Graph 2.2: Tukey-Kramer test results on extent by size class and instrument 

The total measured area by small, medium, and big sites. The types of instrument are 

distinguished by color, and the letters represent which groups are significantly different from 

each other. These groups are: small drone, small SRTM, and medium SRTM; medium drone and 

medium SRTM; big drone; big SRTM.  

 

 

 

Canopy height measured by satellite and drone are significantly different 

 After aggregating all the canopy height samples together, there were 3,047 drone samples 

and 1,232 satellite samples. The satellite maps were constructed using the maximum canopy 

height derived from SRTM data (SRTMHmax), and SRTM will be used to refer as satellite results 

in the remainder of this chapter. As such, the maximum height for each drone sample was 

compared against each of the SRTM results to maintain consistency. The frequency distribution 

of maximum canopy height for both instruments showed the satellite data right skewed of the 

drone data (Graph 2.3). The mean canopy height per sample for drone data was 5.18 m with a 
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standard deviation (SD) of 2.11. The shortest tree found was 0.43 m where as the tallest was 

17.18 m. Over half of the detected mangroves were less than 5.1 m tall. On the other hand, 

SRTM samples had a mean of 2.77 m (SD = 2.04 m). The canopy height ranged from 0.54 to 

15.06 m , and at least 50% of the detected mangroves were under 2.2 m. A Welch’s t-test 

confirmed reported that canopy height measured by satellite and drone are significantly different 

from each other (p-value << 0.01).  

 

Graph 2.3: Distribution of maximum canopy height by instrument 

The frequency of canopy height for all grid samples, categorized by drone (red) or SRTM (blue). 

The dashed lines represent the mean of each dataset, 5.18 ± 2.11 m for drones and  2.77  ± 2.04 

m for SRTM.  
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Since the size of each site had a significant effect on measured mangrove extent, canopy 

height estimations were also tested by this factor to see if it had an effect. The mean of each sites 

sampled max height was taken and plotted by increasing area (Graph 2.4a). There was not have a 

visible pattern with height estimations by instrument, and 4 out of 10 sites had a higher estimated 

mean height for SRTM than drone. The sites were grouped into “small”, “medium”, and “big” 

categories again by the same parameters defined in the mangrove extent analysis. The mean 

height was then taken by size class for both drone and SRTM (Graph 2.4b). For drones, the mean 

height for “small”, “medium”, and “big” classes in respective order were: 4.91 m, 5.33 m, and 

5.10 m. For SRTM, these were 4.62, 2.94, and 2.02 m. There appeared to be a slight decrease in 

SRTM canopy height as site size increased, while drone canopy height did not a visible 

relationship. After checking the assumptions, an ANOVA was run to check for main effects and 

interactions between size of site and instrument used. There was no significant interaction effect 

found for interactions (p-value = 0.28) or size (p-value = 0.45). There was a slight significant 

effect on the type of instrument used (p-value = 0.031).  
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Graph 2.4: Mean canopy height by site and size class 

(a) Mean max canopy height arranged by site in increasing order of area (left to right). 

Pink represents drone samples, and purple represents SRTM. (b) Mean max canopy 

height arranged by size class (small, medium, and big).  

(b)  

 
 

 

Biomass and carbon estimations determined by satellite imagery are significantly lower than 

drone estimations 

Above ground biomass maps were produced for each drone DEM, and the mean AGB 

value was taken from each grid sample to compare against SRTM samples. From all the drone 

data, there was a mean of 73.52 ± 20.04 Mg/ha per sample. Conversely, 9.49 ± 10.68 Mg/ha was 

calculated per sample from the SRTM data. The cumulative biomass estimated from drone and 

SRTM was 12,249.45 and 1002.49 Mg respectively. Following the 0.451 conversion factor, there 

was 5512.25 and 451.12 Mg of above ground carbon storage found for drones and SRTM. These 

data are described in Table 2.1. Total biomass estimated by drone is over 12 orders of 
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magnitudes greater than SRTM estimated biomass. As a result, carbon storage is also 

underestimated by SRTM data by the same factor. The frequency distribution of the biomass 

samples (Figure 2.2a) shows SRTM data is clustered towards lower values and even appears to 

exponentially decrease past its mean value (9.49 Mg/ha). A Welch’s t-test shows that the 

biomass by instrument have different means, and SRTM calculated AGB is significantly lower 

than drone AGB. As carbon is proportionally related to AGB, satellite estimated carbon also 

significantly lower by at least 1 order of magnitude. As described in the previous sections, 

estimated canopy height and mangrove extent were significantly different from each other by 

instrument each time. Figure 2.2b-c show an example biomass map from one of the most 

fragmented site in our study, visually representing how much lower SRTM estimated biomass is 

compared to the drone results.  

Table 2.1: Summary of results 

The main results for biomass comparisons by instrument.  

 

  

  

Drone Satellite 

# samples  3,047 1,232 

Total Area (ha) 168.31 106.76 

Mean AGB (Mg/ha) 73.52 ± 20.04 9.49 ± 10.68 

Total Estimated AGB (Mg) 12,249.45 1002.49 

Total Above Ground Carbon (Mg) 5512.25 451.12 
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Figure 2.2: Differences in estimated AGB by instrument 

Comparison of biomass results from drone and SRTM data. (a) Frequency distribution of mean 

estimated AGB per grid for all samples. Green represents SRTM samples and yellow are drone 

sampels. The dashed lines represent the mean AGB across all samples, 73.52 ± 20.04 Mg/ha for 

drone and 9.49 ± 10.68. The mean AGB by instrument are significantly different from each 

other. (b) SRTM map of AGB from one site in La Paz 2018. The mean biomass per sample was 

20.91 ± 10.33 Mg/ha. (c) Drone map of AGB from the corresponding site, and the mean biomass 

per sample was 5.45 ± 8.76 Mg/ha. 
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Removing edge cases still shows a significant difference in biomass for type of instrument used 

 The complete grids were also analyzed to verify the significant difference between 

biomass results by instrument. These samples were only taken when a 30x30m grid fully covered 

the corresponding section of the mangrove extent from the drone data. This was to ensure 

complete overlap with drone and SRTM biomass estimates, and there were only 150 samples 

that fulfilled this condition. The number of samples across site varied as highly fragmented sites 

would have many intersections from non-mangrove classes, which cause them to be excluded 

from the dataset. A histogram of the completely overlapping samples per instrument still showed 

the SRTM samples highly right skewed, with a mean of 10.76 ± 11.42 Mg/ha (Graph 2.5). 

Biomass from drone samples resulted in a mean of 80.70 ± 22.17 Mg/ha. There was a significant 

difference between the means of drone and SRTM calculated AGB (Welch’s t-test; p-value << 

0.01). Removing edge cases with differences in labelled extent did not significantly change the 

results of biomass differences from drone and SRTM data.  

 

 

 

 

 

 

 

 

 

 



 50 

Graph 2.5: Frequency distribution of completely overlapping samples by instrument 

A histogram of mean AGB per sample grouped by instrument. The red represents drone data, 

and the blue is SRTM. The dashed lines represent the mean of each distribution: 10.76 ± 11.42 

Mg/ha for SRTM and 80.70 ± 22.17 Mg/ha for drone.  

 

 
 

Satellite and drone estimated biomass have different results between size classes 

 AGB estimates are influenced by the amount of mangrove extent and estimated canopy 

height for our models. Because site size was a factor that significantly affected measured extent 

by instrument, it was also tested as a potential variable for affecting biomass. Total biomass was 

summed across all samples for each site and organized in increasing order (Graph 2.6a). Drone 

estimated AGB appeared to grow exponentially as area increased, while SRTM biomass did not 

appear to show any trends. After grouping sites into their assigned size classes, this relationship 
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became more distinct as drone estimated biomass were clearly increasing from one size to 

another (Graph 2.6b). The total biomass for SRTM data did not show the same pattern and 

remained consistently low across each size class.  

 

Graph 2.6: Total biomass by site and size class for drone and SRTM results 

(a) Cumulative AGB (Mg) for each site in increasing order of drone area. Pink represents drone 

data and purple is SRTM. (b) Summed AGB (Mg) for each size class by instrument. 

 

Square root transformations were applied on the mean biomass totals to maintian 

normality and equal varianc A two-way ANOVA was conducted using size class and type of 

instrument as factors. There was a significant interaction effect found (p-value << 0.001) for the 

two categories. A post-hoc Tukey test determined which groups were significantly different from 

each other, labelling them by letters to indicate similar and different groups (Graph 2.7). Small, 

medium, and big sites were all significantly different from each other for biomass estimated by 

drone. None of the SRTM biomass means per size class were significantly different from each 

other. For the small class, drone and SRTM biomass means were not significantly different.  
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Graph 2.7: Results of Tukey test for biomass estimates by size class and instrument  

Drone and SRTM biomass means for small, medium, and big size sites. Different letters 

represent groups that are significantly different from each other. The post-hoc test grouped the 

following together: small SRTM, small drone, medium SRTM, big SRTM; medium drone; big 

drone.  

 

 

DISCUSSION 

Error from satellite area estimation increases as mangrove extent increases 

 Measured mangrove extent is dependent on the labels generated for classifying mangrove 

from models, and the resolution of imagery used. For our drone models, annotators were trained 

for multiple sessions before labelling data for this study. Sections of orthomosaics were 

sometimes labelled several times to check for consistency and accuracy, and each site was 

reviewed by experts by referencing the higher resolution 10m imagery for quality assurance. 

Although manual labelling was rigorous and time consuming, it was critical for establishing an 
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accurate baseline for estimating biomass and analyzing satellite results. The study that produced 

the global mangrove study utilized labels generated from digital classifications by supervised and 

unsupervised learning. These were at a 30 m resolution scale and verified using high resolution 

satellite data from Google Earth (Giri et al. 2011). Due to the differences in labelling methods 

and pixel size for models, measured mangrove extent varied across these datasets.  

 Because the drone produced labels were meticulously cross-verified multiple times for 

correctness, they were determined to be representative of true mangrove extent for the surveyed 

sites and used to assess the accuracy of SRTM results. Surprisingly, there was no significant 

difference observed between the means of the all the combined sites for each instrument. This 

was likely due to the resolution of SRTM as the larger pixel sizes would often blur into non-

mangrove classes. As a result, mangrove extent was sometimes under- or over-estimated by the 

satellite and relatively balanced out. Using the drone labelled extent as a baseline for establishing 

size classes, the discrepancies in measured extent was elucidated between drone and SRTM. The 

results indicated that area estimation by size class is dependent on the instrument used. SRTM 

data ranged from minorly underestimating or even overestimating area for small sites to 

significantly underestimating extent in big sites. SRTM extent seemed to do well in the small and 

medium sites, though the medium and small SRTM areas were not significantly different. For the 

big sites, which were greater than 20 ha, SRTM measured extent was significantly lower than the 

drone’s. From our results, the amount of mangrove area mapped by SRTM is more accurate for 

smaller sized forests than larger ones. The big forests are underestimated by over 15 ha, which 

can potentially impact biomass results.  

 In this study, only the amount of coverage for mangrove area was analyzed in relation to 

biomass. SRTM models could detect similar amounts of area as the drone could for small to 
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medium forests, but the 30 m would often include non-mangrove areas (Figure 2.1c-d). The 

addition of non-mangrove groups, such as other vegetation or abiotic sources, can reduce the 

accuracy of biomass and carbon estimations. In the 2011 study that generated the global 

mangrove extent map (Giri et al.), ‘true mangrove’ was defined as trees, shrubs, and palms 

growing in tidal and intertidal zones. However, they were unable to statistically verify the 

validity of the labels due to the lack of detailed global mangrove labels. We detected at least 

17.68 ha, or 16.56%, of true non-mangrove extent that were classified as mangrove by SRTM 

from all of our sites combined. Thus, satellite imagery correctly labelled mangrove extent for 

only 83.44% of all our sites. However, SRTM mislabeled 25.48 ± 18.83% on average per site. 

The potential implications of misclassifying mangroves could affect how canopy height is 

estimated, which would directly affect biomass and carbon results. This study does not 

statistically analyze the accuracy of SRTM results, but drone imagery can be used to validate 

satellite data and even correct for its errors in classification to better monitor mangrove stocks in 

future experiments. One study used drone measured mangrove extent to derive correction factors 

for multiple datasets labelled from satellite imagery (Hsu et al. 2020). By pairing these 

instruments, studying mangrove forests by remote sensing can be improved for local 

management and conservation efforts.  

 

Canopy height estimations are controlled by spatial resolution  

 Maximum drone values per 30m sample were compared against SRTMHmax values, and 

these values were reported to be significantly different. Similarly to mangrove extent, SRTM 

canopy height values were also underestimated as the mean canopy height per sample was over 

2x in magnitude less than the drone measurements for drone. This aligns with the reported error 
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for the global dataset we downloaded the SRTMHmax maps from, which calculated an RMSE of 

6.31 m for in situ measurements and 5.7 m for the regression with GLAS (Simard et al. 2019). 

This is greater than the reported RMSE value of 0.54 m for the drone altimeter results with in 

situ data. Furthermore, areas that were estimated to have an elevation of 0 m but classified as 

mangrove were given a default value of 0.5 m. These factors contribute to the underestimations 

by satellite imagery as well, which may be propagated by incorrect mangrove labels as discussed 

previously. Nonetheless, these values are more accurate than previously established baselines of 

global mangrove height (Rodriguez et al. 2006). However, the dwarf mangrove forests in BCS 

are typically under 6m total, so the errors from the SRTMHmax values would substantially impact 

results from this region. Therefore, drones are advantageous for conducting surveys in these 

forests or verifying satellite data.  

 Size class had no significant main or interaction effect on estimated height, and the 

primary driver for height was the type of instrument used. This is expected as the area of a forest 

was not a hydrological parameter that significantly affected canopy height distribution in Chapter 

1. Thus, differences in canopy height were caused by differences between drone and SRTM data. 

Because the spatial resolution of satellite imagery is almost 1000x worse, capturing topography 

for shorter, fragmented forests is difficult as pixels can overlap into non-mangrove classes and 

skew the results. As described in the previous section, SRTM pixels can be misclassified, and the 

majority of a site can sometimes be represented by soil, water, or non-mangrove vegetation 

instead of actual mangrove extent. Additionally, the distance from the satellite to tree tops is 

much farther than drone drones (120 m), reflectance and atmospheric conditions can have a 

larger effect on height estimations. Due to the caveats in satellite data, their corresponding 
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canopy height results have a higher error range and can potentially affect biomass and carbon 

calculations. 

 

Biomass for dwarf mangroves is severely underestimated by satellite imagery  

We found that satellite imagery underestimates AGB and consequently carbon by at least 

1 order of magnitude. Total area of mangrove extent directly influences how much biomass is 

estimated since larger areas represent more mangrove coverage, which typically suggest more 

trees and above ground biomass. However, drone estimated biomass is linearly derived from 

canopy height, so lower detected values for height are translated into smaller amounts of AGB 

per pixel. Thus, sites with larger estimated forest coverage but shorter trees may have less 

biomass and carbon storage than smaller sites with tall trees. Our results suggest that area and 

instrument have a significant interaction effect on detected biomass, so the biomass estimations 

by size class are dependent on the type technology used. The post-hoc test reveals that small, 

medium, and big sites all have significantly different amounts of biomass calculated from the 

drone DEMs (Figure 2.10). Because more observed mangrove extent indicates larger forests, this 

result is expected as a larger quantity of trees can contribute to more biomass.  

Biomass for SRTM results were generated from basal area weighted height maps, which 

is a linear transformation from the SRTM height. The allometric equation for biomass was 

generated from a non-linear regression across North, Central, and South America, and had an 

RMSE of 3.6 m. Interestingly, the SRTM models did not have significant differences between 

any of their size classes. In other words, biomass levels for this instrument remain constant even 

as the size forests increases. Though there was no significant effect on canopy height estimations 

with size class, there is a visible inverse relationship with mean canopy height and size class for 
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SRTM data (Graph 2.4b). The lower canopy height values likely contributed to the insignificant 

increases in SRTM biomass, resulting in similar means across the size classes. Comparing by 

instrument, drone and SRTM biomass were significantly different from each other at each size 

except for small, implying that SRTM estimates biomass more closely to the drone for sites 

under 5 ha in area. Though our study site was only focused in BCS, satellite imagery likely 

underestimates other dwarf mangrove areas which may significantly contribute to global stocks 

of biomass and carbon. This can have implications on local management for these smaller 

forests, as their ecosystem contributions are likely undervalued.  

Given that the drone DEMs and labels are accurate and representative of true mangrove 

structure, their biomass results as baselines for establishing forest stocks. Using the IPCC 

recommended conversion factor, above ground carbon storage was calculated from AGB. 

Carbon estimates were also underestimated by over 12 orders of magnitude by SRTM data 

because carbon is a direct proportion of biomass. However, below ground biomass and carbon 

were not included as our field work did not conduct sampling for roots. Mangroves are known 

for their large stores of carbon underground, especially in scrub and arid forests (Virgulino-

Júnior et al. 2020; Ezcurra et al. 2015). Below ground biomass can account for up to over half or 

more of total biomass and can be related to soil carbon stock (Saintilan 1997; Hiraishi et al. 

2014; Virgulino-Júnior et al. 2020). In future work, below ground biomass and carbon allometric 

equations can be derived and added to above ground stocks for a more comprehensive 

understanding of total forest inventory. These data would inform researchers on how mangroves 

change over time and in response to stressors, providing insight on potential shifts in ecosystem 

structure and contribution.  
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Drones are better equipped to survey fragmented, shorter mangrove forests 

Though drones significantly enhance the accuracy of determining mangrove coverage, 

they are not always feasible to use for certain experiments. Large scale studies that can span 

multiple countries rely on data that has high coverage and range. Collecting data via drone 

requires flying over whole forests to take imagery, and cross referencing with higher resolution 

imagery. From our field work, flights could sometimes take up to an hour and use up multiple 

batteries for bigger sites. However, they are a powerful tool that can be used to conduct regional 

scale experiments with a very fine level of detail. Subtle spatial variations and topographic 

features can be captured with drones, and measuring parameters like coastal fractality and 

distance to nearest water become possible at high resolution. The fragmentation of forests is 

typically eclipsed by satellite imagery, and water distance is dependent on pixel size. These 

variables have significant effects on canopy height distribution in the BCS sites, which is directly 

linked to biomass and carbon estimations. By interpreting how these factors have a role in 

mangrove ecosystems, dwarf forests in arid climates can be further understood for their 

ecological roles and functions. Furthermore, as more flights and data are collected, more sites 

can be included in this work and to further compare satellite and drone differences. Drones may 

offer more insight and potentially allow for correction factors in biomass, which would greatly 

expand the extent of available data. Inclusion of other sites and different forest types would 

allow for more understanding of how mangroves respond to climate change and tropicalization 

effects, giving scientist and policymakers information to anticipate shifts in wetlands structure. 

These tools are for not only suitable for monitoring current forest dynamics but also 

comprehending imminent consequences of anthropogenic induced climate change, deforestation, 

and detriment to biota health. 



 59 

Uncertainty and error 

 This study spanned several datasets and was collected through multiple trips over time, so 

it is expected that several sources of error were introduced into our results. Drone data was 

collected in May and June of 2018, while data from the global mangrove study spanned multiple 

years. The SRTM DEM used imagery from 2000; GLAS data used baseline measurements from 

2003-2009; and field data was collected from 2004-2016. As a sizable amount of time had 

passed between measurements, there are likely changes from mangrove growth and deterioration 

from the years. However, a study had analyzed differences from SRTM, lidar, and field data to 

suggest that the SRTM height is tolerable to these changes and remains constant enough over 

time for canopy height measurements in settled mangroves (Lagomasino et al. 2016; Simard et 

al. 2019). In this case, the satellite resolution was advantageous in maintaining consistency over 

the years. Additionally, an analysis by Global Mangrove Watch estimated that mangrove extent 

in Mexico has decreased by 855.52 km2 (85,552 ha) from 1996 to 2016 (Bunting et al. 2018). If 

this decrease was relatively consistent throughout the country, it is possible that the measured 

mangrove extent from 2000 is an overestimation or similar to the extent in 2018. Nonetheless, 

this is the most current global baseline of mangrove biomass distribution. As remote sensing 

techniques continue to advance and global maps are updated, comparisons against more recent 

data can be run to ensure better alignment.  

Conclusions 

 This study completed a direct comparison of drone and SRTM data and revealed 

differences in contributors to above ground biomass estimates. With the high level of detail and 

multiple verifications for accuracy, drone mangrove extent was used as a baseline for analyzing 

SRTM results. Mangrove extent had significant differences by instrument and size, 
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demonstrating that error in satellite measured area increased as site size increased. This signified 

that SRTM data over- and under-estimated mangrove extent, as determined by the proportion of 

incorrectly labelled true non-mangrove area. Canopy height was also underestimated primarily 

due to the instrument type, and size did not have a significant effect on height estimations. 

12,249.45 Mg of biomass and 5512.25 Mg of carbon were calculated with drone imagery from 

the 10 surveyed sites, while 1002.49 Mg of biomass and 451.12 Mg of carbon were detected 

from SRTM models. Biomass and carbon storage also depended on size of site and instrument 

used, as increasing size classes did not significantly distinguish mean SRTM biomass 

measurements from each other. Given the nature of fragmented, dwarf mangroves in desert 

habitats, drones serve as a more robust tool for monitoring regional changes. Paired together, 

drones and satellites can be used to expand datasets and verify each other in large scale studies.  

 Chapter 2, in part, is currently being prepared for submission for publication of the 

material. Qi, Katherine; Hsu, Astrid; Aburto, Octavio; Kastner, Ryan.  
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