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Abstract

The objective of perceptual organization (grouping, segmentation and recognition) is to
parse generic natural images into their constituent components which are respectively in-
stances of a wide variety of visual patterns. These visual patterns are fundamentally stochas-
tic processes governed by probabilistic models which ought to be learned from the statistics
of natural images. In this paper, we review research streams from several disciplines, and di-
vide existing models into four categories according to their semantic structures: descriptive
models, causal Markov models, generative models, discriminative models. The objectives,
principles, theories, and typical models are reviewed in each category. The central theme
of this epistemological paper is to study the relationships between the four types of models
and to pursue a unified mathematical framework for the conceptualization (or definition)
and modeling of various visual patterns. In representation, we point out that the effec-
tive integration of descriptive and generative models is the future direction for statistical
modeling. To make visual models tractable computationally, we study the causal Markov
models as approximations and we observe that the discriminative models are computational
heuristics for inferring generative models. Under this unified mathematical framework sta-
tistical models for various visual patterns should form a “continuous” spectrum — in the
sense that they belong to a serial of probability families in the space of attributed graphs.
Visual patterns and their parts are conceptualized as statistical ensembles governed by their
models. These statistical models and concepts amount to a visual language with a hierarchy
of vocabularies, which is essential for building effective, robust, and generic vision systems.

Keywords: perceptual organization, descriptive models, generative models, causal models,
minimax entropy learning, natural image statistics.



1 Introduction
1.1 The quest for a common visual language

The objective of perceptual organization is to parse generic images into their constituent compo-
nents. For example, figure 1.a shows an image of a football scene which is parsed into a point
process (figl.b), a line and curve process (figl.c), a uniform region (figl.d), two texture regions
(figl.e), and two objects — words and human face (figl.f). The parsing problem is often called
grouping, segmentation, or recognition respectively depending on the types of patterns that a task

is interested in.

i

a. An input image b. A point process c. A line/curve process
;::p v
“=
d. A uniform region e. two texture regions f. objects: face and words

Figure 1: Parsing a generic image into its constituent components which are respectively instances
of a wide spectrum of visual patterns in nature. Courtesy of (Tu and Zhu, ECCV 2002).

Given the wide variety of visual patterns in generic images and the diverse stochastic processes
that generate them in nature, it is crucial to have a common vision language that can represent
general visual patterns based on a uniform mathematical framework. More specifically, we pursue
a mathematical framework for the following goals.

1. Conceptualization: that is quantitative definition of various visual patterns. For example,
what is a “texture”? and what is a “human face”? A visual pattern will be defined on an ensemble
of observable signals governed by a statistical model.

2. Learning a visual vocabulary: that is a hierarchy of visual descriptions. For example,
pixels, image bases, textons, lines, curves, parts, etc. Compared with the large vocabulary in
speech and language (phonemes, words, phrases, and sentences), and the rich structures in physics
(atoms, molecules, and polymers), the current visual vocabulary is far from being sufficient. It is of
particular difficulty to learn the vocabulary at low level vision (or early vision in a psychophysical

term), like textons, because human vision processes these descriptions unconsciously, and they



constitute the richest stochastic patterns in natural images. But what are the “visual atoms”?
How do we define them quantitatively?

3. Statistical modeling: pursuing informative and non-accidental features and statistics
from the ensemble of natural images which characterize the spatial relationships between the visual
descriptions, and learning probabilistic models that account for the features and statistics. These
models govern the statistical ensemble and thus they are consistent with the definitions of the
patterns. Furthermore, the models for various visual patterns, ranging from textures to geometric
shapes, should form a “continuous spectrum” in the sense that they are from a series of nested
probability families. What are the mathematical space for these models and patterns?

4. Computational tractability. There will be a broad range of models, from appearance
models on raw images to physics models on low dimensional hidden structures, which can all
characterize a visual pattern. The choice of models and their approximations should facilitate
effective inference for the purpose of the task. Model selection is a daunting task especially we
presently cannot formulate quantitatively the purpose of generic vision. In the paper, we distinguish
our visual knowledge into two kinds of models. One is representational model, such as the descriptive
models and generative models, and the other is computational model, such as the discriminative
models. The latter are computational heuristics for inferring the representational models. Then
what are the intrinsic relationships between these representational and computational models?

The questions above have motivated long threads of research from many disciplines, for exam-
ple, applied mathematics, statistics, computer vision, image coding, psychology, and computational
neurosciences. Recently a uniform mathematical framework emerges from the interactions between
the research streams and experimentally a large number of visual patterns can be modeled realis-
tically. This inspires the author to write an epistemology paper to summarize the progress in the
field and report our current understandings of the big questions above. The objective of the paper
is to facilitate communications between different fields and provides a road map for the pursuit of

a common visual language.

1.2 Plan of the paper

The paper starts with a survey of the literature in section (2) to set the background. We divide
the literature in four research streams: 1) the study of natural image statistics, 2) the analysis of
natural image components, 3) the grouping of natural image elements, and 4) the modeling of visual
patterns. These streams result in four types of models: descriptive, generative, causal Markov, and
discriminative as we shall discuss in section (2).

The relationships of the four types of models are the following. A visual pattern is either
represented by a descriptive (Markov) model or by a generative model. Then it is shown that
the descriptive and generative models are inseparable and they ought to be integrated and learned
under a unified principle. In the literature, a generative model often includes a trivial descriptive

model, and a descriptive model often has a trivial generative assumption. The effective integration



of the descriptive and generative models shall lead to richer classes of hierarchic visual models and
thus is viewed, in this paper, as the future direction of visual modeling. A causal Markov model is an
approximation to a descriptive model, and is a special case for computational convenience. Finally
a discriminative model represents computational heuristics for inferring generative models. The
effective interaction between the integrated generative/descriptive models and discriminative models
is the future direction, according to this paper, for developing computationally tractable algorithms
for inference.

This unifying picture makes it clear how different research streams tackles the problem from
different representational and computational perspectives.

Section (3) presents a common maximum likelihood formulation for modeling visual patterns.
Then it leads to the choice of two families of the probability models: descriptive models and
generative models. Then the paper presents the descriptive and generative models in parallel.

Section (4) presents the basic assumptions and principles for learning descriptive models, and
seven typical examples from low level pattern to high level patterns in the literature. Section (5)
presents the statistical physics foundation of descriptive models and three types of ensembles: the
micro-canonical, canonical, and grand-canonical ensembles. Then we conceptualize a visual pattern
to an ensemble of physical states.

In parallel, Section (6) presents the basic assumptions, methods, and five typical examples for
learning generative models. Section (7) revisits the conceptualization of patterns from the perspec-
tives of generative models, and states that the visual vocabulary can be learned as parameters in
the generative models.

Then the paper turns to computational issues. In Section (8) we discuss a few causal Markov
models as approximations to descriptive models and special cases. In section (9), we study how
discriminative models can be used for inferring hidden structures in generative models.

Finally Section (10) concludes the paper by raising some challenging issues in model selection

and the balance between descriptive and generative models.

2 Literature survey — a global picture

In this section, we briefly review four research streams and summarize four types of probabilistic

models to set a global picture.

2.1 Four research streams

Stream 1: the study of natural image statistics.

It is now widely accepted that generic vision systems, biologic or machine, should be tuned to
the ensemble of natural images, and thus it is of great importance to study the statistical properties
of natural images. Most of the early work studied natural image statistics from the perspective

of image coding and redundancy reduction, and often use them to predict/explain the neuron



responses.

In history, Attneave (1954), Barlow (1961), and Gibson (1966) were among the earliest who
argued for the ecologic influence on vision perception. Kersten (1987) did perhaps the first ex-
periment measuring the conditional entropy of the intensity at a pixel given the intensities of its
neighboring pixels, in a spirit similar to Shannon’s (1948) experiment of measuring the entropy
of English words. Clearly the strong correlation of intensities between adjacent pixels results in
low entropy. Further study of the intensity correlation in natural images leads to an interesting
re-discovery of a 1/f power law by Field (1987).! By doing a Fourier transform on natural images,
the amplitude of the Fourier coefficients at frequency f (averaged over orientations) fall off in a
1/ f-curve (see Figure 4.a). The power may not be exactly 1/f and vary in different image ensem-
bles (Ruderman, 1994). This inspired a large body of work in biologic vision and computational
neurosciences which study the correlations of not only pixel intensities but responses of various
filters at adjacent locations. These work also expand from grey level static images to color and
motion images (see Atick et al 1992, Simoncelli et al 2001 for details).

Meanwhile, the study on natural image statistics extends from correlations to histograms of

filter responses, for example, Gabor filters.?

This leads to two interesting observations. One
observation is that the histograms of filter responses on natural images have high kurtosis (Field,
1994). This reveals that natural images have high order (non-Gaussian) structures. The second
discovery was reported independently by (Ruderman, 1994) and (Zhu and Mumford 1996-97) that
the histograms of gradient images are consistent over scales (see Fig. 5). The scale invariance
experiment is repeated by several teams (Chi and S.Geman 1998, Grenander and Srivastava, 2001).
Further studies along this direction include investigations on joint histograms and low dimensional
manifolds in high dimensional spaces. For example, the density on a 7-D unit sphere for all 3 x 3
pixel patches of natural images (Lee, Huang, and Mumford, 2000, Koloydenko and D.Geman 2000).
Going beyond pixel statistics, some most recent work measured the statistics of object shapes (Zhu,
1999), contours (Geisler et al. 2001), and the size of regions and objects in natural images (Alvarez,

Grousseau, and Morel 1998).

Stream 2: the analysis of natural image components

The high kurtosis in image statistics observed in stream 1 is marginal evidence for hidden
structures in natural scenes. A classic way for discovering structures and reducing image redundancy
is to transform an image into a superposition of image components or atomic bases. The transforms
achieve two nice properties. 1). The coefficients of these bases are less correlated or independent

in ideal cases. 2). The number of bases for approximately reconstructing an image is often much

'The spectra power-law was firstly reported in (Deriugin, 1957) in studying television signals, and re-discovered
by (Cohen and Carlson et al, 1975-78) in photographic analysis, and then Burton and Moorhead, 1987) in optics
study. It was Fields’ work that brought it to attention of the broad vision communities.

*Correlations only measures second order moments while histograms include all the high order information, such
as skewness (third order) and kurtosis (fourth order).



smaller than the number of pixels, i.e. dimension reduction. For example, Fourier transform,
wavelet transforms (Mallat 1989, Coifman and Wickerhauser 92), and various image pyramids
(Simoncelli et al 1992) for generic images, and principal component analysis for some specific
ensembles of images.

If one treats an image as a continuous function, then a mathematical tool for decomposing
images is harmonic analysis (see Meyer 1985, 1988, Donoho etc 1998). Harmonic analysis is con-
cerned with decomposing various classes of functions (i.e. mathematic spaces) by different bases.
Further development along this vein includes the wedgelets, ridgelet, edgelets, curvelets by Donoho
and Candes in a series of papers.

Most recently, two ideas from this research stream are most inspiring. One is sparse coding with
over-complete basis or dictionary. With over-complete basis, an image may be reconstructed by
a small (sparse) number of bases in the dictionary. This often leads to 10-100 folds of dimension
reduction. For example, an image of 200 x 200 pixels can be reconstructed approximately by about
100 — 500 base images. The second idea is that the optimal basis should be learned from (or tuned
to) the ensemble of natural images. The two insights are combined in (Olshausen and Field, 1996).
Figure 13 shows some bases learned from a set of natural images. Added to this development is
the independent component analysis (ICA) (Common 1994, VanHateren and Ruderman 1998). It
is shown in harmonic analysis that the Fourier, wavelet, and ridgelet bases are independent com-
ponents for various ensembles of mathematical functions (see Donoho et al 1998 and ref. therein).
But for the ensemble of natural images, it is not possible to have an independent basis, and one

can only compute a basis which maximize some measure of independence.

Stream 3: the grouping of natural image elements

The third research stream originated from Gestalt psychology (Koffka, 1935). Human visual
perception has strong tendency (bias) towards forming global percept (“whole” or pattern) by
grouping local elements (“parts”). For example, Human vision completes illusory figures, and
perceives hallucinatory structures from totally random dot patterns (Smith, 1986). In contrast
to research streams 1 and 2, early work in stream 3 focused on computational procedures and
algorithms that seemed to demonstrate performance similar to human perception. This includes
work on illusory figure completion and grouping from local edge elements (Guy and Medioni 1996).

While the Gestalt laws are quite successful in many artificial illusory figures, their applicability
in real world images was haunted by ambiguities. A pair of edge elements may be grouped in
one image but separated in the other image, depending on information which may have to be
propagated from distant edge elements. So the Gestalt laws are not really deterministic laws but
rather heuristics or importance hypotheses which are better used with probabilities.

Lowe (1985) was the first who computed the likelihoods (probabilities) for grouping a pair of
line segments based on proximity, co-linearity, or parallelism respectively. Considering a number

of line segments that are independently and uniformly distributed in terms of lengths, locations



and orientations in a unit square, Lowe estimated the expected number for a pair of line segments
at a certain configuration that are formed accidentally according to this uniform distribution.
Lowe conjectured that the likelihood of grouping a pair of line segments in real images should be
proportional to the inverse of this expected number — which he called non-accidental property. In
a similar method, Jacobs (1993) calculated the likelihood for grouping a convex figure from a set
of line segments.

People also used Bayes networks (see Fig 19) to compute and propagate probabilities in group-
ing elements (Sarkar and Boyer, 1993) and generic object recognition (Dickinson et al. 1992).
Bienenstock, Geman, and Potter (1997) proposed a compositional vision approach for grouping of
handwritten characters. Moisan, Desolneux and Morel (2000) compute the likelihoods for mean-

ingful alignments.

Stream 4: the modeling of natural image patterns

By the end, all studies boil down to the explicit modeling of image patterns. Theoretically
speaking, mathematical models of patterns must agree with (or reproduce) the observed image
statistics (stream 1) and characterize the distributions of image components (stream 2). As we
shall show in late section, the grouping heuristics in streams 3 are for effective inference of the
models of pattern.

In the literature, Grenander (1976), Cooper (1979), and Fu (1982) were the pioneers using sta-
tistical models for various visual patterns. In the late 1980s and early 1990s, image models become
popular and indispensable when people realized that vision problems, typically the shape-from-X
problems, are fundamentally ill-posed. Extra information is needed to account for regularities in real
world scenes. The early models all assumed simple smoothness (sometimes piecewisely) of surfaces
or image regions, and they were developed from different perspectives. For example, physically-
based models (Terzopoulos, 1983, Blake and Zisserman, 1987), regularization theory (Poggio, Torre,
and Koch, 1985), energy functionals (Mumford and Shah, 1989). Later these concepts all converged
to statistical a priori models which prevailed due to two pieces of influential work. The first work
is the Markov random field (MRF) modeling (Besag, 1973, Cross and Jain, 1983) introduced from
statistical physics. The second work is the Geman and Geman (1984) paper which showed that
vision inference can be done rigorous by Gibbs sampler under the Bayesian framework. There were
extensive literature on Markov random field ideas and Gibbs sampling in later 1980s. This trend
went down in the early 1990s for two practical reasons. 1). Most of those Markov random field
models are based on pair cliques and thus do not realistically characterize natural image patterns.
2). The Gibbs sampler is computationally very demanding on such problems.

Other probability models of visual patterns include deformable templates for objects, such as
human face (Yuille, 1991) and hands (Grenander et al 1991). The deformable templates are also
MRF models. In contrast to the homogeneous MRF models mentioned above, deformable templates

are inhomogeneous on small graphs whose nodes are labeled. We should return to more recent MRF



models in later section.

2.2 Four categories of statistical models

More concretely, the interactions of different streams resulted in four categories of probability
models. In the following, we briefly review the four types of models to set background for a
mathematical framework that unifies them.

Category 1. Descriptive models.

Firstly, the integration of stream 1 and stream 4 yields a class of models which we call “descrip-
tive models”. Given an image ensemble and its statistics properties, such as the 1/f-power law,
scale invariant gradient histograms, one can alway construct a probability model which produces
the observed statistics. The probability is of the Gibbs (MRF) form following a maximum entropy
principle (Jaynes, 1957). We call such models the descriptive models because they are constructed
based on statistical descriptions of the image ensembles.

The attraction of descriptive model is that a single probability model can integrate all statistical
measures of different image features. Such integration is not a simple product of the likelihoods
or marginals on different features but uses sophisticated energy functions to account for the de-
pendency of these features. Furthermore the descriptive models are least biased, and this provides
a way to exactly measure the “non-accidental statistics” sought after by Lowe (1987). We shall
deliberate on this point in latter section.

The descriptive models are all built on certain graph structures including lattices. There are
four variants of descriptive models in the literature. 1). Homogeneous models where the statistics
are assumed to be the same for all elements (vertices) in the graph. The random variables are
the attributes of vertices, such as pixel intensities. 2). Inhomogeneous model where the elements
(vertices) of the graph are labeled, and different features and statistics are used at different sites.
3). Mized Markov models where the graph structures (adjacency and neighborhood) are not pre-
defined and are subject to stochastic inference. Thus mixed Markov models engages some addressing
variables in addition to the attribute variables (Mumford, 1995). 4). Random graph models where
the number of vertices and their neighborhood structures in the graph are all random variables.
Descriptive models are sufficient to model all visual patterns. These models are unified under the
minimax entropy framework (Zhu, Wu, Mumford, 1997), and they differ in the types of elements,
the statistics between the elements, and the graph structures.

Category 2. Causal Markov random field (MRF) models and energy approximations

The descriptive models are often computationally expensive, especially for low level models,
due to the difficulty of computing the partition (normalizing) functions in Gibbs models. This
problem becomes prominent when the descriptive models have large image structures and account
for high order image statistics. In the literature, two approaches attempt to get around the partition
functions through approximation.

One approach uses causal MRF models. A causal MRF model approximates a descriptive model



by imposing a partial (or linear) order among the vertices of the graph such that the joint probability
can be factorized as a product of conditional probabilities. The latter have lower dimensions and
thus are much easier to learn and to compute. The Causal MRF models are still maximum entropy
distributions subject to, sometimes, the same set of statistical constraints as the descriptive models.
But the entropy is maximized in a limited probability space.

The other approach still uses undirected graph structure, but it introduces a belief at each vertex.
These beliefs are only normalized at single site or a pair of sites, and they do not necessarily form
a legitimate (well normalized) joint probability for the whole graph. Thus it avoids computing the
partition functions at all. This technique, originated in statistical physics, includes the mean field
approximation, the Bethe and Kikuchi approximations (see Yedidia et al. 2000 and Yuille, 2001 ).
Category 3. Generative models

The principled way to tackling the computational complexity of descriptive models (and to other
vision purposes) is to introduce hidden variables that can “explain away” the strong dependency
in observed images. This leads to hierarchic generative models (Dayan et al 1995, Frey and Jojic,
1999). For example, the sparse coding scheme (Olshausen and Field, 1997) is a typical generative
model which assumes an image being generated by a small number of bases. The computation
becomes less intensive because of the reduced dimensions and the less dependency between the
hidden variables, i.e. they are often partially de-coupled.

Intuitively, when there are strong dependency in observed signals (say images), they form low
dimensional manifolds embedded in very high dimension space. For example, the image of a circular
disk may have only three degrees of freedom (DOF) (i.e. x,y,r), and thus all disk images (n xn pixels)
span only a 3D manifold in R™. Thus a Markov chain sampling the image density consistently falls
off the manifold if it walks in the dimensions of the pixel intensities, and thus leads to extremely
frustration. By introducing the hidden variables it can walk effectively along the dimensions of the
manifold itself.

The generative models are not separable from descriptive models, because the hidden variables
at the root are not further generated by other variables and must be characterized by a descriptive
model, though in the literature the latter may often be a trivial iid Gaussian model or a causal
Markov model. For example, the sparse coding scheme is a two layer generative model and assumes
the image bases are iid hidden variables, and hidden Markov models in speech and motion is a two
layer model whose hidden layer is a Markov chain (causal MRF model with linear order). In visual
modeling, the hidden variables must be characterized by more general descriptive models (see later
section).

We argue that the effective integration of descriptive and generative models is the right way
for visual modeling because it leads to the discovery of a visual language and vocabulary and
computationally tractable models.

Category 4. Discriminative models

The grouping probabilities used in stream 3 are mostly discriminative models. In compari-



son, descriptive models and generative models are used as prior probabilities and likelihoods in
the Bayesian framework, while discriminative models approximate posterior probabilities of hid-
den variables (often individually) based on local features. Strictly speaking, the discriminative
probabilities are not representational models but computational heuristics for inferring the hidden
variables in generative models. As we shall show in later section that they are importance proposal
probabilities which drive the stochastic Markov chain search for fast convergence. It was shown,
through simple case, that the better the proposal probability approximate the posterior, the faster
the algorithm converges (Mengersen and Tweedie, 1994).

The interaction between discriminative and generative models has not gone very far in the
literature. Recent work include the data driven Markov chain Monte Carlo (DDMCMC) algorithms
for image segmentation, parsing, and object recognition (Tu and Zhu et al 2000-02).

//\\
-{lé’b

Figure 2: Four types of models for a simple desk object. a). descriptive (MRF), b). causal MRF,
c). generative + descriptive d). discriminative.

Summary and justification of terminology

To clarify the terminology, Figure 2 shows a trivial example of the four models for a desk. A desk
consists of four legs and a top, denoted respectively by variables d, I, s, (3,14, for their attributes.
Figure 2.a shows the undirected graph for a descriptive model p(l1,l2,13,l4,t). It is in the Gibbs
form with a number of energy terms to account for the spatial arrangement of the five pieces.
Intuitively, this descriptive model just accounts for the phenomological probability that the five
pieces occur together without “understanding” a hidden concept of chair — denoted by the hidden
variable d. The causal MRF model assumes a directed graph in Figure 2.b. Thus it simplifies the
descriptive model as p(l2)p(t|l1,12)p(I3|t, 11)p(lalt, l2,13). Figure 2.c is a two level generative model
which involves a hidden variable d for the “whole” desk. The desk generates the five pieces by a
model p(ly,1s,13,14,t|d). d may consist of global attributes of the desk which controls the positions
of the five parts. If we assume that the five pieces are conditionally independent, then it becomes
a context free grammar (without the dashed lines). In general, we still need a descriptive model
to characterize the spatial deformation by a descriptive model (see the dashed links). But this

new descriptive model p(ly,l2,13, 14, t|d) is much less complicated than p(l,l2,13,14,t) in Figure 2.a.



Finally Figure 2.d is a discriminative model, the links are pointed from parts to whole (reversing
the generative arrows). It tries to compute a number of posterior probabilities p(d|t), p(d|l;),i =
1,2, 3,4. These probabilities are often treated as “votes” which are then summed up in a generalized
Hough transform.

Syntactically the generative, causal Markov, and discriminative models can be called Bayesian
(causal, belief) networks as long as there are no loops in the graphs. But this is very confusing in
the literature. Our terminology is from a semantic perspective. We call it a generative model if
the links are directed downwards in the conceptual hierarchy, a discriminative model if the links
are upwards (also see Figure 19), and a causal MRF model if the links are pointed to variables at
the same conceptual level (also see Figure 17). For example we consider hidden Markov models in
motion or speech as two layer models where the hidden variables is governed by a causal Markov

(descriptive) model because they belong to the same semantic level.

3 Problem formulation

Now we start with a general formulation of visual modeling as statistical learning.

Let £ denote the ensemble of natural images in our environment. As the number of natural
images is so large, it makes sense to talk about a frequency f(I) for images I € £.2 f(I) is intrinsic
to our environment and our sensory system. For example, f(I) would be different for fish living in
deep ocean or rabbits living in prairie, or if our vision is 100 times more acute. The general goal
of visual modeling is to estimate the frequency f(I) by a probabilistic model p(I) based on a set
of observations {I$™, ..., I3} ~ f(I). It may sound quite ridiculous to estimate a density like f(I)
which is often in 256 x 256 space. But as we shall show in the rest of the paper, this is possible
because of the strong regularities in natural images, and easy access to a very large number of
images. For example, if a child sees 20 images per second, and open eyes 16 hours a day, then by
the age of ten, he/she has seen 3 billion images.

The probability model p(I) should approach f(I) by minimizing a Kullback-Leibler divergence
KL(flp) from f to p,

L(f o) = [ #0010 Lt ax = yflog 10 - B fog ) (1)

Approximating the expectation F[logp(I )] by a sample average leads to the standard maximum
likelihood estimator (MLE),

M
p* = arg min KI(f || p) ~ arg max mZ::l log p(I5®), (2)

where (2, is the family of distributions where p* is searched for. One general procedure is to search

for p in a sequence of nested probability families,

QoC91C"'CQK—)Qf9f,

3When the image lattice is large enough, the effects of boundary conditions can be ignored.
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where K indexes the dimensionality of the space, e.g. the number of free parameters. As K
increases, the probability family should be general enough to approach f to an arbitrary preset
precision.

There are two choices for the families €2, in the literature.

The first choice is the descriptive model. They are called exponential or log-linear models in

statistics, and Gibbs models in physics. We denote them by
QcQic---Q% — Q. (3)

The dimension of the space Qgi is augmented by increasing the number of feature statistics of 1.

The second choice is the generative model, or mixture models in statistics, denoted by
Wcojc---Cc —-Qr> f. (4)

The dimension of €, is augmented by introducing hidden variables for the underlying image struc-
tures in I.

Both families are general enough for approximating any distribution f. In the following sections,
we deliberate on the descriptive and generative models and learning methods, and then discuss their

unification and the philosophy of model selection.

4 Descriptive modeling

In this section, we review the basic principle of descriptive modeling, and show a spectrum of seven

examples for modeling visual patterns from low to high level.

4.1 The basic principle of descriptive modeling

h=(h.....h)

Figure 3: Descriptive modeling: estimating a high dimensional frequency f by a maximum entropy
model p that matches the low dimensional projections of f. The projections could be non-linear.

The basic idea of descriptive modeling is shown in Figure 3. Let s = (s1, ..., sp) be a representa-

tion of a visual pattern. For example s = I could be an image with n pixels, and in general s is a list

11



of attributes for vertices of a random graph. An observable data ensemble is illustrated by a cloud
of points in an n-space, and each point is an instance of the visual pattern. A descriptive method
extracts a set of K features as deterministic transforms of s, denoted by ¢ (s),k = 1,..., K. For
example, ¢ (I) =< F,I > is a projection of image I on a linear filter (say Gabor) F. These features
(such as F') are illustrated by axes in Figure 3. In general, the axes don’t not have to be straight
lines and could be more than one dimensional. Along these axes we can compute the projected
histograms of the ensemble (the right side of Figure 3). We denote these histograms as h%bs for
features ¢ (s),k = 1,2,..., K. They are estimates to the marginal statistics of f(s).

A model p must match the marginal statistics h{®, k = 1,..., K if it is to estimate f(s). Thus,

we have descriptive constraints:
Eplh(gi(s))] = by = Ey[h(¢r(s)), k=1,...K. (5)

The least biased model that satisfies the above constraints is obtained by maximum entropy (Jaynes,
1957), and this leads to the FRAME model (Zhu, Wu, and Mumford, 1996-97),

K
Pas(5:8) = 7755 Xp{= 3 < M hlgi(s)) >} (6)
k=1

The parameters 3 = (A1, ..., Ak ) are Lagrange multipliers and they are computed by solving the
constraint equations (5). Ay is a vector whose length is equal to the number of bins in the histogram
h(¢k(s)). As the features ¢i(s),k = 1,2,..., K are often correlated, the parameters 3 are learned
to weight these features. Thus pges(s; 8) integrates all the observed statistics. *

The selection of features in pges is guided by a minimum entropy principle. For any new feature

¢, we can define its non-accidental statistics following (Zhu, Wu, and Mumford, 1997).

Definition 1 : (non-accidental statistics). Let h}' be the observed statistics for a novel feature
¢t computed from the ensemble, i.e. h}' = Ef[h(¢4(s))] and b = Ep, [h(¢4(s))] its expected
statistics according to a current model paes- Then the non-accidental statistics of ¢ with respect

to the previous K features is a quadratic distance d(h}',h;’).

d(h;{, h;," ) measures the statistics discrepancy of ¢* which are not captured by the previous K
features. Let pj’es be an augmented descriptive model with the K statistics in pges plus the feature
¢, then the following theorem is observed in (Zhu, Wu, and Mumford, 1997).

Theorem 1 (Feature Pursuit). In the above notation,

d(b}, b)) = KL(f || paes) — KL(f || pges) = entropy (paes) — entropy (pge); (7)

where d(h}', h; ) is a quadratic distance between the two histograms.

4In natural language processing, such Gibbs model was also used in modeling the distribution of English letters
(Della Pietra, Della Pietra, and Lafferty 1997).
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The higher the non-accidental statistics, the more informative feature ¢* is for the visual
pattern. Thus a feature ¢* is selected sequentially by a minimax entropy principle following
equation (7).

The Cramer and Wold theorem states that the descriptive model pges can approximate any

densities f using linear axes only (also see [90]).

Theorem 2 (Cramer and Wold) Let f be a continuous density, then f is a linear combination
of h, the latter are the marginal distributions on the linear filter response F€) xs, and f can be

reconstructed by Dges-

4.2 A spectrum of descriptive models for visual patterns

In the past few years, the descriptive models have successfully accounted the observed natural
image statistics (stream 1) and modeled a spectrum of visual patterns displayed in fig. 1.

1. Descriptive model for 1/f-power law of natural images

L

Al - ORI .
e Y AT S

b

Figure 4: a). The log-Fourier-amplitude of natural images are plotted against log f. Courtesy of
(Field, 1987). b). A randomly sampled image with 1/f Fourier amplitude. Courtesy of (Mumford,
1995)

An important discovery in studying the statistics of natural images is the 1/f power-law (stream
1). Let I be a natural image and I(¢,7) its Fourier transform. Let A(f) be the Fourier amplitude
[1(¢,7)| at frequency f = /€2 + 12 averaged over all orientations, then A(f) falls off in a 1/ f-curve.

A(f) x1/f, or logA(f)= const—log f.

Figure 4.a is a result in logarithmic scale by Field (1987) for six natural images. The curves are
fit well by straight lines in log-plot. This observation reveals that natural images contain equal

Fourier power at each frequency band — scale invariance. That is,
412

/ / [E2(¢,m)ldédn = 2n [ = df? = const., Vf.
FP<e P <ef). T

13



The descriptive model that accounts for such statistical regularity is surprisingly simple. It
was showed by Mumford (1995) that a Gaussian Markov random field (GMRF) model below has
exactly 1/ f-Fourier amplitude.

put( 8) = o expl{~ 3 AIVI(, )} (®)
T,y

where |VI(z,y)? = (V.I(z,9))* + (V,I(z,y))?>. V, and V, are the gradients. As the Gibbs
energy is of a quadratic form and its matrix is real symmetric circulant, by a spectral analysis (see
Priestley, 1981) its eigen-vectors are the Fourier bases and its eigen-values are the spectra.

This simply demonstrates that much celebrated 1/f-power law is nothing more than a second

order moment constraint in the maximum entropy construction,
1
Ey[|VI(z,y)|"] = B~ Ef[|VI(z,y)|*), Vz,y. (9)

This is equivalent to a 1/f constraint in the Fourier amplitude. Since p;,(I;3) is a Gaussian
model, one can easily draw a random sample I ~ p; /f(I; B). Figure 4.b shows a typical sample
image by Mumford (1995). It has very little structure in it!

2. Descriptive model for natural images with scale-invariant histograms

The second important discovery of natural image statistics is the scale-invariance of gradient
histograms (Ruderman 1994, Zhu and Mumford, 1996-97). Take a natural image I, and build
a pyramid with a number of n scales, I = IO 1M 1™ 16+ i obtained by an average of
2 x 2 pixels in I(). The histograms h(*) of gradients V,I(*)(z,y) (or V,I*)(z,y)) are plotted in
Figure 5.a for three scales s = 0,1,2. Figure 5.b shows the logarithm of the histograms averaged

over a number of images.

Figure 5: a). Gradient histograms over three scales. b). Logarithm of histograms. c). A randomly
sampled images from a descriptive model py,, (I; 3). Courtesy of (Zhu and Mumford, 1996-97)

These histograms demonstrate high kurtosis and is amazingly consistent over scales. Let ho

be the normalized histogram averaged over 3 scales, and impose constraints that a model p should
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produce the same histograms (marginal distributions),
Ep[h(V,I®)] = By[n(V,I®)] = b, s=0,1,2,3, (10)

Zhu and Mumford (1996-97) derived a descriptive model,

1 3
Piny(I; B) = — exp{— Yo Y AD(VLIO(,y) + A (VI (z,p)) ) (11)
5=0 (z,5) EA)

A() is the image lattice at scale s. 8 = (/\;(50)(), /\éo) 0,y AP 0, )\g)’) () are the parameters and each
)\EUS)() is a 1D potential function quantized by a vector.

Figure 5.c shows a typical image sampled from this model by Gibbs sampler (Geman and
Geman, 1984). This image has the scale-invariant histograms shown in Figure 5.a-b. Clearly the
sampled image demonstrates some piecewise smoothness and consists of micro-structures of various
sizes.

To make connection with other models, we remark on two aspects of pi, (I; 8).

Firstly, by choosing only one scale s = 0, the constraints in equation (10) is a superset of the
constraints in equation (9), as the histogram includes the variance. Therefore p;,, also observes
the 1/ f-power law.

Secondly, with only one scale, piny reduces to the general smoothness models widely used in
shape-from-X and denoising (see research stream 4). The learned potential functions Az() and Ay()
match pretty close to the manually selected energy functions.

3. Descriptive model for textures

The third descriptive model accounts for interesting psychophysical observations in texture
study that histograms of a set of Gabor filters may be sufficient statistics in texture perception,
i.e, two textures cannot be told apart in early vision if they share the same histograms of Gabor
filters (Chubb and Landy, 1991).

Let F1, ..., Fx be a set of linear filters (such as Laplacian of Gaussian, Gabors), and h(F) *I) the
histograms of filtered image Fy I for k = 1,2, ..., K. Each F} corresponds to an axis and h(Fy *I) a
1D marginal distribution in Fig.3. From an observed image, a set of histograms hzbs, k=12,...K

are extracted. By imposing the descriptive constraints
Ey[h(Fp +T)] =h*™, Vk=1,2,.. K. (12)

A FRAME model (Zhu, Wu, and Mumford, 1997-98) is obtained through maximum entropy.

K
PGB = poxpl— Y > M(Fis Ia,p))). (13)

(z,y)eA k=1

where 8 = (A1(), A2(), ..., Ak ()) are potential functions with each function A;() being approximated
by a vector. piex(I;3) extends traditional Markov random field models (Besag, 1973, Cross and
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a. observed b. K=0 c, K=1 d K=2 ee K=17

Figure 6: Learning a sequence of descriptive models for a fur texture: a). The observed texture
image, b),c),d),e), are the synthesized images as random samples from pgex (I; 3) using K = 0,1,2,7
filter histograms respectively. The images are obtained by Gibbs sampler. Courtesy of (Zhu, Wu,
and Mumford, 1997)

Jain, 1983) by replacing pairwise cliques with Gabor filters and by upgrading the quadratic energy
to non-parametric potential functions which account for high order statistics.

Figure 6 illustrates the modeling of a texture pattern. It uses only one (homogeneous) input im-
age in figure 6.a to estimate the histograms h%bs, k=1,2,..., K. With K = 0 constraints, piex(I; ©)
is a uniform distribution and a typical random sample is a noise image shown in Figure 6.b. With
K = 1,2,7 histogram constraints, the randomly sampled images from the learned Gibbs models
Prex(I; ©) are shown in figures (6.c,d.e) respectively. The samples are drawn by Gibbs sampler[32]
from piex(I; B) and the selection of filters are governed by a minimax entropy principle[88]. A wide
variety of textures are modeled in this way. In a similar way, one can put other statistics in the
model (Portilla and Simoncelli, 2000).

4. Descriptive model for texton (attributed point) process

The descriptive models py ¢, pinv, and prex are all based on lattice and pixel intensities. Now
we review a fourth model for texton (attributed point process) which extends lattices to graphs
and extends pixel intensity to attributes. Texton processes are very important in perceptual orga-

nization. For example, Figure 1 shows a point process for the music band, and Figure 7.a shows a

wood pattern where a texton represents a segment of the tree trunk.

a). observed b). t=1 c). t=30 d). t =332

Figure 7: Different stages of simulating a wood pattern with local spatial interactions of textons.
Each texton is represented by a small rectangle. After (Guo, Zhu, and Wu, 2001)

Suppose a texton t has attributes z, v, o, 8, ¢ for its location, scale, orientation, and photometric
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contrast respectively. A texton pattern with an unknown number of n textons is represented by,

T= (n’{ t] = (‘Z‘j7yj73j70jacj)7j = ]-7""” })

Each texton ¢ has a neighborhood 0t defined by spatial proximity, good continuity, parallelism or
other Gestalt properties. It can be decided deterministically or stochastically. Once a neighborhood
graph is decided, one can extract a set of features ¢y (t|0t), k = 1,2,..., K at each ¢ measuring some
Gestalt properties between ¢ and its neighbors in dt. If the point patterns are homogeneous,
then through constraints on the histograms, a descriptive model is obtained to capture the spatial

organization of textons (Guo et al 2001),

n K
Pixa(T; B0, B) = %exp{—ﬂon =0 Al (t;10t5)) 3, (14)
j=1k=1
Ptxn 18 distinct from previous descriptive models in two respects: 1). The number of elements
varies, thus a death-birth process must be used in simulating the model. 2). Unlike the static
lattice, the spatial neighborhood of each element can change dynamically during the simulation.
Figure 7.a shows an example of a wood pattern with T given, from which a texton model piyy
is learned. Figure 7.b-d shows three stages of the MCMC sampling process of pyq at ¢t = 1,30, 332
sweeps respectively. This example demonstrates that global pattern arises through simple local
interactions in pyy,. More point patterns are referred to (Guo et al. 2001).

5. Descriptive models for 2D open curves: Snake and Elastica

g, L
'II:/ I |I ) \ i i/}T-.\
~/ / |\ SN
/_// xf./| -"1 I - J/ I:' \}\'\ /
— / _is/'l bl o |4
/»/ PaVAN [
L /

Figure 8: a-b). Two sets of random sampled curves from the Elastica model, after (Mumford,
1994), c-d). The stochastic completion fields, After (Williams and Jacobs, 1997).

Moving up the hierarchy from point to curves, we see most curve models are descriptive.
Let C(s) s € [a,b] be an open curve, there are two curve models in the literature. One is the
popular SNAKE or active contour model (Kass etc 1987).

b
pen(Ci, ) = S expl= [ alVO(s)? + B2 Cls)Pds},

where VC(s) and V2C(s) are the first and second derivatives.
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The other is an Elastica model (Mumford, 1994) simulating a Ulenbeck process of a moving

particle with friction, let x(s) be the curvature, then

pos(C:6) = g oxp{~ [ o+ B (s))ds).

« controls the curve length as a decay probability for terminating the curve, like 5, in pixn.

Figures 8.a-b show two sets of randomly sampled curves each starting from an initial point and
orientation, the curves show general smoothness like the images in Figure 5.c. Williams and Jacobs
(1997) adopted the Elastica model for curve completion. They define the so-called “stochastic
completion field” between two oriented line segments (a source and a sink). Suppose a particle is
simulated by a random walk, it starts from the source and ends at the sink. The completion fields
shown in Figures 8.c-d show the probability that the particle passing a point (z,y) in the lattice
(dark means high probability). This was used as a model for illusory contours.

6. Descriptive models for 2D closed curves

a). K=0 b). K =2 ). K=5

Figure 9: Learning a sequence of models pg,,(I'; B) for silhouettes of animals and plants, such as
cats, dogs, fish, and leaves. a-e are typical samples from pg,, with K = 0,2, 5,5, 5 respectively. The
line segments show the medial axis features. Courtesy of (Zhu, 1999)

The next descriptive model generalizes the smoothness curve model to 2D shape models with
both contour and region based features. Let I'(s), s € [0,1] be a simple closed curve of normalized
length. One can always represent a curve by polygon with a large enough number of vertices.
Some edges can be added on the polygon for spatial proximity, parallelism, and symmetry. Thus
a random graph structure is established, and some Gestalt properties ¢x(),k = 1,2,..., K can be
extracted at each vertex and its neighbors, such as co-linearity, co-circularity, proximity, parallelism
etc. Through constraints on the histograms of such features, a descriptive model is obtained in
(Zhu, 1999),

1 Ko
pan(C38) = 7 exp(3 [ Muldn(s)d), (15)

This model is invariant to translation, rotation and scaling. By choosing features ¢(s) to be
V, V2, k(s), this model is a non-parametric extension of the SNAKE and Elastica models on open

curves.
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Figure 9 shows a sequence of shapes randomly sampled from pg,(I'; 8). The training ensemble
includes contours of animals and tree leaves. The sampled shapes at K = 0 (i.e.. no features)
are very irregular (sampled by Markov chain random walk under the hard constraint that the
curve is closed and has no self-intersection. The MC starts with a circle), and become smooth at
K = 2 which integrates two features: co-linearity and co-circularity measured by the curvature and
derivative of curvature k(s) and Vk(s) respectively. Elongated and symmetric “limbs” appear at
K =5 when we integrates crossing region proximity, parallelism etc.

7. Descriptive models for 2D human face

Moving up to high level patterns, descriptive models were used for modeling human faces
(Yuille, 1991) and hand (Grenander et al. 1991), but early deformable models were manually
designed, though in principle, they could be re-formulated in the maximum entropy form. Recently

a descriptive face model is learned from data by (Liu etc. 2001) following the minimax entropy

scheme.
35 %) S -
NARYI .
v —
. Observed examples of face b). Random faces

YWY YWY E

) Random faces with 4 features matched d). Random faces with 17 features matched

Figure 10: Learning a sequence of face models pg,.(V; B). a). Four of the observed faces as training
data, b,c,d). Four of the stochastically sampled faces with K = 0,4,17 statistics respectively.
Courtesy of (Liu, Zhu, and Shum, ICCV, 2001)

A face is represented by a list of n (e.g. n = 83) key points which are manually decided.
Connecting these points forms the sketch shown in Figure 10. Thus each face is a point in a 166-
space. After normalization in location, rotation and scaling, it has 162 dimensions. Figure 10.a
shows four of example faces from the data ensemble.

Unlike the previous homogeneous descriptive models where all elements in a graph (or lat-
tice) are subject to the same statistical constraints, the key points are labeled, and thus different
statistical constraints are imposed at each location.

Suppose we extract K features ¢ (V),k = 1,2,..., K on the graph V, then a descriptive model
is,

1 K
prc(Vi) = 5 (= (V) (16)

Liu etc. did a PCA to reduce the dimension first, and therefore the features ¢(V) are extracted
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on the PCA co-efficients. Figure 10.b shows four sampled faces from a uniform model in the PCA-
coefficient space bounded by the co-variances. The sampled faces in Figures 10.c-d become more
pleasant as we increase the number of features. When K = 17, the synthesized faces are no longer
distinguishable from faces in the observed ensemble.

Summary: a continuous spectrum of models on the space of random graphs

To summarize this section, visual patterns, ranging from generic natural images, textures,
textons, curves, shapes, and objects, can all be represented on random graphs. A random graph
has a varying number of vertices and edges, and has both attribute variables and address variables.
All the descriptive models reviewed in this section are focused on different subspaces of a huge space
of random graphs. Thus these models are examples in a “continuous” spectrum in the graph space
(see eq.(3))! Though the general ideas of defining probability on random graphs were discussed in
Grenander’s pattern theory (Grenander, 1976-81), it will be a long way for developing such models

as well as discovering a sufficient set of features and statistics on various graphs.

5 Conceptualization of visual patterns and statistics physics

Now we study an important theoretical issue associated with visual modeling: how do we define a
visual pattern mathematically? For example, what is the definition of a human face, a tree, or a
texture? In mathematics, a concept is equalized to a set. However a visual pattern is characterized
by a probabilistic model as the previous section showed. The connection between a deterministic
set and a statistical model was established in modern statistical physics through a general theorem
dated back to (Gibbs, 1902).

5.1 Background: statistical physics and ensembles

Modern statistical physics is a subject studying macroscopic properties of a system involving mas-
sive amount of elements(see Chandler, 1987). Figure 11 illustrates three types of physical systems

which are interesting to us.
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a). micro-canonical ensemble b). canonical ensemble c). grand-canonical ensemble

Figure 11: Three typical ensembles in statistical mechanics.

1. Micro-canonical ensembles. Figure 11.a is an insulated system of N elements. The elements
could be atoms, molecules, electrons in systems such as gas, ferro-magnetic material, fluid etc. N

is really big, say N = 10?® and is considered infinity. The system is decided by a configuration or
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state s = (x, m")
(Chandler, 1987). The system is subject to some global constraints h(s) = (N, E, V). That is, the

number of elements N, the total energy E(s), and total volume V are fixed.

, where x describes the coordinates of the N elements and m’ their momenta

Statistical physics characterizes the above insulated system at thermodynamic equilibrium by

a so-called micro-canonical ensemble,
Qumee(ho) = {s = (x",m") : h(s) = h, = (N,V, E)}.

s is a microscopic state or instance, and h(s) is the macroscopic summary of the system state.
Thus Q2,,cc is a deterministic set or an equivalence class for all states that satisfy a descriptive
constraints h(s) = h,.

An essential assumption in statistical physics is,
“all microscopic states are equally likely at thermodynamic equilibrium.”

This is simply a maximum entropy assumption. Let 2 5 s be the space of all possible states, then

Qunee C Q is associated with a uniform probability,

o 119mee(By)] for s € Quee(hy),
Punit (53 Bo) = { 0 for s € Q/Qmee ().

2. Canonical ensembles. The canonical ensemble refers to a small system (with fixed volume V; and
elements N1) embedded in a micro-canonical ensemble, see Figure 11.b. The canonical ensemble
can exchange energy with the rest system (called heat bath or reservoir). The system is relatively
so small, e.g N; = 10'° that the bath can be considered a micro-canonical ensemble.

At thermodynamic equilibrium, the microscopic state s; for the small system is governed by a
Gibbs distribution,

paib(s1;8) = % exp{—BE(s1)}

The conclusion was stated as a general theorem by Gibbs (1902),

“If a system of a great number of degrees of freedom is micro-canonically distributed in

phase, any very small part of it may be regarded as canonically distributed.”

Basically this theorem states that the Gibbs model pgip is a conditional probability of the uniform
model pynir, and thus it bridges a deterministic set . with a descriptive model pgj,. Some
detailed deduction of this conclusion in vision models can be found in (Wu and Zhu, 1999).

3. Grand-Canonical ensembles. When the small system with fixed volume V; can also exchange
elements with the bath as in liquid and gas materials, then it is called a grand-canonical ensemble,

see Figure 11.c. The grand-canonical ensemble follows a distribution,

pgce(SIQﬁoaﬁ) = %GXP{—,BONl - /BE(SI)};

where an extra parameter 3, controls the number of elements N7 in the ensemble.
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5.2 Conceptualization of visual patterns

The connections between the three physical ensembles reveals an important duality between a
descriptive constraints h(s) = h, in the deterministic set Qmen(h,) and the parameters 8 in Gibbs
model pgip- In vision, the duality is between the image statistics h, = (h$™, ..., h%%®) in equation (6)
and the parameters of the descriptive models 8 = (A1, ..., Ak ). Thus a visual pattern can be readily
defined based on this setting.

In the literature, a texture pattern was first defined as a Julesz ensemble by (Zhu et al. 1999-
2000). This can be easily extended to any patterns, including, generic images, texture, smooth

surfaces, texton process, etc.

Definition 2 : (homogeneous visual patterns). For any homogeneous visual pattern v defined
on a lattice or graph A, let s be the visual representation (e.g. s = 1) and h(s) a list of sufficient
feature statistics, then a pattern v is equal to a mazimum set (or equivalence class), as A goes to

infinity in the von Hove sense,
A pattern v = Q(h,) = {sa : h(s) =h,, A — oo}. (17)

As A goes to infinity and the pattern is homogeneous, the statistical fluctuations and the
boundary condition effects both diminish. Thus the normalized statistics h(s) converges to a value
h,.

Any visual pattern is defined for a purpose. The purpose is reflected in the selection of “suffi-
cient” statistics h(s). That is, depending on a visual task, we are only interested in some global
(macro) properties h(s), and we are not interested in the differences between instances within the
set. Similarly in statistical physics, one is only concerned with macroscopic properties, such as,
temperature, pressure, energy etc. In vision, such macroscopic property h corresponds best to the
Gestalt concept ”"whole”.

The connection between set 2(h,) and the descriptive model p(s; 3) is re-stated informally by
the theorem below (Wu and Zhu, 1999).

Theorem 3 (Ensemble equivalence). For visual signals sp € Q(h,) on large (or infinity) lattice
(or graph) A, then on any small lattice A, C A, the signal sp, given its neighborhood sgy, is subject
to a descriptive model p(sp,|san,; Bo)-

The duality between 8, and h, is reflected by the maximum entropy constraints £, . g )[h(s)] =

s:

h,. More precisely, it is stated in the following theorem (Wu and Zhu, 1999).
Theorem 4 (Model and concept duality). Let p(sp;3) be a descriptive model of a pattern v,
and Qp(h) the set for pattern v, and let ¥ (h) and p(B) be the entropy function and pressure defined

as

$(h) = lim —log|Qx(h)|, and p(B) = lim —

Ao TA] Al los Z(8).
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If h, and B, correspond to each other, then

¢I(ho) = :Bm and p,(:BO) = hO’
in the absence of phase transition.

For visual patterns which are inhomogeneous or defined on finite graphs, such as a human face

or a 2D shape of animal, the definition of pattern is given below.

Definition 3 (Inhomogeneous finite patterns). For inhomogeneous visual pattern v defined
on a finite lattice or graph A, let s be the representation, and h(s) its sufficient statistics, the visual

concept is an ensemble governed by a mazimum entropy probability p(s;3),
pattern v = Q(h,) = {(s, p(s: B)) : Fylh(s)] = hy}. (18)
Each pattern instance s is associated with a probability p(s;3).

Obviously, the definition in equation (17) is a special case of equation (18). That is, when
A — 00, one homogeneous signal is enough to compute the expectation, i.e. E,[h(s)] =h(s). The
limit of p(s; @) is the uniform probability pynif(s; h,) as A — oo.

The probabilistic notion in defining finite visual signal is the root for errors in recognition,
segmentation, and grouping. An in-depth discussion on the relationship between an error bound

and models are referred to the order parameter theory (Yuille, Coughlan, Wu, and Zhu, 2001).

6 Generative modeling

So far, we have reviewed the theory, examples and conceptualization using descriptive models, Two
important questions remain unanswered. 1). How do we discover the visual representation beyond
raw pixels, such as curves, shape, and faces? 2). How do we assemble the spectrum of visual
patterns into a generic model of natural images? In this section, we review progress in generative

modeling, which provides a way for answering these questions.

6.1 The basic principle of generative modeling

Now we return to the general learning problem in Section (3). Generative models approach f(I) by
a sequence of probability models that engage hidden (latent) variables for the underlying structures.
For example, one may assume that a scene consists of a number of objects, each object has a number
of parts and surfaces, each surface has a boundary and 3D geometric shape, there are textures,
colors and marks painted on surface, under a certain lighting condition, an image I is generated.

For simplicity of notation, we assume L-levels of hidden variables which generate image I in a
linear order,

Wy 25wy, P Py P (19)
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At each level, W; generates W;_1 with a dictionary (vocabulary) D;,i = 1,..., L. The dictionary is
a set of description, such as image bases, textons, parts, templates, lighting functions etc.

Let p(W;_1|W;; D;, B;_,) denote the conditional distribution for pattern W;_; given W;, with
B;_1 being the parameter of the model. Then by summing over the hidden variables, we have an

image model,

pI;0) =Y - p|Wi; Dy, By)p(Wi|Wa; D1, By) - - - p(Wi—1|WL; Di, B 1) (20)
W, W

© = (D, ...,Dr; By, ---, B1,_1) are the parameters, and each conditional probability is a descriptive
model.

By analogy to speech, the observable signal I is the speech wave form. Then the first level
dictionary D; is the set of phonemes, and B, parameterizes the transition probability between
phonemes. The second level dictionary D, is the set of words, each being a short sequences of
phonemes in D;, and B, parameterizes the transition probability between words. Going up the
hierarchy, we need dictionaries of grammatic reproduction rules for phrases and sentences, and
probabilities for how frequently each reproduction rule is used, and so on.

The hidden variables W; is fundamentally different from the image features ¢; in descriptive
models, though they may be closely related (see section (9)). W; are random wvariables that should
be inferred from images, while ¢; are deterministic transforms of images.

The reasons for engaging hidden variables are two-fold. Firstly, for certain vision tasks, such
as navigation, grasping objects, we need such high level descriptions. Secondly, as it is said in the
desk example before, the variables in W; are less dependent of each other conditioned on Wy, .
Thus the model p(W;|W41; Diy1,8;) is much easier to learn than the model p(Wj; 8;).

Following the ML-estimate in equation(2), we can learn the parameters © in p(I;©) by EM-
type algorithm, like stochastic gradients (Gu and Kong, 1998). By taking the derivative of the
log-likelihood with respect to ©, i.e setting daloiig(l;@) = (0. We have

o~ Ologp(I|W1; D1, By) , , Ologp(Wr1|Wi; D1, B_1)
0= WZL % [ B(Dl,ﬁo) + * 8(,DLMBL—I) ]

xp(Wi|L; D1, By) -+ p(WL|Wr—1; DL, Br,—1) (21)

This huge equation can be solved with global optimal by iterating two steps (Gu and Kong, 1998):
1. The E-type step: making inferences about the hidden variables by sampling from a sequence

of posteriors,
W1~ pWiLDy,By), -y Wi ~pWr|Wr_1;DL,Br_1)- (22)

Then we can approximate the summation (integration) by importance sampling. We should discuss
the effective sampling using discriminative models in Section (9.2).

2. The M-type step: optimizing the parameters ©. The learning results in © includes a
hierarchic visual dictionary Dj,...,D;, and the descriptive models B, ...,3;_; that govern their

spatial layouts of the hidden structures. It is beyond this review to discuss the algorithm.
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6.2 Some examples of generative models

Now we review a spectrum of generative models, starting with the models for the 1/f.

1. A generative model for the 1/f-power law

The 1/ f-law of the Fourier amplitude in natural images was analytically modeled by a Gaussian
MRF p, /¢ (Mumford, 1995). We transform equation (8) into the Fourier domain, thus

pit(T: 6) = 5 exp{~ X BE + )T )P (23)
&n

The Fourier bases are the independent components for the Gaussian ensemble governed by py ;.

From the above Gaussian model, one obtains a two-layer generative model (Mumford, 1995),

E+yn

_ ;0, 627rim ~ a ~
I(z,y) _;;213(624_7]2) (&m) ,a(&,m) ~N(0,1). (24)

The dictionary D; is the Fourier basis, the parameters are (0,1) for the normal density, and the

hidden variables are the Fourier coefficients a(§,n) V&, n which are iid normal distributed, therefore,
i 25
Dy ={bI;¢&n) ="~ V&)t B=(0,1), and Wi = {a(&n):VE )

One can sample a random image I ~ py¢(I; 8) according to equation (24): 1). drawing the
iid Fourier coefficients, 2). generating the synthesis image I by linear superposition of the Fourier
bases. A result is displayed in Figure 4.b.

To our knowledge, this is the only image model whose descriptive and generative versions are
analytically transferable. Such happy endings perhaps only occur in Gaussian models.

In the literature, (Ruderman, 1997) explains the 1/f-law by an occlusion model. It assumes
that image I is generated by a number of independent “objects” (rectangles) of size subject to a
cubic law 1/r3. A synthesis image is shown in Figure 12.a.

2. A generative model for scale-invariant gradient histograms

The scale-invariance of gradient histograms in natural images. inspired a number of research
for generative models as well in parallel with the descriptive models pi,,. The objective is to search
for some “laws” that governs the distribution of objects in natural scenes.

One is the random collage model (Lee et al. 2000), which is also called a dead leaves model (see
Stoyan et al 1985). It assumes that an image is generated by a number of n opaque disks. Each

disk is represented by hidden variables x, vy, r, o for center, radius, and intensity respectively.
Wy = (’)’l, {wia Yir Ti» ai) 1=1,2, -"an})a D, = {dZSk(Ia z,Y, T) : V(.’E, y) € A, S [Tminarmax]-}

The dictionary D; includes disk templates at all possible sizes and locations. Lee et al.(2000)
showed that if p(n) is Poisson distributed, and the disk location (z,y) and intensity a are iid

uniform distributed, and the radius r; subject to a 1/r3-law,
p(r) =c/r3, for r € [Fmin, Tmax] (25)
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Figure 12: Synthesized images from three generative models. a). Ruderman, 1997. b) Lee et al
2000, c). Chi and Geman, 1998. See text for explanations.

Then the generative model p(I; ©) has scale invariance gradient histograms. Figure 12.b shows a
typical image sampled from this model.

The second model is studied by Chi and S.Geman (1998). This offers a beautiful 3D generative
explanation. It assumes that the disks (objects) are sitting vertically on a 2D plane (the ground)
facing the viewer. The sizes of the disks are iid uniformly distributed, and Chi proved that the 2D
projected (by perspective projection) sizes of the objects then follow the 1/73 law in equation (25).
The locations and intensities are iid uniformly distributed like the random collage model. A typical
image sampled from this model is shown in Figure 12.c. More rigorous studies and laws along this
vein are in (Mumford and Gidas, 2001). These results put a reasonable explanation for the origin of
scale invariance in natural images. Nevertheless these models are all biased by the object elements
they choose, i.e. they are not maximum entropy models.

3. Generative model for sparse coding: learn the dictionary

In research stream 2 (image coding, wavelets, image pyramids, ICA etc) discussed in sec-
tion (2.1), a linear additive model is widely assumed and an image is a superposition of some

local image bases from a dictionary plus a Gaussian noise image n.
n
I= Z i Pt wiyi 00 T 1, v; € D, Vi. (26)
i

A base is indexed by b; = (4;, i, 4, Y4, Ti, 05) for its type of base function, coefficient, center,

orientation, and scale. Thus we have a two-layer generative model,
Wi =(n,{b;j:i=1,2,...,n}; n), D;={Yz,y,7,0):V,y,7,0,0.}

1y is a base function, for example, Gabor, Laplacian of Gaussian etc. The hidden variables

Zi, Yi, Ti, 0 are assumed iid uniformly distributed, and the coefficients «; ~ p(«), Vi. For example
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p(a) is a Laplacian or mixture of Gaussian for sparse coding,

p(a) ~ exp{—|a|/c} or ij a,0;). (27)

SE%
ﬁ"ﬂllHﬂ.ﬁ.ﬂﬂ!lH
o2 == o L 5 e I ™ = T SR Y
TARIRNEAR TR ERR
Figure 13: Some of the linear bases (dictionary) learned from natural images by (Olshausen and
Field,1997)

According to the theory of generative model (section (6.1)), one can learn the dictionary from
raw images in the M-step. Olshausen and Field (1995-97) used the sparse coding prior p(«) learned
a set of 144 = 12 x 12 pixels bases, some of which are shown in Figure 13. Such bases capture
some image structures and are believed to bear resemblance to the responses of simple cells in V1
of primates.

4. A generative model for texton and texture: model integration

In the previous three generative models, the hidden variables are assumed to be iid distributed.
Such distributions are degenerated descriptive models. But obviously these variables and objects
are not iid, and sophisticated descriptive models are needed for the spatial relationships between

the image bases or objects.

o (9

) Sampled texton map T2 c). Templates
' ﬁ.lf FatTa ” "
. Q

Fim ‘p *®

‘a.# ‘
'“ ‘ - .
.' :..'..:.’ ‘..
: ;‘..‘..i.‘

d). layer I I(T,, wi) ). layer IT I(T,, w,) f). Synthesized image

Figure 14: An example of integrating descriptive texton model and a generative model for a cheetah
skin pattern. After (Guo et al 2001).

The first work that integrates the descriptive and generative model was presented by (Guo

et al. 2001) for texture modeling. It assumes that a texture image is generated by two levels
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(foreground and background) of hidden texton processes plus a Gaussian noise. Figure 14 shows
an example of cheetah skin pattern. Figure 14.a-b shows two texton patterns Ty, To, which are
sampled from descriptive textons models pin(T;B,1,81) and puxn(T; B, 2, 82) respectively. The
models are learned from an observed cheetah skin (raw pixel) image. Each texton is symbolically
illustrated by an oriented window. Then two base functions 11,1, are learned from images and
shown in Figure 14.c. The two image layers are shown in Figure 14.d-e. The superposition (with
occlusion) of the two layers renders the synthesized image in Figure 14.f. More examples and
discussions are referred to (Guo, et al ICCV 2001).

5. A generative rope model of curve processes

Now we show a two-layer generative model for curve processes. This is called a “rope model”
by (Tu and Zhu, ECCV 2002). The model extends the descriptive model for SNAKE and Elastica

Psnk and peis by integrating it with base representation.

Figure 15: a). A rope model is a Markov chain of knots and each knot has 1-3 image bases shown
by the ellipses. b). Random ropes sampled from the prior model p(C). After (Tu and Zhu, ECCV
2002)

Figure 15.a shows a sketch of the rope model C which is a Markov chain of knots. Each knot ¢
has 1-3 linear bases, for example, Gaussians, difference of Gaussian (DoG), and difference of offset

Gaussians (DOOG) at various orientations and scales
W = (n,C1,Co, -0 Cn)s With (s = (aij, Lij, Tijs Yigs Tij 045) =1, K < 3.

Figure 15.b shows a number of random curves (image not pure geometry) sampled from the rope
model. In summary, the rope model groups image bases into curves and thus extends the previous
iid image coding model.

Summary The generative models used in vision are still very preliminary, and they often
assume a degenerated descriptive model for the hidden variables. The effective integration of

generative and descriptive models is the major direction for visual modeling.
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7 Conceptualization of patterns and their parts: revisited

With generative models, we now revisit the conceptualization of visual patterns in a more general
setting.

In Section (5.2), a visual pattern v with representation s is equalized to a statistical ensemble
governed by a descriptive model p(s; 3). Mathematically the concept v is identified by a number
B (or its duality h) in a descriptive probability family Q¢ (see expression (3) for notation).

A visual pattern v+— h +— 8 € Q‘Il(.

In reality, the representation s is only our inner perception, and is not observable unless s is an
image. Thus we need to define visual concepts based on images so that they can be learned and
verified from observable data.

Following the notation is Section (6.1), we have the following definition extending from defini-

tion 3.

Definition 4 (visual pattern) A wvisual pattern v is a statistical ensemble of image I governed

by a generative model p(I;©) with L layers,
pattern v =Q(0%) = { (I,p(I;0")) },
where p(I; OY)) is defined in equation (20).

In this definition, a pattern v is identified by a vector of parameters in the generative family QY

which include the L dictionaries and L descriptive models,
A visual pattern v +— 0" = (DY, ...,D},B8,...,B7_1) € Q%

The definition includes many ensemble of visual patterns for its hidden variables which are governed
by the descriptive models in p(I; ©). By analogy to speech, ©V defines the whole language system,
say v = English or v = chinese, and it includes all the hierarchic descriptions from waveforms
to phonemes, and to sentences — both the vocabulary and models. Therefore, it is clear that the
definition of many intuitive but vague concepts, such as textons, meaningful parts of shape etc, are

defined in the context of a generative model ©.

Definition 5 (visual vocabulary) A visual vocabulary, such as textons, meaningful parts of shape
etc. are defined as an element in the dictionaries D;,1 = 1, ..., L associated with the generative model

of natural images p(I;©).

To show some recent progress, we show a three-level generative model for texture. It assumes
that a texture image I is generated by a linear superposition of bases W; in equation (27). These
bases are generated by a smaller number of textons Ws. Each textons is a deformable template
consists of a few bases.

D D
textons Wy —> bases —» 1
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texton vocabulary: D2={ * ¥x¥ :dn }
base vocabulary: D1={ - n [I }

Figure 16: Learning textons from images. After (Zhu, et al. ECCV 2002).

Figure 16 shows a recent work by Zhu et al (2002) for learning the texton representation from
texture images. The vocabulary D; is three bases (Gabor sine, Gabor Cosine, and Laplacian of
Gaussian) at various orientations and scales. Given a bird image, three typical texton template
are learned and shown on the right side of figure 16. Each texton template (w1, mq,73) consists
of a number of bases with a deformable configuration. We show two random instances for each
texton, and each base is symbolically represented by a bar. This work can learn automatically a
second level vocabulary Do, like stars, birds, cheetah blobs, snowflakes, etc, shown in figure 16. It is
expected that natural images have levels of vocabularies with sizes |D;| = O(10) and |Ds| = O(10%),

like the number of phonemes and words in language.

8 Causal Markov Models

Now we discuss the third type of models — causal Markov models which are special cases of de-
scriptive models for computational convenience.

Let s = (s1,...,8,) be the representation of a pattern, and pges(s;3) its descriptive model.
As Figure 2.b illustrates, a causal Markov model imposes a partial order in the vertices and thus
factorizes the joint probability into a product of conditional probabilities,

n

Pean(s; B) = [ p(si | parent(s;); 8;). (28)

i=1
parent(s;) is the set of parent vertices which point to s;. Though the graph is directed in syntax,

it is not a generative model because the variables are at the same semantic level. pcay(s) can be

derived from the minimax entropy learning scheme in Section (4.1).
p:au = argmax — chau(s) log peau(s)-
S

Thus peau(s; B) is a special class of descriptive model, only the features ¢; must be between s; and

parent(s;),7 = 1,2,...,n, and the constraints are put on the conditional probabilities. When the
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dimension of p(s; | parent(s;)) is not high, (e.g. |parent(s;)| +1 < 4), the conditional probability
are often estimated by a non-parametric Parzen window.

There are many causal Markov models for texture in the 1980s and early 1990s (See Popat and
Picard, 1994 and references therein). In the following, we review two pieces of interesting work

appeared recently.
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Figure 17: A causal MRF model for example-based texture synthesis.

One is the work on example-based texture synthesis by Efros and Leung (1999), Liang et al.
(2001), and Efros and Freeman (2001). Hundred of realistic textures can be synthesized by a
patching technique. Figure 17 re-formulates the idea in a causal Markov model. An example
texture image is first chopped into a number of image patches of a pre-defined size. These patches
form a vocabulary D; = A of image “bases” specific to this texture. Then a causal Markov field is
set up with each element being chosen from A conditional on two other previous patches (left and
below). The patches are pasted one by one in a linear order by sampling from a non-parametric
conditional distribution. A synthesized image is shown to the lower-right side. The vocabulary A
greatly reduces the search space and thus the causal model can be simulated extremely fast (in less
then 1 second per image). But the model is biased by the dictionary which is quite large and is

not generic model for image analysis.
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Figure 18: A causal Markov model for texture sketch. After (Wu et al. 2002).
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Figure 19: Hierarchic perceptual grouping. a). After (Dickinson et al. 1992) b). After (Sarkar and
Boyer, 1994)

A more general causal Markov model was proposed by (Wu et al. ECCV 2002). Wu et.al.
represent an image by a number of bases from a generic base dictionary (Log. DoG. DooG) as in
sparse coding model. Each base is then symbolically represented by a line segment, as Figures 18.a-
b show. This forms a base map similar to the texton (attributed point) pattern in Figure 7. Then a
causal model is learned based on Figure 18.b for the base map. The graph structure is more flexible
than the grid in Figure 17. A random sample is drawn from the model and shown in Figures 18.c.

When the causal Markov model is integrated with generative models, then the whole graph is
still a DAG with random structures, and thus can be compute effectively. Obviously the causal

models lose information and can be suboptimal in representation.

9 Discriminative models

Most of the perceptual grouping work (research stream 3) fall in category 4 — discriminative models.
(Boyer and Sarkar, 1999) surveyed the literature in perceptual organization comprehensively, so
there is no need for an extensive review from us. In this section, we briefly mention some typical
work, and then focus on the theoretical connections between discriminative models to the descriptive

and generative models.

9.1 Some typical discriminative models

The objective of perceptual grouping is to compose image elements into larger and larger structures
in a hierarchy. Figure 19 shows two influential work in the literature. (Dickinson et al, 1992) adopted
a hierarchic Bayesian network for grouping short line and curve segments into generic object facets,
and the latter are further grouped into 2D views of 3D object parts. (Sarkar and Boyer, 1994) used
the Bayesian network for grouping edge elements into hierarchic structures in aerial images. More

recent work is (Amir and Lindenbaum, 1999).
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If we represent the hierarchic representation by a linear order for ease of discussion, the grouping
proceeds from images I to edge elements W1, to line and curve segments Ws, to surface and objects,

and so on — exactly in the inverse order of the generative model (see equation (19). Figure 2).

I —W —W,—- — W (29)

As the grouping must be done probabilistically, both (Dickinson et al. 1992) and (Sarkar and
Boyer, 1994) adopted a list of conditional probabilities in their Bayesian networks. Reformulated

in the above notation, they are,
g1 |I), q(Wa|W1), .., ¢(WL|WL_1).

Again, we use linear order here for clarity. There may be express-ways for computing objects
from edge elements directly, such as generalized Hough transform. In the literature, most of these

conditional probabilities are manually estimated or calculated in a similar way to (Lowe, 1987).

9.2 The computational role of discriminative models

The discriminative models for grouping are demonstrated effective and useful in vision. However,
there are a number of conceptual problems suggesting that they should perhaps not be considered
representational models, instead they are computational models. In the desk example of Figure 2,
(or similarly in the hierarchies shown in figure 19), the presence of a leg may, as a piece of evident,
“suggests” the presence of a desk but it does not “cause” a desk. A leg can also suggest chairs and
a dozen other types of furniture which have legs. It is the desk concept that causes 4 legs and a
top at various configurations in the generative model.

What is wrong with the inverted arrows in discriminative models? A key point associated
with Bayes (causal, belief) networks is the idea of “explaining-away” or “lateral inhibition” in a
neuroscience term. If there are multiple competing causes for a symptom, then the recognition of
one cause will suppress the other causes. In a generative model, if a leg is recognized as belonging
to a desk during computation, then the probability of a chair at the same location is reduced
drastically. But in a discriminative model, it appears that the four legs are competing causes for
the desk, then one leg should drive away the other three legs in explanation! This is not true. The
lack of such an “explaining-away” mechanism creates combinatorial explosions. Because a pixel or
an edge can “cause” any objects in the world.

In the Bayesian framework, as well as in EM-learning (see equation (21)), the generative models
are a sequence of likelihoods p(I|W1), p(W1|W3), ..., p(WL_1|WL). In contrast, the discriminative

models are approximations to the posteriors in,

qWi|I) ~ p(W1|I; D1, By), -+, q(WL|Wr 1) ~p(WL|WL1;Dr1,B1,_1)- (30)

Like most pattern recognition methods, the approximative posteriors ¢ use only local determin-

istic features at each level. For example, suppose Wi is an edge map, then it is usually assumed
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that ¢(W1|I) = ¢(W1|®1(I)) with ®;(I) being some local edge measures. For the other levels,
qWr1|W;) = q(Wig1|®:(W;)) with ®;(W;) being some compatibility functions and metrics (Sarkar
and Boyer 1994, Bienenstock et al 1997).

For ease of notation, we only consider one level of approximation: ¢(W|I) = ¢(W|®(I)) ~
p(W|I; D, B8). By using local and deterministic features, information is lost in each approximation.
The amount of information loss is measured by the Kullback-Leibler divergence. Therefore, the

best set of features is chosen to minimize the loss.
p(W|L; Dict, B)
g(W|2(I))

®" = arg min KL(p||q) = arg min ;p(WlL D, ) log

Now we have the following theorem for what are most informative features.’

Theorem 5 For linear features ®, the divergence KL(p || q) is equal to the mutual information

between variables W and image I minus the mutual information between W and ®(I).
KL(p(WL; Dict, ) || q(W|0(1))) = MI(W, T) — MI(W, &(1)).
MIW,I) = MI(W,®(X)) if and only if ®(I) is the sufficient statistics for W.
This theorem leads to the mazimum mutual information principle for feature selection ,

©* = arg max MI(W,®(I)) = arg min KL(p(W|LD,B) |l ¢(W|2(I)))

The discriminative models can be used as importance proposal probabilities for sampling the
hidden variables. This is crucial for both Bayesian inference and for learning generative models
(see the E-step in equation (22)). In both tasks, we need to draw samples from the posteriors
through Markov chain Monte Carlo (MCMC) techniques. These posteriors are approximated by the
discriminative models (see eq.(30)). The convergence of MCMC critically depend on the importance

proposal probabilities ¢. This is stated in the theorem below by (Mengersen and Tweedie, 1994)

Theorem 6 Sampling a target density p(x) by independence Metropolis-Hastings algorithm with
proposal probability q(x). Let P"(x,,y) be the probability of a random walk to reach point y at n
steps. If there exists p > 0 such that,

p(:v)zp’ v

then the convergence measured by a L1 norm distance

|1P"(20,") —pll < (1= p)".

This theorem, though on a simple case, states the computational role of discriminative model.
The idea of using discriminative models, such as edge detection, clustering, Hough transforms,
are used in a data-driven Markov chain Monte Carlo (DDMCMC) framework for generic image
segmentation, grouping, and recognition (Zhu, Zhang and Tu, CVPR 2000, Tu and Zhu, ICCV
2001, ECCV 2002).

This proof was given in a unpublished report by Wu and Zhu (1999). A similar conclusion was also given by a
variational approach by Wolf and George (1999), who sent an unpublished manuscript to Zhu.
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10 Discussion

This paper presents an epistemological view of four research streams and four types of vision
models. The central theme is to integrate the descriptive models and generative model for modeling
and conceptualization of visual patterns. The causal MRF models and discriminative models are
effective means for computation. Though the current models are still preliminary, the outline and
road map of a unified framework becomes clear. The following are some challenged questions that

remains not answered.

1. What is the ultimate goal of learning? Where does it end?

From the perspectives of image coding and learning, the ultimate goal, as stated in Section (3),
is to approach the frequency f(I) for the ensemble of natural images. Starting from the raw images,
each time when we add a new layer of hidden variables, we make progress in discovering the hidden
structures. At the end of this pursuit, suppose we dig out all the hidden variables, then we will
have a physically-based model which is the ultimate generative model denoted by p,,. This model
cannot be further compressed and we reach the Komogorov complexity of the image ensemble.

For example, the chemical diffusion-reaction equations with a few parameters may be the most
parsimonious model for rendering some textures. But obviously this is not a model used in human
vision. Why didn’t human vision pursue such ultimate model? This leads to the second question

below.

2. How do you choose a generative model, when there are many possible explana-
tions?

There are two extremes of models. At one extreme, theorem 2 states that the pure descriptive
model pj., on raw pixels, i.e. no hidden variables at all, can approximate the ensemble frequency
f(I) as long as we put a huge number of features statistics. At the other extreme end, we have the
ultimate generative model pg,, mentioned above. In graphics, there are also a spectrum of models,
ranging from image based rendering to physically-based ray tracing. Certainly our brains choose a
model somewhere between pg., and pgey-

We believe that the choice of generative models is decided by two aspects. The first is the
purposes of vision for navigation, grasping not just for coding. The second is the computational
effectiveness. The former seems hopeless to have a quantitative formulation at present. We only
have some understanding on the second issue.

A descriptive model uses features ®() which is deterministic and thus easy to compute (filtering)
in a bottom-up fashion. But it is very difficult to do synthesis using features. For example, sampling
the descriptive model (such as FRAME) is expensive. In contrast, the generative model uses hidden
variables W which has to be inferred stochastically and thus expensive to compute (analysis). But
it is easier to do top-down synthesis using the hidden variables. For the two extreme models,

Dijes is infeasible to sample (synthesis), and pg,, is infeasible to infer (analysis). For example it is
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infeasible to infer parameters of a reaction-diffusion equation from observed texture images. The
choice of generative model in the brain should make both analysis and synthesis convenient. Also

it is possible that many models have to co-exist due to the diversity of vision tasks.

3. Where do features and hidden variables (i.e. visual vocabulary) come from?

The mathematical principles (minimax entropy or maximum mutual information) can choose
“optimal” features and variables from pre-defined sets, but the creation of these candidate sets often
come from three sources: 1). observations in human vision, such as psychology and neuroscience, 2).
physics models, or 3). artist models. Clearly the three sources have different purposes themselves.
Perhaps human vision studies are closer to the truth as human vision systems are general purposed.
For example, the Gabor filters, and Gestalt laws are found to be very helpful in visual modeling.
At present, the visual vocabulary is still far from being enough.

This may sound ad hoc to someone who likes analytic solutions! Unfortunately, we may never
be able to justify such vocabulary mathematically, just as physicists cannot explain why they have
to use forces or basic particles and why there are space and time. Any elegant theory starts from
assumptions. In this sense, we have to accept that

“The far end of sciences is art”.
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