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Abstract

This paper demonstrates that the scattering cross-section per unit length of ran-

domly oriented linear chains of monodisperse spheres asymptotically converges towards

those of randomly oriented and infinitely long cylinders with volume-equivalent diam-

eter as the number of spheres increases. The critical number of spheres necessary to

approximate the linear chains of spheres as infinitely long cylinders decreased rapidly

as the size parameter of an individual sphere increased from 0.01 to 10. On the other

hand, their absorption cross-section per unit length was identical to that of infinitely

long volume-equivalent cylinder for any number of spheres. However, this approxima-

tion does not apply to the angle-dependent Stokes scattering matrix element ratios.

1 Introduction

Light absorption and scattering by non-spherical particles or by clusters of spheres has
been a subject of great interest in the radiation transfer community and has found various
applications in science and engineering ranging from astrophysics and atmospheric science to
combustion systems and aerosol-based processes [1–4]. Numerical tools have been developed
to predict light absorption and scattering by non-spherical scatterers based on (i) the T-
matrix method [5–9], (ii) the discrete-dipole approximation (DDA) [10–12], or (iii) the finite-
difference time-domain method [3, 13, 14], to name the most widely used. Similarly, light
absorption and scattering by a cluster or aggregate of spheres has been predicted by (i) the
superposition T-matrix method [15–21], (ii) the DDA [22], and (iii) by the volume-integral
equation formulation combined with the method of moments [23–25]. Most of the studies
on sphere clusters focused on radiation scattering and absorption by soot particles.

Depending on the size and morphology of the scatterers and on the wavelength, calcula-
tions can be time consuming and require large computing resources regardless of the method
used. Thus, for practical purposes, it is important to try to find simplified models to approx-
imate scatterers with complex geometries as equivalent particles with simpler shapes such
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as spheres or cylinders [14, 26]. For example, Kahnert et al. [26] showed that the extinc-
tion and scattering cross-sections, the single scattering albedo, and the asymmetry factor of
an ensemble of randomly oriented polyhedral prisms with power-law size distribution and
size comparable to the wavelength of light can be approximated as an ensemble of spheres,
spheroids, or finite-length cylinders with the same volume, complex index of refraction, and
size distribution. Note that treating the prisms as volume-equivalent cylinders or spheroids
gave slightly better results than treating them as spheres. However, any of these simplifica-
tions failed to predict the linear depolarization ratio. Similarly, Yang et al. [14] investigated
the single scattering properties of various Platonic particles and compared their radiation
characteristics with those of equivalent spheres having the same (i) geometric dimension,
(ii) surface area, (iii) volume, or (iv) volume to surface area ratio. The authors concluded
that all these approximations led to significant errors in the extinction efficiency factor, sin-
gle scattering, albedo, and/or scattering matrix elements. The volume-equivalent spheres
gave the smallest errors of all equivalent spheres considered. In addition, approximating the
Platonic particles by their volume to surface area ratio equivalent sphere led to the largest
errors.

The goal of the present study is to theoretically identify simplified models for predict-
ing light absorption and scattering by long and randomly oriented linear chains of spheres.
This question finds its motivation in predicting light transfer in photobioreactors cultivat-
ing photosynthetic filamentous cyanobacteria for wastewater treatment, sustainable biofuel,
and/or fertilizer productions. It also applies to the field of ocean optics for remote sensing
applications and for studying carbon dioxide and nitrogen cycles [4], for example.

2 Background

2.1 Filamentous Cyanobacteria

Cyanobacteria, also known as blue-green algae, are photo-autotrophic prokaryotes that are
capable of conducting oxygenic photosynthesis [27]. They use solar radiation in the pho-
tosynthetically active radiation (PAR) region, defined by wavelength ranging from 400 to
700 nm, as their energy source. They can be found in nearly every terrestrial and aquatic
habitat on Earth and are responsible for the presence of oxygen in the atmosphere [28].
Cyanobacteria can be unicellular and filamentous and their size can range from 0.5 µm to 40
µm in diameter depending on the strain [27]. Some filamentous forms have evolved to con-
tain the nitrogenase enzyme in specialized nitrogen-fixing cells called heterocysts. Several
species can also produce hydrogen H2 through direct and indirect biophotolysis and have
been considered for photobiological hydrogen production [29].

Figure 1 shows micrographs of different species of filamentous cyanobacteria and illus-
trates, in particular, (a) nearly spherical vegetative cells of the nitrogen-fixing cyanobacteria
Nostoc punctiforme 5-6 µm in diameter, (b) an ensemble of Nostoc punctiforme showing
filaments with both vegetative (5-6 µm in diameter) and heterocyst cells (6-10 µm in diam-
eter), (c) individual filament of Anaebena sp. with spherical to oblong vegetative cells 4-14
µm in diameter, and (d) aggregating filaments of Anabaena iyengari. Other filamentous
cyanobacteria with similar morphology include Anabaena sphaerica, Anabaena cylindrica,
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(a) (b)

(c) (d)Anabaena sp. 

Anabaena iyengari 

Nostoc pondiforme Nostoc pondiforme

Figure 1: Micrographs of filamentous cyanobacteria (a) and (b) Nostoc pondiforme, (c)
Anabaena sp., and (d) Anabaena iyengari. Image credit, reproduced with permission from:
(a) Isao Inouye (University of Tsukuba). Mark Schneegurt (Wichita State University), and
Cyanosite (www-cyanosite.bio.purdue.edu), (b) Prof. Ann Magnuson (Uppsala University),
(c) and (d) Prof. Yuuji Tsukii (Hosei University, http://protist.i.hosei.ac.jp/)

Anabaena variabilis, and Anabaena azollae, to name a few.

2.2 Scattering Matrix

The radiation incident on a particle of arbitrary shape at location r can be represented
by the incident Stokes vector Iinc(r, ŝi) =(Iinc, Qinc, Uinc, Vinc)

T where I, Q, U , and V are
the so-called Stokes parameters [30]. The Stokes vector of the scattered radiation denoted
by Isca(r, ŝ)=(Isca, Qsca, Usca, Vsca)

T is related to the incident Stokes vector by the Mueller
scattering matrix [Z(Θ)] according to [17],

Isca(r, ŝ) =
1

r2
[Z(Θ)]Iinc(r, ŝi) (1)

where r is the norm of the location vector r and Θ is the so-called scattering angle ranging
from 0 to 180o and defined as the angle between the incident and scattered directions denoted
by ŝi and ŝ, respectively. For a cluster of particles with a plane of symmetry, it is convenient
to use the reduced (or Stokes) scattering matrix expressed as [17]

[F(Θ)] =
4π

Csca
[Z(Θ)] (2)
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where Csca is the particle’s scattering cross-section. Then, the reduced scattering matrix has
a 4 × 4 structure with 6 independent elements and can be written as [2],

[F(Θ)] =









F11(Θ) F12(Θ) 0 0
F12(Θ) F22(Θ) 0 0

0 0 F33(Θ) F34(Θ)
0 0 −F34(Θ) F44(Θ)









(3)

The reduced scattering matrix element F11(Θ) is the scattering phase function normalized
according to

1

4π

∫

4π

F11(Θ)sinΘdΘ = 1 (4)

In addition, the first moment of the scattering phase function is the so-called asymmetry
factor defined as [31]

g =

∫

4π

F11(Θ)cosΘdΩ (5)

It describes the shape of the scattering phase function and is equal to 0.0 for isotropic
scattering and -1 and 1 for purely backward and forward scattering, respectively.

The ratio −F12(Θ)/F11(Θ) represents the degree of linear polarization of the scattered
radiation for unpolarized incident radiation [32]. The ratio F22(Θ)/F11(Θ) captures the non-
sphericity of the particles and is equal to unity for a single sphere [32]. Other indicators
of the sphericity of the scatterer are the linear and circular polarization ratios respectively
defined as [17]

δL =
[F11(180

o)− F22(180
o)]

[F11(180o) + F22(180o)]
(6)

and δC =
[F11(180

o)− F44(180
o)]

[F11(180o) + F44(180o)]
(7)

For a single sphere δC,s = δL,s [17] while for randomly oriented rotationally symmetric parti-
cles δC ≥ 2δL [6]. For a randomly oriented and infinitely long cylinder, they both vanish, i.e.,
δC,c = δL,c = 0. The term F34 represents how much incident radiation obliquely polarized at
45o gets transformed into circularly polarized radiation [32]. Hovenier and Mackowski [33]
derived relations between scattering matrix elements at forward and backward scattering
directions (Θ = 0 and 180o) for randomly oriented single particle and a cluster of particles
with one plane of symmetry and for rotationally symmetric particles. They showed that, for
such particles or clusters, ∆(00) = F11(0)−F22(0)−F33(0)+F44(0) was equal to zero and that
F11(180

o) − 2F22(180
o) = F44(180

o). These relationships were validated using the T-matrix
method. Finally, for a spherical scatterer F22(Θ) = F11(Θ) and F33(Θ) = F44(Θ) [30].

2.3 T-matrix Method for Linear Chain of Spheres

The superposition T-matrix method has been developed for arbitrary clusters of multiple
spheres as described in details in Ref. [16]. This approach is based on the superposition
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Figure 2: Schematic and coordinate system associated with absorption and scattering of
incident radiation at incident angle of φ by (a) a linear chain of Ns spheres of diameter ds
with complex index of refraction m2 = n2 + ik2 in a non-absorbing medium of m1 = n1 and
(b) an infinitely long cylinder of diameter dc [34].

principles whereby the scattered field from the entire cluster of spheres is estimated by sum-
ming those from each of the spheres [16]. The scattered fields in sphere-centered coordinate
are also transformed into cluster-centered coordinates [16]. The absorption and scattering
cross-sections and efficiency factors for randomly oriented clusters of identical spheres can be
obtained by using the matrix relationships for the scattered and incident field and integrating
the incident field over all propagation directions and polarizations [21]. The corresponding
Stokes scattering matrix can be obtained analytically from operations on the T-matrix [21].

Figure 2a illustrates absorption and scattering by a linear chain of monodisperse spheres
of complex index of refractionm2 = n2+ik2 in a non-absorbing medium of refraction index n1.
Mackowski and Mishchenko [21] defined the orientation-averaged absorption and scattering
cross-sections of a cluster of Ns monodisperse spheres, denoted by 〈Cabs,s〉 (m,χs, Ns) and
〈Csca,s〉 (m,χs, Ns), respectively and expressed in m2, as

〈

Cabs/sca,s

〉

=
πd2s,eq,V

4

〈

Qabs/sca,s

〉

(8)

where ds,eq,V is the equivalent diameter of a single sphere having volume identical to that

of the cluster of Ns monodisperse spheres of diameter ds, i.e., ds,eq,V = dsN
1/3
s . Here,

m = m2/n1 is the relative complex index of refraction of the cylinder with respect to that
of the non-absorbing surrounding medium while χs = πds/λ is the size parameter of a
single sphere of diameter ds. The notation 〈X〉 refers to the orientationally averaged prop-
erty. The absorption and scattering efficiency factors denoted by 〈Qabs,s〉(m,χs, Ns) and
〈Csca,s〉(m,χs, Ns) were computed by the T-matrix method.
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Numerous studies have been concerned with light absorption and scattering by fractal
aggregates of small spherical particles simulating soot particles forming in combustion sys-
tems [20,23–25,35]. Mischchenko and Mackowski [15] demonstrated the use of the T-matrix
method to determine the elements of the Stokes scattering matrix for randomly oriented and
connected bispheres. The authors extended this formulation to determine the elements of
the scattering matrix of randomly oriented arbitrary clusters of spheres [19]. In particular,
they considered linear chains of spheres consisting of 1 to 5 spheres with size parameter χs=
5 and relative complex index of refraction m = 1.5 + i 0.005 [19]. They concluded that
increasing the number of spheres (i) enhanced scattering in the forward direction (Θ = 0 o)
and (ii) damped out the oscillations in the Stokes scattering matrix elements as a function of
scattering angle Θ. In addition, the elements F11, F12, F22, F33, F34, and F44 became nearly
independent of the number of spheres for chains consisting of two spheres or more. To il-
lustrate their symmetry relations for forward and backward scattering by randomly oriented
clusters of spheres with a plane of symmetry, Hovenier and Mackowski [33] considered a lin-
ear chain of spheres consisting of 4 spheres with size parameter χs= 3 and relative complex
index of refraction m = 1.311 + i 3.11× 10−9 and showed that ∆(0o) = 0 [19].

2.4 Lorenz-Mie Theory for Infinitely Long Cylinders

Figure 2b illustrates absorption and scattering by an infinitely long cylinder of diameter dc
with complex index of refraction m2 = n2 + ik2 in a non-absorbing medium of refraction
index n1. Collimated radiation is incident onto the cylinder at an angle φ with respect to
the normal of the cylinder axis [34]. The scattered radiation propagates along the conical
surface defined by the apex angle of π/2 − φ. The direction of the scattered radiation is
defined azimuthally relative to the incident radiation by the angle θ. The Lorenz-Mie theory
predicting the absorption and scattering cross-sections of infinitely long cylinders is well
established [1, 2, 34, 36–39]. First, cylinders can be treated as infinitely long provided that
their length Lc is much larger than their diameter dc, i.e., Lc ≫ dc [2]. The extinction and
scattering cross-sections per unit length of an infinitely long cylinder of diameter dc with
relative complex index of refraction m for a given incident direction φ are denoted by C ′

ext,c

and C ′

sca,c and expressed in m2/m. They are defined as [40]

C ′

ext/sca,c(m,χc, φ) = 2dcQext/sca,c(m,χc, φ) (9)

where χc = πdc/λ is the cylinder size parameter while Qext,c(m,χc, φ) and Qsca,c(m,χc, φ) are
the extinction and scattering efficiency factors, respectively. The extinction and scattering
cross-sections C ′

ext,c(m,χc, φ) and C ′

sca,c(m,χc, φ) can be expressed in terms of the Lorenz-
Mie scattering coefficients an and bn given in terms of Bessel and Hankel functions [1, 40].
In addition, the absorption cross-sections per unit length is defined as

〈

C ′

abs,c

〉

(m,χc) =
〈

C ′

ext,c

〉

(m,χc)−
〈

C ′

sca,c

〉

(m,χc) The absorption and scattering cross-sections per unit length
of an infinitely long and randomly oriented cylinder is estimated by averaging the angular
cross-sections over the observation hemisphere according to [34]

〈

C ′

abs/sca,c

〉

(m,χc) =

∫ π/2

0

C ′

abs/sca,c(m,χc, φ)cosφdφ (10)
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where the subscript “i” refers to extinction or scattering cross-sections.
To the best of our knowledge, only a few studies have presented the Stokes scattering

matrix elements of linear chains of spheres [19, 33, 41]. In addition, the number of spheres
considered did not exceed 5 and a single relatively large size parameter was investigated.
By contrast, the present study investigates the effect of the sphere size parameter (ranging
from 0.01 to 10) and the number of spheres (between 1 and 4000) on the absorption and
scattering scattering cross-sections per unit length, the scattering phase function, and the
Stokes scattering matrix elements of linear chains of spheres. It aims to answer the following
questions: (1) Can one approximate long and randomly oriented linear chains of spheres
as randomly oriented infinitely long cylinders? (2) If so, how long should the chains be or
how many spheres should it consist of? and (3) What should the diameter of the equivalent
cylinder be?

3 Analysis

3.1 Problem statement

Radiation characteristics of photosynthetic microorganisms depend largely on their size,
shape, pigment composition, internal structure, and effective optical properties [42]. They
are essential in predicting light transfer in photobioreactors and the overall performance of
the systems [31, 43, 44]. The circularity and aspect ratio of individual cells in cyanobacteria
filaments are not exactly unity as suggested by micrographs shown in Figure 1. However, the
average aspect ratio of vegetative or heterocyst cells is typically less than 1.33. Our previous
study showed that the radiation characteristics of randomly oriented spheroidal microalgae
with aspect ratio less than 1.33 computed with the T-matrix method were nearly identical
to those of surface-equivalent spheres with identical complex index of refraction computed
by Lorenz-Mie theory [45]. These observations suggest that, as a first order approximation,
filamentous cyanobacteria can be approximated as linear chains of connected, spherical, and
homogeneous cells. In a well-mixed suspension, they could further be treated as randomly
oriented.

Transport of unpolarized light through well-mixed suspensions of linear chain of spheres
of known concentration is governed by the radiation transfer equation requiring knowledge
of their absorption and scattering cross-sections 〈C ′

abs,λ〉 and 〈C ′

sca,λ〉, and of the scattering
phase function F11(Θ). Moreover, investigating other elements of the scattering matrix could
prove useful for remote sensing of these suspensions. Then, their radiation characteristics
could be numerically predicted by the superposition T-matrix method [21]. However, these
calculations can be very time consuming particularly given the length and size of these
microorganisms and the wavelength of light in the PAR region. Therefore, from a radiation
standpoint, one may wonder if these microorganisms could be modeled as randomly oriented
and infinitely long cylinders [2, 34, 38].
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3.2 Methodology

The computer code for the superposition T-matrix method used to predict absorption and
scattering cross-sections ans Stokes scattering matrix elements of randomly oriented linear
chains of monodisperse spheres was obtained from Ref. [21]. It was successfully validated
by comparing predictions of the absorption and scattering efficiency factors and the Stokes
scattering matrix elements predicted by our code with those (i) for randomly oriented bi-
spheres with m = 1.5+i0.005 and χs=10 reported by Mishchenko and Mackowski [18] and
(ii) for randomly oriented linear chains of spheres composed of 1 to 5 touching spheres with
m = 1.5+i0.005 and χs=5 reported by Mackowski and Mishchenko [19]. Similarly, Lorenz-
Mie theory code for randomly oriented and infinitely long cylinders used in this study was
obtained from Ref. [39]. It was successfully validated against results reported by Lee [34,46]
for the extinction efficiency factor and the scattering phase function of randomly oriented
and infinitely long cylinder in vacuum.

Yang et al. [14] warned that it could be “misleading” to compare the efficiency factors
of particles with complex shape with those of their equivalent spheres rather than directly
comparing their cross-sections. Indeed, radiation transfer calculations use cross-sections
and the particle number density NT (in #/m3) to estimate the absorption and scattering
coefficients as κλ = Cabs,λNT and σs,λ = Csca,λNT . These coefficients are used to compute the
radiation intensity solution of the radiative transfer equation [40]. Thus, the present study
compares the absorption and scattering cross-sections of randomly oriented linear chain
of spheres and infinitely long cylinders. In order to directly compare the radiation cross-
sections of a randomly oriented linear chain composed of Ns spheres of diameter ds with
those of an infinitely long cylinder, their orientationally-averaged scattering and absorption
cross-sections were defined per unit length of linear chain of spheres as

〈

C ′

abs/sca,s

〉

=

〈

Cabs/sca,s

〉

Nsds
(11)

Finally, in the present study, the complex index of refraction of the spheres was taken
as m2 = 1.355 + i0.004 while that of the non-absorbing surrounding medium was n1 =
1.333. These optical properties were representative of cyanobacteria in suspension in their
nutrient medium and exposed to visible light [45]. Qualitative conclusions obtained with
these properties are expected to be valid for other values of complex index of refraction even
though the actual values of the cross-sections and Stokes scattering matrix elements may be
different.

4 RESULTS AND DISCUSSION

4.1 Absorption and Scattering Cross-Sections

Figure 3 shows the absorption cross-section per unit length of a randomly oriented linear
chain of monodisperse spheres as a function of the number of spheres Ns for size parameter
χs= 0.01, 0.1, 1, and 10. The results were compared with those for an infinitely long cylinder
with identical relative complex index of refraction. Two equivalent diameters were considered
assuming (1) the cylinder had the same surface area as the chain of spheres resulting in the
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Figure 3: Absorption cross-section 〈C ′

abs〉 (m,χs) per unit length (in m) for randomly oriented
linear chains of monodisperse spheres as a function of the number of spheres Ns and for
randomly oriented and infinitely long equivalent cylinders of diameter dc,eq,S and dc,eq,V for
size parameter χs=0.01, 0.1, 1.0, and 10.0 and m = 1.0165 + i0.003.

surface-equivalent diameter dc,eq,S = ds or (2) the cylinder had the same volume as the chain

of spheres resulting in volume-equivalent diameter dc,eq,V =
√

2/3ds. Figure 3 indicates that
the absorption cross-sections per unit length of randomly oriented linear chain of spheres
was equal to that of a randomly oriented and infinitely long cylinders with volume-equivalent
diameter regardless of the number of spheres, i.e., 〈C ′

abs,s〉(m,χs, Ns) = 〈C ′

abs,c〉(m,χc,eq,V ).
However, it was much smaller than that of a randomly oriented and infinitely long cylinder
with surface-equivalent diameter dc,eq,S.

Similarly, Figure 4 shows the scattering cross-section per unit length of randomly oriented
linear chain of spheres as a function of the number of spheres Ns. Four size parameters
were considered namely χs = 0.01, 0.1, 1, and 10. These results were compared with the
scattering cross-section per unit length of a randomly oriented and infinitely long cylinder
with the same relative complex index of refraction m. Figure 4 indicates that the scattering
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Figure 4: Scattering cross-section 〈C ′

sca〉 (m,χs) per unit length (in m2/m) for randomly
oriented linear chains of monodisperse spheres as a function of the number of spheres Ns and
for randomly oriented and infinitely long equivalent cylinders of diameter dc,eq,S and dc,eq,V
for size parameter χs=0.01, 0.1, 1.0, and 10.0 and m = 1.0165 + i0.003.

cross-section of linear chains of spheres increased with increasing number of spheres for all
size parameters considered. In addition, as the number of spheres increased, the scattering
cross-section asymptotically converged towards that of randomly oriented and infinitely long
volume-equivalent cylinders with diameter dc,eq,V .

Let us define the critical number of spheres Ns,cr necessary to achieve an error less than
5% between the scattering cross-sections of a linear chain of spheres and those of infinitely
long cylinders.

Figure 5 plots the critical number of spheres Ns,cr as a function of size parameter χs. It
is evident that Ns,cr decreased with increasing size parameter according to the power-law

Ns,cr = Kχp
s (12)

where K and p are empirical constants found, by least square fitting, to be K = 136 and
p = −0.7 with a coefficient of determination R2 = 0.997.
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Figure 5: Critical number of spheres Ns,cr beyond which the scattering cross-section
〈C ′

sca〉 (m,χs) of randomly oriented linear chains of spheres can be approximated as that
of randomly oriented and infinitely long volume-equivalent cylinder as a function of size
parameter χs.

4.2 Scattering Phase Function

Figure 6 shows the scattering phase function F11(Θ) as a function of scattering angle Θ for
randomly oriented linear chains of spheres consisting of Ns,cr spheres with size parameter
χs ranging between 0.01 and 10. It also shows the phase function for the corresponding
randomly oriented and infinitely long volume-equivalent cylinders. The value of F11(0

o) for
linear chains of spheres increased from 31.54 to 721.8 as the size parameter χs increased from
0.01 to 10. In other words, a linear chain of spheres scatter more and more strongly in the
forward direction as the size parameter associated with individual constitutive spheres χs

increases. Moreover, the scattering phase function of randomly oriented linear chain of sphere
and infinitely long cylinders were very similar except in the forward and backward directions
Θ = 0o and 180o. In addition, the scattering phase function shows strong oscillations for
scattering angles larger than 20o for χs=10. This indicates that resonance effects become
increasingly important for large sphere size parameters.

Table 1 compares F11(0
o) and the asymmetry factors gs and gc,eq,V for a long (Ns = Ns,cr)

randomly oriented linear chain of spheres with that for a volume-equivalent cylinder. It
indicates that the value of F11(0

o) for linear chains of spheres and infinitely long cylinders
were significantly different. However, gs and gc,eq,V differed by less than 1% and increased
from 0.383 to 0.980 as χs increased from 0.01 to 10.
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Figure 6: Scattering phase functions F11(Θ) of randomly oriented long linear chains consist-
ing of Ns,cr monodisperse spheres or diameter ds and randomly oriented and infinitely long
volume-equivalent cylinders of diameter dc,eq,V as a function of scattering angle for χs=0.01,
0.1, 1.0, and 10.0 and m = 1.0165 + i0.003.
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Table 1: Comparison between selected scattering properties of randomly oriented long linear chains of spheres with size parameter
χs equals to 0.01, 0.1, 1.0, and 10.0 and their randomly oriented and infinitely long volume-equivalent cylinders. Their relative
complex index of refraction was m = 1.0165 + i0.003.

Linear chain of spheres Volume-equivalent cylinder
χs Ns 〈C ′

sca,s〉 (m) F11(0
o) gs δL,s δC,s 〈C ′

sca,s〉 (m) F11(0
o) gc,eq,V δL,c δC,c

0.01 4000 8.72×10−12 37.3 0.38 0.0 0.0 9.098×10−12 747.4 0.39 0.0 0.0
0.1 1300 8.87×10−8 90.2 0.39 5.0×10−5 8.0×10−17 9.08×10−8 748.7 0.39 0.0 0.0
1.0 190 7.26×10−4 98.8 0.54 5.0×10−5 7.6×10−17 7.64×10−4 878.3 0.49 0.0 0.0
10.0 15 1.085 721.8 0.98 0.09 0.2 1.086 5723.3 0.98 0.0 0.0
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Overall, the above results establish that the radiation characteristics for unpolarized
radiation of long (i.e., Ns ≥ Ns,cr) randomly oriented linear chains of monodisperse spheres
can be approximated as those of randomly oriented and infinitely long volume-equivalent
cylinders. Then, their radiation characteristics can be computed using simple algorithm [1]
instead of the superposition T-matrix method [21]. This simplifies and reduces significantly
the computational effort.

For the practical problem of interest, filamentous cyanobacteria typically have size pa-
rameters larger than 10 and consist of more than 15 cells. Thus, the present study established
that, as a first order approximation, filamentous cyanobacteria in photobioreactors can be
approximated as randomly oriented and infinitely long cylinders for the purpose of predicting
their radiation characteristics for unpolarized incident radiation.

4.3 Scattering Matrix Elements

In cases concerned with polarized radiation, for the purpose of remote sensing for example,
detailed analysis of the Stokes scattering matrix element is necessary.

Figure 7 shows the ratios of the elements of the Stokes scattering matrix (a) -F12(Θ)/F11(Θ),
(b) F22(Θ)/F11(Θ), (c) F33(Θ)/F11(Θ), (d) F44(Θ)/F11(Θ), and (e) F34(Θ)/F11(Θ) as a func-
tion of scattering angle Θ for long (Ns = Ns,cr) randomly oriented linear chain of spheres of
diameter ds with size parameter χs equals to 0.01, 0.1, 1, and 10. It also shows these ratios
for the corresponding randomly oriented and infinitely long cylinders with volume-equivalent
diameter dc,eq,V =

√

2/3ds.
First, we observed that ∆(0o) was equal to zero and that F44(180

o) = F11(180
o) −

2F22(180
o) for both long linear chains of spheres and infinitely long cylinders. We also

verified that the results satisfied the symmetry relations for the scattering matrix elements
of clusters of particles with one plane of symmetry expressed as [33]: F12(0

o) = F12(180
o) =

F34(0
o) = F34(180

o) = 0, F22(0
o) = F33(0), F22(180

o) = −F33(180
o), F11(180

o)−F22(180
o) =

F44(180
o)− F33(180

o), and F11(180
o)− F22(180

o) = F44(180
o)− F33(180

o).
Second, it is worth noting that the ratios of the elements of the Stokes scattering matrix

for long linear chains of monodisperse spheres were nearly identical to one another for size
parameter χs between 0.01 and 1. The behavior of the matrix element ratios were very
similar to results reported (i) by Liu and Mishchenko [35] for orientation-averaged scattering
matrix elements of fractal-like soot aggregates consisting of more than 200 monodisperse
spherical monomers of diameter ds = 20 nm with m = 1.75+0.435 at λ=628 nm (χs = 0.1),
and (ii) by Bunkin et al. [47] for ensemble-averaged scattering matrix elements of stochastic
ensembles of non-absorbing nanosphere clusters made of 500 ± 70 polydisperse monomers
with mean diameter of 100 nm and m = 0.75 at λ=532 nm (χs ∼ 0.6).

Moreover, for a given value of χs, increasing the numbers of spheres in the linear chain
significantly affected the scattering phase function F11(Θ) but not the ratios F12(Θ)/F11(Θ),
F22(Θ)/F11(Θ), F33(Θ)/F11(Θ), F44(Θ)/F11(Θ), and F34(Θ)/F11(Θ). This was also observed
for linear chains of spheres with large size parameter (χs = 5) [19] and for fractal-like soot
aggregates [35].

The degree of linear polarization of linear chains of spheres for unpolarized incident
radiation −F12(Θ)/F11(Θ) reached a maximum of 100% at scattering angle Θ around 90o.
It also vanished in the forward scattering (Θ = 0o) and backscattering angles (Θ = 180o),
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Figure 7: Scattering matrix element ratios (a) -F12(Θ)/F11(Θ), (b) F22(Θ)/F11(Θ), (c)
F33(Θ)/F11(Θ), and (d) F44(Θ)/F11(Θ) as a function of scattering angle Θ for randomly
oriented linear chains of spheres consisting of Ns,cr monodisperse spheres of diameter ds and
of infinitely long cylinders of volume-equivalent diameter as function of scattering angle for
χs=0.01, 0.1, 1.0, and 10 and m = 1.0165 + i0.003.

as expected for a cluster of spheres with a plane of symmetry [19, 48]. Similar results were
obtained for a fractal cluster of soot particles and were attributed to the fact that scattering
was dominated by individual Rayleigh-sized spheres [22,35]. In addition, the light scattered
by multiple spheres was more linearly polarized than that by the volume-equivalent cylinder.
In fact, −F12(Θ)/F11(Θ) reached a maximum of about 30-35% around 80o for randomly
oriented and infinitely long volume-equivalent cylinders and was nearly independent of χs

except for χs = 10. In this latter case, −F12(Θ)/F11(Θ) featured resonances at the same
scattering angles as those observed in F11(Θ).

The ratio F22(Θ)/F11(Θ) was equal to 100% at all scattering angles for randomly oriented
linear chains of spheres for any size parameters. These results were identical to those obtained
with a single sphere and further confirm the above observations the single spheres dominated
scattering. However, the linear and circular polarization ratios δL,s and δC,s were nearly 0.0
for χs ≤ 1 and increased for larger size parameters χs. Unlike single spheres, δL,s and δC,s were
different for all size parameters, as summarized in Table 1. For an infinitely long cylinders,
F22(Θ)/F11(Θ) was 100% for forward (Θ = 0o) and backward (Θ = 180o) scattering angles
but decreased between these two angles reaching a minimum of about 20% for scattering
angle around 50o. As previously mentioned, δC,c=δC,c=0 for randomly oriented and infinitely
long cylinders of any size parameter.

For both randomly oriented cylinders and linear chains of spheres, the ratios F33(Θ)/F11(Θ)
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and F44(Θ)/F11(Θ) decreased from 100% to -100% as the scattering angle increased from 0
to 180o. The ratio F33(Θ)/F11(Θ) decreased faster for a cylinder than for a linear chain of
spheres. However, the ratio F44(Θ)/F11(Θ) was nearly identical for randomly oriented linear
chains of aligned spheres and infinitely long cylinders with volume-equivalent diameter for all
size parameter χs considered. The ratios F33(Θ)/F11(Θ) and F44(Θ)/F11(Θ) for long linear
chains of spheres were equal to each other and were identical to those of a single sphere. This
was unlike what was observed in the validation cases for bispheres [18] and for linear chains
of 1-5 spheres [19] with size parameter of 10 and 5, respectively. Indeed, in these cases, the
ratio F22(Θ)/F11(Θ) departed from unity and the ratio F33(Θ)/F11(Θ) was different from
F44(Θ)/F11(Θ), unlike those corresponding to a single sphere.

Finally, the Stokes scattering matrix element ratio F34(Θ)/F11(Θ) was equal to 0.0 for all
scattering angles for χs= 0.01, 0.1, and 1 for both randomly oriented linear chains of spheres
and infinitely long cylinders. However, for χs = 10, F34(Θ)/F11(Θ) featured several peaks
with values between -60% and 30% at scattering angles corresponding to the resonances
observed in F11(Θ) as well as in the other scattering element ratios. These resonance angles
and the associated value of F34(Θ)/F11(Θ) were significantly different from those for volume-
equivalent infinitely long cylinder.

Overall, the volume-equivalent cylinder featured Stokes scattering element matrix ratios
very different from those linear chains of spheres. The equivalence observed for the absorption
and scattering cross-sections per unit length and for the asymmetric factor do not apply to
the Stokes scattering matrix element ratios other than F44(Θ)/F11(Θ).

4.4 Effects of Polydispersity

The radiation characteristics of linear chains of spheres can be affected by the spheres’
polydispersity. To assess this effect in the context of filamentous cyanobacteria shown in
Figure 1, we considered two different linear chains of fourteen spheres with average diameter
d̄s of 3.323 µm and 3.753 µm and standard deviation σ equals to 0.952 µm and 0.468 µm,
respectively. The smallest and largest spheres were 2.617 and 4.655 µm in diameter for a
size parameter ranging between 6 and 10. The size distributions of the two chains were
representative of those measured for cyanobacterium Anaebena cylindrica. Here also, the
complex index of refraction was m = 1.0165 + i0.003 for all spheres.

Table 2 compares the absorption and scattering cross-sections of the above-described
randomly oriented linear chains of polydisperse spheres and those of the linear chain of
monodisperse spheres with the corresponding average diameter d̄s. The results indicate that
the cross-sections 〈C ′

abs,s〉 and 〈C ′

sca,s〉 for Chain 1 fell within 10% of those of a chain with

monodisperse spheres of average diameter d̄s. The differences in 〈C ′

abs,s〉 and 〈C ′

sca,s〉 fell
within 2% for Chain 2. This can be attributed to the narrower size distribution of Chain 2
compared with Chain 1. Overall, these results suggest that for the polydispersity typically
encountered in vegetative cells and heterocysts, the cells in the filaments can be treated as
monodisperse with the average cell diameter for estimating the absorption and scattering
cross-sections.
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Table 2: Comparison of the absorption and scattering cross-sections 〈Cabs,s〉 and 〈Csca,s〉 of
two randomly oriented linear chains of spheres (a) with representative arbitrary diameter
distribution and (b) with monodisperse spheres with the corresponding average diameter d̄s.
The complex index of refraction was m = 1.0165 + i0.003 for all spheres.

Polydisperse spheres Monodisperse spheres
Chain # ds σ 〈C ′

abs,s〉 〈C ′

sca,s〉 d̄s 〈C ′

abs,s〉 〈C ′

sca,s〉
(µm) (µm) (m2) (m2/m) (µm) (m2) (m2/m)

1 2.62-4.65 0.48 0.136 0.179 3.32 0.122 0.170
2 3.31-4.14 0.23 0.178 0.218 3.75 0.174 0.215

5 CONCLUSION

This study presented predictions of the radiation characteristics and Stokes scattering matrix
elements of linear chains of monodisperse spheres. The results established that scattering and
absorption cross-sections per unit length of randomly oriented linear chains of monodisperse
spheres and their asymmetry factor can be approximated as those of randomly oriented and
infinitely long cylinders with volume-equivalent diameter provided that the number of spheres
is larger than the critical sphere number Ns,cr = 136χ0.7

s . Finally, approximating long linear
chains of spheres with infinitely long cylinders does not extend to the Stokes scattering matrix
element ratios. These results can be used in retrieving the optical properties of filamentous
cyanobacteria from experimental measurements absorption and scattering cross-sections.
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